xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_rebuild.c (revision aa48259f337100e79933d660fec8856371f761ed)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  *
23  * Copyright (c) 2018, Intel Corporation.
24  * Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
25  * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
26  * Copyright (c) 2024 by Delphix. All rights reserved.
27  */
28 
29 #include <sys/vdev_impl.h>
30 #include <sys/vdev_draid.h>
31 #include <sys/dsl_scan.h>
32 #include <sys/spa_impl.h>
33 #include <sys/metaslab_impl.h>
34 #include <sys/vdev_rebuild.h>
35 #include <sys/zio.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/arc.h>
38 #include <sys/arc_impl.h>
39 #include <sys/zap.h>
40 
41 /*
42  * This file contains the sequential reconstruction implementation for
43  * resilvering.  This form of resilvering is internally referred to as device
44  * rebuild to avoid conflating it with the traditional healing reconstruction
45  * performed by the dsl scan code.
46  *
47  * When replacing a device, or scrubbing the pool, ZFS has historically used
48  * a process called resilvering which is a form of healing reconstruction.
49  * This approach has the advantage that as blocks are read from disk their
50  * checksums can be immediately verified and the data repaired.  Unfortunately,
51  * it also results in a random IO pattern to the disk even when extra care
52  * is taken to sequentialize the IO as much as possible.  This substantially
53  * increases the time required to resilver the pool and restore redundancy.
54  *
55  * For mirrored devices it's possible to implement an alternate sequential
56  * reconstruction strategy when resilvering.  Sequential reconstruction
57  * behaves like a traditional RAID rebuild and reconstructs a device in LBA
58  * order without verifying the checksum.  After this phase completes a second
59  * scrub phase is started to verify all of the checksums.  This two phase
60  * process will take longer than the healing reconstruction described above.
61  * However, it has that advantage that after the reconstruction first phase
62  * completes redundancy has been restored.  At this point the pool can incur
63  * another device failure without risking data loss.
64  *
65  * There are a few noteworthy limitations and other advantages of resilvering
66  * using sequential reconstruction vs healing reconstruction.
67  *
68  * Limitations:
69  *
70  *   - Sequential reconstruction is not possible on RAIDZ due to its
71  *     variable stripe width.  Note dRAID uses a fixed stripe width which
72  *     avoids this issue, but comes at the expense of some usable capacity.
73  *
74  *   - Block checksums are not verified during sequential reconstruction.
75  *     Similar to traditional RAID the parity/mirror data is reconstructed
76  *     but cannot be immediately double checked.  For this reason when the
77  *     last active resilver completes the pool is automatically scrubbed
78  *     by default.
79  *
80  *   - Deferred resilvers using sequential reconstruction are not currently
81  *     supported.  When adding another vdev to an active top-level resilver
82  *     it must be restarted.
83  *
84  * Advantages:
85  *
86  *   - Sequential reconstruction is performed in LBA order which may be faster
87  *     than healing reconstruction particularly when using HDDs (or
88  *     especially with SMR devices).  Only allocated capacity is resilvered.
89  *
90  *   - Sequential reconstruction is not constrained by ZFS block boundaries.
91  *     This allows it to issue larger IOs to disk which span multiple blocks
92  *     allowing all of these logical blocks to be repaired with a single IO.
93  *
94  *   - Unlike a healing resilver or scrub which are pool wide operations,
95  *     sequential reconstruction is handled by the top-level vdevs.  This
96  *     allows for it to be started or canceled on a top-level vdev without
97  *     impacting any other top-level vdevs in the pool.
98  *
99  *   - Data only referenced by a pool checkpoint will be repaired because
100  *     that space is reflected in the space maps.  This differs for a
101  *     healing resilver or scrub which will not repair that data.
102  */
103 
104 
105 /*
106  * Size of rebuild reads; defaults to 1MiB per data disk and is capped at
107  * SPA_MAXBLOCKSIZE.
108  */
109 static uint64_t zfs_rebuild_max_segment = 1024 * 1024;
110 
111 /*
112  * Maximum number of parallelly executed bytes per leaf vdev caused by a
113  * sequential resilver.  We attempt to strike a balance here between keeping
114  * the vdev queues full of I/Os at all times and not overflowing the queues
115  * to cause long latency, which would cause long txg sync times.
116  *
117  * A large default value can be safely used here because the default target
118  * segment size is also large (zfs_rebuild_max_segment=1M).  This helps keep
119  * the queue depth short.
120  *
121  * 64MB was observed to deliver the best performance and set as the default.
122  * Testing was performed with a 106-drive dRAID HDD pool (draid2:11d:106c)
123  * and a rebuild rate of 1.2GB/s was measured to the distribute spare.
124  * Smaller values were unable to fully saturate the available pool I/O.
125  */
126 static uint64_t zfs_rebuild_vdev_limit = 64 << 20;
127 
128 /*
129  * Automatically start a pool scrub when the last active sequential resilver
130  * completes in order to verify the checksums of all blocks which have been
131  * resilvered. This option is enabled by default and is strongly recommended.
132  */
133 static int zfs_rebuild_scrub_enabled = 1;
134 
135 /*
136  * For vdev_rebuild_initiate_sync() and vdev_rebuild_reset_sync().
137  */
138 static __attribute__((noreturn)) void vdev_rebuild_thread(void *arg);
139 static void vdev_rebuild_reset_sync(void *arg, dmu_tx_t *tx);
140 
141 /*
142  * Clear the per-vdev rebuild bytes value for a vdev tree.
143  */
144 static void
145 clear_rebuild_bytes(vdev_t *vd)
146 {
147 	vdev_stat_t *vs = &vd->vdev_stat;
148 
149 	for (uint64_t i = 0; i < vd->vdev_children; i++)
150 		clear_rebuild_bytes(vd->vdev_child[i]);
151 
152 	mutex_enter(&vd->vdev_stat_lock);
153 	vs->vs_rebuild_processed = 0;
154 	mutex_exit(&vd->vdev_stat_lock);
155 }
156 
157 /*
158  * Determines whether a vdev_rebuild_thread() should be stopped.
159  */
160 static boolean_t
161 vdev_rebuild_should_stop(vdev_t *vd)
162 {
163 	return (!vdev_writeable(vd) || vd->vdev_removing ||
164 	    vd->vdev_rebuild_exit_wanted ||
165 	    vd->vdev_rebuild_cancel_wanted ||
166 	    vd->vdev_rebuild_reset_wanted);
167 }
168 
169 /*
170  * Determine if the rebuild should be canceled.  This may happen when all
171  * vdevs with MISSING DTLs are detached.
172  */
173 static boolean_t
174 vdev_rebuild_should_cancel(vdev_t *vd)
175 {
176 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
177 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
178 
179 	if (!vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg))
180 		return (B_TRUE);
181 
182 	return (B_FALSE);
183 }
184 
185 /*
186  * The sync task for updating the on-disk state of a rebuild.  This is
187  * scheduled by vdev_rebuild_range().
188  */
189 static void
190 vdev_rebuild_update_sync(void *arg, dmu_tx_t *tx)
191 {
192 	int vdev_id = (uintptr_t)arg;
193 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
194 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
195 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
196 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
197 	uint64_t txg = dmu_tx_get_txg(tx);
198 
199 	mutex_enter(&vd->vdev_rebuild_lock);
200 
201 	if (vr->vr_scan_offset[txg & TXG_MASK] > 0) {
202 		vrp->vrp_last_offset = vr->vr_scan_offset[txg & TXG_MASK];
203 		vr->vr_scan_offset[txg & TXG_MASK] = 0;
204 	}
205 
206 	vrp->vrp_scan_time_ms = vr->vr_prev_scan_time_ms +
207 	    NSEC2MSEC(gethrtime() - vr->vr_pass_start_time);
208 
209 	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
210 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
211 	    REBUILD_PHYS_ENTRIES, vrp, tx));
212 
213 	mutex_exit(&vd->vdev_rebuild_lock);
214 }
215 
216 /*
217  * Initialize the on-disk state for a new rebuild, start the rebuild thread.
218  */
219 static void
220 vdev_rebuild_initiate_sync(void *arg, dmu_tx_t *tx)
221 {
222 	int vdev_id = (uintptr_t)arg;
223 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
224 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
225 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
226 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
227 
228 	ASSERT(vd->vdev_rebuilding);
229 
230 	spa_feature_incr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
231 
232 	mutex_enter(&vd->vdev_rebuild_lock);
233 	memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
234 	vrp->vrp_rebuild_state = VDEV_REBUILD_ACTIVE;
235 	vrp->vrp_min_txg = 0;
236 	vrp->vrp_max_txg = dmu_tx_get_txg(tx);
237 	vrp->vrp_start_time = gethrestime_sec();
238 	vrp->vrp_scan_time_ms = 0;
239 	vr->vr_prev_scan_time_ms = 0;
240 
241 	/*
242 	 * Rebuilds are currently only used when replacing a device, in which
243 	 * case there must be DTL_MISSING entries.  In the future, we could
244 	 * allow rebuilds to be used in a way similar to a scrub.  This would
245 	 * be useful because it would allow us to rebuild the space used by
246 	 * pool checkpoints.
247 	 */
248 	VERIFY(vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg));
249 
250 	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
251 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
252 	    REBUILD_PHYS_ENTRIES, vrp, tx));
253 
254 	spa_history_log_internal(spa, "rebuild", tx,
255 	    "vdev_id=%llu vdev_guid=%llu started",
256 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
257 
258 	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
259 	vd->vdev_rebuild_thread = thread_create(NULL, 0,
260 	    vdev_rebuild_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
261 
262 	mutex_exit(&vd->vdev_rebuild_lock);
263 }
264 
265 static void
266 vdev_rebuild_log_notify(spa_t *spa, vdev_t *vd, const char *name)
267 {
268 	nvlist_t *aux = fnvlist_alloc();
269 
270 	fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, "sequential");
271 	spa_event_notify(spa, vd, aux, name);
272 	nvlist_free(aux);
273 }
274 
275 /*
276  * Called to request that a new rebuild be started.  The feature will remain
277  * active for the duration of the rebuild, then revert to the enabled state.
278  */
279 static void
280 vdev_rebuild_initiate(vdev_t *vd)
281 {
282 	spa_t *spa = vd->vdev_spa;
283 
284 	ASSERT(vd->vdev_top == vd);
285 	ASSERT(MUTEX_HELD(&vd->vdev_rebuild_lock));
286 	ASSERT(!vd->vdev_rebuilding);
287 
288 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
289 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
290 
291 	vd->vdev_rebuilding = B_TRUE;
292 
293 	dsl_sync_task_nowait(spa_get_dsl(spa), vdev_rebuild_initiate_sync,
294 	    (void *)(uintptr_t)vd->vdev_id, tx);
295 	dmu_tx_commit(tx);
296 
297 	vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_START);
298 }
299 
300 /*
301  * Update the on-disk state to completed when a rebuild finishes.
302  */
303 static void
304 vdev_rebuild_complete_sync(void *arg, dmu_tx_t *tx)
305 {
306 	int vdev_id = (uintptr_t)arg;
307 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
308 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
309 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
310 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
311 
312 	mutex_enter(&vd->vdev_rebuild_lock);
313 
314 	/*
315 	 * Handle a second device failure if it occurs after all rebuild I/O
316 	 * has completed but before this sync task has been executed.
317 	 */
318 	if (vd->vdev_rebuild_reset_wanted) {
319 		mutex_exit(&vd->vdev_rebuild_lock);
320 		vdev_rebuild_reset_sync(arg, tx);
321 		return;
322 	}
323 
324 	vrp->vrp_rebuild_state = VDEV_REBUILD_COMPLETE;
325 	vrp->vrp_end_time = gethrestime_sec();
326 
327 	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
328 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
329 	    REBUILD_PHYS_ENTRIES, vrp, tx));
330 
331 	vdev_dtl_reassess(vd, tx->tx_txg, vrp->vrp_max_txg, B_TRUE, B_TRUE);
332 	spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
333 
334 	spa_history_log_internal(spa, "rebuild",  tx,
335 	    "vdev_id=%llu vdev_guid=%llu complete",
336 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
337 	vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_FINISH);
338 
339 	/* Handles detaching of spares */
340 	spa_async_request(spa, SPA_ASYNC_REBUILD_DONE);
341 	vd->vdev_rebuilding = B_FALSE;
342 	mutex_exit(&vd->vdev_rebuild_lock);
343 
344 	/*
345 	 * While we're in syncing context take the opportunity to
346 	 * setup the scrub when there are no more active rebuilds.
347 	 */
348 	pool_scan_func_t func = POOL_SCAN_SCRUB;
349 	if (dsl_scan_setup_check(&func, tx) == 0 &&
350 	    zfs_rebuild_scrub_enabled) {
351 		dsl_scan_setup_sync(&func, tx);
352 	}
353 
354 	cv_broadcast(&vd->vdev_rebuild_cv);
355 
356 	/* Clear recent error events (i.e. duplicate events tracking) */
357 	zfs_ereport_clear(spa, NULL);
358 }
359 
360 /*
361  * Update the on-disk state to canceled when a rebuild finishes.
362  */
363 static void
364 vdev_rebuild_cancel_sync(void *arg, dmu_tx_t *tx)
365 {
366 	int vdev_id = (uintptr_t)arg;
367 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
368 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
369 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
370 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
371 
372 	mutex_enter(&vd->vdev_rebuild_lock);
373 	vrp->vrp_rebuild_state = VDEV_REBUILD_CANCELED;
374 	vrp->vrp_end_time = gethrestime_sec();
375 
376 	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
377 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
378 	    REBUILD_PHYS_ENTRIES, vrp, tx));
379 
380 	spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
381 
382 	spa_history_log_internal(spa, "rebuild",  tx,
383 	    "vdev_id=%llu vdev_guid=%llu canceled",
384 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
385 	vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_FINISH);
386 
387 	vd->vdev_rebuild_cancel_wanted = B_FALSE;
388 	vd->vdev_rebuilding = B_FALSE;
389 	mutex_exit(&vd->vdev_rebuild_lock);
390 
391 	spa_notify_waiters(spa);
392 	cv_broadcast(&vd->vdev_rebuild_cv);
393 }
394 
395 /*
396  * Resets the progress of a running rebuild.  This will occur when a new
397  * vdev is added to rebuild.
398  */
399 static void
400 vdev_rebuild_reset_sync(void *arg, dmu_tx_t *tx)
401 {
402 	int vdev_id = (uintptr_t)arg;
403 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
404 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
405 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
406 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
407 
408 	mutex_enter(&vd->vdev_rebuild_lock);
409 
410 	ASSERT(vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
411 	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
412 
413 	vrp->vrp_last_offset = 0;
414 	vrp->vrp_min_txg = 0;
415 	vrp->vrp_max_txg = dmu_tx_get_txg(tx);
416 	vrp->vrp_bytes_scanned = 0;
417 	vrp->vrp_bytes_issued = 0;
418 	vrp->vrp_bytes_rebuilt = 0;
419 	vrp->vrp_bytes_est = 0;
420 	vrp->vrp_scan_time_ms = 0;
421 	vr->vr_prev_scan_time_ms = 0;
422 
423 	/* See vdev_rebuild_initiate_sync comment */
424 	VERIFY(vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg));
425 
426 	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
427 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
428 	    REBUILD_PHYS_ENTRIES, vrp, tx));
429 
430 	spa_history_log_internal(spa, "rebuild",  tx,
431 	    "vdev_id=%llu vdev_guid=%llu reset",
432 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
433 
434 	vd->vdev_rebuild_reset_wanted = B_FALSE;
435 	ASSERT(vd->vdev_rebuilding);
436 
437 	vd->vdev_rebuild_thread = thread_create(NULL, 0,
438 	    vdev_rebuild_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
439 
440 	mutex_exit(&vd->vdev_rebuild_lock);
441 }
442 
443 /*
444  * Clear the last rebuild status.
445  */
446 void
447 vdev_rebuild_clear_sync(void *arg, dmu_tx_t *tx)
448 {
449 	int vdev_id = (uintptr_t)arg;
450 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
451 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
452 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
453 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
454 	objset_t *mos = spa_meta_objset(spa);
455 
456 	mutex_enter(&vd->vdev_rebuild_lock);
457 
458 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD) ||
459 	    vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE) {
460 		mutex_exit(&vd->vdev_rebuild_lock);
461 		return;
462 	}
463 
464 	clear_rebuild_bytes(vd);
465 	memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
466 
467 	if (vd->vdev_top_zap != 0 && zap_contains(mos, vd->vdev_top_zap,
468 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS) == 0) {
469 		VERIFY0(zap_update(mos, vd->vdev_top_zap,
470 		    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
471 		    REBUILD_PHYS_ENTRIES, vrp, tx));
472 	}
473 
474 	mutex_exit(&vd->vdev_rebuild_lock);
475 }
476 
477 /*
478  * The zio_done_func_t callback for each rebuild I/O issued.  It's responsible
479  * for updating the rebuild stats and limiting the number of in flight I/Os.
480  */
481 static void
482 vdev_rebuild_cb(zio_t *zio)
483 {
484 	vdev_rebuild_t *vr = zio->io_private;
485 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
486 	vdev_t *vd = vr->vr_top_vdev;
487 
488 	mutex_enter(&vr->vr_io_lock);
489 	if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
490 		/*
491 		 * The I/O failed because the top-level vdev was unavailable.
492 		 * Attempt to roll back to the last completed offset, in order
493 		 * resume from the correct location if the pool is resumed.
494 		 * (This works because spa_sync waits on spa_txg_zio before
495 		 * it runs sync tasks.)
496 		 */
497 		uint64_t *off = &vr->vr_scan_offset[zio->io_txg & TXG_MASK];
498 		*off = MIN(*off, zio->io_offset);
499 	} else if (zio->io_error) {
500 		vrp->vrp_errors++;
501 	}
502 
503 	abd_free(zio->io_abd);
504 
505 	ASSERT3U(vr->vr_bytes_inflight, >, 0);
506 	vr->vr_bytes_inflight -= zio->io_size;
507 	cv_broadcast(&vr->vr_io_cv);
508 	mutex_exit(&vr->vr_io_lock);
509 
510 	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
511 }
512 
513 /*
514  * Initialize a block pointer that can be used to read the given segment
515  * for sequential rebuild.
516  */
517 static void
518 vdev_rebuild_blkptr_init(blkptr_t *bp, vdev_t *vd, uint64_t start,
519     uint64_t asize)
520 {
521 	ASSERT(vd->vdev_ops == &vdev_draid_ops ||
522 	    vd->vdev_ops == &vdev_mirror_ops ||
523 	    vd->vdev_ops == &vdev_replacing_ops ||
524 	    vd->vdev_ops == &vdev_spare_ops);
525 
526 	uint64_t psize = vd->vdev_ops == &vdev_draid_ops ?
527 	    vdev_draid_asize_to_psize(vd, asize) : asize;
528 
529 	BP_ZERO(bp);
530 
531 	DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
532 	DVA_SET_OFFSET(&bp->blk_dva[0], start);
533 	DVA_SET_GANG(&bp->blk_dva[0], 0);
534 	DVA_SET_ASIZE(&bp->blk_dva[0], asize);
535 
536 	BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
537 	BP_SET_LSIZE(bp, psize);
538 	BP_SET_PSIZE(bp, psize);
539 	BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
540 	BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
541 	BP_SET_TYPE(bp, DMU_OT_NONE);
542 	BP_SET_LEVEL(bp, 0);
543 	BP_SET_DEDUP(bp, 0);
544 	BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
545 }
546 
547 /*
548  * Issues a rebuild I/O and takes care of rate limiting the number of queued
549  * rebuild I/Os.  The provided start and size must be properly aligned for the
550  * top-level vdev type being rebuilt.
551  */
552 static int
553 vdev_rebuild_range(vdev_rebuild_t *vr, uint64_t start, uint64_t size)
554 {
555 	uint64_t ms_id __maybe_unused = vr->vr_scan_msp->ms_id;
556 	vdev_t *vd = vr->vr_top_vdev;
557 	spa_t *spa = vd->vdev_spa;
558 	blkptr_t blk;
559 
560 	ASSERT3U(ms_id, ==, start >> vd->vdev_ms_shift);
561 	ASSERT3U(ms_id, ==, (start + size - 1) >> vd->vdev_ms_shift);
562 
563 	vr->vr_pass_bytes_scanned += size;
564 	vr->vr_rebuild_phys.vrp_bytes_scanned += size;
565 
566 	/*
567 	 * Rebuild the data in this range by constructing a special block
568 	 * pointer.  It has no relation to any existing blocks in the pool.
569 	 * However, by disabling checksum verification and issuing a scrub IO
570 	 * we can reconstruct and repair any children with missing data.
571 	 */
572 	vdev_rebuild_blkptr_init(&blk, vd, start, size);
573 	uint64_t psize = BP_GET_PSIZE(&blk);
574 
575 	if (!vdev_dtl_need_resilver(vd, &blk.blk_dva[0], psize, TXG_UNKNOWN)) {
576 		vr->vr_pass_bytes_skipped += size;
577 		return (0);
578 	}
579 
580 	mutex_enter(&vr->vr_io_lock);
581 
582 	/* Limit in flight rebuild I/Os */
583 	while (vr->vr_bytes_inflight >= vr->vr_bytes_inflight_max)
584 		cv_wait(&vr->vr_io_cv, &vr->vr_io_lock);
585 
586 	vr->vr_bytes_inflight += psize;
587 	mutex_exit(&vr->vr_io_lock);
588 
589 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
590 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
591 	uint64_t txg = dmu_tx_get_txg(tx);
592 
593 	spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
594 	mutex_enter(&vd->vdev_rebuild_lock);
595 
596 	/* This is the first I/O for this txg. */
597 	if (vr->vr_scan_offset[txg & TXG_MASK] == 0) {
598 		vr->vr_scan_offset[txg & TXG_MASK] = start;
599 		dsl_sync_task_nowait(spa_get_dsl(spa),
600 		    vdev_rebuild_update_sync,
601 		    (void *)(uintptr_t)vd->vdev_id, tx);
602 	}
603 
604 	/* When exiting write out our progress. */
605 	if (vdev_rebuild_should_stop(vd)) {
606 		mutex_enter(&vr->vr_io_lock);
607 		vr->vr_bytes_inflight -= psize;
608 		mutex_exit(&vr->vr_io_lock);
609 		spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
610 		mutex_exit(&vd->vdev_rebuild_lock);
611 		dmu_tx_commit(tx);
612 		return (SET_ERROR(EINTR));
613 	}
614 	mutex_exit(&vd->vdev_rebuild_lock);
615 	dmu_tx_commit(tx);
616 
617 	vr->vr_scan_offset[txg & TXG_MASK] = start + size;
618 	vr->vr_pass_bytes_issued += size;
619 	vr->vr_rebuild_phys.vrp_bytes_issued += size;
620 
621 	zio_nowait(zio_read(spa->spa_txg_zio[txg & TXG_MASK], spa, &blk,
622 	    abd_alloc(psize, B_FALSE), psize, vdev_rebuild_cb, vr,
623 	    ZIO_PRIORITY_REBUILD, ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL |
624 	    ZIO_FLAG_RESILVER, NULL));
625 
626 	return (0);
627 }
628 
629 /*
630  * Issues rebuild I/Os for all ranges in the provided vr->vr_tree range tree.
631  */
632 static int
633 vdev_rebuild_ranges(vdev_rebuild_t *vr)
634 {
635 	vdev_t *vd = vr->vr_top_vdev;
636 	zfs_btree_t *t = &vr->vr_scan_tree->rt_root;
637 	zfs_btree_index_t idx;
638 	int error;
639 
640 	for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
641 	    rs = zfs_btree_next(t, &idx, &idx)) {
642 		uint64_t start = rs_get_start(rs, vr->vr_scan_tree);
643 		uint64_t size = rs_get_end(rs, vr->vr_scan_tree) - start;
644 
645 		/*
646 		 * zfs_scan_suspend_progress can be set to disable rebuild
647 		 * progress for testing.  See comment in dsl_scan_sync().
648 		 */
649 		while (zfs_scan_suspend_progress &&
650 		    !vdev_rebuild_should_stop(vd)) {
651 			delay(hz);
652 		}
653 
654 		while (size > 0) {
655 			uint64_t chunk_size;
656 
657 			/*
658 			 * Split range into legally-sized logical chunks
659 			 * given the constraints of the top-level vdev
660 			 * being rebuilt (dRAID or mirror).
661 			 */
662 			ASSERT3P(vd->vdev_ops, !=, NULL);
663 			chunk_size = vd->vdev_ops->vdev_op_rebuild_asize(vd,
664 			    start, size, zfs_rebuild_max_segment);
665 
666 			error = vdev_rebuild_range(vr, start, chunk_size);
667 			if (error != 0)
668 				return (error);
669 
670 			size -= chunk_size;
671 			start += chunk_size;
672 		}
673 	}
674 
675 	return (0);
676 }
677 
678 /*
679  * Calculates the estimated capacity which remains to be scanned.  Since
680  * we traverse the pool in metaslab order only allocated capacity beyond
681  * the vrp_last_offset need be considered.  All lower offsets must have
682  * already been rebuilt and are thus already included in vrp_bytes_scanned.
683  */
684 static void
685 vdev_rebuild_update_bytes_est(vdev_t *vd, uint64_t ms_id)
686 {
687 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
688 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
689 	uint64_t bytes_est = vrp->vrp_bytes_scanned;
690 
691 	if (vrp->vrp_last_offset < vd->vdev_ms[ms_id]->ms_start)
692 		return;
693 
694 	for (uint64_t i = ms_id; i < vd->vdev_ms_count; i++) {
695 		metaslab_t *msp = vd->vdev_ms[i];
696 
697 		mutex_enter(&msp->ms_lock);
698 		bytes_est += metaslab_allocated_space(msp);
699 		mutex_exit(&msp->ms_lock);
700 	}
701 
702 	vrp->vrp_bytes_est = bytes_est;
703 }
704 
705 /*
706  * Load from disk the top-level vdev's rebuild information.
707  */
708 int
709 vdev_rebuild_load(vdev_t *vd)
710 {
711 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
712 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
713 	spa_t *spa = vd->vdev_spa;
714 	int err = 0;
715 
716 	mutex_enter(&vd->vdev_rebuild_lock);
717 	vd->vdev_rebuilding = B_FALSE;
718 
719 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) {
720 		memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
721 		mutex_exit(&vd->vdev_rebuild_lock);
722 		return (SET_ERROR(ENOTSUP));
723 	}
724 
725 	ASSERT(vd->vdev_top == vd);
726 
727 	err = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
728 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
729 	    REBUILD_PHYS_ENTRIES, vrp);
730 
731 	/*
732 	 * A missing or damaged VDEV_TOP_ZAP_VDEV_REBUILD_PHYS should
733 	 * not prevent a pool from being imported.  Clear the rebuild
734 	 * status allowing a new resilver/rebuild to be started.
735 	 */
736 	if (err == ENOENT || err == EOVERFLOW || err == ECKSUM) {
737 		memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
738 	} else if (err) {
739 		mutex_exit(&vd->vdev_rebuild_lock);
740 		return (err);
741 	}
742 
743 	vr->vr_prev_scan_time_ms = vrp->vrp_scan_time_ms;
744 	vr->vr_top_vdev = vd;
745 
746 	mutex_exit(&vd->vdev_rebuild_lock);
747 
748 	return (0);
749 }
750 
751 /*
752  * Each scan thread is responsible for rebuilding a top-level vdev.  The
753  * rebuild progress in tracked on-disk in VDEV_TOP_ZAP_VDEV_REBUILD_PHYS.
754  */
755 static __attribute__((noreturn)) void
756 vdev_rebuild_thread(void *arg)
757 {
758 	vdev_t *vd = arg;
759 	spa_t *spa = vd->vdev_spa;
760 	vdev_t *rvd = spa->spa_root_vdev;
761 	int error = 0;
762 
763 	/*
764 	 * If there's a scrub in process request that it be stopped.  This
765 	 * is not required for a correct rebuild, but we do want rebuilds to
766 	 * emulate the resilver behavior as much as possible.
767 	 */
768 	dsl_pool_t *dsl = spa_get_dsl(spa);
769 	if (dsl_scan_scrubbing(dsl))
770 		dsl_scan_cancel(dsl);
771 
772 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
773 	mutex_enter(&vd->vdev_rebuild_lock);
774 
775 	ASSERT3P(vd->vdev_top, ==, vd);
776 	ASSERT3P(vd->vdev_rebuild_thread, !=, NULL);
777 	ASSERT(vd->vdev_rebuilding);
778 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REBUILD));
779 	ASSERT3B(vd->vdev_rebuild_cancel_wanted, ==, B_FALSE);
780 
781 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
782 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
783 	vr->vr_top_vdev = vd;
784 	vr->vr_scan_msp = NULL;
785 	vr->vr_scan_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
786 	mutex_init(&vr->vr_io_lock, NULL, MUTEX_DEFAULT, NULL);
787 	cv_init(&vr->vr_io_cv, NULL, CV_DEFAULT, NULL);
788 
789 	vr->vr_pass_start_time = gethrtime();
790 	vr->vr_pass_bytes_scanned = 0;
791 	vr->vr_pass_bytes_issued = 0;
792 	vr->vr_pass_bytes_skipped = 0;
793 
794 	uint64_t update_est_time = gethrtime();
795 	vdev_rebuild_update_bytes_est(vd, 0);
796 
797 	clear_rebuild_bytes(vr->vr_top_vdev);
798 
799 	mutex_exit(&vd->vdev_rebuild_lock);
800 
801 	/*
802 	 * Systematically walk the metaslabs and issue rebuild I/Os for
803 	 * all ranges in the allocated space map.
804 	 */
805 	for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
806 		metaslab_t *msp = vd->vdev_ms[i];
807 		vr->vr_scan_msp = msp;
808 
809 		/*
810 		 * Calculate the max number of in-flight bytes for top-level
811 		 * vdev scanning operations (minimum 1MB, maximum 1/2 of
812 		 * arc_c_max shared by all top-level vdevs).  Limits for the
813 		 * issuing phase are done per top-level vdev and are handled
814 		 * separately.
815 		 */
816 		uint64_t limit = (arc_c_max / 2) / MAX(rvd->vdev_children, 1);
817 		vr->vr_bytes_inflight_max = MIN(limit, MAX(1ULL << 20,
818 		    zfs_rebuild_vdev_limit * vd->vdev_children));
819 
820 		/*
821 		 * Removal of vdevs from the vdev tree may eliminate the need
822 		 * for the rebuild, in which case it should be canceled.  The
823 		 * vdev_rebuild_cancel_wanted flag is set until the sync task
824 		 * completes.  This may be after the rebuild thread exits.
825 		 */
826 		if (vdev_rebuild_should_cancel(vd)) {
827 			vd->vdev_rebuild_cancel_wanted = B_TRUE;
828 			error = EINTR;
829 			break;
830 		}
831 
832 		ASSERT0(range_tree_space(vr->vr_scan_tree));
833 
834 		/* Disable any new allocations to this metaslab */
835 		spa_config_exit(spa, SCL_CONFIG, FTAG);
836 		metaslab_disable(msp);
837 
838 		mutex_enter(&msp->ms_sync_lock);
839 		mutex_enter(&msp->ms_lock);
840 
841 		/*
842 		 * If there are outstanding allocations wait for them to be
843 		 * synced.  This is needed to ensure all allocated ranges are
844 		 * on disk and therefore will be rebuilt.
845 		 */
846 		for (int j = 0; j < TXG_SIZE; j++) {
847 			if (range_tree_space(msp->ms_allocating[j])) {
848 				mutex_exit(&msp->ms_lock);
849 				mutex_exit(&msp->ms_sync_lock);
850 				txg_wait_synced(dsl, 0);
851 				mutex_enter(&msp->ms_sync_lock);
852 				mutex_enter(&msp->ms_lock);
853 				break;
854 			}
855 		}
856 
857 		/*
858 		 * When a metaslab has been allocated from read its allocated
859 		 * ranges from the space map object into the vr_scan_tree.
860 		 * Then add inflight / unflushed ranges and remove inflight /
861 		 * unflushed frees.  This is the minimum range to be rebuilt.
862 		 */
863 		if (msp->ms_sm != NULL) {
864 			VERIFY0(space_map_load(msp->ms_sm,
865 			    vr->vr_scan_tree, SM_ALLOC));
866 
867 			for (int i = 0; i < TXG_SIZE; i++) {
868 				ASSERT0(range_tree_space(
869 				    msp->ms_allocating[i]));
870 			}
871 
872 			range_tree_walk(msp->ms_unflushed_allocs,
873 			    range_tree_add, vr->vr_scan_tree);
874 			range_tree_walk(msp->ms_unflushed_frees,
875 			    range_tree_remove, vr->vr_scan_tree);
876 
877 			/*
878 			 * Remove ranges which have already been rebuilt based
879 			 * on the last offset.  This can happen when restarting
880 			 * a scan after exporting and re-importing the pool.
881 			 */
882 			range_tree_clear(vr->vr_scan_tree, 0,
883 			    vrp->vrp_last_offset);
884 		}
885 
886 		mutex_exit(&msp->ms_lock);
887 		mutex_exit(&msp->ms_sync_lock);
888 
889 		/*
890 		 * To provide an accurate estimate re-calculate the estimated
891 		 * size every 5 minutes to account for recent allocations and
892 		 * frees made to space maps which have not yet been rebuilt.
893 		 */
894 		if (gethrtime() > update_est_time + SEC2NSEC(300)) {
895 			update_est_time = gethrtime();
896 			vdev_rebuild_update_bytes_est(vd, i);
897 		}
898 
899 		/*
900 		 * Walk the allocated space map and issue the rebuild I/O.
901 		 */
902 		error = vdev_rebuild_ranges(vr);
903 		range_tree_vacate(vr->vr_scan_tree, NULL, NULL);
904 
905 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
906 		metaslab_enable(msp, B_FALSE, B_FALSE);
907 
908 		if (error != 0)
909 			break;
910 	}
911 
912 	range_tree_destroy(vr->vr_scan_tree);
913 	spa_config_exit(spa, SCL_CONFIG, FTAG);
914 
915 	/* Wait for any remaining rebuild I/O to complete */
916 	mutex_enter(&vr->vr_io_lock);
917 	while (vr->vr_bytes_inflight > 0)
918 		cv_wait(&vr->vr_io_cv, &vr->vr_io_lock);
919 
920 	mutex_exit(&vr->vr_io_lock);
921 
922 	mutex_destroy(&vr->vr_io_lock);
923 	cv_destroy(&vr->vr_io_cv);
924 
925 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
926 
927 	dsl_pool_t *dp = spa_get_dsl(spa);
928 	dmu_tx_t *tx = dmu_tx_create_dd(dp->dp_mos_dir);
929 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
930 
931 	mutex_enter(&vd->vdev_rebuild_lock);
932 	if (error == 0) {
933 		/*
934 		 * After a successful rebuild clear the DTLs of all ranges
935 		 * which were missing when the rebuild was started.  These
936 		 * ranges must have been rebuilt as a consequence of rebuilding
937 		 * all allocated space.  Note that unlike a scrub or resilver
938 		 * the rebuild operation will reconstruct data only referenced
939 		 * by a pool checkpoint.  See the dsl_scan_done() comments.
940 		 */
941 		dsl_sync_task_nowait(dp, vdev_rebuild_complete_sync,
942 		    (void *)(uintptr_t)vd->vdev_id, tx);
943 	} else if (vd->vdev_rebuild_cancel_wanted) {
944 		/*
945 		 * The rebuild operation was canceled.  This will occur when
946 		 * a device participating in the rebuild is detached.
947 		 */
948 		dsl_sync_task_nowait(dp, vdev_rebuild_cancel_sync,
949 		    (void *)(uintptr_t)vd->vdev_id, tx);
950 	} else if (vd->vdev_rebuild_reset_wanted) {
951 		/*
952 		 * Reset the running rebuild without canceling and restarting
953 		 * it.  This will occur when a new device is attached and must
954 		 * participate in the rebuild.
955 		 */
956 		dsl_sync_task_nowait(dp, vdev_rebuild_reset_sync,
957 		    (void *)(uintptr_t)vd->vdev_id, tx);
958 	} else {
959 		/*
960 		 * The rebuild operation should be suspended.  This may occur
961 		 * when detaching a child vdev or when exporting the pool.  The
962 		 * rebuild is left in the active state so it will be resumed.
963 		 */
964 		ASSERT(vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
965 		vd->vdev_rebuilding = B_FALSE;
966 	}
967 
968 	dmu_tx_commit(tx);
969 
970 	vd->vdev_rebuild_thread = NULL;
971 	mutex_exit(&vd->vdev_rebuild_lock);
972 	spa_config_exit(spa, SCL_CONFIG, FTAG);
973 
974 	cv_broadcast(&vd->vdev_rebuild_cv);
975 
976 	thread_exit();
977 }
978 
979 /*
980  * Returns B_TRUE if any top-level vdev are rebuilding.
981  */
982 boolean_t
983 vdev_rebuild_active(vdev_t *vd)
984 {
985 	spa_t *spa = vd->vdev_spa;
986 	boolean_t ret = B_FALSE;
987 
988 	if (vd == spa->spa_root_vdev) {
989 		for (uint64_t i = 0; i < vd->vdev_children; i++) {
990 			ret = vdev_rebuild_active(vd->vdev_child[i]);
991 			if (ret)
992 				return (ret);
993 		}
994 	} else if (vd->vdev_top_zap != 0) {
995 		vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
996 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
997 
998 		mutex_enter(&vd->vdev_rebuild_lock);
999 		ret = (vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
1000 		mutex_exit(&vd->vdev_rebuild_lock);
1001 	}
1002 
1003 	return (ret);
1004 }
1005 
1006 /*
1007  * Start a rebuild operation.  The rebuild may be restarted when the
1008  * top-level vdev is currently actively rebuilding.
1009  */
1010 void
1011 vdev_rebuild(vdev_t *vd)
1012 {
1013 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
1014 	vdev_rebuild_phys_t *vrp __maybe_unused = &vr->vr_rebuild_phys;
1015 
1016 	ASSERT(vd->vdev_top == vd);
1017 	ASSERT(vdev_is_concrete(vd));
1018 	ASSERT(!vd->vdev_removing);
1019 	ASSERT(spa_feature_is_enabled(vd->vdev_spa,
1020 	    SPA_FEATURE_DEVICE_REBUILD));
1021 
1022 	mutex_enter(&vd->vdev_rebuild_lock);
1023 	if (vd->vdev_rebuilding) {
1024 		ASSERT3U(vrp->vrp_rebuild_state, ==, VDEV_REBUILD_ACTIVE);
1025 
1026 		/*
1027 		 * Signal a running rebuild operation that it should restart
1028 		 * from the beginning because a new device was attached.  The
1029 		 * vdev_rebuild_reset_wanted flag is set until the sync task
1030 		 * completes.  This may be after the rebuild thread exits.
1031 		 */
1032 		if (!vd->vdev_rebuild_reset_wanted)
1033 			vd->vdev_rebuild_reset_wanted = B_TRUE;
1034 	} else {
1035 		vdev_rebuild_initiate(vd);
1036 	}
1037 	mutex_exit(&vd->vdev_rebuild_lock);
1038 }
1039 
1040 static void
1041 vdev_rebuild_restart_impl(vdev_t *vd)
1042 {
1043 	spa_t *spa = vd->vdev_spa;
1044 
1045 	if (vd == spa->spa_root_vdev) {
1046 		for (uint64_t i = 0; i < vd->vdev_children; i++)
1047 			vdev_rebuild_restart_impl(vd->vdev_child[i]);
1048 
1049 	} else if (vd->vdev_top_zap != 0) {
1050 		vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
1051 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
1052 
1053 		mutex_enter(&vd->vdev_rebuild_lock);
1054 		if (vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE &&
1055 		    vdev_writeable(vd) && !vd->vdev_rebuilding) {
1056 			ASSERT(spa_feature_is_active(spa,
1057 			    SPA_FEATURE_DEVICE_REBUILD));
1058 			vd->vdev_rebuilding = B_TRUE;
1059 			vd->vdev_rebuild_thread = thread_create(NULL, 0,
1060 			    vdev_rebuild_thread, vd, 0, &p0, TS_RUN,
1061 			    maxclsyspri);
1062 		}
1063 		mutex_exit(&vd->vdev_rebuild_lock);
1064 	}
1065 }
1066 
1067 /*
1068  * Conditionally restart all of the vdev_rebuild_thread's for a pool.  The
1069  * feature flag must be active and the rebuild in the active state.   This
1070  * cannot be used to start a new rebuild.
1071  */
1072 void
1073 vdev_rebuild_restart(spa_t *spa)
1074 {
1075 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
1076 	    spa->spa_load_thread == curthread);
1077 
1078 	vdev_rebuild_restart_impl(spa->spa_root_vdev);
1079 }
1080 
1081 /*
1082  * Stop and wait for all of the vdev_rebuild_thread's associated with the
1083  * vdev tree provide to be terminated (canceled or stopped).
1084  */
1085 void
1086 vdev_rebuild_stop_wait(vdev_t *vd)
1087 {
1088 	spa_t *spa = vd->vdev_spa;
1089 
1090 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1091 
1092 	if (vd == spa->spa_root_vdev) {
1093 		for (uint64_t i = 0; i < vd->vdev_children; i++)
1094 			vdev_rebuild_stop_wait(vd->vdev_child[i]);
1095 
1096 	} else if (vd->vdev_top_zap != 0) {
1097 		ASSERT(vd == vd->vdev_top);
1098 
1099 		mutex_enter(&vd->vdev_rebuild_lock);
1100 		if (vd->vdev_rebuild_thread != NULL) {
1101 			vd->vdev_rebuild_exit_wanted = B_TRUE;
1102 			while (vd->vdev_rebuilding) {
1103 				cv_wait(&vd->vdev_rebuild_cv,
1104 				    &vd->vdev_rebuild_lock);
1105 			}
1106 			vd->vdev_rebuild_exit_wanted = B_FALSE;
1107 		}
1108 		mutex_exit(&vd->vdev_rebuild_lock);
1109 	}
1110 }
1111 
1112 /*
1113  * Stop all rebuild operations but leave them in the active state so they
1114  * will be resumed when importing the pool.
1115  */
1116 void
1117 vdev_rebuild_stop_all(spa_t *spa)
1118 {
1119 	vdev_rebuild_stop_wait(spa->spa_root_vdev);
1120 }
1121 
1122 /*
1123  * Rebuild statistics reported per top-level vdev.
1124  */
1125 int
1126 vdev_rebuild_get_stats(vdev_t *tvd, vdev_rebuild_stat_t *vrs)
1127 {
1128 	spa_t *spa = tvd->vdev_spa;
1129 
1130 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
1131 		return (SET_ERROR(ENOTSUP));
1132 
1133 	if (tvd != tvd->vdev_top || tvd->vdev_top_zap == 0)
1134 		return (SET_ERROR(EINVAL));
1135 
1136 	int error = zap_contains(spa_meta_objset(spa),
1137 	    tvd->vdev_top_zap, VDEV_TOP_ZAP_VDEV_REBUILD_PHYS);
1138 
1139 	if (error == ENOENT) {
1140 		memset(vrs, 0, sizeof (vdev_rebuild_stat_t));
1141 		vrs->vrs_state = VDEV_REBUILD_NONE;
1142 		error = 0;
1143 	} else if (error == 0) {
1144 		vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
1145 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
1146 
1147 		mutex_enter(&tvd->vdev_rebuild_lock);
1148 		vrs->vrs_state = vrp->vrp_rebuild_state;
1149 		vrs->vrs_start_time = vrp->vrp_start_time;
1150 		vrs->vrs_end_time = vrp->vrp_end_time;
1151 		vrs->vrs_scan_time_ms = vrp->vrp_scan_time_ms;
1152 		vrs->vrs_bytes_scanned = vrp->vrp_bytes_scanned;
1153 		vrs->vrs_bytes_issued = vrp->vrp_bytes_issued;
1154 		vrs->vrs_bytes_rebuilt = vrp->vrp_bytes_rebuilt;
1155 		vrs->vrs_bytes_est = vrp->vrp_bytes_est;
1156 		vrs->vrs_errors = vrp->vrp_errors;
1157 		vrs->vrs_pass_time_ms = NSEC2MSEC(gethrtime() -
1158 		    vr->vr_pass_start_time);
1159 		vrs->vrs_pass_bytes_scanned = vr->vr_pass_bytes_scanned;
1160 		vrs->vrs_pass_bytes_issued = vr->vr_pass_bytes_issued;
1161 		vrs->vrs_pass_bytes_skipped = vr->vr_pass_bytes_skipped;
1162 		mutex_exit(&tvd->vdev_rebuild_lock);
1163 	}
1164 
1165 	return (error);
1166 }
1167 
1168 ZFS_MODULE_PARAM(zfs, zfs_, rebuild_max_segment, U64, ZMOD_RW,
1169 	"Max segment size in bytes of rebuild reads");
1170 
1171 ZFS_MODULE_PARAM(zfs, zfs_, rebuild_vdev_limit, U64, ZMOD_RW,
1172 	"Max bytes in flight per leaf vdev for sequential resilvers");
1173 
1174 ZFS_MODULE_PARAM(zfs, zfs_, rebuild_scrub_enabled, INT, ZMOD_RW,
1175 	"Automatically scrub after sequential resilver completes");
1176