xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_rebuild.c (revision 6c05f3a74f30934ee60919cc97e16ec69b542b06)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  *
23  * Copyright (c) 2018, Intel Corporation.
24  * Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
25  * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
26  * Copyright (c) 2024 by Delphix. All rights reserved.
27  */
28 
29 #include <sys/vdev_impl.h>
30 #include <sys/vdev_draid.h>
31 #include <sys/dsl_scan.h>
32 #include <sys/spa_impl.h>
33 #include <sys/metaslab_impl.h>
34 #include <sys/vdev_rebuild.h>
35 #include <sys/zio.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/arc.h>
38 #include <sys/arc_impl.h>
39 #include <sys/zap.h>
40 
41 /*
42  * This file contains the sequential reconstruction implementation for
43  * resilvering.  This form of resilvering is internally referred to as device
44  * rebuild to avoid conflating it with the traditional healing reconstruction
45  * performed by the dsl scan code.
46  *
47  * When replacing a device, or scrubbing the pool, ZFS has historically used
48  * a process called resilvering which is a form of healing reconstruction.
49  * This approach has the advantage that as blocks are read from disk their
50  * checksums can be immediately verified and the data repaired.  Unfortunately,
51  * it also results in a random IO pattern to the disk even when extra care
52  * is taken to sequentialize the IO as much as possible.  This substantially
53  * increases the time required to resilver the pool and restore redundancy.
54  *
55  * For mirrored devices it's possible to implement an alternate sequential
56  * reconstruction strategy when resilvering.  Sequential reconstruction
57  * behaves like a traditional RAID rebuild and reconstructs a device in LBA
58  * order without verifying the checksum.  After this phase completes a second
59  * scrub phase is started to verify all of the checksums.  This two phase
60  * process will take longer than the healing reconstruction described above.
61  * However, it has that advantage that after the reconstruction first phase
62  * completes redundancy has been restored.  At this point the pool can incur
63  * another device failure without risking data loss.
64  *
65  * There are a few noteworthy limitations and other advantages of resilvering
66  * using sequential reconstruction vs healing reconstruction.
67  *
68  * Limitations:
69  *
70  *   - Sequential reconstruction is not possible on RAIDZ due to its
71  *     variable stripe width.  Note dRAID uses a fixed stripe width which
72  *     avoids this issue, but comes at the expense of some usable capacity.
73  *
74  *   - Block checksums are not verified during sequential reconstruction.
75  *     Similar to traditional RAID the parity/mirror data is reconstructed
76  *     but cannot be immediately double checked.  For this reason when the
77  *     last active resilver completes the pool is automatically scrubbed
78  *     by default.
79  *
80  *   - Deferred resilvers using sequential reconstruction are not currently
81  *     supported.  When adding another vdev to an active top-level resilver
82  *     it must be restarted.
83  *
84  * Advantages:
85  *
86  *   - Sequential reconstruction is performed in LBA order which may be faster
87  *     than healing reconstruction particularly when using HDDs (or
88  *     especially with SMR devices).  Only allocated capacity is resilvered.
89  *
90  *   - Sequential reconstruction is not constrained by ZFS block boundaries.
91  *     This allows it to issue larger IOs to disk which span multiple blocks
92  *     allowing all of these logical blocks to be repaired with a single IO.
93  *
94  *   - Unlike a healing resilver or scrub which are pool wide operations,
95  *     sequential reconstruction is handled by the top-level vdevs.  This
96  *     allows for it to be started or canceled on a top-level vdev without
97  *     impacting any other top-level vdevs in the pool.
98  *
99  *   - Data only referenced by a pool checkpoint will be repaired because
100  *     that space is reflected in the space maps.  This differs for a
101  *     healing resilver or scrub which will not repair that data.
102  */
103 
104 
105 /*
106  * Size of rebuild reads; defaults to 1MiB per data disk and is capped at
107  * SPA_MAXBLOCKSIZE.
108  */
109 static uint64_t zfs_rebuild_max_segment = 1024 * 1024;
110 
111 /*
112  * Maximum number of parallelly executed bytes per leaf vdev caused by a
113  * sequential resilver.  We attempt to strike a balance here between keeping
114  * the vdev queues full of I/Os at all times and not overflowing the queues
115  * to cause long latency, which would cause long txg sync times.
116  *
117  * A large default value can be safely used here because the default target
118  * segment size is also large (zfs_rebuild_max_segment=1M).  This helps keep
119  * the queue depth short.
120  *
121  * 64MB was observed to deliver the best performance and set as the default.
122  * Testing was performed with a 106-drive dRAID HDD pool (draid2:11d:106c)
123  * and a rebuild rate of 1.2GB/s was measured to the distribute spare.
124  * Smaller values were unable to fully saturate the available pool I/O.
125  */
126 static uint64_t zfs_rebuild_vdev_limit = 64 << 20;
127 
128 /*
129  * Automatically start a pool scrub when the last active sequential resilver
130  * completes in order to verify the checksums of all blocks which have been
131  * resilvered. This option is enabled by default and is strongly recommended.
132  */
133 static int zfs_rebuild_scrub_enabled = 1;
134 
135 /*
136  * For vdev_rebuild_initiate_sync() and vdev_rebuild_reset_sync().
137  */
138 static __attribute__((noreturn)) void vdev_rebuild_thread(void *arg);
139 static void vdev_rebuild_reset_sync(void *arg, dmu_tx_t *tx);
140 
141 /*
142  * Clear the per-vdev rebuild bytes value for a vdev tree.
143  */
144 static void
145 clear_rebuild_bytes(vdev_t *vd)
146 {
147 	vdev_stat_t *vs = &vd->vdev_stat;
148 
149 	for (uint64_t i = 0; i < vd->vdev_children; i++)
150 		clear_rebuild_bytes(vd->vdev_child[i]);
151 
152 	mutex_enter(&vd->vdev_stat_lock);
153 	vs->vs_rebuild_processed = 0;
154 	mutex_exit(&vd->vdev_stat_lock);
155 }
156 
157 /*
158  * Determines whether a vdev_rebuild_thread() should be stopped.
159  */
160 static boolean_t
161 vdev_rebuild_should_stop(vdev_t *vd)
162 {
163 	return (!vdev_writeable(vd) || vd->vdev_removing ||
164 	    vd->vdev_rebuild_exit_wanted ||
165 	    vd->vdev_rebuild_cancel_wanted ||
166 	    vd->vdev_rebuild_reset_wanted);
167 }
168 
169 /*
170  * Determine if the rebuild should be canceled.  This may happen when all
171  * vdevs with MISSING DTLs are detached.
172  */
173 static boolean_t
174 vdev_rebuild_should_cancel(vdev_t *vd)
175 {
176 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
177 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
178 
179 	if (!vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg))
180 		return (B_TRUE);
181 
182 	return (B_FALSE);
183 }
184 
185 /*
186  * The sync task for updating the on-disk state of a rebuild.  This is
187  * scheduled by vdev_rebuild_range().
188  */
189 static void
190 vdev_rebuild_update_sync(void *arg, dmu_tx_t *tx)
191 {
192 	int vdev_id = (uintptr_t)arg;
193 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
194 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
195 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
196 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
197 	uint64_t txg = dmu_tx_get_txg(tx);
198 
199 	mutex_enter(&vd->vdev_rebuild_lock);
200 
201 	if (vr->vr_scan_offset[txg & TXG_MASK] > 0) {
202 		vrp->vrp_last_offset = vr->vr_scan_offset[txg & TXG_MASK];
203 		vr->vr_scan_offset[txg & TXG_MASK] = 0;
204 	}
205 
206 	vrp->vrp_scan_time_ms = vr->vr_prev_scan_time_ms +
207 	    NSEC2MSEC(gethrtime() - vr->vr_pass_start_time);
208 
209 	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
210 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
211 	    REBUILD_PHYS_ENTRIES, vrp, tx));
212 
213 	mutex_exit(&vd->vdev_rebuild_lock);
214 }
215 
216 /*
217  * Initialize the on-disk state for a new rebuild, start the rebuild thread.
218  */
219 static void
220 vdev_rebuild_initiate_sync(void *arg, dmu_tx_t *tx)
221 {
222 	int vdev_id = (uintptr_t)arg;
223 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
224 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
225 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
226 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
227 
228 	ASSERT(vd->vdev_rebuilding);
229 
230 	spa_feature_incr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
231 
232 	mutex_enter(&vd->vdev_rebuild_lock);
233 	memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
234 	vrp->vrp_rebuild_state = VDEV_REBUILD_ACTIVE;
235 	vrp->vrp_min_txg = 0;
236 	vrp->vrp_max_txg = dmu_tx_get_txg(tx);
237 	vrp->vrp_start_time = gethrestime_sec();
238 	vrp->vrp_scan_time_ms = 0;
239 	vr->vr_prev_scan_time_ms = 0;
240 
241 	/*
242 	 * Rebuilds are currently only used when replacing a device, in which
243 	 * case there must be DTL_MISSING entries.  In the future, we could
244 	 * allow rebuilds to be used in a way similar to a scrub.  This would
245 	 * be useful because it would allow us to rebuild the space used by
246 	 * pool checkpoints.
247 	 */
248 	VERIFY(vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg));
249 
250 	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
251 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
252 	    REBUILD_PHYS_ENTRIES, vrp, tx));
253 
254 	spa_history_log_internal(spa, "rebuild", tx,
255 	    "vdev_id=%llu vdev_guid=%llu started",
256 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
257 
258 	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
259 	vd->vdev_rebuild_thread = thread_create(NULL, 0,
260 	    vdev_rebuild_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
261 
262 	mutex_exit(&vd->vdev_rebuild_lock);
263 }
264 
265 static void
266 vdev_rebuild_log_notify(spa_t *spa, vdev_t *vd, const char *name)
267 {
268 	nvlist_t *aux = fnvlist_alloc();
269 
270 	fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, "sequential");
271 	spa_event_notify(spa, vd, aux, name);
272 	nvlist_free(aux);
273 }
274 
275 /*
276  * Called to request that a new rebuild be started.  The feature will remain
277  * active for the duration of the rebuild, then revert to the enabled state.
278  */
279 static void
280 vdev_rebuild_initiate(vdev_t *vd)
281 {
282 	spa_t *spa = vd->vdev_spa;
283 
284 	ASSERT(vd->vdev_top == vd);
285 	ASSERT(MUTEX_HELD(&vd->vdev_rebuild_lock));
286 	ASSERT(!vd->vdev_rebuilding);
287 
288 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
289 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
290 
291 	vd->vdev_rebuilding = B_TRUE;
292 
293 	dsl_sync_task_nowait(spa_get_dsl(spa), vdev_rebuild_initiate_sync,
294 	    (void *)(uintptr_t)vd->vdev_id, tx);
295 	dmu_tx_commit(tx);
296 
297 	vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_START);
298 }
299 
300 /*
301  * Update the on-disk state to completed when a rebuild finishes.
302  */
303 static void
304 vdev_rebuild_complete_sync(void *arg, dmu_tx_t *tx)
305 {
306 	int vdev_id = (uintptr_t)arg;
307 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
308 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
309 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
310 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
311 
312 	mutex_enter(&vd->vdev_rebuild_lock);
313 
314 	/*
315 	 * Handle a second device failure if it occurs after all rebuild I/O
316 	 * has completed but before this sync task has been executed.
317 	 */
318 	if (vd->vdev_rebuild_reset_wanted) {
319 		mutex_exit(&vd->vdev_rebuild_lock);
320 		vdev_rebuild_reset_sync(arg, tx);
321 		return;
322 	}
323 
324 	vrp->vrp_rebuild_state = VDEV_REBUILD_COMPLETE;
325 	vrp->vrp_end_time = gethrestime_sec();
326 
327 	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
328 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
329 	    REBUILD_PHYS_ENTRIES, vrp, tx));
330 
331 	vdev_dtl_reassess(vd, tx->tx_txg, vrp->vrp_max_txg, B_TRUE, B_TRUE);
332 	spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
333 
334 	spa_history_log_internal(spa, "rebuild",  tx,
335 	    "vdev_id=%llu vdev_guid=%llu complete",
336 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
337 	vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_FINISH);
338 
339 	/* Handles detaching of spares */
340 	spa_async_request(spa, SPA_ASYNC_REBUILD_DONE);
341 	vd->vdev_rebuilding = B_FALSE;
342 	mutex_exit(&vd->vdev_rebuild_lock);
343 
344 	/*
345 	 * While we're in syncing context take the opportunity to
346 	 * setup the scrub when there are no more active rebuilds.
347 	 */
348 	setup_sync_arg_t setup_sync_arg = {
349 		.func = POOL_SCAN_SCRUB,
350 		.txgstart = 0,
351 		.txgend = 0,
352 	};
353 	if (dsl_scan_setup_check(&setup_sync_arg.func, tx) == 0 &&
354 	    zfs_rebuild_scrub_enabled) {
355 		dsl_scan_setup_sync(&setup_sync_arg, tx);
356 	}
357 
358 	cv_broadcast(&vd->vdev_rebuild_cv);
359 
360 	/* Clear recent error events (i.e. duplicate events tracking) */
361 	zfs_ereport_clear(spa, NULL);
362 }
363 
364 /*
365  * Update the on-disk state to canceled when a rebuild finishes.
366  */
367 static void
368 vdev_rebuild_cancel_sync(void *arg, dmu_tx_t *tx)
369 {
370 	int vdev_id = (uintptr_t)arg;
371 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
372 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
373 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
374 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
375 
376 	mutex_enter(&vd->vdev_rebuild_lock);
377 	vrp->vrp_rebuild_state = VDEV_REBUILD_CANCELED;
378 	vrp->vrp_end_time = gethrestime_sec();
379 
380 	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
381 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
382 	    REBUILD_PHYS_ENTRIES, vrp, tx));
383 
384 	spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
385 
386 	spa_history_log_internal(spa, "rebuild",  tx,
387 	    "vdev_id=%llu vdev_guid=%llu canceled",
388 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
389 	vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_FINISH);
390 
391 	vd->vdev_rebuild_cancel_wanted = B_FALSE;
392 	vd->vdev_rebuilding = B_FALSE;
393 	mutex_exit(&vd->vdev_rebuild_lock);
394 
395 	spa_notify_waiters(spa);
396 	cv_broadcast(&vd->vdev_rebuild_cv);
397 }
398 
399 /*
400  * Resets the progress of a running rebuild.  This will occur when a new
401  * vdev is added to rebuild.
402  */
403 static void
404 vdev_rebuild_reset_sync(void *arg, dmu_tx_t *tx)
405 {
406 	int vdev_id = (uintptr_t)arg;
407 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
408 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
409 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
410 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
411 
412 	mutex_enter(&vd->vdev_rebuild_lock);
413 
414 	ASSERT(vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
415 	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
416 
417 	vrp->vrp_last_offset = 0;
418 	vrp->vrp_min_txg = 0;
419 	vrp->vrp_max_txg = dmu_tx_get_txg(tx);
420 	vrp->vrp_bytes_scanned = 0;
421 	vrp->vrp_bytes_issued = 0;
422 	vrp->vrp_bytes_rebuilt = 0;
423 	vrp->vrp_bytes_est = 0;
424 	vrp->vrp_scan_time_ms = 0;
425 	vr->vr_prev_scan_time_ms = 0;
426 
427 	/* See vdev_rebuild_initiate_sync comment */
428 	VERIFY(vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg));
429 
430 	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
431 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
432 	    REBUILD_PHYS_ENTRIES, vrp, tx));
433 
434 	spa_history_log_internal(spa, "rebuild",  tx,
435 	    "vdev_id=%llu vdev_guid=%llu reset",
436 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
437 
438 	vd->vdev_rebuild_reset_wanted = B_FALSE;
439 	ASSERT(vd->vdev_rebuilding);
440 
441 	vd->vdev_rebuild_thread = thread_create(NULL, 0,
442 	    vdev_rebuild_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
443 
444 	mutex_exit(&vd->vdev_rebuild_lock);
445 }
446 
447 /*
448  * Clear the last rebuild status.
449  */
450 void
451 vdev_rebuild_clear_sync(void *arg, dmu_tx_t *tx)
452 {
453 	int vdev_id = (uintptr_t)arg;
454 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
455 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
456 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
457 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
458 	objset_t *mos = spa_meta_objset(spa);
459 
460 	mutex_enter(&vd->vdev_rebuild_lock);
461 
462 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD) ||
463 	    vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE) {
464 		mutex_exit(&vd->vdev_rebuild_lock);
465 		return;
466 	}
467 
468 	clear_rebuild_bytes(vd);
469 	memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
470 
471 	if (vd->vdev_top_zap != 0 && zap_contains(mos, vd->vdev_top_zap,
472 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS) == 0) {
473 		VERIFY0(zap_update(mos, vd->vdev_top_zap,
474 		    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
475 		    REBUILD_PHYS_ENTRIES, vrp, tx));
476 	}
477 
478 	mutex_exit(&vd->vdev_rebuild_lock);
479 }
480 
481 /*
482  * The zio_done_func_t callback for each rebuild I/O issued.  It's responsible
483  * for updating the rebuild stats and limiting the number of in flight I/Os.
484  */
485 static void
486 vdev_rebuild_cb(zio_t *zio)
487 {
488 	vdev_rebuild_t *vr = zio->io_private;
489 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
490 	vdev_t *vd = vr->vr_top_vdev;
491 
492 	mutex_enter(&vr->vr_io_lock);
493 	if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
494 		/*
495 		 * The I/O failed because the top-level vdev was unavailable.
496 		 * Attempt to roll back to the last completed offset, in order
497 		 * resume from the correct location if the pool is resumed.
498 		 * (This works because spa_sync waits on spa_txg_zio before
499 		 * it runs sync tasks.)
500 		 */
501 		uint64_t *off = &vr->vr_scan_offset[zio->io_txg & TXG_MASK];
502 		*off = MIN(*off, zio->io_offset);
503 	} else if (zio->io_error) {
504 		vrp->vrp_errors++;
505 	}
506 
507 	abd_free(zio->io_abd);
508 
509 	ASSERT3U(vr->vr_bytes_inflight, >, 0);
510 	vr->vr_bytes_inflight -= zio->io_size;
511 	cv_broadcast(&vr->vr_io_cv);
512 	mutex_exit(&vr->vr_io_lock);
513 
514 	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
515 }
516 
517 /*
518  * Initialize a block pointer that can be used to read the given segment
519  * for sequential rebuild.
520  */
521 static void
522 vdev_rebuild_blkptr_init(blkptr_t *bp, vdev_t *vd, uint64_t start,
523     uint64_t asize)
524 {
525 	ASSERT(vd->vdev_ops == &vdev_draid_ops ||
526 	    vd->vdev_ops == &vdev_mirror_ops ||
527 	    vd->vdev_ops == &vdev_replacing_ops ||
528 	    vd->vdev_ops == &vdev_spare_ops);
529 
530 	uint64_t psize = vd->vdev_ops == &vdev_draid_ops ?
531 	    vdev_draid_asize_to_psize(vd, asize) : asize;
532 
533 	BP_ZERO(bp);
534 
535 	DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
536 	DVA_SET_OFFSET(&bp->blk_dva[0], start);
537 	DVA_SET_GANG(&bp->blk_dva[0], 0);
538 	DVA_SET_ASIZE(&bp->blk_dva[0], asize);
539 
540 	BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
541 	BP_SET_LSIZE(bp, psize);
542 	BP_SET_PSIZE(bp, psize);
543 	BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
544 	BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
545 	BP_SET_TYPE(bp, DMU_OT_NONE);
546 	BP_SET_LEVEL(bp, 0);
547 	BP_SET_DEDUP(bp, 0);
548 	BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
549 }
550 
551 /*
552  * Issues a rebuild I/O and takes care of rate limiting the number of queued
553  * rebuild I/Os.  The provided start and size must be properly aligned for the
554  * top-level vdev type being rebuilt.
555  */
556 static int
557 vdev_rebuild_range(vdev_rebuild_t *vr, uint64_t start, uint64_t size)
558 {
559 	uint64_t ms_id __maybe_unused = vr->vr_scan_msp->ms_id;
560 	vdev_t *vd = vr->vr_top_vdev;
561 	spa_t *spa = vd->vdev_spa;
562 	blkptr_t blk;
563 
564 	ASSERT3U(ms_id, ==, start >> vd->vdev_ms_shift);
565 	ASSERT3U(ms_id, ==, (start + size - 1) >> vd->vdev_ms_shift);
566 
567 	vr->vr_pass_bytes_scanned += size;
568 	vr->vr_rebuild_phys.vrp_bytes_scanned += size;
569 
570 	/*
571 	 * Rebuild the data in this range by constructing a special block
572 	 * pointer.  It has no relation to any existing blocks in the pool.
573 	 * However, by disabling checksum verification and issuing a scrub IO
574 	 * we can reconstruct and repair any children with missing data.
575 	 */
576 	vdev_rebuild_blkptr_init(&blk, vd, start, size);
577 	uint64_t psize = BP_GET_PSIZE(&blk);
578 
579 	if (!vdev_dtl_need_resilver(vd, &blk.blk_dva[0], psize, TXG_UNKNOWN)) {
580 		vr->vr_pass_bytes_skipped += size;
581 		return (0);
582 	}
583 
584 	mutex_enter(&vr->vr_io_lock);
585 
586 	/* Limit in flight rebuild I/Os */
587 	while (vr->vr_bytes_inflight >= vr->vr_bytes_inflight_max)
588 		cv_wait(&vr->vr_io_cv, &vr->vr_io_lock);
589 
590 	vr->vr_bytes_inflight += psize;
591 	mutex_exit(&vr->vr_io_lock);
592 
593 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
594 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
595 	uint64_t txg = dmu_tx_get_txg(tx);
596 
597 	spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
598 	mutex_enter(&vd->vdev_rebuild_lock);
599 
600 	/* This is the first I/O for this txg. */
601 	if (vr->vr_scan_offset[txg & TXG_MASK] == 0) {
602 		vr->vr_scan_offset[txg & TXG_MASK] = start;
603 		dsl_sync_task_nowait(spa_get_dsl(spa),
604 		    vdev_rebuild_update_sync,
605 		    (void *)(uintptr_t)vd->vdev_id, tx);
606 	}
607 
608 	/* When exiting write out our progress. */
609 	if (vdev_rebuild_should_stop(vd)) {
610 		mutex_enter(&vr->vr_io_lock);
611 		vr->vr_bytes_inflight -= psize;
612 		mutex_exit(&vr->vr_io_lock);
613 		spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
614 		mutex_exit(&vd->vdev_rebuild_lock);
615 		dmu_tx_commit(tx);
616 		return (SET_ERROR(EINTR));
617 	}
618 	mutex_exit(&vd->vdev_rebuild_lock);
619 	dmu_tx_commit(tx);
620 
621 	vr->vr_scan_offset[txg & TXG_MASK] = start + size;
622 	vr->vr_pass_bytes_issued += size;
623 	vr->vr_rebuild_phys.vrp_bytes_issued += size;
624 
625 	zio_nowait(zio_read(spa->spa_txg_zio[txg & TXG_MASK], spa, &blk,
626 	    abd_alloc(psize, B_FALSE), psize, vdev_rebuild_cb, vr,
627 	    ZIO_PRIORITY_REBUILD, ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL |
628 	    ZIO_FLAG_RESILVER, NULL));
629 
630 	return (0);
631 }
632 
633 /*
634  * Issues rebuild I/Os for all ranges in the provided vr->vr_tree range tree.
635  */
636 static int
637 vdev_rebuild_ranges(vdev_rebuild_t *vr)
638 {
639 	vdev_t *vd = vr->vr_top_vdev;
640 	zfs_btree_t *t = &vr->vr_scan_tree->rt_root;
641 	zfs_btree_index_t idx;
642 	int error;
643 
644 	for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
645 	    rs = zfs_btree_next(t, &idx, &idx)) {
646 		uint64_t start = rs_get_start(rs, vr->vr_scan_tree);
647 		uint64_t size = rs_get_end(rs, vr->vr_scan_tree) - start;
648 
649 		/*
650 		 * zfs_scan_suspend_progress can be set to disable rebuild
651 		 * progress for testing.  See comment in dsl_scan_sync().
652 		 */
653 		while (zfs_scan_suspend_progress &&
654 		    !vdev_rebuild_should_stop(vd)) {
655 			delay(hz);
656 		}
657 
658 		while (size > 0) {
659 			uint64_t chunk_size;
660 
661 			/*
662 			 * Split range into legally-sized logical chunks
663 			 * given the constraints of the top-level vdev
664 			 * being rebuilt (dRAID or mirror).
665 			 */
666 			ASSERT3P(vd->vdev_ops, !=, NULL);
667 			chunk_size = vd->vdev_ops->vdev_op_rebuild_asize(vd,
668 			    start, size, zfs_rebuild_max_segment);
669 
670 			error = vdev_rebuild_range(vr, start, chunk_size);
671 			if (error != 0)
672 				return (error);
673 
674 			size -= chunk_size;
675 			start += chunk_size;
676 		}
677 	}
678 
679 	return (0);
680 }
681 
682 /*
683  * Calculates the estimated capacity which remains to be scanned.  Since
684  * we traverse the pool in metaslab order only allocated capacity beyond
685  * the vrp_last_offset need be considered.  All lower offsets must have
686  * already been rebuilt and are thus already included in vrp_bytes_scanned.
687  */
688 static void
689 vdev_rebuild_update_bytes_est(vdev_t *vd, uint64_t ms_id)
690 {
691 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
692 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
693 	uint64_t bytes_est = vrp->vrp_bytes_scanned;
694 
695 	if (vrp->vrp_last_offset < vd->vdev_ms[ms_id]->ms_start)
696 		return;
697 
698 	for (uint64_t i = ms_id; i < vd->vdev_ms_count; i++) {
699 		metaslab_t *msp = vd->vdev_ms[i];
700 
701 		mutex_enter(&msp->ms_lock);
702 		bytes_est += metaslab_allocated_space(msp);
703 		mutex_exit(&msp->ms_lock);
704 	}
705 
706 	vrp->vrp_bytes_est = bytes_est;
707 }
708 
709 /*
710  * Load from disk the top-level vdev's rebuild information.
711  */
712 int
713 vdev_rebuild_load(vdev_t *vd)
714 {
715 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
716 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
717 	spa_t *spa = vd->vdev_spa;
718 	int err = 0;
719 
720 	mutex_enter(&vd->vdev_rebuild_lock);
721 	vd->vdev_rebuilding = B_FALSE;
722 
723 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) {
724 		memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
725 		mutex_exit(&vd->vdev_rebuild_lock);
726 		return (SET_ERROR(ENOTSUP));
727 	}
728 
729 	ASSERT(vd->vdev_top == vd);
730 
731 	err = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
732 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
733 	    REBUILD_PHYS_ENTRIES, vrp);
734 
735 	/*
736 	 * A missing or damaged VDEV_TOP_ZAP_VDEV_REBUILD_PHYS should
737 	 * not prevent a pool from being imported.  Clear the rebuild
738 	 * status allowing a new resilver/rebuild to be started.
739 	 */
740 	if (err == ENOENT || err == EOVERFLOW || err == ECKSUM) {
741 		memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
742 	} else if (err) {
743 		mutex_exit(&vd->vdev_rebuild_lock);
744 		return (err);
745 	}
746 
747 	vr->vr_prev_scan_time_ms = vrp->vrp_scan_time_ms;
748 	vr->vr_top_vdev = vd;
749 
750 	mutex_exit(&vd->vdev_rebuild_lock);
751 
752 	return (0);
753 }
754 
755 /*
756  * Each scan thread is responsible for rebuilding a top-level vdev.  The
757  * rebuild progress in tracked on-disk in VDEV_TOP_ZAP_VDEV_REBUILD_PHYS.
758  */
759 static __attribute__((noreturn)) void
760 vdev_rebuild_thread(void *arg)
761 {
762 	vdev_t *vd = arg;
763 	spa_t *spa = vd->vdev_spa;
764 	vdev_t *rvd = spa->spa_root_vdev;
765 	int error = 0;
766 
767 	/*
768 	 * If there's a scrub in process request that it be stopped.  This
769 	 * is not required for a correct rebuild, but we do want rebuilds to
770 	 * emulate the resilver behavior as much as possible.
771 	 */
772 	dsl_pool_t *dsl = spa_get_dsl(spa);
773 	if (dsl_scan_scrubbing(dsl))
774 		dsl_scan_cancel(dsl);
775 
776 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
777 	mutex_enter(&vd->vdev_rebuild_lock);
778 
779 	ASSERT3P(vd->vdev_top, ==, vd);
780 	ASSERT3P(vd->vdev_rebuild_thread, !=, NULL);
781 	ASSERT(vd->vdev_rebuilding);
782 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REBUILD));
783 	ASSERT3B(vd->vdev_rebuild_cancel_wanted, ==, B_FALSE);
784 
785 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
786 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
787 	vr->vr_top_vdev = vd;
788 	vr->vr_scan_msp = NULL;
789 	vr->vr_scan_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
790 	mutex_init(&vr->vr_io_lock, NULL, MUTEX_DEFAULT, NULL);
791 	cv_init(&vr->vr_io_cv, NULL, CV_DEFAULT, NULL);
792 
793 	vr->vr_pass_start_time = gethrtime();
794 	vr->vr_pass_bytes_scanned = 0;
795 	vr->vr_pass_bytes_issued = 0;
796 	vr->vr_pass_bytes_skipped = 0;
797 
798 	uint64_t update_est_time = gethrtime();
799 	vdev_rebuild_update_bytes_est(vd, 0);
800 
801 	clear_rebuild_bytes(vr->vr_top_vdev);
802 
803 	mutex_exit(&vd->vdev_rebuild_lock);
804 
805 	/*
806 	 * Systematically walk the metaslabs and issue rebuild I/Os for
807 	 * all ranges in the allocated space map.
808 	 */
809 	for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
810 		metaslab_t *msp = vd->vdev_ms[i];
811 		vr->vr_scan_msp = msp;
812 
813 		/*
814 		 * Calculate the max number of in-flight bytes for top-level
815 		 * vdev scanning operations (minimum 1MB, maximum 1/2 of
816 		 * arc_c_max shared by all top-level vdevs).  Limits for the
817 		 * issuing phase are done per top-level vdev and are handled
818 		 * separately.
819 		 */
820 		uint64_t limit = (arc_c_max / 2) / MAX(rvd->vdev_children, 1);
821 		vr->vr_bytes_inflight_max = MIN(limit, MAX(1ULL << 20,
822 		    zfs_rebuild_vdev_limit * vd->vdev_children));
823 
824 		/*
825 		 * Removal of vdevs from the vdev tree may eliminate the need
826 		 * for the rebuild, in which case it should be canceled.  The
827 		 * vdev_rebuild_cancel_wanted flag is set until the sync task
828 		 * completes.  This may be after the rebuild thread exits.
829 		 */
830 		if (vdev_rebuild_should_cancel(vd)) {
831 			vd->vdev_rebuild_cancel_wanted = B_TRUE;
832 			error = EINTR;
833 			break;
834 		}
835 
836 		ASSERT0(range_tree_space(vr->vr_scan_tree));
837 
838 		/* Disable any new allocations to this metaslab */
839 		spa_config_exit(spa, SCL_CONFIG, FTAG);
840 		metaslab_disable(msp);
841 
842 		mutex_enter(&msp->ms_sync_lock);
843 		mutex_enter(&msp->ms_lock);
844 
845 		/*
846 		 * If there are outstanding allocations wait for them to be
847 		 * synced.  This is needed to ensure all allocated ranges are
848 		 * on disk and therefore will be rebuilt.
849 		 */
850 		for (int j = 0; j < TXG_SIZE; j++) {
851 			if (range_tree_space(msp->ms_allocating[j])) {
852 				mutex_exit(&msp->ms_lock);
853 				mutex_exit(&msp->ms_sync_lock);
854 				txg_wait_synced(dsl, 0);
855 				mutex_enter(&msp->ms_sync_lock);
856 				mutex_enter(&msp->ms_lock);
857 				break;
858 			}
859 		}
860 
861 		/*
862 		 * When a metaslab has been allocated from read its allocated
863 		 * ranges from the space map object into the vr_scan_tree.
864 		 * Then add inflight / unflushed ranges and remove inflight /
865 		 * unflushed frees.  This is the minimum range to be rebuilt.
866 		 */
867 		if (msp->ms_sm != NULL) {
868 			VERIFY0(space_map_load(msp->ms_sm,
869 			    vr->vr_scan_tree, SM_ALLOC));
870 
871 			for (int i = 0; i < TXG_SIZE; i++) {
872 				ASSERT0(range_tree_space(
873 				    msp->ms_allocating[i]));
874 			}
875 
876 			range_tree_walk(msp->ms_unflushed_allocs,
877 			    range_tree_add, vr->vr_scan_tree);
878 			range_tree_walk(msp->ms_unflushed_frees,
879 			    range_tree_remove, vr->vr_scan_tree);
880 
881 			/*
882 			 * Remove ranges which have already been rebuilt based
883 			 * on the last offset.  This can happen when restarting
884 			 * a scan after exporting and re-importing the pool.
885 			 */
886 			range_tree_clear(vr->vr_scan_tree, 0,
887 			    vrp->vrp_last_offset);
888 		}
889 
890 		mutex_exit(&msp->ms_lock);
891 		mutex_exit(&msp->ms_sync_lock);
892 
893 		/*
894 		 * To provide an accurate estimate re-calculate the estimated
895 		 * size every 5 minutes to account for recent allocations and
896 		 * frees made to space maps which have not yet been rebuilt.
897 		 */
898 		if (gethrtime() > update_est_time + SEC2NSEC(300)) {
899 			update_est_time = gethrtime();
900 			vdev_rebuild_update_bytes_est(vd, i);
901 		}
902 
903 		/*
904 		 * Walk the allocated space map and issue the rebuild I/O.
905 		 */
906 		error = vdev_rebuild_ranges(vr);
907 		range_tree_vacate(vr->vr_scan_tree, NULL, NULL);
908 
909 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
910 		metaslab_enable(msp, B_FALSE, B_FALSE);
911 
912 		if (error != 0)
913 			break;
914 	}
915 
916 	range_tree_destroy(vr->vr_scan_tree);
917 	spa_config_exit(spa, SCL_CONFIG, FTAG);
918 
919 	/* Wait for any remaining rebuild I/O to complete */
920 	mutex_enter(&vr->vr_io_lock);
921 	while (vr->vr_bytes_inflight > 0)
922 		cv_wait(&vr->vr_io_cv, &vr->vr_io_lock);
923 
924 	mutex_exit(&vr->vr_io_lock);
925 
926 	mutex_destroy(&vr->vr_io_lock);
927 	cv_destroy(&vr->vr_io_cv);
928 
929 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
930 
931 	dsl_pool_t *dp = spa_get_dsl(spa);
932 	dmu_tx_t *tx = dmu_tx_create_dd(dp->dp_mos_dir);
933 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
934 
935 	mutex_enter(&vd->vdev_rebuild_lock);
936 	if (error == 0) {
937 		/*
938 		 * After a successful rebuild clear the DTLs of all ranges
939 		 * which were missing when the rebuild was started.  These
940 		 * ranges must have been rebuilt as a consequence of rebuilding
941 		 * all allocated space.  Note that unlike a scrub or resilver
942 		 * the rebuild operation will reconstruct data only referenced
943 		 * by a pool checkpoint.  See the dsl_scan_done() comments.
944 		 */
945 		dsl_sync_task_nowait(dp, vdev_rebuild_complete_sync,
946 		    (void *)(uintptr_t)vd->vdev_id, tx);
947 	} else if (vd->vdev_rebuild_cancel_wanted) {
948 		/*
949 		 * The rebuild operation was canceled.  This will occur when
950 		 * a device participating in the rebuild is detached.
951 		 */
952 		dsl_sync_task_nowait(dp, vdev_rebuild_cancel_sync,
953 		    (void *)(uintptr_t)vd->vdev_id, tx);
954 	} else if (vd->vdev_rebuild_reset_wanted) {
955 		/*
956 		 * Reset the running rebuild without canceling and restarting
957 		 * it.  This will occur when a new device is attached and must
958 		 * participate in the rebuild.
959 		 */
960 		dsl_sync_task_nowait(dp, vdev_rebuild_reset_sync,
961 		    (void *)(uintptr_t)vd->vdev_id, tx);
962 	} else {
963 		/*
964 		 * The rebuild operation should be suspended.  This may occur
965 		 * when detaching a child vdev or when exporting the pool.  The
966 		 * rebuild is left in the active state so it will be resumed.
967 		 */
968 		ASSERT(vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
969 		vd->vdev_rebuilding = B_FALSE;
970 	}
971 
972 	dmu_tx_commit(tx);
973 
974 	vd->vdev_rebuild_thread = NULL;
975 	mutex_exit(&vd->vdev_rebuild_lock);
976 	spa_config_exit(spa, SCL_CONFIG, FTAG);
977 
978 	cv_broadcast(&vd->vdev_rebuild_cv);
979 
980 	thread_exit();
981 }
982 
983 /*
984  * Returns B_TRUE if any top-level vdev are rebuilding.
985  */
986 boolean_t
987 vdev_rebuild_active(vdev_t *vd)
988 {
989 	spa_t *spa = vd->vdev_spa;
990 	boolean_t ret = B_FALSE;
991 
992 	if (vd == spa->spa_root_vdev) {
993 		for (uint64_t i = 0; i < vd->vdev_children; i++) {
994 			ret = vdev_rebuild_active(vd->vdev_child[i]);
995 			if (ret)
996 				return (ret);
997 		}
998 	} else if (vd->vdev_top_zap != 0) {
999 		vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
1000 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
1001 
1002 		mutex_enter(&vd->vdev_rebuild_lock);
1003 		ret = (vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
1004 		mutex_exit(&vd->vdev_rebuild_lock);
1005 	}
1006 
1007 	return (ret);
1008 }
1009 
1010 /*
1011  * Start a rebuild operation.  The rebuild may be restarted when the
1012  * top-level vdev is currently actively rebuilding.
1013  */
1014 void
1015 vdev_rebuild(vdev_t *vd)
1016 {
1017 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
1018 	vdev_rebuild_phys_t *vrp __maybe_unused = &vr->vr_rebuild_phys;
1019 
1020 	ASSERT(vd->vdev_top == vd);
1021 	ASSERT(vdev_is_concrete(vd));
1022 	ASSERT(!vd->vdev_removing);
1023 	ASSERT(spa_feature_is_enabled(vd->vdev_spa,
1024 	    SPA_FEATURE_DEVICE_REBUILD));
1025 
1026 	mutex_enter(&vd->vdev_rebuild_lock);
1027 	if (vd->vdev_rebuilding) {
1028 		ASSERT3U(vrp->vrp_rebuild_state, ==, VDEV_REBUILD_ACTIVE);
1029 
1030 		/*
1031 		 * Signal a running rebuild operation that it should restart
1032 		 * from the beginning because a new device was attached.  The
1033 		 * vdev_rebuild_reset_wanted flag is set until the sync task
1034 		 * completes.  This may be after the rebuild thread exits.
1035 		 */
1036 		if (!vd->vdev_rebuild_reset_wanted)
1037 			vd->vdev_rebuild_reset_wanted = B_TRUE;
1038 	} else {
1039 		vdev_rebuild_initiate(vd);
1040 	}
1041 	mutex_exit(&vd->vdev_rebuild_lock);
1042 }
1043 
1044 static void
1045 vdev_rebuild_restart_impl(vdev_t *vd)
1046 {
1047 	spa_t *spa = vd->vdev_spa;
1048 
1049 	if (vd == spa->spa_root_vdev) {
1050 		for (uint64_t i = 0; i < vd->vdev_children; i++)
1051 			vdev_rebuild_restart_impl(vd->vdev_child[i]);
1052 
1053 	} else if (vd->vdev_top_zap != 0) {
1054 		vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
1055 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
1056 
1057 		mutex_enter(&vd->vdev_rebuild_lock);
1058 		if (vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE &&
1059 		    vdev_writeable(vd) && !vd->vdev_rebuilding) {
1060 			ASSERT(spa_feature_is_active(spa,
1061 			    SPA_FEATURE_DEVICE_REBUILD));
1062 			vd->vdev_rebuilding = B_TRUE;
1063 			vd->vdev_rebuild_thread = thread_create(NULL, 0,
1064 			    vdev_rebuild_thread, vd, 0, &p0, TS_RUN,
1065 			    maxclsyspri);
1066 		}
1067 		mutex_exit(&vd->vdev_rebuild_lock);
1068 	}
1069 }
1070 
1071 /*
1072  * Conditionally restart all of the vdev_rebuild_thread's for a pool.  The
1073  * feature flag must be active and the rebuild in the active state.   This
1074  * cannot be used to start a new rebuild.
1075  */
1076 void
1077 vdev_rebuild_restart(spa_t *spa)
1078 {
1079 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
1080 	    spa->spa_load_thread == curthread);
1081 
1082 	vdev_rebuild_restart_impl(spa->spa_root_vdev);
1083 }
1084 
1085 /*
1086  * Stop and wait for all of the vdev_rebuild_thread's associated with the
1087  * vdev tree provide to be terminated (canceled or stopped).
1088  */
1089 void
1090 vdev_rebuild_stop_wait(vdev_t *vd)
1091 {
1092 	spa_t *spa = vd->vdev_spa;
1093 
1094 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
1095 	    spa->spa_export_thread == curthread);
1096 
1097 	if (vd == spa->spa_root_vdev) {
1098 		for (uint64_t i = 0; i < vd->vdev_children; i++)
1099 			vdev_rebuild_stop_wait(vd->vdev_child[i]);
1100 
1101 	} else if (vd->vdev_top_zap != 0) {
1102 		ASSERT(vd == vd->vdev_top);
1103 
1104 		mutex_enter(&vd->vdev_rebuild_lock);
1105 		if (vd->vdev_rebuild_thread != NULL) {
1106 			vd->vdev_rebuild_exit_wanted = B_TRUE;
1107 			while (vd->vdev_rebuilding) {
1108 				cv_wait(&vd->vdev_rebuild_cv,
1109 				    &vd->vdev_rebuild_lock);
1110 			}
1111 			vd->vdev_rebuild_exit_wanted = B_FALSE;
1112 		}
1113 		mutex_exit(&vd->vdev_rebuild_lock);
1114 	}
1115 }
1116 
1117 /*
1118  * Stop all rebuild operations but leave them in the active state so they
1119  * will be resumed when importing the pool.
1120  */
1121 void
1122 vdev_rebuild_stop_all(spa_t *spa)
1123 {
1124 	vdev_rebuild_stop_wait(spa->spa_root_vdev);
1125 }
1126 
1127 /*
1128  * Rebuild statistics reported per top-level vdev.
1129  */
1130 int
1131 vdev_rebuild_get_stats(vdev_t *tvd, vdev_rebuild_stat_t *vrs)
1132 {
1133 	spa_t *spa = tvd->vdev_spa;
1134 
1135 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
1136 		return (SET_ERROR(ENOTSUP));
1137 
1138 	if (tvd != tvd->vdev_top || tvd->vdev_top_zap == 0)
1139 		return (SET_ERROR(EINVAL));
1140 
1141 	int error = zap_contains(spa_meta_objset(spa),
1142 	    tvd->vdev_top_zap, VDEV_TOP_ZAP_VDEV_REBUILD_PHYS);
1143 
1144 	if (error == ENOENT) {
1145 		memset(vrs, 0, sizeof (vdev_rebuild_stat_t));
1146 		vrs->vrs_state = VDEV_REBUILD_NONE;
1147 		error = 0;
1148 	} else if (error == 0) {
1149 		vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
1150 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
1151 
1152 		mutex_enter(&tvd->vdev_rebuild_lock);
1153 		vrs->vrs_state = vrp->vrp_rebuild_state;
1154 		vrs->vrs_start_time = vrp->vrp_start_time;
1155 		vrs->vrs_end_time = vrp->vrp_end_time;
1156 		vrs->vrs_scan_time_ms = vrp->vrp_scan_time_ms;
1157 		vrs->vrs_bytes_scanned = vrp->vrp_bytes_scanned;
1158 		vrs->vrs_bytes_issued = vrp->vrp_bytes_issued;
1159 		vrs->vrs_bytes_rebuilt = vrp->vrp_bytes_rebuilt;
1160 		vrs->vrs_bytes_est = vrp->vrp_bytes_est;
1161 		vrs->vrs_errors = vrp->vrp_errors;
1162 		vrs->vrs_pass_time_ms = NSEC2MSEC(gethrtime() -
1163 		    vr->vr_pass_start_time);
1164 		vrs->vrs_pass_bytes_scanned = vr->vr_pass_bytes_scanned;
1165 		vrs->vrs_pass_bytes_issued = vr->vr_pass_bytes_issued;
1166 		vrs->vrs_pass_bytes_skipped = vr->vr_pass_bytes_skipped;
1167 		mutex_exit(&tvd->vdev_rebuild_lock);
1168 	}
1169 
1170 	return (error);
1171 }
1172 
1173 ZFS_MODULE_PARAM(zfs, zfs_, rebuild_max_segment, U64, ZMOD_RW,
1174 	"Max segment size in bytes of rebuild reads");
1175 
1176 ZFS_MODULE_PARAM(zfs, zfs_, rebuild_vdev_limit, U64, ZMOD_RW,
1177 	"Max bytes in flight per leaf vdev for sequential resilvers");
1178 
1179 ZFS_MODULE_PARAM(zfs, zfs_, rebuild_scrub_enabled, INT, ZMOD_RW,
1180 	"Automatically scrub after sequential resilver completes");
1181