1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 26 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/spa_impl.h> 31 #include <sys/dmu.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/zap.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/metaslab.h> 36 #include <sys/metaslab_impl.h> 37 #include <sys/uberblock_impl.h> 38 #include <sys/txg.h> 39 #include <sys/avl.h> 40 #include <sys/bpobj.h> 41 #include <sys/dsl_pool.h> 42 #include <sys/dsl_synctask.h> 43 #include <sys/dsl_dir.h> 44 #include <sys/arc.h> 45 #include <sys/zfeature.h> 46 #include <sys/vdev_indirect_births.h> 47 #include <sys/vdev_indirect_mapping.h> 48 #include <sys/abd.h> 49 #include <sys/vdev_initialize.h> 50 #include <sys/vdev_trim.h> 51 #include <sys/trace_zfs.h> 52 53 /* 54 * This file contains the necessary logic to remove vdevs from a 55 * storage pool. Currently, the only devices that can be removed 56 * are log, cache, and spare devices; and top level vdevs from a pool 57 * w/o raidz or mirrors. (Note that members of a mirror can be removed 58 * by the detach operation.) 59 * 60 * Log vdevs are removed by evacuating them and then turning the vdev 61 * into a hole vdev while holding spa config locks. 62 * 63 * Top level vdevs are removed and converted into an indirect vdev via 64 * a multi-step process: 65 * 66 * - Disable allocations from this device (spa_vdev_remove_top). 67 * 68 * - From a new thread (spa_vdev_remove_thread), copy data from 69 * the removing vdev to a different vdev. The copy happens in open 70 * context (spa_vdev_copy_impl) and issues a sync task 71 * (vdev_mapping_sync) so the sync thread can update the partial 72 * indirect mappings in core and on disk. 73 * 74 * - If a free happens during a removal, it is freed from the 75 * removing vdev, and if it has already been copied, from the new 76 * location as well (free_from_removing_vdev). 77 * 78 * - After the removal is completed, the copy thread converts the vdev 79 * into an indirect vdev (vdev_remove_complete) before instructing 80 * the sync thread to destroy the space maps and finish the removal 81 * (spa_finish_removal). 82 */ 83 84 typedef struct vdev_copy_arg { 85 metaslab_t *vca_msp; 86 uint64_t vca_outstanding_bytes; 87 uint64_t vca_read_error_bytes; 88 uint64_t vca_write_error_bytes; 89 kcondvar_t vca_cv; 90 kmutex_t vca_lock; 91 } vdev_copy_arg_t; 92 93 /* 94 * The maximum amount of memory we can use for outstanding i/o while 95 * doing a device removal. This determines how much i/o we can have 96 * in flight concurrently. 97 */ 98 static const uint_t zfs_remove_max_copy_bytes = 64 * 1024 * 1024; 99 100 /* 101 * The largest contiguous segment that we will attempt to allocate when 102 * removing a device. This can be no larger than SPA_MAXBLOCKSIZE. If 103 * there is a performance problem with attempting to allocate large blocks, 104 * consider decreasing this. 105 * 106 * See also the accessor function spa_remove_max_segment(). 107 */ 108 uint_t zfs_remove_max_segment = SPA_MAXBLOCKSIZE; 109 110 /* 111 * Ignore hard IO errors during device removal. When set if a device 112 * encounters hard IO error during the removal process the removal will 113 * not be cancelled. This can result in a normally recoverable block 114 * becoming permanently damaged and is not recommended. 115 */ 116 static int zfs_removal_ignore_errors = 0; 117 118 /* 119 * Allow a remap segment to span free chunks of at most this size. The main 120 * impact of a larger span is that we will read and write larger, more 121 * contiguous chunks, with more "unnecessary" data -- trading off bandwidth 122 * for iops. The value here was chosen to align with 123 * zfs_vdev_read_gap_limit, which is a similar concept when doing regular 124 * reads (but there's no reason it has to be the same). 125 * 126 * Additionally, a higher span will have the following relatively minor 127 * effects: 128 * - the mapping will be smaller, since one entry can cover more allocated 129 * segments 130 * - more of the fragmentation in the removing device will be preserved 131 * - we'll do larger allocations, which may fail and fall back on smaller 132 * allocations 133 */ 134 uint_t vdev_removal_max_span = 32 * 1024; 135 136 /* 137 * This is used by the test suite so that it can ensure that certain 138 * actions happen while in the middle of a removal. 139 */ 140 int zfs_removal_suspend_progress = 0; 141 142 #define VDEV_REMOVAL_ZAP_OBJS "lzap" 143 144 static __attribute__((noreturn)) void spa_vdev_remove_thread(void *arg); 145 static int spa_vdev_remove_cancel_impl(spa_t *spa); 146 147 static void 148 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx) 149 { 150 VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset, 151 DMU_POOL_DIRECTORY_OBJECT, 152 DMU_POOL_REMOVING, sizeof (uint64_t), 153 sizeof (spa->spa_removing_phys) / sizeof (uint64_t), 154 &spa->spa_removing_phys, tx)); 155 } 156 157 static nvlist_t * 158 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 159 { 160 for (int i = 0; i < count; i++) { 161 uint64_t guid = 162 fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID); 163 164 if (guid == target_guid) 165 return (nvpp[i]); 166 } 167 168 return (NULL); 169 } 170 171 static void 172 vdev_activate(vdev_t *vd) 173 { 174 metaslab_group_t *mg = vd->vdev_mg; 175 176 ASSERT(!vd->vdev_islog); 177 ASSERT(vd->vdev_noalloc); 178 179 metaslab_group_activate(mg); 180 metaslab_group_activate(vd->vdev_log_mg); 181 182 vdev_update_nonallocating_space(vd, B_FALSE); 183 184 vd->vdev_noalloc = B_FALSE; 185 } 186 187 static int 188 vdev_passivate(vdev_t *vd, uint64_t *txg) 189 { 190 spa_t *spa = vd->vdev_spa; 191 int error; 192 193 ASSERT(!vd->vdev_noalloc); 194 195 vdev_t *rvd = spa->spa_root_vdev; 196 metaslab_group_t *mg = vd->vdev_mg; 197 metaslab_class_t *normal = spa_normal_class(spa); 198 if (mg->mg_class == normal) { 199 /* 200 * We must check that this is not the only allocating device in 201 * the pool before passivating, otherwise we will not be able 202 * to make progress because we can't allocate from any vdevs. 203 */ 204 boolean_t last = B_TRUE; 205 for (uint64_t id = 0; id < rvd->vdev_children; id++) { 206 vdev_t *cvd = rvd->vdev_child[id]; 207 208 if (cvd == vd || !vdev_is_concrete(cvd) || 209 vdev_is_dead(cvd)) 210 continue; 211 212 metaslab_class_t *mc = cvd->vdev_mg->mg_class; 213 if (mc != normal) 214 continue; 215 216 if (!cvd->vdev_noalloc) { 217 last = B_FALSE; 218 break; 219 } 220 } 221 if (last) 222 return (SET_ERROR(EINVAL)); 223 } 224 225 metaslab_group_passivate(mg); 226 ASSERT(!vd->vdev_islog); 227 metaslab_group_passivate(vd->vdev_log_mg); 228 229 /* 230 * Wait for the youngest allocations and frees to sync, 231 * and then wait for the deferral of those frees to finish. 232 */ 233 spa_vdev_config_exit(spa, NULL, 234 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 235 236 /* 237 * We must ensure that no "stubby" log blocks are allocated 238 * on the device to be removed. These blocks could be 239 * written at any time, including while we are in the middle 240 * of copying them. 241 */ 242 error = spa_reset_logs(spa); 243 244 *txg = spa_vdev_config_enter(spa); 245 246 if (error != 0) { 247 metaslab_group_activate(mg); 248 ASSERT(!vd->vdev_islog); 249 if (vd->vdev_log_mg != NULL) 250 metaslab_group_activate(vd->vdev_log_mg); 251 return (error); 252 } 253 254 vdev_update_nonallocating_space(vd, B_TRUE); 255 vd->vdev_noalloc = B_TRUE; 256 257 return (0); 258 } 259 260 /* 261 * Turn off allocations for a top-level device from the pool. 262 * 263 * Turning off allocations for a top-level device can take a significant 264 * amount of time. As a result we use the spa_vdev_config_[enter/exit] 265 * functions which allow us to grab and release the spa_config_lock while 266 * still holding the namespace lock. During each step the configuration 267 * is synced out. 268 */ 269 int 270 spa_vdev_noalloc(spa_t *spa, uint64_t guid) 271 { 272 vdev_t *vd; 273 uint64_t txg; 274 int error = 0; 275 276 ASSERT(!MUTEX_HELD(&spa_namespace_lock)); 277 ASSERT(spa_writeable(spa)); 278 279 txg = spa_vdev_enter(spa); 280 281 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 282 283 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 284 285 if (vd == NULL) 286 error = SET_ERROR(ENOENT); 287 else if (vd->vdev_mg == NULL) 288 error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP); 289 else if (!vd->vdev_noalloc) 290 error = vdev_passivate(vd, &txg); 291 292 if (error == 0) { 293 vdev_dirty_leaves(vd, VDD_DTL, txg); 294 vdev_config_dirty(vd); 295 } 296 297 error = spa_vdev_exit(spa, NULL, txg, error); 298 299 return (error); 300 } 301 302 int 303 spa_vdev_alloc(spa_t *spa, uint64_t guid) 304 { 305 vdev_t *vd; 306 uint64_t txg; 307 int error = 0; 308 309 ASSERT(!MUTEX_HELD(&spa_namespace_lock)); 310 ASSERT(spa_writeable(spa)); 311 312 txg = spa_vdev_enter(spa); 313 314 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 315 316 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 317 318 if (vd == NULL) 319 error = SET_ERROR(ENOENT); 320 else if (vd->vdev_mg == NULL) 321 error = SET_ERROR(ZFS_ERR_VDEV_NOTSUP); 322 else if (!vd->vdev_removing) 323 vdev_activate(vd); 324 325 if (error == 0) { 326 vdev_dirty_leaves(vd, VDD_DTL, txg); 327 vdev_config_dirty(vd); 328 } 329 330 (void) spa_vdev_exit(spa, NULL, txg, error); 331 332 return (error); 333 } 334 335 static void 336 spa_vdev_remove_aux(nvlist_t *config, const char *name, nvlist_t **dev, 337 int count, nvlist_t *dev_to_remove) 338 { 339 nvlist_t **newdev = NULL; 340 341 if (count > 1) 342 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 343 344 for (int i = 0, j = 0; i < count; i++) { 345 if (dev[i] == dev_to_remove) 346 continue; 347 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 348 } 349 350 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 351 fnvlist_add_nvlist_array(config, name, (const nvlist_t * const *)newdev, 352 count - 1); 353 354 for (int i = 0; i < count - 1; i++) 355 nvlist_free(newdev[i]); 356 357 if (count > 1) 358 kmem_free(newdev, (count - 1) * sizeof (void *)); 359 } 360 361 static spa_vdev_removal_t * 362 spa_vdev_removal_create(vdev_t *vd) 363 { 364 spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP); 365 mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL); 366 cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL); 367 svr->svr_allocd_segs = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, 368 NULL, 0, 0); 369 svr->svr_vdev_id = vd->vdev_id; 370 371 for (int i = 0; i < TXG_SIZE; i++) { 372 svr->svr_frees[i] = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, 373 NULL, 0, 0); 374 list_create(&svr->svr_new_segments[i], 375 sizeof (vdev_indirect_mapping_entry_t), 376 offsetof(vdev_indirect_mapping_entry_t, vime_node)); 377 } 378 379 return (svr); 380 } 381 382 void 383 spa_vdev_removal_destroy(spa_vdev_removal_t *svr) 384 { 385 for (int i = 0; i < TXG_SIZE; i++) { 386 ASSERT0(svr->svr_bytes_done[i]); 387 ASSERT0(svr->svr_max_offset_to_sync[i]); 388 zfs_range_tree_destroy(svr->svr_frees[i]); 389 list_destroy(&svr->svr_new_segments[i]); 390 } 391 392 zfs_range_tree_destroy(svr->svr_allocd_segs); 393 mutex_destroy(&svr->svr_lock); 394 cv_destroy(&svr->svr_cv); 395 kmem_free(svr, sizeof (*svr)); 396 } 397 398 /* 399 * This is called as a synctask in the txg in which we will mark this vdev 400 * as removing (in the config stored in the MOS). 401 * 402 * It begins the evacuation of a toplevel vdev by: 403 * - initializing the spa_removing_phys which tracks this removal 404 * - computing the amount of space to remove for accounting purposes 405 * - dirtying all dbufs in the spa_config_object 406 * - creating the spa_vdev_removal 407 * - starting the spa_vdev_remove_thread 408 */ 409 static void 410 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx) 411 { 412 int vdev_id = (uintptr_t)arg; 413 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 414 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 415 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 416 objset_t *mos = spa->spa_dsl_pool->dp_meta_objset; 417 spa_vdev_removal_t *svr = NULL; 418 uint64_t txg __maybe_unused = dmu_tx_get_txg(tx); 419 420 ASSERT0(vdev_get_nparity(vd)); 421 svr = spa_vdev_removal_create(vd); 422 423 ASSERT(vd->vdev_removing); 424 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL); 425 426 spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx); 427 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) { 428 /* 429 * By activating the OBSOLETE_COUNTS feature, we prevent 430 * the pool from being downgraded and ensure that the 431 * refcounts are precise. 432 */ 433 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 434 uint64_t one = 1; 435 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap, 436 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1, 437 &one, tx)); 438 boolean_t are_precise __maybe_unused; 439 ASSERT0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 440 ASSERT3B(are_precise, ==, B_TRUE); 441 } 442 443 vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx); 444 vd->vdev_indirect_mapping = 445 vdev_indirect_mapping_open(mos, vic->vic_mapping_object); 446 vic->vic_births_object = vdev_indirect_births_alloc(mos, tx); 447 vd->vdev_indirect_births = 448 vdev_indirect_births_open(mos, vic->vic_births_object); 449 spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id; 450 spa->spa_removing_phys.sr_start_time = gethrestime_sec(); 451 spa->spa_removing_phys.sr_end_time = 0; 452 spa->spa_removing_phys.sr_state = DSS_SCANNING; 453 spa->spa_removing_phys.sr_to_copy = 0; 454 spa->spa_removing_phys.sr_copied = 0; 455 456 /* 457 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because 458 * there may be space in the defer tree, which is free, but still 459 * counted in vs_alloc. 460 */ 461 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) { 462 metaslab_t *ms = vd->vdev_ms[i]; 463 if (ms->ms_sm == NULL) 464 continue; 465 466 spa->spa_removing_phys.sr_to_copy += 467 metaslab_allocated_space(ms); 468 469 /* 470 * Space which we are freeing this txg does not need to 471 * be copied. 472 */ 473 spa->spa_removing_phys.sr_to_copy -= 474 zfs_range_tree_space(ms->ms_freeing); 475 476 ASSERT0(zfs_range_tree_space(ms->ms_freed)); 477 for (int t = 0; t < TXG_SIZE; t++) 478 ASSERT0(zfs_range_tree_space(ms->ms_allocating[t])); 479 } 480 481 /* 482 * Sync tasks are called before metaslab_sync(), so there should 483 * be no already-synced metaslabs in the TXG_CLEAN list. 484 */ 485 ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL); 486 487 spa_sync_removing_state(spa, tx); 488 489 /* 490 * All blocks that we need to read the most recent mapping must be 491 * stored on concrete vdevs. Therefore, we must dirty anything that 492 * is read before spa_remove_init(). Specifically, the 493 * spa_config_object. (Note that although we already modified the 494 * spa_config_object in spa_sync_removing_state, that may not have 495 * modified all blocks of the object.) 496 */ 497 dmu_object_info_t doi; 498 VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi)); 499 for (uint64_t offset = 0; offset < doi.doi_max_offset; ) { 500 dmu_buf_t *dbuf; 501 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT, 502 offset, FTAG, &dbuf, 0)); 503 dmu_buf_will_dirty(dbuf, tx); 504 offset += dbuf->db_size; 505 dmu_buf_rele(dbuf, FTAG); 506 } 507 508 /* 509 * Now that we've allocated the im_object, dirty the vdev to ensure 510 * that the object gets written to the config on disk. 511 */ 512 vdev_config_dirty(vd); 513 514 zfs_dbgmsg("starting removal thread for vdev %llu (%px) in txg %llu " 515 "im_obj=%llu", (u_longlong_t)vd->vdev_id, vd, 516 (u_longlong_t)dmu_tx_get_txg(tx), 517 (u_longlong_t)vic->vic_mapping_object); 518 519 spa_history_log_internal(spa, "vdev remove started", tx, 520 "%s vdev %llu %s", spa_name(spa), (u_longlong_t)vd->vdev_id, 521 (vd->vdev_path != NULL) ? vd->vdev_path : "-"); 522 /* 523 * Setting spa_vdev_removal causes subsequent frees to call 524 * free_from_removing_vdev(). Note that we don't need any locking 525 * because we are the sync thread, and metaslab_free_impl() is only 526 * called from syncing context (potentially from a zio taskq thread, 527 * but in any case only when there are outstanding free i/os, which 528 * there are not). 529 */ 530 ASSERT3P(spa->spa_vdev_removal, ==, NULL); 531 spa->spa_vdev_removal = svr; 532 svr->svr_thread = thread_create(NULL, 0, 533 spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri); 534 } 535 536 /* 537 * When we are opening a pool, we must read the mapping for each 538 * indirect vdev in order from most recently removed to least 539 * recently removed. We do this because the blocks for the mapping 540 * of older indirect vdevs may be stored on more recently removed vdevs. 541 * In order to read each indirect mapping object, we must have 542 * initialized all more recently removed vdevs. 543 */ 544 int 545 spa_remove_init(spa_t *spa) 546 { 547 int error; 548 549 error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset, 550 DMU_POOL_DIRECTORY_OBJECT, 551 DMU_POOL_REMOVING, sizeof (uint64_t), 552 sizeof (spa->spa_removing_phys) / sizeof (uint64_t), 553 &spa->spa_removing_phys); 554 555 if (error == ENOENT) { 556 spa->spa_removing_phys.sr_state = DSS_NONE; 557 spa->spa_removing_phys.sr_removing_vdev = -1; 558 spa->spa_removing_phys.sr_prev_indirect_vdev = -1; 559 spa->spa_indirect_vdevs_loaded = B_TRUE; 560 return (0); 561 } else if (error != 0) { 562 return (error); 563 } 564 565 if (spa->spa_removing_phys.sr_state == DSS_SCANNING) { 566 /* 567 * We are currently removing a vdev. Create and 568 * initialize a spa_vdev_removal_t from the bonus 569 * buffer of the removing vdevs vdev_im_object, and 570 * initialize its partial mapping. 571 */ 572 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 573 vdev_t *vd = vdev_lookup_top(spa, 574 spa->spa_removing_phys.sr_removing_vdev); 575 576 if (vd == NULL) { 577 spa_config_exit(spa, SCL_STATE, FTAG); 578 return (EINVAL); 579 } 580 581 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 582 583 ASSERT(vdev_is_concrete(vd)); 584 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd); 585 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id); 586 ASSERT(vd->vdev_removing); 587 588 vd->vdev_indirect_mapping = vdev_indirect_mapping_open( 589 spa->spa_meta_objset, vic->vic_mapping_object); 590 vd->vdev_indirect_births = vdev_indirect_births_open( 591 spa->spa_meta_objset, vic->vic_births_object); 592 spa_config_exit(spa, SCL_STATE, FTAG); 593 594 spa->spa_vdev_removal = svr; 595 } 596 597 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 598 uint64_t indirect_vdev_id = 599 spa->spa_removing_phys.sr_prev_indirect_vdev; 600 while (indirect_vdev_id != UINT64_MAX) { 601 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id); 602 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 603 604 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 605 vd->vdev_indirect_mapping = vdev_indirect_mapping_open( 606 spa->spa_meta_objset, vic->vic_mapping_object); 607 vd->vdev_indirect_births = vdev_indirect_births_open( 608 spa->spa_meta_objset, vic->vic_births_object); 609 610 indirect_vdev_id = vic->vic_prev_indirect_vdev; 611 } 612 spa_config_exit(spa, SCL_STATE, FTAG); 613 614 /* 615 * Now that we've loaded all the indirect mappings, we can allow 616 * reads from other blocks (e.g. via predictive prefetch). 617 */ 618 spa->spa_indirect_vdevs_loaded = B_TRUE; 619 return (0); 620 } 621 622 void 623 spa_restart_removal(spa_t *spa) 624 { 625 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 626 627 if (svr == NULL) 628 return; 629 630 /* 631 * In general when this function is called there is no 632 * removal thread running. The only scenario where this 633 * is not true is during spa_import() where this function 634 * is called twice [once from spa_import_impl() and 635 * spa_async_resume()]. Thus, in the scenario where we 636 * import a pool that has an ongoing removal we don't 637 * want to spawn a second thread. 638 */ 639 if (svr->svr_thread != NULL) 640 return; 641 642 if (!spa_writeable(spa)) 643 return; 644 645 zfs_dbgmsg("restarting removal of %llu", 646 (u_longlong_t)svr->svr_vdev_id); 647 svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa, 648 0, &p0, TS_RUN, minclsyspri); 649 } 650 651 /* 652 * Process freeing from a device which is in the middle of being removed. 653 * We must handle this carefully so that we attempt to copy freed data, 654 * and we correctly free already-copied data. 655 */ 656 void 657 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size) 658 { 659 spa_t *spa = vd->vdev_spa; 660 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 661 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 662 uint64_t txg = spa_syncing_txg(spa); 663 uint64_t max_offset_yet = 0; 664 665 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 666 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==, 667 vdev_indirect_mapping_object(vim)); 668 ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id); 669 670 mutex_enter(&svr->svr_lock); 671 672 /* 673 * Remove the segment from the removing vdev's spacemap. This 674 * ensures that we will not attempt to copy this space (if the 675 * removal thread has not yet visited it), and also ensures 676 * that we know what is actually allocated on the new vdevs 677 * (needed if we cancel the removal). 678 * 679 * Note: we must do the metaslab_free_concrete() with the svr_lock 680 * held, so that the remove_thread can not load this metaslab and then 681 * visit this offset between the time that we metaslab_free_concrete() 682 * and when we check to see if it has been visited. 683 * 684 * Note: The checkpoint flag is set to false as having/taking 685 * a checkpoint and removing a device can't happen at the same 686 * time. 687 */ 688 ASSERT(!spa_has_checkpoint(spa)); 689 metaslab_free_concrete(vd, offset, size, B_FALSE); 690 691 uint64_t synced_size = 0; 692 uint64_t synced_offset = 0; 693 uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim); 694 if (offset < max_offset_synced) { 695 /* 696 * The mapping for this offset is already on disk. 697 * Free from the new location. 698 * 699 * Note that we use svr_max_synced_offset because it is 700 * updated atomically with respect to the in-core mapping. 701 * By contrast, vim_max_offset is not. 702 * 703 * This block may be split between a synced entry and an 704 * in-flight or unvisited entry. Only process the synced 705 * portion of it here. 706 */ 707 synced_size = MIN(size, max_offset_synced - offset); 708 synced_offset = offset; 709 710 ASSERT3U(max_offset_yet, <=, max_offset_synced); 711 max_offset_yet = max_offset_synced; 712 713 DTRACE_PROBE3(remove__free__synced, 714 spa_t *, spa, 715 uint64_t, offset, 716 uint64_t, synced_size); 717 718 size -= synced_size; 719 offset += synced_size; 720 } 721 722 /* 723 * Look at all in-flight txgs starting from the currently syncing one 724 * and see if a section of this free is being copied. By starting from 725 * this txg and iterating forward, we might find that this region 726 * was copied in two different txgs and handle it appropriately. 727 */ 728 for (int i = 0; i < TXG_CONCURRENT_STATES; i++) { 729 int txgoff = (txg + i) & TXG_MASK; 730 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) { 731 /* 732 * The mapping for this offset is in flight, and 733 * will be synced in txg+i. 734 */ 735 uint64_t inflight_size = MIN(size, 736 svr->svr_max_offset_to_sync[txgoff] - offset); 737 738 DTRACE_PROBE4(remove__free__inflight, 739 spa_t *, spa, 740 uint64_t, offset, 741 uint64_t, inflight_size, 742 uint64_t, txg + i); 743 744 /* 745 * We copy data in order of increasing offset. 746 * Therefore the max_offset_to_sync[] must increase 747 * (or be zero, indicating that nothing is being 748 * copied in that txg). 749 */ 750 if (svr->svr_max_offset_to_sync[txgoff] != 0) { 751 ASSERT3U(svr->svr_max_offset_to_sync[txgoff], 752 >=, max_offset_yet); 753 max_offset_yet = 754 svr->svr_max_offset_to_sync[txgoff]; 755 } 756 757 /* 758 * We've already committed to copying this segment: 759 * we have allocated space elsewhere in the pool for 760 * it and have an IO outstanding to copy the data. We 761 * cannot free the space before the copy has 762 * completed, or else the copy IO might overwrite any 763 * new data. To free that space, we record the 764 * segment in the appropriate svr_frees tree and free 765 * the mapped space later, in the txg where we have 766 * completed the copy and synced the mapping (see 767 * vdev_mapping_sync). 768 */ 769 zfs_range_tree_add(svr->svr_frees[txgoff], 770 offset, inflight_size); 771 size -= inflight_size; 772 offset += inflight_size; 773 774 /* 775 * This space is already accounted for as being 776 * done, because it is being copied in txg+i. 777 * However, if i!=0, then it is being copied in 778 * a future txg. If we crash after this txg 779 * syncs but before txg+i syncs, then the space 780 * will be free. Therefore we must account 781 * for the space being done in *this* txg 782 * (when it is freed) rather than the future txg 783 * (when it will be copied). 784 */ 785 ASSERT3U(svr->svr_bytes_done[txgoff], >=, 786 inflight_size); 787 svr->svr_bytes_done[txgoff] -= inflight_size; 788 svr->svr_bytes_done[txg & TXG_MASK] += inflight_size; 789 } 790 } 791 ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]); 792 793 if (size > 0) { 794 /* 795 * The copy thread has not yet visited this offset. Ensure 796 * that it doesn't. 797 */ 798 799 DTRACE_PROBE3(remove__free__unvisited, 800 spa_t *, spa, 801 uint64_t, offset, 802 uint64_t, size); 803 804 if (svr->svr_allocd_segs != NULL) 805 zfs_range_tree_clear(svr->svr_allocd_segs, offset, 806 size); 807 808 /* 809 * Since we now do not need to copy this data, for 810 * accounting purposes we have done our job and can count 811 * it as completed. 812 */ 813 svr->svr_bytes_done[txg & TXG_MASK] += size; 814 } 815 mutex_exit(&svr->svr_lock); 816 817 /* 818 * Now that we have dropped svr_lock, process the synced portion 819 * of this free. 820 */ 821 if (synced_size > 0) { 822 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size); 823 824 /* 825 * Note: this can only be called from syncing context, 826 * and the vdev_indirect_mapping is only changed from the 827 * sync thread, so we don't need svr_lock while doing 828 * metaslab_free_impl_cb. 829 */ 830 boolean_t checkpoint = B_FALSE; 831 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size, 832 metaslab_free_impl_cb, &checkpoint); 833 } 834 } 835 836 /* 837 * Stop an active removal and update the spa_removing phys. 838 */ 839 static void 840 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx) 841 { 842 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 843 ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa)); 844 845 /* Ensure the removal thread has completed before we free the svr. */ 846 spa_vdev_remove_suspend(spa); 847 848 ASSERT(state == DSS_FINISHED || state == DSS_CANCELED); 849 850 if (state == DSS_FINISHED) { 851 spa_removing_phys_t *srp = &spa->spa_removing_phys; 852 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 853 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 854 855 if (srp->sr_prev_indirect_vdev != -1) { 856 vdev_t *pvd; 857 pvd = vdev_lookup_top(spa, 858 srp->sr_prev_indirect_vdev); 859 ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops); 860 } 861 862 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev; 863 srp->sr_prev_indirect_vdev = vd->vdev_id; 864 } 865 spa->spa_removing_phys.sr_state = state; 866 spa->spa_removing_phys.sr_end_time = gethrestime_sec(); 867 868 spa->spa_vdev_removal = NULL; 869 spa_vdev_removal_destroy(svr); 870 871 spa_sync_removing_state(spa, tx); 872 spa_notify_waiters(spa); 873 874 vdev_config_dirty(spa->spa_root_vdev); 875 } 876 877 static void 878 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size) 879 { 880 vdev_t *vd = arg; 881 vdev_indirect_mark_obsolete(vd, offset, size); 882 boolean_t checkpoint = B_FALSE; 883 vdev_indirect_ops.vdev_op_remap(vd, offset, size, 884 metaslab_free_impl_cb, &checkpoint); 885 } 886 887 /* 888 * On behalf of the removal thread, syncs an incremental bit more of 889 * the indirect mapping to disk and updates the in-memory mapping. 890 * Called as a sync task in every txg that the removal thread makes progress. 891 */ 892 static void 893 vdev_mapping_sync(void *arg, dmu_tx_t *tx) 894 { 895 spa_vdev_removal_t *svr = arg; 896 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 897 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 898 vdev_indirect_config_t *vic __maybe_unused = &vd->vdev_indirect_config; 899 uint64_t txg = dmu_tx_get_txg(tx); 900 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 901 902 ASSERT(vic->vic_mapping_object != 0); 903 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 904 905 vdev_indirect_mapping_add_entries(vim, 906 &svr->svr_new_segments[txg & TXG_MASK], tx); 907 vdev_indirect_births_add_entry(vd->vdev_indirect_births, 908 vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx); 909 910 /* 911 * Free the copied data for anything that was freed while the 912 * mapping entries were in flight. 913 */ 914 mutex_enter(&svr->svr_lock); 915 zfs_range_tree_vacate(svr->svr_frees[txg & TXG_MASK], 916 free_mapped_segment_cb, vd); 917 ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=, 918 vdev_indirect_mapping_max_offset(vim)); 919 svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0; 920 mutex_exit(&svr->svr_lock); 921 922 spa_sync_removing_state(spa, tx); 923 } 924 925 typedef struct vdev_copy_segment_arg { 926 spa_t *vcsa_spa; 927 dva_t *vcsa_dest_dva; 928 uint64_t vcsa_txg; 929 zfs_range_tree_t *vcsa_obsolete_segs; 930 } vdev_copy_segment_arg_t; 931 932 static void 933 unalloc_seg(void *arg, uint64_t start, uint64_t size) 934 { 935 vdev_copy_segment_arg_t *vcsa = arg; 936 spa_t *spa = vcsa->vcsa_spa; 937 blkptr_t bp = { { { {0} } } }; 938 939 BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL); 940 BP_SET_LSIZE(&bp, size); 941 BP_SET_PSIZE(&bp, size); 942 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); 943 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF); 944 BP_SET_TYPE(&bp, DMU_OT_NONE); 945 BP_SET_LEVEL(&bp, 0); 946 BP_SET_DEDUP(&bp, 0); 947 BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER); 948 949 DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva)); 950 DVA_SET_OFFSET(&bp.blk_dva[0], 951 DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start); 952 DVA_SET_ASIZE(&bp.blk_dva[0], size); 953 954 zio_free(spa, vcsa->vcsa_txg, &bp); 955 } 956 957 /* 958 * All reads and writes associated with a call to spa_vdev_copy_segment() 959 * are done. 960 */ 961 static void 962 spa_vdev_copy_segment_done(zio_t *zio) 963 { 964 vdev_copy_segment_arg_t *vcsa = zio->io_private; 965 966 zfs_range_tree_vacate(vcsa->vcsa_obsolete_segs, 967 unalloc_seg, vcsa); 968 zfs_range_tree_destroy(vcsa->vcsa_obsolete_segs); 969 kmem_free(vcsa, sizeof (*vcsa)); 970 971 spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa); 972 } 973 974 /* 975 * The write of the new location is done. 976 */ 977 static void 978 spa_vdev_copy_segment_write_done(zio_t *zio) 979 { 980 vdev_copy_arg_t *vca = zio->io_private; 981 982 abd_free(zio->io_abd); 983 984 mutex_enter(&vca->vca_lock); 985 vca->vca_outstanding_bytes -= zio->io_size; 986 987 if (zio->io_error != 0) 988 vca->vca_write_error_bytes += zio->io_size; 989 990 cv_signal(&vca->vca_cv); 991 mutex_exit(&vca->vca_lock); 992 } 993 994 /* 995 * The read of the old location is done. The parent zio is the write to 996 * the new location. Allow it to start. 997 */ 998 static void 999 spa_vdev_copy_segment_read_done(zio_t *zio) 1000 { 1001 vdev_copy_arg_t *vca = zio->io_private; 1002 1003 if (zio->io_error != 0) { 1004 mutex_enter(&vca->vca_lock); 1005 vca->vca_read_error_bytes += zio->io_size; 1006 mutex_exit(&vca->vca_lock); 1007 } 1008 1009 zio_nowait(zio_unique_parent(zio)); 1010 } 1011 1012 /* 1013 * If the old and new vdevs are mirrors, we will read both sides of the old 1014 * mirror, and write each copy to the corresponding side of the new mirror. 1015 * If the old and new vdevs have a different number of children, we will do 1016 * this as best as possible. Since we aren't verifying checksums, this 1017 * ensures that as long as there's a good copy of the data, we'll have a 1018 * good copy after the removal, even if there's silent damage to one side 1019 * of the mirror. If we're removing a mirror that has some silent damage, 1020 * we'll have exactly the same damage in the new location (assuming that 1021 * the new location is also a mirror). 1022 * 1023 * We accomplish this by creating a tree of zio_t's, with as many writes as 1024 * there are "children" of the new vdev (a non-redundant vdev counts as one 1025 * child, a 2-way mirror has 2 children, etc). Each write has an associated 1026 * read from a child of the old vdev. Typically there will be the same 1027 * number of children of the old and new vdevs. However, if there are more 1028 * children of the new vdev, some child(ren) of the old vdev will be issued 1029 * multiple reads. If there are more children of the old vdev, some copies 1030 * will be dropped. 1031 * 1032 * For example, the tree of zio_t's for a 2-way mirror is: 1033 * 1034 * null 1035 * / \ 1036 * write(new vdev, child 0) write(new vdev, child 1) 1037 * | | 1038 * read(old vdev, child 0) read(old vdev, child 1) 1039 * 1040 * Child zio's complete before their parents complete. However, zio's 1041 * created with zio_vdev_child_io() may be issued before their children 1042 * complete. In this case we need to make sure that the children (reads) 1043 * complete before the parents (writes) are *issued*. We do this by not 1044 * calling zio_nowait() on each write until its corresponding read has 1045 * completed. 1046 * 1047 * The spa_config_lock must be held while zio's created by 1048 * zio_vdev_child_io() are in progress, to ensure that the vdev tree does 1049 * not change (e.g. due to a concurrent "zpool attach/detach"). The "null" 1050 * zio is needed to release the spa_config_lock after all the reads and 1051 * writes complete. (Note that we can't grab the config lock for each read, 1052 * because it is not reentrant - we could deadlock with a thread waiting 1053 * for a write lock.) 1054 */ 1055 static void 1056 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio, 1057 vdev_t *source_vd, uint64_t source_offset, 1058 vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size) 1059 { 1060 ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0); 1061 1062 /* 1063 * If the destination child in unwritable then there is no point 1064 * in issuing the source reads which cannot be written. 1065 */ 1066 if (!vdev_writeable(dest_child_vd)) 1067 return; 1068 1069 mutex_enter(&vca->vca_lock); 1070 vca->vca_outstanding_bytes += size; 1071 mutex_exit(&vca->vca_lock); 1072 1073 abd_t *abd = abd_alloc_for_io(size, B_FALSE); 1074 1075 vdev_t *source_child_vd = NULL; 1076 if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) { 1077 /* 1078 * Source and dest are both mirrors. Copy from the same 1079 * child id as we are copying to (wrapping around if there 1080 * are more dest children than source children). If the 1081 * preferred source child is unreadable select another. 1082 */ 1083 for (int i = 0; i < source_vd->vdev_children; i++) { 1084 source_child_vd = source_vd->vdev_child[ 1085 (dest_id + i) % source_vd->vdev_children]; 1086 if (vdev_readable(source_child_vd)) 1087 break; 1088 } 1089 } else { 1090 source_child_vd = source_vd; 1091 } 1092 1093 /* 1094 * There should always be at least one readable source child or 1095 * the pool would be in a suspended state. Somehow selecting an 1096 * unreadable child would result in IO errors, the removal process 1097 * being cancelled, and the pool reverting to its pre-removal state. 1098 */ 1099 ASSERT3P(source_child_vd, !=, NULL); 1100 1101 zio_t *write_zio = zio_vdev_child_io(nzio, NULL, 1102 dest_child_vd, dest_offset, abd, size, 1103 ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL, 1104 ZIO_FLAG_CANFAIL, 1105 spa_vdev_copy_segment_write_done, vca); 1106 1107 zio_nowait(zio_vdev_child_io(write_zio, NULL, 1108 source_child_vd, source_offset, abd, size, 1109 ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL, 1110 ZIO_FLAG_CANFAIL, 1111 spa_vdev_copy_segment_read_done, vca)); 1112 } 1113 1114 /* 1115 * Allocate a new location for this segment, and create the zio_t's to 1116 * read from the old location and write to the new location. 1117 */ 1118 static int 1119 spa_vdev_copy_segment(vdev_t *vd, zfs_range_tree_t *segs, 1120 uint64_t maxalloc, uint64_t txg, 1121 vdev_copy_arg_t *vca, zio_alloc_list_t *zal) 1122 { 1123 metaslab_group_t *mg = vd->vdev_mg; 1124 spa_t *spa = vd->vdev_spa; 1125 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1126 vdev_indirect_mapping_entry_t *entry; 1127 dva_t dst = {{ 0 }}; 1128 uint64_t start = zfs_range_tree_min(segs); 1129 ASSERT0(P2PHASE(start, 1 << spa->spa_min_ashift)); 1130 1131 ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE); 1132 ASSERT0(P2PHASE(maxalloc, 1 << spa->spa_min_ashift)); 1133 1134 uint64_t size = zfs_range_tree_span(segs); 1135 if (zfs_range_tree_span(segs) > maxalloc) { 1136 /* 1137 * We can't allocate all the segments. Prefer to end 1138 * the allocation at the end of a segment, thus avoiding 1139 * additional split blocks. 1140 */ 1141 zfs_range_seg_max_t search; 1142 zfs_btree_index_t where; 1143 zfs_rs_set_start(&search, segs, start + maxalloc); 1144 zfs_rs_set_end(&search, segs, start + maxalloc); 1145 (void) zfs_btree_find(&segs->rt_root, &search, &where); 1146 zfs_range_seg_t *rs = zfs_btree_prev(&segs->rt_root, &where, 1147 &where); 1148 if (rs != NULL) { 1149 size = zfs_rs_get_end(rs, segs) - start; 1150 } else { 1151 /* 1152 * There are no segments that end before maxalloc. 1153 * I.e. the first segment is larger than maxalloc, 1154 * so we must split it. 1155 */ 1156 size = maxalloc; 1157 } 1158 } 1159 ASSERT3U(size, <=, maxalloc); 1160 ASSERT0(P2PHASE(size, 1 << spa->spa_min_ashift)); 1161 1162 /* 1163 * An allocation class might not have any remaining vdevs or space 1164 */ 1165 metaslab_class_t *mc = mg->mg_class; 1166 if (mc->mc_groups == 0) 1167 mc = spa_normal_class(spa); 1168 int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg, 1169 0, zal, 0); 1170 if (error == ENOSPC && mc != spa_normal_class(spa)) { 1171 error = metaslab_alloc_dva(spa, spa_normal_class(spa), size, 1172 &dst, 0, NULL, txg, 0, zal, 0); 1173 } 1174 if (error != 0) 1175 return (error); 1176 1177 /* 1178 * Determine the ranges that are not actually needed. Offsets are 1179 * relative to the start of the range to be copied (i.e. relative to the 1180 * local variable "start"). 1181 */ 1182 zfs_range_tree_t *obsolete_segs = zfs_range_tree_create(NULL, 1183 ZFS_RANGE_SEG64, NULL, 0, 0); 1184 1185 zfs_btree_index_t where; 1186 zfs_range_seg_t *rs = zfs_btree_first(&segs->rt_root, &where); 1187 ASSERT3U(zfs_rs_get_start(rs, segs), ==, start); 1188 uint64_t prev_seg_end = zfs_rs_get_end(rs, segs); 1189 while ((rs = zfs_btree_next(&segs->rt_root, &where, &where)) != NULL) { 1190 if (zfs_rs_get_start(rs, segs) >= start + size) { 1191 break; 1192 } else { 1193 zfs_range_tree_add(obsolete_segs, 1194 prev_seg_end - start, 1195 zfs_rs_get_start(rs, segs) - prev_seg_end); 1196 } 1197 prev_seg_end = zfs_rs_get_end(rs, segs); 1198 } 1199 /* We don't end in the middle of an obsolete range */ 1200 ASSERT3U(start + size, <=, prev_seg_end); 1201 1202 zfs_range_tree_clear(segs, start, size); 1203 1204 /* 1205 * We can't have any padding of the allocated size, otherwise we will 1206 * misunderstand what's allocated, and the size of the mapping. We 1207 * prevent padding by ensuring that all devices in the pool have the 1208 * same ashift, and the allocation size is a multiple of the ashift. 1209 */ 1210 VERIFY3U(DVA_GET_ASIZE(&dst), ==, size); 1211 1212 entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP); 1213 DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start); 1214 entry->vime_mapping.vimep_dst = dst; 1215 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) { 1216 entry->vime_obsolete_count = 1217 zfs_range_tree_space(obsolete_segs); 1218 } 1219 1220 vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP); 1221 vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst; 1222 vcsa->vcsa_obsolete_segs = obsolete_segs; 1223 vcsa->vcsa_spa = spa; 1224 vcsa->vcsa_txg = txg; 1225 1226 /* 1227 * See comment before spa_vdev_copy_one_child(). 1228 */ 1229 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 1230 zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL, 1231 spa_vdev_copy_segment_done, vcsa, 0); 1232 vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst)); 1233 if (dest_vd->vdev_ops == &vdev_mirror_ops) { 1234 for (int i = 0; i < dest_vd->vdev_children; i++) { 1235 vdev_t *child = dest_vd->vdev_child[i]; 1236 spa_vdev_copy_one_child(vca, nzio, vd, start, 1237 child, DVA_GET_OFFSET(&dst), i, size); 1238 } 1239 } else { 1240 spa_vdev_copy_one_child(vca, nzio, vd, start, 1241 dest_vd, DVA_GET_OFFSET(&dst), -1, size); 1242 } 1243 zio_nowait(nzio); 1244 1245 list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry); 1246 ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift); 1247 vdev_dirty(vd, 0, NULL, txg); 1248 1249 return (0); 1250 } 1251 1252 /* 1253 * Complete the removal of a toplevel vdev. This is called as a 1254 * synctask in the same txg that we will sync out the new config (to the 1255 * MOS object) which indicates that this vdev is indirect. 1256 */ 1257 static void 1258 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx) 1259 { 1260 spa_vdev_removal_t *svr = arg; 1261 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1262 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 1263 1264 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 1265 1266 for (int i = 0; i < TXG_SIZE; i++) { 1267 ASSERT0(svr->svr_bytes_done[i]); 1268 } 1269 1270 ASSERT3U(spa->spa_removing_phys.sr_copied, ==, 1271 spa->spa_removing_phys.sr_to_copy); 1272 1273 vdev_destroy_spacemaps(vd, tx); 1274 1275 /* destroy leaf zaps, if any */ 1276 ASSERT3P(svr->svr_zaplist, !=, NULL); 1277 for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL); 1278 pair != NULL; 1279 pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) { 1280 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx); 1281 } 1282 fnvlist_free(svr->svr_zaplist); 1283 1284 spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx); 1285 /* vd->vdev_path is not available here */ 1286 spa_history_log_internal(spa, "vdev remove completed", tx, 1287 "%s vdev %llu", spa_name(spa), (u_longlong_t)vd->vdev_id); 1288 } 1289 1290 static void 1291 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist) 1292 { 1293 ASSERT3P(zlist, !=, NULL); 1294 ASSERT0(vdev_get_nparity(vd)); 1295 1296 if (vd->vdev_leaf_zap != 0) { 1297 char zkey[32]; 1298 (void) snprintf(zkey, sizeof (zkey), "%s-%llu", 1299 VDEV_REMOVAL_ZAP_OBJS, (u_longlong_t)vd->vdev_leaf_zap); 1300 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap); 1301 } 1302 1303 for (uint64_t id = 0; id < vd->vdev_children; id++) { 1304 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist); 1305 } 1306 } 1307 1308 static void 1309 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg) 1310 { 1311 vdev_t *ivd; 1312 dmu_tx_t *tx; 1313 spa_t *spa = vd->vdev_spa; 1314 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1315 1316 /* 1317 * First, build a list of leaf zaps to be destroyed. 1318 * This is passed to the sync context thread, 1319 * which does the actual unlinking. 1320 */ 1321 svr->svr_zaplist = fnvlist_alloc(); 1322 vdev_remove_enlist_zaps(vd, svr->svr_zaplist); 1323 1324 ivd = vdev_add_parent(vd, &vdev_indirect_ops); 1325 ivd->vdev_removing = 0; 1326 1327 vd->vdev_leaf_zap = 0; 1328 1329 vdev_remove_child(ivd, vd); 1330 vdev_compact_children(ivd); 1331 1332 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 1333 1334 mutex_enter(&svr->svr_lock); 1335 svr->svr_thread = NULL; 1336 cv_broadcast(&svr->svr_cv); 1337 mutex_exit(&svr->svr_lock); 1338 1339 /* After this, we can not use svr. */ 1340 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1341 dsl_sync_task_nowait(spa->spa_dsl_pool, 1342 vdev_remove_complete_sync, svr, tx); 1343 dmu_tx_commit(tx); 1344 } 1345 1346 /* 1347 * Complete the removal of a toplevel vdev. This is called in open 1348 * context by the removal thread after we have copied all vdev's data. 1349 */ 1350 static void 1351 vdev_remove_complete(spa_t *spa) 1352 { 1353 uint64_t txg; 1354 1355 /* 1356 * Wait for any deferred frees to be synced before we call 1357 * vdev_metaslab_fini() 1358 */ 1359 txg_wait_synced(spa->spa_dsl_pool, 0); 1360 txg = spa_vdev_enter(spa); 1361 vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id); 1362 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 1363 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1364 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); 1365 vdev_rebuild_stop_wait(vd); 1366 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL); 1367 1368 sysevent_t *ev = spa_event_create(spa, vd, NULL, 1369 ESC_ZFS_VDEV_REMOVE_DEV); 1370 1371 zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu", 1372 (u_longlong_t)vd->vdev_id, (u_longlong_t)txg); 1373 1374 /* the vdev is no longer part of the dspace */ 1375 vdev_update_nonallocating_space(vd, B_FALSE); 1376 1377 /* 1378 * Discard allocation state. 1379 */ 1380 if (vd->vdev_mg != NULL) { 1381 vdev_metaslab_fini(vd); 1382 metaslab_group_destroy(vd->vdev_mg); 1383 vd->vdev_mg = NULL; 1384 } 1385 if (vd->vdev_log_mg != NULL) { 1386 ASSERT0(vd->vdev_ms_count); 1387 metaslab_group_destroy(vd->vdev_log_mg); 1388 vd->vdev_log_mg = NULL; 1389 } 1390 ASSERT0(vd->vdev_stat.vs_space); 1391 ASSERT0(vd->vdev_stat.vs_dspace); 1392 1393 vdev_remove_replace_with_indirect(vd, txg); 1394 1395 /* 1396 * We now release the locks, allowing spa_sync to run and finish the 1397 * removal via vdev_remove_complete_sync in syncing context. 1398 * 1399 * Note that we hold on to the vdev_t that has been replaced. Since 1400 * it isn't part of the vdev tree any longer, it can't be concurrently 1401 * manipulated, even while we don't have the config lock. 1402 */ 1403 (void) spa_vdev_exit(spa, NULL, txg, 0); 1404 1405 /* 1406 * Top ZAP should have been transferred to the indirect vdev in 1407 * vdev_remove_replace_with_indirect. 1408 */ 1409 ASSERT0(vd->vdev_top_zap); 1410 1411 /* 1412 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect. 1413 */ 1414 ASSERT0(vd->vdev_leaf_zap); 1415 1416 txg = spa_vdev_enter(spa); 1417 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 1418 /* 1419 * Request to update the config and the config cachefile. 1420 */ 1421 vdev_config_dirty(spa->spa_root_vdev); 1422 (void) spa_vdev_exit(spa, vd, txg, 0); 1423 1424 if (ev != NULL) 1425 spa_event_post(ev); 1426 } 1427 1428 /* 1429 * Evacuates a segment of size at most max_alloc from the vdev 1430 * via repeated calls to spa_vdev_copy_segment. If an allocation 1431 * fails, the pool is probably too fragmented to handle such a 1432 * large size, so decrease max_alloc so that the caller will not try 1433 * this size again this txg. 1434 */ 1435 static void 1436 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca, 1437 uint64_t *max_alloc, dmu_tx_t *tx) 1438 { 1439 uint64_t txg = dmu_tx_get_txg(tx); 1440 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1441 1442 mutex_enter(&svr->svr_lock); 1443 1444 /* 1445 * Determine how big of a chunk to copy. We can allocate up 1446 * to max_alloc bytes, and we can span up to vdev_removal_max_span 1447 * bytes of unallocated space at a time. "segs" will track the 1448 * allocated segments that we are copying. We may also be copying 1449 * free segments (of up to vdev_removal_max_span bytes). 1450 */ 1451 zfs_range_tree_t *segs = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, 1452 NULL, 0, 0); 1453 for (;;) { 1454 zfs_range_tree_t *rt = svr->svr_allocd_segs; 1455 zfs_range_seg_t *rs = zfs_range_tree_first(rt); 1456 1457 if (rs == NULL) 1458 break; 1459 1460 uint64_t seg_length; 1461 1462 if (zfs_range_tree_is_empty(segs)) { 1463 /* need to truncate the first seg based on max_alloc */ 1464 seg_length = MIN(zfs_rs_get_end(rs, rt) - 1465 zfs_rs_get_start(rs, rt), *max_alloc); 1466 } else { 1467 if (zfs_rs_get_start(rs, rt) - zfs_range_tree_max(segs) 1468 > vdev_removal_max_span) { 1469 /* 1470 * Including this segment would cause us to 1471 * copy a larger unneeded chunk than is allowed. 1472 */ 1473 break; 1474 } else if (zfs_rs_get_end(rs, rt) - 1475 zfs_range_tree_min(segs) > *max_alloc) { 1476 /* 1477 * This additional segment would extend past 1478 * max_alloc. Rather than splitting this 1479 * segment, leave it for the next mapping. 1480 */ 1481 break; 1482 } else { 1483 seg_length = zfs_rs_get_end(rs, rt) - 1484 zfs_rs_get_start(rs, rt); 1485 } 1486 } 1487 1488 zfs_range_tree_add(segs, zfs_rs_get_start(rs, rt), seg_length); 1489 zfs_range_tree_remove(svr->svr_allocd_segs, 1490 zfs_rs_get_start(rs, rt), seg_length); 1491 } 1492 1493 if (zfs_range_tree_is_empty(segs)) { 1494 mutex_exit(&svr->svr_lock); 1495 zfs_range_tree_destroy(segs); 1496 return; 1497 } 1498 1499 if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) { 1500 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync, 1501 svr, tx); 1502 } 1503 1504 svr->svr_max_offset_to_sync[txg & TXG_MASK] = zfs_range_tree_max(segs); 1505 1506 /* 1507 * Note: this is the amount of *allocated* space 1508 * that we are taking care of each txg. 1509 */ 1510 svr->svr_bytes_done[txg & TXG_MASK] += zfs_range_tree_space(segs); 1511 1512 mutex_exit(&svr->svr_lock); 1513 1514 zio_alloc_list_t zal; 1515 metaslab_trace_init(&zal); 1516 uint64_t thismax = SPA_MAXBLOCKSIZE; 1517 while (!zfs_range_tree_is_empty(segs)) { 1518 int error = spa_vdev_copy_segment(vd, 1519 segs, thismax, txg, vca, &zal); 1520 1521 if (error == ENOSPC) { 1522 /* 1523 * Cut our segment in half, and don't try this 1524 * segment size again this txg. Note that the 1525 * allocation size must be aligned to the highest 1526 * ashift in the pool, so that the allocation will 1527 * not be padded out to a multiple of the ashift, 1528 * which could cause us to think that this mapping 1529 * is larger than we intended. 1530 */ 1531 ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT); 1532 ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift); 1533 uint64_t attempted = 1534 MIN(zfs_range_tree_span(segs), thismax); 1535 thismax = P2ROUNDUP(attempted / 2, 1536 1 << spa->spa_max_ashift); 1537 /* 1538 * The minimum-size allocation can not fail. 1539 */ 1540 ASSERT3U(attempted, >, 1 << spa->spa_max_ashift); 1541 *max_alloc = attempted - (1 << spa->spa_max_ashift); 1542 } else { 1543 ASSERT0(error); 1544 1545 /* 1546 * We've performed an allocation, so reset the 1547 * alloc trace list. 1548 */ 1549 metaslab_trace_fini(&zal); 1550 metaslab_trace_init(&zal); 1551 } 1552 } 1553 metaslab_trace_fini(&zal); 1554 zfs_range_tree_destroy(segs); 1555 } 1556 1557 /* 1558 * The size of each removal mapping is limited by the tunable 1559 * zfs_remove_max_segment, but we must adjust this to be a multiple of the 1560 * pool's ashift, so that we don't try to split individual sectors regardless 1561 * of the tunable value. (Note that device removal requires that all devices 1562 * have the same ashift, so there's no difference between spa_min_ashift and 1563 * spa_max_ashift.) The raw tunable should not be used elsewhere. 1564 */ 1565 uint64_t 1566 spa_remove_max_segment(spa_t *spa) 1567 { 1568 return (P2ROUNDUP(zfs_remove_max_segment, 1 << spa->spa_max_ashift)); 1569 } 1570 1571 /* 1572 * The removal thread operates in open context. It iterates over all 1573 * allocated space in the vdev, by loading each metaslab's spacemap. 1574 * For each contiguous segment of allocated space (capping the segment 1575 * size at SPA_MAXBLOCKSIZE), we: 1576 * - Allocate space for it on another vdev. 1577 * - Create a new mapping from the old location to the new location 1578 * (as a record in svr_new_segments). 1579 * - Initiate a physical read zio to get the data off the removing disk. 1580 * - In the read zio's done callback, initiate a physical write zio to 1581 * write it to the new vdev. 1582 * Note that all of this will take effect when a particular TXG syncs. 1583 * The sync thread ensures that all the phys reads and writes for the syncing 1584 * TXG have completed (see spa_txg_zio) and writes the new mappings to disk 1585 * (see vdev_mapping_sync()). 1586 */ 1587 static __attribute__((noreturn)) void 1588 spa_vdev_remove_thread(void *arg) 1589 { 1590 spa_t *spa = arg; 1591 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1592 vdev_copy_arg_t vca; 1593 uint64_t max_alloc = spa_remove_max_segment(spa); 1594 uint64_t last_txg = 0; 1595 1596 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1597 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 1598 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1599 uint64_t start_offset = vdev_indirect_mapping_max_offset(vim); 1600 1601 ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops); 1602 ASSERT(vdev_is_concrete(vd)); 1603 ASSERT(vd->vdev_removing); 1604 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 1605 ASSERT(vim != NULL); 1606 1607 mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL); 1608 cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL); 1609 vca.vca_outstanding_bytes = 0; 1610 vca.vca_read_error_bytes = 0; 1611 vca.vca_write_error_bytes = 0; 1612 1613 zfs_range_tree_t *segs = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, 1614 NULL, 0, 0); 1615 1616 mutex_enter(&svr->svr_lock); 1617 1618 /* 1619 * Start from vim_max_offset so we pick up where we left off 1620 * if we are restarting the removal after opening the pool. 1621 */ 1622 uint64_t msi; 1623 for (msi = start_offset >> vd->vdev_ms_shift; 1624 msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) { 1625 metaslab_t *msp = vd->vdev_ms[msi]; 1626 ASSERT3U(msi, <=, vd->vdev_ms_count); 1627 1628 again: 1629 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs)); 1630 mutex_exit(&svr->svr_lock); 1631 1632 mutex_enter(&msp->ms_sync_lock); 1633 mutex_enter(&msp->ms_lock); 1634 1635 /* 1636 * Assert nothing in flight -- ms_*tree is empty. 1637 */ 1638 for (int i = 0; i < TXG_SIZE; i++) { 1639 ASSERT0(zfs_range_tree_space(msp->ms_allocating[i])); 1640 } 1641 1642 /* 1643 * If the metaslab has ever been synced (ms_sm != NULL), 1644 * read the allocated segments from the space map object 1645 * into svr_allocd_segs. Since we do this while holding 1646 * ms_lock and ms_sync_lock, concurrent frees (which 1647 * would have modified the space map) will wait for us 1648 * to finish loading the spacemap, and then take the 1649 * appropriate action (see free_from_removing_vdev()). 1650 */ 1651 if (msp->ms_sm != NULL) 1652 VERIFY0(space_map_load(msp->ms_sm, segs, SM_ALLOC)); 1653 1654 /* 1655 * We could not hold svr_lock while loading space map, or we 1656 * could hit deadlock in a ZIO pipeline, having to wait for 1657 * it. But we can not block for it here under metaslab locks, 1658 * or it would be a lock ordering violation. 1659 */ 1660 if (!mutex_tryenter(&svr->svr_lock)) { 1661 mutex_exit(&msp->ms_lock); 1662 mutex_exit(&msp->ms_sync_lock); 1663 zfs_range_tree_vacate(segs, NULL, NULL); 1664 mutex_enter(&svr->svr_lock); 1665 goto again; 1666 } 1667 1668 zfs_range_tree_swap(&segs, &svr->svr_allocd_segs); 1669 zfs_range_tree_walk(msp->ms_unflushed_allocs, 1670 zfs_range_tree_add, svr->svr_allocd_segs); 1671 zfs_range_tree_walk(msp->ms_unflushed_frees, 1672 zfs_range_tree_remove, svr->svr_allocd_segs); 1673 zfs_range_tree_walk(msp->ms_freeing, 1674 zfs_range_tree_remove, svr->svr_allocd_segs); 1675 1676 mutex_exit(&msp->ms_lock); 1677 mutex_exit(&msp->ms_sync_lock); 1678 1679 /* 1680 * When we are resuming from a paused removal (i.e. 1681 * when importing a pool with a removal in progress), 1682 * discard any state that we have already processed. 1683 */ 1684 zfs_range_tree_clear(svr->svr_allocd_segs, 0, start_offset); 1685 1686 vca.vca_msp = msp; 1687 zfs_dbgmsg("copying %llu segments for metaslab %llu", 1688 (u_longlong_t)zfs_btree_numnodes( 1689 &svr->svr_allocd_segs->rt_root), 1690 (u_longlong_t)msp->ms_id); 1691 1692 while (!svr->svr_thread_exit && 1693 !zfs_range_tree_is_empty(svr->svr_allocd_segs)) { 1694 1695 mutex_exit(&svr->svr_lock); 1696 1697 /* 1698 * We need to periodically drop the config lock so that 1699 * writers can get in. Additionally, we can't wait 1700 * for a txg to sync while holding a config lock 1701 * (since a waiting writer could cause a 3-way deadlock 1702 * with the sync thread, which also gets a config 1703 * lock for reader). So we can't hold the config lock 1704 * while calling dmu_tx_assign(). 1705 */ 1706 spa_config_exit(spa, SCL_CONFIG, FTAG); 1707 1708 /* 1709 * This delay will pause the removal around the point 1710 * specified by zfs_removal_suspend_progress. We do this 1711 * solely from the test suite or during debugging. 1712 */ 1713 while (zfs_removal_suspend_progress && 1714 !svr->svr_thread_exit) 1715 delay(hz); 1716 1717 mutex_enter(&vca.vca_lock); 1718 while (vca.vca_outstanding_bytes > 1719 zfs_remove_max_copy_bytes) { 1720 cv_wait(&vca.vca_cv, &vca.vca_lock); 1721 } 1722 mutex_exit(&vca.vca_lock); 1723 1724 dmu_tx_t *tx = 1725 dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 1726 1727 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | 1728 DMU_TX_SUSPEND)); 1729 uint64_t txg = dmu_tx_get_txg(tx); 1730 1731 /* 1732 * Reacquire the vdev_config lock. The vdev_t 1733 * that we're removing may have changed, e.g. due 1734 * to a vdev_attach or vdev_detach. 1735 */ 1736 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1737 vd = vdev_lookup_top(spa, svr->svr_vdev_id); 1738 1739 if (txg != last_txg) 1740 max_alloc = spa_remove_max_segment(spa); 1741 last_txg = txg; 1742 1743 spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx); 1744 1745 dmu_tx_commit(tx); 1746 mutex_enter(&svr->svr_lock); 1747 } 1748 1749 mutex_enter(&vca.vca_lock); 1750 if (zfs_removal_ignore_errors == 0 && 1751 (vca.vca_read_error_bytes > 0 || 1752 vca.vca_write_error_bytes > 0)) { 1753 svr->svr_thread_exit = B_TRUE; 1754 } 1755 mutex_exit(&vca.vca_lock); 1756 } 1757 1758 mutex_exit(&svr->svr_lock); 1759 1760 spa_config_exit(spa, SCL_CONFIG, FTAG); 1761 1762 zfs_range_tree_destroy(segs); 1763 1764 /* 1765 * Wait for all copies to finish before cleaning up the vca. 1766 */ 1767 txg_wait_synced(spa->spa_dsl_pool, 0); 1768 ASSERT0(vca.vca_outstanding_bytes); 1769 1770 mutex_destroy(&vca.vca_lock); 1771 cv_destroy(&vca.vca_cv); 1772 1773 if (svr->svr_thread_exit) { 1774 mutex_enter(&svr->svr_lock); 1775 zfs_range_tree_vacate(svr->svr_allocd_segs, NULL, NULL); 1776 svr->svr_thread = NULL; 1777 cv_broadcast(&svr->svr_cv); 1778 mutex_exit(&svr->svr_lock); 1779 1780 /* 1781 * During the removal process an unrecoverable read or write 1782 * error was encountered. The removal process must be 1783 * cancelled or this damage may become permanent. 1784 */ 1785 if (zfs_removal_ignore_errors == 0 && 1786 (vca.vca_read_error_bytes > 0 || 1787 vca.vca_write_error_bytes > 0)) { 1788 zfs_dbgmsg("canceling removal due to IO errors: " 1789 "[read_error_bytes=%llu] [write_error_bytes=%llu]", 1790 (u_longlong_t)vca.vca_read_error_bytes, 1791 (u_longlong_t)vca.vca_write_error_bytes); 1792 spa_vdev_remove_cancel_impl(spa); 1793 } 1794 } else { 1795 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs)); 1796 vdev_remove_complete(spa); 1797 } 1798 1799 thread_exit(); 1800 } 1801 1802 void 1803 spa_vdev_remove_suspend(spa_t *spa) 1804 { 1805 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1806 1807 if (svr == NULL) 1808 return; 1809 1810 mutex_enter(&svr->svr_lock); 1811 svr->svr_thread_exit = B_TRUE; 1812 while (svr->svr_thread != NULL) 1813 cv_wait(&svr->svr_cv, &svr->svr_lock); 1814 svr->svr_thread_exit = B_FALSE; 1815 mutex_exit(&svr->svr_lock); 1816 } 1817 1818 /* 1819 * Return true if the "allocating" property has been set to "off" 1820 */ 1821 static boolean_t 1822 vdev_prop_allocating_off(vdev_t *vd) 1823 { 1824 uint64_t objid = vd->vdev_top_zap; 1825 uint64_t allocating = 1; 1826 1827 /* no vdev property object => no props */ 1828 if (objid != 0) { 1829 spa_t *spa = vd->vdev_spa; 1830 objset_t *mos = spa->spa_meta_objset; 1831 1832 mutex_enter(&spa->spa_props_lock); 1833 (void) zap_lookup(mos, objid, "allocating", sizeof (uint64_t), 1834 1, &allocating); 1835 mutex_exit(&spa->spa_props_lock); 1836 } 1837 return (allocating == 0); 1838 } 1839 1840 static int 1841 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx) 1842 { 1843 (void) arg; 1844 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1845 1846 if (spa->spa_vdev_removal == NULL) 1847 return (ENOTACTIVE); 1848 return (0); 1849 } 1850 1851 /* 1852 * Cancel a removal by freeing all entries from the partial mapping 1853 * and marking the vdev as no longer being removing. 1854 */ 1855 static void 1856 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx) 1857 { 1858 (void) arg; 1859 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1860 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 1861 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 1862 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 1863 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1864 objset_t *mos = spa->spa_meta_objset; 1865 1866 ASSERT3P(svr->svr_thread, ==, NULL); 1867 1868 spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx); 1869 1870 boolean_t are_precise; 1871 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 1872 if (are_precise) { 1873 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 1874 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap, 1875 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx)); 1876 } 1877 1878 uint64_t obsolete_sm_object; 1879 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1880 if (obsolete_sm_object != 0) { 1881 ASSERT(vd->vdev_obsolete_sm != NULL); 1882 ASSERT3U(obsolete_sm_object, ==, 1883 space_map_object(vd->vdev_obsolete_sm)); 1884 1885 space_map_free(vd->vdev_obsolete_sm, tx); 1886 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap, 1887 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx)); 1888 space_map_close(vd->vdev_obsolete_sm); 1889 vd->vdev_obsolete_sm = NULL; 1890 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 1891 } 1892 for (int i = 0; i < TXG_SIZE; i++) { 1893 ASSERT(list_is_empty(&svr->svr_new_segments[i])); 1894 ASSERT3U(svr->svr_max_offset_to_sync[i], <=, 1895 vdev_indirect_mapping_max_offset(vim)); 1896 } 1897 1898 zfs_range_tree_t *segs = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, 1899 NULL, 0, 0); 1900 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) { 1901 metaslab_t *msp = vd->vdev_ms[msi]; 1902 1903 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim)) 1904 break; 1905 1906 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs)); 1907 1908 mutex_enter(&msp->ms_lock); 1909 1910 /* 1911 * Assert nothing in flight -- ms_*tree is empty. 1912 */ 1913 for (int i = 0; i < TXG_SIZE; i++) 1914 ASSERT0(zfs_range_tree_space(msp->ms_allocating[i])); 1915 for (int i = 0; i < TXG_DEFER_SIZE; i++) 1916 ASSERT0(zfs_range_tree_space(msp->ms_defer[i])); 1917 ASSERT0(zfs_range_tree_space(msp->ms_freed)); 1918 1919 if (msp->ms_sm != NULL) 1920 VERIFY0(space_map_load(msp->ms_sm, segs, SM_ALLOC)); 1921 1922 zfs_range_tree_walk(msp->ms_unflushed_allocs, 1923 zfs_range_tree_add, segs); 1924 zfs_range_tree_walk(msp->ms_unflushed_frees, 1925 zfs_range_tree_remove, segs); 1926 zfs_range_tree_walk(msp->ms_freeing, 1927 zfs_range_tree_remove, segs); 1928 mutex_exit(&msp->ms_lock); 1929 1930 /* 1931 * Clear everything past what has been synced, 1932 * because we have not allocated mappings for it yet. 1933 */ 1934 uint64_t syncd = vdev_indirect_mapping_max_offset(vim); 1935 uint64_t ms_end = msp->ms_start + msp->ms_size; 1936 if (ms_end > syncd) 1937 zfs_range_tree_clear(segs, syncd, ms_end - syncd); 1938 1939 zfs_range_tree_vacate(segs, free_mapped_segment_cb, vd); 1940 } 1941 zfs_range_tree_destroy(segs); 1942 1943 /* 1944 * Note: this must happen after we invoke free_mapped_segment_cb, 1945 * because it adds to the obsolete_segments. 1946 */ 1947 zfs_range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL); 1948 1949 ASSERT3U(vic->vic_mapping_object, ==, 1950 vdev_indirect_mapping_object(vd->vdev_indirect_mapping)); 1951 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 1952 vd->vdev_indirect_mapping = NULL; 1953 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx); 1954 vic->vic_mapping_object = 0; 1955 1956 ASSERT3U(vic->vic_births_object, ==, 1957 vdev_indirect_births_object(vd->vdev_indirect_births)); 1958 vdev_indirect_births_close(vd->vdev_indirect_births); 1959 vd->vdev_indirect_births = NULL; 1960 vdev_indirect_births_free(mos, vic->vic_births_object, tx); 1961 vic->vic_births_object = 0; 1962 1963 /* 1964 * We may have processed some frees from the removing vdev in this 1965 * txg, thus increasing svr_bytes_done; discard that here to 1966 * satisfy the assertions in spa_vdev_removal_destroy(). 1967 * Note that future txg's can not have any bytes_done, because 1968 * future TXG's are only modified from open context, and we have 1969 * already shut down the copying thread. 1970 */ 1971 svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0; 1972 spa_finish_removal(spa, DSS_CANCELED, tx); 1973 1974 vd->vdev_removing = B_FALSE; 1975 1976 if (!vdev_prop_allocating_off(vd)) { 1977 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER); 1978 vdev_activate(vd); 1979 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG); 1980 } 1981 1982 vdev_config_dirty(vd); 1983 1984 zfs_dbgmsg("canceled device removal for vdev %llu in %llu", 1985 (u_longlong_t)vd->vdev_id, (u_longlong_t)dmu_tx_get_txg(tx)); 1986 spa_history_log_internal(spa, "vdev remove canceled", tx, 1987 "%s vdev %llu %s", spa_name(spa), 1988 (u_longlong_t)vd->vdev_id, 1989 (vd->vdev_path != NULL) ? vd->vdev_path : "-"); 1990 } 1991 1992 static int 1993 spa_vdev_remove_cancel_impl(spa_t *spa) 1994 { 1995 int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check, 1996 spa_vdev_remove_cancel_sync, NULL, 0, 1997 ZFS_SPACE_CHECK_EXTRA_RESERVED); 1998 return (error); 1999 } 2000 2001 int 2002 spa_vdev_remove_cancel(spa_t *spa) 2003 { 2004 spa_vdev_remove_suspend(spa); 2005 2006 if (spa->spa_vdev_removal == NULL) 2007 return (ENOTACTIVE); 2008 2009 return (spa_vdev_remove_cancel_impl(spa)); 2010 } 2011 2012 void 2013 svr_sync(spa_t *spa, dmu_tx_t *tx) 2014 { 2015 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 2016 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 2017 2018 if (svr == NULL) 2019 return; 2020 2021 /* 2022 * This check is necessary so that we do not dirty the 2023 * DIRECTORY_OBJECT via spa_sync_removing_state() when there 2024 * is nothing to do. Dirtying it every time would prevent us 2025 * from syncing-to-convergence. 2026 */ 2027 if (svr->svr_bytes_done[txgoff] == 0) 2028 return; 2029 2030 /* 2031 * Update progress accounting. 2032 */ 2033 spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff]; 2034 svr->svr_bytes_done[txgoff] = 0; 2035 2036 spa_sync_removing_state(spa, tx); 2037 } 2038 2039 static void 2040 vdev_remove_make_hole_and_free(vdev_t *vd) 2041 { 2042 uint64_t id = vd->vdev_id; 2043 spa_t *spa = vd->vdev_spa; 2044 vdev_t *rvd = spa->spa_root_vdev; 2045 2046 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2047 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2048 2049 vdev_free(vd); 2050 2051 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 2052 vdev_add_child(rvd, vd); 2053 vdev_config_dirty(rvd); 2054 2055 /* 2056 * Reassess the health of our root vdev. 2057 */ 2058 vdev_reopen(rvd); 2059 } 2060 2061 /* 2062 * Remove a log device. The config lock is held for the specified TXG. 2063 */ 2064 static int 2065 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg) 2066 { 2067 metaslab_group_t *mg = vd->vdev_mg; 2068 spa_t *spa = vd->vdev_spa; 2069 int error = 0; 2070 2071 ASSERT(vd->vdev_islog); 2072 ASSERT(vd == vd->vdev_top); 2073 ASSERT3P(vd->vdev_log_mg, ==, NULL); 2074 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2075 2076 /* 2077 * Stop allocating from this vdev. 2078 */ 2079 metaslab_group_passivate(mg); 2080 2081 /* 2082 * Wait for the youngest allocations and frees to sync, 2083 * and then wait for the deferral of those frees to finish. 2084 */ 2085 spa_vdev_config_exit(spa, NULL, 2086 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 2087 2088 /* 2089 * Cancel any initialize or TRIM which was in progress. 2090 */ 2091 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED); 2092 vdev_trim_stop_all(vd, VDEV_TRIM_CANCELED); 2093 vdev_autotrim_stop_wait(vd); 2094 2095 /* 2096 * Evacuate the device. We don't hold the config lock as 2097 * writer since we need to do I/O but we do keep the 2098 * spa_namespace_lock held. Once this completes the device 2099 * should no longer have any blocks allocated on it. 2100 */ 2101 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2102 if (vd->vdev_stat.vs_alloc != 0) 2103 error = spa_reset_logs(spa); 2104 2105 *txg = spa_vdev_config_enter(spa); 2106 2107 if (error != 0) { 2108 metaslab_group_activate(mg); 2109 ASSERT3P(vd->vdev_log_mg, ==, NULL); 2110 return (error); 2111 } 2112 ASSERT0(vd->vdev_stat.vs_alloc); 2113 2114 /* 2115 * The evacuation succeeded. Remove any remaining MOS metadata 2116 * associated with this vdev, and wait for these changes to sync. 2117 */ 2118 vd->vdev_removing = B_TRUE; 2119 2120 vdev_dirty_leaves(vd, VDD_DTL, *txg); 2121 vdev_config_dirty(vd); 2122 2123 /* 2124 * When the log space map feature is enabled we look at 2125 * the vdev's top_zap to find the on-disk flush data of 2126 * the metaslab we just flushed. Thus, while removing a 2127 * log vdev we make sure to call vdev_metaslab_fini() 2128 * first, which removes all metaslabs of this vdev from 2129 * spa_metaslabs_by_flushed before vdev_remove_empty() 2130 * destroys the top_zap of this log vdev. 2131 * 2132 * This avoids the scenario where we flush a metaslab 2133 * from the log vdev being removed that doesn't have a 2134 * top_zap and end up failing to lookup its on-disk flush 2135 * data. 2136 * 2137 * We don't call metaslab_group_destroy() right away 2138 * though (it will be called in vdev_free() later) as 2139 * during metaslab_sync() of metaslabs from other vdevs 2140 * we may touch the metaslab group of this vdev through 2141 * metaslab_class_histogram_verify() 2142 */ 2143 vdev_metaslab_fini(vd); 2144 2145 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG); 2146 *txg = spa_vdev_config_enter(spa); 2147 2148 sysevent_t *ev = spa_event_create(spa, vd, NULL, 2149 ESC_ZFS_VDEV_REMOVE_DEV); 2150 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2151 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2152 2153 /* The top ZAP should have been destroyed by vdev_remove_empty. */ 2154 ASSERT0(vd->vdev_top_zap); 2155 /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */ 2156 ASSERT0(vd->vdev_leaf_zap); 2157 2158 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 2159 2160 if (list_link_active(&vd->vdev_state_dirty_node)) 2161 vdev_state_clean(vd); 2162 if (list_link_active(&vd->vdev_config_dirty_node)) 2163 vdev_config_clean(vd); 2164 2165 ASSERT0(vd->vdev_stat.vs_alloc); 2166 2167 /* 2168 * Clean up the vdev namespace. 2169 */ 2170 vdev_remove_make_hole_and_free(vd); 2171 2172 if (ev != NULL) 2173 spa_event_post(ev); 2174 2175 return (0); 2176 } 2177 2178 static int 2179 spa_vdev_remove_top_check(vdev_t *vd) 2180 { 2181 spa_t *spa = vd->vdev_spa; 2182 2183 if (vd != vd->vdev_top) 2184 return (SET_ERROR(ENOTSUP)); 2185 2186 if (!vdev_is_concrete(vd)) 2187 return (SET_ERROR(ENOTSUP)); 2188 2189 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL)) 2190 return (SET_ERROR(ENOTSUP)); 2191 2192 /* 2193 * This device is already being removed 2194 */ 2195 if (vd->vdev_removing) 2196 return (SET_ERROR(EALREADY)); 2197 2198 metaslab_class_t *mc = vd->vdev_mg->mg_class; 2199 metaslab_class_t *normal = spa_normal_class(spa); 2200 if (mc != normal) { 2201 /* 2202 * Space allocated from the special (or dedup) class is 2203 * included in the DMU's space usage, but it's not included 2204 * in spa_dspace (or dsl_pool_adjustedsize()). Therefore 2205 * there is always at least as much free space in the normal 2206 * class, as is allocated from the special (and dedup) class. 2207 * As a backup check, we will return ENOSPC if this is 2208 * violated. See also spa_update_dspace(). 2209 */ 2210 uint64_t available = metaslab_class_get_space(normal) - 2211 metaslab_class_get_alloc(normal); 2212 ASSERT3U(available, >=, vd->vdev_stat.vs_alloc); 2213 if (available < vd->vdev_stat.vs_alloc) 2214 return (SET_ERROR(ENOSPC)); 2215 } else if (!vd->vdev_noalloc) { 2216 /* available space in the pool's normal class */ 2217 uint64_t available = dsl_dir_space_available( 2218 spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE); 2219 if (available < vd->vdev_stat.vs_dspace) 2220 return (SET_ERROR(ENOSPC)); 2221 } 2222 2223 /* 2224 * There can not be a removal in progress. 2225 */ 2226 if (spa->spa_removing_phys.sr_state == DSS_SCANNING) 2227 return (SET_ERROR(EBUSY)); 2228 2229 /* 2230 * The device must have all its data. 2231 */ 2232 if (!vdev_dtl_empty(vd, DTL_MISSING) || 2233 !vdev_dtl_empty(vd, DTL_OUTAGE)) 2234 return (SET_ERROR(EBUSY)); 2235 2236 /* 2237 * The device must be healthy. 2238 */ 2239 if (!vdev_readable(vd)) 2240 return (SET_ERROR(EIO)); 2241 2242 /* 2243 * All vdevs in normal class must have the same ashift. 2244 */ 2245 if (spa->spa_max_ashift != spa->spa_min_ashift) { 2246 return (SET_ERROR(EINVAL)); 2247 } 2248 2249 /* 2250 * A removed special/dedup vdev must have same ashift as normal class. 2251 */ 2252 ASSERT(!vd->vdev_islog); 2253 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE && 2254 vd->vdev_ashift != spa->spa_max_ashift) { 2255 return (SET_ERROR(EINVAL)); 2256 } 2257 2258 /* 2259 * All vdevs in normal class must have the same ashift 2260 * and not be raidz or draid. 2261 */ 2262 vdev_t *rvd = spa->spa_root_vdev; 2263 for (uint64_t id = 0; id < rvd->vdev_children; id++) { 2264 vdev_t *cvd = rvd->vdev_child[id]; 2265 2266 /* 2267 * A removed special/dedup vdev must have the same ashift 2268 * across all vdevs in its class. 2269 */ 2270 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE && 2271 cvd->vdev_alloc_bias == vd->vdev_alloc_bias && 2272 cvd->vdev_ashift != vd->vdev_ashift) { 2273 return (SET_ERROR(EINVAL)); 2274 } 2275 if (cvd->vdev_ashift != 0 && 2276 cvd->vdev_alloc_bias == VDEV_BIAS_NONE) 2277 ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift); 2278 if (!vdev_is_concrete(cvd)) 2279 continue; 2280 if (vdev_get_nparity(cvd) != 0) 2281 return (SET_ERROR(EINVAL)); 2282 /* 2283 * Need the mirror to be mirror of leaf vdevs only 2284 */ 2285 if (cvd->vdev_ops == &vdev_mirror_ops) { 2286 for (uint64_t cid = 0; 2287 cid < cvd->vdev_children; cid++) { 2288 if (!cvd->vdev_child[cid]->vdev_ops-> 2289 vdev_op_leaf) 2290 return (SET_ERROR(EINVAL)); 2291 } 2292 } 2293 } 2294 2295 return (0); 2296 } 2297 2298 /* 2299 * Initiate removal of a top-level vdev, reducing the total space in the pool. 2300 * The config lock is held for the specified TXG. Once initiated, 2301 * evacuation of all allocated space (copying it to other vdevs) happens 2302 * in the background (see spa_vdev_remove_thread()), and can be canceled 2303 * (see spa_vdev_remove_cancel()). If successful, the vdev will 2304 * be transformed to an indirect vdev (see spa_vdev_remove_complete()). 2305 */ 2306 static int 2307 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg) 2308 { 2309 spa_t *spa = vd->vdev_spa; 2310 boolean_t set_noalloc = B_FALSE; 2311 int error; 2312 2313 /* 2314 * Check for errors up-front, so that we don't waste time 2315 * passivating the metaslab group and clearing the ZIL if there 2316 * are errors. 2317 */ 2318 error = spa_vdev_remove_top_check(vd); 2319 2320 /* 2321 * Stop allocating from this vdev. Note that we must check 2322 * that this is not the only device in the pool before 2323 * passivating, otherwise we will not be able to make 2324 * progress because we can't allocate from any vdevs. 2325 * The above check for sufficient free space serves this 2326 * purpose. 2327 */ 2328 if (error == 0 && !vd->vdev_noalloc) { 2329 set_noalloc = B_TRUE; 2330 error = vdev_passivate(vd, txg); 2331 } 2332 2333 if (error != 0) 2334 return (error); 2335 2336 /* 2337 * We stop any initializing and TRIM that is currently in progress 2338 * but leave the state as "active". This will allow the process to 2339 * resume if the removal is canceled sometime later. 2340 */ 2341 2342 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG); 2343 2344 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE); 2345 vdev_trim_stop_all(vd, VDEV_TRIM_ACTIVE); 2346 vdev_autotrim_stop_wait(vd); 2347 2348 *txg = spa_vdev_config_enter(spa); 2349 2350 /* 2351 * Things might have changed while the config lock was dropped 2352 * (e.g. space usage). Check for errors again. 2353 */ 2354 error = spa_vdev_remove_top_check(vd); 2355 2356 if (error != 0) { 2357 if (set_noalloc) 2358 vdev_activate(vd); 2359 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART); 2360 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART); 2361 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART); 2362 return (error); 2363 } 2364 2365 vd->vdev_removing = B_TRUE; 2366 2367 vdev_dirty_leaves(vd, VDD_DTL, *txg); 2368 vdev_config_dirty(vd); 2369 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg); 2370 dsl_sync_task_nowait(spa->spa_dsl_pool, 2371 vdev_remove_initiate_sync, (void *)(uintptr_t)vd->vdev_id, tx); 2372 dmu_tx_commit(tx); 2373 2374 return (0); 2375 } 2376 2377 /* 2378 * Remove a device from the pool. 2379 * 2380 * Removing a device from the vdev namespace requires several steps 2381 * and can take a significant amount of time. As a result we use 2382 * the spa_vdev_config_[enter/exit] functions which allow us to 2383 * grab and release the spa_config_lock while still holding the namespace 2384 * lock. During each step the configuration is synced out. 2385 */ 2386 int 2387 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 2388 { 2389 vdev_t *vd; 2390 nvlist_t **spares, **l2cache, *nv; 2391 uint64_t txg = 0; 2392 uint_t nspares, nl2cache; 2393 int error = 0, error_log; 2394 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 2395 sysevent_t *ev = NULL; 2396 const char *vd_type = NULL; 2397 char *vd_path = NULL; 2398 2399 ASSERT(spa_writeable(spa)); 2400 2401 if (!locked) 2402 txg = spa_vdev_enter(spa); 2403 2404 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2405 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 2406 error = (spa_has_checkpoint(spa)) ? 2407 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 2408 2409 if (!locked) 2410 return (spa_vdev_exit(spa, NULL, txg, error)); 2411 2412 return (error); 2413 } 2414 2415 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 2416 2417 if (spa->spa_spares.sav_vdevs != NULL && 2418 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2419 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 2420 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 2421 /* 2422 * Only remove the hot spare if it's not currently in use 2423 * in this pool. 2424 */ 2425 if (vd == NULL || unspare) { 2426 const char *type; 2427 boolean_t draid_spare = B_FALSE; 2428 2429 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) 2430 == 0 && strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0) 2431 draid_spare = B_TRUE; 2432 2433 if (vd == NULL && draid_spare) { 2434 error = SET_ERROR(ENOTSUP); 2435 } else { 2436 if (vd == NULL) 2437 vd = spa_lookup_by_guid(spa, 2438 guid, B_TRUE); 2439 ev = spa_event_create(spa, vd, NULL, 2440 ESC_ZFS_VDEV_REMOVE_AUX); 2441 2442 vd_type = VDEV_TYPE_SPARE; 2443 vd_path = spa_strdup(fnvlist_lookup_string( 2444 nv, ZPOOL_CONFIG_PATH)); 2445 spa_vdev_remove_aux(spa->spa_spares.sav_config, 2446 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 2447 spa_load_spares(spa); 2448 spa->spa_spares.sav_sync = B_TRUE; 2449 } 2450 } else { 2451 error = SET_ERROR(EBUSY); 2452 } 2453 } else if (spa->spa_l2cache.sav_vdevs != NULL && 2454 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 2455 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 2456 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 2457 vd_type = VDEV_TYPE_L2CACHE; 2458 vd_path = spa_strdup(fnvlist_lookup_string( 2459 nv, ZPOOL_CONFIG_PATH)); 2460 /* 2461 * Cache devices can always be removed. 2462 */ 2463 vd = spa_lookup_by_guid(spa, guid, B_TRUE); 2464 2465 /* 2466 * Stop trimming the cache device. We need to release the 2467 * config lock to allow the syncing of TRIM transactions 2468 * without releasing the spa_namespace_lock. The same 2469 * strategy is employed in spa_vdev_remove_top(). 2470 */ 2471 spa_vdev_config_exit(spa, NULL, 2472 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 2473 mutex_enter(&vd->vdev_trim_lock); 2474 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL); 2475 mutex_exit(&vd->vdev_trim_lock); 2476 txg = spa_vdev_config_enter(spa); 2477 2478 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX); 2479 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 2480 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 2481 spa_load_l2cache(spa); 2482 spa->spa_l2cache.sav_sync = B_TRUE; 2483 } else if (vd != NULL && vd->vdev_islog) { 2484 ASSERT(!locked); 2485 vd_type = VDEV_TYPE_LOG; 2486 vd_path = spa_strdup((vd->vdev_path != NULL) ? 2487 vd->vdev_path : "-"); 2488 error = spa_vdev_remove_log(vd, &txg); 2489 } else if (vd != NULL) { 2490 ASSERT(!locked); 2491 error = spa_vdev_remove_top(vd, &txg); 2492 } else { 2493 /* 2494 * There is no vdev of any kind with the specified guid. 2495 */ 2496 error = SET_ERROR(ENOENT); 2497 } 2498 2499 error_log = error; 2500 2501 if (!locked) 2502 error = spa_vdev_exit(spa, NULL, txg, error); 2503 2504 /* 2505 * Logging must be done outside the spa config lock. Otherwise, 2506 * this code path could end up holding the spa config lock while 2507 * waiting for a txg_sync so it can write to the internal log. 2508 * Doing that would prevent the txg sync from actually happening, 2509 * causing a deadlock. 2510 */ 2511 if (error_log == 0 && vd_type != NULL && vd_path != NULL) { 2512 spa_history_log_internal(spa, "vdev remove", NULL, 2513 "%s vdev (%s) %s", spa_name(spa), vd_type, vd_path); 2514 } 2515 if (vd_path != NULL) 2516 spa_strfree(vd_path); 2517 2518 if (ev != NULL) 2519 spa_event_post(ev); 2520 2521 return (error); 2522 } 2523 2524 int 2525 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs) 2526 { 2527 prs->prs_state = spa->spa_removing_phys.sr_state; 2528 2529 if (prs->prs_state == DSS_NONE) 2530 return (SET_ERROR(ENOENT)); 2531 2532 prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev; 2533 prs->prs_start_time = spa->spa_removing_phys.sr_start_time; 2534 prs->prs_end_time = spa->spa_removing_phys.sr_end_time; 2535 prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy; 2536 prs->prs_copied = spa->spa_removing_phys.sr_copied; 2537 2538 prs->prs_mapping_memory = 0; 2539 uint64_t indirect_vdev_id = 2540 spa->spa_removing_phys.sr_prev_indirect_vdev; 2541 while (indirect_vdev_id != -1) { 2542 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id]; 2543 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 2544 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 2545 2546 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 2547 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim); 2548 indirect_vdev_id = vic->vic_prev_indirect_vdev; 2549 } 2550 2551 return (0); 2552 } 2553 2554 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_ignore_errors, INT, ZMOD_RW, 2555 "Ignore hard IO errors when removing device"); 2556 2557 ZFS_MODULE_PARAM(zfs_vdev, zfs_, remove_max_segment, UINT, ZMOD_RW, 2558 "Largest contiguous segment to allocate when removing device"); 2559 2560 ZFS_MODULE_PARAM(zfs_vdev, vdev_, removal_max_span, UINT, ZMOD_RW, 2561 "Largest span of free chunks a remap segment can span"); 2562 2563 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_suspend_progress, UINT, ZMOD_RW, 2564 "Pause device removal after this many bytes are copied " 2565 "(debug use only - causes removal to hang)"); 2566 2567 EXPORT_SYMBOL(free_from_removing_vdev); 2568 EXPORT_SYMBOL(spa_removal_get_stats); 2569 EXPORT_SYMBOL(spa_remove_init); 2570 EXPORT_SYMBOL(spa_restart_removal); 2571 EXPORT_SYMBOL(spa_vdev_removal_destroy); 2572 EXPORT_SYMBOL(spa_vdev_remove); 2573 EXPORT_SYMBOL(spa_vdev_remove_cancel); 2574 EXPORT_SYMBOL(spa_vdev_remove_suspend); 2575 EXPORT_SYMBOL(svr_sync); 2576