xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_removal.c (revision be181ee2a28aa2b4b0e76684bce9f673ef668874)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
26  */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa_impl.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/zap.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/metaslab.h>
35 #include <sys/metaslab_impl.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/txg.h>
38 #include <sys/avl.h>
39 #include <sys/bpobj.h>
40 #include <sys/dsl_pool.h>
41 #include <sys/dsl_synctask.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/arc.h>
44 #include <sys/zfeature.h>
45 #include <sys/vdev_indirect_births.h>
46 #include <sys/vdev_indirect_mapping.h>
47 #include <sys/abd.h>
48 #include <sys/vdev_initialize.h>
49 #include <sys/vdev_trim.h>
50 #include <sys/trace_zfs.h>
51 
52 /*
53  * This file contains the necessary logic to remove vdevs from a
54  * storage pool.  Currently, the only devices that can be removed
55  * are log, cache, and spare devices; and top level vdevs from a pool
56  * w/o raidz or mirrors.  (Note that members of a mirror can be removed
57  * by the detach operation.)
58  *
59  * Log vdevs are removed by evacuating them and then turning the vdev
60  * into a hole vdev while holding spa config locks.
61  *
62  * Top level vdevs are removed and converted into an indirect vdev via
63  * a multi-step process:
64  *
65  *  - Disable allocations from this device (spa_vdev_remove_top).
66  *
67  *  - From a new thread (spa_vdev_remove_thread), copy data from
68  *    the removing vdev to a different vdev.  The copy happens in open
69  *    context (spa_vdev_copy_impl) and issues a sync task
70  *    (vdev_mapping_sync) so the sync thread can update the partial
71  *    indirect mappings in core and on disk.
72  *
73  *  - If a free happens during a removal, it is freed from the
74  *    removing vdev, and if it has already been copied, from the new
75  *    location as well (free_from_removing_vdev).
76  *
77  *  - After the removal is completed, the copy thread converts the vdev
78  *    into an indirect vdev (vdev_remove_complete) before instructing
79  *    the sync thread to destroy the space maps and finish the removal
80  *    (spa_finish_removal).
81  */
82 
83 typedef struct vdev_copy_arg {
84 	metaslab_t	*vca_msp;
85 	uint64_t	vca_outstanding_bytes;
86 	uint64_t	vca_read_error_bytes;
87 	uint64_t	vca_write_error_bytes;
88 	kcondvar_t	vca_cv;
89 	kmutex_t	vca_lock;
90 } vdev_copy_arg_t;
91 
92 /*
93  * The maximum amount of memory we can use for outstanding i/o while
94  * doing a device removal.  This determines how much i/o we can have
95  * in flight concurrently.
96  */
97 static const uint_t zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
98 
99 /*
100  * The largest contiguous segment that we will attempt to allocate when
101  * removing a device.  This can be no larger than SPA_MAXBLOCKSIZE.  If
102  * there is a performance problem with attempting to allocate large blocks,
103  * consider decreasing this.
104  *
105  * See also the accessor function spa_remove_max_segment().
106  */
107 uint_t zfs_remove_max_segment = SPA_MAXBLOCKSIZE;
108 
109 /*
110  * Ignore hard IO errors during device removal.  When set if a device
111  * encounters hard IO error during the removal process the removal will
112  * not be cancelled.  This can result in a normally recoverable block
113  * becoming permanently damaged and is not recommended.
114  */
115 static int zfs_removal_ignore_errors = 0;
116 
117 /*
118  * Allow a remap segment to span free chunks of at most this size. The main
119  * impact of a larger span is that we will read and write larger, more
120  * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
121  * for iops.  The value here was chosen to align with
122  * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
123  * reads (but there's no reason it has to be the same).
124  *
125  * Additionally, a higher span will have the following relatively minor
126  * effects:
127  *  - the mapping will be smaller, since one entry can cover more allocated
128  *    segments
129  *  - more of the fragmentation in the removing device will be preserved
130  *  - we'll do larger allocations, which may fail and fall back on smaller
131  *    allocations
132  */
133 uint_t vdev_removal_max_span = 32 * 1024;
134 
135 /*
136  * This is used by the test suite so that it can ensure that certain
137  * actions happen while in the middle of a removal.
138  */
139 int zfs_removal_suspend_progress = 0;
140 
141 #define	VDEV_REMOVAL_ZAP_OBJS	"lzap"
142 
143 static __attribute__((noreturn)) void spa_vdev_remove_thread(void *arg);
144 static int spa_vdev_remove_cancel_impl(spa_t *spa);
145 
146 static void
147 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
148 {
149 	VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
150 	    DMU_POOL_DIRECTORY_OBJECT,
151 	    DMU_POOL_REMOVING, sizeof (uint64_t),
152 	    sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
153 	    &spa->spa_removing_phys, tx));
154 }
155 
156 static nvlist_t *
157 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
158 {
159 	for (int i = 0; i < count; i++) {
160 		uint64_t guid =
161 		    fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
162 
163 		if (guid == target_guid)
164 			return (nvpp[i]);
165 	}
166 
167 	return (NULL);
168 }
169 
170 static void
171 vdev_activate(vdev_t *vd)
172 {
173 	metaslab_group_t *mg = vd->vdev_mg;
174 	spa_t *spa = vd->vdev_spa;
175 	uint64_t vdev_space = spa_deflate(spa) ?
176 	    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
177 
178 	ASSERT(!vd->vdev_islog);
179 	ASSERT(vd->vdev_noalloc);
180 
181 	metaslab_group_activate(mg);
182 	metaslab_group_activate(vd->vdev_log_mg);
183 
184 	ASSERT3U(spa->spa_nonallocating_dspace, >=, vdev_space);
185 
186 	spa->spa_nonallocating_dspace -= vdev_space;
187 
188 	vd->vdev_noalloc = B_FALSE;
189 }
190 
191 static int
192 vdev_passivate(vdev_t *vd, uint64_t *txg)
193 {
194 	spa_t *spa = vd->vdev_spa;
195 	int error;
196 
197 	ASSERT(!vd->vdev_noalloc);
198 
199 	vdev_t *rvd = spa->spa_root_vdev;
200 	metaslab_group_t *mg = vd->vdev_mg;
201 	metaslab_class_t *normal = spa_normal_class(spa);
202 	if (mg->mg_class == normal) {
203 		/*
204 		 * We must check that this is not the only allocating device in
205 		 * the pool before passivating, otherwise we will not be able
206 		 * to make progress because we can't allocate from any vdevs.
207 		 */
208 		boolean_t last = B_TRUE;
209 		for (uint64_t id = 0; id < rvd->vdev_children; id++) {
210 			vdev_t *cvd = rvd->vdev_child[id];
211 
212 			if (cvd == vd ||
213 			    cvd->vdev_ops == &vdev_indirect_ops)
214 				continue;
215 
216 			metaslab_class_t *mc = cvd->vdev_mg->mg_class;
217 			if (mc != normal)
218 				continue;
219 
220 			if (!cvd->vdev_noalloc) {
221 				last = B_FALSE;
222 				break;
223 			}
224 		}
225 		if (last)
226 			return (SET_ERROR(EINVAL));
227 	}
228 
229 	metaslab_group_passivate(mg);
230 	ASSERT(!vd->vdev_islog);
231 	metaslab_group_passivate(vd->vdev_log_mg);
232 
233 	/*
234 	 * Wait for the youngest allocations and frees to sync,
235 	 * and then wait for the deferral of those frees to finish.
236 	 */
237 	spa_vdev_config_exit(spa, NULL,
238 	    *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
239 
240 	/*
241 	 * We must ensure that no "stubby" log blocks are allocated
242 	 * on the device to be removed.  These blocks could be
243 	 * written at any time, including while we are in the middle
244 	 * of copying them.
245 	 */
246 	error = spa_reset_logs(spa);
247 
248 	*txg = spa_vdev_config_enter(spa);
249 
250 	if (error != 0) {
251 		metaslab_group_activate(mg);
252 		ASSERT(!vd->vdev_islog);
253 		if (vd->vdev_log_mg != NULL)
254 			metaslab_group_activate(vd->vdev_log_mg);
255 		return (error);
256 	}
257 
258 	spa->spa_nonallocating_dspace += spa_deflate(spa) ?
259 	    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
260 	vd->vdev_noalloc = B_TRUE;
261 
262 	return (0);
263 }
264 
265 /*
266  * Turn off allocations for a top-level device from the pool.
267  *
268  * Turning off allocations for a top-level device can take a significant
269  * amount of time. As a result we use the spa_vdev_config_[enter/exit]
270  * functions which allow us to grab and release the spa_config_lock while
271  * still holding the namespace lock. During each step the configuration
272  * is synced out.
273  */
274 int
275 spa_vdev_noalloc(spa_t *spa, uint64_t guid)
276 {
277 	vdev_t *vd;
278 	uint64_t txg;
279 	int error = 0;
280 
281 	ASSERT(!MUTEX_HELD(&spa_namespace_lock));
282 	ASSERT(spa_writeable(spa));
283 
284 	txg = spa_vdev_enter(spa);
285 
286 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
287 
288 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
289 
290 	if (vd == NULL)
291 		error = SET_ERROR(ENOENT);
292 	else if (vd->vdev_mg == NULL)
293 		error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP);
294 	else if (!vd->vdev_noalloc)
295 		error = vdev_passivate(vd, &txg);
296 
297 	if (error == 0) {
298 		vdev_dirty_leaves(vd, VDD_DTL, txg);
299 		vdev_config_dirty(vd);
300 	}
301 
302 	error = spa_vdev_exit(spa, NULL, txg, error);
303 
304 	return (error);
305 }
306 
307 int
308 spa_vdev_alloc(spa_t *spa, uint64_t guid)
309 {
310 	vdev_t *vd;
311 	uint64_t txg;
312 	int error = 0;
313 
314 	ASSERT(!MUTEX_HELD(&spa_namespace_lock));
315 	ASSERT(spa_writeable(spa));
316 
317 	txg = spa_vdev_enter(spa);
318 
319 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
320 
321 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
322 
323 	if (vd == NULL)
324 		error = SET_ERROR(ENOENT);
325 	else if (vd->vdev_mg == NULL)
326 		error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP);
327 	else if (!vd->vdev_removing)
328 		vdev_activate(vd);
329 
330 	if (error == 0) {
331 		vdev_dirty_leaves(vd, VDD_DTL, txg);
332 		vdev_config_dirty(vd);
333 	}
334 
335 	(void) spa_vdev_exit(spa, NULL, txg, error);
336 
337 	return (error);
338 }
339 
340 static void
341 spa_vdev_remove_aux(nvlist_t *config, const char *name, nvlist_t **dev,
342     int count, nvlist_t *dev_to_remove)
343 {
344 	nvlist_t **newdev = NULL;
345 
346 	if (count > 1)
347 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
348 
349 	for (int i = 0, j = 0; i < count; i++) {
350 		if (dev[i] == dev_to_remove)
351 			continue;
352 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
353 	}
354 
355 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
356 	fnvlist_add_nvlist_array(config, name, (const nvlist_t * const *)newdev,
357 	    count - 1);
358 
359 	for (int i = 0; i < count - 1; i++)
360 		nvlist_free(newdev[i]);
361 
362 	if (count > 1)
363 		kmem_free(newdev, (count - 1) * sizeof (void *));
364 }
365 
366 static spa_vdev_removal_t *
367 spa_vdev_removal_create(vdev_t *vd)
368 {
369 	spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
370 	mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
371 	cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
372 	svr->svr_allocd_segs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
373 	svr->svr_vdev_id = vd->vdev_id;
374 
375 	for (int i = 0; i < TXG_SIZE; i++) {
376 		svr->svr_frees[i] = range_tree_create(NULL, RANGE_SEG64, NULL,
377 		    0, 0);
378 		list_create(&svr->svr_new_segments[i],
379 		    sizeof (vdev_indirect_mapping_entry_t),
380 		    offsetof(vdev_indirect_mapping_entry_t, vime_node));
381 	}
382 
383 	return (svr);
384 }
385 
386 void
387 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
388 {
389 	for (int i = 0; i < TXG_SIZE; i++) {
390 		ASSERT0(svr->svr_bytes_done[i]);
391 		ASSERT0(svr->svr_max_offset_to_sync[i]);
392 		range_tree_destroy(svr->svr_frees[i]);
393 		list_destroy(&svr->svr_new_segments[i]);
394 	}
395 
396 	range_tree_destroy(svr->svr_allocd_segs);
397 	mutex_destroy(&svr->svr_lock);
398 	cv_destroy(&svr->svr_cv);
399 	kmem_free(svr, sizeof (*svr));
400 }
401 
402 /*
403  * This is called as a synctask in the txg in which we will mark this vdev
404  * as removing (in the config stored in the MOS).
405  *
406  * It begins the evacuation of a toplevel vdev by:
407  * - initializing the spa_removing_phys which tracks this removal
408  * - computing the amount of space to remove for accounting purposes
409  * - dirtying all dbufs in the spa_config_object
410  * - creating the spa_vdev_removal
411  * - starting the spa_vdev_remove_thread
412  */
413 static void
414 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
415 {
416 	int vdev_id = (uintptr_t)arg;
417 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
418 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
419 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
420 	objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
421 	spa_vdev_removal_t *svr = NULL;
422 	uint64_t txg __maybe_unused = dmu_tx_get_txg(tx);
423 
424 	ASSERT0(vdev_get_nparity(vd));
425 	svr = spa_vdev_removal_create(vd);
426 
427 	ASSERT(vd->vdev_removing);
428 	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
429 
430 	spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
431 	if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
432 		/*
433 		 * By activating the OBSOLETE_COUNTS feature, we prevent
434 		 * the pool from being downgraded and ensure that the
435 		 * refcounts are precise.
436 		 */
437 		spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
438 		uint64_t one = 1;
439 		VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
440 		    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
441 		    &one, tx));
442 		boolean_t are_precise __maybe_unused;
443 		ASSERT0(vdev_obsolete_counts_are_precise(vd, &are_precise));
444 		ASSERT3B(are_precise, ==, B_TRUE);
445 	}
446 
447 	vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
448 	vd->vdev_indirect_mapping =
449 	    vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
450 	vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
451 	vd->vdev_indirect_births =
452 	    vdev_indirect_births_open(mos, vic->vic_births_object);
453 	spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
454 	spa->spa_removing_phys.sr_start_time = gethrestime_sec();
455 	spa->spa_removing_phys.sr_end_time = 0;
456 	spa->spa_removing_phys.sr_state = DSS_SCANNING;
457 	spa->spa_removing_phys.sr_to_copy = 0;
458 	spa->spa_removing_phys.sr_copied = 0;
459 
460 	/*
461 	 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
462 	 * there may be space in the defer tree, which is free, but still
463 	 * counted in vs_alloc.
464 	 */
465 	for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
466 		metaslab_t *ms = vd->vdev_ms[i];
467 		if (ms->ms_sm == NULL)
468 			continue;
469 
470 		spa->spa_removing_phys.sr_to_copy +=
471 		    metaslab_allocated_space(ms);
472 
473 		/*
474 		 * Space which we are freeing this txg does not need to
475 		 * be copied.
476 		 */
477 		spa->spa_removing_phys.sr_to_copy -=
478 		    range_tree_space(ms->ms_freeing);
479 
480 		ASSERT0(range_tree_space(ms->ms_freed));
481 		for (int t = 0; t < TXG_SIZE; t++)
482 			ASSERT0(range_tree_space(ms->ms_allocating[t]));
483 	}
484 
485 	/*
486 	 * Sync tasks are called before metaslab_sync(), so there should
487 	 * be no already-synced metaslabs in the TXG_CLEAN list.
488 	 */
489 	ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
490 
491 	spa_sync_removing_state(spa, tx);
492 
493 	/*
494 	 * All blocks that we need to read the most recent mapping must be
495 	 * stored on concrete vdevs.  Therefore, we must dirty anything that
496 	 * is read before spa_remove_init().  Specifically, the
497 	 * spa_config_object.  (Note that although we already modified the
498 	 * spa_config_object in spa_sync_removing_state, that may not have
499 	 * modified all blocks of the object.)
500 	 */
501 	dmu_object_info_t doi;
502 	VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
503 	for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
504 		dmu_buf_t *dbuf;
505 		VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
506 		    offset, FTAG, &dbuf, 0));
507 		dmu_buf_will_dirty(dbuf, tx);
508 		offset += dbuf->db_size;
509 		dmu_buf_rele(dbuf, FTAG);
510 	}
511 
512 	/*
513 	 * Now that we've allocated the im_object, dirty the vdev to ensure
514 	 * that the object gets written to the config on disk.
515 	 */
516 	vdev_config_dirty(vd);
517 
518 	zfs_dbgmsg("starting removal thread for vdev %llu (%px) in txg %llu "
519 	    "im_obj=%llu", (u_longlong_t)vd->vdev_id, vd,
520 	    (u_longlong_t)dmu_tx_get_txg(tx),
521 	    (u_longlong_t)vic->vic_mapping_object);
522 
523 	spa_history_log_internal(spa, "vdev remove started", tx,
524 	    "%s vdev %llu %s", spa_name(spa), (u_longlong_t)vd->vdev_id,
525 	    (vd->vdev_path != NULL) ? vd->vdev_path : "-");
526 	/*
527 	 * Setting spa_vdev_removal causes subsequent frees to call
528 	 * free_from_removing_vdev().  Note that we don't need any locking
529 	 * because we are the sync thread, and metaslab_free_impl() is only
530 	 * called from syncing context (potentially from a zio taskq thread,
531 	 * but in any case only when there are outstanding free i/os, which
532 	 * there are not).
533 	 */
534 	ASSERT3P(spa->spa_vdev_removal, ==, NULL);
535 	spa->spa_vdev_removal = svr;
536 	svr->svr_thread = thread_create(NULL, 0,
537 	    spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
538 }
539 
540 /*
541  * When we are opening a pool, we must read the mapping for each
542  * indirect vdev in order from most recently removed to least
543  * recently removed.  We do this because the blocks for the mapping
544  * of older indirect vdevs may be stored on more recently removed vdevs.
545  * In order to read each indirect mapping object, we must have
546  * initialized all more recently removed vdevs.
547  */
548 int
549 spa_remove_init(spa_t *spa)
550 {
551 	int error;
552 
553 	error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
554 	    DMU_POOL_DIRECTORY_OBJECT,
555 	    DMU_POOL_REMOVING, sizeof (uint64_t),
556 	    sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
557 	    &spa->spa_removing_phys);
558 
559 	if (error == ENOENT) {
560 		spa->spa_removing_phys.sr_state = DSS_NONE;
561 		spa->spa_removing_phys.sr_removing_vdev = -1;
562 		spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
563 		spa->spa_indirect_vdevs_loaded = B_TRUE;
564 		return (0);
565 	} else if (error != 0) {
566 		return (error);
567 	}
568 
569 	if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
570 		/*
571 		 * We are currently removing a vdev.  Create and
572 		 * initialize a spa_vdev_removal_t from the bonus
573 		 * buffer of the removing vdevs vdev_im_object, and
574 		 * initialize its partial mapping.
575 		 */
576 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
577 		vdev_t *vd = vdev_lookup_top(spa,
578 		    spa->spa_removing_phys.sr_removing_vdev);
579 
580 		if (vd == NULL) {
581 			spa_config_exit(spa, SCL_STATE, FTAG);
582 			return (EINVAL);
583 		}
584 
585 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
586 
587 		ASSERT(vdev_is_concrete(vd));
588 		spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
589 		ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
590 		ASSERT(vd->vdev_removing);
591 
592 		vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
593 		    spa->spa_meta_objset, vic->vic_mapping_object);
594 		vd->vdev_indirect_births = vdev_indirect_births_open(
595 		    spa->spa_meta_objset, vic->vic_births_object);
596 		spa_config_exit(spa, SCL_STATE, FTAG);
597 
598 		spa->spa_vdev_removal = svr;
599 	}
600 
601 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
602 	uint64_t indirect_vdev_id =
603 	    spa->spa_removing_phys.sr_prev_indirect_vdev;
604 	while (indirect_vdev_id != UINT64_MAX) {
605 		vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
606 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
607 
608 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
609 		vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
610 		    spa->spa_meta_objset, vic->vic_mapping_object);
611 		vd->vdev_indirect_births = vdev_indirect_births_open(
612 		    spa->spa_meta_objset, vic->vic_births_object);
613 
614 		indirect_vdev_id = vic->vic_prev_indirect_vdev;
615 	}
616 	spa_config_exit(spa, SCL_STATE, FTAG);
617 
618 	/*
619 	 * Now that we've loaded all the indirect mappings, we can allow
620 	 * reads from other blocks (e.g. via predictive prefetch).
621 	 */
622 	spa->spa_indirect_vdevs_loaded = B_TRUE;
623 	return (0);
624 }
625 
626 void
627 spa_restart_removal(spa_t *spa)
628 {
629 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
630 
631 	if (svr == NULL)
632 		return;
633 
634 	/*
635 	 * In general when this function is called there is no
636 	 * removal thread running. The only scenario where this
637 	 * is not true is during spa_import() where this function
638 	 * is called twice [once from spa_import_impl() and
639 	 * spa_async_resume()]. Thus, in the scenario where we
640 	 * import a pool that has an ongoing removal we don't
641 	 * want to spawn a second thread.
642 	 */
643 	if (svr->svr_thread != NULL)
644 		return;
645 
646 	if (!spa_writeable(spa))
647 		return;
648 
649 	zfs_dbgmsg("restarting removal of %llu",
650 	    (u_longlong_t)svr->svr_vdev_id);
651 	svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
652 	    0, &p0, TS_RUN, minclsyspri);
653 }
654 
655 /*
656  * Process freeing from a device which is in the middle of being removed.
657  * We must handle this carefully so that we attempt to copy freed data,
658  * and we correctly free already-copied data.
659  */
660 void
661 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
662 {
663 	spa_t *spa = vd->vdev_spa;
664 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
665 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
666 	uint64_t txg = spa_syncing_txg(spa);
667 	uint64_t max_offset_yet = 0;
668 
669 	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
670 	ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
671 	    vdev_indirect_mapping_object(vim));
672 	ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
673 
674 	mutex_enter(&svr->svr_lock);
675 
676 	/*
677 	 * Remove the segment from the removing vdev's spacemap.  This
678 	 * ensures that we will not attempt to copy this space (if the
679 	 * removal thread has not yet visited it), and also ensures
680 	 * that we know what is actually allocated on the new vdevs
681 	 * (needed if we cancel the removal).
682 	 *
683 	 * Note: we must do the metaslab_free_concrete() with the svr_lock
684 	 * held, so that the remove_thread can not load this metaslab and then
685 	 * visit this offset between the time that we metaslab_free_concrete()
686 	 * and when we check to see if it has been visited.
687 	 *
688 	 * Note: The checkpoint flag is set to false as having/taking
689 	 * a checkpoint and removing a device can't happen at the same
690 	 * time.
691 	 */
692 	ASSERT(!spa_has_checkpoint(spa));
693 	metaslab_free_concrete(vd, offset, size, B_FALSE);
694 
695 	uint64_t synced_size = 0;
696 	uint64_t synced_offset = 0;
697 	uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
698 	if (offset < max_offset_synced) {
699 		/*
700 		 * The mapping for this offset is already on disk.
701 		 * Free from the new location.
702 		 *
703 		 * Note that we use svr_max_synced_offset because it is
704 		 * updated atomically with respect to the in-core mapping.
705 		 * By contrast, vim_max_offset is not.
706 		 *
707 		 * This block may be split between a synced entry and an
708 		 * in-flight or unvisited entry.  Only process the synced
709 		 * portion of it here.
710 		 */
711 		synced_size = MIN(size, max_offset_synced - offset);
712 		synced_offset = offset;
713 
714 		ASSERT3U(max_offset_yet, <=, max_offset_synced);
715 		max_offset_yet = max_offset_synced;
716 
717 		DTRACE_PROBE3(remove__free__synced,
718 		    spa_t *, spa,
719 		    uint64_t, offset,
720 		    uint64_t, synced_size);
721 
722 		size -= synced_size;
723 		offset += synced_size;
724 	}
725 
726 	/*
727 	 * Look at all in-flight txgs starting from the currently syncing one
728 	 * and see if a section of this free is being copied. By starting from
729 	 * this txg and iterating forward, we might find that this region
730 	 * was copied in two different txgs and handle it appropriately.
731 	 */
732 	for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
733 		int txgoff = (txg + i) & TXG_MASK;
734 		if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
735 			/*
736 			 * The mapping for this offset is in flight, and
737 			 * will be synced in txg+i.
738 			 */
739 			uint64_t inflight_size = MIN(size,
740 			    svr->svr_max_offset_to_sync[txgoff] - offset);
741 
742 			DTRACE_PROBE4(remove__free__inflight,
743 			    spa_t *, spa,
744 			    uint64_t, offset,
745 			    uint64_t, inflight_size,
746 			    uint64_t, txg + i);
747 
748 			/*
749 			 * We copy data in order of increasing offset.
750 			 * Therefore the max_offset_to_sync[] must increase
751 			 * (or be zero, indicating that nothing is being
752 			 * copied in that txg).
753 			 */
754 			if (svr->svr_max_offset_to_sync[txgoff] != 0) {
755 				ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
756 				    >=, max_offset_yet);
757 				max_offset_yet =
758 				    svr->svr_max_offset_to_sync[txgoff];
759 			}
760 
761 			/*
762 			 * We've already committed to copying this segment:
763 			 * we have allocated space elsewhere in the pool for
764 			 * it and have an IO outstanding to copy the data. We
765 			 * cannot free the space before the copy has
766 			 * completed, or else the copy IO might overwrite any
767 			 * new data. To free that space, we record the
768 			 * segment in the appropriate svr_frees tree and free
769 			 * the mapped space later, in the txg where we have
770 			 * completed the copy and synced the mapping (see
771 			 * vdev_mapping_sync).
772 			 */
773 			range_tree_add(svr->svr_frees[txgoff],
774 			    offset, inflight_size);
775 			size -= inflight_size;
776 			offset += inflight_size;
777 
778 			/*
779 			 * This space is already accounted for as being
780 			 * done, because it is being copied in txg+i.
781 			 * However, if i!=0, then it is being copied in
782 			 * a future txg.  If we crash after this txg
783 			 * syncs but before txg+i syncs, then the space
784 			 * will be free.  Therefore we must account
785 			 * for the space being done in *this* txg
786 			 * (when it is freed) rather than the future txg
787 			 * (when it will be copied).
788 			 */
789 			ASSERT3U(svr->svr_bytes_done[txgoff], >=,
790 			    inflight_size);
791 			svr->svr_bytes_done[txgoff] -= inflight_size;
792 			svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
793 		}
794 	}
795 	ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
796 
797 	if (size > 0) {
798 		/*
799 		 * The copy thread has not yet visited this offset.  Ensure
800 		 * that it doesn't.
801 		 */
802 
803 		DTRACE_PROBE3(remove__free__unvisited,
804 		    spa_t *, spa,
805 		    uint64_t, offset,
806 		    uint64_t, size);
807 
808 		if (svr->svr_allocd_segs != NULL)
809 			range_tree_clear(svr->svr_allocd_segs, offset, size);
810 
811 		/*
812 		 * Since we now do not need to copy this data, for
813 		 * accounting purposes we have done our job and can count
814 		 * it as completed.
815 		 */
816 		svr->svr_bytes_done[txg & TXG_MASK] += size;
817 	}
818 	mutex_exit(&svr->svr_lock);
819 
820 	/*
821 	 * Now that we have dropped svr_lock, process the synced portion
822 	 * of this free.
823 	 */
824 	if (synced_size > 0) {
825 		vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
826 
827 		/*
828 		 * Note: this can only be called from syncing context,
829 		 * and the vdev_indirect_mapping is only changed from the
830 		 * sync thread, so we don't need svr_lock while doing
831 		 * metaslab_free_impl_cb.
832 		 */
833 		boolean_t checkpoint = B_FALSE;
834 		vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
835 		    metaslab_free_impl_cb, &checkpoint);
836 	}
837 }
838 
839 /*
840  * Stop an active removal and update the spa_removing phys.
841  */
842 static void
843 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
844 {
845 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
846 	ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
847 
848 	/* Ensure the removal thread has completed before we free the svr. */
849 	spa_vdev_remove_suspend(spa);
850 
851 	ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
852 
853 	if (state == DSS_FINISHED) {
854 		spa_removing_phys_t *srp = &spa->spa_removing_phys;
855 		vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
856 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
857 
858 		if (srp->sr_prev_indirect_vdev != -1) {
859 			vdev_t *pvd;
860 			pvd = vdev_lookup_top(spa,
861 			    srp->sr_prev_indirect_vdev);
862 			ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
863 		}
864 
865 		vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
866 		srp->sr_prev_indirect_vdev = vd->vdev_id;
867 	}
868 	spa->spa_removing_phys.sr_state = state;
869 	spa->spa_removing_phys.sr_end_time = gethrestime_sec();
870 
871 	spa->spa_vdev_removal = NULL;
872 	spa_vdev_removal_destroy(svr);
873 
874 	spa_sync_removing_state(spa, tx);
875 	spa_notify_waiters(spa);
876 
877 	vdev_config_dirty(spa->spa_root_vdev);
878 }
879 
880 static void
881 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
882 {
883 	vdev_t *vd = arg;
884 	vdev_indirect_mark_obsolete(vd, offset, size);
885 	boolean_t checkpoint = B_FALSE;
886 	vdev_indirect_ops.vdev_op_remap(vd, offset, size,
887 	    metaslab_free_impl_cb, &checkpoint);
888 }
889 
890 /*
891  * On behalf of the removal thread, syncs an incremental bit more of
892  * the indirect mapping to disk and updates the in-memory mapping.
893  * Called as a sync task in every txg that the removal thread makes progress.
894  */
895 static void
896 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
897 {
898 	spa_vdev_removal_t *svr = arg;
899 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
900 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
901 	vdev_indirect_config_t *vic __maybe_unused = &vd->vdev_indirect_config;
902 	uint64_t txg = dmu_tx_get_txg(tx);
903 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
904 
905 	ASSERT(vic->vic_mapping_object != 0);
906 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
907 
908 	vdev_indirect_mapping_add_entries(vim,
909 	    &svr->svr_new_segments[txg & TXG_MASK], tx);
910 	vdev_indirect_births_add_entry(vd->vdev_indirect_births,
911 	    vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
912 
913 	/*
914 	 * Free the copied data for anything that was freed while the
915 	 * mapping entries were in flight.
916 	 */
917 	mutex_enter(&svr->svr_lock);
918 	range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
919 	    free_mapped_segment_cb, vd);
920 	ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
921 	    vdev_indirect_mapping_max_offset(vim));
922 	svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
923 	mutex_exit(&svr->svr_lock);
924 
925 	spa_sync_removing_state(spa, tx);
926 }
927 
928 typedef struct vdev_copy_segment_arg {
929 	spa_t *vcsa_spa;
930 	dva_t *vcsa_dest_dva;
931 	uint64_t vcsa_txg;
932 	range_tree_t *vcsa_obsolete_segs;
933 } vdev_copy_segment_arg_t;
934 
935 static void
936 unalloc_seg(void *arg, uint64_t start, uint64_t size)
937 {
938 	vdev_copy_segment_arg_t *vcsa = arg;
939 	spa_t *spa = vcsa->vcsa_spa;
940 	blkptr_t bp = { { { {0} } } };
941 
942 	BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
943 	BP_SET_LSIZE(&bp, size);
944 	BP_SET_PSIZE(&bp, size);
945 	BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
946 	BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
947 	BP_SET_TYPE(&bp, DMU_OT_NONE);
948 	BP_SET_LEVEL(&bp, 0);
949 	BP_SET_DEDUP(&bp, 0);
950 	BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
951 
952 	DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
953 	DVA_SET_OFFSET(&bp.blk_dva[0],
954 	    DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
955 	DVA_SET_ASIZE(&bp.blk_dva[0], size);
956 
957 	zio_free(spa, vcsa->vcsa_txg, &bp);
958 }
959 
960 /*
961  * All reads and writes associated with a call to spa_vdev_copy_segment()
962  * are done.
963  */
964 static void
965 spa_vdev_copy_segment_done(zio_t *zio)
966 {
967 	vdev_copy_segment_arg_t *vcsa = zio->io_private;
968 
969 	range_tree_vacate(vcsa->vcsa_obsolete_segs,
970 	    unalloc_seg, vcsa);
971 	range_tree_destroy(vcsa->vcsa_obsolete_segs);
972 	kmem_free(vcsa, sizeof (*vcsa));
973 
974 	spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
975 }
976 
977 /*
978  * The write of the new location is done.
979  */
980 static void
981 spa_vdev_copy_segment_write_done(zio_t *zio)
982 {
983 	vdev_copy_arg_t *vca = zio->io_private;
984 
985 	abd_free(zio->io_abd);
986 
987 	mutex_enter(&vca->vca_lock);
988 	vca->vca_outstanding_bytes -= zio->io_size;
989 
990 	if (zio->io_error != 0)
991 		vca->vca_write_error_bytes += zio->io_size;
992 
993 	cv_signal(&vca->vca_cv);
994 	mutex_exit(&vca->vca_lock);
995 }
996 
997 /*
998  * The read of the old location is done.  The parent zio is the write to
999  * the new location.  Allow it to start.
1000  */
1001 static void
1002 spa_vdev_copy_segment_read_done(zio_t *zio)
1003 {
1004 	vdev_copy_arg_t *vca = zio->io_private;
1005 
1006 	if (zio->io_error != 0) {
1007 		mutex_enter(&vca->vca_lock);
1008 		vca->vca_read_error_bytes += zio->io_size;
1009 		mutex_exit(&vca->vca_lock);
1010 	}
1011 
1012 	zio_nowait(zio_unique_parent(zio));
1013 }
1014 
1015 /*
1016  * If the old and new vdevs are mirrors, we will read both sides of the old
1017  * mirror, and write each copy to the corresponding side of the new mirror.
1018  * If the old and new vdevs have a different number of children, we will do
1019  * this as best as possible.  Since we aren't verifying checksums, this
1020  * ensures that as long as there's a good copy of the data, we'll have a
1021  * good copy after the removal, even if there's silent damage to one side
1022  * of the mirror. If we're removing a mirror that has some silent damage,
1023  * we'll have exactly the same damage in the new location (assuming that
1024  * the new location is also a mirror).
1025  *
1026  * We accomplish this by creating a tree of zio_t's, with as many writes as
1027  * there are "children" of the new vdev (a non-redundant vdev counts as one
1028  * child, a 2-way mirror has 2 children, etc). Each write has an associated
1029  * read from a child of the old vdev. Typically there will be the same
1030  * number of children of the old and new vdevs.  However, if there are more
1031  * children of the new vdev, some child(ren) of the old vdev will be issued
1032  * multiple reads.  If there are more children of the old vdev, some copies
1033  * will be dropped.
1034  *
1035  * For example, the tree of zio_t's for a 2-way mirror is:
1036  *
1037  *                            null
1038  *                           /    \
1039  *    write(new vdev, child 0)      write(new vdev, child 1)
1040  *      |                             |
1041  *    read(old vdev, child 0)       read(old vdev, child 1)
1042  *
1043  * Child zio's complete before their parents complete.  However, zio's
1044  * created with zio_vdev_child_io() may be issued before their children
1045  * complete.  In this case we need to make sure that the children (reads)
1046  * complete before the parents (writes) are *issued*.  We do this by not
1047  * calling zio_nowait() on each write until its corresponding read has
1048  * completed.
1049  *
1050  * The spa_config_lock must be held while zio's created by
1051  * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
1052  * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
1053  * zio is needed to release the spa_config_lock after all the reads and
1054  * writes complete. (Note that we can't grab the config lock for each read,
1055  * because it is not reentrant - we could deadlock with a thread waiting
1056  * for a write lock.)
1057  */
1058 static void
1059 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
1060     vdev_t *source_vd, uint64_t source_offset,
1061     vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
1062 {
1063 	ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
1064 
1065 	/*
1066 	 * If the destination child in unwritable then there is no point
1067 	 * in issuing the source reads which cannot be written.
1068 	 */
1069 	if (!vdev_writeable(dest_child_vd))
1070 		return;
1071 
1072 	mutex_enter(&vca->vca_lock);
1073 	vca->vca_outstanding_bytes += size;
1074 	mutex_exit(&vca->vca_lock);
1075 
1076 	abd_t *abd = abd_alloc_for_io(size, B_FALSE);
1077 
1078 	vdev_t *source_child_vd = NULL;
1079 	if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
1080 		/*
1081 		 * Source and dest are both mirrors.  Copy from the same
1082 		 * child id as we are copying to (wrapping around if there
1083 		 * are more dest children than source children).  If the
1084 		 * preferred source child is unreadable select another.
1085 		 */
1086 		for (int i = 0; i < source_vd->vdev_children; i++) {
1087 			source_child_vd = source_vd->vdev_child[
1088 			    (dest_id + i) % source_vd->vdev_children];
1089 			if (vdev_readable(source_child_vd))
1090 				break;
1091 		}
1092 	} else {
1093 		source_child_vd = source_vd;
1094 	}
1095 
1096 	/*
1097 	 * There should always be at least one readable source child or
1098 	 * the pool would be in a suspended state.  Somehow selecting an
1099 	 * unreadable child would result in IO errors, the removal process
1100 	 * being cancelled, and the pool reverting to its pre-removal state.
1101 	 */
1102 	ASSERT3P(source_child_vd, !=, NULL);
1103 
1104 	zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
1105 	    dest_child_vd, dest_offset, abd, size,
1106 	    ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
1107 	    ZIO_FLAG_CANFAIL,
1108 	    spa_vdev_copy_segment_write_done, vca);
1109 
1110 	zio_nowait(zio_vdev_child_io(write_zio, NULL,
1111 	    source_child_vd, source_offset, abd, size,
1112 	    ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
1113 	    ZIO_FLAG_CANFAIL,
1114 	    spa_vdev_copy_segment_read_done, vca));
1115 }
1116 
1117 /*
1118  * Allocate a new location for this segment, and create the zio_t's to
1119  * read from the old location and write to the new location.
1120  */
1121 static int
1122 spa_vdev_copy_segment(vdev_t *vd, range_tree_t *segs,
1123     uint64_t maxalloc, uint64_t txg,
1124     vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
1125 {
1126 	metaslab_group_t *mg = vd->vdev_mg;
1127 	spa_t *spa = vd->vdev_spa;
1128 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1129 	vdev_indirect_mapping_entry_t *entry;
1130 	dva_t dst = {{ 0 }};
1131 	uint64_t start = range_tree_min(segs);
1132 	ASSERT0(P2PHASE(start, 1 << spa->spa_min_ashift));
1133 
1134 	ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
1135 	ASSERT0(P2PHASE(maxalloc, 1 << spa->spa_min_ashift));
1136 
1137 	uint64_t size = range_tree_span(segs);
1138 	if (range_tree_span(segs) > maxalloc) {
1139 		/*
1140 		 * We can't allocate all the segments.  Prefer to end
1141 		 * the allocation at the end of a segment, thus avoiding
1142 		 * additional split blocks.
1143 		 */
1144 		range_seg_max_t search;
1145 		zfs_btree_index_t where;
1146 		rs_set_start(&search, segs, start + maxalloc);
1147 		rs_set_end(&search, segs, start + maxalloc);
1148 		(void) zfs_btree_find(&segs->rt_root, &search, &where);
1149 		range_seg_t *rs = zfs_btree_prev(&segs->rt_root, &where,
1150 		    &where);
1151 		if (rs != NULL) {
1152 			size = rs_get_end(rs, segs) - start;
1153 		} else {
1154 			/*
1155 			 * There are no segments that end before maxalloc.
1156 			 * I.e. the first segment is larger than maxalloc,
1157 			 * so we must split it.
1158 			 */
1159 			size = maxalloc;
1160 		}
1161 	}
1162 	ASSERT3U(size, <=, maxalloc);
1163 	ASSERT0(P2PHASE(size, 1 << spa->spa_min_ashift));
1164 
1165 	/*
1166 	 * An allocation class might not have any remaining vdevs or space
1167 	 */
1168 	metaslab_class_t *mc = mg->mg_class;
1169 	if (mc->mc_groups == 0)
1170 		mc = spa_normal_class(spa);
1171 	int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg, 0,
1172 	    zal, 0);
1173 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
1174 		error = metaslab_alloc_dva(spa, spa_normal_class(spa), size,
1175 		    &dst, 0, NULL, txg, 0, zal, 0);
1176 	}
1177 	if (error != 0)
1178 		return (error);
1179 
1180 	/*
1181 	 * Determine the ranges that are not actually needed.  Offsets are
1182 	 * relative to the start of the range to be copied (i.e. relative to the
1183 	 * local variable "start").
1184 	 */
1185 	range_tree_t *obsolete_segs = range_tree_create(NULL, RANGE_SEG64, NULL,
1186 	    0, 0);
1187 
1188 	zfs_btree_index_t where;
1189 	range_seg_t *rs = zfs_btree_first(&segs->rt_root, &where);
1190 	ASSERT3U(rs_get_start(rs, segs), ==, start);
1191 	uint64_t prev_seg_end = rs_get_end(rs, segs);
1192 	while ((rs = zfs_btree_next(&segs->rt_root, &where, &where)) != NULL) {
1193 		if (rs_get_start(rs, segs) >= start + size) {
1194 			break;
1195 		} else {
1196 			range_tree_add(obsolete_segs,
1197 			    prev_seg_end - start,
1198 			    rs_get_start(rs, segs) - prev_seg_end);
1199 		}
1200 		prev_seg_end = rs_get_end(rs, segs);
1201 	}
1202 	/* We don't end in the middle of an obsolete range */
1203 	ASSERT3U(start + size, <=, prev_seg_end);
1204 
1205 	range_tree_clear(segs, start, size);
1206 
1207 	/*
1208 	 * We can't have any padding of the allocated size, otherwise we will
1209 	 * misunderstand what's allocated, and the size of the mapping. We
1210 	 * prevent padding by ensuring that all devices in the pool have the
1211 	 * same ashift, and the allocation size is a multiple of the ashift.
1212 	 */
1213 	VERIFY3U(DVA_GET_ASIZE(&dst), ==, size);
1214 
1215 	entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
1216 	DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
1217 	entry->vime_mapping.vimep_dst = dst;
1218 	if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
1219 		entry->vime_obsolete_count = range_tree_space(obsolete_segs);
1220 	}
1221 
1222 	vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
1223 	vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
1224 	vcsa->vcsa_obsolete_segs = obsolete_segs;
1225 	vcsa->vcsa_spa = spa;
1226 	vcsa->vcsa_txg = txg;
1227 
1228 	/*
1229 	 * See comment before spa_vdev_copy_one_child().
1230 	 */
1231 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1232 	zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
1233 	    spa_vdev_copy_segment_done, vcsa, 0);
1234 	vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
1235 	if (dest_vd->vdev_ops == &vdev_mirror_ops) {
1236 		for (int i = 0; i < dest_vd->vdev_children; i++) {
1237 			vdev_t *child = dest_vd->vdev_child[i];
1238 			spa_vdev_copy_one_child(vca, nzio, vd, start,
1239 			    child, DVA_GET_OFFSET(&dst), i, size);
1240 		}
1241 	} else {
1242 		spa_vdev_copy_one_child(vca, nzio, vd, start,
1243 		    dest_vd, DVA_GET_OFFSET(&dst), -1, size);
1244 	}
1245 	zio_nowait(nzio);
1246 
1247 	list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
1248 	ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
1249 	vdev_dirty(vd, 0, NULL, txg);
1250 
1251 	return (0);
1252 }
1253 
1254 /*
1255  * Complete the removal of a toplevel vdev. This is called as a
1256  * synctask in the same txg that we will sync out the new config (to the
1257  * MOS object) which indicates that this vdev is indirect.
1258  */
1259 static void
1260 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
1261 {
1262 	spa_vdev_removal_t *svr = arg;
1263 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1264 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1265 
1266 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1267 
1268 	for (int i = 0; i < TXG_SIZE; i++) {
1269 		ASSERT0(svr->svr_bytes_done[i]);
1270 	}
1271 
1272 	ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
1273 	    spa->spa_removing_phys.sr_to_copy);
1274 
1275 	vdev_destroy_spacemaps(vd, tx);
1276 
1277 	/* destroy leaf zaps, if any */
1278 	ASSERT3P(svr->svr_zaplist, !=, NULL);
1279 	for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
1280 	    pair != NULL;
1281 	    pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
1282 		vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
1283 	}
1284 	fnvlist_free(svr->svr_zaplist);
1285 
1286 	spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
1287 	/* vd->vdev_path is not available here */
1288 	spa_history_log_internal(spa, "vdev remove completed",  tx,
1289 	    "%s vdev %llu", spa_name(spa), (u_longlong_t)vd->vdev_id);
1290 }
1291 
1292 static void
1293 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
1294 {
1295 	ASSERT3P(zlist, !=, NULL);
1296 	ASSERT0(vdev_get_nparity(vd));
1297 
1298 	if (vd->vdev_leaf_zap != 0) {
1299 		char zkey[32];
1300 		(void) snprintf(zkey, sizeof (zkey), "%s-%llu",
1301 		    VDEV_REMOVAL_ZAP_OBJS, (u_longlong_t)vd->vdev_leaf_zap);
1302 		fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
1303 	}
1304 
1305 	for (uint64_t id = 0; id < vd->vdev_children; id++) {
1306 		vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
1307 	}
1308 }
1309 
1310 static void
1311 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
1312 {
1313 	vdev_t *ivd;
1314 	dmu_tx_t *tx;
1315 	spa_t *spa = vd->vdev_spa;
1316 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1317 
1318 	/*
1319 	 * First, build a list of leaf zaps to be destroyed.
1320 	 * This is passed to the sync context thread,
1321 	 * which does the actual unlinking.
1322 	 */
1323 	svr->svr_zaplist = fnvlist_alloc();
1324 	vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
1325 
1326 	ivd = vdev_add_parent(vd, &vdev_indirect_ops);
1327 	ivd->vdev_removing = 0;
1328 
1329 	vd->vdev_leaf_zap = 0;
1330 
1331 	vdev_remove_child(ivd, vd);
1332 	vdev_compact_children(ivd);
1333 
1334 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1335 
1336 	mutex_enter(&svr->svr_lock);
1337 	svr->svr_thread = NULL;
1338 	cv_broadcast(&svr->svr_cv);
1339 	mutex_exit(&svr->svr_lock);
1340 
1341 	/* After this, we can not use svr. */
1342 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1343 	dsl_sync_task_nowait(spa->spa_dsl_pool,
1344 	    vdev_remove_complete_sync, svr, tx);
1345 	dmu_tx_commit(tx);
1346 }
1347 
1348 /*
1349  * Complete the removal of a toplevel vdev. This is called in open
1350  * context by the removal thread after we have copied all vdev's data.
1351  */
1352 static void
1353 vdev_remove_complete(spa_t *spa)
1354 {
1355 	uint64_t txg;
1356 
1357 	/*
1358 	 * Wait for any deferred frees to be synced before we call
1359 	 * vdev_metaslab_fini()
1360 	 */
1361 	txg_wait_synced(spa->spa_dsl_pool, 0);
1362 	txg = spa_vdev_enter(spa);
1363 	vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1364 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1365 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1366 	ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1367 	vdev_rebuild_stop_wait(vd);
1368 	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
1369 	uint64_t vdev_space = spa_deflate(spa) ?
1370 	    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1371 
1372 	sysevent_t *ev = spa_event_create(spa, vd, NULL,
1373 	    ESC_ZFS_VDEV_REMOVE_DEV);
1374 
1375 	zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1376 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)txg);
1377 
1378 	ASSERT3U(0, !=, vdev_space);
1379 	ASSERT3U(spa->spa_nonallocating_dspace, >=, vdev_space);
1380 
1381 	/* the vdev is no longer part of the dspace */
1382 	spa->spa_nonallocating_dspace -= vdev_space;
1383 
1384 	/*
1385 	 * Discard allocation state.
1386 	 */
1387 	if (vd->vdev_mg != NULL) {
1388 		vdev_metaslab_fini(vd);
1389 		metaslab_group_destroy(vd->vdev_mg);
1390 		vd->vdev_mg = NULL;
1391 	}
1392 	if (vd->vdev_log_mg != NULL) {
1393 		ASSERT0(vd->vdev_ms_count);
1394 		metaslab_group_destroy(vd->vdev_log_mg);
1395 		vd->vdev_log_mg = NULL;
1396 	}
1397 	ASSERT0(vd->vdev_stat.vs_space);
1398 	ASSERT0(vd->vdev_stat.vs_dspace);
1399 
1400 	vdev_remove_replace_with_indirect(vd, txg);
1401 
1402 	/*
1403 	 * We now release the locks, allowing spa_sync to run and finish the
1404 	 * removal via vdev_remove_complete_sync in syncing context.
1405 	 *
1406 	 * Note that we hold on to the vdev_t that has been replaced.  Since
1407 	 * it isn't part of the vdev tree any longer, it can't be concurrently
1408 	 * manipulated, even while we don't have the config lock.
1409 	 */
1410 	(void) spa_vdev_exit(spa, NULL, txg, 0);
1411 
1412 	/*
1413 	 * Top ZAP should have been transferred to the indirect vdev in
1414 	 * vdev_remove_replace_with_indirect.
1415 	 */
1416 	ASSERT0(vd->vdev_top_zap);
1417 
1418 	/*
1419 	 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1420 	 */
1421 	ASSERT0(vd->vdev_leaf_zap);
1422 
1423 	txg = spa_vdev_enter(spa);
1424 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1425 	/*
1426 	 * Request to update the config and the config cachefile.
1427 	 */
1428 	vdev_config_dirty(spa->spa_root_vdev);
1429 	(void) spa_vdev_exit(spa, vd, txg, 0);
1430 
1431 	if (ev != NULL)
1432 		spa_event_post(ev);
1433 }
1434 
1435 /*
1436  * Evacuates a segment of size at most max_alloc from the vdev
1437  * via repeated calls to spa_vdev_copy_segment. If an allocation
1438  * fails, the pool is probably too fragmented to handle such a
1439  * large size, so decrease max_alloc so that the caller will not try
1440  * this size again this txg.
1441  */
1442 static void
1443 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1444     uint64_t *max_alloc, dmu_tx_t *tx)
1445 {
1446 	uint64_t txg = dmu_tx_get_txg(tx);
1447 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1448 
1449 	mutex_enter(&svr->svr_lock);
1450 
1451 	/*
1452 	 * Determine how big of a chunk to copy.  We can allocate up
1453 	 * to max_alloc bytes, and we can span up to vdev_removal_max_span
1454 	 * bytes of unallocated space at a time.  "segs" will track the
1455 	 * allocated segments that we are copying.  We may also be copying
1456 	 * free segments (of up to vdev_removal_max_span bytes).
1457 	 */
1458 	range_tree_t *segs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1459 	for (;;) {
1460 		range_tree_t *rt = svr->svr_allocd_segs;
1461 		range_seg_t *rs = range_tree_first(rt);
1462 
1463 		if (rs == NULL)
1464 			break;
1465 
1466 		uint64_t seg_length;
1467 
1468 		if (range_tree_is_empty(segs)) {
1469 			/* need to truncate the first seg based on max_alloc */
1470 			seg_length = MIN(rs_get_end(rs, rt) - rs_get_start(rs,
1471 			    rt), *max_alloc);
1472 		} else {
1473 			if (rs_get_start(rs, rt) - range_tree_max(segs) >
1474 			    vdev_removal_max_span) {
1475 				/*
1476 				 * Including this segment would cause us to
1477 				 * copy a larger unneeded chunk than is allowed.
1478 				 */
1479 				break;
1480 			} else if (rs_get_end(rs, rt) - range_tree_min(segs) >
1481 			    *max_alloc) {
1482 				/*
1483 				 * This additional segment would extend past
1484 				 * max_alloc. Rather than splitting this
1485 				 * segment, leave it for the next mapping.
1486 				 */
1487 				break;
1488 			} else {
1489 				seg_length = rs_get_end(rs, rt) -
1490 				    rs_get_start(rs, rt);
1491 			}
1492 		}
1493 
1494 		range_tree_add(segs, rs_get_start(rs, rt), seg_length);
1495 		range_tree_remove(svr->svr_allocd_segs,
1496 		    rs_get_start(rs, rt), seg_length);
1497 	}
1498 
1499 	if (range_tree_is_empty(segs)) {
1500 		mutex_exit(&svr->svr_lock);
1501 		range_tree_destroy(segs);
1502 		return;
1503 	}
1504 
1505 	if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1506 		dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1507 		    svr, tx);
1508 	}
1509 
1510 	svr->svr_max_offset_to_sync[txg & TXG_MASK] = range_tree_max(segs);
1511 
1512 	/*
1513 	 * Note: this is the amount of *allocated* space
1514 	 * that we are taking care of each txg.
1515 	 */
1516 	svr->svr_bytes_done[txg & TXG_MASK] += range_tree_space(segs);
1517 
1518 	mutex_exit(&svr->svr_lock);
1519 
1520 	zio_alloc_list_t zal;
1521 	metaslab_trace_init(&zal);
1522 	uint64_t thismax = SPA_MAXBLOCKSIZE;
1523 	while (!range_tree_is_empty(segs)) {
1524 		int error = spa_vdev_copy_segment(vd,
1525 		    segs, thismax, txg, vca, &zal);
1526 
1527 		if (error == ENOSPC) {
1528 			/*
1529 			 * Cut our segment in half, and don't try this
1530 			 * segment size again this txg.  Note that the
1531 			 * allocation size must be aligned to the highest
1532 			 * ashift in the pool, so that the allocation will
1533 			 * not be padded out to a multiple of the ashift,
1534 			 * which could cause us to think that this mapping
1535 			 * is larger than we intended.
1536 			 */
1537 			ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1538 			ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1539 			uint64_t attempted =
1540 			    MIN(range_tree_span(segs), thismax);
1541 			thismax = P2ROUNDUP(attempted / 2,
1542 			    1 << spa->spa_max_ashift);
1543 			/*
1544 			 * The minimum-size allocation can not fail.
1545 			 */
1546 			ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
1547 			*max_alloc = attempted - (1 << spa->spa_max_ashift);
1548 		} else {
1549 			ASSERT0(error);
1550 
1551 			/*
1552 			 * We've performed an allocation, so reset the
1553 			 * alloc trace list.
1554 			 */
1555 			metaslab_trace_fini(&zal);
1556 			metaslab_trace_init(&zal);
1557 		}
1558 	}
1559 	metaslab_trace_fini(&zal);
1560 	range_tree_destroy(segs);
1561 }
1562 
1563 /*
1564  * The size of each removal mapping is limited by the tunable
1565  * zfs_remove_max_segment, but we must adjust this to be a multiple of the
1566  * pool's ashift, so that we don't try to split individual sectors regardless
1567  * of the tunable value.  (Note that device removal requires that all devices
1568  * have the same ashift, so there's no difference between spa_min_ashift and
1569  * spa_max_ashift.) The raw tunable should not be used elsewhere.
1570  */
1571 uint64_t
1572 spa_remove_max_segment(spa_t *spa)
1573 {
1574 	return (P2ROUNDUP(zfs_remove_max_segment, 1 << spa->spa_max_ashift));
1575 }
1576 
1577 /*
1578  * The removal thread operates in open context.  It iterates over all
1579  * allocated space in the vdev, by loading each metaslab's spacemap.
1580  * For each contiguous segment of allocated space (capping the segment
1581  * size at SPA_MAXBLOCKSIZE), we:
1582  *    - Allocate space for it on another vdev.
1583  *    - Create a new mapping from the old location to the new location
1584  *      (as a record in svr_new_segments).
1585  *    - Initiate a physical read zio to get the data off the removing disk.
1586  *    - In the read zio's done callback, initiate a physical write zio to
1587  *      write it to the new vdev.
1588  * Note that all of this will take effect when a particular TXG syncs.
1589  * The sync thread ensures that all the phys reads and writes for the syncing
1590  * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1591  * (see vdev_mapping_sync()).
1592  */
1593 static __attribute__((noreturn)) void
1594 spa_vdev_remove_thread(void *arg)
1595 {
1596 	spa_t *spa = arg;
1597 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1598 	vdev_copy_arg_t vca;
1599 	uint64_t max_alloc = spa_remove_max_segment(spa);
1600 	uint64_t last_txg = 0;
1601 
1602 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1603 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1604 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1605 	uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1606 
1607 	ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1608 	ASSERT(vdev_is_concrete(vd));
1609 	ASSERT(vd->vdev_removing);
1610 	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1611 	ASSERT(vim != NULL);
1612 
1613 	mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1614 	cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1615 	vca.vca_outstanding_bytes = 0;
1616 	vca.vca_read_error_bytes = 0;
1617 	vca.vca_write_error_bytes = 0;
1618 
1619 	mutex_enter(&svr->svr_lock);
1620 
1621 	/*
1622 	 * Start from vim_max_offset so we pick up where we left off
1623 	 * if we are restarting the removal after opening the pool.
1624 	 */
1625 	uint64_t msi;
1626 	for (msi = start_offset >> vd->vdev_ms_shift;
1627 	    msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1628 		metaslab_t *msp = vd->vdev_ms[msi];
1629 		ASSERT3U(msi, <=, vd->vdev_ms_count);
1630 
1631 		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1632 
1633 		mutex_enter(&msp->ms_sync_lock);
1634 		mutex_enter(&msp->ms_lock);
1635 
1636 		/*
1637 		 * Assert nothing in flight -- ms_*tree is empty.
1638 		 */
1639 		for (int i = 0; i < TXG_SIZE; i++) {
1640 			ASSERT0(range_tree_space(msp->ms_allocating[i]));
1641 		}
1642 
1643 		/*
1644 		 * If the metaslab has ever been allocated from (ms_sm!=NULL),
1645 		 * read the allocated segments from the space map object
1646 		 * into svr_allocd_segs. Since we do this while holding
1647 		 * svr_lock and ms_sync_lock, concurrent frees (which
1648 		 * would have modified the space map) will wait for us
1649 		 * to finish loading the spacemap, and then take the
1650 		 * appropriate action (see free_from_removing_vdev()).
1651 		 */
1652 		if (msp->ms_sm != NULL) {
1653 			VERIFY0(space_map_load(msp->ms_sm,
1654 			    svr->svr_allocd_segs, SM_ALLOC));
1655 
1656 			range_tree_walk(msp->ms_unflushed_allocs,
1657 			    range_tree_add, svr->svr_allocd_segs);
1658 			range_tree_walk(msp->ms_unflushed_frees,
1659 			    range_tree_remove, svr->svr_allocd_segs);
1660 			range_tree_walk(msp->ms_freeing,
1661 			    range_tree_remove, svr->svr_allocd_segs);
1662 
1663 			/*
1664 			 * When we are resuming from a paused removal (i.e.
1665 			 * when importing a pool with a removal in progress),
1666 			 * discard any state that we have already processed.
1667 			 */
1668 			range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1669 		}
1670 		mutex_exit(&msp->ms_lock);
1671 		mutex_exit(&msp->ms_sync_lock);
1672 
1673 		vca.vca_msp = msp;
1674 		zfs_dbgmsg("copying %llu segments for metaslab %llu",
1675 		    (u_longlong_t)zfs_btree_numnodes(
1676 		    &svr->svr_allocd_segs->rt_root),
1677 		    (u_longlong_t)msp->ms_id);
1678 
1679 		while (!svr->svr_thread_exit &&
1680 		    !range_tree_is_empty(svr->svr_allocd_segs)) {
1681 
1682 			mutex_exit(&svr->svr_lock);
1683 
1684 			/*
1685 			 * We need to periodically drop the config lock so that
1686 			 * writers can get in.  Additionally, we can't wait
1687 			 * for a txg to sync while holding a config lock
1688 			 * (since a waiting writer could cause a 3-way deadlock
1689 			 * with the sync thread, which also gets a config
1690 			 * lock for reader).  So we can't hold the config lock
1691 			 * while calling dmu_tx_assign().
1692 			 */
1693 			spa_config_exit(spa, SCL_CONFIG, FTAG);
1694 
1695 			/*
1696 			 * This delay will pause the removal around the point
1697 			 * specified by zfs_removal_suspend_progress. We do this
1698 			 * solely from the test suite or during debugging.
1699 			 */
1700 			while (zfs_removal_suspend_progress &&
1701 			    !svr->svr_thread_exit)
1702 				delay(hz);
1703 
1704 			mutex_enter(&vca.vca_lock);
1705 			while (vca.vca_outstanding_bytes >
1706 			    zfs_remove_max_copy_bytes) {
1707 				cv_wait(&vca.vca_cv, &vca.vca_lock);
1708 			}
1709 			mutex_exit(&vca.vca_lock);
1710 
1711 			dmu_tx_t *tx =
1712 			    dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1713 
1714 			VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1715 			uint64_t txg = dmu_tx_get_txg(tx);
1716 
1717 			/*
1718 			 * Reacquire the vdev_config lock.  The vdev_t
1719 			 * that we're removing may have changed, e.g. due
1720 			 * to a vdev_attach or vdev_detach.
1721 			 */
1722 			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1723 			vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1724 
1725 			if (txg != last_txg)
1726 				max_alloc = spa_remove_max_segment(spa);
1727 			last_txg = txg;
1728 
1729 			spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
1730 
1731 			dmu_tx_commit(tx);
1732 			mutex_enter(&svr->svr_lock);
1733 		}
1734 
1735 		mutex_enter(&vca.vca_lock);
1736 		if (zfs_removal_ignore_errors == 0 &&
1737 		    (vca.vca_read_error_bytes > 0 ||
1738 		    vca.vca_write_error_bytes > 0)) {
1739 			svr->svr_thread_exit = B_TRUE;
1740 		}
1741 		mutex_exit(&vca.vca_lock);
1742 	}
1743 
1744 	mutex_exit(&svr->svr_lock);
1745 
1746 	spa_config_exit(spa, SCL_CONFIG, FTAG);
1747 
1748 	/*
1749 	 * Wait for all copies to finish before cleaning up the vca.
1750 	 */
1751 	txg_wait_synced(spa->spa_dsl_pool, 0);
1752 	ASSERT0(vca.vca_outstanding_bytes);
1753 
1754 	mutex_destroy(&vca.vca_lock);
1755 	cv_destroy(&vca.vca_cv);
1756 
1757 	if (svr->svr_thread_exit) {
1758 		mutex_enter(&svr->svr_lock);
1759 		range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1760 		svr->svr_thread = NULL;
1761 		cv_broadcast(&svr->svr_cv);
1762 		mutex_exit(&svr->svr_lock);
1763 
1764 		/*
1765 		 * During the removal process an unrecoverable read or write
1766 		 * error was encountered.  The removal process must be
1767 		 * cancelled or this damage may become permanent.
1768 		 */
1769 		if (zfs_removal_ignore_errors == 0 &&
1770 		    (vca.vca_read_error_bytes > 0 ||
1771 		    vca.vca_write_error_bytes > 0)) {
1772 			zfs_dbgmsg("canceling removal due to IO errors: "
1773 			    "[read_error_bytes=%llu] [write_error_bytes=%llu]",
1774 			    (u_longlong_t)vca.vca_read_error_bytes,
1775 			    (u_longlong_t)vca.vca_write_error_bytes);
1776 			spa_vdev_remove_cancel_impl(spa);
1777 		}
1778 	} else {
1779 		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1780 		vdev_remove_complete(spa);
1781 	}
1782 
1783 	thread_exit();
1784 }
1785 
1786 void
1787 spa_vdev_remove_suspend(spa_t *spa)
1788 {
1789 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1790 
1791 	if (svr == NULL)
1792 		return;
1793 
1794 	mutex_enter(&svr->svr_lock);
1795 	svr->svr_thread_exit = B_TRUE;
1796 	while (svr->svr_thread != NULL)
1797 		cv_wait(&svr->svr_cv, &svr->svr_lock);
1798 	svr->svr_thread_exit = B_FALSE;
1799 	mutex_exit(&svr->svr_lock);
1800 }
1801 
1802 /*
1803  * Return true if the "allocating" property has been set to "off"
1804  */
1805 static boolean_t
1806 vdev_prop_allocating_off(vdev_t *vd)
1807 {
1808 	uint64_t objid = vd->vdev_top_zap;
1809 	uint64_t allocating = 1;
1810 
1811 	/* no vdev property object => no props */
1812 	if (objid != 0) {
1813 		spa_t *spa = vd->vdev_spa;
1814 		objset_t *mos = spa->spa_meta_objset;
1815 
1816 		mutex_enter(&spa->spa_props_lock);
1817 		(void) zap_lookup(mos, objid, "allocating", sizeof (uint64_t),
1818 		    1, &allocating);
1819 		mutex_exit(&spa->spa_props_lock);
1820 	}
1821 	return (allocating == 0);
1822 }
1823 
1824 static int
1825 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1826 {
1827 	(void) arg;
1828 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1829 
1830 	if (spa->spa_vdev_removal == NULL)
1831 		return (ENOTACTIVE);
1832 	return (0);
1833 }
1834 
1835 /*
1836  * Cancel a removal by freeing all entries from the partial mapping
1837  * and marking the vdev as no longer being removing.
1838  */
1839 static void
1840 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1841 {
1842 	(void) arg;
1843 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1844 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1845 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1846 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1847 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1848 	objset_t *mos = spa->spa_meta_objset;
1849 
1850 	ASSERT3P(svr->svr_thread, ==, NULL);
1851 
1852 	spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1853 
1854 	boolean_t are_precise;
1855 	VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
1856 	if (are_precise) {
1857 		spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1858 		VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1859 		    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1860 	}
1861 
1862 	uint64_t obsolete_sm_object;
1863 	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1864 	if (obsolete_sm_object != 0) {
1865 		ASSERT(vd->vdev_obsolete_sm != NULL);
1866 		ASSERT3U(obsolete_sm_object, ==,
1867 		    space_map_object(vd->vdev_obsolete_sm));
1868 
1869 		space_map_free(vd->vdev_obsolete_sm, tx);
1870 		VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1871 		    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1872 		space_map_close(vd->vdev_obsolete_sm);
1873 		vd->vdev_obsolete_sm = NULL;
1874 		spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1875 	}
1876 	for (int i = 0; i < TXG_SIZE; i++) {
1877 		ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1878 		ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1879 		    vdev_indirect_mapping_max_offset(vim));
1880 	}
1881 
1882 	for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1883 		metaslab_t *msp = vd->vdev_ms[msi];
1884 
1885 		if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1886 			break;
1887 
1888 		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1889 
1890 		mutex_enter(&msp->ms_lock);
1891 
1892 		/*
1893 		 * Assert nothing in flight -- ms_*tree is empty.
1894 		 */
1895 		for (int i = 0; i < TXG_SIZE; i++)
1896 			ASSERT0(range_tree_space(msp->ms_allocating[i]));
1897 		for (int i = 0; i < TXG_DEFER_SIZE; i++)
1898 			ASSERT0(range_tree_space(msp->ms_defer[i]));
1899 		ASSERT0(range_tree_space(msp->ms_freed));
1900 
1901 		if (msp->ms_sm != NULL) {
1902 			mutex_enter(&svr->svr_lock);
1903 			VERIFY0(space_map_load(msp->ms_sm,
1904 			    svr->svr_allocd_segs, SM_ALLOC));
1905 
1906 			range_tree_walk(msp->ms_unflushed_allocs,
1907 			    range_tree_add, svr->svr_allocd_segs);
1908 			range_tree_walk(msp->ms_unflushed_frees,
1909 			    range_tree_remove, svr->svr_allocd_segs);
1910 			range_tree_walk(msp->ms_freeing,
1911 			    range_tree_remove, svr->svr_allocd_segs);
1912 
1913 			/*
1914 			 * Clear everything past what has been synced,
1915 			 * because we have not allocated mappings for it yet.
1916 			 */
1917 			uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1918 			uint64_t sm_end = msp->ms_sm->sm_start +
1919 			    msp->ms_sm->sm_size;
1920 			if (sm_end > syncd)
1921 				range_tree_clear(svr->svr_allocd_segs,
1922 				    syncd, sm_end - syncd);
1923 
1924 			mutex_exit(&svr->svr_lock);
1925 		}
1926 		mutex_exit(&msp->ms_lock);
1927 
1928 		mutex_enter(&svr->svr_lock);
1929 		range_tree_vacate(svr->svr_allocd_segs,
1930 		    free_mapped_segment_cb, vd);
1931 		mutex_exit(&svr->svr_lock);
1932 	}
1933 
1934 	/*
1935 	 * Note: this must happen after we invoke free_mapped_segment_cb,
1936 	 * because it adds to the obsolete_segments.
1937 	 */
1938 	range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1939 
1940 	ASSERT3U(vic->vic_mapping_object, ==,
1941 	    vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1942 	vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1943 	vd->vdev_indirect_mapping = NULL;
1944 	vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1945 	vic->vic_mapping_object = 0;
1946 
1947 	ASSERT3U(vic->vic_births_object, ==,
1948 	    vdev_indirect_births_object(vd->vdev_indirect_births));
1949 	vdev_indirect_births_close(vd->vdev_indirect_births);
1950 	vd->vdev_indirect_births = NULL;
1951 	vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1952 	vic->vic_births_object = 0;
1953 
1954 	/*
1955 	 * We may have processed some frees from the removing vdev in this
1956 	 * txg, thus increasing svr_bytes_done; discard that here to
1957 	 * satisfy the assertions in spa_vdev_removal_destroy().
1958 	 * Note that future txg's can not have any bytes_done, because
1959 	 * future TXG's are only modified from open context, and we have
1960 	 * already shut down the copying thread.
1961 	 */
1962 	svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1963 	spa_finish_removal(spa, DSS_CANCELED, tx);
1964 
1965 	vd->vdev_removing = B_FALSE;
1966 
1967 	if (!vdev_prop_allocating_off(vd)) {
1968 		spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1969 		vdev_activate(vd);
1970 		spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1971 	}
1972 
1973 	vdev_config_dirty(vd);
1974 
1975 	zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1976 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)dmu_tx_get_txg(tx));
1977 	spa_history_log_internal(spa, "vdev remove canceled", tx,
1978 	    "%s vdev %llu %s", spa_name(spa),
1979 	    (u_longlong_t)vd->vdev_id,
1980 	    (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1981 }
1982 
1983 static int
1984 spa_vdev_remove_cancel_impl(spa_t *spa)
1985 {
1986 	int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
1987 	    spa_vdev_remove_cancel_sync, NULL, 0,
1988 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
1989 	return (error);
1990 }
1991 
1992 int
1993 spa_vdev_remove_cancel(spa_t *spa)
1994 {
1995 	spa_vdev_remove_suspend(spa);
1996 
1997 	if (spa->spa_vdev_removal == NULL)
1998 		return (ENOTACTIVE);
1999 
2000 	return (spa_vdev_remove_cancel_impl(spa));
2001 }
2002 
2003 void
2004 svr_sync(spa_t *spa, dmu_tx_t *tx)
2005 {
2006 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
2007 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
2008 
2009 	if (svr == NULL)
2010 		return;
2011 
2012 	/*
2013 	 * This check is necessary so that we do not dirty the
2014 	 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
2015 	 * is nothing to do.  Dirtying it every time would prevent us
2016 	 * from syncing-to-convergence.
2017 	 */
2018 	if (svr->svr_bytes_done[txgoff] == 0)
2019 		return;
2020 
2021 	/*
2022 	 * Update progress accounting.
2023 	 */
2024 	spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
2025 	svr->svr_bytes_done[txgoff] = 0;
2026 
2027 	spa_sync_removing_state(spa, tx);
2028 }
2029 
2030 static void
2031 vdev_remove_make_hole_and_free(vdev_t *vd)
2032 {
2033 	uint64_t id = vd->vdev_id;
2034 	spa_t *spa = vd->vdev_spa;
2035 	vdev_t *rvd = spa->spa_root_vdev;
2036 
2037 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2038 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2039 
2040 	vdev_free(vd);
2041 
2042 	vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
2043 	vdev_add_child(rvd, vd);
2044 	vdev_config_dirty(rvd);
2045 
2046 	/*
2047 	 * Reassess the health of our root vdev.
2048 	 */
2049 	vdev_reopen(rvd);
2050 }
2051 
2052 /*
2053  * Remove a log device.  The config lock is held for the specified TXG.
2054  */
2055 static int
2056 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
2057 {
2058 	metaslab_group_t *mg = vd->vdev_mg;
2059 	spa_t *spa = vd->vdev_spa;
2060 	int error = 0;
2061 
2062 	ASSERT(vd->vdev_islog);
2063 	ASSERT(vd == vd->vdev_top);
2064 	ASSERT3P(vd->vdev_log_mg, ==, NULL);
2065 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2066 
2067 	/*
2068 	 * Stop allocating from this vdev.
2069 	 */
2070 	metaslab_group_passivate(mg);
2071 
2072 	/*
2073 	 * Wait for the youngest allocations and frees to sync,
2074 	 * and then wait for the deferral of those frees to finish.
2075 	 */
2076 	spa_vdev_config_exit(spa, NULL,
2077 	    *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2078 
2079 	/*
2080 	 * Cancel any initialize or TRIM which was in progress.
2081 	 */
2082 	vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED);
2083 	vdev_trim_stop_all(vd, VDEV_TRIM_CANCELED);
2084 	vdev_autotrim_stop_wait(vd);
2085 
2086 	/*
2087 	 * Evacuate the device.  We don't hold the config lock as
2088 	 * writer since we need to do I/O but we do keep the
2089 	 * spa_namespace_lock held.  Once this completes the device
2090 	 * should no longer have any blocks allocated on it.
2091 	 */
2092 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2093 	if (vd->vdev_stat.vs_alloc != 0)
2094 		error = spa_reset_logs(spa);
2095 
2096 	*txg = spa_vdev_config_enter(spa);
2097 
2098 	if (error != 0) {
2099 		metaslab_group_activate(mg);
2100 		ASSERT3P(vd->vdev_log_mg, ==, NULL);
2101 		return (error);
2102 	}
2103 	ASSERT0(vd->vdev_stat.vs_alloc);
2104 
2105 	/*
2106 	 * The evacuation succeeded.  Remove any remaining MOS metadata
2107 	 * associated with this vdev, and wait for these changes to sync.
2108 	 */
2109 	vd->vdev_removing = B_TRUE;
2110 
2111 	vdev_dirty_leaves(vd, VDD_DTL, *txg);
2112 	vdev_config_dirty(vd);
2113 
2114 	/*
2115 	 * When the log space map feature is enabled we look at
2116 	 * the vdev's top_zap to find the on-disk flush data of
2117 	 * the metaslab we just flushed. Thus, while removing a
2118 	 * log vdev we make sure to call vdev_metaslab_fini()
2119 	 * first, which removes all metaslabs of this vdev from
2120 	 * spa_metaslabs_by_flushed before vdev_remove_empty()
2121 	 * destroys the top_zap of this log vdev.
2122 	 *
2123 	 * This avoids the scenario where we flush a metaslab
2124 	 * from the log vdev being removed that doesn't have a
2125 	 * top_zap and end up failing to lookup its on-disk flush
2126 	 * data.
2127 	 *
2128 	 * We don't call metaslab_group_destroy() right away
2129 	 * though (it will be called in vdev_free() later) as
2130 	 * during metaslab_sync() of metaslabs from other vdevs
2131 	 * we may touch the metaslab group of this vdev through
2132 	 * metaslab_class_histogram_verify()
2133 	 */
2134 	vdev_metaslab_fini(vd);
2135 
2136 	spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
2137 	*txg = spa_vdev_config_enter(spa);
2138 
2139 	sysevent_t *ev = spa_event_create(spa, vd, NULL,
2140 	    ESC_ZFS_VDEV_REMOVE_DEV);
2141 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2142 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2143 
2144 	/* The top ZAP should have been destroyed by vdev_remove_empty. */
2145 	ASSERT0(vd->vdev_top_zap);
2146 	/* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
2147 	ASSERT0(vd->vdev_leaf_zap);
2148 
2149 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
2150 
2151 	if (list_link_active(&vd->vdev_state_dirty_node))
2152 		vdev_state_clean(vd);
2153 	if (list_link_active(&vd->vdev_config_dirty_node))
2154 		vdev_config_clean(vd);
2155 
2156 	ASSERT0(vd->vdev_stat.vs_alloc);
2157 
2158 	/*
2159 	 * Clean up the vdev namespace.
2160 	 */
2161 	vdev_remove_make_hole_and_free(vd);
2162 
2163 	if (ev != NULL)
2164 		spa_event_post(ev);
2165 
2166 	return (0);
2167 }
2168 
2169 static int
2170 spa_vdev_remove_top_check(vdev_t *vd)
2171 {
2172 	spa_t *spa = vd->vdev_spa;
2173 
2174 	if (vd != vd->vdev_top)
2175 		return (SET_ERROR(ENOTSUP));
2176 
2177 	if (!vdev_is_concrete(vd))
2178 		return (SET_ERROR(ENOTSUP));
2179 
2180 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
2181 		return (SET_ERROR(ENOTSUP));
2182 
2183 	/*
2184 	 * This device is already being removed
2185 	 */
2186 	if (vd->vdev_removing)
2187 		return (SET_ERROR(EALREADY));
2188 
2189 	metaslab_class_t *mc = vd->vdev_mg->mg_class;
2190 	metaslab_class_t *normal = spa_normal_class(spa);
2191 	if (mc != normal) {
2192 		/*
2193 		 * Space allocated from the special (or dedup) class is
2194 		 * included in the DMU's space usage, but it's not included
2195 		 * in spa_dspace (or dsl_pool_adjustedsize()).  Therefore
2196 		 * there is always at least as much free space in the normal
2197 		 * class, as is allocated from the special (and dedup) class.
2198 		 * As a backup check, we will return ENOSPC if this is
2199 		 * violated. See also spa_update_dspace().
2200 		 */
2201 		uint64_t available = metaslab_class_get_space(normal) -
2202 		    metaslab_class_get_alloc(normal);
2203 		ASSERT3U(available, >=, vd->vdev_stat.vs_alloc);
2204 		if (available < vd->vdev_stat.vs_alloc)
2205 			return (SET_ERROR(ENOSPC));
2206 	} else if (!vd->vdev_noalloc) {
2207 		/* available space in the pool's normal class */
2208 		uint64_t available = dsl_dir_space_available(
2209 		    spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE);
2210 		if (available < vd->vdev_stat.vs_dspace)
2211 			return (SET_ERROR(ENOSPC));
2212 	}
2213 
2214 	/*
2215 	 * There can not be a removal in progress.
2216 	 */
2217 	if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
2218 		return (SET_ERROR(EBUSY));
2219 
2220 	/*
2221 	 * The device must have all its data.
2222 	 */
2223 	if (!vdev_dtl_empty(vd, DTL_MISSING) ||
2224 	    !vdev_dtl_empty(vd, DTL_OUTAGE))
2225 		return (SET_ERROR(EBUSY));
2226 
2227 	/*
2228 	 * The device must be healthy.
2229 	 */
2230 	if (!vdev_readable(vd))
2231 		return (SET_ERROR(EIO));
2232 
2233 	/*
2234 	 * All vdevs in normal class must have the same ashift.
2235 	 */
2236 	if (spa->spa_max_ashift != spa->spa_min_ashift) {
2237 		return (SET_ERROR(EINVAL));
2238 	}
2239 
2240 	/*
2241 	 * A removed special/dedup vdev must have same ashift as normal class.
2242 	 */
2243 	ASSERT(!vd->vdev_islog);
2244 	if (vd->vdev_alloc_bias != VDEV_BIAS_NONE &&
2245 	    vd->vdev_ashift != spa->spa_max_ashift) {
2246 		return (SET_ERROR(EINVAL));
2247 	}
2248 
2249 	/*
2250 	 * All vdevs in normal class must have the same ashift
2251 	 * and not be raidz or draid.
2252 	 */
2253 	vdev_t *rvd = spa->spa_root_vdev;
2254 	for (uint64_t id = 0; id < rvd->vdev_children; id++) {
2255 		vdev_t *cvd = rvd->vdev_child[id];
2256 
2257 		/*
2258 		 * A removed special/dedup vdev must have the same ashift
2259 		 * across all vdevs in its class.
2260 		 */
2261 		if (vd->vdev_alloc_bias != VDEV_BIAS_NONE &&
2262 		    cvd->vdev_alloc_bias == vd->vdev_alloc_bias &&
2263 		    cvd->vdev_ashift != vd->vdev_ashift) {
2264 			return (SET_ERROR(EINVAL));
2265 		}
2266 		if (cvd->vdev_ashift != 0 &&
2267 		    cvd->vdev_alloc_bias == VDEV_BIAS_NONE)
2268 			ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
2269 		if (!vdev_is_concrete(cvd))
2270 			continue;
2271 		if (vdev_get_nparity(cvd) != 0)
2272 			return (SET_ERROR(EINVAL));
2273 		/*
2274 		 * Need the mirror to be mirror of leaf vdevs only
2275 		 */
2276 		if (cvd->vdev_ops == &vdev_mirror_ops) {
2277 			for (uint64_t cid = 0;
2278 			    cid < cvd->vdev_children; cid++) {
2279 				if (!cvd->vdev_child[cid]->vdev_ops->
2280 				    vdev_op_leaf)
2281 					return (SET_ERROR(EINVAL));
2282 			}
2283 		}
2284 	}
2285 
2286 	return (0);
2287 }
2288 
2289 /*
2290  * Initiate removal of a top-level vdev, reducing the total space in the pool.
2291  * The config lock is held for the specified TXG.  Once initiated,
2292  * evacuation of all allocated space (copying it to other vdevs) happens
2293  * in the background (see spa_vdev_remove_thread()), and can be canceled
2294  * (see spa_vdev_remove_cancel()).  If successful, the vdev will
2295  * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
2296  */
2297 static int
2298 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
2299 {
2300 	spa_t *spa = vd->vdev_spa;
2301 	boolean_t set_noalloc = B_FALSE;
2302 	int error;
2303 
2304 	/*
2305 	 * Check for errors up-front, so that we don't waste time
2306 	 * passivating the metaslab group and clearing the ZIL if there
2307 	 * are errors.
2308 	 */
2309 	error = spa_vdev_remove_top_check(vd);
2310 
2311 	/*
2312 	 * Stop allocating from this vdev.  Note that we must check
2313 	 * that this is not the only device in the pool before
2314 	 * passivating, otherwise we will not be able to make
2315 	 * progress because we can't allocate from any vdevs.
2316 	 * The above check for sufficient free space serves this
2317 	 * purpose.
2318 	 */
2319 	if (error == 0 && !vd->vdev_noalloc) {
2320 		set_noalloc = B_TRUE;
2321 		error = vdev_passivate(vd, txg);
2322 	}
2323 
2324 	if (error != 0)
2325 		return (error);
2326 
2327 	/*
2328 	 * We stop any initializing and TRIM that is currently in progress
2329 	 * but leave the state as "active". This will allow the process to
2330 	 * resume if the removal is canceled sometime later.
2331 	 */
2332 
2333 	spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
2334 
2335 	vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE);
2336 	vdev_trim_stop_all(vd, VDEV_TRIM_ACTIVE);
2337 	vdev_autotrim_stop_wait(vd);
2338 
2339 	*txg = spa_vdev_config_enter(spa);
2340 
2341 	/*
2342 	 * Things might have changed while the config lock was dropped
2343 	 * (e.g. space usage).  Check for errors again.
2344 	 */
2345 	error = spa_vdev_remove_top_check(vd);
2346 
2347 	if (error != 0) {
2348 		if (set_noalloc)
2349 			vdev_activate(vd);
2350 		spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
2351 		spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
2352 		spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
2353 		return (error);
2354 	}
2355 
2356 	vd->vdev_removing = B_TRUE;
2357 
2358 	vdev_dirty_leaves(vd, VDD_DTL, *txg);
2359 	vdev_config_dirty(vd);
2360 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
2361 	dsl_sync_task_nowait(spa->spa_dsl_pool,
2362 	    vdev_remove_initiate_sync, (void *)(uintptr_t)vd->vdev_id, tx);
2363 	dmu_tx_commit(tx);
2364 
2365 	return (0);
2366 }
2367 
2368 /*
2369  * Remove a device from the pool.
2370  *
2371  * Removing a device from the vdev namespace requires several steps
2372  * and can take a significant amount of time.  As a result we use
2373  * the spa_vdev_config_[enter/exit] functions which allow us to
2374  * grab and release the spa_config_lock while still holding the namespace
2375  * lock.  During each step the configuration is synced out.
2376  */
2377 int
2378 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2379 {
2380 	vdev_t *vd;
2381 	nvlist_t **spares, **l2cache, *nv;
2382 	uint64_t txg = 0;
2383 	uint_t nspares, nl2cache;
2384 	int error = 0, error_log;
2385 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
2386 	sysevent_t *ev = NULL;
2387 	const char *vd_type = NULL;
2388 	char *vd_path = NULL;
2389 
2390 	ASSERT(spa_writeable(spa));
2391 
2392 	if (!locked)
2393 		txg = spa_vdev_enter(spa);
2394 
2395 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2396 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
2397 		error = (spa_has_checkpoint(spa)) ?
2398 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
2399 
2400 		if (!locked)
2401 			return (spa_vdev_exit(spa, NULL, txg, error));
2402 
2403 		return (error);
2404 	}
2405 
2406 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2407 
2408 	if (spa->spa_spares.sav_vdevs != NULL &&
2409 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2410 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
2411 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
2412 		/*
2413 		 * Only remove the hot spare if it's not currently in use
2414 		 * in this pool.
2415 		 */
2416 		if (vd == NULL || unspare) {
2417 			char *type;
2418 			boolean_t draid_spare = B_FALSE;
2419 
2420 			if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type)
2421 			    == 0 && strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0)
2422 				draid_spare = B_TRUE;
2423 
2424 			if (vd == NULL && draid_spare) {
2425 				error = SET_ERROR(ENOTSUP);
2426 			} else {
2427 				if (vd == NULL)
2428 					vd = spa_lookup_by_guid(spa,
2429 					    guid, B_TRUE);
2430 				ev = spa_event_create(spa, vd, NULL,
2431 				    ESC_ZFS_VDEV_REMOVE_AUX);
2432 
2433 				vd_type = VDEV_TYPE_SPARE;
2434 				vd_path = spa_strdup(fnvlist_lookup_string(
2435 				    nv, ZPOOL_CONFIG_PATH));
2436 				spa_vdev_remove_aux(spa->spa_spares.sav_config,
2437 				    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
2438 				spa_load_spares(spa);
2439 				spa->spa_spares.sav_sync = B_TRUE;
2440 			}
2441 		} else {
2442 			error = SET_ERROR(EBUSY);
2443 		}
2444 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
2445 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2446 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
2447 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
2448 		vd_type = VDEV_TYPE_L2CACHE;
2449 		vd_path = spa_strdup(fnvlist_lookup_string(
2450 		    nv, ZPOOL_CONFIG_PATH));
2451 		/*
2452 		 * Cache devices can always be removed.
2453 		 */
2454 		vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2455 
2456 		/*
2457 		 * Stop trimming the cache device. We need to release the
2458 		 * config lock to allow the syncing of TRIM transactions
2459 		 * without releasing the spa_namespace_lock. The same
2460 		 * strategy is employed in spa_vdev_remove_top().
2461 		 */
2462 		spa_vdev_config_exit(spa, NULL,
2463 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2464 		mutex_enter(&vd->vdev_trim_lock);
2465 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
2466 		mutex_exit(&vd->vdev_trim_lock);
2467 		txg = spa_vdev_config_enter(spa);
2468 
2469 		ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
2470 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
2471 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
2472 		spa_load_l2cache(spa);
2473 		spa->spa_l2cache.sav_sync = B_TRUE;
2474 	} else if (vd != NULL && vd->vdev_islog) {
2475 		ASSERT(!locked);
2476 		vd_type = VDEV_TYPE_LOG;
2477 		vd_path = spa_strdup((vd->vdev_path != NULL) ?
2478 		    vd->vdev_path : "-");
2479 		error = spa_vdev_remove_log(vd, &txg);
2480 	} else if (vd != NULL) {
2481 		ASSERT(!locked);
2482 		error = spa_vdev_remove_top(vd, &txg);
2483 	} else {
2484 		/*
2485 		 * There is no vdev of any kind with the specified guid.
2486 		 */
2487 		error = SET_ERROR(ENOENT);
2488 	}
2489 
2490 	error_log = error;
2491 
2492 	if (!locked)
2493 		error = spa_vdev_exit(spa, NULL, txg, error);
2494 
2495 	/*
2496 	 * Logging must be done outside the spa config lock. Otherwise,
2497 	 * this code path could end up holding the spa config lock while
2498 	 * waiting for a txg_sync so it can write to the internal log.
2499 	 * Doing that would prevent the txg sync from actually happening,
2500 	 * causing a deadlock.
2501 	 */
2502 	if (error_log == 0 && vd_type != NULL && vd_path != NULL) {
2503 		spa_history_log_internal(spa, "vdev remove", NULL,
2504 		    "%s vdev (%s) %s", spa_name(spa), vd_type, vd_path);
2505 	}
2506 	if (vd_path != NULL)
2507 		spa_strfree(vd_path);
2508 
2509 	if (ev != NULL)
2510 		spa_event_post(ev);
2511 
2512 	return (error);
2513 }
2514 
2515 int
2516 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
2517 {
2518 	prs->prs_state = spa->spa_removing_phys.sr_state;
2519 
2520 	if (prs->prs_state == DSS_NONE)
2521 		return (SET_ERROR(ENOENT));
2522 
2523 	prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
2524 	prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
2525 	prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
2526 	prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
2527 	prs->prs_copied = spa->spa_removing_phys.sr_copied;
2528 
2529 	prs->prs_mapping_memory = 0;
2530 	uint64_t indirect_vdev_id =
2531 	    spa->spa_removing_phys.sr_prev_indirect_vdev;
2532 	while (indirect_vdev_id != -1) {
2533 		vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
2534 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
2535 		vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
2536 
2537 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2538 		prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2539 		indirect_vdev_id = vic->vic_prev_indirect_vdev;
2540 	}
2541 
2542 	return (0);
2543 }
2544 
2545 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_ignore_errors, INT, ZMOD_RW,
2546 	"Ignore hard IO errors when removing device");
2547 
2548 ZFS_MODULE_PARAM(zfs_vdev, zfs_, remove_max_segment, UINT, ZMOD_RW,
2549 	"Largest contiguous segment to allocate when removing device");
2550 
2551 ZFS_MODULE_PARAM(zfs_vdev, vdev_, removal_max_span, UINT, ZMOD_RW,
2552 	"Largest span of free chunks a remap segment can span");
2553 
2554 /* BEGIN CSTYLED */
2555 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_suspend_progress, UINT, ZMOD_RW,
2556 	"Pause device removal after this many bytes are copied "
2557 	"(debug use only - causes removal to hang)");
2558 /* END CSTYLED */
2559 
2560 EXPORT_SYMBOL(free_from_removing_vdev);
2561 EXPORT_SYMBOL(spa_removal_get_stats);
2562 EXPORT_SYMBOL(spa_remove_init);
2563 EXPORT_SYMBOL(spa_restart_removal);
2564 EXPORT_SYMBOL(spa_vdev_removal_destroy);
2565 EXPORT_SYMBOL(spa_vdev_remove);
2566 EXPORT_SYMBOL(spa_vdev_remove_cancel);
2567 EXPORT_SYMBOL(spa_vdev_remove_suspend);
2568 EXPORT_SYMBOL(svr_sync);
2569