1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 26 */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa_impl.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/zap.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/metaslab.h> 35 #include <sys/metaslab_impl.h> 36 #include <sys/uberblock_impl.h> 37 #include <sys/txg.h> 38 #include <sys/avl.h> 39 #include <sys/bpobj.h> 40 #include <sys/dsl_pool.h> 41 #include <sys/dsl_synctask.h> 42 #include <sys/dsl_dir.h> 43 #include <sys/arc.h> 44 #include <sys/zfeature.h> 45 #include <sys/vdev_indirect_births.h> 46 #include <sys/vdev_indirect_mapping.h> 47 #include <sys/abd.h> 48 #include <sys/vdev_initialize.h> 49 #include <sys/vdev_trim.h> 50 #include <sys/trace_zfs.h> 51 52 /* 53 * This file contains the necessary logic to remove vdevs from a 54 * storage pool. Currently, the only devices that can be removed 55 * are log, cache, and spare devices; and top level vdevs from a pool 56 * w/o raidz or mirrors. (Note that members of a mirror can be removed 57 * by the detach operation.) 58 * 59 * Log vdevs are removed by evacuating them and then turning the vdev 60 * into a hole vdev while holding spa config locks. 61 * 62 * Top level vdevs are removed and converted into an indirect vdev via 63 * a multi-step process: 64 * 65 * - Disable allocations from this device (spa_vdev_remove_top). 66 * 67 * - From a new thread (spa_vdev_remove_thread), copy data from 68 * the removing vdev to a different vdev. The copy happens in open 69 * context (spa_vdev_copy_impl) and issues a sync task 70 * (vdev_mapping_sync) so the sync thread can update the partial 71 * indirect mappings in core and on disk. 72 * 73 * - If a free happens during a removal, it is freed from the 74 * removing vdev, and if it has already been copied, from the new 75 * location as well (free_from_removing_vdev). 76 * 77 * - After the removal is completed, the copy thread converts the vdev 78 * into an indirect vdev (vdev_remove_complete) before instructing 79 * the sync thread to destroy the space maps and finish the removal 80 * (spa_finish_removal). 81 */ 82 83 typedef struct vdev_copy_arg { 84 metaslab_t *vca_msp; 85 uint64_t vca_outstanding_bytes; 86 uint64_t vca_read_error_bytes; 87 uint64_t vca_write_error_bytes; 88 kcondvar_t vca_cv; 89 kmutex_t vca_lock; 90 } vdev_copy_arg_t; 91 92 /* 93 * The maximum amount of memory we can use for outstanding i/o while 94 * doing a device removal. This determines how much i/o we can have 95 * in flight concurrently. 96 */ 97 int zfs_remove_max_copy_bytes = 64 * 1024 * 1024; 98 99 /* 100 * The largest contiguous segment that we will attempt to allocate when 101 * removing a device. This can be no larger than SPA_MAXBLOCKSIZE. If 102 * there is a performance problem with attempting to allocate large blocks, 103 * consider decreasing this. 104 * 105 * See also the accessor function spa_remove_max_segment(). 106 */ 107 int zfs_remove_max_segment = SPA_MAXBLOCKSIZE; 108 109 /* 110 * Ignore hard IO errors during device removal. When set if a device 111 * encounters hard IO error during the removal process the removal will 112 * not be cancelled. This can result in a normally recoverable block 113 * becoming permanently damaged and is not recommended. 114 */ 115 int zfs_removal_ignore_errors = 0; 116 117 /* 118 * Allow a remap segment to span free chunks of at most this size. The main 119 * impact of a larger span is that we will read and write larger, more 120 * contiguous chunks, with more "unnecessary" data -- trading off bandwidth 121 * for iops. The value here was chosen to align with 122 * zfs_vdev_read_gap_limit, which is a similar concept when doing regular 123 * reads (but there's no reason it has to be the same). 124 * 125 * Additionally, a higher span will have the following relatively minor 126 * effects: 127 * - the mapping will be smaller, since one entry can cover more allocated 128 * segments 129 * - more of the fragmentation in the removing device will be preserved 130 * - we'll do larger allocations, which may fail and fall back on smaller 131 * allocations 132 */ 133 int vdev_removal_max_span = 32 * 1024; 134 135 /* 136 * This is used by the test suite so that it can ensure that certain 137 * actions happen while in the middle of a removal. 138 */ 139 int zfs_removal_suspend_progress = 0; 140 141 #define VDEV_REMOVAL_ZAP_OBJS "lzap" 142 143 static void spa_vdev_remove_thread(void *arg); 144 static int spa_vdev_remove_cancel_impl(spa_t *spa); 145 146 static void 147 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx) 148 { 149 VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset, 150 DMU_POOL_DIRECTORY_OBJECT, 151 DMU_POOL_REMOVING, sizeof (uint64_t), 152 sizeof (spa->spa_removing_phys) / sizeof (uint64_t), 153 &spa->spa_removing_phys, tx)); 154 } 155 156 static nvlist_t * 157 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 158 { 159 for (int i = 0; i < count; i++) { 160 uint64_t guid = 161 fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID); 162 163 if (guid == target_guid) 164 return (nvpp[i]); 165 } 166 167 return (NULL); 168 } 169 170 static void 171 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 172 nvlist_t *dev_to_remove) 173 { 174 nvlist_t **newdev = NULL; 175 176 if (count > 1) 177 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 178 179 for (int i = 0, j = 0; i < count; i++) { 180 if (dev[i] == dev_to_remove) 181 continue; 182 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 183 } 184 185 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 186 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 187 188 for (int i = 0; i < count - 1; i++) 189 nvlist_free(newdev[i]); 190 191 if (count > 1) 192 kmem_free(newdev, (count - 1) * sizeof (void *)); 193 } 194 195 static spa_vdev_removal_t * 196 spa_vdev_removal_create(vdev_t *vd) 197 { 198 spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP); 199 mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL); 200 cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL); 201 svr->svr_allocd_segs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 202 svr->svr_vdev_id = vd->vdev_id; 203 204 for (int i = 0; i < TXG_SIZE; i++) { 205 svr->svr_frees[i] = range_tree_create(NULL, RANGE_SEG64, NULL, 206 0, 0); 207 list_create(&svr->svr_new_segments[i], 208 sizeof (vdev_indirect_mapping_entry_t), 209 offsetof(vdev_indirect_mapping_entry_t, vime_node)); 210 } 211 212 return (svr); 213 } 214 215 void 216 spa_vdev_removal_destroy(spa_vdev_removal_t *svr) 217 { 218 for (int i = 0; i < TXG_SIZE; i++) { 219 ASSERT0(svr->svr_bytes_done[i]); 220 ASSERT0(svr->svr_max_offset_to_sync[i]); 221 range_tree_destroy(svr->svr_frees[i]); 222 list_destroy(&svr->svr_new_segments[i]); 223 } 224 225 range_tree_destroy(svr->svr_allocd_segs); 226 mutex_destroy(&svr->svr_lock); 227 cv_destroy(&svr->svr_cv); 228 kmem_free(svr, sizeof (*svr)); 229 } 230 231 /* 232 * This is called as a synctask in the txg in which we will mark this vdev 233 * as removing (in the config stored in the MOS). 234 * 235 * It begins the evacuation of a toplevel vdev by: 236 * - initializing the spa_removing_phys which tracks this removal 237 * - computing the amount of space to remove for accounting purposes 238 * - dirtying all dbufs in the spa_config_object 239 * - creating the spa_vdev_removal 240 * - starting the spa_vdev_remove_thread 241 */ 242 static void 243 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx) 244 { 245 int vdev_id = (uintptr_t)arg; 246 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 247 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 248 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 249 objset_t *mos = spa->spa_dsl_pool->dp_meta_objset; 250 spa_vdev_removal_t *svr = NULL; 251 uint64_t txg __maybe_unused = dmu_tx_get_txg(tx); 252 253 ASSERT0(vdev_get_nparity(vd)); 254 svr = spa_vdev_removal_create(vd); 255 256 ASSERT(vd->vdev_removing); 257 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL); 258 259 spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx); 260 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) { 261 /* 262 * By activating the OBSOLETE_COUNTS feature, we prevent 263 * the pool from being downgraded and ensure that the 264 * refcounts are precise. 265 */ 266 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 267 uint64_t one = 1; 268 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap, 269 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1, 270 &one, tx)); 271 boolean_t are_precise __maybe_unused; 272 ASSERT0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 273 ASSERT3B(are_precise, ==, B_TRUE); 274 } 275 276 vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx); 277 vd->vdev_indirect_mapping = 278 vdev_indirect_mapping_open(mos, vic->vic_mapping_object); 279 vic->vic_births_object = vdev_indirect_births_alloc(mos, tx); 280 vd->vdev_indirect_births = 281 vdev_indirect_births_open(mos, vic->vic_births_object); 282 spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id; 283 spa->spa_removing_phys.sr_start_time = gethrestime_sec(); 284 spa->spa_removing_phys.sr_end_time = 0; 285 spa->spa_removing_phys.sr_state = DSS_SCANNING; 286 spa->spa_removing_phys.sr_to_copy = 0; 287 spa->spa_removing_phys.sr_copied = 0; 288 289 /* 290 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because 291 * there may be space in the defer tree, which is free, but still 292 * counted in vs_alloc. 293 */ 294 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) { 295 metaslab_t *ms = vd->vdev_ms[i]; 296 if (ms->ms_sm == NULL) 297 continue; 298 299 spa->spa_removing_phys.sr_to_copy += 300 metaslab_allocated_space(ms); 301 302 /* 303 * Space which we are freeing this txg does not need to 304 * be copied. 305 */ 306 spa->spa_removing_phys.sr_to_copy -= 307 range_tree_space(ms->ms_freeing); 308 309 ASSERT0(range_tree_space(ms->ms_freed)); 310 for (int t = 0; t < TXG_SIZE; t++) 311 ASSERT0(range_tree_space(ms->ms_allocating[t])); 312 } 313 314 /* 315 * Sync tasks are called before metaslab_sync(), so there should 316 * be no already-synced metaslabs in the TXG_CLEAN list. 317 */ 318 ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL); 319 320 spa_sync_removing_state(spa, tx); 321 322 /* 323 * All blocks that we need to read the most recent mapping must be 324 * stored on concrete vdevs. Therefore, we must dirty anything that 325 * is read before spa_remove_init(). Specifically, the 326 * spa_config_object. (Note that although we already modified the 327 * spa_config_object in spa_sync_removing_state, that may not have 328 * modified all blocks of the object.) 329 */ 330 dmu_object_info_t doi; 331 VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi)); 332 for (uint64_t offset = 0; offset < doi.doi_max_offset; ) { 333 dmu_buf_t *dbuf; 334 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT, 335 offset, FTAG, &dbuf, 0)); 336 dmu_buf_will_dirty(dbuf, tx); 337 offset += dbuf->db_size; 338 dmu_buf_rele(dbuf, FTAG); 339 } 340 341 /* 342 * Now that we've allocated the im_object, dirty the vdev to ensure 343 * that the object gets written to the config on disk. 344 */ 345 vdev_config_dirty(vd); 346 347 zfs_dbgmsg("starting removal thread for vdev %llu (%px) in txg %llu " 348 "im_obj=%llu", (u_longlong_t)vd->vdev_id, vd, 349 (u_longlong_t)dmu_tx_get_txg(tx), 350 (u_longlong_t)vic->vic_mapping_object); 351 352 spa_history_log_internal(spa, "vdev remove started", tx, 353 "%s vdev %llu %s", spa_name(spa), (u_longlong_t)vd->vdev_id, 354 (vd->vdev_path != NULL) ? vd->vdev_path : "-"); 355 /* 356 * Setting spa_vdev_removal causes subsequent frees to call 357 * free_from_removing_vdev(). Note that we don't need any locking 358 * because we are the sync thread, and metaslab_free_impl() is only 359 * called from syncing context (potentially from a zio taskq thread, 360 * but in any case only when there are outstanding free i/os, which 361 * there are not). 362 */ 363 ASSERT3P(spa->spa_vdev_removal, ==, NULL); 364 spa->spa_vdev_removal = svr; 365 svr->svr_thread = thread_create(NULL, 0, 366 spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri); 367 } 368 369 /* 370 * When we are opening a pool, we must read the mapping for each 371 * indirect vdev in order from most recently removed to least 372 * recently removed. We do this because the blocks for the mapping 373 * of older indirect vdevs may be stored on more recently removed vdevs. 374 * In order to read each indirect mapping object, we must have 375 * initialized all more recently removed vdevs. 376 */ 377 int 378 spa_remove_init(spa_t *spa) 379 { 380 int error; 381 382 error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset, 383 DMU_POOL_DIRECTORY_OBJECT, 384 DMU_POOL_REMOVING, sizeof (uint64_t), 385 sizeof (spa->spa_removing_phys) / sizeof (uint64_t), 386 &spa->spa_removing_phys); 387 388 if (error == ENOENT) { 389 spa->spa_removing_phys.sr_state = DSS_NONE; 390 spa->spa_removing_phys.sr_removing_vdev = -1; 391 spa->spa_removing_phys.sr_prev_indirect_vdev = -1; 392 spa->spa_indirect_vdevs_loaded = B_TRUE; 393 return (0); 394 } else if (error != 0) { 395 return (error); 396 } 397 398 if (spa->spa_removing_phys.sr_state == DSS_SCANNING) { 399 /* 400 * We are currently removing a vdev. Create and 401 * initialize a spa_vdev_removal_t from the bonus 402 * buffer of the removing vdevs vdev_im_object, and 403 * initialize its partial mapping. 404 */ 405 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 406 vdev_t *vd = vdev_lookup_top(spa, 407 spa->spa_removing_phys.sr_removing_vdev); 408 409 if (vd == NULL) { 410 spa_config_exit(spa, SCL_STATE, FTAG); 411 return (EINVAL); 412 } 413 414 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 415 416 ASSERT(vdev_is_concrete(vd)); 417 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd); 418 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id); 419 ASSERT(vd->vdev_removing); 420 421 vd->vdev_indirect_mapping = vdev_indirect_mapping_open( 422 spa->spa_meta_objset, vic->vic_mapping_object); 423 vd->vdev_indirect_births = vdev_indirect_births_open( 424 spa->spa_meta_objset, vic->vic_births_object); 425 spa_config_exit(spa, SCL_STATE, FTAG); 426 427 spa->spa_vdev_removal = svr; 428 } 429 430 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 431 uint64_t indirect_vdev_id = 432 spa->spa_removing_phys.sr_prev_indirect_vdev; 433 while (indirect_vdev_id != UINT64_MAX) { 434 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id); 435 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 436 437 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 438 vd->vdev_indirect_mapping = vdev_indirect_mapping_open( 439 spa->spa_meta_objset, vic->vic_mapping_object); 440 vd->vdev_indirect_births = vdev_indirect_births_open( 441 spa->spa_meta_objset, vic->vic_births_object); 442 443 indirect_vdev_id = vic->vic_prev_indirect_vdev; 444 } 445 spa_config_exit(spa, SCL_STATE, FTAG); 446 447 /* 448 * Now that we've loaded all the indirect mappings, we can allow 449 * reads from other blocks (e.g. via predictive prefetch). 450 */ 451 spa->spa_indirect_vdevs_loaded = B_TRUE; 452 return (0); 453 } 454 455 void 456 spa_restart_removal(spa_t *spa) 457 { 458 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 459 460 if (svr == NULL) 461 return; 462 463 /* 464 * In general when this function is called there is no 465 * removal thread running. The only scenario where this 466 * is not true is during spa_import() where this function 467 * is called twice [once from spa_import_impl() and 468 * spa_async_resume()]. Thus, in the scenario where we 469 * import a pool that has an ongoing removal we don't 470 * want to spawn a second thread. 471 */ 472 if (svr->svr_thread != NULL) 473 return; 474 475 if (!spa_writeable(spa)) 476 return; 477 478 zfs_dbgmsg("restarting removal of %llu", 479 (u_longlong_t)svr->svr_vdev_id); 480 svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa, 481 0, &p0, TS_RUN, minclsyspri); 482 } 483 484 /* 485 * Process freeing from a device which is in the middle of being removed. 486 * We must handle this carefully so that we attempt to copy freed data, 487 * and we correctly free already-copied data. 488 */ 489 void 490 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size) 491 { 492 spa_t *spa = vd->vdev_spa; 493 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 494 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 495 uint64_t txg = spa_syncing_txg(spa); 496 uint64_t max_offset_yet = 0; 497 498 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 499 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==, 500 vdev_indirect_mapping_object(vim)); 501 ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id); 502 503 mutex_enter(&svr->svr_lock); 504 505 /* 506 * Remove the segment from the removing vdev's spacemap. This 507 * ensures that we will not attempt to copy this space (if the 508 * removal thread has not yet visited it), and also ensures 509 * that we know what is actually allocated on the new vdevs 510 * (needed if we cancel the removal). 511 * 512 * Note: we must do the metaslab_free_concrete() with the svr_lock 513 * held, so that the remove_thread can not load this metaslab and then 514 * visit this offset between the time that we metaslab_free_concrete() 515 * and when we check to see if it has been visited. 516 * 517 * Note: The checkpoint flag is set to false as having/taking 518 * a checkpoint and removing a device can't happen at the same 519 * time. 520 */ 521 ASSERT(!spa_has_checkpoint(spa)); 522 metaslab_free_concrete(vd, offset, size, B_FALSE); 523 524 uint64_t synced_size = 0; 525 uint64_t synced_offset = 0; 526 uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim); 527 if (offset < max_offset_synced) { 528 /* 529 * The mapping for this offset is already on disk. 530 * Free from the new location. 531 * 532 * Note that we use svr_max_synced_offset because it is 533 * updated atomically with respect to the in-core mapping. 534 * By contrast, vim_max_offset is not. 535 * 536 * This block may be split between a synced entry and an 537 * in-flight or unvisited entry. Only process the synced 538 * portion of it here. 539 */ 540 synced_size = MIN(size, max_offset_synced - offset); 541 synced_offset = offset; 542 543 ASSERT3U(max_offset_yet, <=, max_offset_synced); 544 max_offset_yet = max_offset_synced; 545 546 DTRACE_PROBE3(remove__free__synced, 547 spa_t *, spa, 548 uint64_t, offset, 549 uint64_t, synced_size); 550 551 size -= synced_size; 552 offset += synced_size; 553 } 554 555 /* 556 * Look at all in-flight txgs starting from the currently syncing one 557 * and see if a section of this free is being copied. By starting from 558 * this txg and iterating forward, we might find that this region 559 * was copied in two different txgs and handle it appropriately. 560 */ 561 for (int i = 0; i < TXG_CONCURRENT_STATES; i++) { 562 int txgoff = (txg + i) & TXG_MASK; 563 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) { 564 /* 565 * The mapping for this offset is in flight, and 566 * will be synced in txg+i. 567 */ 568 uint64_t inflight_size = MIN(size, 569 svr->svr_max_offset_to_sync[txgoff] - offset); 570 571 DTRACE_PROBE4(remove__free__inflight, 572 spa_t *, spa, 573 uint64_t, offset, 574 uint64_t, inflight_size, 575 uint64_t, txg + i); 576 577 /* 578 * We copy data in order of increasing offset. 579 * Therefore the max_offset_to_sync[] must increase 580 * (or be zero, indicating that nothing is being 581 * copied in that txg). 582 */ 583 if (svr->svr_max_offset_to_sync[txgoff] != 0) { 584 ASSERT3U(svr->svr_max_offset_to_sync[txgoff], 585 >=, max_offset_yet); 586 max_offset_yet = 587 svr->svr_max_offset_to_sync[txgoff]; 588 } 589 590 /* 591 * We've already committed to copying this segment: 592 * we have allocated space elsewhere in the pool for 593 * it and have an IO outstanding to copy the data. We 594 * cannot free the space before the copy has 595 * completed, or else the copy IO might overwrite any 596 * new data. To free that space, we record the 597 * segment in the appropriate svr_frees tree and free 598 * the mapped space later, in the txg where we have 599 * completed the copy and synced the mapping (see 600 * vdev_mapping_sync). 601 */ 602 range_tree_add(svr->svr_frees[txgoff], 603 offset, inflight_size); 604 size -= inflight_size; 605 offset += inflight_size; 606 607 /* 608 * This space is already accounted for as being 609 * done, because it is being copied in txg+i. 610 * However, if i!=0, then it is being copied in 611 * a future txg. If we crash after this txg 612 * syncs but before txg+i syncs, then the space 613 * will be free. Therefore we must account 614 * for the space being done in *this* txg 615 * (when it is freed) rather than the future txg 616 * (when it will be copied). 617 */ 618 ASSERT3U(svr->svr_bytes_done[txgoff], >=, 619 inflight_size); 620 svr->svr_bytes_done[txgoff] -= inflight_size; 621 svr->svr_bytes_done[txg & TXG_MASK] += inflight_size; 622 } 623 } 624 ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]); 625 626 if (size > 0) { 627 /* 628 * The copy thread has not yet visited this offset. Ensure 629 * that it doesn't. 630 */ 631 632 DTRACE_PROBE3(remove__free__unvisited, 633 spa_t *, spa, 634 uint64_t, offset, 635 uint64_t, size); 636 637 if (svr->svr_allocd_segs != NULL) 638 range_tree_clear(svr->svr_allocd_segs, offset, size); 639 640 /* 641 * Since we now do not need to copy this data, for 642 * accounting purposes we have done our job and can count 643 * it as completed. 644 */ 645 svr->svr_bytes_done[txg & TXG_MASK] += size; 646 } 647 mutex_exit(&svr->svr_lock); 648 649 /* 650 * Now that we have dropped svr_lock, process the synced portion 651 * of this free. 652 */ 653 if (synced_size > 0) { 654 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size); 655 656 /* 657 * Note: this can only be called from syncing context, 658 * and the vdev_indirect_mapping is only changed from the 659 * sync thread, so we don't need svr_lock while doing 660 * metaslab_free_impl_cb. 661 */ 662 boolean_t checkpoint = B_FALSE; 663 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size, 664 metaslab_free_impl_cb, &checkpoint); 665 } 666 } 667 668 /* 669 * Stop an active removal and update the spa_removing phys. 670 */ 671 static void 672 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx) 673 { 674 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 675 ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa)); 676 677 /* Ensure the removal thread has completed before we free the svr. */ 678 spa_vdev_remove_suspend(spa); 679 680 ASSERT(state == DSS_FINISHED || state == DSS_CANCELED); 681 682 if (state == DSS_FINISHED) { 683 spa_removing_phys_t *srp = &spa->spa_removing_phys; 684 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 685 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 686 687 if (srp->sr_prev_indirect_vdev != -1) { 688 vdev_t *pvd; 689 pvd = vdev_lookup_top(spa, 690 srp->sr_prev_indirect_vdev); 691 ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops); 692 } 693 694 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev; 695 srp->sr_prev_indirect_vdev = vd->vdev_id; 696 } 697 spa->spa_removing_phys.sr_state = state; 698 spa->spa_removing_phys.sr_end_time = gethrestime_sec(); 699 700 spa->spa_vdev_removal = NULL; 701 spa_vdev_removal_destroy(svr); 702 703 spa_sync_removing_state(spa, tx); 704 spa_notify_waiters(spa); 705 706 vdev_config_dirty(spa->spa_root_vdev); 707 } 708 709 static void 710 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size) 711 { 712 vdev_t *vd = arg; 713 vdev_indirect_mark_obsolete(vd, offset, size); 714 boolean_t checkpoint = B_FALSE; 715 vdev_indirect_ops.vdev_op_remap(vd, offset, size, 716 metaslab_free_impl_cb, &checkpoint); 717 } 718 719 /* 720 * On behalf of the removal thread, syncs an incremental bit more of 721 * the indirect mapping to disk and updates the in-memory mapping. 722 * Called as a sync task in every txg that the removal thread makes progress. 723 */ 724 static void 725 vdev_mapping_sync(void *arg, dmu_tx_t *tx) 726 { 727 spa_vdev_removal_t *svr = arg; 728 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 729 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 730 vdev_indirect_config_t *vic __maybe_unused = &vd->vdev_indirect_config; 731 uint64_t txg = dmu_tx_get_txg(tx); 732 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 733 734 ASSERT(vic->vic_mapping_object != 0); 735 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 736 737 vdev_indirect_mapping_add_entries(vim, 738 &svr->svr_new_segments[txg & TXG_MASK], tx); 739 vdev_indirect_births_add_entry(vd->vdev_indirect_births, 740 vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx); 741 742 /* 743 * Free the copied data for anything that was freed while the 744 * mapping entries were in flight. 745 */ 746 mutex_enter(&svr->svr_lock); 747 range_tree_vacate(svr->svr_frees[txg & TXG_MASK], 748 free_mapped_segment_cb, vd); 749 ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=, 750 vdev_indirect_mapping_max_offset(vim)); 751 svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0; 752 mutex_exit(&svr->svr_lock); 753 754 spa_sync_removing_state(spa, tx); 755 } 756 757 typedef struct vdev_copy_segment_arg { 758 spa_t *vcsa_spa; 759 dva_t *vcsa_dest_dva; 760 uint64_t vcsa_txg; 761 range_tree_t *vcsa_obsolete_segs; 762 } vdev_copy_segment_arg_t; 763 764 static void 765 unalloc_seg(void *arg, uint64_t start, uint64_t size) 766 { 767 vdev_copy_segment_arg_t *vcsa = arg; 768 spa_t *spa = vcsa->vcsa_spa; 769 blkptr_t bp = { { { {0} } } }; 770 771 BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL); 772 BP_SET_LSIZE(&bp, size); 773 BP_SET_PSIZE(&bp, size); 774 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); 775 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF); 776 BP_SET_TYPE(&bp, DMU_OT_NONE); 777 BP_SET_LEVEL(&bp, 0); 778 BP_SET_DEDUP(&bp, 0); 779 BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER); 780 781 DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva)); 782 DVA_SET_OFFSET(&bp.blk_dva[0], 783 DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start); 784 DVA_SET_ASIZE(&bp.blk_dva[0], size); 785 786 zio_free(spa, vcsa->vcsa_txg, &bp); 787 } 788 789 /* 790 * All reads and writes associated with a call to spa_vdev_copy_segment() 791 * are done. 792 */ 793 static void 794 spa_vdev_copy_segment_done(zio_t *zio) 795 { 796 vdev_copy_segment_arg_t *vcsa = zio->io_private; 797 798 range_tree_vacate(vcsa->vcsa_obsolete_segs, 799 unalloc_seg, vcsa); 800 range_tree_destroy(vcsa->vcsa_obsolete_segs); 801 kmem_free(vcsa, sizeof (*vcsa)); 802 803 spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa); 804 } 805 806 /* 807 * The write of the new location is done. 808 */ 809 static void 810 spa_vdev_copy_segment_write_done(zio_t *zio) 811 { 812 vdev_copy_arg_t *vca = zio->io_private; 813 814 abd_free(zio->io_abd); 815 816 mutex_enter(&vca->vca_lock); 817 vca->vca_outstanding_bytes -= zio->io_size; 818 819 if (zio->io_error != 0) 820 vca->vca_write_error_bytes += zio->io_size; 821 822 cv_signal(&vca->vca_cv); 823 mutex_exit(&vca->vca_lock); 824 } 825 826 /* 827 * The read of the old location is done. The parent zio is the write to 828 * the new location. Allow it to start. 829 */ 830 static void 831 spa_vdev_copy_segment_read_done(zio_t *zio) 832 { 833 vdev_copy_arg_t *vca = zio->io_private; 834 835 if (zio->io_error != 0) { 836 mutex_enter(&vca->vca_lock); 837 vca->vca_read_error_bytes += zio->io_size; 838 mutex_exit(&vca->vca_lock); 839 } 840 841 zio_nowait(zio_unique_parent(zio)); 842 } 843 844 /* 845 * If the old and new vdevs are mirrors, we will read both sides of the old 846 * mirror, and write each copy to the corresponding side of the new mirror. 847 * If the old and new vdevs have a different number of children, we will do 848 * this as best as possible. Since we aren't verifying checksums, this 849 * ensures that as long as there's a good copy of the data, we'll have a 850 * good copy after the removal, even if there's silent damage to one side 851 * of the mirror. If we're removing a mirror that has some silent damage, 852 * we'll have exactly the same damage in the new location (assuming that 853 * the new location is also a mirror). 854 * 855 * We accomplish this by creating a tree of zio_t's, with as many writes as 856 * there are "children" of the new vdev (a non-redundant vdev counts as one 857 * child, a 2-way mirror has 2 children, etc). Each write has an associated 858 * read from a child of the old vdev. Typically there will be the same 859 * number of children of the old and new vdevs. However, if there are more 860 * children of the new vdev, some child(ren) of the old vdev will be issued 861 * multiple reads. If there are more children of the old vdev, some copies 862 * will be dropped. 863 * 864 * For example, the tree of zio_t's for a 2-way mirror is: 865 * 866 * null 867 * / \ 868 * write(new vdev, child 0) write(new vdev, child 1) 869 * | | 870 * read(old vdev, child 0) read(old vdev, child 1) 871 * 872 * Child zio's complete before their parents complete. However, zio's 873 * created with zio_vdev_child_io() may be issued before their children 874 * complete. In this case we need to make sure that the children (reads) 875 * complete before the parents (writes) are *issued*. We do this by not 876 * calling zio_nowait() on each write until its corresponding read has 877 * completed. 878 * 879 * The spa_config_lock must be held while zio's created by 880 * zio_vdev_child_io() are in progress, to ensure that the vdev tree does 881 * not change (e.g. due to a concurrent "zpool attach/detach"). The "null" 882 * zio is needed to release the spa_config_lock after all the reads and 883 * writes complete. (Note that we can't grab the config lock for each read, 884 * because it is not reentrant - we could deadlock with a thread waiting 885 * for a write lock.) 886 */ 887 static void 888 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio, 889 vdev_t *source_vd, uint64_t source_offset, 890 vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size) 891 { 892 ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0); 893 894 /* 895 * If the destination child in unwritable then there is no point 896 * in issuing the source reads which cannot be written. 897 */ 898 if (!vdev_writeable(dest_child_vd)) 899 return; 900 901 mutex_enter(&vca->vca_lock); 902 vca->vca_outstanding_bytes += size; 903 mutex_exit(&vca->vca_lock); 904 905 abd_t *abd = abd_alloc_for_io(size, B_FALSE); 906 907 vdev_t *source_child_vd = NULL; 908 if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) { 909 /* 910 * Source and dest are both mirrors. Copy from the same 911 * child id as we are copying to (wrapping around if there 912 * are more dest children than source children). If the 913 * preferred source child is unreadable select another. 914 */ 915 for (int i = 0; i < source_vd->vdev_children; i++) { 916 source_child_vd = source_vd->vdev_child[ 917 (dest_id + i) % source_vd->vdev_children]; 918 if (vdev_readable(source_child_vd)) 919 break; 920 } 921 } else { 922 source_child_vd = source_vd; 923 } 924 925 /* 926 * There should always be at least one readable source child or 927 * the pool would be in a suspended state. Somehow selecting an 928 * unreadable child would result in IO errors, the removal process 929 * being cancelled, and the pool reverting to its pre-removal state. 930 */ 931 ASSERT3P(source_child_vd, !=, NULL); 932 933 zio_t *write_zio = zio_vdev_child_io(nzio, NULL, 934 dest_child_vd, dest_offset, abd, size, 935 ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL, 936 ZIO_FLAG_CANFAIL, 937 spa_vdev_copy_segment_write_done, vca); 938 939 zio_nowait(zio_vdev_child_io(write_zio, NULL, 940 source_child_vd, source_offset, abd, size, 941 ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL, 942 ZIO_FLAG_CANFAIL, 943 spa_vdev_copy_segment_read_done, vca)); 944 } 945 946 /* 947 * Allocate a new location for this segment, and create the zio_t's to 948 * read from the old location and write to the new location. 949 */ 950 static int 951 spa_vdev_copy_segment(vdev_t *vd, range_tree_t *segs, 952 uint64_t maxalloc, uint64_t txg, 953 vdev_copy_arg_t *vca, zio_alloc_list_t *zal) 954 { 955 metaslab_group_t *mg = vd->vdev_mg; 956 spa_t *spa = vd->vdev_spa; 957 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 958 vdev_indirect_mapping_entry_t *entry; 959 dva_t dst = {{ 0 }}; 960 uint64_t start = range_tree_min(segs); 961 ASSERT0(P2PHASE(start, 1 << spa->spa_min_ashift)); 962 963 ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE); 964 ASSERT0(P2PHASE(maxalloc, 1 << spa->spa_min_ashift)); 965 966 uint64_t size = range_tree_span(segs); 967 if (range_tree_span(segs) > maxalloc) { 968 /* 969 * We can't allocate all the segments. Prefer to end 970 * the allocation at the end of a segment, thus avoiding 971 * additional split blocks. 972 */ 973 range_seg_max_t search; 974 zfs_btree_index_t where; 975 rs_set_start(&search, segs, start + maxalloc); 976 rs_set_end(&search, segs, start + maxalloc); 977 (void) zfs_btree_find(&segs->rt_root, &search, &where); 978 range_seg_t *rs = zfs_btree_prev(&segs->rt_root, &where, 979 &where); 980 if (rs != NULL) { 981 size = rs_get_end(rs, segs) - start; 982 } else { 983 /* 984 * There are no segments that end before maxalloc. 985 * I.e. the first segment is larger than maxalloc, 986 * so we must split it. 987 */ 988 size = maxalloc; 989 } 990 } 991 ASSERT3U(size, <=, maxalloc); 992 ASSERT0(P2PHASE(size, 1 << spa->spa_min_ashift)); 993 994 /* 995 * An allocation class might not have any remaining vdevs or space 996 */ 997 metaslab_class_t *mc = mg->mg_class; 998 if (mc->mc_groups == 0) 999 mc = spa_normal_class(spa); 1000 int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg, 0, 1001 zal, 0); 1002 if (error == ENOSPC && mc != spa_normal_class(spa)) { 1003 error = metaslab_alloc_dva(spa, spa_normal_class(spa), size, 1004 &dst, 0, NULL, txg, 0, zal, 0); 1005 } 1006 if (error != 0) 1007 return (error); 1008 1009 /* 1010 * Determine the ranges that are not actually needed. Offsets are 1011 * relative to the start of the range to be copied (i.e. relative to the 1012 * local variable "start"). 1013 */ 1014 range_tree_t *obsolete_segs = range_tree_create(NULL, RANGE_SEG64, NULL, 1015 0, 0); 1016 1017 zfs_btree_index_t where; 1018 range_seg_t *rs = zfs_btree_first(&segs->rt_root, &where); 1019 ASSERT3U(rs_get_start(rs, segs), ==, start); 1020 uint64_t prev_seg_end = rs_get_end(rs, segs); 1021 while ((rs = zfs_btree_next(&segs->rt_root, &where, &where)) != NULL) { 1022 if (rs_get_start(rs, segs) >= start + size) { 1023 break; 1024 } else { 1025 range_tree_add(obsolete_segs, 1026 prev_seg_end - start, 1027 rs_get_start(rs, segs) - prev_seg_end); 1028 } 1029 prev_seg_end = rs_get_end(rs, segs); 1030 } 1031 /* We don't end in the middle of an obsolete range */ 1032 ASSERT3U(start + size, <=, prev_seg_end); 1033 1034 range_tree_clear(segs, start, size); 1035 1036 /* 1037 * We can't have any padding of the allocated size, otherwise we will 1038 * misunderstand what's allocated, and the size of the mapping. We 1039 * prevent padding by ensuring that all devices in the pool have the 1040 * same ashift, and the allocation size is a multiple of the ashift. 1041 */ 1042 VERIFY3U(DVA_GET_ASIZE(&dst), ==, size); 1043 1044 entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP); 1045 DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start); 1046 entry->vime_mapping.vimep_dst = dst; 1047 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) { 1048 entry->vime_obsolete_count = range_tree_space(obsolete_segs); 1049 } 1050 1051 vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP); 1052 vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst; 1053 vcsa->vcsa_obsolete_segs = obsolete_segs; 1054 vcsa->vcsa_spa = spa; 1055 vcsa->vcsa_txg = txg; 1056 1057 /* 1058 * See comment before spa_vdev_copy_one_child(). 1059 */ 1060 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 1061 zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL, 1062 spa_vdev_copy_segment_done, vcsa, 0); 1063 vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst)); 1064 if (dest_vd->vdev_ops == &vdev_mirror_ops) { 1065 for (int i = 0; i < dest_vd->vdev_children; i++) { 1066 vdev_t *child = dest_vd->vdev_child[i]; 1067 spa_vdev_copy_one_child(vca, nzio, vd, start, 1068 child, DVA_GET_OFFSET(&dst), i, size); 1069 } 1070 } else { 1071 spa_vdev_copy_one_child(vca, nzio, vd, start, 1072 dest_vd, DVA_GET_OFFSET(&dst), -1, size); 1073 } 1074 zio_nowait(nzio); 1075 1076 list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry); 1077 ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift); 1078 vdev_dirty(vd, 0, NULL, txg); 1079 1080 return (0); 1081 } 1082 1083 /* 1084 * Complete the removal of a toplevel vdev. This is called as a 1085 * synctask in the same txg that we will sync out the new config (to the 1086 * MOS object) which indicates that this vdev is indirect. 1087 */ 1088 static void 1089 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx) 1090 { 1091 spa_vdev_removal_t *svr = arg; 1092 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1093 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 1094 1095 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 1096 1097 for (int i = 0; i < TXG_SIZE; i++) { 1098 ASSERT0(svr->svr_bytes_done[i]); 1099 } 1100 1101 ASSERT3U(spa->spa_removing_phys.sr_copied, ==, 1102 spa->spa_removing_phys.sr_to_copy); 1103 1104 vdev_destroy_spacemaps(vd, tx); 1105 1106 /* destroy leaf zaps, if any */ 1107 ASSERT3P(svr->svr_zaplist, !=, NULL); 1108 for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL); 1109 pair != NULL; 1110 pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) { 1111 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx); 1112 } 1113 fnvlist_free(svr->svr_zaplist); 1114 1115 spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx); 1116 /* vd->vdev_path is not available here */ 1117 spa_history_log_internal(spa, "vdev remove completed", tx, 1118 "%s vdev %llu", spa_name(spa), (u_longlong_t)vd->vdev_id); 1119 } 1120 1121 static void 1122 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist) 1123 { 1124 ASSERT3P(zlist, !=, NULL); 1125 ASSERT0(vdev_get_nparity(vd)); 1126 1127 if (vd->vdev_leaf_zap != 0) { 1128 char zkey[32]; 1129 (void) snprintf(zkey, sizeof (zkey), "%s-%llu", 1130 VDEV_REMOVAL_ZAP_OBJS, (u_longlong_t)vd->vdev_leaf_zap); 1131 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap); 1132 } 1133 1134 for (uint64_t id = 0; id < vd->vdev_children; id++) { 1135 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist); 1136 } 1137 } 1138 1139 static void 1140 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg) 1141 { 1142 vdev_t *ivd; 1143 dmu_tx_t *tx; 1144 spa_t *spa = vd->vdev_spa; 1145 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1146 1147 /* 1148 * First, build a list of leaf zaps to be destroyed. 1149 * This is passed to the sync context thread, 1150 * which does the actual unlinking. 1151 */ 1152 svr->svr_zaplist = fnvlist_alloc(); 1153 vdev_remove_enlist_zaps(vd, svr->svr_zaplist); 1154 1155 ivd = vdev_add_parent(vd, &vdev_indirect_ops); 1156 ivd->vdev_removing = 0; 1157 1158 vd->vdev_leaf_zap = 0; 1159 1160 vdev_remove_child(ivd, vd); 1161 vdev_compact_children(ivd); 1162 1163 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 1164 1165 mutex_enter(&svr->svr_lock); 1166 svr->svr_thread = NULL; 1167 cv_broadcast(&svr->svr_cv); 1168 mutex_exit(&svr->svr_lock); 1169 1170 /* After this, we can not use svr. */ 1171 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1172 dsl_sync_task_nowait(spa->spa_dsl_pool, 1173 vdev_remove_complete_sync, svr, tx); 1174 dmu_tx_commit(tx); 1175 } 1176 1177 /* 1178 * Complete the removal of a toplevel vdev. This is called in open 1179 * context by the removal thread after we have copied all vdev's data. 1180 */ 1181 static void 1182 vdev_remove_complete(spa_t *spa) 1183 { 1184 uint64_t txg; 1185 1186 /* 1187 * Wait for any deferred frees to be synced before we call 1188 * vdev_metaslab_fini() 1189 */ 1190 txg_wait_synced(spa->spa_dsl_pool, 0); 1191 txg = spa_vdev_enter(spa); 1192 vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id); 1193 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 1194 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1195 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); 1196 1197 sysevent_t *ev = spa_event_create(spa, vd, NULL, 1198 ESC_ZFS_VDEV_REMOVE_DEV); 1199 1200 zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu", 1201 (u_longlong_t)vd->vdev_id, (u_longlong_t)txg); 1202 1203 /* 1204 * Discard allocation state. 1205 */ 1206 if (vd->vdev_mg != NULL) { 1207 vdev_metaslab_fini(vd); 1208 metaslab_group_destroy(vd->vdev_mg); 1209 vd->vdev_mg = NULL; 1210 spa_log_sm_set_blocklimit(spa); 1211 } 1212 if (vd->vdev_log_mg != NULL) { 1213 ASSERT0(vd->vdev_ms_count); 1214 metaslab_group_destroy(vd->vdev_log_mg); 1215 vd->vdev_log_mg = NULL; 1216 } 1217 ASSERT0(vd->vdev_stat.vs_space); 1218 ASSERT0(vd->vdev_stat.vs_dspace); 1219 1220 vdev_remove_replace_with_indirect(vd, txg); 1221 1222 /* 1223 * We now release the locks, allowing spa_sync to run and finish the 1224 * removal via vdev_remove_complete_sync in syncing context. 1225 * 1226 * Note that we hold on to the vdev_t that has been replaced. Since 1227 * it isn't part of the vdev tree any longer, it can't be concurrently 1228 * manipulated, even while we don't have the config lock. 1229 */ 1230 (void) spa_vdev_exit(spa, NULL, txg, 0); 1231 1232 /* 1233 * Top ZAP should have been transferred to the indirect vdev in 1234 * vdev_remove_replace_with_indirect. 1235 */ 1236 ASSERT0(vd->vdev_top_zap); 1237 1238 /* 1239 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect. 1240 */ 1241 ASSERT0(vd->vdev_leaf_zap); 1242 1243 txg = spa_vdev_enter(spa); 1244 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 1245 /* 1246 * Request to update the config and the config cachefile. 1247 */ 1248 vdev_config_dirty(spa->spa_root_vdev); 1249 (void) spa_vdev_exit(spa, vd, txg, 0); 1250 1251 if (ev != NULL) 1252 spa_event_post(ev); 1253 } 1254 1255 /* 1256 * Evacuates a segment of size at most max_alloc from the vdev 1257 * via repeated calls to spa_vdev_copy_segment. If an allocation 1258 * fails, the pool is probably too fragmented to handle such a 1259 * large size, so decrease max_alloc so that the caller will not try 1260 * this size again this txg. 1261 */ 1262 static void 1263 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca, 1264 uint64_t *max_alloc, dmu_tx_t *tx) 1265 { 1266 uint64_t txg = dmu_tx_get_txg(tx); 1267 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1268 1269 mutex_enter(&svr->svr_lock); 1270 1271 /* 1272 * Determine how big of a chunk to copy. We can allocate up 1273 * to max_alloc bytes, and we can span up to vdev_removal_max_span 1274 * bytes of unallocated space at a time. "segs" will track the 1275 * allocated segments that we are copying. We may also be copying 1276 * free segments (of up to vdev_removal_max_span bytes). 1277 */ 1278 range_tree_t *segs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 1279 for (;;) { 1280 range_tree_t *rt = svr->svr_allocd_segs; 1281 range_seg_t *rs = range_tree_first(rt); 1282 1283 if (rs == NULL) 1284 break; 1285 1286 uint64_t seg_length; 1287 1288 if (range_tree_is_empty(segs)) { 1289 /* need to truncate the first seg based on max_alloc */ 1290 seg_length = MIN(rs_get_end(rs, rt) - rs_get_start(rs, 1291 rt), *max_alloc); 1292 } else { 1293 if (rs_get_start(rs, rt) - range_tree_max(segs) > 1294 vdev_removal_max_span) { 1295 /* 1296 * Including this segment would cause us to 1297 * copy a larger unneeded chunk than is allowed. 1298 */ 1299 break; 1300 } else if (rs_get_end(rs, rt) - range_tree_min(segs) > 1301 *max_alloc) { 1302 /* 1303 * This additional segment would extend past 1304 * max_alloc. Rather than splitting this 1305 * segment, leave it for the next mapping. 1306 */ 1307 break; 1308 } else { 1309 seg_length = rs_get_end(rs, rt) - 1310 rs_get_start(rs, rt); 1311 } 1312 } 1313 1314 range_tree_add(segs, rs_get_start(rs, rt), seg_length); 1315 range_tree_remove(svr->svr_allocd_segs, 1316 rs_get_start(rs, rt), seg_length); 1317 } 1318 1319 if (range_tree_is_empty(segs)) { 1320 mutex_exit(&svr->svr_lock); 1321 range_tree_destroy(segs); 1322 return; 1323 } 1324 1325 if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) { 1326 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync, 1327 svr, tx); 1328 } 1329 1330 svr->svr_max_offset_to_sync[txg & TXG_MASK] = range_tree_max(segs); 1331 1332 /* 1333 * Note: this is the amount of *allocated* space 1334 * that we are taking care of each txg. 1335 */ 1336 svr->svr_bytes_done[txg & TXG_MASK] += range_tree_space(segs); 1337 1338 mutex_exit(&svr->svr_lock); 1339 1340 zio_alloc_list_t zal; 1341 metaslab_trace_init(&zal); 1342 uint64_t thismax = SPA_MAXBLOCKSIZE; 1343 while (!range_tree_is_empty(segs)) { 1344 int error = spa_vdev_copy_segment(vd, 1345 segs, thismax, txg, vca, &zal); 1346 1347 if (error == ENOSPC) { 1348 /* 1349 * Cut our segment in half, and don't try this 1350 * segment size again this txg. Note that the 1351 * allocation size must be aligned to the highest 1352 * ashift in the pool, so that the allocation will 1353 * not be padded out to a multiple of the ashift, 1354 * which could cause us to think that this mapping 1355 * is larger than we intended. 1356 */ 1357 ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT); 1358 ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift); 1359 uint64_t attempted = 1360 MIN(range_tree_span(segs), thismax); 1361 thismax = P2ROUNDUP(attempted / 2, 1362 1 << spa->spa_max_ashift); 1363 /* 1364 * The minimum-size allocation can not fail. 1365 */ 1366 ASSERT3U(attempted, >, 1 << spa->spa_max_ashift); 1367 *max_alloc = attempted - (1 << spa->spa_max_ashift); 1368 } else { 1369 ASSERT0(error); 1370 1371 /* 1372 * We've performed an allocation, so reset the 1373 * alloc trace list. 1374 */ 1375 metaslab_trace_fini(&zal); 1376 metaslab_trace_init(&zal); 1377 } 1378 } 1379 metaslab_trace_fini(&zal); 1380 range_tree_destroy(segs); 1381 } 1382 1383 /* 1384 * The size of each removal mapping is limited by the tunable 1385 * zfs_remove_max_segment, but we must adjust this to be a multiple of the 1386 * pool's ashift, so that we don't try to split individual sectors regardless 1387 * of the tunable value. (Note that device removal requires that all devices 1388 * have the same ashift, so there's no difference between spa_min_ashift and 1389 * spa_max_ashift.) The raw tunable should not be used elsewhere. 1390 */ 1391 uint64_t 1392 spa_remove_max_segment(spa_t *spa) 1393 { 1394 return (P2ROUNDUP(zfs_remove_max_segment, 1 << spa->spa_max_ashift)); 1395 } 1396 1397 /* 1398 * The removal thread operates in open context. It iterates over all 1399 * allocated space in the vdev, by loading each metaslab's spacemap. 1400 * For each contiguous segment of allocated space (capping the segment 1401 * size at SPA_MAXBLOCKSIZE), we: 1402 * - Allocate space for it on another vdev. 1403 * - Create a new mapping from the old location to the new location 1404 * (as a record in svr_new_segments). 1405 * - Initiate a physical read zio to get the data off the removing disk. 1406 * - In the read zio's done callback, initiate a physical write zio to 1407 * write it to the new vdev. 1408 * Note that all of this will take effect when a particular TXG syncs. 1409 * The sync thread ensures that all the phys reads and writes for the syncing 1410 * TXG have completed (see spa_txg_zio) and writes the new mappings to disk 1411 * (see vdev_mapping_sync()). 1412 */ 1413 static void 1414 spa_vdev_remove_thread(void *arg) 1415 { 1416 spa_t *spa = arg; 1417 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1418 vdev_copy_arg_t vca; 1419 uint64_t max_alloc = spa_remove_max_segment(spa); 1420 uint64_t last_txg = 0; 1421 1422 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1423 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 1424 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1425 uint64_t start_offset = vdev_indirect_mapping_max_offset(vim); 1426 1427 ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops); 1428 ASSERT(vdev_is_concrete(vd)); 1429 ASSERT(vd->vdev_removing); 1430 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 1431 ASSERT(vim != NULL); 1432 1433 mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL); 1434 cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL); 1435 vca.vca_outstanding_bytes = 0; 1436 vca.vca_read_error_bytes = 0; 1437 vca.vca_write_error_bytes = 0; 1438 1439 mutex_enter(&svr->svr_lock); 1440 1441 /* 1442 * Start from vim_max_offset so we pick up where we left off 1443 * if we are restarting the removal after opening the pool. 1444 */ 1445 uint64_t msi; 1446 for (msi = start_offset >> vd->vdev_ms_shift; 1447 msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) { 1448 metaslab_t *msp = vd->vdev_ms[msi]; 1449 ASSERT3U(msi, <=, vd->vdev_ms_count); 1450 1451 ASSERT0(range_tree_space(svr->svr_allocd_segs)); 1452 1453 mutex_enter(&msp->ms_sync_lock); 1454 mutex_enter(&msp->ms_lock); 1455 1456 /* 1457 * Assert nothing in flight -- ms_*tree is empty. 1458 */ 1459 for (int i = 0; i < TXG_SIZE; i++) { 1460 ASSERT0(range_tree_space(msp->ms_allocating[i])); 1461 } 1462 1463 /* 1464 * If the metaslab has ever been allocated from (ms_sm!=NULL), 1465 * read the allocated segments from the space map object 1466 * into svr_allocd_segs. Since we do this while holding 1467 * svr_lock and ms_sync_lock, concurrent frees (which 1468 * would have modified the space map) will wait for us 1469 * to finish loading the spacemap, and then take the 1470 * appropriate action (see free_from_removing_vdev()). 1471 */ 1472 if (msp->ms_sm != NULL) { 1473 VERIFY0(space_map_load(msp->ms_sm, 1474 svr->svr_allocd_segs, SM_ALLOC)); 1475 1476 range_tree_walk(msp->ms_unflushed_allocs, 1477 range_tree_add, svr->svr_allocd_segs); 1478 range_tree_walk(msp->ms_unflushed_frees, 1479 range_tree_remove, svr->svr_allocd_segs); 1480 range_tree_walk(msp->ms_freeing, 1481 range_tree_remove, svr->svr_allocd_segs); 1482 1483 /* 1484 * When we are resuming from a paused removal (i.e. 1485 * when importing a pool with a removal in progress), 1486 * discard any state that we have already processed. 1487 */ 1488 range_tree_clear(svr->svr_allocd_segs, 0, start_offset); 1489 } 1490 mutex_exit(&msp->ms_lock); 1491 mutex_exit(&msp->ms_sync_lock); 1492 1493 vca.vca_msp = msp; 1494 zfs_dbgmsg("copying %llu segments for metaslab %llu", 1495 (u_longlong_t)zfs_btree_numnodes( 1496 &svr->svr_allocd_segs->rt_root), 1497 (u_longlong_t)msp->ms_id); 1498 1499 while (!svr->svr_thread_exit && 1500 !range_tree_is_empty(svr->svr_allocd_segs)) { 1501 1502 mutex_exit(&svr->svr_lock); 1503 1504 /* 1505 * We need to periodically drop the config lock so that 1506 * writers can get in. Additionally, we can't wait 1507 * for a txg to sync while holding a config lock 1508 * (since a waiting writer could cause a 3-way deadlock 1509 * with the sync thread, which also gets a config 1510 * lock for reader). So we can't hold the config lock 1511 * while calling dmu_tx_assign(). 1512 */ 1513 spa_config_exit(spa, SCL_CONFIG, FTAG); 1514 1515 /* 1516 * This delay will pause the removal around the point 1517 * specified by zfs_removal_suspend_progress. We do this 1518 * solely from the test suite or during debugging. 1519 */ 1520 while (zfs_removal_suspend_progress && 1521 !svr->svr_thread_exit) 1522 delay(hz); 1523 1524 mutex_enter(&vca.vca_lock); 1525 while (vca.vca_outstanding_bytes > 1526 zfs_remove_max_copy_bytes) { 1527 cv_wait(&vca.vca_cv, &vca.vca_lock); 1528 } 1529 mutex_exit(&vca.vca_lock); 1530 1531 dmu_tx_t *tx = 1532 dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 1533 1534 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 1535 uint64_t txg = dmu_tx_get_txg(tx); 1536 1537 /* 1538 * Reacquire the vdev_config lock. The vdev_t 1539 * that we're removing may have changed, e.g. due 1540 * to a vdev_attach or vdev_detach. 1541 */ 1542 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1543 vd = vdev_lookup_top(spa, svr->svr_vdev_id); 1544 1545 if (txg != last_txg) 1546 max_alloc = spa_remove_max_segment(spa); 1547 last_txg = txg; 1548 1549 spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx); 1550 1551 dmu_tx_commit(tx); 1552 mutex_enter(&svr->svr_lock); 1553 } 1554 1555 mutex_enter(&vca.vca_lock); 1556 if (zfs_removal_ignore_errors == 0 && 1557 (vca.vca_read_error_bytes > 0 || 1558 vca.vca_write_error_bytes > 0)) { 1559 svr->svr_thread_exit = B_TRUE; 1560 } 1561 mutex_exit(&vca.vca_lock); 1562 } 1563 1564 mutex_exit(&svr->svr_lock); 1565 1566 spa_config_exit(spa, SCL_CONFIG, FTAG); 1567 1568 /* 1569 * Wait for all copies to finish before cleaning up the vca. 1570 */ 1571 txg_wait_synced(spa->spa_dsl_pool, 0); 1572 ASSERT0(vca.vca_outstanding_bytes); 1573 1574 mutex_destroy(&vca.vca_lock); 1575 cv_destroy(&vca.vca_cv); 1576 1577 if (svr->svr_thread_exit) { 1578 mutex_enter(&svr->svr_lock); 1579 range_tree_vacate(svr->svr_allocd_segs, NULL, NULL); 1580 svr->svr_thread = NULL; 1581 cv_broadcast(&svr->svr_cv); 1582 mutex_exit(&svr->svr_lock); 1583 1584 /* 1585 * During the removal process an unrecoverable read or write 1586 * error was encountered. The removal process must be 1587 * cancelled or this damage may become permanent. 1588 */ 1589 if (zfs_removal_ignore_errors == 0 && 1590 (vca.vca_read_error_bytes > 0 || 1591 vca.vca_write_error_bytes > 0)) { 1592 zfs_dbgmsg("canceling removal due to IO errors: " 1593 "[read_error_bytes=%llu] [write_error_bytes=%llu]", 1594 (u_longlong_t)vca.vca_read_error_bytes, 1595 (u_longlong_t)vca.vca_write_error_bytes); 1596 spa_vdev_remove_cancel_impl(spa); 1597 } 1598 } else { 1599 ASSERT0(range_tree_space(svr->svr_allocd_segs)); 1600 vdev_remove_complete(spa); 1601 } 1602 1603 thread_exit(); 1604 } 1605 1606 void 1607 spa_vdev_remove_suspend(spa_t *spa) 1608 { 1609 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1610 1611 if (svr == NULL) 1612 return; 1613 1614 mutex_enter(&svr->svr_lock); 1615 svr->svr_thread_exit = B_TRUE; 1616 while (svr->svr_thread != NULL) 1617 cv_wait(&svr->svr_cv, &svr->svr_lock); 1618 svr->svr_thread_exit = B_FALSE; 1619 mutex_exit(&svr->svr_lock); 1620 } 1621 1622 /* ARGSUSED */ 1623 static int 1624 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx) 1625 { 1626 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1627 1628 if (spa->spa_vdev_removal == NULL) 1629 return (ENOTACTIVE); 1630 return (0); 1631 } 1632 1633 /* 1634 * Cancel a removal by freeing all entries from the partial mapping 1635 * and marking the vdev as no longer being removing. 1636 */ 1637 /* ARGSUSED */ 1638 static void 1639 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx) 1640 { 1641 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1642 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1643 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 1644 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 1645 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1646 objset_t *mos = spa->spa_meta_objset; 1647 1648 ASSERT3P(svr->svr_thread, ==, NULL); 1649 1650 spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx); 1651 1652 boolean_t are_precise; 1653 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 1654 if (are_precise) { 1655 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 1656 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap, 1657 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx)); 1658 } 1659 1660 uint64_t obsolete_sm_object; 1661 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1662 if (obsolete_sm_object != 0) { 1663 ASSERT(vd->vdev_obsolete_sm != NULL); 1664 ASSERT3U(obsolete_sm_object, ==, 1665 space_map_object(vd->vdev_obsolete_sm)); 1666 1667 space_map_free(vd->vdev_obsolete_sm, tx); 1668 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap, 1669 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx)); 1670 space_map_close(vd->vdev_obsolete_sm); 1671 vd->vdev_obsolete_sm = NULL; 1672 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 1673 } 1674 for (int i = 0; i < TXG_SIZE; i++) { 1675 ASSERT(list_is_empty(&svr->svr_new_segments[i])); 1676 ASSERT3U(svr->svr_max_offset_to_sync[i], <=, 1677 vdev_indirect_mapping_max_offset(vim)); 1678 } 1679 1680 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) { 1681 metaslab_t *msp = vd->vdev_ms[msi]; 1682 1683 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim)) 1684 break; 1685 1686 ASSERT0(range_tree_space(svr->svr_allocd_segs)); 1687 1688 mutex_enter(&msp->ms_lock); 1689 1690 /* 1691 * Assert nothing in flight -- ms_*tree is empty. 1692 */ 1693 for (int i = 0; i < TXG_SIZE; i++) 1694 ASSERT0(range_tree_space(msp->ms_allocating[i])); 1695 for (int i = 0; i < TXG_DEFER_SIZE; i++) 1696 ASSERT0(range_tree_space(msp->ms_defer[i])); 1697 ASSERT0(range_tree_space(msp->ms_freed)); 1698 1699 if (msp->ms_sm != NULL) { 1700 mutex_enter(&svr->svr_lock); 1701 VERIFY0(space_map_load(msp->ms_sm, 1702 svr->svr_allocd_segs, SM_ALLOC)); 1703 1704 range_tree_walk(msp->ms_unflushed_allocs, 1705 range_tree_add, svr->svr_allocd_segs); 1706 range_tree_walk(msp->ms_unflushed_frees, 1707 range_tree_remove, svr->svr_allocd_segs); 1708 range_tree_walk(msp->ms_freeing, 1709 range_tree_remove, svr->svr_allocd_segs); 1710 1711 /* 1712 * Clear everything past what has been synced, 1713 * because we have not allocated mappings for it yet. 1714 */ 1715 uint64_t syncd = vdev_indirect_mapping_max_offset(vim); 1716 uint64_t sm_end = msp->ms_sm->sm_start + 1717 msp->ms_sm->sm_size; 1718 if (sm_end > syncd) 1719 range_tree_clear(svr->svr_allocd_segs, 1720 syncd, sm_end - syncd); 1721 1722 mutex_exit(&svr->svr_lock); 1723 } 1724 mutex_exit(&msp->ms_lock); 1725 1726 mutex_enter(&svr->svr_lock); 1727 range_tree_vacate(svr->svr_allocd_segs, 1728 free_mapped_segment_cb, vd); 1729 mutex_exit(&svr->svr_lock); 1730 } 1731 1732 /* 1733 * Note: this must happen after we invoke free_mapped_segment_cb, 1734 * because it adds to the obsolete_segments. 1735 */ 1736 range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL); 1737 1738 ASSERT3U(vic->vic_mapping_object, ==, 1739 vdev_indirect_mapping_object(vd->vdev_indirect_mapping)); 1740 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 1741 vd->vdev_indirect_mapping = NULL; 1742 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx); 1743 vic->vic_mapping_object = 0; 1744 1745 ASSERT3U(vic->vic_births_object, ==, 1746 vdev_indirect_births_object(vd->vdev_indirect_births)); 1747 vdev_indirect_births_close(vd->vdev_indirect_births); 1748 vd->vdev_indirect_births = NULL; 1749 vdev_indirect_births_free(mos, vic->vic_births_object, tx); 1750 vic->vic_births_object = 0; 1751 1752 /* 1753 * We may have processed some frees from the removing vdev in this 1754 * txg, thus increasing svr_bytes_done; discard that here to 1755 * satisfy the assertions in spa_vdev_removal_destroy(). 1756 * Note that future txg's can not have any bytes_done, because 1757 * future TXG's are only modified from open context, and we have 1758 * already shut down the copying thread. 1759 */ 1760 svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0; 1761 spa_finish_removal(spa, DSS_CANCELED, tx); 1762 1763 vd->vdev_removing = B_FALSE; 1764 vdev_config_dirty(vd); 1765 1766 zfs_dbgmsg("canceled device removal for vdev %llu in %llu", 1767 (u_longlong_t)vd->vdev_id, (u_longlong_t)dmu_tx_get_txg(tx)); 1768 spa_history_log_internal(spa, "vdev remove canceled", tx, 1769 "%s vdev %llu %s", spa_name(spa), 1770 (u_longlong_t)vd->vdev_id, 1771 (vd->vdev_path != NULL) ? vd->vdev_path : "-"); 1772 } 1773 1774 static int 1775 spa_vdev_remove_cancel_impl(spa_t *spa) 1776 { 1777 uint64_t vdid = spa->spa_vdev_removal->svr_vdev_id; 1778 1779 int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check, 1780 spa_vdev_remove_cancel_sync, NULL, 0, 1781 ZFS_SPACE_CHECK_EXTRA_RESERVED); 1782 1783 if (error == 0) { 1784 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER); 1785 vdev_t *vd = vdev_lookup_top(spa, vdid); 1786 metaslab_group_activate(vd->vdev_mg); 1787 ASSERT(!vd->vdev_islog); 1788 metaslab_group_activate(vd->vdev_log_mg); 1789 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG); 1790 } 1791 1792 return (error); 1793 } 1794 1795 int 1796 spa_vdev_remove_cancel(spa_t *spa) 1797 { 1798 spa_vdev_remove_suspend(spa); 1799 1800 if (spa->spa_vdev_removal == NULL) 1801 return (ENOTACTIVE); 1802 1803 return (spa_vdev_remove_cancel_impl(spa)); 1804 } 1805 1806 void 1807 svr_sync(spa_t *spa, dmu_tx_t *tx) 1808 { 1809 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1810 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 1811 1812 if (svr == NULL) 1813 return; 1814 1815 /* 1816 * This check is necessary so that we do not dirty the 1817 * DIRECTORY_OBJECT via spa_sync_removing_state() when there 1818 * is nothing to do. Dirtying it every time would prevent us 1819 * from syncing-to-convergence. 1820 */ 1821 if (svr->svr_bytes_done[txgoff] == 0) 1822 return; 1823 1824 /* 1825 * Update progress accounting. 1826 */ 1827 spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff]; 1828 svr->svr_bytes_done[txgoff] = 0; 1829 1830 spa_sync_removing_state(spa, tx); 1831 } 1832 1833 static void 1834 vdev_remove_make_hole_and_free(vdev_t *vd) 1835 { 1836 uint64_t id = vd->vdev_id; 1837 spa_t *spa = vd->vdev_spa; 1838 vdev_t *rvd = spa->spa_root_vdev; 1839 1840 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1841 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1842 1843 vdev_free(vd); 1844 1845 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 1846 vdev_add_child(rvd, vd); 1847 vdev_config_dirty(rvd); 1848 1849 /* 1850 * Reassess the health of our root vdev. 1851 */ 1852 vdev_reopen(rvd); 1853 } 1854 1855 /* 1856 * Remove a log device. The config lock is held for the specified TXG. 1857 */ 1858 static int 1859 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg) 1860 { 1861 metaslab_group_t *mg = vd->vdev_mg; 1862 spa_t *spa = vd->vdev_spa; 1863 int error = 0; 1864 1865 ASSERT(vd->vdev_islog); 1866 ASSERT(vd == vd->vdev_top); 1867 ASSERT3P(vd->vdev_log_mg, ==, NULL); 1868 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1869 1870 /* 1871 * Stop allocating from this vdev. 1872 */ 1873 metaslab_group_passivate(mg); 1874 1875 /* 1876 * Wait for the youngest allocations and frees to sync, 1877 * and then wait for the deferral of those frees to finish. 1878 */ 1879 spa_vdev_config_exit(spa, NULL, 1880 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 1881 1882 /* 1883 * Cancel any initialize or TRIM which was in progress. 1884 */ 1885 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED); 1886 vdev_trim_stop_all(vd, VDEV_TRIM_CANCELED); 1887 vdev_autotrim_stop_wait(vd); 1888 1889 /* 1890 * Evacuate the device. We don't hold the config lock as 1891 * writer since we need to do I/O but we do keep the 1892 * spa_namespace_lock held. Once this completes the device 1893 * should no longer have any blocks allocated on it. 1894 */ 1895 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1896 if (vd->vdev_stat.vs_alloc != 0) 1897 error = spa_reset_logs(spa); 1898 1899 *txg = spa_vdev_config_enter(spa); 1900 1901 if (error != 0) { 1902 metaslab_group_activate(mg); 1903 ASSERT3P(vd->vdev_log_mg, ==, NULL); 1904 return (error); 1905 } 1906 ASSERT0(vd->vdev_stat.vs_alloc); 1907 1908 /* 1909 * The evacuation succeeded. Remove any remaining MOS metadata 1910 * associated with this vdev, and wait for these changes to sync. 1911 */ 1912 vd->vdev_removing = B_TRUE; 1913 1914 vdev_dirty_leaves(vd, VDD_DTL, *txg); 1915 vdev_config_dirty(vd); 1916 1917 /* 1918 * When the log space map feature is enabled we look at 1919 * the vdev's top_zap to find the on-disk flush data of 1920 * the metaslab we just flushed. Thus, while removing a 1921 * log vdev we make sure to call vdev_metaslab_fini() 1922 * first, which removes all metaslabs of this vdev from 1923 * spa_metaslabs_by_flushed before vdev_remove_empty() 1924 * destroys the top_zap of this log vdev. 1925 * 1926 * This avoids the scenario where we flush a metaslab 1927 * from the log vdev being removed that doesn't have a 1928 * top_zap and end up failing to lookup its on-disk flush 1929 * data. 1930 * 1931 * We don't call metaslab_group_destroy() right away 1932 * though (it will be called in vdev_free() later) as 1933 * during metaslab_sync() of metaslabs from other vdevs 1934 * we may touch the metaslab group of this vdev through 1935 * metaslab_class_histogram_verify() 1936 */ 1937 vdev_metaslab_fini(vd); 1938 spa_log_sm_set_blocklimit(spa); 1939 1940 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG); 1941 *txg = spa_vdev_config_enter(spa); 1942 1943 sysevent_t *ev = spa_event_create(spa, vd, NULL, 1944 ESC_ZFS_VDEV_REMOVE_DEV); 1945 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1946 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1947 1948 /* The top ZAP should have been destroyed by vdev_remove_empty. */ 1949 ASSERT0(vd->vdev_top_zap); 1950 /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */ 1951 ASSERT0(vd->vdev_leaf_zap); 1952 1953 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 1954 1955 if (list_link_active(&vd->vdev_state_dirty_node)) 1956 vdev_state_clean(vd); 1957 if (list_link_active(&vd->vdev_config_dirty_node)) 1958 vdev_config_clean(vd); 1959 1960 ASSERT0(vd->vdev_stat.vs_alloc); 1961 1962 /* 1963 * Clean up the vdev namespace. 1964 */ 1965 vdev_remove_make_hole_and_free(vd); 1966 1967 if (ev != NULL) 1968 spa_event_post(ev); 1969 1970 return (0); 1971 } 1972 1973 static int 1974 spa_vdev_remove_top_check(vdev_t *vd) 1975 { 1976 spa_t *spa = vd->vdev_spa; 1977 1978 if (vd != vd->vdev_top) 1979 return (SET_ERROR(ENOTSUP)); 1980 1981 if (!vdev_is_concrete(vd)) 1982 return (SET_ERROR(ENOTSUP)); 1983 1984 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL)) 1985 return (SET_ERROR(ENOTSUP)); 1986 1987 1988 metaslab_class_t *mc = vd->vdev_mg->mg_class; 1989 metaslab_class_t *normal = spa_normal_class(spa); 1990 if (mc != normal) { 1991 /* 1992 * Space allocated from the special (or dedup) class is 1993 * included in the DMU's space usage, but it's not included 1994 * in spa_dspace (or dsl_pool_adjustedsize()). Therefore 1995 * there is always at least as much free space in the normal 1996 * class, as is allocated from the special (and dedup) class. 1997 * As a backup check, we will return ENOSPC if this is 1998 * violated. See also spa_update_dspace(). 1999 */ 2000 uint64_t available = metaslab_class_get_space(normal) - 2001 metaslab_class_get_alloc(normal); 2002 ASSERT3U(available, >=, vd->vdev_stat.vs_alloc); 2003 if (available < vd->vdev_stat.vs_alloc) 2004 return (SET_ERROR(ENOSPC)); 2005 } else { 2006 /* available space in the pool's normal class */ 2007 uint64_t available = dsl_dir_space_available( 2008 spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE); 2009 if (available < 2010 vd->vdev_stat.vs_dspace + spa_get_slop_space(spa)) { 2011 /* 2012 * This is a normal device. There has to be enough free 2013 * space to remove the device and leave double the 2014 * "slop" space (i.e. we must leave at least 3% of the 2015 * pool free, in addition to the normal slop space). 2016 */ 2017 return (SET_ERROR(ENOSPC)); 2018 } 2019 } 2020 2021 /* 2022 * There can not be a removal in progress. 2023 */ 2024 if (spa->spa_removing_phys.sr_state == DSS_SCANNING) 2025 return (SET_ERROR(EBUSY)); 2026 2027 /* 2028 * The device must have all its data. 2029 */ 2030 if (!vdev_dtl_empty(vd, DTL_MISSING) || 2031 !vdev_dtl_empty(vd, DTL_OUTAGE)) 2032 return (SET_ERROR(EBUSY)); 2033 2034 /* 2035 * The device must be healthy. 2036 */ 2037 if (!vdev_readable(vd)) 2038 return (SET_ERROR(EIO)); 2039 2040 /* 2041 * All vdevs in normal class must have the same ashift. 2042 */ 2043 if (spa->spa_max_ashift != spa->spa_min_ashift) { 2044 return (SET_ERROR(EINVAL)); 2045 } 2046 2047 /* 2048 * A removed special/dedup vdev must have same ashift as normal class. 2049 */ 2050 ASSERT(!vd->vdev_islog); 2051 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE && 2052 vd->vdev_ashift != spa->spa_max_ashift) { 2053 return (SET_ERROR(EINVAL)); 2054 } 2055 2056 /* 2057 * All vdevs in normal class must have the same ashift 2058 * and not be raidz or draid. 2059 */ 2060 vdev_t *rvd = spa->spa_root_vdev; 2061 int num_indirect = 0; 2062 for (uint64_t id = 0; id < rvd->vdev_children; id++) { 2063 vdev_t *cvd = rvd->vdev_child[id]; 2064 2065 /* 2066 * A removed special/dedup vdev must have the same ashift 2067 * across all vdevs in its class. 2068 */ 2069 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE && 2070 cvd->vdev_alloc_bias == vd->vdev_alloc_bias && 2071 cvd->vdev_ashift != vd->vdev_ashift) { 2072 return (SET_ERROR(EINVAL)); 2073 } 2074 if (cvd->vdev_ashift != 0 && 2075 cvd->vdev_alloc_bias == VDEV_BIAS_NONE) 2076 ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift); 2077 if (cvd->vdev_ops == &vdev_indirect_ops) 2078 num_indirect++; 2079 if (!vdev_is_concrete(cvd)) 2080 continue; 2081 if (vdev_get_nparity(cvd) != 0) 2082 return (SET_ERROR(EINVAL)); 2083 /* 2084 * Need the mirror to be mirror of leaf vdevs only 2085 */ 2086 if (cvd->vdev_ops == &vdev_mirror_ops) { 2087 for (uint64_t cid = 0; 2088 cid < cvd->vdev_children; cid++) { 2089 if (!cvd->vdev_child[cid]->vdev_ops-> 2090 vdev_op_leaf) 2091 return (SET_ERROR(EINVAL)); 2092 } 2093 } 2094 } 2095 2096 return (0); 2097 } 2098 2099 /* 2100 * Initiate removal of a top-level vdev, reducing the total space in the pool. 2101 * The config lock is held for the specified TXG. Once initiated, 2102 * evacuation of all allocated space (copying it to other vdevs) happens 2103 * in the background (see spa_vdev_remove_thread()), and can be canceled 2104 * (see spa_vdev_remove_cancel()). If successful, the vdev will 2105 * be transformed to an indirect vdev (see spa_vdev_remove_complete()). 2106 */ 2107 static int 2108 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg) 2109 { 2110 spa_t *spa = vd->vdev_spa; 2111 int error; 2112 2113 /* 2114 * Check for errors up-front, so that we don't waste time 2115 * passivating the metaslab group and clearing the ZIL if there 2116 * are errors. 2117 */ 2118 error = spa_vdev_remove_top_check(vd); 2119 if (error != 0) 2120 return (error); 2121 2122 /* 2123 * Stop allocating from this vdev. Note that we must check 2124 * that this is not the only device in the pool before 2125 * passivating, otherwise we will not be able to make 2126 * progress because we can't allocate from any vdevs. 2127 * The above check for sufficient free space serves this 2128 * purpose. 2129 */ 2130 metaslab_group_t *mg = vd->vdev_mg; 2131 metaslab_group_passivate(mg); 2132 ASSERT(!vd->vdev_islog); 2133 metaslab_group_passivate(vd->vdev_log_mg); 2134 2135 /* 2136 * Wait for the youngest allocations and frees to sync, 2137 * and then wait for the deferral of those frees to finish. 2138 */ 2139 spa_vdev_config_exit(spa, NULL, 2140 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 2141 2142 /* 2143 * We must ensure that no "stubby" log blocks are allocated 2144 * on the device to be removed. These blocks could be 2145 * written at any time, including while we are in the middle 2146 * of copying them. 2147 */ 2148 error = spa_reset_logs(spa); 2149 2150 /* 2151 * We stop any initializing and TRIM that is currently in progress 2152 * but leave the state as "active". This will allow the process to 2153 * resume if the removal is canceled sometime later. 2154 */ 2155 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE); 2156 vdev_trim_stop_all(vd, VDEV_TRIM_ACTIVE); 2157 vdev_autotrim_stop_wait(vd); 2158 2159 *txg = spa_vdev_config_enter(spa); 2160 2161 /* 2162 * Things might have changed while the config lock was dropped 2163 * (e.g. space usage). Check for errors again. 2164 */ 2165 if (error == 0) 2166 error = spa_vdev_remove_top_check(vd); 2167 2168 if (error != 0) { 2169 metaslab_group_activate(mg); 2170 ASSERT(!vd->vdev_islog); 2171 metaslab_group_activate(vd->vdev_log_mg); 2172 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART); 2173 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART); 2174 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART); 2175 return (error); 2176 } 2177 2178 vd->vdev_removing = B_TRUE; 2179 2180 vdev_dirty_leaves(vd, VDD_DTL, *txg); 2181 vdev_config_dirty(vd); 2182 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg); 2183 dsl_sync_task_nowait(spa->spa_dsl_pool, 2184 vdev_remove_initiate_sync, (void *)(uintptr_t)vd->vdev_id, tx); 2185 dmu_tx_commit(tx); 2186 2187 return (0); 2188 } 2189 2190 /* 2191 * Remove a device from the pool. 2192 * 2193 * Removing a device from the vdev namespace requires several steps 2194 * and can take a significant amount of time. As a result we use 2195 * the spa_vdev_config_[enter/exit] functions which allow us to 2196 * grab and release the spa_config_lock while still holding the namespace 2197 * lock. During each step the configuration is synced out. 2198 */ 2199 int 2200 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 2201 { 2202 vdev_t *vd; 2203 nvlist_t **spares, **l2cache, *nv; 2204 uint64_t txg = 0; 2205 uint_t nspares, nl2cache; 2206 int error = 0, error_log; 2207 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 2208 sysevent_t *ev = NULL; 2209 char *vd_type = NULL, *vd_path = NULL; 2210 2211 ASSERT(spa_writeable(spa)); 2212 2213 if (!locked) 2214 txg = spa_vdev_enter(spa); 2215 2216 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2217 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 2218 error = (spa_has_checkpoint(spa)) ? 2219 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 2220 2221 if (!locked) 2222 return (spa_vdev_exit(spa, NULL, txg, error)); 2223 2224 return (error); 2225 } 2226 2227 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 2228 2229 if (spa->spa_spares.sav_vdevs != NULL && 2230 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2231 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 2232 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 2233 /* 2234 * Only remove the hot spare if it's not currently in use 2235 * in this pool. 2236 */ 2237 if (vd == NULL || unspare) { 2238 char *type; 2239 boolean_t draid_spare = B_FALSE; 2240 2241 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) 2242 == 0 && strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0) 2243 draid_spare = B_TRUE; 2244 2245 if (vd == NULL && draid_spare) { 2246 error = SET_ERROR(ENOTSUP); 2247 } else { 2248 if (vd == NULL) 2249 vd = spa_lookup_by_guid(spa, 2250 guid, B_TRUE); 2251 ev = spa_event_create(spa, vd, NULL, 2252 ESC_ZFS_VDEV_REMOVE_AUX); 2253 2254 vd_type = VDEV_TYPE_SPARE; 2255 vd_path = spa_strdup(fnvlist_lookup_string( 2256 nv, ZPOOL_CONFIG_PATH)); 2257 spa_vdev_remove_aux(spa->spa_spares.sav_config, 2258 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 2259 spa_load_spares(spa); 2260 spa->spa_spares.sav_sync = B_TRUE; 2261 } 2262 } else { 2263 error = SET_ERROR(EBUSY); 2264 } 2265 } else if (spa->spa_l2cache.sav_vdevs != NULL && 2266 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 2267 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 2268 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 2269 vd_type = VDEV_TYPE_L2CACHE; 2270 vd_path = spa_strdup(fnvlist_lookup_string( 2271 nv, ZPOOL_CONFIG_PATH)); 2272 /* 2273 * Cache devices can always be removed. 2274 */ 2275 vd = spa_lookup_by_guid(spa, guid, B_TRUE); 2276 2277 /* 2278 * Stop trimming the cache device. We need to release the 2279 * config lock to allow the syncing of TRIM transactions 2280 * without releasing the spa_namespace_lock. The same 2281 * strategy is employed in spa_vdev_remove_top(). 2282 */ 2283 spa_vdev_config_exit(spa, NULL, 2284 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 2285 mutex_enter(&vd->vdev_trim_lock); 2286 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL); 2287 mutex_exit(&vd->vdev_trim_lock); 2288 txg = spa_vdev_config_enter(spa); 2289 2290 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX); 2291 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 2292 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 2293 spa_load_l2cache(spa); 2294 spa->spa_l2cache.sav_sync = B_TRUE; 2295 } else if (vd != NULL && vd->vdev_islog) { 2296 ASSERT(!locked); 2297 vd_type = VDEV_TYPE_LOG; 2298 vd_path = spa_strdup((vd->vdev_path != NULL) ? 2299 vd->vdev_path : "-"); 2300 error = spa_vdev_remove_log(vd, &txg); 2301 } else if (vd != NULL) { 2302 ASSERT(!locked); 2303 error = spa_vdev_remove_top(vd, &txg); 2304 } else { 2305 /* 2306 * There is no vdev of any kind with the specified guid. 2307 */ 2308 error = SET_ERROR(ENOENT); 2309 } 2310 2311 error_log = error; 2312 2313 if (!locked) 2314 error = spa_vdev_exit(spa, NULL, txg, error); 2315 2316 /* 2317 * Logging must be done outside the spa config lock. Otherwise, 2318 * this code path could end up holding the spa config lock while 2319 * waiting for a txg_sync so it can write to the internal log. 2320 * Doing that would prevent the txg sync from actually happening, 2321 * causing a deadlock. 2322 */ 2323 if (error_log == 0 && vd_type != NULL && vd_path != NULL) { 2324 spa_history_log_internal(spa, "vdev remove", NULL, 2325 "%s vdev (%s) %s", spa_name(spa), vd_type, vd_path); 2326 } 2327 if (vd_path != NULL) 2328 spa_strfree(vd_path); 2329 2330 if (ev != NULL) 2331 spa_event_post(ev); 2332 2333 return (error); 2334 } 2335 2336 int 2337 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs) 2338 { 2339 prs->prs_state = spa->spa_removing_phys.sr_state; 2340 2341 if (prs->prs_state == DSS_NONE) 2342 return (SET_ERROR(ENOENT)); 2343 2344 prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev; 2345 prs->prs_start_time = spa->spa_removing_phys.sr_start_time; 2346 prs->prs_end_time = spa->spa_removing_phys.sr_end_time; 2347 prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy; 2348 prs->prs_copied = spa->spa_removing_phys.sr_copied; 2349 2350 prs->prs_mapping_memory = 0; 2351 uint64_t indirect_vdev_id = 2352 spa->spa_removing_phys.sr_prev_indirect_vdev; 2353 while (indirect_vdev_id != -1) { 2354 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id]; 2355 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 2356 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 2357 2358 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 2359 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim); 2360 indirect_vdev_id = vic->vic_prev_indirect_vdev; 2361 } 2362 2363 return (0); 2364 } 2365 2366 /* BEGIN CSTYLED */ 2367 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_ignore_errors, INT, ZMOD_RW, 2368 "Ignore hard IO errors when removing device"); 2369 2370 ZFS_MODULE_PARAM(zfs_vdev, zfs_, remove_max_segment, INT, ZMOD_RW, 2371 "Largest contiguous segment to allocate when removing device"); 2372 2373 ZFS_MODULE_PARAM(zfs_vdev, vdev_, removal_max_span, INT, ZMOD_RW, 2374 "Largest span of free chunks a remap segment can span"); 2375 2376 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_suspend_progress, INT, ZMOD_RW, 2377 "Pause device removal after this many bytes are copied " 2378 "(debug use only - causes removal to hang)"); 2379 /* END CSTYLED */ 2380 2381 EXPORT_SYMBOL(free_from_removing_vdev); 2382 EXPORT_SYMBOL(spa_removal_get_stats); 2383 EXPORT_SYMBOL(spa_remove_init); 2384 EXPORT_SYMBOL(spa_restart_removal); 2385 EXPORT_SYMBOL(spa_vdev_removal_destroy); 2386 EXPORT_SYMBOL(spa_vdev_remove); 2387 EXPORT_SYMBOL(spa_vdev_remove_cancel); 2388 EXPORT_SYMBOL(spa_vdev_remove_suspend); 2389 EXPORT_SYMBOL(svr_sync); 2390