1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * 23 * Copyright (c) 2018, Intel Corporation. 24 * Copyright (c) 2020 by Lawrence Livermore National Security, LLC. 25 * Copyright (c) 2022 Hewlett Packard Enterprise Development LP. 26 */ 27 28 #include <sys/vdev_impl.h> 29 #include <sys/vdev_draid.h> 30 #include <sys/dsl_scan.h> 31 #include <sys/spa_impl.h> 32 #include <sys/metaslab_impl.h> 33 #include <sys/vdev_rebuild.h> 34 #include <sys/zio.h> 35 #include <sys/dmu_tx.h> 36 #include <sys/arc.h> 37 #include <sys/arc_impl.h> 38 #include <sys/zap.h> 39 40 /* 41 * This file contains the sequential reconstruction implementation for 42 * resilvering. This form of resilvering is internally referred to as device 43 * rebuild to avoid conflating it with the traditional healing reconstruction 44 * performed by the dsl scan code. 45 * 46 * When replacing a device, or scrubbing the pool, ZFS has historically used 47 * a process called resilvering which is a form of healing reconstruction. 48 * This approach has the advantage that as blocks are read from disk their 49 * checksums can be immediately verified and the data repaired. Unfortunately, 50 * it also results in a random IO pattern to the disk even when extra care 51 * is taken to sequentialize the IO as much as possible. This substantially 52 * increases the time required to resilver the pool and restore redundancy. 53 * 54 * For mirrored devices it's possible to implement an alternate sequential 55 * reconstruction strategy when resilvering. Sequential reconstruction 56 * behaves like a traditional RAID rebuild and reconstructs a device in LBA 57 * order without verifying the checksum. After this phase completes a second 58 * scrub phase is started to verify all of the checksums. This two phase 59 * process will take longer than the healing reconstruction described above. 60 * However, it has that advantage that after the reconstruction first phase 61 * completes redundancy has been restored. At this point the pool can incur 62 * another device failure without risking data loss. 63 * 64 * There are a few noteworthy limitations and other advantages of resilvering 65 * using sequential reconstruction vs healing reconstruction. 66 * 67 * Limitations: 68 * 69 * - Sequential reconstruction is not possible on RAIDZ due to its 70 * variable stripe width. Note dRAID uses a fixed stripe width which 71 * avoids this issue, but comes at the expense of some usable capacity. 72 * 73 * - Block checksums are not verified during sequential reconstruction. 74 * Similar to traditional RAID the parity/mirror data is reconstructed 75 * but cannot be immediately double checked. For this reason when the 76 * last active resilver completes the pool is automatically scrubbed 77 * by default. 78 * 79 * - Deferred resilvers using sequential reconstruction are not currently 80 * supported. When adding another vdev to an active top-level resilver 81 * it must be restarted. 82 * 83 * Advantages: 84 * 85 * - Sequential reconstruction is performed in LBA order which may be faster 86 * than healing reconstruction particularly when using HDDs (or 87 * especially with SMR devices). Only allocated capacity is resilvered. 88 * 89 * - Sequential reconstruction is not constrained by ZFS block boundaries. 90 * This allows it to issue larger IOs to disk which span multiple blocks 91 * allowing all of these logical blocks to be repaired with a single IO. 92 * 93 * - Unlike a healing resilver or scrub which are pool wide operations, 94 * sequential reconstruction is handled by the top-level vdevs. This 95 * allows for it to be started or canceled on a top-level vdev without 96 * impacting any other top-level vdevs in the pool. 97 * 98 * - Data only referenced by a pool checkpoint will be repaired because 99 * that space is reflected in the space maps. This differs for a 100 * healing resilver or scrub which will not repair that data. 101 */ 102 103 104 /* 105 * Size of rebuild reads; defaults to 1MiB per data disk and is capped at 106 * SPA_MAXBLOCKSIZE. 107 */ 108 static uint64_t zfs_rebuild_max_segment = 1024 * 1024; 109 110 /* 111 * Maximum number of parallelly executed bytes per leaf vdev caused by a 112 * sequential resilver. We attempt to strike a balance here between keeping 113 * the vdev queues full of I/Os at all times and not overflowing the queues 114 * to cause long latency, which would cause long txg sync times. 115 * 116 * A large default value can be safely used here because the default target 117 * segment size is also large (zfs_rebuild_max_segment=1M). This helps keep 118 * the queue depth short. 119 * 120 * 64MB was observed to deliver the best performance and set as the default. 121 * Testing was performed with a 106-drive dRAID HDD pool (draid2:11d:106c) 122 * and a rebuild rate of 1.2GB/s was measured to the distribute spare. 123 * Smaller values were unable to fully saturate the available pool I/O. 124 */ 125 static uint64_t zfs_rebuild_vdev_limit = 64 << 20; 126 127 /* 128 * Automatically start a pool scrub when the last active sequential resilver 129 * completes in order to verify the checksums of all blocks which have been 130 * resilvered. This option is enabled by default and is strongly recommended. 131 */ 132 static int zfs_rebuild_scrub_enabled = 1; 133 134 /* 135 * For vdev_rebuild_initiate_sync() and vdev_rebuild_reset_sync(). 136 */ 137 static __attribute__((noreturn)) void vdev_rebuild_thread(void *arg); 138 static void vdev_rebuild_reset_sync(void *arg, dmu_tx_t *tx); 139 140 /* 141 * Clear the per-vdev rebuild bytes value for a vdev tree. 142 */ 143 static void 144 clear_rebuild_bytes(vdev_t *vd) 145 { 146 vdev_stat_t *vs = &vd->vdev_stat; 147 148 for (uint64_t i = 0; i < vd->vdev_children; i++) 149 clear_rebuild_bytes(vd->vdev_child[i]); 150 151 mutex_enter(&vd->vdev_stat_lock); 152 vs->vs_rebuild_processed = 0; 153 mutex_exit(&vd->vdev_stat_lock); 154 } 155 156 /* 157 * Determines whether a vdev_rebuild_thread() should be stopped. 158 */ 159 static boolean_t 160 vdev_rebuild_should_stop(vdev_t *vd) 161 { 162 return (!vdev_writeable(vd) || vd->vdev_removing || 163 vd->vdev_rebuild_exit_wanted || 164 vd->vdev_rebuild_cancel_wanted || 165 vd->vdev_rebuild_reset_wanted); 166 } 167 168 /* 169 * Determine if the rebuild should be canceled. This may happen when all 170 * vdevs with MISSING DTLs are detached. 171 */ 172 static boolean_t 173 vdev_rebuild_should_cancel(vdev_t *vd) 174 { 175 vdev_rebuild_t *vr = &vd->vdev_rebuild_config; 176 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 177 178 if (!vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg)) 179 return (B_TRUE); 180 181 return (B_FALSE); 182 } 183 184 /* 185 * The sync task for updating the on-disk state of a rebuild. This is 186 * scheduled by vdev_rebuild_range(). 187 */ 188 static void 189 vdev_rebuild_update_sync(void *arg, dmu_tx_t *tx) 190 { 191 int vdev_id = (uintptr_t)arg; 192 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 193 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 194 vdev_rebuild_t *vr = &vd->vdev_rebuild_config; 195 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 196 uint64_t txg = dmu_tx_get_txg(tx); 197 198 mutex_enter(&vd->vdev_rebuild_lock); 199 200 if (vr->vr_scan_offset[txg & TXG_MASK] > 0) { 201 vrp->vrp_last_offset = vr->vr_scan_offset[txg & TXG_MASK]; 202 vr->vr_scan_offset[txg & TXG_MASK] = 0; 203 } 204 205 vrp->vrp_scan_time_ms = vr->vr_prev_scan_time_ms + 206 NSEC2MSEC(gethrtime() - vr->vr_pass_start_time); 207 208 VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap, 209 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t), 210 REBUILD_PHYS_ENTRIES, vrp, tx)); 211 212 mutex_exit(&vd->vdev_rebuild_lock); 213 } 214 215 /* 216 * Initialize the on-disk state for a new rebuild, start the rebuild thread. 217 */ 218 static void 219 vdev_rebuild_initiate_sync(void *arg, dmu_tx_t *tx) 220 { 221 int vdev_id = (uintptr_t)arg; 222 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 223 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 224 vdev_rebuild_t *vr = &vd->vdev_rebuild_config; 225 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 226 227 ASSERT(vd->vdev_rebuilding); 228 229 spa_feature_incr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx); 230 231 mutex_enter(&vd->vdev_rebuild_lock); 232 memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES); 233 vrp->vrp_rebuild_state = VDEV_REBUILD_ACTIVE; 234 vrp->vrp_min_txg = 0; 235 vrp->vrp_max_txg = dmu_tx_get_txg(tx); 236 vrp->vrp_start_time = gethrestime_sec(); 237 vrp->vrp_scan_time_ms = 0; 238 vr->vr_prev_scan_time_ms = 0; 239 240 /* 241 * Rebuilds are currently only used when replacing a device, in which 242 * case there must be DTL_MISSING entries. In the future, we could 243 * allow rebuilds to be used in a way similar to a scrub. This would 244 * be useful because it would allow us to rebuild the space used by 245 * pool checkpoints. 246 */ 247 VERIFY(vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg)); 248 249 VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap, 250 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t), 251 REBUILD_PHYS_ENTRIES, vrp, tx)); 252 253 spa_history_log_internal(spa, "rebuild", tx, 254 "vdev_id=%llu vdev_guid=%llu started", 255 (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid); 256 257 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL); 258 vd->vdev_rebuild_thread = thread_create(NULL, 0, 259 vdev_rebuild_thread, vd, 0, &p0, TS_RUN, maxclsyspri); 260 261 mutex_exit(&vd->vdev_rebuild_lock); 262 } 263 264 static void 265 vdev_rebuild_log_notify(spa_t *spa, vdev_t *vd, const char *name) 266 { 267 nvlist_t *aux = fnvlist_alloc(); 268 269 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, "sequential"); 270 spa_event_notify(spa, vd, aux, name); 271 nvlist_free(aux); 272 } 273 274 /* 275 * Called to request that a new rebuild be started. The feature will remain 276 * active for the duration of the rebuild, then revert to the enabled state. 277 */ 278 static void 279 vdev_rebuild_initiate(vdev_t *vd) 280 { 281 spa_t *spa = vd->vdev_spa; 282 283 ASSERT(vd->vdev_top == vd); 284 ASSERT(MUTEX_HELD(&vd->vdev_rebuild_lock)); 285 ASSERT(!vd->vdev_rebuilding); 286 287 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 288 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 289 290 vd->vdev_rebuilding = B_TRUE; 291 292 dsl_sync_task_nowait(spa_get_dsl(spa), vdev_rebuild_initiate_sync, 293 (void *)(uintptr_t)vd->vdev_id, tx); 294 dmu_tx_commit(tx); 295 296 vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_START); 297 } 298 299 /* 300 * Update the on-disk state to completed when a rebuild finishes. 301 */ 302 static void 303 vdev_rebuild_complete_sync(void *arg, dmu_tx_t *tx) 304 { 305 int vdev_id = (uintptr_t)arg; 306 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 307 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 308 vdev_rebuild_t *vr = &vd->vdev_rebuild_config; 309 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 310 311 mutex_enter(&vd->vdev_rebuild_lock); 312 313 /* 314 * Handle a second device failure if it occurs after all rebuild I/O 315 * has completed but before this sync task has been executed. 316 */ 317 if (vd->vdev_rebuild_reset_wanted) { 318 mutex_exit(&vd->vdev_rebuild_lock); 319 vdev_rebuild_reset_sync(arg, tx); 320 return; 321 } 322 323 vrp->vrp_rebuild_state = VDEV_REBUILD_COMPLETE; 324 vrp->vrp_end_time = gethrestime_sec(); 325 326 VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap, 327 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t), 328 REBUILD_PHYS_ENTRIES, vrp, tx)); 329 330 vdev_dtl_reassess(vd, tx->tx_txg, vrp->vrp_max_txg, B_TRUE, B_TRUE); 331 spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx); 332 333 spa_history_log_internal(spa, "rebuild", tx, 334 "vdev_id=%llu vdev_guid=%llu complete", 335 (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid); 336 vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_FINISH); 337 338 /* Handles detaching of spares */ 339 spa_async_request(spa, SPA_ASYNC_REBUILD_DONE); 340 vd->vdev_rebuilding = B_FALSE; 341 mutex_exit(&vd->vdev_rebuild_lock); 342 343 /* 344 * While we're in syncing context take the opportunity to 345 * setup the scrub when there are no more active rebuilds. 346 */ 347 pool_scan_func_t func = POOL_SCAN_SCRUB; 348 if (dsl_scan_setup_check(&func, tx) == 0 && 349 zfs_rebuild_scrub_enabled) { 350 dsl_scan_setup_sync(&func, tx); 351 } 352 353 cv_broadcast(&vd->vdev_rebuild_cv); 354 355 /* Clear recent error events (i.e. duplicate events tracking) */ 356 zfs_ereport_clear(spa, NULL); 357 } 358 359 /* 360 * Update the on-disk state to canceled when a rebuild finishes. 361 */ 362 static void 363 vdev_rebuild_cancel_sync(void *arg, dmu_tx_t *tx) 364 { 365 int vdev_id = (uintptr_t)arg; 366 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 367 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 368 vdev_rebuild_t *vr = &vd->vdev_rebuild_config; 369 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 370 371 mutex_enter(&vd->vdev_rebuild_lock); 372 vrp->vrp_rebuild_state = VDEV_REBUILD_CANCELED; 373 vrp->vrp_end_time = gethrestime_sec(); 374 375 VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap, 376 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t), 377 REBUILD_PHYS_ENTRIES, vrp, tx)); 378 379 spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx); 380 381 spa_history_log_internal(spa, "rebuild", tx, 382 "vdev_id=%llu vdev_guid=%llu canceled", 383 (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid); 384 vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_FINISH); 385 386 vd->vdev_rebuild_cancel_wanted = B_FALSE; 387 vd->vdev_rebuilding = B_FALSE; 388 mutex_exit(&vd->vdev_rebuild_lock); 389 390 spa_notify_waiters(spa); 391 cv_broadcast(&vd->vdev_rebuild_cv); 392 } 393 394 /* 395 * Resets the progress of a running rebuild. This will occur when a new 396 * vdev is added to rebuild. 397 */ 398 static void 399 vdev_rebuild_reset_sync(void *arg, dmu_tx_t *tx) 400 { 401 int vdev_id = (uintptr_t)arg; 402 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 403 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 404 vdev_rebuild_t *vr = &vd->vdev_rebuild_config; 405 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 406 407 mutex_enter(&vd->vdev_rebuild_lock); 408 409 ASSERT(vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE); 410 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL); 411 412 vrp->vrp_last_offset = 0; 413 vrp->vrp_min_txg = 0; 414 vrp->vrp_max_txg = dmu_tx_get_txg(tx); 415 vrp->vrp_bytes_scanned = 0; 416 vrp->vrp_bytes_issued = 0; 417 vrp->vrp_bytes_rebuilt = 0; 418 vrp->vrp_bytes_est = 0; 419 vrp->vrp_scan_time_ms = 0; 420 vr->vr_prev_scan_time_ms = 0; 421 422 /* See vdev_rebuild_initiate_sync comment */ 423 VERIFY(vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg)); 424 425 VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap, 426 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t), 427 REBUILD_PHYS_ENTRIES, vrp, tx)); 428 429 spa_history_log_internal(spa, "rebuild", tx, 430 "vdev_id=%llu vdev_guid=%llu reset", 431 (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid); 432 433 vd->vdev_rebuild_reset_wanted = B_FALSE; 434 ASSERT(vd->vdev_rebuilding); 435 436 vd->vdev_rebuild_thread = thread_create(NULL, 0, 437 vdev_rebuild_thread, vd, 0, &p0, TS_RUN, maxclsyspri); 438 439 mutex_exit(&vd->vdev_rebuild_lock); 440 } 441 442 /* 443 * Clear the last rebuild status. 444 */ 445 void 446 vdev_rebuild_clear_sync(void *arg, dmu_tx_t *tx) 447 { 448 int vdev_id = (uintptr_t)arg; 449 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 450 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 451 vdev_rebuild_t *vr = &vd->vdev_rebuild_config; 452 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 453 objset_t *mos = spa_meta_objset(spa); 454 455 mutex_enter(&vd->vdev_rebuild_lock); 456 457 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD) || 458 vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE) { 459 mutex_exit(&vd->vdev_rebuild_lock); 460 return; 461 } 462 463 clear_rebuild_bytes(vd); 464 memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES); 465 466 if (vd->vdev_top_zap != 0 && zap_contains(mos, vd->vdev_top_zap, 467 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS) == 0) { 468 VERIFY0(zap_update(mos, vd->vdev_top_zap, 469 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t), 470 REBUILD_PHYS_ENTRIES, vrp, tx)); 471 } 472 473 mutex_exit(&vd->vdev_rebuild_lock); 474 } 475 476 /* 477 * The zio_done_func_t callback for each rebuild I/O issued. It's responsible 478 * for updating the rebuild stats and limiting the number of in flight I/Os. 479 */ 480 static void 481 vdev_rebuild_cb(zio_t *zio) 482 { 483 vdev_rebuild_t *vr = zio->io_private; 484 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 485 vdev_t *vd = vr->vr_top_vdev; 486 487 mutex_enter(&vr->vr_io_lock); 488 if (zio->io_error == ENXIO && !vdev_writeable(vd)) { 489 /* 490 * The I/O failed because the top-level vdev was unavailable. 491 * Attempt to roll back to the last completed offset, in order 492 * resume from the correct location if the pool is resumed. 493 * (This works because spa_sync waits on spa_txg_zio before 494 * it runs sync tasks.) 495 */ 496 uint64_t *off = &vr->vr_scan_offset[zio->io_txg & TXG_MASK]; 497 *off = MIN(*off, zio->io_offset); 498 } else if (zio->io_error) { 499 vrp->vrp_errors++; 500 } 501 502 abd_free(zio->io_abd); 503 504 ASSERT3U(vr->vr_bytes_inflight, >, 0); 505 vr->vr_bytes_inflight -= zio->io_size; 506 cv_broadcast(&vr->vr_io_cv); 507 mutex_exit(&vr->vr_io_lock); 508 509 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 510 } 511 512 /* 513 * Initialize a block pointer that can be used to read the given segment 514 * for sequential rebuild. 515 */ 516 static void 517 vdev_rebuild_blkptr_init(blkptr_t *bp, vdev_t *vd, uint64_t start, 518 uint64_t asize) 519 { 520 ASSERT(vd->vdev_ops == &vdev_draid_ops || 521 vd->vdev_ops == &vdev_mirror_ops || 522 vd->vdev_ops == &vdev_replacing_ops || 523 vd->vdev_ops == &vdev_spare_ops); 524 525 uint64_t psize = vd->vdev_ops == &vdev_draid_ops ? 526 vdev_draid_asize_to_psize(vd, asize) : asize; 527 528 BP_ZERO(bp); 529 530 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id); 531 DVA_SET_OFFSET(&bp->blk_dva[0], start); 532 DVA_SET_GANG(&bp->blk_dva[0], 0); 533 DVA_SET_ASIZE(&bp->blk_dva[0], asize); 534 535 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL); 536 BP_SET_LSIZE(bp, psize); 537 BP_SET_PSIZE(bp, psize); 538 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 539 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF); 540 BP_SET_TYPE(bp, DMU_OT_NONE); 541 BP_SET_LEVEL(bp, 0); 542 BP_SET_DEDUP(bp, 0); 543 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 544 } 545 546 /* 547 * Issues a rebuild I/O and takes care of rate limiting the number of queued 548 * rebuild I/Os. The provided start and size must be properly aligned for the 549 * top-level vdev type being rebuilt. 550 */ 551 static int 552 vdev_rebuild_range(vdev_rebuild_t *vr, uint64_t start, uint64_t size) 553 { 554 uint64_t ms_id __maybe_unused = vr->vr_scan_msp->ms_id; 555 vdev_t *vd = vr->vr_top_vdev; 556 spa_t *spa = vd->vdev_spa; 557 blkptr_t blk; 558 559 ASSERT3U(ms_id, ==, start >> vd->vdev_ms_shift); 560 ASSERT3U(ms_id, ==, (start + size - 1) >> vd->vdev_ms_shift); 561 562 vr->vr_pass_bytes_scanned += size; 563 vr->vr_rebuild_phys.vrp_bytes_scanned += size; 564 565 /* 566 * Rebuild the data in this range by constructing a special block 567 * pointer. It has no relation to any existing blocks in the pool. 568 * However, by disabling checksum verification and issuing a scrub IO 569 * we can reconstruct and repair any children with missing data. 570 */ 571 vdev_rebuild_blkptr_init(&blk, vd, start, size); 572 uint64_t psize = BP_GET_PSIZE(&blk); 573 574 if (!vdev_dtl_need_resilver(vd, &blk.blk_dva[0], psize, TXG_UNKNOWN)) { 575 vr->vr_pass_bytes_skipped += size; 576 return (0); 577 } 578 579 mutex_enter(&vr->vr_io_lock); 580 581 /* Limit in flight rebuild I/Os */ 582 while (vr->vr_bytes_inflight >= vr->vr_bytes_inflight_max) 583 cv_wait(&vr->vr_io_cv, &vr->vr_io_lock); 584 585 vr->vr_bytes_inflight += psize; 586 mutex_exit(&vr->vr_io_lock); 587 588 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 589 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 590 uint64_t txg = dmu_tx_get_txg(tx); 591 592 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER); 593 mutex_enter(&vd->vdev_rebuild_lock); 594 595 /* This is the first I/O for this txg. */ 596 if (vr->vr_scan_offset[txg & TXG_MASK] == 0) { 597 vr->vr_scan_offset[txg & TXG_MASK] = start; 598 dsl_sync_task_nowait(spa_get_dsl(spa), 599 vdev_rebuild_update_sync, 600 (void *)(uintptr_t)vd->vdev_id, tx); 601 } 602 603 /* When exiting write out our progress. */ 604 if (vdev_rebuild_should_stop(vd)) { 605 mutex_enter(&vr->vr_io_lock); 606 vr->vr_bytes_inflight -= psize; 607 mutex_exit(&vr->vr_io_lock); 608 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 609 mutex_exit(&vd->vdev_rebuild_lock); 610 dmu_tx_commit(tx); 611 return (SET_ERROR(EINTR)); 612 } 613 mutex_exit(&vd->vdev_rebuild_lock); 614 dmu_tx_commit(tx); 615 616 vr->vr_scan_offset[txg & TXG_MASK] = start + size; 617 vr->vr_pass_bytes_issued += size; 618 vr->vr_rebuild_phys.vrp_bytes_issued += size; 619 620 zio_nowait(zio_read(spa->spa_txg_zio[txg & TXG_MASK], spa, &blk, 621 abd_alloc(psize, B_FALSE), psize, vdev_rebuild_cb, vr, 622 ZIO_PRIORITY_REBUILD, ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL | 623 ZIO_FLAG_RESILVER, NULL)); 624 625 return (0); 626 } 627 628 /* 629 * Issues rebuild I/Os for all ranges in the provided vr->vr_tree range tree. 630 */ 631 static int 632 vdev_rebuild_ranges(vdev_rebuild_t *vr) 633 { 634 vdev_t *vd = vr->vr_top_vdev; 635 zfs_btree_t *t = &vr->vr_scan_tree->rt_root; 636 zfs_btree_index_t idx; 637 int error; 638 639 for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL; 640 rs = zfs_btree_next(t, &idx, &idx)) { 641 uint64_t start = rs_get_start(rs, vr->vr_scan_tree); 642 uint64_t size = rs_get_end(rs, vr->vr_scan_tree) - start; 643 644 /* 645 * zfs_scan_suspend_progress can be set to disable rebuild 646 * progress for testing. See comment in dsl_scan_sync(). 647 */ 648 while (zfs_scan_suspend_progress && 649 !vdev_rebuild_should_stop(vd)) { 650 delay(hz); 651 } 652 653 while (size > 0) { 654 uint64_t chunk_size; 655 656 /* 657 * Split range into legally-sized logical chunks 658 * given the constraints of the top-level vdev 659 * being rebuilt (dRAID or mirror). 660 */ 661 ASSERT3P(vd->vdev_ops, !=, NULL); 662 chunk_size = vd->vdev_ops->vdev_op_rebuild_asize(vd, 663 start, size, zfs_rebuild_max_segment); 664 665 error = vdev_rebuild_range(vr, start, chunk_size); 666 if (error != 0) 667 return (error); 668 669 size -= chunk_size; 670 start += chunk_size; 671 } 672 } 673 674 return (0); 675 } 676 677 /* 678 * Calculates the estimated capacity which remains to be scanned. Since 679 * we traverse the pool in metaslab order only allocated capacity beyond 680 * the vrp_last_offset need be considered. All lower offsets must have 681 * already been rebuilt and are thus already included in vrp_bytes_scanned. 682 */ 683 static void 684 vdev_rebuild_update_bytes_est(vdev_t *vd, uint64_t ms_id) 685 { 686 vdev_rebuild_t *vr = &vd->vdev_rebuild_config; 687 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 688 uint64_t bytes_est = vrp->vrp_bytes_scanned; 689 690 if (vrp->vrp_last_offset < vd->vdev_ms[ms_id]->ms_start) 691 return; 692 693 for (uint64_t i = ms_id; i < vd->vdev_ms_count; i++) { 694 metaslab_t *msp = vd->vdev_ms[i]; 695 696 mutex_enter(&msp->ms_lock); 697 bytes_est += metaslab_allocated_space(msp); 698 mutex_exit(&msp->ms_lock); 699 } 700 701 vrp->vrp_bytes_est = bytes_est; 702 } 703 704 /* 705 * Load from disk the top-level vdev's rebuild information. 706 */ 707 int 708 vdev_rebuild_load(vdev_t *vd) 709 { 710 vdev_rebuild_t *vr = &vd->vdev_rebuild_config; 711 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 712 spa_t *spa = vd->vdev_spa; 713 int err = 0; 714 715 mutex_enter(&vd->vdev_rebuild_lock); 716 vd->vdev_rebuilding = B_FALSE; 717 718 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) { 719 memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES); 720 mutex_exit(&vd->vdev_rebuild_lock); 721 return (SET_ERROR(ENOTSUP)); 722 } 723 724 ASSERT(vd->vdev_top == vd); 725 726 err = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 727 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t), 728 REBUILD_PHYS_ENTRIES, vrp); 729 730 /* 731 * A missing or damaged VDEV_TOP_ZAP_VDEV_REBUILD_PHYS should 732 * not prevent a pool from being imported. Clear the rebuild 733 * status allowing a new resilver/rebuild to be started. 734 */ 735 if (err == ENOENT || err == EOVERFLOW || err == ECKSUM) { 736 memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES); 737 } else if (err) { 738 mutex_exit(&vd->vdev_rebuild_lock); 739 return (err); 740 } 741 742 vr->vr_prev_scan_time_ms = vrp->vrp_scan_time_ms; 743 vr->vr_top_vdev = vd; 744 745 mutex_exit(&vd->vdev_rebuild_lock); 746 747 return (0); 748 } 749 750 /* 751 * Each scan thread is responsible for rebuilding a top-level vdev. The 752 * rebuild progress in tracked on-disk in VDEV_TOP_ZAP_VDEV_REBUILD_PHYS. 753 */ 754 static __attribute__((noreturn)) void 755 vdev_rebuild_thread(void *arg) 756 { 757 vdev_t *vd = arg; 758 spa_t *spa = vd->vdev_spa; 759 vdev_t *rvd = spa->spa_root_vdev; 760 int error = 0; 761 762 /* 763 * If there's a scrub in process request that it be stopped. This 764 * is not required for a correct rebuild, but we do want rebuilds to 765 * emulate the resilver behavior as much as possible. 766 */ 767 dsl_pool_t *dsl = spa_get_dsl(spa); 768 if (dsl_scan_scrubbing(dsl)) 769 dsl_scan_cancel(dsl); 770 771 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 772 mutex_enter(&vd->vdev_rebuild_lock); 773 774 ASSERT3P(vd->vdev_top, ==, vd); 775 ASSERT3P(vd->vdev_rebuild_thread, !=, NULL); 776 ASSERT(vd->vdev_rebuilding); 777 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REBUILD)); 778 ASSERT3B(vd->vdev_rebuild_cancel_wanted, ==, B_FALSE); 779 780 vdev_rebuild_t *vr = &vd->vdev_rebuild_config; 781 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 782 vr->vr_top_vdev = vd; 783 vr->vr_scan_msp = NULL; 784 vr->vr_scan_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 785 mutex_init(&vr->vr_io_lock, NULL, MUTEX_DEFAULT, NULL); 786 cv_init(&vr->vr_io_cv, NULL, CV_DEFAULT, NULL); 787 788 vr->vr_pass_start_time = gethrtime(); 789 vr->vr_pass_bytes_scanned = 0; 790 vr->vr_pass_bytes_issued = 0; 791 vr->vr_pass_bytes_skipped = 0; 792 793 uint64_t update_est_time = gethrtime(); 794 vdev_rebuild_update_bytes_est(vd, 0); 795 796 clear_rebuild_bytes(vr->vr_top_vdev); 797 798 mutex_exit(&vd->vdev_rebuild_lock); 799 800 /* 801 * Systematically walk the metaslabs and issue rebuild I/Os for 802 * all ranges in the allocated space map. 803 */ 804 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) { 805 metaslab_t *msp = vd->vdev_ms[i]; 806 vr->vr_scan_msp = msp; 807 808 /* 809 * Calculate the max number of in-flight bytes for top-level 810 * vdev scanning operations (minimum 1MB, maximum 1/4 of 811 * arc_c_max shared by all top-level vdevs). Limits for the 812 * issuing phase are done per top-level vdev and are handled 813 * separately. 814 */ 815 uint64_t limit = (arc_c_max / 4) / MAX(rvd->vdev_children, 1); 816 vr->vr_bytes_inflight_max = MIN(limit, MAX(1ULL << 20, 817 zfs_rebuild_vdev_limit * vd->vdev_children)); 818 819 /* 820 * Removal of vdevs from the vdev tree may eliminate the need 821 * for the rebuild, in which case it should be canceled. The 822 * vdev_rebuild_cancel_wanted flag is set until the sync task 823 * completes. This may be after the rebuild thread exits. 824 */ 825 if (vdev_rebuild_should_cancel(vd)) { 826 vd->vdev_rebuild_cancel_wanted = B_TRUE; 827 error = EINTR; 828 break; 829 } 830 831 ASSERT0(range_tree_space(vr->vr_scan_tree)); 832 833 /* Disable any new allocations to this metaslab */ 834 spa_config_exit(spa, SCL_CONFIG, FTAG); 835 metaslab_disable(msp); 836 837 mutex_enter(&msp->ms_sync_lock); 838 mutex_enter(&msp->ms_lock); 839 840 /* 841 * If there are outstanding allocations wait for them to be 842 * synced. This is needed to ensure all allocated ranges are 843 * on disk and therefore will be rebuilt. 844 */ 845 for (int j = 0; j < TXG_SIZE; j++) { 846 if (range_tree_space(msp->ms_allocating[j])) { 847 mutex_exit(&msp->ms_lock); 848 mutex_exit(&msp->ms_sync_lock); 849 txg_wait_synced(dsl, 0); 850 mutex_enter(&msp->ms_sync_lock); 851 mutex_enter(&msp->ms_lock); 852 break; 853 } 854 } 855 856 /* 857 * When a metaslab has been allocated from read its allocated 858 * ranges from the space map object into the vr_scan_tree. 859 * Then add inflight / unflushed ranges and remove inflight / 860 * unflushed frees. This is the minimum range to be rebuilt. 861 */ 862 if (msp->ms_sm != NULL) { 863 VERIFY0(space_map_load(msp->ms_sm, 864 vr->vr_scan_tree, SM_ALLOC)); 865 866 for (int i = 0; i < TXG_SIZE; i++) { 867 ASSERT0(range_tree_space( 868 msp->ms_allocating[i])); 869 } 870 871 range_tree_walk(msp->ms_unflushed_allocs, 872 range_tree_add, vr->vr_scan_tree); 873 range_tree_walk(msp->ms_unflushed_frees, 874 range_tree_remove, vr->vr_scan_tree); 875 876 /* 877 * Remove ranges which have already been rebuilt based 878 * on the last offset. This can happen when restarting 879 * a scan after exporting and re-importing the pool. 880 */ 881 range_tree_clear(vr->vr_scan_tree, 0, 882 vrp->vrp_last_offset); 883 } 884 885 mutex_exit(&msp->ms_lock); 886 mutex_exit(&msp->ms_sync_lock); 887 888 /* 889 * To provide an accurate estimate re-calculate the estimated 890 * size every 5 minutes to account for recent allocations and 891 * frees made to space maps which have not yet been rebuilt. 892 */ 893 if (gethrtime() > update_est_time + SEC2NSEC(300)) { 894 update_est_time = gethrtime(); 895 vdev_rebuild_update_bytes_est(vd, i); 896 } 897 898 /* 899 * Walk the allocated space map and issue the rebuild I/O. 900 */ 901 error = vdev_rebuild_ranges(vr); 902 range_tree_vacate(vr->vr_scan_tree, NULL, NULL); 903 904 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 905 metaslab_enable(msp, B_FALSE, B_FALSE); 906 907 if (error != 0) 908 break; 909 } 910 911 range_tree_destroy(vr->vr_scan_tree); 912 spa_config_exit(spa, SCL_CONFIG, FTAG); 913 914 /* Wait for any remaining rebuild I/O to complete */ 915 mutex_enter(&vr->vr_io_lock); 916 while (vr->vr_bytes_inflight > 0) 917 cv_wait(&vr->vr_io_cv, &vr->vr_io_lock); 918 919 mutex_exit(&vr->vr_io_lock); 920 921 mutex_destroy(&vr->vr_io_lock); 922 cv_destroy(&vr->vr_io_cv); 923 924 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 925 926 dsl_pool_t *dp = spa_get_dsl(spa); 927 dmu_tx_t *tx = dmu_tx_create_dd(dp->dp_mos_dir); 928 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 929 930 mutex_enter(&vd->vdev_rebuild_lock); 931 if (error == 0) { 932 /* 933 * After a successful rebuild clear the DTLs of all ranges 934 * which were missing when the rebuild was started. These 935 * ranges must have been rebuilt as a consequence of rebuilding 936 * all allocated space. Note that unlike a scrub or resilver 937 * the rebuild operation will reconstruct data only referenced 938 * by a pool checkpoint. See the dsl_scan_done() comments. 939 */ 940 dsl_sync_task_nowait(dp, vdev_rebuild_complete_sync, 941 (void *)(uintptr_t)vd->vdev_id, tx); 942 } else if (vd->vdev_rebuild_cancel_wanted) { 943 /* 944 * The rebuild operation was canceled. This will occur when 945 * a device participating in the rebuild is detached. 946 */ 947 dsl_sync_task_nowait(dp, vdev_rebuild_cancel_sync, 948 (void *)(uintptr_t)vd->vdev_id, tx); 949 } else if (vd->vdev_rebuild_reset_wanted) { 950 /* 951 * Reset the running rebuild without canceling and restarting 952 * it. This will occur when a new device is attached and must 953 * participate in the rebuild. 954 */ 955 dsl_sync_task_nowait(dp, vdev_rebuild_reset_sync, 956 (void *)(uintptr_t)vd->vdev_id, tx); 957 } else { 958 /* 959 * The rebuild operation should be suspended. This may occur 960 * when detaching a child vdev or when exporting the pool. The 961 * rebuild is left in the active state so it will be resumed. 962 */ 963 ASSERT(vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE); 964 vd->vdev_rebuilding = B_FALSE; 965 } 966 967 dmu_tx_commit(tx); 968 969 vd->vdev_rebuild_thread = NULL; 970 mutex_exit(&vd->vdev_rebuild_lock); 971 spa_config_exit(spa, SCL_CONFIG, FTAG); 972 973 cv_broadcast(&vd->vdev_rebuild_cv); 974 975 thread_exit(); 976 } 977 978 /* 979 * Returns B_TRUE if any top-level vdev are rebuilding. 980 */ 981 boolean_t 982 vdev_rebuild_active(vdev_t *vd) 983 { 984 spa_t *spa = vd->vdev_spa; 985 boolean_t ret = B_FALSE; 986 987 if (vd == spa->spa_root_vdev) { 988 for (uint64_t i = 0; i < vd->vdev_children; i++) { 989 ret = vdev_rebuild_active(vd->vdev_child[i]); 990 if (ret) 991 return (ret); 992 } 993 } else if (vd->vdev_top_zap != 0) { 994 vdev_rebuild_t *vr = &vd->vdev_rebuild_config; 995 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 996 997 mutex_enter(&vd->vdev_rebuild_lock); 998 ret = (vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE); 999 mutex_exit(&vd->vdev_rebuild_lock); 1000 } 1001 1002 return (ret); 1003 } 1004 1005 /* 1006 * Start a rebuild operation. The rebuild may be restarted when the 1007 * top-level vdev is currently actively rebuilding. 1008 */ 1009 void 1010 vdev_rebuild(vdev_t *vd) 1011 { 1012 vdev_rebuild_t *vr = &vd->vdev_rebuild_config; 1013 vdev_rebuild_phys_t *vrp __maybe_unused = &vr->vr_rebuild_phys; 1014 1015 ASSERT(vd->vdev_top == vd); 1016 ASSERT(vdev_is_concrete(vd)); 1017 ASSERT(!vd->vdev_removing); 1018 ASSERT(spa_feature_is_enabled(vd->vdev_spa, 1019 SPA_FEATURE_DEVICE_REBUILD)); 1020 1021 mutex_enter(&vd->vdev_rebuild_lock); 1022 if (vd->vdev_rebuilding) { 1023 ASSERT3U(vrp->vrp_rebuild_state, ==, VDEV_REBUILD_ACTIVE); 1024 1025 /* 1026 * Signal a running rebuild operation that it should restart 1027 * from the beginning because a new device was attached. The 1028 * vdev_rebuild_reset_wanted flag is set until the sync task 1029 * completes. This may be after the rebuild thread exits. 1030 */ 1031 if (!vd->vdev_rebuild_reset_wanted) 1032 vd->vdev_rebuild_reset_wanted = B_TRUE; 1033 } else { 1034 vdev_rebuild_initiate(vd); 1035 } 1036 mutex_exit(&vd->vdev_rebuild_lock); 1037 } 1038 1039 static void 1040 vdev_rebuild_restart_impl(vdev_t *vd) 1041 { 1042 spa_t *spa = vd->vdev_spa; 1043 1044 if (vd == spa->spa_root_vdev) { 1045 for (uint64_t i = 0; i < vd->vdev_children; i++) 1046 vdev_rebuild_restart_impl(vd->vdev_child[i]); 1047 1048 } else if (vd->vdev_top_zap != 0) { 1049 vdev_rebuild_t *vr = &vd->vdev_rebuild_config; 1050 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 1051 1052 mutex_enter(&vd->vdev_rebuild_lock); 1053 if (vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE && 1054 vdev_writeable(vd) && !vd->vdev_rebuilding) { 1055 ASSERT(spa_feature_is_active(spa, 1056 SPA_FEATURE_DEVICE_REBUILD)); 1057 vd->vdev_rebuilding = B_TRUE; 1058 vd->vdev_rebuild_thread = thread_create(NULL, 0, 1059 vdev_rebuild_thread, vd, 0, &p0, TS_RUN, 1060 maxclsyspri); 1061 } 1062 mutex_exit(&vd->vdev_rebuild_lock); 1063 } 1064 } 1065 1066 /* 1067 * Conditionally restart all of the vdev_rebuild_thread's for a pool. The 1068 * feature flag must be active and the rebuild in the active state. This 1069 * cannot be used to start a new rebuild. 1070 */ 1071 void 1072 vdev_rebuild_restart(spa_t *spa) 1073 { 1074 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1075 1076 vdev_rebuild_restart_impl(spa->spa_root_vdev); 1077 } 1078 1079 /* 1080 * Stop and wait for all of the vdev_rebuild_thread's associated with the 1081 * vdev tree provide to be terminated (canceled or stopped). 1082 */ 1083 void 1084 vdev_rebuild_stop_wait(vdev_t *vd) 1085 { 1086 spa_t *spa = vd->vdev_spa; 1087 1088 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1089 1090 if (vd == spa->spa_root_vdev) { 1091 for (uint64_t i = 0; i < vd->vdev_children; i++) 1092 vdev_rebuild_stop_wait(vd->vdev_child[i]); 1093 1094 } else if (vd->vdev_top_zap != 0) { 1095 ASSERT(vd == vd->vdev_top); 1096 1097 mutex_enter(&vd->vdev_rebuild_lock); 1098 if (vd->vdev_rebuild_thread != NULL) { 1099 vd->vdev_rebuild_exit_wanted = B_TRUE; 1100 while (vd->vdev_rebuilding) { 1101 cv_wait(&vd->vdev_rebuild_cv, 1102 &vd->vdev_rebuild_lock); 1103 } 1104 vd->vdev_rebuild_exit_wanted = B_FALSE; 1105 } 1106 mutex_exit(&vd->vdev_rebuild_lock); 1107 } 1108 } 1109 1110 /* 1111 * Stop all rebuild operations but leave them in the active state so they 1112 * will be resumed when importing the pool. 1113 */ 1114 void 1115 vdev_rebuild_stop_all(spa_t *spa) 1116 { 1117 vdev_rebuild_stop_wait(spa->spa_root_vdev); 1118 } 1119 1120 /* 1121 * Rebuild statistics reported per top-level vdev. 1122 */ 1123 int 1124 vdev_rebuild_get_stats(vdev_t *tvd, vdev_rebuild_stat_t *vrs) 1125 { 1126 spa_t *spa = tvd->vdev_spa; 1127 1128 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) 1129 return (SET_ERROR(ENOTSUP)); 1130 1131 if (tvd != tvd->vdev_top || tvd->vdev_top_zap == 0) 1132 return (SET_ERROR(EINVAL)); 1133 1134 int error = zap_contains(spa_meta_objset(spa), 1135 tvd->vdev_top_zap, VDEV_TOP_ZAP_VDEV_REBUILD_PHYS); 1136 1137 if (error == ENOENT) { 1138 memset(vrs, 0, sizeof (vdev_rebuild_stat_t)); 1139 vrs->vrs_state = VDEV_REBUILD_NONE; 1140 error = 0; 1141 } else if (error == 0) { 1142 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config; 1143 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 1144 1145 mutex_enter(&tvd->vdev_rebuild_lock); 1146 vrs->vrs_state = vrp->vrp_rebuild_state; 1147 vrs->vrs_start_time = vrp->vrp_start_time; 1148 vrs->vrs_end_time = vrp->vrp_end_time; 1149 vrs->vrs_scan_time_ms = vrp->vrp_scan_time_ms; 1150 vrs->vrs_bytes_scanned = vrp->vrp_bytes_scanned; 1151 vrs->vrs_bytes_issued = vrp->vrp_bytes_issued; 1152 vrs->vrs_bytes_rebuilt = vrp->vrp_bytes_rebuilt; 1153 vrs->vrs_bytes_est = vrp->vrp_bytes_est; 1154 vrs->vrs_errors = vrp->vrp_errors; 1155 vrs->vrs_pass_time_ms = NSEC2MSEC(gethrtime() - 1156 vr->vr_pass_start_time); 1157 vrs->vrs_pass_bytes_scanned = vr->vr_pass_bytes_scanned; 1158 vrs->vrs_pass_bytes_issued = vr->vr_pass_bytes_issued; 1159 vrs->vrs_pass_bytes_skipped = vr->vr_pass_bytes_skipped; 1160 mutex_exit(&tvd->vdev_rebuild_lock); 1161 } 1162 1163 return (error); 1164 } 1165 1166 ZFS_MODULE_PARAM(zfs, zfs_, rebuild_max_segment, U64, ZMOD_RW, 1167 "Max segment size in bytes of rebuild reads"); 1168 1169 ZFS_MODULE_PARAM(zfs, zfs_, rebuild_vdev_limit, U64, ZMOD_RW, 1170 "Max bytes in flight per leaf vdev for sequential resilvers"); 1171 1172 ZFS_MODULE_PARAM(zfs, zfs_, rebuild_scrub_enabled, INT, ZMOD_RW, 1173 "Automatically scrub after sequential resilver completes"); 1174