xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_rebuild.c (revision b197d4b893974c9eb4d7b38704c6d5c486235d6f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  *
23  * Copyright (c) 2018, Intel Corporation.
24  * Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
25  */
26 
27 #include <sys/vdev_impl.h>
28 #include <sys/vdev_draid.h>
29 #include <sys/dsl_scan.h>
30 #include <sys/spa_impl.h>
31 #include <sys/metaslab_impl.h>
32 #include <sys/vdev_rebuild.h>
33 #include <sys/zio.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/arc.h>
36 #include <sys/zap.h>
37 
38 /*
39  * This file contains the sequential reconstruction implementation for
40  * resilvering.  This form of resilvering is internally referred to as device
41  * rebuild to avoid conflating it with the traditional healing reconstruction
42  * performed by the dsl scan code.
43  *
44  * When replacing a device, or scrubbing the pool, ZFS has historically used
45  * a process called resilvering which is a form of healing reconstruction.
46  * This approach has the advantage that as blocks are read from disk their
47  * checksums can be immediately verified and the data repaired.  Unfortunately,
48  * it also results in a random IO pattern to the disk even when extra care
49  * is taken to sequentialize the IO as much as possible.  This substantially
50  * increases the time required to resilver the pool and restore redundancy.
51  *
52  * For mirrored devices it's possible to implement an alternate sequential
53  * reconstruction strategy when resilvering.  Sequential reconstruction
54  * behaves like a traditional RAID rebuild and reconstructs a device in LBA
55  * order without verifying the checksum.  After this phase completes a second
56  * scrub phase is started to verify all of the checksums.  This two phase
57  * process will take longer than the healing reconstruction described above.
58  * However, it has that advantage that after the reconstruction first phase
59  * completes redundancy has been restored.  At this point the pool can incur
60  * another device failure without risking data loss.
61  *
62  * There are a few noteworthy limitations and other advantages of resilvering
63  * using sequential reconstruction vs healing reconstruction.
64  *
65  * Limitations:
66  *
67  *   - Sequential reconstruction is not possible on RAIDZ due to its
68  *     variable stripe width.  Note dRAID uses a fixed stripe width which
69  *     avoids this issue, but comes at the expense of some usable capacity.
70  *
71  *   - Block checksums are not verified during sequential reconstruction.
72  *     Similar to traditional RAID the parity/mirror data is reconstructed
73  *     but cannot be immediately double checked.  For this reason when the
74  *     last active resilver completes the pool is automatically scrubbed
75  *     by default.
76  *
77  *   - Deferred resilvers using sequential reconstruction are not currently
78  *     supported.  When adding another vdev to an active top-level resilver
79  *     it must be restarted.
80  *
81  * Advantages:
82  *
83  *   - Sequential reconstruction is performed in LBA order which may be faster
84  *     than healing reconstruction particularly when using HDDs (or
85  *     especially with SMR devices).  Only allocated capacity is resilvered.
86  *
87  *   - Sequential reconstruction is not constrained by ZFS block boundaries.
88  *     This allows it to issue larger IOs to disk which span multiple blocks
89  *     allowing all of these logical blocks to be repaired with a single IO.
90  *
91  *   - Unlike a healing resilver or scrub which are pool wide operations,
92  *     sequential reconstruction is handled by the top-level vdevs.  This
93  *     allows for it to be started or canceled on a top-level vdev without
94  *     impacting any other top-level vdevs in the pool.
95  *
96  *   - Data only referenced by a pool checkpoint will be repaired because
97  *     that space is reflected in the space maps.  This differs for a
98  *     healing resilver or scrub which will not repair that data.
99  */
100 
101 
102 /*
103  * Size of rebuild reads; defaults to 1MiB per data disk and is capped at
104  * SPA_MAXBLOCKSIZE.
105  */
106 static unsigned long zfs_rebuild_max_segment = 1024 * 1024;
107 
108 /*
109  * Maximum number of parallelly executed bytes per leaf vdev caused by a
110  * sequential resilver.  We attempt to strike a balance here between keeping
111  * the vdev queues full of I/Os at all times and not overflowing the queues
112  * to cause long latency, which would cause long txg sync times.
113  *
114  * A large default value can be safely used here because the default target
115  * segment size is also large (zfs_rebuild_max_segment=1M).  This helps keep
116  * the queue depth short.
117  *
118  * 32MB was selected as the default value to achieve good performance with
119  * a large 90-drive dRAID HDD configuration (draid2:8d:90c:2s). A sequential
120  * rebuild was unable to saturate all of the drives using smaller values.
121  * With a value of 32MB the sequential resilver write rate was measured at
122  * 800MB/s sustained while rebuilding to a distributed spare.
123  */
124 static unsigned long zfs_rebuild_vdev_limit = 32 << 20;
125 
126 /*
127  * Automatically start a pool scrub when the last active sequential resilver
128  * completes in order to verify the checksums of all blocks which have been
129  * resilvered. This option is enabled by default and is strongly recommended.
130  */
131 static int zfs_rebuild_scrub_enabled = 1;
132 
133 /*
134  * For vdev_rebuild_initiate_sync() and vdev_rebuild_reset_sync().
135  */
136 static __attribute__((noreturn)) void vdev_rebuild_thread(void *arg);
137 
138 /*
139  * Clear the per-vdev rebuild bytes value for a vdev tree.
140  */
141 static void
142 clear_rebuild_bytes(vdev_t *vd)
143 {
144 	vdev_stat_t *vs = &vd->vdev_stat;
145 
146 	for (uint64_t i = 0; i < vd->vdev_children; i++)
147 		clear_rebuild_bytes(vd->vdev_child[i]);
148 
149 	mutex_enter(&vd->vdev_stat_lock);
150 	vs->vs_rebuild_processed = 0;
151 	mutex_exit(&vd->vdev_stat_lock);
152 }
153 
154 /*
155  * Determines whether a vdev_rebuild_thread() should be stopped.
156  */
157 static boolean_t
158 vdev_rebuild_should_stop(vdev_t *vd)
159 {
160 	return (!vdev_writeable(vd) || vd->vdev_removing ||
161 	    vd->vdev_rebuild_exit_wanted ||
162 	    vd->vdev_rebuild_cancel_wanted ||
163 	    vd->vdev_rebuild_reset_wanted);
164 }
165 
166 /*
167  * Determine if the rebuild should be canceled.  This may happen when all
168  * vdevs with MISSING DTLs are detached.
169  */
170 static boolean_t
171 vdev_rebuild_should_cancel(vdev_t *vd)
172 {
173 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
174 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
175 
176 	if (!vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg))
177 		return (B_TRUE);
178 
179 	return (B_FALSE);
180 }
181 
182 /*
183  * The sync task for updating the on-disk state of a rebuild.  This is
184  * scheduled by vdev_rebuild_range().
185  */
186 static void
187 vdev_rebuild_update_sync(void *arg, dmu_tx_t *tx)
188 {
189 	int vdev_id = (uintptr_t)arg;
190 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
191 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
192 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
193 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
194 	uint64_t txg = dmu_tx_get_txg(tx);
195 
196 	mutex_enter(&vd->vdev_rebuild_lock);
197 
198 	if (vr->vr_scan_offset[txg & TXG_MASK] > 0) {
199 		vrp->vrp_last_offset = vr->vr_scan_offset[txg & TXG_MASK];
200 		vr->vr_scan_offset[txg & TXG_MASK] = 0;
201 	}
202 
203 	vrp->vrp_scan_time_ms = vr->vr_prev_scan_time_ms +
204 	    NSEC2MSEC(gethrtime() - vr->vr_pass_start_time);
205 
206 	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
207 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
208 	    REBUILD_PHYS_ENTRIES, vrp, tx));
209 
210 	mutex_exit(&vd->vdev_rebuild_lock);
211 }
212 
213 /*
214  * Initialize the on-disk state for a new rebuild, start the rebuild thread.
215  */
216 static void
217 vdev_rebuild_initiate_sync(void *arg, dmu_tx_t *tx)
218 {
219 	int vdev_id = (uintptr_t)arg;
220 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
221 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
222 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
223 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
224 
225 	ASSERT(vd->vdev_rebuilding);
226 
227 	spa_feature_incr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
228 
229 	mutex_enter(&vd->vdev_rebuild_lock);
230 	memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
231 	vrp->vrp_rebuild_state = VDEV_REBUILD_ACTIVE;
232 	vrp->vrp_min_txg = 0;
233 	vrp->vrp_max_txg = dmu_tx_get_txg(tx);
234 	vrp->vrp_start_time = gethrestime_sec();
235 	vrp->vrp_scan_time_ms = 0;
236 	vr->vr_prev_scan_time_ms = 0;
237 
238 	/*
239 	 * Rebuilds are currently only used when replacing a device, in which
240 	 * case there must be DTL_MISSING entries.  In the future, we could
241 	 * allow rebuilds to be used in a way similar to a scrub.  This would
242 	 * be useful because it would allow us to rebuild the space used by
243 	 * pool checkpoints.
244 	 */
245 	VERIFY(vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg));
246 
247 	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
248 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
249 	    REBUILD_PHYS_ENTRIES, vrp, tx));
250 
251 	spa_history_log_internal(spa, "rebuild", tx,
252 	    "vdev_id=%llu vdev_guid=%llu started",
253 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
254 
255 	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
256 	vd->vdev_rebuild_thread = thread_create(NULL, 0,
257 	    vdev_rebuild_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
258 
259 	mutex_exit(&vd->vdev_rebuild_lock);
260 }
261 
262 static void
263 vdev_rebuild_log_notify(spa_t *spa, vdev_t *vd, const char *name)
264 {
265 	nvlist_t *aux = fnvlist_alloc();
266 
267 	fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, "sequential");
268 	spa_event_notify(spa, vd, aux, name);
269 	nvlist_free(aux);
270 }
271 
272 /*
273  * Called to request that a new rebuild be started.  The feature will remain
274  * active for the duration of the rebuild, then revert to the enabled state.
275  */
276 static void
277 vdev_rebuild_initiate(vdev_t *vd)
278 {
279 	spa_t *spa = vd->vdev_spa;
280 
281 	ASSERT(vd->vdev_top == vd);
282 	ASSERT(MUTEX_HELD(&vd->vdev_rebuild_lock));
283 	ASSERT(!vd->vdev_rebuilding);
284 
285 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
286 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
287 
288 	vd->vdev_rebuilding = B_TRUE;
289 
290 	dsl_sync_task_nowait(spa_get_dsl(spa), vdev_rebuild_initiate_sync,
291 	    (void *)(uintptr_t)vd->vdev_id, tx);
292 	dmu_tx_commit(tx);
293 
294 	vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_START);
295 }
296 
297 /*
298  * Update the on-disk state to completed when a rebuild finishes.
299  */
300 static void
301 vdev_rebuild_complete_sync(void *arg, dmu_tx_t *tx)
302 {
303 	int vdev_id = (uintptr_t)arg;
304 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
305 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
306 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
307 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
308 
309 	mutex_enter(&vd->vdev_rebuild_lock);
310 	vrp->vrp_rebuild_state = VDEV_REBUILD_COMPLETE;
311 	vrp->vrp_end_time = gethrestime_sec();
312 
313 	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
314 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
315 	    REBUILD_PHYS_ENTRIES, vrp, tx));
316 
317 	vdev_dtl_reassess(vd, tx->tx_txg, vrp->vrp_max_txg, B_TRUE, B_TRUE);
318 	spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
319 
320 	spa_history_log_internal(spa, "rebuild",  tx,
321 	    "vdev_id=%llu vdev_guid=%llu complete",
322 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
323 	vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_FINISH);
324 
325 	/* Handles detaching of spares */
326 	spa_async_request(spa, SPA_ASYNC_REBUILD_DONE);
327 	vd->vdev_rebuilding = B_FALSE;
328 	mutex_exit(&vd->vdev_rebuild_lock);
329 
330 	/*
331 	 * While we're in syncing context take the opportunity to
332 	 * setup the scrub when there are no more active rebuilds.
333 	 */
334 	pool_scan_func_t func = POOL_SCAN_SCRUB;
335 	if (dsl_scan_setup_check(&func, tx) == 0 &&
336 	    zfs_rebuild_scrub_enabled) {
337 		dsl_scan_setup_sync(&func, tx);
338 	}
339 
340 	cv_broadcast(&vd->vdev_rebuild_cv);
341 
342 	/* Clear recent error events (i.e. duplicate events tracking) */
343 	zfs_ereport_clear(spa, NULL);
344 }
345 
346 /*
347  * Update the on-disk state to canceled when a rebuild finishes.
348  */
349 static void
350 vdev_rebuild_cancel_sync(void *arg, dmu_tx_t *tx)
351 {
352 	int vdev_id = (uintptr_t)arg;
353 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
354 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
355 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
356 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
357 
358 	mutex_enter(&vd->vdev_rebuild_lock);
359 	vrp->vrp_rebuild_state = VDEV_REBUILD_CANCELED;
360 	vrp->vrp_end_time = gethrestime_sec();
361 
362 	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
363 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
364 	    REBUILD_PHYS_ENTRIES, vrp, tx));
365 
366 	spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
367 
368 	spa_history_log_internal(spa, "rebuild",  tx,
369 	    "vdev_id=%llu vdev_guid=%llu canceled",
370 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
371 	vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_FINISH);
372 
373 	vd->vdev_rebuild_cancel_wanted = B_FALSE;
374 	vd->vdev_rebuilding = B_FALSE;
375 	mutex_exit(&vd->vdev_rebuild_lock);
376 
377 	spa_notify_waiters(spa);
378 	cv_broadcast(&vd->vdev_rebuild_cv);
379 }
380 
381 /*
382  * Resets the progress of a running rebuild.  This will occur when a new
383  * vdev is added to rebuild.
384  */
385 static void
386 vdev_rebuild_reset_sync(void *arg, dmu_tx_t *tx)
387 {
388 	int vdev_id = (uintptr_t)arg;
389 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
390 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
391 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
392 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
393 
394 	mutex_enter(&vd->vdev_rebuild_lock);
395 
396 	ASSERT(vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
397 	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
398 
399 	vrp->vrp_last_offset = 0;
400 	vrp->vrp_min_txg = 0;
401 	vrp->vrp_max_txg = dmu_tx_get_txg(tx);
402 	vrp->vrp_bytes_scanned = 0;
403 	vrp->vrp_bytes_issued = 0;
404 	vrp->vrp_bytes_rebuilt = 0;
405 	vrp->vrp_bytes_est = 0;
406 	vrp->vrp_scan_time_ms = 0;
407 	vr->vr_prev_scan_time_ms = 0;
408 
409 	/* See vdev_rebuild_initiate_sync comment */
410 	VERIFY(vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg));
411 
412 	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
413 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
414 	    REBUILD_PHYS_ENTRIES, vrp, tx));
415 
416 	spa_history_log_internal(spa, "rebuild",  tx,
417 	    "vdev_id=%llu vdev_guid=%llu reset",
418 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
419 
420 	vd->vdev_rebuild_reset_wanted = B_FALSE;
421 	ASSERT(vd->vdev_rebuilding);
422 
423 	vd->vdev_rebuild_thread = thread_create(NULL, 0,
424 	    vdev_rebuild_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
425 
426 	mutex_exit(&vd->vdev_rebuild_lock);
427 }
428 
429 /*
430  * Clear the last rebuild status.
431  */
432 void
433 vdev_rebuild_clear_sync(void *arg, dmu_tx_t *tx)
434 {
435 	int vdev_id = (uintptr_t)arg;
436 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
437 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
438 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
439 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
440 	objset_t *mos = spa_meta_objset(spa);
441 
442 	mutex_enter(&vd->vdev_rebuild_lock);
443 
444 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD) ||
445 	    vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE) {
446 		mutex_exit(&vd->vdev_rebuild_lock);
447 		return;
448 	}
449 
450 	clear_rebuild_bytes(vd);
451 	memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
452 
453 	if (vd->vdev_top_zap != 0 && zap_contains(mos, vd->vdev_top_zap,
454 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS) == 0) {
455 		VERIFY0(zap_update(mos, vd->vdev_top_zap,
456 		    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
457 		    REBUILD_PHYS_ENTRIES, vrp, tx));
458 	}
459 
460 	mutex_exit(&vd->vdev_rebuild_lock);
461 }
462 
463 /*
464  * The zio_done_func_t callback for each rebuild I/O issued.  It's responsible
465  * for updating the rebuild stats and limiting the number of in flight I/Os.
466  */
467 static void
468 vdev_rebuild_cb(zio_t *zio)
469 {
470 	vdev_rebuild_t *vr = zio->io_private;
471 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
472 	vdev_t *vd = vr->vr_top_vdev;
473 
474 	mutex_enter(&vr->vr_io_lock);
475 	if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
476 		/*
477 		 * The I/O failed because the top-level vdev was unavailable.
478 		 * Attempt to roll back to the last completed offset, in order
479 		 * resume from the correct location if the pool is resumed.
480 		 * (This works because spa_sync waits on spa_txg_zio before
481 		 * it runs sync tasks.)
482 		 */
483 		uint64_t *off = &vr->vr_scan_offset[zio->io_txg & TXG_MASK];
484 		*off = MIN(*off, zio->io_offset);
485 	} else if (zio->io_error) {
486 		vrp->vrp_errors++;
487 	}
488 
489 	abd_free(zio->io_abd);
490 
491 	ASSERT3U(vr->vr_bytes_inflight, >, 0);
492 	vr->vr_bytes_inflight -= zio->io_size;
493 	cv_broadcast(&vr->vr_io_cv);
494 	mutex_exit(&vr->vr_io_lock);
495 
496 	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
497 }
498 
499 /*
500  * Initialize a block pointer that can be used to read the given segment
501  * for sequential rebuild.
502  */
503 static void
504 vdev_rebuild_blkptr_init(blkptr_t *bp, vdev_t *vd, uint64_t start,
505     uint64_t asize)
506 {
507 	ASSERT(vd->vdev_ops == &vdev_draid_ops ||
508 	    vd->vdev_ops == &vdev_mirror_ops ||
509 	    vd->vdev_ops == &vdev_replacing_ops ||
510 	    vd->vdev_ops == &vdev_spare_ops);
511 
512 	uint64_t psize = vd->vdev_ops == &vdev_draid_ops ?
513 	    vdev_draid_asize_to_psize(vd, asize) : asize;
514 
515 	BP_ZERO(bp);
516 
517 	DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
518 	DVA_SET_OFFSET(&bp->blk_dva[0], start);
519 	DVA_SET_GANG(&bp->blk_dva[0], 0);
520 	DVA_SET_ASIZE(&bp->blk_dva[0], asize);
521 
522 	BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
523 	BP_SET_LSIZE(bp, psize);
524 	BP_SET_PSIZE(bp, psize);
525 	BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
526 	BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
527 	BP_SET_TYPE(bp, DMU_OT_NONE);
528 	BP_SET_LEVEL(bp, 0);
529 	BP_SET_DEDUP(bp, 0);
530 	BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
531 }
532 
533 /*
534  * Issues a rebuild I/O and takes care of rate limiting the number of queued
535  * rebuild I/Os.  The provided start and size must be properly aligned for the
536  * top-level vdev type being rebuilt.
537  */
538 static int
539 vdev_rebuild_range(vdev_rebuild_t *vr, uint64_t start, uint64_t size)
540 {
541 	uint64_t ms_id __maybe_unused = vr->vr_scan_msp->ms_id;
542 	vdev_t *vd = vr->vr_top_vdev;
543 	spa_t *spa = vd->vdev_spa;
544 	blkptr_t blk;
545 
546 	ASSERT3U(ms_id, ==, start >> vd->vdev_ms_shift);
547 	ASSERT3U(ms_id, ==, (start + size - 1) >> vd->vdev_ms_shift);
548 
549 	vr->vr_pass_bytes_scanned += size;
550 	vr->vr_rebuild_phys.vrp_bytes_scanned += size;
551 
552 	/*
553 	 * Rebuild the data in this range by constructing a special block
554 	 * pointer.  It has no relation to any existing blocks in the pool.
555 	 * However, by disabling checksum verification and issuing a scrub IO
556 	 * we can reconstruct and repair any children with missing data.
557 	 */
558 	vdev_rebuild_blkptr_init(&blk, vd, start, size);
559 	uint64_t psize = BP_GET_PSIZE(&blk);
560 
561 	if (!vdev_dtl_need_resilver(vd, &blk.blk_dva[0], psize, TXG_UNKNOWN))
562 		return (0);
563 
564 	mutex_enter(&vr->vr_io_lock);
565 
566 	/* Limit in flight rebuild I/Os */
567 	while (vr->vr_bytes_inflight >= vr->vr_bytes_inflight_max)
568 		cv_wait(&vr->vr_io_cv, &vr->vr_io_lock);
569 
570 	vr->vr_bytes_inflight += psize;
571 	mutex_exit(&vr->vr_io_lock);
572 
573 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
574 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
575 	uint64_t txg = dmu_tx_get_txg(tx);
576 
577 	spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
578 	mutex_enter(&vd->vdev_rebuild_lock);
579 
580 	/* This is the first I/O for this txg. */
581 	if (vr->vr_scan_offset[txg & TXG_MASK] == 0) {
582 		vr->vr_scan_offset[txg & TXG_MASK] = start;
583 		dsl_sync_task_nowait(spa_get_dsl(spa),
584 		    vdev_rebuild_update_sync,
585 		    (void *)(uintptr_t)vd->vdev_id, tx);
586 	}
587 
588 	/* When exiting write out our progress. */
589 	if (vdev_rebuild_should_stop(vd)) {
590 		mutex_enter(&vr->vr_io_lock);
591 		vr->vr_bytes_inflight -= psize;
592 		mutex_exit(&vr->vr_io_lock);
593 		spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
594 		mutex_exit(&vd->vdev_rebuild_lock);
595 		dmu_tx_commit(tx);
596 		return (SET_ERROR(EINTR));
597 	}
598 	mutex_exit(&vd->vdev_rebuild_lock);
599 	dmu_tx_commit(tx);
600 
601 	vr->vr_scan_offset[txg & TXG_MASK] = start + size;
602 	vr->vr_pass_bytes_issued += size;
603 	vr->vr_rebuild_phys.vrp_bytes_issued += size;
604 
605 	zio_nowait(zio_read(spa->spa_txg_zio[txg & TXG_MASK], spa, &blk,
606 	    abd_alloc(psize, B_FALSE), psize, vdev_rebuild_cb, vr,
607 	    ZIO_PRIORITY_REBUILD, ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL |
608 	    ZIO_FLAG_RESILVER, NULL));
609 
610 	return (0);
611 }
612 
613 /*
614  * Issues rebuild I/Os for all ranges in the provided vr->vr_tree range tree.
615  */
616 static int
617 vdev_rebuild_ranges(vdev_rebuild_t *vr)
618 {
619 	vdev_t *vd = vr->vr_top_vdev;
620 	zfs_btree_t *t = &vr->vr_scan_tree->rt_root;
621 	zfs_btree_index_t idx;
622 	int error;
623 
624 	for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
625 	    rs = zfs_btree_next(t, &idx, &idx)) {
626 		uint64_t start = rs_get_start(rs, vr->vr_scan_tree);
627 		uint64_t size = rs_get_end(rs, vr->vr_scan_tree) - start;
628 
629 		/*
630 		 * zfs_scan_suspend_progress can be set to disable rebuild
631 		 * progress for testing.  See comment in dsl_scan_sync().
632 		 */
633 		while (zfs_scan_suspend_progress &&
634 		    !vdev_rebuild_should_stop(vd)) {
635 			delay(hz);
636 		}
637 
638 		while (size > 0) {
639 			uint64_t chunk_size;
640 
641 			/*
642 			 * Split range into legally-sized logical chunks
643 			 * given the constraints of the top-level vdev
644 			 * being rebuilt (dRAID or mirror).
645 			 */
646 			ASSERT3P(vd->vdev_ops, !=, NULL);
647 			chunk_size = vd->vdev_ops->vdev_op_rebuild_asize(vd,
648 			    start, size, zfs_rebuild_max_segment);
649 
650 			error = vdev_rebuild_range(vr, start, chunk_size);
651 			if (error != 0)
652 				return (error);
653 
654 			size -= chunk_size;
655 			start += chunk_size;
656 		}
657 	}
658 
659 	return (0);
660 }
661 
662 /*
663  * Calculates the estimated capacity which remains to be scanned.  Since
664  * we traverse the pool in metaslab order only allocated capacity beyond
665  * the vrp_last_offset need be considered.  All lower offsets must have
666  * already been rebuilt and are thus already included in vrp_bytes_scanned.
667  */
668 static void
669 vdev_rebuild_update_bytes_est(vdev_t *vd, uint64_t ms_id)
670 {
671 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
672 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
673 	uint64_t bytes_est = vrp->vrp_bytes_scanned;
674 
675 	if (vrp->vrp_last_offset < vd->vdev_ms[ms_id]->ms_start)
676 		return;
677 
678 	for (uint64_t i = ms_id; i < vd->vdev_ms_count; i++) {
679 		metaslab_t *msp = vd->vdev_ms[i];
680 
681 		mutex_enter(&msp->ms_lock);
682 		bytes_est += metaslab_allocated_space(msp);
683 		mutex_exit(&msp->ms_lock);
684 	}
685 
686 	vrp->vrp_bytes_est = bytes_est;
687 }
688 
689 /*
690  * Load from disk the top-level vdev's rebuild information.
691  */
692 int
693 vdev_rebuild_load(vdev_t *vd)
694 {
695 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
696 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
697 	spa_t *spa = vd->vdev_spa;
698 	int err = 0;
699 
700 	mutex_enter(&vd->vdev_rebuild_lock);
701 	vd->vdev_rebuilding = B_FALSE;
702 
703 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) {
704 		memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
705 		mutex_exit(&vd->vdev_rebuild_lock);
706 		return (SET_ERROR(ENOTSUP));
707 	}
708 
709 	ASSERT(vd->vdev_top == vd);
710 
711 	err = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
712 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
713 	    REBUILD_PHYS_ENTRIES, vrp);
714 
715 	/*
716 	 * A missing or damaged VDEV_TOP_ZAP_VDEV_REBUILD_PHYS should
717 	 * not prevent a pool from being imported.  Clear the rebuild
718 	 * status allowing a new resilver/rebuild to be started.
719 	 */
720 	if (err == ENOENT || err == EOVERFLOW || err == ECKSUM) {
721 		memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
722 	} else if (err) {
723 		mutex_exit(&vd->vdev_rebuild_lock);
724 		return (err);
725 	}
726 
727 	vr->vr_prev_scan_time_ms = vrp->vrp_scan_time_ms;
728 	vr->vr_top_vdev = vd;
729 
730 	mutex_exit(&vd->vdev_rebuild_lock);
731 
732 	return (0);
733 }
734 
735 /*
736  * Each scan thread is responsible for rebuilding a top-level vdev.  The
737  * rebuild progress in tracked on-disk in VDEV_TOP_ZAP_VDEV_REBUILD_PHYS.
738  */
739 static __attribute__((noreturn)) void
740 vdev_rebuild_thread(void *arg)
741 {
742 	vdev_t *vd = arg;
743 	spa_t *spa = vd->vdev_spa;
744 	int error = 0;
745 
746 	/*
747 	 * If there's a scrub in process request that it be stopped.  This
748 	 * is not required for a correct rebuild, but we do want rebuilds to
749 	 * emulate the resilver behavior as much as possible.
750 	 */
751 	dsl_pool_t *dsl = spa_get_dsl(spa);
752 	if (dsl_scan_scrubbing(dsl))
753 		dsl_scan_cancel(dsl);
754 
755 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
756 	mutex_enter(&vd->vdev_rebuild_lock);
757 
758 	ASSERT3P(vd->vdev_top, ==, vd);
759 	ASSERT3P(vd->vdev_rebuild_thread, !=, NULL);
760 	ASSERT(vd->vdev_rebuilding);
761 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REBUILD));
762 	ASSERT3B(vd->vdev_rebuild_cancel_wanted, ==, B_FALSE);
763 	ASSERT3B(vd->vdev_rebuild_reset_wanted, ==, B_FALSE);
764 
765 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
766 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
767 	vr->vr_top_vdev = vd;
768 	vr->vr_scan_msp = NULL;
769 	vr->vr_scan_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
770 	mutex_init(&vr->vr_io_lock, NULL, MUTEX_DEFAULT, NULL);
771 	cv_init(&vr->vr_io_cv, NULL, CV_DEFAULT, NULL);
772 
773 	vr->vr_pass_start_time = gethrtime();
774 	vr->vr_pass_bytes_scanned = 0;
775 	vr->vr_pass_bytes_issued = 0;
776 
777 	vr->vr_bytes_inflight_max = MAX(1ULL << 20,
778 	    zfs_rebuild_vdev_limit * vd->vdev_children);
779 
780 	uint64_t update_est_time = gethrtime();
781 	vdev_rebuild_update_bytes_est(vd, 0);
782 
783 	clear_rebuild_bytes(vr->vr_top_vdev);
784 
785 	mutex_exit(&vd->vdev_rebuild_lock);
786 
787 	/*
788 	 * Systematically walk the metaslabs and issue rebuild I/Os for
789 	 * all ranges in the allocated space map.
790 	 */
791 	for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
792 		metaslab_t *msp = vd->vdev_ms[i];
793 		vr->vr_scan_msp = msp;
794 
795 		/*
796 		 * Removal of vdevs from the vdev tree may eliminate the need
797 		 * for the rebuild, in which case it should be canceled.  The
798 		 * vdev_rebuild_cancel_wanted flag is set until the sync task
799 		 * completes.  This may be after the rebuild thread exits.
800 		 */
801 		if (vdev_rebuild_should_cancel(vd)) {
802 			vd->vdev_rebuild_cancel_wanted = B_TRUE;
803 			error = EINTR;
804 			break;
805 		}
806 
807 		ASSERT0(range_tree_space(vr->vr_scan_tree));
808 
809 		/* Disable any new allocations to this metaslab */
810 		spa_config_exit(spa, SCL_CONFIG, FTAG);
811 		metaslab_disable(msp);
812 
813 		mutex_enter(&msp->ms_sync_lock);
814 		mutex_enter(&msp->ms_lock);
815 
816 		/*
817 		 * If there are outstanding allocations wait for them to be
818 		 * synced.  This is needed to ensure all allocated ranges are
819 		 * on disk and therefore will be rebuilt.
820 		 */
821 		for (int j = 0; j < TXG_SIZE; j++) {
822 			if (range_tree_space(msp->ms_allocating[j])) {
823 				mutex_exit(&msp->ms_lock);
824 				mutex_exit(&msp->ms_sync_lock);
825 				txg_wait_synced(dsl, 0);
826 				mutex_enter(&msp->ms_sync_lock);
827 				mutex_enter(&msp->ms_lock);
828 				break;
829 			}
830 		}
831 
832 		/*
833 		 * When a metaslab has been allocated from read its allocated
834 		 * ranges from the space map object into the vr_scan_tree.
835 		 * Then add inflight / unflushed ranges and remove inflight /
836 		 * unflushed frees.  This is the minimum range to be rebuilt.
837 		 */
838 		if (msp->ms_sm != NULL) {
839 			VERIFY0(space_map_load(msp->ms_sm,
840 			    vr->vr_scan_tree, SM_ALLOC));
841 
842 			for (int i = 0; i < TXG_SIZE; i++) {
843 				ASSERT0(range_tree_space(
844 				    msp->ms_allocating[i]));
845 			}
846 
847 			range_tree_walk(msp->ms_unflushed_allocs,
848 			    range_tree_add, vr->vr_scan_tree);
849 			range_tree_walk(msp->ms_unflushed_frees,
850 			    range_tree_remove, vr->vr_scan_tree);
851 
852 			/*
853 			 * Remove ranges which have already been rebuilt based
854 			 * on the last offset.  This can happen when restarting
855 			 * a scan after exporting and re-importing the pool.
856 			 */
857 			range_tree_clear(vr->vr_scan_tree, 0,
858 			    vrp->vrp_last_offset);
859 		}
860 
861 		mutex_exit(&msp->ms_lock);
862 		mutex_exit(&msp->ms_sync_lock);
863 
864 		/*
865 		 * To provide an accurate estimate re-calculate the estimated
866 		 * size every 5 minutes to account for recent allocations and
867 		 * frees made to space maps which have not yet been rebuilt.
868 		 */
869 		if (gethrtime() > update_est_time + SEC2NSEC(300)) {
870 			update_est_time = gethrtime();
871 			vdev_rebuild_update_bytes_est(vd, i);
872 		}
873 
874 		/*
875 		 * Walk the allocated space map and issue the rebuild I/O.
876 		 */
877 		error = vdev_rebuild_ranges(vr);
878 		range_tree_vacate(vr->vr_scan_tree, NULL, NULL);
879 
880 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
881 		metaslab_enable(msp, B_FALSE, B_FALSE);
882 
883 		if (error != 0)
884 			break;
885 	}
886 
887 	range_tree_destroy(vr->vr_scan_tree);
888 	spa_config_exit(spa, SCL_CONFIG, FTAG);
889 
890 	/* Wait for any remaining rebuild I/O to complete */
891 	mutex_enter(&vr->vr_io_lock);
892 	while (vr->vr_bytes_inflight > 0)
893 		cv_wait(&vr->vr_io_cv, &vr->vr_io_lock);
894 
895 	mutex_exit(&vr->vr_io_lock);
896 
897 	mutex_destroy(&vr->vr_io_lock);
898 	cv_destroy(&vr->vr_io_cv);
899 
900 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
901 
902 	dsl_pool_t *dp = spa_get_dsl(spa);
903 	dmu_tx_t *tx = dmu_tx_create_dd(dp->dp_mos_dir);
904 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
905 
906 	mutex_enter(&vd->vdev_rebuild_lock);
907 	if (error == 0) {
908 		/*
909 		 * After a successful rebuild clear the DTLs of all ranges
910 		 * which were missing when the rebuild was started.  These
911 		 * ranges must have been rebuilt as a consequence of rebuilding
912 		 * all allocated space.  Note that unlike a scrub or resilver
913 		 * the rebuild operation will reconstruct data only referenced
914 		 * by a pool checkpoint.  See the dsl_scan_done() comments.
915 		 */
916 		dsl_sync_task_nowait(dp, vdev_rebuild_complete_sync,
917 		    (void *)(uintptr_t)vd->vdev_id, tx);
918 	} else if (vd->vdev_rebuild_cancel_wanted) {
919 		/*
920 		 * The rebuild operation was canceled.  This will occur when
921 		 * a device participating in the rebuild is detached.
922 		 */
923 		dsl_sync_task_nowait(dp, vdev_rebuild_cancel_sync,
924 		    (void *)(uintptr_t)vd->vdev_id, tx);
925 	} else if (vd->vdev_rebuild_reset_wanted) {
926 		/*
927 		 * Reset the running rebuild without canceling and restarting
928 		 * it.  This will occur when a new device is attached and must
929 		 * participate in the rebuild.
930 		 */
931 		dsl_sync_task_nowait(dp, vdev_rebuild_reset_sync,
932 		    (void *)(uintptr_t)vd->vdev_id, tx);
933 	} else {
934 		/*
935 		 * The rebuild operation should be suspended.  This may occur
936 		 * when detaching a child vdev or when exporting the pool.  The
937 		 * rebuild is left in the active state so it will be resumed.
938 		 */
939 		ASSERT(vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
940 		vd->vdev_rebuilding = B_FALSE;
941 	}
942 
943 	dmu_tx_commit(tx);
944 
945 	vd->vdev_rebuild_thread = NULL;
946 	mutex_exit(&vd->vdev_rebuild_lock);
947 	spa_config_exit(spa, SCL_CONFIG, FTAG);
948 
949 	cv_broadcast(&vd->vdev_rebuild_cv);
950 
951 	thread_exit();
952 }
953 
954 /*
955  * Returns B_TRUE if any top-level vdev are rebuilding.
956  */
957 boolean_t
958 vdev_rebuild_active(vdev_t *vd)
959 {
960 	spa_t *spa = vd->vdev_spa;
961 	boolean_t ret = B_FALSE;
962 
963 	if (vd == spa->spa_root_vdev) {
964 		for (uint64_t i = 0; i < vd->vdev_children; i++) {
965 			ret = vdev_rebuild_active(vd->vdev_child[i]);
966 			if (ret)
967 				return (ret);
968 		}
969 	} else if (vd->vdev_top_zap != 0) {
970 		vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
971 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
972 
973 		mutex_enter(&vd->vdev_rebuild_lock);
974 		ret = (vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
975 		mutex_exit(&vd->vdev_rebuild_lock);
976 	}
977 
978 	return (ret);
979 }
980 
981 /*
982  * Start a rebuild operation.  The rebuild may be restarted when the
983  * top-level vdev is currently actively rebuilding.
984  */
985 void
986 vdev_rebuild(vdev_t *vd)
987 {
988 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
989 	vdev_rebuild_phys_t *vrp __maybe_unused = &vr->vr_rebuild_phys;
990 
991 	ASSERT(vd->vdev_top == vd);
992 	ASSERT(vdev_is_concrete(vd));
993 	ASSERT(!vd->vdev_removing);
994 	ASSERT(spa_feature_is_enabled(vd->vdev_spa,
995 	    SPA_FEATURE_DEVICE_REBUILD));
996 
997 	mutex_enter(&vd->vdev_rebuild_lock);
998 	if (vd->vdev_rebuilding) {
999 		ASSERT3U(vrp->vrp_rebuild_state, ==, VDEV_REBUILD_ACTIVE);
1000 
1001 		/*
1002 		 * Signal a running rebuild operation that it should restart
1003 		 * from the beginning because a new device was attached.  The
1004 		 * vdev_rebuild_reset_wanted flag is set until the sync task
1005 		 * completes.  This may be after the rebuild thread exits.
1006 		 */
1007 		if (!vd->vdev_rebuild_reset_wanted)
1008 			vd->vdev_rebuild_reset_wanted = B_TRUE;
1009 	} else {
1010 		vdev_rebuild_initiate(vd);
1011 	}
1012 	mutex_exit(&vd->vdev_rebuild_lock);
1013 }
1014 
1015 static void
1016 vdev_rebuild_restart_impl(vdev_t *vd)
1017 {
1018 	spa_t *spa = vd->vdev_spa;
1019 
1020 	if (vd == spa->spa_root_vdev) {
1021 		for (uint64_t i = 0; i < vd->vdev_children; i++)
1022 			vdev_rebuild_restart_impl(vd->vdev_child[i]);
1023 
1024 	} else if (vd->vdev_top_zap != 0) {
1025 		vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
1026 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
1027 
1028 		mutex_enter(&vd->vdev_rebuild_lock);
1029 		if (vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE &&
1030 		    vdev_writeable(vd) && !vd->vdev_rebuilding) {
1031 			ASSERT(spa_feature_is_active(spa,
1032 			    SPA_FEATURE_DEVICE_REBUILD));
1033 			vd->vdev_rebuilding = B_TRUE;
1034 			vd->vdev_rebuild_thread = thread_create(NULL, 0,
1035 			    vdev_rebuild_thread, vd, 0, &p0, TS_RUN,
1036 			    maxclsyspri);
1037 		}
1038 		mutex_exit(&vd->vdev_rebuild_lock);
1039 	}
1040 }
1041 
1042 /*
1043  * Conditionally restart all of the vdev_rebuild_thread's for a pool.  The
1044  * feature flag must be active and the rebuild in the active state.   This
1045  * cannot be used to start a new rebuild.
1046  */
1047 void
1048 vdev_rebuild_restart(spa_t *spa)
1049 {
1050 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1051 
1052 	vdev_rebuild_restart_impl(spa->spa_root_vdev);
1053 }
1054 
1055 /*
1056  * Stop and wait for all of the vdev_rebuild_thread's associated with the
1057  * vdev tree provide to be terminated (canceled or stopped).
1058  */
1059 void
1060 vdev_rebuild_stop_wait(vdev_t *vd)
1061 {
1062 	spa_t *spa = vd->vdev_spa;
1063 
1064 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1065 
1066 	if (vd == spa->spa_root_vdev) {
1067 		for (uint64_t i = 0; i < vd->vdev_children; i++)
1068 			vdev_rebuild_stop_wait(vd->vdev_child[i]);
1069 
1070 	} else if (vd->vdev_top_zap != 0) {
1071 		ASSERT(vd == vd->vdev_top);
1072 
1073 		mutex_enter(&vd->vdev_rebuild_lock);
1074 		if (vd->vdev_rebuild_thread != NULL) {
1075 			vd->vdev_rebuild_exit_wanted = B_TRUE;
1076 			while (vd->vdev_rebuilding) {
1077 				cv_wait(&vd->vdev_rebuild_cv,
1078 				    &vd->vdev_rebuild_lock);
1079 			}
1080 			vd->vdev_rebuild_exit_wanted = B_FALSE;
1081 		}
1082 		mutex_exit(&vd->vdev_rebuild_lock);
1083 	}
1084 }
1085 
1086 /*
1087  * Stop all rebuild operations but leave them in the active state so they
1088  * will be resumed when importing the pool.
1089  */
1090 void
1091 vdev_rebuild_stop_all(spa_t *spa)
1092 {
1093 	vdev_rebuild_stop_wait(spa->spa_root_vdev);
1094 }
1095 
1096 /*
1097  * Rebuild statistics reported per top-level vdev.
1098  */
1099 int
1100 vdev_rebuild_get_stats(vdev_t *tvd, vdev_rebuild_stat_t *vrs)
1101 {
1102 	spa_t *spa = tvd->vdev_spa;
1103 
1104 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
1105 		return (SET_ERROR(ENOTSUP));
1106 
1107 	if (tvd != tvd->vdev_top || tvd->vdev_top_zap == 0)
1108 		return (SET_ERROR(EINVAL));
1109 
1110 	int error = zap_contains(spa_meta_objset(spa),
1111 	    tvd->vdev_top_zap, VDEV_TOP_ZAP_VDEV_REBUILD_PHYS);
1112 
1113 	if (error == ENOENT) {
1114 		memset(vrs, 0, sizeof (vdev_rebuild_stat_t));
1115 		vrs->vrs_state = VDEV_REBUILD_NONE;
1116 		error = 0;
1117 	} else if (error == 0) {
1118 		vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
1119 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
1120 
1121 		mutex_enter(&tvd->vdev_rebuild_lock);
1122 		vrs->vrs_state = vrp->vrp_rebuild_state;
1123 		vrs->vrs_start_time = vrp->vrp_start_time;
1124 		vrs->vrs_end_time = vrp->vrp_end_time;
1125 		vrs->vrs_scan_time_ms = vrp->vrp_scan_time_ms;
1126 		vrs->vrs_bytes_scanned = vrp->vrp_bytes_scanned;
1127 		vrs->vrs_bytes_issued = vrp->vrp_bytes_issued;
1128 		vrs->vrs_bytes_rebuilt = vrp->vrp_bytes_rebuilt;
1129 		vrs->vrs_bytes_est = vrp->vrp_bytes_est;
1130 		vrs->vrs_errors = vrp->vrp_errors;
1131 		vrs->vrs_pass_time_ms = NSEC2MSEC(gethrtime() -
1132 		    vr->vr_pass_start_time);
1133 		vrs->vrs_pass_bytes_scanned = vr->vr_pass_bytes_scanned;
1134 		vrs->vrs_pass_bytes_issued = vr->vr_pass_bytes_issued;
1135 		mutex_exit(&tvd->vdev_rebuild_lock);
1136 	}
1137 
1138 	return (error);
1139 }
1140 
1141 ZFS_MODULE_PARAM(zfs, zfs_, rebuild_max_segment, ULONG, ZMOD_RW,
1142 	"Max segment size in bytes of rebuild reads");
1143 
1144 ZFS_MODULE_PARAM(zfs, zfs_, rebuild_vdev_limit, ULONG, ZMOD_RW,
1145 	"Max bytes in flight per leaf vdev for sequential resilvers");
1146 
1147 ZFS_MODULE_PARAM(zfs, zfs_, rebuild_scrub_enabled, INT, ZMOD_RW,
1148 	"Automatically scrub after sequential resilver completes");
1149