1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 26 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/spa_impl.h> 31 #include <sys/dmu.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/zap.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/metaslab.h> 36 #include <sys/metaslab_impl.h> 37 #include <sys/uberblock_impl.h> 38 #include <sys/txg.h> 39 #include <sys/avl.h> 40 #include <sys/bpobj.h> 41 #include <sys/dsl_pool.h> 42 #include <sys/dsl_synctask.h> 43 #include <sys/dsl_dir.h> 44 #include <sys/arc.h> 45 #include <sys/zfeature.h> 46 #include <sys/vdev_indirect_births.h> 47 #include <sys/vdev_indirect_mapping.h> 48 #include <sys/abd.h> 49 #include <sys/vdev_initialize.h> 50 #include <sys/vdev_trim.h> 51 #include <sys/trace_zfs.h> 52 53 /* 54 * This file contains the necessary logic to remove vdevs from a 55 * storage pool. Currently, the only devices that can be removed 56 * are log, cache, and spare devices; and top level vdevs from a pool 57 * w/o raidz or mirrors. (Note that members of a mirror can be removed 58 * by the detach operation.) 59 * 60 * Log vdevs are removed by evacuating them and then turning the vdev 61 * into a hole vdev while holding spa config locks. 62 * 63 * Top level vdevs are removed and converted into an indirect vdev via 64 * a multi-step process: 65 * 66 * - Disable allocations from this device (spa_vdev_remove_top). 67 * 68 * - From a new thread (spa_vdev_remove_thread), copy data from 69 * the removing vdev to a different vdev. The copy happens in open 70 * context (spa_vdev_copy_impl) and issues a sync task 71 * (vdev_mapping_sync) so the sync thread can update the partial 72 * indirect mappings in core and on disk. 73 * 74 * - If a free happens during a removal, it is freed from the 75 * removing vdev, and if it has already been copied, from the new 76 * location as well (free_from_removing_vdev). 77 * 78 * - After the removal is completed, the copy thread converts the vdev 79 * into an indirect vdev (vdev_remove_complete) before instructing 80 * the sync thread to destroy the space maps and finish the removal 81 * (spa_finish_removal). 82 */ 83 84 typedef struct vdev_copy_arg { 85 metaslab_t *vca_msp; 86 uint64_t vca_outstanding_bytes; 87 uint64_t vca_read_error_bytes; 88 uint64_t vca_write_error_bytes; 89 kcondvar_t vca_cv; 90 kmutex_t vca_lock; 91 } vdev_copy_arg_t; 92 93 /* 94 * The maximum amount of memory we can use for outstanding i/o while 95 * doing a device removal. This determines how much i/o we can have 96 * in flight concurrently. 97 */ 98 static const uint_t zfs_remove_max_copy_bytes = 64 * 1024 * 1024; 99 100 /* 101 * The largest contiguous segment that we will attempt to allocate when 102 * removing a device. This can be no larger than SPA_MAXBLOCKSIZE. If 103 * there is a performance problem with attempting to allocate large blocks, 104 * consider decreasing this. 105 * 106 * See also the accessor function spa_remove_max_segment(). 107 */ 108 uint_t zfs_remove_max_segment = SPA_MAXBLOCKSIZE; 109 110 /* 111 * Ignore hard IO errors during device removal. When set if a device 112 * encounters hard IO error during the removal process the removal will 113 * not be cancelled. This can result in a normally recoverable block 114 * becoming permanently damaged and is not recommended. 115 */ 116 static int zfs_removal_ignore_errors = 0; 117 118 /* 119 * Allow a remap segment to span free chunks of at most this size. The main 120 * impact of a larger span is that we will read and write larger, more 121 * contiguous chunks, with more "unnecessary" data -- trading off bandwidth 122 * for iops. The value here was chosen to align with 123 * zfs_vdev_read_gap_limit, which is a similar concept when doing regular 124 * reads (but there's no reason it has to be the same). 125 * 126 * Additionally, a higher span will have the following relatively minor 127 * effects: 128 * - the mapping will be smaller, since one entry can cover more allocated 129 * segments 130 * - more of the fragmentation in the removing device will be preserved 131 * - we'll do larger allocations, which may fail and fall back on smaller 132 * allocations 133 */ 134 uint_t vdev_removal_max_span = 32 * 1024; 135 136 /* 137 * This is used by the test suite so that it can ensure that certain 138 * actions happen while in the middle of a removal. 139 */ 140 int zfs_removal_suspend_progress = 0; 141 142 #define VDEV_REMOVAL_ZAP_OBJS "lzap" 143 144 static __attribute__((noreturn)) void spa_vdev_remove_thread(void *arg); 145 static int spa_vdev_remove_cancel_impl(spa_t *spa); 146 147 static void 148 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx) 149 { 150 VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset, 151 DMU_POOL_DIRECTORY_OBJECT, 152 DMU_POOL_REMOVING, sizeof (uint64_t), 153 sizeof (spa->spa_removing_phys) / sizeof (uint64_t), 154 &spa->spa_removing_phys, tx)); 155 } 156 157 static nvlist_t * 158 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 159 { 160 for (int i = 0; i < count; i++) { 161 uint64_t guid = 162 fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID); 163 164 if (guid == target_guid) 165 return (nvpp[i]); 166 } 167 168 return (NULL); 169 } 170 171 static void 172 vdev_activate(vdev_t *vd) 173 { 174 metaslab_group_t *mg = vd->vdev_mg; 175 176 ASSERT(!vd->vdev_islog); 177 ASSERT(vd->vdev_noalloc); 178 179 metaslab_group_activate(mg); 180 metaslab_group_activate(vd->vdev_log_mg); 181 182 vdev_update_nonallocating_space(vd, B_FALSE); 183 184 vd->vdev_noalloc = B_FALSE; 185 } 186 187 static int 188 vdev_passivate(vdev_t *vd, uint64_t *txg) 189 { 190 spa_t *spa = vd->vdev_spa; 191 int error; 192 193 ASSERT(!vd->vdev_noalloc); 194 195 vdev_t *rvd = spa->spa_root_vdev; 196 metaslab_group_t *mg = vd->vdev_mg; 197 metaslab_class_t *normal = spa_normal_class(spa); 198 if (mg->mg_class == normal) { 199 /* 200 * We must check that this is not the only allocating device in 201 * the pool before passivating, otherwise we will not be able 202 * to make progress because we can't allocate from any vdevs. 203 */ 204 boolean_t last = B_TRUE; 205 for (uint64_t id = 0; id < rvd->vdev_children; id++) { 206 vdev_t *cvd = rvd->vdev_child[id]; 207 208 if (cvd == vd || !vdev_is_concrete(cvd) || 209 vdev_is_dead(cvd)) 210 continue; 211 212 metaslab_class_t *mc = cvd->vdev_mg->mg_class; 213 if (mc != normal) 214 continue; 215 216 if (!cvd->vdev_noalloc) { 217 last = B_FALSE; 218 break; 219 } 220 } 221 if (last) 222 return (SET_ERROR(EINVAL)); 223 } 224 225 metaslab_group_passivate(mg); 226 ASSERT(!vd->vdev_islog); 227 metaslab_group_passivate(vd->vdev_log_mg); 228 229 /* 230 * Wait for the youngest allocations and frees to sync, 231 * and then wait for the deferral of those frees to finish. 232 */ 233 spa_vdev_config_exit(spa, NULL, 234 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 235 236 /* 237 * We must ensure that no "stubby" log blocks are allocated 238 * on the device to be removed. These blocks could be 239 * written at any time, including while we are in the middle 240 * of copying them. 241 */ 242 error = spa_reset_logs(spa); 243 244 *txg = spa_vdev_config_enter(spa); 245 246 if (error != 0) { 247 metaslab_group_activate(mg); 248 ASSERT(!vd->vdev_islog); 249 if (vd->vdev_log_mg != NULL) 250 metaslab_group_activate(vd->vdev_log_mg); 251 return (error); 252 } 253 254 vdev_update_nonallocating_space(vd, B_TRUE); 255 vd->vdev_noalloc = B_TRUE; 256 257 return (0); 258 } 259 260 /* 261 * Turn off allocations for a top-level device from the pool. 262 * 263 * Turning off allocations for a top-level device can take a significant 264 * amount of time. As a result we use the spa_vdev_config_[enter/exit] 265 * functions which allow us to grab and release the spa_config_lock while 266 * still holding the namespace lock. During each step the configuration 267 * is synced out. 268 */ 269 int 270 spa_vdev_noalloc(spa_t *spa, uint64_t guid) 271 { 272 vdev_t *vd; 273 uint64_t txg; 274 int error = 0; 275 276 ASSERT(!MUTEX_HELD(&spa_namespace_lock)); 277 ASSERT(spa_writeable(spa)); 278 279 txg = spa_vdev_enter(spa); 280 281 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 282 283 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 284 285 if (vd == NULL) 286 error = SET_ERROR(ENOENT); 287 else if (vd->vdev_mg == NULL) 288 error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP); 289 else if (!vd->vdev_noalloc) 290 error = vdev_passivate(vd, &txg); 291 292 if (error == 0) { 293 vdev_dirty_leaves(vd, VDD_DTL, txg); 294 vdev_config_dirty(vd); 295 } 296 297 error = spa_vdev_exit(spa, NULL, txg, error); 298 299 return (error); 300 } 301 302 int 303 spa_vdev_alloc(spa_t *spa, uint64_t guid) 304 { 305 vdev_t *vd; 306 uint64_t txg; 307 int error = 0; 308 309 ASSERT(!MUTEX_HELD(&spa_namespace_lock)); 310 ASSERT(spa_writeable(spa)); 311 312 txg = spa_vdev_enter(spa); 313 314 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 315 316 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 317 318 if (vd == NULL) 319 error = SET_ERROR(ENOENT); 320 else if (vd->vdev_mg == NULL) 321 error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP); 322 else if (!vd->vdev_removing) 323 vdev_activate(vd); 324 325 if (error == 0) { 326 vdev_dirty_leaves(vd, VDD_DTL, txg); 327 vdev_config_dirty(vd); 328 } 329 330 (void) spa_vdev_exit(spa, NULL, txg, error); 331 332 return (error); 333 } 334 335 static void 336 spa_vdev_remove_aux(nvlist_t *config, const char *name, nvlist_t **dev, 337 int count, nvlist_t *dev_to_remove) 338 { 339 nvlist_t **newdev = NULL; 340 341 if (count > 1) 342 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 343 344 for (int i = 0, j = 0; i < count; i++) { 345 if (dev[i] == dev_to_remove) 346 continue; 347 VERIFY0(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP)); 348 } 349 350 VERIFY0(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY)); 351 fnvlist_add_nvlist_array(config, name, (const nvlist_t * const *)newdev, 352 count - 1); 353 354 for (int i = 0; i < count - 1; i++) 355 nvlist_free(newdev[i]); 356 357 if (count > 1) 358 kmem_free(newdev, (count - 1) * sizeof (void *)); 359 } 360 361 static spa_vdev_removal_t * 362 spa_vdev_removal_create(vdev_t *vd) 363 { 364 spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP); 365 mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL); 366 cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL); 367 svr->svr_allocd_segs = zfs_range_tree_create_flags( 368 NULL, ZFS_RANGE_SEG64, NULL, 0, 0, 369 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "svr_allocd_segs")); 370 svr->svr_vdev_id = vd->vdev_id; 371 372 for (int i = 0; i < TXG_SIZE; i++) { 373 svr->svr_frees[i] = zfs_range_tree_create_flags( 374 NULL, ZFS_RANGE_SEG64, NULL, 0, 0, 375 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "svr_frees")); 376 list_create(&svr->svr_new_segments[i], 377 sizeof (vdev_indirect_mapping_entry_t), 378 offsetof(vdev_indirect_mapping_entry_t, vime_node)); 379 } 380 381 return (svr); 382 } 383 384 void 385 spa_vdev_removal_destroy(spa_vdev_removal_t *svr) 386 { 387 for (int i = 0; i < TXG_SIZE; i++) { 388 ASSERT0(svr->svr_bytes_done[i]); 389 ASSERT0(svr->svr_max_offset_to_sync[i]); 390 zfs_range_tree_destroy(svr->svr_frees[i]); 391 list_destroy(&svr->svr_new_segments[i]); 392 } 393 394 zfs_range_tree_destroy(svr->svr_allocd_segs); 395 mutex_destroy(&svr->svr_lock); 396 cv_destroy(&svr->svr_cv); 397 kmem_free(svr, sizeof (*svr)); 398 } 399 400 /* 401 * This is called as a synctask in the txg in which we will mark this vdev 402 * as removing (in the config stored in the MOS). 403 * 404 * It begins the evacuation of a toplevel vdev by: 405 * - initializing the spa_removing_phys which tracks this removal 406 * - computing the amount of space to remove for accounting purposes 407 * - dirtying all dbufs in the spa_config_object 408 * - creating the spa_vdev_removal 409 * - starting the spa_vdev_remove_thread 410 */ 411 static void 412 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx) 413 { 414 int vdev_id = (uintptr_t)arg; 415 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 416 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 417 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 418 objset_t *mos = spa->spa_dsl_pool->dp_meta_objset; 419 spa_vdev_removal_t *svr = NULL; 420 uint64_t txg __maybe_unused = dmu_tx_get_txg(tx); 421 422 ASSERT0(vdev_get_nparity(vd)); 423 svr = spa_vdev_removal_create(vd); 424 425 ASSERT(vd->vdev_removing); 426 ASSERT0P(vd->vdev_indirect_mapping); 427 428 spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx); 429 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) { 430 /* 431 * By activating the OBSOLETE_COUNTS feature, we prevent 432 * the pool from being downgraded and ensure that the 433 * refcounts are precise. 434 */ 435 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 436 uint64_t one = 1; 437 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap, 438 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1, 439 &one, tx)); 440 boolean_t are_precise __maybe_unused; 441 ASSERT0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 442 ASSERT3B(are_precise, ==, B_TRUE); 443 } 444 445 vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx); 446 vd->vdev_indirect_mapping = 447 vdev_indirect_mapping_open(mos, vic->vic_mapping_object); 448 vic->vic_births_object = vdev_indirect_births_alloc(mos, tx); 449 vd->vdev_indirect_births = 450 vdev_indirect_births_open(mos, vic->vic_births_object); 451 spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id; 452 spa->spa_removing_phys.sr_start_time = gethrestime_sec(); 453 spa->spa_removing_phys.sr_end_time = 0; 454 spa->spa_removing_phys.sr_state = DSS_SCANNING; 455 spa->spa_removing_phys.sr_to_copy = 0; 456 spa->spa_removing_phys.sr_copied = 0; 457 458 /* 459 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because 460 * there may be space in the defer tree, which is free, but still 461 * counted in vs_alloc. 462 */ 463 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) { 464 metaslab_t *ms = vd->vdev_ms[i]; 465 if (ms->ms_sm == NULL) 466 continue; 467 468 spa->spa_removing_phys.sr_to_copy += 469 metaslab_allocated_space(ms); 470 471 /* 472 * Space which we are freeing this txg does not need to 473 * be copied. 474 */ 475 spa->spa_removing_phys.sr_to_copy -= 476 zfs_range_tree_space(ms->ms_freeing); 477 478 ASSERT0(zfs_range_tree_space(ms->ms_freed)); 479 for (int t = 0; t < TXG_SIZE; t++) 480 ASSERT0(zfs_range_tree_space(ms->ms_allocating[t])); 481 } 482 483 /* 484 * Sync tasks are called before metaslab_sync(), so there should 485 * be no already-synced metaslabs in the TXG_CLEAN list. 486 */ 487 ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL); 488 489 spa_sync_removing_state(spa, tx); 490 491 /* 492 * All blocks that we need to read the most recent mapping must be 493 * stored on concrete vdevs. Therefore, we must dirty anything that 494 * is read before spa_remove_init(). Specifically, the 495 * spa_config_object. (Note that although we already modified the 496 * spa_config_object in spa_sync_removing_state, that may not have 497 * modified all blocks of the object.) 498 */ 499 dmu_object_info_t doi; 500 VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi)); 501 for (uint64_t offset = 0; offset < doi.doi_max_offset; ) { 502 dmu_buf_t *dbuf; 503 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT, 504 offset, FTAG, &dbuf, 0)); 505 dmu_buf_will_dirty(dbuf, tx); 506 offset += dbuf->db_size; 507 dmu_buf_rele(dbuf, FTAG); 508 } 509 510 /* 511 * Now that we've allocated the im_object, dirty the vdev to ensure 512 * that the object gets written to the config on disk. 513 */ 514 vdev_config_dirty(vd); 515 516 zfs_dbgmsg("starting removal thread for vdev %llu (%px) in txg %llu " 517 "im_obj=%llu", (u_longlong_t)vd->vdev_id, vd, 518 (u_longlong_t)dmu_tx_get_txg(tx), 519 (u_longlong_t)vic->vic_mapping_object); 520 521 spa_history_log_internal(spa, "vdev remove started", tx, 522 "%s vdev %llu %s", spa_name(spa), (u_longlong_t)vd->vdev_id, 523 (vd->vdev_path != NULL) ? vd->vdev_path : "-"); 524 /* 525 * Setting spa_vdev_removal causes subsequent frees to call 526 * free_from_removing_vdev(). Note that we don't need any locking 527 * because we are the sync thread, and metaslab_free_impl() is only 528 * called from syncing context (potentially from a zio taskq thread, 529 * but in any case only when there are outstanding free i/os, which 530 * there are not). 531 */ 532 ASSERT0P(spa->spa_vdev_removal); 533 spa->spa_vdev_removal = svr; 534 svr->svr_thread = thread_create(NULL, 0, 535 spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri); 536 } 537 538 /* 539 * When we are opening a pool, we must read the mapping for each 540 * indirect vdev in order from most recently removed to least 541 * recently removed. We do this because the blocks for the mapping 542 * of older indirect vdevs may be stored on more recently removed vdevs. 543 * In order to read each indirect mapping object, we must have 544 * initialized all more recently removed vdevs. 545 */ 546 int 547 spa_remove_init(spa_t *spa) 548 { 549 int error; 550 551 error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset, 552 DMU_POOL_DIRECTORY_OBJECT, 553 DMU_POOL_REMOVING, sizeof (uint64_t), 554 sizeof (spa->spa_removing_phys) / sizeof (uint64_t), 555 &spa->spa_removing_phys); 556 557 if (error == ENOENT) { 558 spa->spa_removing_phys.sr_state = DSS_NONE; 559 spa->spa_removing_phys.sr_removing_vdev = -1; 560 spa->spa_removing_phys.sr_prev_indirect_vdev = -1; 561 spa->spa_indirect_vdevs_loaded = B_TRUE; 562 return (0); 563 } else if (error != 0) { 564 return (error); 565 } 566 567 if (spa->spa_removing_phys.sr_state == DSS_SCANNING) { 568 /* 569 * We are currently removing a vdev. Create and 570 * initialize a spa_vdev_removal_t from the bonus 571 * buffer of the removing vdevs vdev_im_object, and 572 * initialize its partial mapping. 573 */ 574 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 575 vdev_t *vd = vdev_lookup_top(spa, 576 spa->spa_removing_phys.sr_removing_vdev); 577 578 if (vd == NULL) { 579 spa_config_exit(spa, SCL_STATE, FTAG); 580 return (EINVAL); 581 } 582 583 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 584 585 ASSERT(vdev_is_concrete(vd)); 586 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd); 587 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id); 588 ASSERT(vd->vdev_removing); 589 590 vd->vdev_indirect_mapping = vdev_indirect_mapping_open( 591 spa->spa_meta_objset, vic->vic_mapping_object); 592 vd->vdev_indirect_births = vdev_indirect_births_open( 593 spa->spa_meta_objset, vic->vic_births_object); 594 spa_config_exit(spa, SCL_STATE, FTAG); 595 596 spa->spa_vdev_removal = svr; 597 } 598 599 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 600 uint64_t indirect_vdev_id = 601 spa->spa_removing_phys.sr_prev_indirect_vdev; 602 while (indirect_vdev_id != UINT64_MAX) { 603 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id); 604 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 605 606 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 607 vd->vdev_indirect_mapping = vdev_indirect_mapping_open( 608 spa->spa_meta_objset, vic->vic_mapping_object); 609 vd->vdev_indirect_births = vdev_indirect_births_open( 610 spa->spa_meta_objset, vic->vic_births_object); 611 612 indirect_vdev_id = vic->vic_prev_indirect_vdev; 613 } 614 spa_config_exit(spa, SCL_STATE, FTAG); 615 616 /* 617 * Now that we've loaded all the indirect mappings, we can allow 618 * reads from other blocks (e.g. via predictive prefetch). 619 */ 620 spa->spa_indirect_vdevs_loaded = B_TRUE; 621 return (0); 622 } 623 624 void 625 spa_restart_removal(spa_t *spa) 626 { 627 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 628 629 if (svr == NULL) 630 return; 631 632 /* 633 * In general when this function is called there is no 634 * removal thread running. The only scenario where this 635 * is not true is during spa_import() where this function 636 * is called twice [once from spa_import_impl() and 637 * spa_async_resume()]. Thus, in the scenario where we 638 * import a pool that has an ongoing removal we don't 639 * want to spawn a second thread. 640 */ 641 if (svr->svr_thread != NULL) 642 return; 643 644 if (!spa_writeable(spa)) 645 return; 646 647 zfs_dbgmsg("restarting removal of %llu", 648 (u_longlong_t)svr->svr_vdev_id); 649 svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa, 650 0, &p0, TS_RUN, minclsyspri); 651 } 652 653 /* 654 * Process freeing from a device which is in the middle of being removed. 655 * We must handle this carefully so that we attempt to copy freed data, 656 * and we correctly free already-copied data. 657 */ 658 void 659 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size) 660 { 661 spa_t *spa = vd->vdev_spa; 662 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 663 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 664 uint64_t txg = spa_syncing_txg(spa); 665 uint64_t max_offset_yet = 0; 666 667 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 668 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==, 669 vdev_indirect_mapping_object(vim)); 670 ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id); 671 672 mutex_enter(&svr->svr_lock); 673 674 /* 675 * Remove the segment from the removing vdev's spacemap. This 676 * ensures that we will not attempt to copy this space (if the 677 * removal thread has not yet visited it), and also ensures 678 * that we know what is actually allocated on the new vdevs 679 * (needed if we cancel the removal). 680 * 681 * Note: we must do the metaslab_free_concrete() with the svr_lock 682 * held, so that the remove_thread can not load this metaslab and then 683 * visit this offset between the time that we metaslab_free_concrete() 684 * and when we check to see if it has been visited. 685 * 686 * Note: The checkpoint flag is set to false as having/taking 687 * a checkpoint and removing a device can't happen at the same 688 * time. 689 */ 690 ASSERT(!spa_has_checkpoint(spa)); 691 metaslab_free_concrete(vd, offset, size, B_FALSE); 692 693 uint64_t synced_size = 0; 694 uint64_t synced_offset = 0; 695 uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim); 696 if (offset < max_offset_synced) { 697 /* 698 * The mapping for this offset is already on disk. 699 * Free from the new location. 700 * 701 * Note that we use svr_max_synced_offset because it is 702 * updated atomically with respect to the in-core mapping. 703 * By contrast, vim_max_offset is not. 704 * 705 * This block may be split between a synced entry and an 706 * in-flight or unvisited entry. Only process the synced 707 * portion of it here. 708 */ 709 synced_size = MIN(size, max_offset_synced - offset); 710 synced_offset = offset; 711 712 ASSERT3U(max_offset_yet, <=, max_offset_synced); 713 max_offset_yet = max_offset_synced; 714 715 DTRACE_PROBE3(remove__free__synced, 716 spa_t *, spa, 717 uint64_t, offset, 718 uint64_t, synced_size); 719 720 size -= synced_size; 721 offset += synced_size; 722 } 723 724 /* 725 * Look at all in-flight txgs starting from the currently syncing one 726 * and see if a section of this free is being copied. By starting from 727 * this txg and iterating forward, we might find that this region 728 * was copied in two different txgs and handle it appropriately. 729 */ 730 for (int i = 0; i < TXG_CONCURRENT_STATES; i++) { 731 int txgoff = (txg + i) & TXG_MASK; 732 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) { 733 /* 734 * The mapping for this offset is in flight, and 735 * will be synced in txg+i. 736 */ 737 uint64_t inflight_size = MIN(size, 738 svr->svr_max_offset_to_sync[txgoff] - offset); 739 740 DTRACE_PROBE4(remove__free__inflight, 741 spa_t *, spa, 742 uint64_t, offset, 743 uint64_t, inflight_size, 744 uint64_t, txg + i); 745 746 /* 747 * We copy data in order of increasing offset. 748 * Therefore the max_offset_to_sync[] must increase 749 * (or be zero, indicating that nothing is being 750 * copied in that txg). 751 */ 752 if (svr->svr_max_offset_to_sync[txgoff] != 0) { 753 ASSERT3U(svr->svr_max_offset_to_sync[txgoff], 754 >=, max_offset_yet); 755 max_offset_yet = 756 svr->svr_max_offset_to_sync[txgoff]; 757 } 758 759 /* 760 * We've already committed to copying this segment: 761 * we have allocated space elsewhere in the pool for 762 * it and have an IO outstanding to copy the data. We 763 * cannot free the space before the copy has 764 * completed, or else the copy IO might overwrite any 765 * new data. To free that space, we record the 766 * segment in the appropriate svr_frees tree and free 767 * the mapped space later, in the txg where we have 768 * completed the copy and synced the mapping (see 769 * vdev_mapping_sync). 770 */ 771 zfs_range_tree_add(svr->svr_frees[txgoff], 772 offset, inflight_size); 773 size -= inflight_size; 774 offset += inflight_size; 775 776 /* 777 * This space is already accounted for as being 778 * done, because it is being copied in txg+i. 779 * However, if i!=0, then it is being copied in 780 * a future txg. If we crash after this txg 781 * syncs but before txg+i syncs, then the space 782 * will be free. Therefore we must account 783 * for the space being done in *this* txg 784 * (when it is freed) rather than the future txg 785 * (when it will be copied). 786 */ 787 ASSERT3U(svr->svr_bytes_done[txgoff], >=, 788 inflight_size); 789 svr->svr_bytes_done[txgoff] -= inflight_size; 790 svr->svr_bytes_done[txg & TXG_MASK] += inflight_size; 791 } 792 } 793 ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]); 794 795 if (size > 0) { 796 /* 797 * The copy thread has not yet visited this offset. Ensure 798 * that it doesn't. 799 */ 800 801 DTRACE_PROBE3(remove__free__unvisited, 802 spa_t *, spa, 803 uint64_t, offset, 804 uint64_t, size); 805 806 if (svr->svr_allocd_segs != NULL) 807 zfs_range_tree_clear(svr->svr_allocd_segs, offset, 808 size); 809 810 /* 811 * Since we now do not need to copy this data, for 812 * accounting purposes we have done our job and can count 813 * it as completed. 814 */ 815 svr->svr_bytes_done[txg & TXG_MASK] += size; 816 } 817 mutex_exit(&svr->svr_lock); 818 819 /* 820 * Now that we have dropped svr_lock, process the synced portion 821 * of this free. 822 */ 823 if (synced_size > 0) { 824 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size); 825 826 /* 827 * Note: this can only be called from syncing context, 828 * and the vdev_indirect_mapping is only changed from the 829 * sync thread, so we don't need svr_lock while doing 830 * metaslab_free_impl_cb. 831 */ 832 boolean_t checkpoint = B_FALSE; 833 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size, 834 metaslab_free_impl_cb, &checkpoint); 835 } 836 } 837 838 /* 839 * Stop an active removal and update the spa_removing phys. 840 */ 841 static void 842 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx) 843 { 844 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 845 ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa)); 846 847 /* Ensure the removal thread has completed before we free the svr. */ 848 spa_vdev_remove_suspend(spa); 849 850 ASSERT(state == DSS_FINISHED || state == DSS_CANCELED); 851 852 if (state == DSS_FINISHED) { 853 spa_removing_phys_t *srp = &spa->spa_removing_phys; 854 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 855 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 856 857 if (srp->sr_prev_indirect_vdev != -1) { 858 vdev_t *pvd; 859 pvd = vdev_lookup_top(spa, 860 srp->sr_prev_indirect_vdev); 861 ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops); 862 } 863 864 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev; 865 srp->sr_prev_indirect_vdev = vd->vdev_id; 866 } 867 spa->spa_removing_phys.sr_state = state; 868 spa->spa_removing_phys.sr_end_time = gethrestime_sec(); 869 870 spa->spa_vdev_removal = NULL; 871 spa_vdev_removal_destroy(svr); 872 873 spa_sync_removing_state(spa, tx); 874 spa_notify_waiters(spa); 875 876 vdev_config_dirty(spa->spa_root_vdev); 877 } 878 879 static void 880 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size) 881 { 882 vdev_t *vd = arg; 883 vdev_indirect_mark_obsolete(vd, offset, size); 884 boolean_t checkpoint = B_FALSE; 885 vdev_indirect_ops.vdev_op_remap(vd, offset, size, 886 metaslab_free_impl_cb, &checkpoint); 887 } 888 889 /* 890 * On behalf of the removal thread, syncs an incremental bit more of 891 * the indirect mapping to disk and updates the in-memory mapping. 892 * Called as a sync task in every txg that the removal thread makes progress. 893 */ 894 static void 895 vdev_mapping_sync(void *arg, dmu_tx_t *tx) 896 { 897 spa_vdev_removal_t *svr = arg; 898 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 899 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 900 vdev_indirect_config_t *vic __maybe_unused = &vd->vdev_indirect_config; 901 uint64_t txg = dmu_tx_get_txg(tx); 902 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 903 904 ASSERT(vic->vic_mapping_object != 0); 905 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 906 907 vdev_indirect_mapping_add_entries(vim, 908 &svr->svr_new_segments[txg & TXG_MASK], tx); 909 vdev_indirect_births_add_entry(vd->vdev_indirect_births, 910 vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx); 911 912 /* 913 * Free the copied data for anything that was freed while the 914 * mapping entries were in flight. 915 */ 916 mutex_enter(&svr->svr_lock); 917 zfs_range_tree_vacate(svr->svr_frees[txg & TXG_MASK], 918 free_mapped_segment_cb, vd); 919 ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=, 920 vdev_indirect_mapping_max_offset(vim)); 921 svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0; 922 mutex_exit(&svr->svr_lock); 923 924 spa_sync_removing_state(spa, tx); 925 } 926 927 typedef struct vdev_copy_segment_arg { 928 spa_t *vcsa_spa; 929 dva_t *vcsa_dest_dva; 930 uint64_t vcsa_txg; 931 zfs_range_tree_t *vcsa_obsolete_segs; 932 } vdev_copy_segment_arg_t; 933 934 static void 935 unalloc_seg(void *arg, uint64_t start, uint64_t size) 936 { 937 vdev_copy_segment_arg_t *vcsa = arg; 938 spa_t *spa = vcsa->vcsa_spa; 939 blkptr_t bp = { { { {0} } } }; 940 941 BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL); 942 BP_SET_LSIZE(&bp, size); 943 BP_SET_PSIZE(&bp, size); 944 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); 945 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF); 946 BP_SET_TYPE(&bp, DMU_OT_NONE); 947 BP_SET_LEVEL(&bp, 0); 948 BP_SET_DEDUP(&bp, 0); 949 BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER); 950 951 DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva)); 952 DVA_SET_OFFSET(&bp.blk_dva[0], 953 DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start); 954 DVA_SET_ASIZE(&bp.blk_dva[0], size); 955 956 zio_free(spa, vcsa->vcsa_txg, &bp); 957 } 958 959 /* 960 * All reads and writes associated with a call to spa_vdev_copy_segment() 961 * are done. 962 */ 963 static void 964 spa_vdev_copy_segment_done(zio_t *zio) 965 { 966 vdev_copy_segment_arg_t *vcsa = zio->io_private; 967 968 zfs_range_tree_vacate(vcsa->vcsa_obsolete_segs, 969 unalloc_seg, vcsa); 970 zfs_range_tree_destroy(vcsa->vcsa_obsolete_segs); 971 kmem_free(vcsa, sizeof (*vcsa)); 972 973 spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa); 974 } 975 976 /* 977 * The write of the new location is done. 978 */ 979 static void 980 spa_vdev_copy_segment_write_done(zio_t *zio) 981 { 982 vdev_copy_arg_t *vca = zio->io_private; 983 984 abd_free(zio->io_abd); 985 986 mutex_enter(&vca->vca_lock); 987 vca->vca_outstanding_bytes -= zio->io_size; 988 989 if (zio->io_error != 0) 990 vca->vca_write_error_bytes += zio->io_size; 991 992 cv_signal(&vca->vca_cv); 993 mutex_exit(&vca->vca_lock); 994 } 995 996 /* 997 * The read of the old location is done. The parent zio is the write to 998 * the new location. Allow it to start. 999 */ 1000 static void 1001 spa_vdev_copy_segment_read_done(zio_t *zio) 1002 { 1003 vdev_copy_arg_t *vca = zio->io_private; 1004 1005 if (zio->io_error != 0) { 1006 mutex_enter(&vca->vca_lock); 1007 vca->vca_read_error_bytes += zio->io_size; 1008 mutex_exit(&vca->vca_lock); 1009 } 1010 1011 zio_nowait(zio_unique_parent(zio)); 1012 } 1013 1014 /* 1015 * If the old and new vdevs are mirrors, we will read both sides of the old 1016 * mirror, and write each copy to the corresponding side of the new mirror. 1017 * If the old and new vdevs have a different number of children, we will do 1018 * this as best as possible. Since we aren't verifying checksums, this 1019 * ensures that as long as there's a good copy of the data, we'll have a 1020 * good copy after the removal, even if there's silent damage to one side 1021 * of the mirror. If we're removing a mirror that has some silent damage, 1022 * we'll have exactly the same damage in the new location (assuming that 1023 * the new location is also a mirror). 1024 * 1025 * We accomplish this by creating a tree of zio_t's, with as many writes as 1026 * there are "children" of the new vdev (a non-redundant vdev counts as one 1027 * child, a 2-way mirror has 2 children, etc). Each write has an associated 1028 * read from a child of the old vdev. Typically there will be the same 1029 * number of children of the old and new vdevs. However, if there are more 1030 * children of the new vdev, some child(ren) of the old vdev will be issued 1031 * multiple reads. If there are more children of the old vdev, some copies 1032 * will be dropped. 1033 * 1034 * For example, the tree of zio_t's for a 2-way mirror is: 1035 * 1036 * null 1037 * / \ 1038 * write(new vdev, child 0) write(new vdev, child 1) 1039 * | | 1040 * read(old vdev, child 0) read(old vdev, child 1) 1041 * 1042 * Child zio's complete before their parents complete. However, zio's 1043 * created with zio_vdev_child_io() may be issued before their children 1044 * complete. In this case we need to make sure that the children (reads) 1045 * complete before the parents (writes) are *issued*. We do this by not 1046 * calling zio_nowait() on each write until its corresponding read has 1047 * completed. 1048 * 1049 * The spa_config_lock must be held while zio's created by 1050 * zio_vdev_child_io() are in progress, to ensure that the vdev tree does 1051 * not change (e.g. due to a concurrent "zpool attach/detach"). The "null" 1052 * zio is needed to release the spa_config_lock after all the reads and 1053 * writes complete. (Note that we can't grab the config lock for each read, 1054 * because it is not reentrant - we could deadlock with a thread waiting 1055 * for a write lock.) 1056 */ 1057 static void 1058 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio, 1059 vdev_t *source_vd, uint64_t source_offset, 1060 vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size) 1061 { 1062 ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0); 1063 1064 /* 1065 * If the destination child in unwritable then there is no point 1066 * in issuing the source reads which cannot be written. 1067 */ 1068 if (!vdev_writeable(dest_child_vd)) 1069 return; 1070 1071 mutex_enter(&vca->vca_lock); 1072 vca->vca_outstanding_bytes += size; 1073 mutex_exit(&vca->vca_lock); 1074 1075 abd_t *abd = abd_alloc_for_io(size, B_FALSE); 1076 1077 vdev_t *source_child_vd = NULL; 1078 if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) { 1079 /* 1080 * Source and dest are both mirrors. Copy from the same 1081 * child id as we are copying to (wrapping around if there 1082 * are more dest children than source children). If the 1083 * preferred source child is unreadable select another. 1084 */ 1085 for (int i = 0; i < source_vd->vdev_children; i++) { 1086 source_child_vd = source_vd->vdev_child[ 1087 (dest_id + i) % source_vd->vdev_children]; 1088 if (vdev_readable(source_child_vd)) 1089 break; 1090 } 1091 } else { 1092 source_child_vd = source_vd; 1093 } 1094 1095 /* 1096 * There should always be at least one readable source child or 1097 * the pool would be in a suspended state. Somehow selecting an 1098 * unreadable child would result in IO errors, the removal process 1099 * being cancelled, and the pool reverting to its pre-removal state. 1100 */ 1101 ASSERT3P(source_child_vd, !=, NULL); 1102 1103 zio_t *write_zio = zio_vdev_child_io(nzio, NULL, 1104 dest_child_vd, dest_offset, abd, size, 1105 ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL, 1106 ZIO_FLAG_CANFAIL, 1107 spa_vdev_copy_segment_write_done, vca); 1108 1109 zio_nowait(zio_vdev_child_io(write_zio, NULL, 1110 source_child_vd, source_offset, abd, size, 1111 ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL, 1112 ZIO_FLAG_CANFAIL, 1113 spa_vdev_copy_segment_read_done, vca)); 1114 } 1115 1116 /* 1117 * Allocate a new location for this segment, and create the zio_t's to 1118 * read from the old location and write to the new location. 1119 */ 1120 static int 1121 spa_vdev_copy_segment(vdev_t *vd, zfs_range_tree_t *segs, 1122 uint64_t maxalloc, uint64_t txg, 1123 vdev_copy_arg_t *vca, zio_alloc_list_t *zal) 1124 { 1125 metaslab_group_t *mg = vd->vdev_mg; 1126 spa_t *spa = vd->vdev_spa; 1127 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1128 vdev_indirect_mapping_entry_t *entry; 1129 dva_t dst = {{ 0 }}; 1130 uint64_t start = zfs_range_tree_min(segs); 1131 ASSERT0(P2PHASE(start, 1 << spa->spa_min_ashift)); 1132 1133 ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE); 1134 ASSERT0(P2PHASE(maxalloc, 1 << spa->spa_min_ashift)); 1135 1136 uint64_t size = zfs_range_tree_span(segs); 1137 if (zfs_range_tree_span(segs) > maxalloc) { 1138 /* 1139 * We can't allocate all the segments. Prefer to end 1140 * the allocation at the end of a segment, thus avoiding 1141 * additional split blocks. 1142 */ 1143 zfs_range_seg_max_t search; 1144 zfs_btree_index_t where; 1145 zfs_rs_set_start(&search, segs, start + maxalloc); 1146 zfs_rs_set_end(&search, segs, start + maxalloc); 1147 (void) zfs_btree_find(&segs->rt_root, &search, &where); 1148 zfs_range_seg_t *rs = zfs_btree_prev(&segs->rt_root, &where, 1149 &where); 1150 if (rs != NULL) { 1151 size = zfs_rs_get_end(rs, segs) - start; 1152 } else { 1153 /* 1154 * There are no segments that end before maxalloc. 1155 * I.e. the first segment is larger than maxalloc, 1156 * so we must split it. 1157 */ 1158 size = maxalloc; 1159 } 1160 } 1161 ASSERT3U(size, <=, maxalloc); 1162 ASSERT0(P2PHASE(size, 1 << spa->spa_min_ashift)); 1163 1164 /* 1165 * An allocation class might not have any remaining vdevs or space 1166 */ 1167 metaslab_class_t *mc = mg->mg_class; 1168 if (mc->mc_groups == 0) 1169 mc = spa_normal_class(spa); 1170 int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg, 1171 0, zal, 0); 1172 if (error == ENOSPC && mc != spa_normal_class(spa)) { 1173 error = metaslab_alloc_dva(spa, spa_normal_class(spa), size, 1174 &dst, 0, NULL, txg, 0, zal, 0); 1175 } 1176 if (error != 0) 1177 return (error); 1178 1179 /* 1180 * Determine the ranges that are not actually needed. Offsets are 1181 * relative to the start of the range to be copied (i.e. relative to the 1182 * local variable "start"). 1183 */ 1184 zfs_range_tree_t *obsolete_segs = zfs_range_tree_create_flags( 1185 NULL, ZFS_RANGE_SEG64, NULL, 0, 0, 1186 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "obsolete_segs")); 1187 1188 zfs_btree_index_t where; 1189 zfs_range_seg_t *rs = zfs_btree_first(&segs->rt_root, &where); 1190 ASSERT3U(zfs_rs_get_start(rs, segs), ==, start); 1191 uint64_t prev_seg_end = zfs_rs_get_end(rs, segs); 1192 while ((rs = zfs_btree_next(&segs->rt_root, &where, &where)) != NULL) { 1193 if (zfs_rs_get_start(rs, segs) >= start + size) { 1194 break; 1195 } else { 1196 zfs_range_tree_add(obsolete_segs, 1197 prev_seg_end - start, 1198 zfs_rs_get_start(rs, segs) - prev_seg_end); 1199 } 1200 prev_seg_end = zfs_rs_get_end(rs, segs); 1201 } 1202 /* We don't end in the middle of an obsolete range */ 1203 ASSERT3U(start + size, <=, prev_seg_end); 1204 1205 zfs_range_tree_clear(segs, start, size); 1206 1207 /* 1208 * We can't have any padding of the allocated size, otherwise we will 1209 * misunderstand what's allocated, and the size of the mapping. We 1210 * prevent padding by ensuring that all devices in the pool have the 1211 * same ashift, and the allocation size is a multiple of the ashift. 1212 */ 1213 VERIFY3U(DVA_GET_ASIZE(&dst), ==, size); 1214 1215 entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP); 1216 DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start); 1217 entry->vime_mapping.vimep_dst = dst; 1218 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) { 1219 entry->vime_obsolete_count = 1220 zfs_range_tree_space(obsolete_segs); 1221 } 1222 1223 vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP); 1224 vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst; 1225 vcsa->vcsa_obsolete_segs = obsolete_segs; 1226 vcsa->vcsa_spa = spa; 1227 vcsa->vcsa_txg = txg; 1228 1229 /* 1230 * See comment before spa_vdev_copy_one_child(). 1231 */ 1232 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 1233 zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL, 1234 spa_vdev_copy_segment_done, vcsa, 0); 1235 vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst)); 1236 if (dest_vd->vdev_ops == &vdev_mirror_ops) { 1237 for (int i = 0; i < dest_vd->vdev_children; i++) { 1238 vdev_t *child = dest_vd->vdev_child[i]; 1239 spa_vdev_copy_one_child(vca, nzio, vd, start, 1240 child, DVA_GET_OFFSET(&dst), i, size); 1241 } 1242 } else { 1243 spa_vdev_copy_one_child(vca, nzio, vd, start, 1244 dest_vd, DVA_GET_OFFSET(&dst), -1, size); 1245 } 1246 zio_nowait(nzio); 1247 1248 list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry); 1249 ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift); 1250 vdev_dirty(vd, 0, NULL, txg); 1251 1252 return (0); 1253 } 1254 1255 /* 1256 * Complete the removal of a toplevel vdev. This is called as a 1257 * synctask in the same txg that we will sync out the new config (to the 1258 * MOS object) which indicates that this vdev is indirect. 1259 */ 1260 static void 1261 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx) 1262 { 1263 spa_vdev_removal_t *svr = arg; 1264 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1265 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 1266 1267 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 1268 1269 for (int i = 0; i < TXG_SIZE; i++) { 1270 ASSERT0(svr->svr_bytes_done[i]); 1271 } 1272 1273 ASSERT3U(spa->spa_removing_phys.sr_copied, ==, 1274 spa->spa_removing_phys.sr_to_copy); 1275 1276 vdev_destroy_spacemaps(vd, tx); 1277 1278 /* destroy leaf zaps, if any */ 1279 ASSERT3P(svr->svr_zaplist, !=, NULL); 1280 for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL); 1281 pair != NULL; 1282 pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) { 1283 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx); 1284 } 1285 fnvlist_free(svr->svr_zaplist); 1286 1287 spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx); 1288 /* vd->vdev_path is not available here */ 1289 spa_history_log_internal(spa, "vdev remove completed", tx, 1290 "%s vdev %llu", spa_name(spa), (u_longlong_t)vd->vdev_id); 1291 } 1292 1293 static void 1294 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist) 1295 { 1296 ASSERT3P(zlist, !=, NULL); 1297 ASSERT0(vdev_get_nparity(vd)); 1298 1299 if (vd->vdev_leaf_zap != 0) { 1300 char zkey[32]; 1301 (void) snprintf(zkey, sizeof (zkey), "%s-%llu", 1302 VDEV_REMOVAL_ZAP_OBJS, (u_longlong_t)vd->vdev_leaf_zap); 1303 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap); 1304 } 1305 1306 for (uint64_t id = 0; id < vd->vdev_children; id++) { 1307 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist); 1308 } 1309 } 1310 1311 static void 1312 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg) 1313 { 1314 vdev_t *ivd; 1315 dmu_tx_t *tx; 1316 spa_t *spa = vd->vdev_spa; 1317 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1318 1319 /* 1320 * First, build a list of leaf zaps to be destroyed. 1321 * This is passed to the sync context thread, 1322 * which does the actual unlinking. 1323 */ 1324 svr->svr_zaplist = fnvlist_alloc(); 1325 vdev_remove_enlist_zaps(vd, svr->svr_zaplist); 1326 1327 ivd = vdev_add_parent(vd, &vdev_indirect_ops); 1328 ivd->vdev_removing = 0; 1329 1330 vd->vdev_leaf_zap = 0; 1331 1332 vdev_remove_child(ivd, vd); 1333 vdev_compact_children(ivd); 1334 1335 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 1336 1337 mutex_enter(&svr->svr_lock); 1338 svr->svr_thread = NULL; 1339 cv_broadcast(&svr->svr_cv); 1340 mutex_exit(&svr->svr_lock); 1341 1342 /* After this, we can not use svr. */ 1343 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1344 dsl_sync_task_nowait(spa->spa_dsl_pool, 1345 vdev_remove_complete_sync, svr, tx); 1346 dmu_tx_commit(tx); 1347 } 1348 1349 /* 1350 * Complete the removal of a toplevel vdev. This is called in open 1351 * context by the removal thread after we have copied all vdev's data. 1352 */ 1353 static void 1354 vdev_remove_complete(spa_t *spa) 1355 { 1356 uint64_t txg; 1357 1358 /* 1359 * Wait for any deferred frees to be synced before we call 1360 * vdev_metaslab_fini() 1361 */ 1362 txg_wait_synced(spa->spa_dsl_pool, 0); 1363 txg = spa_vdev_enter(spa); 1364 vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id); 1365 ASSERT0P(vd->vdev_initialize_thread); 1366 ASSERT0P(vd->vdev_trim_thread); 1367 ASSERT0P(vd->vdev_autotrim_thread); 1368 vdev_rebuild_stop_wait(vd); 1369 ASSERT0P(vd->vdev_rebuild_thread); 1370 1371 sysevent_t *ev = spa_event_create(spa, vd, NULL, 1372 ESC_ZFS_VDEV_REMOVE_DEV); 1373 1374 zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu", 1375 (u_longlong_t)vd->vdev_id, (u_longlong_t)txg); 1376 1377 /* the vdev is no longer part of the dspace */ 1378 vdev_update_nonallocating_space(vd, B_FALSE); 1379 1380 /* 1381 * Discard allocation state. 1382 */ 1383 if (vd->vdev_mg != NULL) { 1384 vdev_metaslab_fini(vd); 1385 metaslab_group_destroy(vd->vdev_mg); 1386 vd->vdev_mg = NULL; 1387 } 1388 if (vd->vdev_log_mg != NULL) { 1389 ASSERT0(vd->vdev_ms_count); 1390 metaslab_group_destroy(vd->vdev_log_mg); 1391 vd->vdev_log_mg = NULL; 1392 } 1393 ASSERT0(vd->vdev_stat.vs_space); 1394 ASSERT0(vd->vdev_stat.vs_dspace); 1395 1396 vdev_remove_replace_with_indirect(vd, txg); 1397 1398 /* 1399 * We now release the locks, allowing spa_sync to run and finish the 1400 * removal via vdev_remove_complete_sync in syncing context. 1401 * 1402 * Note that we hold on to the vdev_t that has been replaced. Since 1403 * it isn't part of the vdev tree any longer, it can't be concurrently 1404 * manipulated, even while we don't have the config lock. 1405 */ 1406 (void) spa_vdev_exit(spa, NULL, txg, 0); 1407 1408 /* 1409 * Top ZAP should have been transferred to the indirect vdev in 1410 * vdev_remove_replace_with_indirect. 1411 */ 1412 ASSERT0(vd->vdev_top_zap); 1413 1414 /* 1415 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect. 1416 */ 1417 ASSERT0(vd->vdev_leaf_zap); 1418 1419 txg = spa_vdev_enter(spa); 1420 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 1421 /* 1422 * Request to update the config and the config cachefile. 1423 */ 1424 vdev_config_dirty(spa->spa_root_vdev); 1425 (void) spa_vdev_exit(spa, vd, txg, 0); 1426 1427 if (ev != NULL) 1428 spa_event_post(ev); 1429 } 1430 1431 /* 1432 * Evacuates a segment of size at most max_alloc from the vdev 1433 * via repeated calls to spa_vdev_copy_segment. If an allocation 1434 * fails, the pool is probably too fragmented to handle such a 1435 * large size, so decrease max_alloc so that the caller will not try 1436 * this size again this txg. 1437 */ 1438 static void 1439 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca, 1440 uint64_t *max_alloc, dmu_tx_t *tx) 1441 { 1442 uint64_t txg = dmu_tx_get_txg(tx); 1443 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1444 1445 mutex_enter(&svr->svr_lock); 1446 1447 /* 1448 * Determine how big of a chunk to copy. We can allocate up 1449 * to max_alloc bytes, and we can span up to vdev_removal_max_span 1450 * bytes of unallocated space at a time. "segs" will track the 1451 * allocated segments that we are copying. We may also be copying 1452 * free segments (of up to vdev_removal_max_span bytes). 1453 */ 1454 zfs_range_tree_t *segs = zfs_range_tree_create_flags( 1455 NULL, ZFS_RANGE_SEG64, NULL, 0, 0, 1456 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "spa_vdev_copy_impl:segs")); 1457 for (;;) { 1458 zfs_range_tree_t *rt = svr->svr_allocd_segs; 1459 zfs_range_seg_t *rs = zfs_range_tree_first(rt); 1460 1461 if (rs == NULL) 1462 break; 1463 1464 uint64_t seg_length; 1465 1466 if (zfs_range_tree_is_empty(segs)) { 1467 /* need to truncate the first seg based on max_alloc */ 1468 seg_length = MIN(zfs_rs_get_end(rs, rt) - 1469 zfs_rs_get_start(rs, rt), *max_alloc); 1470 } else { 1471 if (zfs_rs_get_start(rs, rt) - zfs_range_tree_max(segs) 1472 > vdev_removal_max_span) { 1473 /* 1474 * Including this segment would cause us to 1475 * copy a larger unneeded chunk than is allowed. 1476 */ 1477 break; 1478 } else if (zfs_rs_get_end(rs, rt) - 1479 zfs_range_tree_min(segs) > *max_alloc) { 1480 /* 1481 * This additional segment would extend past 1482 * max_alloc. Rather than splitting this 1483 * segment, leave it for the next mapping. 1484 */ 1485 break; 1486 } else { 1487 seg_length = zfs_rs_get_end(rs, rt) - 1488 zfs_rs_get_start(rs, rt); 1489 } 1490 } 1491 1492 zfs_range_tree_add(segs, zfs_rs_get_start(rs, rt), seg_length); 1493 zfs_range_tree_remove(svr->svr_allocd_segs, 1494 zfs_rs_get_start(rs, rt), seg_length); 1495 } 1496 1497 if (zfs_range_tree_is_empty(segs)) { 1498 mutex_exit(&svr->svr_lock); 1499 zfs_range_tree_destroy(segs); 1500 return; 1501 } 1502 1503 if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) { 1504 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync, 1505 svr, tx); 1506 } 1507 1508 svr->svr_max_offset_to_sync[txg & TXG_MASK] = zfs_range_tree_max(segs); 1509 1510 /* 1511 * Note: this is the amount of *allocated* space 1512 * that we are taking care of each txg. 1513 */ 1514 svr->svr_bytes_done[txg & TXG_MASK] += zfs_range_tree_space(segs); 1515 1516 mutex_exit(&svr->svr_lock); 1517 1518 zio_alloc_list_t zal; 1519 metaslab_trace_init(&zal); 1520 uint64_t thismax = SPA_MAXBLOCKSIZE; 1521 while (!zfs_range_tree_is_empty(segs)) { 1522 int error = spa_vdev_copy_segment(vd, 1523 segs, thismax, txg, vca, &zal); 1524 1525 if (error == ENOSPC) { 1526 /* 1527 * Cut our segment in half, and don't try this 1528 * segment size again this txg. Note that the 1529 * allocation size must be aligned to the highest 1530 * ashift in the pool, so that the allocation will 1531 * not be padded out to a multiple of the ashift, 1532 * which could cause us to think that this mapping 1533 * is larger than we intended. 1534 */ 1535 ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT); 1536 ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift); 1537 uint64_t attempted = 1538 MIN(zfs_range_tree_span(segs), thismax); 1539 thismax = P2ROUNDUP(attempted / 2, 1540 1 << spa->spa_max_ashift); 1541 /* 1542 * The minimum-size allocation can not fail. 1543 */ 1544 ASSERT3U(attempted, >, 1 << spa->spa_max_ashift); 1545 *max_alloc = attempted - (1 << spa->spa_max_ashift); 1546 } else { 1547 ASSERT0(error); 1548 1549 /* 1550 * We've performed an allocation, so reset the 1551 * alloc trace list. 1552 */ 1553 metaslab_trace_fini(&zal); 1554 metaslab_trace_init(&zal); 1555 } 1556 } 1557 metaslab_trace_fini(&zal); 1558 zfs_range_tree_destroy(segs); 1559 } 1560 1561 /* 1562 * The size of each removal mapping is limited by the tunable 1563 * zfs_remove_max_segment, but we must adjust this to be a multiple of the 1564 * pool's ashift, so that we don't try to split individual sectors regardless 1565 * of the tunable value. (Note that device removal requires that all devices 1566 * have the same ashift, so there's no difference between spa_min_ashift and 1567 * spa_max_ashift.) The raw tunable should not be used elsewhere. 1568 */ 1569 uint64_t 1570 spa_remove_max_segment(spa_t *spa) 1571 { 1572 return (P2ROUNDUP(zfs_remove_max_segment, 1 << spa->spa_max_ashift)); 1573 } 1574 1575 /* 1576 * The removal thread operates in open context. It iterates over all 1577 * allocated space in the vdev, by loading each metaslab's spacemap. 1578 * For each contiguous segment of allocated space (capping the segment 1579 * size at SPA_MAXBLOCKSIZE), we: 1580 * - Allocate space for it on another vdev. 1581 * - Create a new mapping from the old location to the new location 1582 * (as a record in svr_new_segments). 1583 * - Initiate a physical read zio to get the data off the removing disk. 1584 * - In the read zio's done callback, initiate a physical write zio to 1585 * write it to the new vdev. 1586 * Note that all of this will take effect when a particular TXG syncs. 1587 * The sync thread ensures that all the phys reads and writes for the syncing 1588 * TXG have completed (see spa_txg_zio) and writes the new mappings to disk 1589 * (see vdev_mapping_sync()). 1590 */ 1591 static __attribute__((noreturn)) void 1592 spa_vdev_remove_thread(void *arg) 1593 { 1594 spa_t *spa = arg; 1595 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1596 vdev_copy_arg_t vca; 1597 uint64_t max_alloc = spa_remove_max_segment(spa); 1598 uint64_t last_txg = 0; 1599 1600 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1601 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 1602 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1603 uint64_t start_offset = vdev_indirect_mapping_max_offset(vim); 1604 1605 ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops); 1606 ASSERT(vdev_is_concrete(vd)); 1607 ASSERT(vd->vdev_removing); 1608 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 1609 ASSERT(vim != NULL); 1610 1611 mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL); 1612 cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL); 1613 vca.vca_outstanding_bytes = 0; 1614 vca.vca_read_error_bytes = 0; 1615 vca.vca_write_error_bytes = 0; 1616 1617 zfs_range_tree_t *segs = zfs_range_tree_create_flags( 1618 NULL, ZFS_RANGE_SEG64, NULL, 0, 0, 1619 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "spa_vdev_remove_thread:segs")); 1620 1621 mutex_enter(&svr->svr_lock); 1622 1623 /* 1624 * Start from vim_max_offset so we pick up where we left off 1625 * if we are restarting the removal after opening the pool. 1626 */ 1627 uint64_t msi; 1628 for (msi = start_offset >> vd->vdev_ms_shift; 1629 msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) { 1630 metaslab_t *msp = vd->vdev_ms[msi]; 1631 ASSERT3U(msi, <=, vd->vdev_ms_count); 1632 1633 again: 1634 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs)); 1635 mutex_exit(&svr->svr_lock); 1636 1637 mutex_enter(&msp->ms_sync_lock); 1638 mutex_enter(&msp->ms_lock); 1639 1640 /* 1641 * Assert nothing in flight -- ms_*tree is empty. 1642 */ 1643 for (int i = 0; i < TXG_SIZE; i++) { 1644 ASSERT0(zfs_range_tree_space(msp->ms_allocating[i])); 1645 } 1646 1647 /* 1648 * If the metaslab has ever been synced (ms_sm != NULL), 1649 * read the allocated segments from the space map object 1650 * into svr_allocd_segs. Since we do this while holding 1651 * ms_lock and ms_sync_lock, concurrent frees (which 1652 * would have modified the space map) will wait for us 1653 * to finish loading the spacemap, and then take the 1654 * appropriate action (see free_from_removing_vdev()). 1655 */ 1656 if (msp->ms_sm != NULL) 1657 VERIFY0(space_map_load(msp->ms_sm, segs, SM_ALLOC)); 1658 1659 /* 1660 * We could not hold svr_lock while loading space map, or we 1661 * could hit deadlock in a ZIO pipeline, having to wait for 1662 * it. But we can not block for it here under metaslab locks, 1663 * or it would be a lock ordering violation. 1664 */ 1665 if (!mutex_tryenter(&svr->svr_lock)) { 1666 mutex_exit(&msp->ms_lock); 1667 mutex_exit(&msp->ms_sync_lock); 1668 zfs_range_tree_vacate(segs, NULL, NULL); 1669 mutex_enter(&svr->svr_lock); 1670 goto again; 1671 } 1672 1673 zfs_range_tree_swap(&segs, &svr->svr_allocd_segs); 1674 zfs_range_tree_walk(msp->ms_unflushed_allocs, 1675 zfs_range_tree_add, svr->svr_allocd_segs); 1676 zfs_range_tree_walk(msp->ms_unflushed_frees, 1677 zfs_range_tree_remove, svr->svr_allocd_segs); 1678 zfs_range_tree_walk(msp->ms_freeing, 1679 zfs_range_tree_remove, svr->svr_allocd_segs); 1680 1681 mutex_exit(&msp->ms_lock); 1682 mutex_exit(&msp->ms_sync_lock); 1683 1684 /* 1685 * When we are resuming from a paused removal (i.e. 1686 * when importing a pool with a removal in progress), 1687 * discard any state that we have already processed. 1688 */ 1689 zfs_range_tree_clear(svr->svr_allocd_segs, 0, start_offset); 1690 1691 vca.vca_msp = msp; 1692 zfs_dbgmsg("copying %llu segments for metaslab %llu", 1693 (u_longlong_t)zfs_btree_numnodes( 1694 &svr->svr_allocd_segs->rt_root), 1695 (u_longlong_t)msp->ms_id); 1696 1697 while (!svr->svr_thread_exit && 1698 !zfs_range_tree_is_empty(svr->svr_allocd_segs)) { 1699 1700 mutex_exit(&svr->svr_lock); 1701 1702 /* 1703 * We need to periodically drop the config lock so that 1704 * writers can get in. Additionally, we can't wait 1705 * for a txg to sync while holding a config lock 1706 * (since a waiting writer could cause a 3-way deadlock 1707 * with the sync thread, which also gets a config 1708 * lock for reader). So we can't hold the config lock 1709 * while calling dmu_tx_assign(). 1710 */ 1711 spa_config_exit(spa, SCL_CONFIG, FTAG); 1712 1713 /* 1714 * This delay will pause the removal around the point 1715 * specified by zfs_removal_suspend_progress. We do this 1716 * solely from the test suite or during debugging. 1717 */ 1718 while (zfs_removal_suspend_progress && 1719 !svr->svr_thread_exit) 1720 delay(hz); 1721 1722 mutex_enter(&vca.vca_lock); 1723 while (vca.vca_outstanding_bytes > 1724 zfs_remove_max_copy_bytes) { 1725 cv_wait(&vca.vca_cv, &vca.vca_lock); 1726 } 1727 mutex_exit(&vca.vca_lock); 1728 1729 dmu_tx_t *tx = 1730 dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 1731 1732 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | 1733 DMU_TX_SUSPEND)); 1734 uint64_t txg = dmu_tx_get_txg(tx); 1735 1736 /* 1737 * Reacquire the vdev_config lock. The vdev_t 1738 * that we're removing may have changed, e.g. due 1739 * to a vdev_attach or vdev_detach. 1740 */ 1741 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1742 vd = vdev_lookup_top(spa, svr->svr_vdev_id); 1743 1744 if (txg != last_txg) 1745 max_alloc = spa_remove_max_segment(spa); 1746 last_txg = txg; 1747 1748 spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx); 1749 1750 dmu_tx_commit(tx); 1751 mutex_enter(&svr->svr_lock); 1752 } 1753 1754 mutex_enter(&vca.vca_lock); 1755 if (zfs_removal_ignore_errors == 0 && 1756 (vca.vca_read_error_bytes > 0 || 1757 vca.vca_write_error_bytes > 0)) { 1758 svr->svr_thread_exit = B_TRUE; 1759 } 1760 mutex_exit(&vca.vca_lock); 1761 } 1762 1763 mutex_exit(&svr->svr_lock); 1764 1765 spa_config_exit(spa, SCL_CONFIG, FTAG); 1766 1767 zfs_range_tree_destroy(segs); 1768 1769 /* 1770 * Wait for all copies to finish before cleaning up the vca. 1771 */ 1772 txg_wait_synced(spa->spa_dsl_pool, 0); 1773 ASSERT0(vca.vca_outstanding_bytes); 1774 1775 mutex_destroy(&vca.vca_lock); 1776 cv_destroy(&vca.vca_cv); 1777 1778 if (svr->svr_thread_exit) { 1779 mutex_enter(&svr->svr_lock); 1780 zfs_range_tree_vacate(svr->svr_allocd_segs, NULL, NULL); 1781 svr->svr_thread = NULL; 1782 cv_broadcast(&svr->svr_cv); 1783 mutex_exit(&svr->svr_lock); 1784 1785 /* 1786 * During the removal process an unrecoverable read or write 1787 * error was encountered. The removal process must be 1788 * cancelled or this damage may become permanent. 1789 */ 1790 if (zfs_removal_ignore_errors == 0 && 1791 (vca.vca_read_error_bytes > 0 || 1792 vca.vca_write_error_bytes > 0)) { 1793 zfs_dbgmsg("canceling removal due to IO errors: " 1794 "[read_error_bytes=%llu] [write_error_bytes=%llu]", 1795 (u_longlong_t)vca.vca_read_error_bytes, 1796 (u_longlong_t)vca.vca_write_error_bytes); 1797 spa_vdev_remove_cancel_impl(spa); 1798 } 1799 } else { 1800 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs)); 1801 vdev_remove_complete(spa); 1802 } 1803 1804 thread_exit(); 1805 } 1806 1807 void 1808 spa_vdev_remove_suspend(spa_t *spa) 1809 { 1810 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1811 1812 if (svr == NULL) 1813 return; 1814 1815 mutex_enter(&svr->svr_lock); 1816 svr->svr_thread_exit = B_TRUE; 1817 while (svr->svr_thread != NULL) 1818 cv_wait(&svr->svr_cv, &svr->svr_lock); 1819 svr->svr_thread_exit = B_FALSE; 1820 mutex_exit(&svr->svr_lock); 1821 } 1822 1823 /* 1824 * Return true if the "allocating" property has been set to "off" 1825 */ 1826 static boolean_t 1827 vdev_prop_allocating_off(vdev_t *vd) 1828 { 1829 uint64_t objid = vd->vdev_top_zap; 1830 uint64_t allocating = 1; 1831 1832 /* no vdev property object => no props */ 1833 if (objid != 0) { 1834 spa_t *spa = vd->vdev_spa; 1835 objset_t *mos = spa->spa_meta_objset; 1836 1837 mutex_enter(&spa->spa_props_lock); 1838 (void) zap_lookup(mos, objid, "allocating", sizeof (uint64_t), 1839 1, &allocating); 1840 mutex_exit(&spa->spa_props_lock); 1841 } 1842 return (allocating == 0); 1843 } 1844 1845 static int 1846 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx) 1847 { 1848 (void) arg; 1849 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1850 1851 if (spa->spa_vdev_removal == NULL) 1852 return (ENOTACTIVE); 1853 return (0); 1854 } 1855 1856 /* 1857 * Cancel a removal by freeing all entries from the partial mapping 1858 * and marking the vdev as no longer being removing. 1859 */ 1860 static void 1861 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx) 1862 { 1863 (void) arg; 1864 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1865 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1866 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 1867 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 1868 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1869 objset_t *mos = spa->spa_meta_objset; 1870 1871 ASSERT0P(svr->svr_thread); 1872 1873 spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx); 1874 1875 boolean_t are_precise; 1876 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 1877 if (are_precise) { 1878 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 1879 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap, 1880 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx)); 1881 } 1882 1883 uint64_t obsolete_sm_object; 1884 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1885 if (obsolete_sm_object != 0) { 1886 ASSERT(vd->vdev_obsolete_sm != NULL); 1887 ASSERT3U(obsolete_sm_object, ==, 1888 space_map_object(vd->vdev_obsolete_sm)); 1889 1890 space_map_free(vd->vdev_obsolete_sm, tx); 1891 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap, 1892 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx)); 1893 space_map_close(vd->vdev_obsolete_sm); 1894 vd->vdev_obsolete_sm = NULL; 1895 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 1896 } 1897 for (int i = 0; i < TXG_SIZE; i++) { 1898 ASSERT(list_is_empty(&svr->svr_new_segments[i])); 1899 ASSERT3U(svr->svr_max_offset_to_sync[i], <=, 1900 vdev_indirect_mapping_max_offset(vim)); 1901 } 1902 1903 zfs_range_tree_t *segs = zfs_range_tree_create_flags( 1904 NULL, ZFS_RANGE_SEG64, NULL, 0, 0, ZFS_RT_F_DYN_NAME, 1905 vdev_rt_name(vd, "spa_vdev_remove_cancel_sync:segs")); 1906 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) { 1907 metaslab_t *msp = vd->vdev_ms[msi]; 1908 1909 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim)) 1910 break; 1911 1912 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs)); 1913 1914 mutex_enter(&msp->ms_lock); 1915 1916 /* 1917 * Assert nothing in flight -- ms_*tree is empty. 1918 */ 1919 for (int i = 0; i < TXG_SIZE; i++) 1920 ASSERT0(zfs_range_tree_space(msp->ms_allocating[i])); 1921 for (int i = 0; i < TXG_DEFER_SIZE; i++) 1922 ASSERT0(zfs_range_tree_space(msp->ms_defer[i])); 1923 ASSERT0(zfs_range_tree_space(msp->ms_freed)); 1924 1925 if (msp->ms_sm != NULL) 1926 VERIFY0(space_map_load(msp->ms_sm, segs, SM_ALLOC)); 1927 1928 zfs_range_tree_walk(msp->ms_unflushed_allocs, 1929 zfs_range_tree_add, segs); 1930 zfs_range_tree_walk(msp->ms_unflushed_frees, 1931 zfs_range_tree_remove, segs); 1932 zfs_range_tree_walk(msp->ms_freeing, 1933 zfs_range_tree_remove, segs); 1934 mutex_exit(&msp->ms_lock); 1935 1936 /* 1937 * Clear everything past what has been synced, 1938 * because we have not allocated mappings for it yet. 1939 */ 1940 uint64_t syncd = vdev_indirect_mapping_max_offset(vim); 1941 uint64_t ms_end = msp->ms_start + msp->ms_size; 1942 if (ms_end > syncd) 1943 zfs_range_tree_clear(segs, syncd, ms_end - syncd); 1944 1945 zfs_range_tree_vacate(segs, free_mapped_segment_cb, vd); 1946 } 1947 zfs_range_tree_destroy(segs); 1948 1949 /* 1950 * Note: this must happen after we invoke free_mapped_segment_cb, 1951 * because it adds to the obsolete_segments. 1952 */ 1953 zfs_range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL); 1954 1955 ASSERT3U(vic->vic_mapping_object, ==, 1956 vdev_indirect_mapping_object(vd->vdev_indirect_mapping)); 1957 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 1958 vd->vdev_indirect_mapping = NULL; 1959 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx); 1960 vic->vic_mapping_object = 0; 1961 1962 ASSERT3U(vic->vic_births_object, ==, 1963 vdev_indirect_births_object(vd->vdev_indirect_births)); 1964 vdev_indirect_births_close(vd->vdev_indirect_births); 1965 vd->vdev_indirect_births = NULL; 1966 vdev_indirect_births_free(mos, vic->vic_births_object, tx); 1967 vic->vic_births_object = 0; 1968 1969 /* 1970 * We may have processed some frees from the removing vdev in this 1971 * txg, thus increasing svr_bytes_done; discard that here to 1972 * satisfy the assertions in spa_vdev_removal_destroy(). 1973 * Note that future txg's can not have any bytes_done, because 1974 * future TXG's are only modified from open context, and we have 1975 * already shut down the copying thread. 1976 */ 1977 svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0; 1978 spa_finish_removal(spa, DSS_CANCELED, tx); 1979 1980 vd->vdev_removing = B_FALSE; 1981 1982 if (!vdev_prop_allocating_off(vd)) { 1983 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER); 1984 vdev_activate(vd); 1985 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG); 1986 } 1987 1988 vdev_config_dirty(vd); 1989 1990 zfs_dbgmsg("canceled device removal for vdev %llu in %llu", 1991 (u_longlong_t)vd->vdev_id, (u_longlong_t)dmu_tx_get_txg(tx)); 1992 spa_history_log_internal(spa, "vdev remove canceled", tx, 1993 "%s vdev %llu %s", spa_name(spa), 1994 (u_longlong_t)vd->vdev_id, 1995 (vd->vdev_path != NULL) ? vd->vdev_path : "-"); 1996 } 1997 1998 static int 1999 spa_vdev_remove_cancel_impl(spa_t *spa) 2000 { 2001 int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check, 2002 spa_vdev_remove_cancel_sync, NULL, 0, 2003 ZFS_SPACE_CHECK_EXTRA_RESERVED); 2004 return (error); 2005 } 2006 2007 int 2008 spa_vdev_remove_cancel(spa_t *spa) 2009 { 2010 spa_vdev_remove_suspend(spa); 2011 2012 if (spa->spa_vdev_removal == NULL) 2013 return (ENOTACTIVE); 2014 2015 return (spa_vdev_remove_cancel_impl(spa)); 2016 } 2017 2018 void 2019 svr_sync(spa_t *spa, dmu_tx_t *tx) 2020 { 2021 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 2022 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 2023 2024 if (svr == NULL) 2025 return; 2026 2027 /* 2028 * This check is necessary so that we do not dirty the 2029 * DIRECTORY_OBJECT via spa_sync_removing_state() when there 2030 * is nothing to do. Dirtying it every time would prevent us 2031 * from syncing-to-convergence. 2032 */ 2033 if (svr->svr_bytes_done[txgoff] == 0) 2034 return; 2035 2036 /* 2037 * Update progress accounting. 2038 */ 2039 spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff]; 2040 svr->svr_bytes_done[txgoff] = 0; 2041 2042 spa_sync_removing_state(spa, tx); 2043 } 2044 2045 static void 2046 vdev_remove_make_hole_and_free(vdev_t *vd) 2047 { 2048 uint64_t id = vd->vdev_id; 2049 spa_t *spa = vd->vdev_spa; 2050 vdev_t *rvd = spa->spa_root_vdev; 2051 2052 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2053 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2054 2055 vdev_free(vd); 2056 2057 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 2058 vdev_add_child(rvd, vd); 2059 vdev_config_dirty(rvd); 2060 2061 /* 2062 * Reassess the health of our root vdev. 2063 */ 2064 vdev_reopen(rvd); 2065 } 2066 2067 /* 2068 * Remove a log device. The config lock is held for the specified TXG. 2069 */ 2070 static int 2071 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg) 2072 { 2073 metaslab_group_t *mg = vd->vdev_mg; 2074 spa_t *spa = vd->vdev_spa; 2075 int error = 0; 2076 2077 ASSERT(vd->vdev_islog); 2078 ASSERT(vd == vd->vdev_top); 2079 ASSERT0P(vd->vdev_log_mg); 2080 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2081 2082 /* 2083 * Stop allocating from this vdev. 2084 */ 2085 metaslab_group_passivate(mg); 2086 2087 /* 2088 * Wait for the youngest allocations and frees to sync, 2089 * and then wait for the deferral of those frees to finish. 2090 */ 2091 spa_vdev_config_exit(spa, NULL, 2092 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 2093 2094 /* 2095 * Cancel any initialize or TRIM which was in progress. 2096 */ 2097 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED); 2098 vdev_trim_stop_all(vd, VDEV_TRIM_CANCELED); 2099 vdev_autotrim_stop_wait(vd); 2100 2101 /* 2102 * Evacuate the device. We don't hold the config lock as 2103 * writer since we need to do I/O but we do keep the 2104 * spa_namespace_lock held. Once this completes the device 2105 * should no longer have any blocks allocated on it. 2106 */ 2107 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2108 if (vd->vdev_stat.vs_alloc != 0) 2109 error = spa_reset_logs(spa); 2110 2111 *txg = spa_vdev_config_enter(spa); 2112 2113 if (error != 0) { 2114 metaslab_group_activate(mg); 2115 ASSERT0P(vd->vdev_log_mg); 2116 return (error); 2117 } 2118 ASSERT0(vd->vdev_stat.vs_alloc); 2119 2120 /* 2121 * The evacuation succeeded. Remove any remaining MOS metadata 2122 * associated with this vdev, and wait for these changes to sync. 2123 */ 2124 vd->vdev_removing = B_TRUE; 2125 2126 vdev_dirty_leaves(vd, VDD_DTL, *txg); 2127 vdev_config_dirty(vd); 2128 2129 /* 2130 * When the log space map feature is enabled we look at 2131 * the vdev's top_zap to find the on-disk flush data of 2132 * the metaslab we just flushed. Thus, while removing a 2133 * log vdev we make sure to call vdev_metaslab_fini() 2134 * first, which removes all metaslabs of this vdev from 2135 * spa_metaslabs_by_flushed before vdev_remove_empty() 2136 * destroys the top_zap of this log vdev. 2137 * 2138 * This avoids the scenario where we flush a metaslab 2139 * from the log vdev being removed that doesn't have a 2140 * top_zap and end up failing to lookup its on-disk flush 2141 * data. 2142 * 2143 * We don't call metaslab_group_destroy() right away 2144 * though (it will be called in vdev_free() later) as 2145 * during metaslab_sync() of metaslabs from other vdevs 2146 * we may touch the metaslab group of this vdev through 2147 * metaslab_class_histogram_verify() 2148 */ 2149 vdev_metaslab_fini(vd); 2150 2151 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG); 2152 *txg = spa_vdev_config_enter(spa); 2153 2154 sysevent_t *ev = spa_event_create(spa, vd, NULL, 2155 ESC_ZFS_VDEV_REMOVE_DEV); 2156 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2157 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2158 2159 /* The top ZAP should have been destroyed by vdev_remove_empty. */ 2160 ASSERT0(vd->vdev_top_zap); 2161 /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */ 2162 ASSERT0(vd->vdev_leaf_zap); 2163 2164 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 2165 2166 if (list_link_active(&vd->vdev_state_dirty_node)) 2167 vdev_state_clean(vd); 2168 if (list_link_active(&vd->vdev_config_dirty_node)) 2169 vdev_config_clean(vd); 2170 2171 ASSERT0(vd->vdev_stat.vs_alloc); 2172 2173 /* 2174 * Clean up the vdev namespace. 2175 */ 2176 vdev_remove_make_hole_and_free(vd); 2177 2178 if (ev != NULL) 2179 spa_event_post(ev); 2180 2181 return (0); 2182 } 2183 2184 static int 2185 spa_vdev_remove_top_check(vdev_t *vd) 2186 { 2187 spa_t *spa = vd->vdev_spa; 2188 2189 if (vd != vd->vdev_top) 2190 return (SET_ERROR(ENOTSUP)); 2191 2192 if (!vdev_is_concrete(vd)) 2193 return (SET_ERROR(ENOTSUP)); 2194 2195 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL)) 2196 return (SET_ERROR(ENOTSUP)); 2197 2198 /* 2199 * This device is already being removed 2200 */ 2201 if (vd->vdev_removing) 2202 return (SET_ERROR(EALREADY)); 2203 2204 metaslab_class_t *mc = vd->vdev_mg->mg_class; 2205 metaslab_class_t *normal = spa_normal_class(spa); 2206 if (mc != normal) { 2207 /* 2208 * Space allocated from the special (or dedup) class is 2209 * included in the DMU's space usage, but it's not included 2210 * in spa_dspace (or dsl_pool_adjustedsize()). Therefore 2211 * there is always at least as much free space in the normal 2212 * class, as is allocated from the special (and dedup) class. 2213 * As a backup check, we will return ENOSPC if this is 2214 * violated. See also spa_update_dspace(). 2215 */ 2216 uint64_t available = metaslab_class_get_space(normal) - 2217 metaslab_class_get_alloc(normal); 2218 ASSERT3U(available, >=, vd->vdev_stat.vs_alloc); 2219 if (available < vd->vdev_stat.vs_alloc) 2220 return (SET_ERROR(ENOSPC)); 2221 } else if (!vd->vdev_noalloc) { 2222 /* available space in the pool's normal class */ 2223 uint64_t available = dsl_dir_space_available( 2224 spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE); 2225 if (available < vd->vdev_stat.vs_dspace) 2226 return (SET_ERROR(ENOSPC)); 2227 } 2228 2229 /* 2230 * There can not be a removal in progress. 2231 */ 2232 if (spa->spa_removing_phys.sr_state == DSS_SCANNING) 2233 return (SET_ERROR(EBUSY)); 2234 2235 /* 2236 * The device must have all its data. 2237 */ 2238 if (!vdev_dtl_empty(vd, DTL_MISSING) || 2239 !vdev_dtl_empty(vd, DTL_OUTAGE)) 2240 return (SET_ERROR(EBUSY)); 2241 2242 /* 2243 * The device must be healthy. 2244 */ 2245 if (!vdev_readable(vd)) 2246 return (SET_ERROR(EIO)); 2247 2248 /* 2249 * All vdevs in normal class must have the same ashift. 2250 */ 2251 if (spa->spa_max_ashift != spa->spa_min_ashift) { 2252 return (SET_ERROR(EINVAL)); 2253 } 2254 2255 /* 2256 * A removed special/dedup vdev must have same ashift as normal class. 2257 */ 2258 ASSERT(!vd->vdev_islog); 2259 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE && 2260 vd->vdev_ashift != spa->spa_max_ashift) { 2261 return (SET_ERROR(EINVAL)); 2262 } 2263 2264 /* 2265 * All vdevs in normal class must have the same ashift 2266 * and not be raidz or draid. 2267 */ 2268 vdev_t *rvd = spa->spa_root_vdev; 2269 for (uint64_t id = 0; id < rvd->vdev_children; id++) { 2270 vdev_t *cvd = rvd->vdev_child[id]; 2271 2272 /* 2273 * A removed special/dedup vdev must have the same ashift 2274 * across all vdevs in its class. 2275 */ 2276 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE && 2277 cvd->vdev_alloc_bias == vd->vdev_alloc_bias && 2278 cvd->vdev_ashift != vd->vdev_ashift) { 2279 return (SET_ERROR(EINVAL)); 2280 } 2281 if (cvd->vdev_ashift != 0 && 2282 cvd->vdev_alloc_bias == VDEV_BIAS_NONE) 2283 ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift); 2284 if (!vdev_is_concrete(cvd)) 2285 continue; 2286 if (vdev_get_nparity(cvd) != 0) 2287 return (SET_ERROR(EINVAL)); 2288 /* 2289 * Need the mirror to be mirror of leaf vdevs only 2290 */ 2291 if (cvd->vdev_ops == &vdev_mirror_ops) { 2292 for (uint64_t cid = 0; 2293 cid < cvd->vdev_children; cid++) { 2294 if (!cvd->vdev_child[cid]->vdev_ops-> 2295 vdev_op_leaf) 2296 return (SET_ERROR(EINVAL)); 2297 } 2298 } 2299 } 2300 2301 return (0); 2302 } 2303 2304 /* 2305 * Initiate removal of a top-level vdev, reducing the total space in the pool. 2306 * The config lock is held for the specified TXG. Once initiated, 2307 * evacuation of all allocated space (copying it to other vdevs) happens 2308 * in the background (see spa_vdev_remove_thread()), and can be canceled 2309 * (see spa_vdev_remove_cancel()). If successful, the vdev will 2310 * be transformed to an indirect vdev (see spa_vdev_remove_complete()). 2311 */ 2312 static int 2313 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg) 2314 { 2315 spa_t *spa = vd->vdev_spa; 2316 boolean_t set_noalloc = B_FALSE; 2317 int error; 2318 2319 /* 2320 * Check for errors up-front, so that we don't waste time 2321 * passivating the metaslab group and clearing the ZIL if there 2322 * are errors. 2323 */ 2324 error = spa_vdev_remove_top_check(vd); 2325 2326 /* 2327 * Stop allocating from this vdev. Note that we must check 2328 * that this is not the only device in the pool before 2329 * passivating, otherwise we will not be able to make 2330 * progress because we can't allocate from any vdevs. 2331 * The above check for sufficient free space serves this 2332 * purpose. 2333 */ 2334 if (error == 0 && !vd->vdev_noalloc) { 2335 set_noalloc = B_TRUE; 2336 error = vdev_passivate(vd, txg); 2337 } 2338 2339 if (error != 0) 2340 return (error); 2341 2342 /* 2343 * We stop any initializing and TRIM that is currently in progress 2344 * but leave the state as "active". This will allow the process to 2345 * resume if the removal is canceled sometime later. 2346 */ 2347 2348 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG); 2349 2350 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE); 2351 vdev_trim_stop_all(vd, VDEV_TRIM_ACTIVE); 2352 vdev_autotrim_stop_wait(vd); 2353 2354 *txg = spa_vdev_config_enter(spa); 2355 2356 /* 2357 * Things might have changed while the config lock was dropped 2358 * (e.g. space usage). Check for errors again. 2359 */ 2360 error = spa_vdev_remove_top_check(vd); 2361 2362 if (error != 0) { 2363 if (set_noalloc) 2364 vdev_activate(vd); 2365 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART); 2366 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART); 2367 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART); 2368 return (error); 2369 } 2370 2371 vd->vdev_removing = B_TRUE; 2372 2373 vdev_dirty_leaves(vd, VDD_DTL, *txg); 2374 vdev_config_dirty(vd); 2375 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg); 2376 dsl_sync_task_nowait(spa->spa_dsl_pool, 2377 vdev_remove_initiate_sync, (void *)(uintptr_t)vd->vdev_id, tx); 2378 dmu_tx_commit(tx); 2379 2380 return (0); 2381 } 2382 2383 /* 2384 * Remove a device from the pool. 2385 * 2386 * Removing a device from the vdev namespace requires several steps 2387 * and can take a significant amount of time. As a result we use 2388 * the spa_vdev_config_[enter/exit] functions which allow us to 2389 * grab and release the spa_config_lock while still holding the namespace 2390 * lock. During each step the configuration is synced out. 2391 */ 2392 int 2393 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 2394 { 2395 vdev_t *vd; 2396 nvlist_t **spares, **l2cache, *nv; 2397 uint64_t txg = 0; 2398 uint_t nspares, nl2cache; 2399 int error = 0, error_log; 2400 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 2401 sysevent_t *ev = NULL; 2402 const char *vd_type = NULL; 2403 char *vd_path = NULL; 2404 2405 ASSERT(spa_writeable(spa)); 2406 2407 if (!locked) 2408 txg = spa_vdev_enter(spa); 2409 2410 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2411 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 2412 error = (spa_has_checkpoint(spa)) ? 2413 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 2414 2415 if (!locked) 2416 return (spa_vdev_exit(spa, NULL, txg, error)); 2417 2418 return (error); 2419 } 2420 2421 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 2422 2423 if (spa->spa_spares.sav_vdevs != NULL && 2424 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2425 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 2426 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 2427 /* 2428 * Only remove the hot spare if it's not currently in use 2429 * in this pool. 2430 */ 2431 if (vd == NULL || unspare) { 2432 const char *type; 2433 boolean_t draid_spare = B_FALSE; 2434 2435 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) 2436 == 0 && strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0) 2437 draid_spare = B_TRUE; 2438 2439 if (vd == NULL && draid_spare) { 2440 error = SET_ERROR(ENOTSUP); 2441 } else { 2442 if (vd == NULL) 2443 vd = spa_lookup_by_guid(spa, 2444 guid, B_TRUE); 2445 ev = spa_event_create(spa, vd, NULL, 2446 ESC_ZFS_VDEV_REMOVE_AUX); 2447 2448 vd_type = VDEV_TYPE_SPARE; 2449 vd_path = spa_strdup(fnvlist_lookup_string( 2450 nv, ZPOOL_CONFIG_PATH)); 2451 spa_vdev_remove_aux(spa->spa_spares.sav_config, 2452 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 2453 spa_load_spares(spa); 2454 spa->spa_spares.sav_sync = B_TRUE; 2455 } 2456 } else { 2457 error = SET_ERROR(EBUSY); 2458 } 2459 } else if (spa->spa_l2cache.sav_vdevs != NULL && 2460 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 2461 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 2462 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 2463 vd_type = VDEV_TYPE_L2CACHE; 2464 vd_path = spa_strdup(fnvlist_lookup_string( 2465 nv, ZPOOL_CONFIG_PATH)); 2466 /* 2467 * Cache devices can always be removed. 2468 */ 2469 vd = spa_lookup_by_guid(spa, guid, B_TRUE); 2470 2471 /* 2472 * Stop trimming the cache device. We need to release the 2473 * config lock to allow the syncing of TRIM transactions 2474 * without releasing the spa_namespace_lock. The same 2475 * strategy is employed in spa_vdev_remove_top(). 2476 */ 2477 spa_vdev_config_exit(spa, NULL, 2478 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 2479 mutex_enter(&vd->vdev_trim_lock); 2480 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL); 2481 mutex_exit(&vd->vdev_trim_lock); 2482 txg = spa_vdev_config_enter(spa); 2483 2484 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX); 2485 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 2486 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 2487 spa_load_l2cache(spa); 2488 spa->spa_l2cache.sav_sync = B_TRUE; 2489 } else if (vd != NULL && vd->vdev_islog) { 2490 ASSERT(!locked); 2491 vd_type = VDEV_TYPE_LOG; 2492 vd_path = spa_strdup((vd->vdev_path != NULL) ? 2493 vd->vdev_path : "-"); 2494 error = spa_vdev_remove_log(vd, &txg); 2495 } else if (vd != NULL) { 2496 ASSERT(!locked); 2497 error = spa_vdev_remove_top(vd, &txg); 2498 } else { 2499 /* 2500 * There is no vdev of any kind with the specified guid. 2501 */ 2502 error = SET_ERROR(ENOENT); 2503 } 2504 2505 error_log = error; 2506 2507 if (!locked) 2508 error = spa_vdev_exit(spa, NULL, txg, error); 2509 2510 /* 2511 * Logging must be done outside the spa config lock. Otherwise, 2512 * this code path could end up holding the spa config lock while 2513 * waiting for a txg_sync so it can write to the internal log. 2514 * Doing that would prevent the txg sync from actually happening, 2515 * causing a deadlock. 2516 */ 2517 if (error_log == 0 && vd_type != NULL && vd_path != NULL) { 2518 spa_history_log_internal(spa, "vdev remove", NULL, 2519 "%s vdev (%s) %s", spa_name(spa), vd_type, vd_path); 2520 } 2521 if (vd_path != NULL) 2522 spa_strfree(vd_path); 2523 2524 if (ev != NULL) 2525 spa_event_post(ev); 2526 2527 return (error); 2528 } 2529 2530 int 2531 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs) 2532 { 2533 prs->prs_state = spa->spa_removing_phys.sr_state; 2534 2535 if (prs->prs_state == DSS_NONE) 2536 return (SET_ERROR(ENOENT)); 2537 2538 prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev; 2539 prs->prs_start_time = spa->spa_removing_phys.sr_start_time; 2540 prs->prs_end_time = spa->spa_removing_phys.sr_end_time; 2541 prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy; 2542 prs->prs_copied = spa->spa_removing_phys.sr_copied; 2543 2544 prs->prs_mapping_memory = 0; 2545 uint64_t indirect_vdev_id = 2546 spa->spa_removing_phys.sr_prev_indirect_vdev; 2547 while (indirect_vdev_id != -1) { 2548 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id]; 2549 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 2550 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 2551 2552 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 2553 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim); 2554 indirect_vdev_id = vic->vic_prev_indirect_vdev; 2555 } 2556 2557 return (0); 2558 } 2559 2560 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_ignore_errors, INT, ZMOD_RW, 2561 "Ignore hard IO errors when removing device"); 2562 2563 ZFS_MODULE_PARAM(zfs_vdev, zfs_, remove_max_segment, UINT, ZMOD_RW, 2564 "Largest contiguous segment to allocate when removing device"); 2565 2566 ZFS_MODULE_PARAM(zfs_vdev, vdev_, removal_max_span, UINT, ZMOD_RW, 2567 "Largest span of free chunks a remap segment can span"); 2568 2569 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_suspend_progress, UINT, ZMOD_RW, 2570 "Pause device removal after this many bytes are copied " 2571 "(debug use only - causes removal to hang)"); 2572 2573 EXPORT_SYMBOL(free_from_removing_vdev); 2574 EXPORT_SYMBOL(spa_removal_get_stats); 2575 EXPORT_SYMBOL(spa_remove_init); 2576 EXPORT_SYMBOL(spa_restart_removal); 2577 EXPORT_SYMBOL(spa_vdev_removal_destroy); 2578 EXPORT_SYMBOL(spa_vdev_remove); 2579 EXPORT_SYMBOL(spa_vdev_remove_cancel); 2580 EXPORT_SYMBOL(spa_vdev_remove_suspend); 2581 EXPORT_SYMBOL(svr_sync); 2582