xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_rebuild.c (revision 5b31cc94b10d4bb7109c6b27940a0fc76a44a331)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  *
23  * Copyright (c) 2018, Intel Corporation.
24  * Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
25  * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
26  */
27 
28 #include <sys/vdev_impl.h>
29 #include <sys/vdev_draid.h>
30 #include <sys/dsl_scan.h>
31 #include <sys/spa_impl.h>
32 #include <sys/metaslab_impl.h>
33 #include <sys/vdev_rebuild.h>
34 #include <sys/zio.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/arc.h>
37 #include <sys/arc_impl.h>
38 #include <sys/zap.h>
39 
40 /*
41  * This file contains the sequential reconstruction implementation for
42  * resilvering.  This form of resilvering is internally referred to as device
43  * rebuild to avoid conflating it with the traditional healing reconstruction
44  * performed by the dsl scan code.
45  *
46  * When replacing a device, or scrubbing the pool, ZFS has historically used
47  * a process called resilvering which is a form of healing reconstruction.
48  * This approach has the advantage that as blocks are read from disk their
49  * checksums can be immediately verified and the data repaired.  Unfortunately,
50  * it also results in a random IO pattern to the disk even when extra care
51  * is taken to sequentialize the IO as much as possible.  This substantially
52  * increases the time required to resilver the pool and restore redundancy.
53  *
54  * For mirrored devices it's possible to implement an alternate sequential
55  * reconstruction strategy when resilvering.  Sequential reconstruction
56  * behaves like a traditional RAID rebuild and reconstructs a device in LBA
57  * order without verifying the checksum.  After this phase completes a second
58  * scrub phase is started to verify all of the checksums.  This two phase
59  * process will take longer than the healing reconstruction described above.
60  * However, it has that advantage that after the reconstruction first phase
61  * completes redundancy has been restored.  At this point the pool can incur
62  * another device failure without risking data loss.
63  *
64  * There are a few noteworthy limitations and other advantages of resilvering
65  * using sequential reconstruction vs healing reconstruction.
66  *
67  * Limitations:
68  *
69  *   - Sequential reconstruction is not possible on RAIDZ due to its
70  *     variable stripe width.  Note dRAID uses a fixed stripe width which
71  *     avoids this issue, but comes at the expense of some usable capacity.
72  *
73  *   - Block checksums are not verified during sequential reconstruction.
74  *     Similar to traditional RAID the parity/mirror data is reconstructed
75  *     but cannot be immediately double checked.  For this reason when the
76  *     last active resilver completes the pool is automatically scrubbed
77  *     by default.
78  *
79  *   - Deferred resilvers using sequential reconstruction are not currently
80  *     supported.  When adding another vdev to an active top-level resilver
81  *     it must be restarted.
82  *
83  * Advantages:
84  *
85  *   - Sequential reconstruction is performed in LBA order which may be faster
86  *     than healing reconstruction particularly when using HDDs (or
87  *     especially with SMR devices).  Only allocated capacity is resilvered.
88  *
89  *   - Sequential reconstruction is not constrained by ZFS block boundaries.
90  *     This allows it to issue larger IOs to disk which span multiple blocks
91  *     allowing all of these logical blocks to be repaired with a single IO.
92  *
93  *   - Unlike a healing resilver or scrub which are pool wide operations,
94  *     sequential reconstruction is handled by the top-level vdevs.  This
95  *     allows for it to be started or canceled on a top-level vdev without
96  *     impacting any other top-level vdevs in the pool.
97  *
98  *   - Data only referenced by a pool checkpoint will be repaired because
99  *     that space is reflected in the space maps.  This differs for a
100  *     healing resilver or scrub which will not repair that data.
101  */
102 
103 
104 /*
105  * Size of rebuild reads; defaults to 1MiB per data disk and is capped at
106  * SPA_MAXBLOCKSIZE.
107  */
108 static uint64_t zfs_rebuild_max_segment = 1024 * 1024;
109 
110 /*
111  * Maximum number of parallelly executed bytes per leaf vdev caused by a
112  * sequential resilver.  We attempt to strike a balance here between keeping
113  * the vdev queues full of I/Os at all times and not overflowing the queues
114  * to cause long latency, which would cause long txg sync times.
115  *
116  * A large default value can be safely used here because the default target
117  * segment size is also large (zfs_rebuild_max_segment=1M).  This helps keep
118  * the queue depth short.
119  *
120  * 64MB was observed to deliver the best performance and set as the default.
121  * Testing was performed with a 106-drive dRAID HDD pool (draid2:11d:106c)
122  * and a rebuild rate of 1.2GB/s was measured to the distribute spare.
123  * Smaller values were unable to fully saturate the available pool I/O.
124  */
125 static uint64_t zfs_rebuild_vdev_limit = 64 << 20;
126 
127 /*
128  * Automatically start a pool scrub when the last active sequential resilver
129  * completes in order to verify the checksums of all blocks which have been
130  * resilvered. This option is enabled by default and is strongly recommended.
131  */
132 static int zfs_rebuild_scrub_enabled = 1;
133 
134 /*
135  * For vdev_rebuild_initiate_sync() and vdev_rebuild_reset_sync().
136  */
137 static __attribute__((noreturn)) void vdev_rebuild_thread(void *arg);
138 static void vdev_rebuild_reset_sync(void *arg, dmu_tx_t *tx);
139 
140 /*
141  * Clear the per-vdev rebuild bytes value for a vdev tree.
142  */
143 static void
144 clear_rebuild_bytes(vdev_t *vd)
145 {
146 	vdev_stat_t *vs = &vd->vdev_stat;
147 
148 	for (uint64_t i = 0; i < vd->vdev_children; i++)
149 		clear_rebuild_bytes(vd->vdev_child[i]);
150 
151 	mutex_enter(&vd->vdev_stat_lock);
152 	vs->vs_rebuild_processed = 0;
153 	mutex_exit(&vd->vdev_stat_lock);
154 }
155 
156 /*
157  * Determines whether a vdev_rebuild_thread() should be stopped.
158  */
159 static boolean_t
160 vdev_rebuild_should_stop(vdev_t *vd)
161 {
162 	return (!vdev_writeable(vd) || vd->vdev_removing ||
163 	    vd->vdev_rebuild_exit_wanted ||
164 	    vd->vdev_rebuild_cancel_wanted ||
165 	    vd->vdev_rebuild_reset_wanted);
166 }
167 
168 /*
169  * Determine if the rebuild should be canceled.  This may happen when all
170  * vdevs with MISSING DTLs are detached.
171  */
172 static boolean_t
173 vdev_rebuild_should_cancel(vdev_t *vd)
174 {
175 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
176 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
177 
178 	if (!vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg))
179 		return (B_TRUE);
180 
181 	return (B_FALSE);
182 }
183 
184 /*
185  * The sync task for updating the on-disk state of a rebuild.  This is
186  * scheduled by vdev_rebuild_range().
187  */
188 static void
189 vdev_rebuild_update_sync(void *arg, dmu_tx_t *tx)
190 {
191 	int vdev_id = (uintptr_t)arg;
192 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
193 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
194 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
195 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
196 	uint64_t txg = dmu_tx_get_txg(tx);
197 
198 	mutex_enter(&vd->vdev_rebuild_lock);
199 
200 	if (vr->vr_scan_offset[txg & TXG_MASK] > 0) {
201 		vrp->vrp_last_offset = vr->vr_scan_offset[txg & TXG_MASK];
202 		vr->vr_scan_offset[txg & TXG_MASK] = 0;
203 	}
204 
205 	vrp->vrp_scan_time_ms = vr->vr_prev_scan_time_ms +
206 	    NSEC2MSEC(gethrtime() - vr->vr_pass_start_time);
207 
208 	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
209 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
210 	    REBUILD_PHYS_ENTRIES, vrp, tx));
211 
212 	mutex_exit(&vd->vdev_rebuild_lock);
213 }
214 
215 /*
216  * Initialize the on-disk state for a new rebuild, start the rebuild thread.
217  */
218 static void
219 vdev_rebuild_initiate_sync(void *arg, dmu_tx_t *tx)
220 {
221 	int vdev_id = (uintptr_t)arg;
222 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
223 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
224 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
225 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
226 
227 	ASSERT(vd->vdev_rebuilding);
228 
229 	spa_feature_incr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
230 
231 	mutex_enter(&vd->vdev_rebuild_lock);
232 	memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
233 	vrp->vrp_rebuild_state = VDEV_REBUILD_ACTIVE;
234 	vrp->vrp_min_txg = 0;
235 	vrp->vrp_max_txg = dmu_tx_get_txg(tx);
236 	vrp->vrp_start_time = gethrestime_sec();
237 	vrp->vrp_scan_time_ms = 0;
238 	vr->vr_prev_scan_time_ms = 0;
239 
240 	/*
241 	 * Rebuilds are currently only used when replacing a device, in which
242 	 * case there must be DTL_MISSING entries.  In the future, we could
243 	 * allow rebuilds to be used in a way similar to a scrub.  This would
244 	 * be useful because it would allow us to rebuild the space used by
245 	 * pool checkpoints.
246 	 */
247 	VERIFY(vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg));
248 
249 	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
250 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
251 	    REBUILD_PHYS_ENTRIES, vrp, tx));
252 
253 	spa_history_log_internal(spa, "rebuild", tx,
254 	    "vdev_id=%llu vdev_guid=%llu started",
255 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
256 
257 	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
258 	vd->vdev_rebuild_thread = thread_create(NULL, 0,
259 	    vdev_rebuild_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
260 
261 	mutex_exit(&vd->vdev_rebuild_lock);
262 }
263 
264 static void
265 vdev_rebuild_log_notify(spa_t *spa, vdev_t *vd, const char *name)
266 {
267 	nvlist_t *aux = fnvlist_alloc();
268 
269 	fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, "sequential");
270 	spa_event_notify(spa, vd, aux, name);
271 	nvlist_free(aux);
272 }
273 
274 /*
275  * Called to request that a new rebuild be started.  The feature will remain
276  * active for the duration of the rebuild, then revert to the enabled state.
277  */
278 static void
279 vdev_rebuild_initiate(vdev_t *vd)
280 {
281 	spa_t *spa = vd->vdev_spa;
282 
283 	ASSERT(vd->vdev_top == vd);
284 	ASSERT(MUTEX_HELD(&vd->vdev_rebuild_lock));
285 	ASSERT(!vd->vdev_rebuilding);
286 
287 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
288 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
289 
290 	vd->vdev_rebuilding = B_TRUE;
291 
292 	dsl_sync_task_nowait(spa_get_dsl(spa), vdev_rebuild_initiate_sync,
293 	    (void *)(uintptr_t)vd->vdev_id, tx);
294 	dmu_tx_commit(tx);
295 
296 	vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_START);
297 }
298 
299 /*
300  * Update the on-disk state to completed when a rebuild finishes.
301  */
302 static void
303 vdev_rebuild_complete_sync(void *arg, dmu_tx_t *tx)
304 {
305 	int vdev_id = (uintptr_t)arg;
306 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
307 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
308 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
309 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
310 
311 	mutex_enter(&vd->vdev_rebuild_lock);
312 
313 	/*
314 	 * Handle a second device failure if it occurs after all rebuild I/O
315 	 * has completed but before this sync task has been executed.
316 	 */
317 	if (vd->vdev_rebuild_reset_wanted) {
318 		mutex_exit(&vd->vdev_rebuild_lock);
319 		vdev_rebuild_reset_sync(arg, tx);
320 		return;
321 	}
322 
323 	vrp->vrp_rebuild_state = VDEV_REBUILD_COMPLETE;
324 	vrp->vrp_end_time = gethrestime_sec();
325 
326 	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
327 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
328 	    REBUILD_PHYS_ENTRIES, vrp, tx));
329 
330 	vdev_dtl_reassess(vd, tx->tx_txg, vrp->vrp_max_txg, B_TRUE, B_TRUE);
331 	spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
332 
333 	spa_history_log_internal(spa, "rebuild",  tx,
334 	    "vdev_id=%llu vdev_guid=%llu complete",
335 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
336 	vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_FINISH);
337 
338 	/* Handles detaching of spares */
339 	spa_async_request(spa, SPA_ASYNC_REBUILD_DONE);
340 	vd->vdev_rebuilding = B_FALSE;
341 	mutex_exit(&vd->vdev_rebuild_lock);
342 
343 	/*
344 	 * While we're in syncing context take the opportunity to
345 	 * setup the scrub when there are no more active rebuilds.
346 	 */
347 	pool_scan_func_t func = POOL_SCAN_SCRUB;
348 	if (dsl_scan_setup_check(&func, tx) == 0 &&
349 	    zfs_rebuild_scrub_enabled) {
350 		dsl_scan_setup_sync(&func, tx);
351 	}
352 
353 	cv_broadcast(&vd->vdev_rebuild_cv);
354 
355 	/* Clear recent error events (i.e. duplicate events tracking) */
356 	zfs_ereport_clear(spa, NULL);
357 }
358 
359 /*
360  * Update the on-disk state to canceled when a rebuild finishes.
361  */
362 static void
363 vdev_rebuild_cancel_sync(void *arg, dmu_tx_t *tx)
364 {
365 	int vdev_id = (uintptr_t)arg;
366 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
367 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
368 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
369 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
370 
371 	mutex_enter(&vd->vdev_rebuild_lock);
372 	vrp->vrp_rebuild_state = VDEV_REBUILD_CANCELED;
373 	vrp->vrp_end_time = gethrestime_sec();
374 
375 	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
376 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
377 	    REBUILD_PHYS_ENTRIES, vrp, tx));
378 
379 	spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
380 
381 	spa_history_log_internal(spa, "rebuild",  tx,
382 	    "vdev_id=%llu vdev_guid=%llu canceled",
383 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
384 	vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_FINISH);
385 
386 	vd->vdev_rebuild_cancel_wanted = B_FALSE;
387 	vd->vdev_rebuilding = B_FALSE;
388 	mutex_exit(&vd->vdev_rebuild_lock);
389 
390 	spa_notify_waiters(spa);
391 	cv_broadcast(&vd->vdev_rebuild_cv);
392 }
393 
394 /*
395  * Resets the progress of a running rebuild.  This will occur when a new
396  * vdev is added to rebuild.
397  */
398 static void
399 vdev_rebuild_reset_sync(void *arg, dmu_tx_t *tx)
400 {
401 	int vdev_id = (uintptr_t)arg;
402 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
403 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
404 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
405 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
406 
407 	mutex_enter(&vd->vdev_rebuild_lock);
408 
409 	ASSERT(vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
410 	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
411 
412 	vrp->vrp_last_offset = 0;
413 	vrp->vrp_min_txg = 0;
414 	vrp->vrp_max_txg = dmu_tx_get_txg(tx);
415 	vrp->vrp_bytes_scanned = 0;
416 	vrp->vrp_bytes_issued = 0;
417 	vrp->vrp_bytes_rebuilt = 0;
418 	vrp->vrp_bytes_est = 0;
419 	vrp->vrp_scan_time_ms = 0;
420 	vr->vr_prev_scan_time_ms = 0;
421 
422 	/* See vdev_rebuild_initiate_sync comment */
423 	VERIFY(vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg));
424 
425 	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
426 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
427 	    REBUILD_PHYS_ENTRIES, vrp, tx));
428 
429 	spa_history_log_internal(spa, "rebuild",  tx,
430 	    "vdev_id=%llu vdev_guid=%llu reset",
431 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
432 
433 	vd->vdev_rebuild_reset_wanted = B_FALSE;
434 	ASSERT(vd->vdev_rebuilding);
435 
436 	vd->vdev_rebuild_thread = thread_create(NULL, 0,
437 	    vdev_rebuild_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
438 
439 	mutex_exit(&vd->vdev_rebuild_lock);
440 }
441 
442 /*
443  * Clear the last rebuild status.
444  */
445 void
446 vdev_rebuild_clear_sync(void *arg, dmu_tx_t *tx)
447 {
448 	int vdev_id = (uintptr_t)arg;
449 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
450 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
451 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
452 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
453 	objset_t *mos = spa_meta_objset(spa);
454 
455 	mutex_enter(&vd->vdev_rebuild_lock);
456 
457 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD) ||
458 	    vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE) {
459 		mutex_exit(&vd->vdev_rebuild_lock);
460 		return;
461 	}
462 
463 	clear_rebuild_bytes(vd);
464 	memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
465 
466 	if (vd->vdev_top_zap != 0 && zap_contains(mos, vd->vdev_top_zap,
467 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS) == 0) {
468 		VERIFY0(zap_update(mos, vd->vdev_top_zap,
469 		    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
470 		    REBUILD_PHYS_ENTRIES, vrp, tx));
471 	}
472 
473 	mutex_exit(&vd->vdev_rebuild_lock);
474 }
475 
476 /*
477  * The zio_done_func_t callback for each rebuild I/O issued.  It's responsible
478  * for updating the rebuild stats and limiting the number of in flight I/Os.
479  */
480 static void
481 vdev_rebuild_cb(zio_t *zio)
482 {
483 	vdev_rebuild_t *vr = zio->io_private;
484 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
485 	vdev_t *vd = vr->vr_top_vdev;
486 
487 	mutex_enter(&vr->vr_io_lock);
488 	if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
489 		/*
490 		 * The I/O failed because the top-level vdev was unavailable.
491 		 * Attempt to roll back to the last completed offset, in order
492 		 * resume from the correct location if the pool is resumed.
493 		 * (This works because spa_sync waits on spa_txg_zio before
494 		 * it runs sync tasks.)
495 		 */
496 		uint64_t *off = &vr->vr_scan_offset[zio->io_txg & TXG_MASK];
497 		*off = MIN(*off, zio->io_offset);
498 	} else if (zio->io_error) {
499 		vrp->vrp_errors++;
500 	}
501 
502 	abd_free(zio->io_abd);
503 
504 	ASSERT3U(vr->vr_bytes_inflight, >, 0);
505 	vr->vr_bytes_inflight -= zio->io_size;
506 	cv_broadcast(&vr->vr_io_cv);
507 	mutex_exit(&vr->vr_io_lock);
508 
509 	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
510 }
511 
512 /*
513  * Initialize a block pointer that can be used to read the given segment
514  * for sequential rebuild.
515  */
516 static void
517 vdev_rebuild_blkptr_init(blkptr_t *bp, vdev_t *vd, uint64_t start,
518     uint64_t asize)
519 {
520 	ASSERT(vd->vdev_ops == &vdev_draid_ops ||
521 	    vd->vdev_ops == &vdev_mirror_ops ||
522 	    vd->vdev_ops == &vdev_replacing_ops ||
523 	    vd->vdev_ops == &vdev_spare_ops);
524 
525 	uint64_t psize = vd->vdev_ops == &vdev_draid_ops ?
526 	    vdev_draid_asize_to_psize(vd, asize) : asize;
527 
528 	BP_ZERO(bp);
529 
530 	DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
531 	DVA_SET_OFFSET(&bp->blk_dva[0], start);
532 	DVA_SET_GANG(&bp->blk_dva[0], 0);
533 	DVA_SET_ASIZE(&bp->blk_dva[0], asize);
534 
535 	BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
536 	BP_SET_LSIZE(bp, psize);
537 	BP_SET_PSIZE(bp, psize);
538 	BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
539 	BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
540 	BP_SET_TYPE(bp, DMU_OT_NONE);
541 	BP_SET_LEVEL(bp, 0);
542 	BP_SET_DEDUP(bp, 0);
543 	BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
544 }
545 
546 /*
547  * Issues a rebuild I/O and takes care of rate limiting the number of queued
548  * rebuild I/Os.  The provided start and size must be properly aligned for the
549  * top-level vdev type being rebuilt.
550  */
551 static int
552 vdev_rebuild_range(vdev_rebuild_t *vr, uint64_t start, uint64_t size)
553 {
554 	uint64_t ms_id __maybe_unused = vr->vr_scan_msp->ms_id;
555 	vdev_t *vd = vr->vr_top_vdev;
556 	spa_t *spa = vd->vdev_spa;
557 	blkptr_t blk;
558 
559 	ASSERT3U(ms_id, ==, start >> vd->vdev_ms_shift);
560 	ASSERT3U(ms_id, ==, (start + size - 1) >> vd->vdev_ms_shift);
561 
562 	vr->vr_pass_bytes_scanned += size;
563 	vr->vr_rebuild_phys.vrp_bytes_scanned += size;
564 
565 	/*
566 	 * Rebuild the data in this range by constructing a special block
567 	 * pointer.  It has no relation to any existing blocks in the pool.
568 	 * However, by disabling checksum verification and issuing a scrub IO
569 	 * we can reconstruct and repair any children with missing data.
570 	 */
571 	vdev_rebuild_blkptr_init(&blk, vd, start, size);
572 	uint64_t psize = BP_GET_PSIZE(&blk);
573 
574 	if (!vdev_dtl_need_resilver(vd, &blk.blk_dva[0], psize, TXG_UNKNOWN)) {
575 		vr->vr_pass_bytes_skipped += size;
576 		return (0);
577 	}
578 
579 	mutex_enter(&vr->vr_io_lock);
580 
581 	/* Limit in flight rebuild I/Os */
582 	while (vr->vr_bytes_inflight >= vr->vr_bytes_inflight_max)
583 		cv_wait(&vr->vr_io_cv, &vr->vr_io_lock);
584 
585 	vr->vr_bytes_inflight += psize;
586 	mutex_exit(&vr->vr_io_lock);
587 
588 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
589 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
590 	uint64_t txg = dmu_tx_get_txg(tx);
591 
592 	spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
593 	mutex_enter(&vd->vdev_rebuild_lock);
594 
595 	/* This is the first I/O for this txg. */
596 	if (vr->vr_scan_offset[txg & TXG_MASK] == 0) {
597 		vr->vr_scan_offset[txg & TXG_MASK] = start;
598 		dsl_sync_task_nowait(spa_get_dsl(spa),
599 		    vdev_rebuild_update_sync,
600 		    (void *)(uintptr_t)vd->vdev_id, tx);
601 	}
602 
603 	/* When exiting write out our progress. */
604 	if (vdev_rebuild_should_stop(vd)) {
605 		mutex_enter(&vr->vr_io_lock);
606 		vr->vr_bytes_inflight -= psize;
607 		mutex_exit(&vr->vr_io_lock);
608 		spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
609 		mutex_exit(&vd->vdev_rebuild_lock);
610 		dmu_tx_commit(tx);
611 		return (SET_ERROR(EINTR));
612 	}
613 	mutex_exit(&vd->vdev_rebuild_lock);
614 	dmu_tx_commit(tx);
615 
616 	vr->vr_scan_offset[txg & TXG_MASK] = start + size;
617 	vr->vr_pass_bytes_issued += size;
618 	vr->vr_rebuild_phys.vrp_bytes_issued += size;
619 
620 	zio_nowait(zio_read(spa->spa_txg_zio[txg & TXG_MASK], spa, &blk,
621 	    abd_alloc(psize, B_FALSE), psize, vdev_rebuild_cb, vr,
622 	    ZIO_PRIORITY_REBUILD, ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL |
623 	    ZIO_FLAG_RESILVER, NULL));
624 
625 	return (0);
626 }
627 
628 /*
629  * Issues rebuild I/Os for all ranges in the provided vr->vr_tree range tree.
630  */
631 static int
632 vdev_rebuild_ranges(vdev_rebuild_t *vr)
633 {
634 	vdev_t *vd = vr->vr_top_vdev;
635 	zfs_btree_t *t = &vr->vr_scan_tree->rt_root;
636 	zfs_btree_index_t idx;
637 	int error;
638 
639 	for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
640 	    rs = zfs_btree_next(t, &idx, &idx)) {
641 		uint64_t start = rs_get_start(rs, vr->vr_scan_tree);
642 		uint64_t size = rs_get_end(rs, vr->vr_scan_tree) - start;
643 
644 		/*
645 		 * zfs_scan_suspend_progress can be set to disable rebuild
646 		 * progress for testing.  See comment in dsl_scan_sync().
647 		 */
648 		while (zfs_scan_suspend_progress &&
649 		    !vdev_rebuild_should_stop(vd)) {
650 			delay(hz);
651 		}
652 
653 		while (size > 0) {
654 			uint64_t chunk_size;
655 
656 			/*
657 			 * Split range into legally-sized logical chunks
658 			 * given the constraints of the top-level vdev
659 			 * being rebuilt (dRAID or mirror).
660 			 */
661 			ASSERT3P(vd->vdev_ops, !=, NULL);
662 			chunk_size = vd->vdev_ops->vdev_op_rebuild_asize(vd,
663 			    start, size, zfs_rebuild_max_segment);
664 
665 			error = vdev_rebuild_range(vr, start, chunk_size);
666 			if (error != 0)
667 				return (error);
668 
669 			size -= chunk_size;
670 			start += chunk_size;
671 		}
672 	}
673 
674 	return (0);
675 }
676 
677 /*
678  * Calculates the estimated capacity which remains to be scanned.  Since
679  * we traverse the pool in metaslab order only allocated capacity beyond
680  * the vrp_last_offset need be considered.  All lower offsets must have
681  * already been rebuilt and are thus already included in vrp_bytes_scanned.
682  */
683 static void
684 vdev_rebuild_update_bytes_est(vdev_t *vd, uint64_t ms_id)
685 {
686 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
687 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
688 	uint64_t bytes_est = vrp->vrp_bytes_scanned;
689 
690 	if (vrp->vrp_last_offset < vd->vdev_ms[ms_id]->ms_start)
691 		return;
692 
693 	for (uint64_t i = ms_id; i < vd->vdev_ms_count; i++) {
694 		metaslab_t *msp = vd->vdev_ms[i];
695 
696 		mutex_enter(&msp->ms_lock);
697 		bytes_est += metaslab_allocated_space(msp);
698 		mutex_exit(&msp->ms_lock);
699 	}
700 
701 	vrp->vrp_bytes_est = bytes_est;
702 }
703 
704 /*
705  * Load from disk the top-level vdev's rebuild information.
706  */
707 int
708 vdev_rebuild_load(vdev_t *vd)
709 {
710 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
711 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
712 	spa_t *spa = vd->vdev_spa;
713 	int err = 0;
714 
715 	mutex_enter(&vd->vdev_rebuild_lock);
716 	vd->vdev_rebuilding = B_FALSE;
717 
718 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) {
719 		memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
720 		mutex_exit(&vd->vdev_rebuild_lock);
721 		return (SET_ERROR(ENOTSUP));
722 	}
723 
724 	ASSERT(vd->vdev_top == vd);
725 
726 	err = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
727 	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
728 	    REBUILD_PHYS_ENTRIES, vrp);
729 
730 	/*
731 	 * A missing or damaged VDEV_TOP_ZAP_VDEV_REBUILD_PHYS should
732 	 * not prevent a pool from being imported.  Clear the rebuild
733 	 * status allowing a new resilver/rebuild to be started.
734 	 */
735 	if (err == ENOENT || err == EOVERFLOW || err == ECKSUM) {
736 		memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
737 	} else if (err) {
738 		mutex_exit(&vd->vdev_rebuild_lock);
739 		return (err);
740 	}
741 
742 	vr->vr_prev_scan_time_ms = vrp->vrp_scan_time_ms;
743 	vr->vr_top_vdev = vd;
744 
745 	mutex_exit(&vd->vdev_rebuild_lock);
746 
747 	return (0);
748 }
749 
750 /*
751  * Each scan thread is responsible for rebuilding a top-level vdev.  The
752  * rebuild progress in tracked on-disk in VDEV_TOP_ZAP_VDEV_REBUILD_PHYS.
753  */
754 static __attribute__((noreturn)) void
755 vdev_rebuild_thread(void *arg)
756 {
757 	vdev_t *vd = arg;
758 	spa_t *spa = vd->vdev_spa;
759 	vdev_t *rvd = spa->spa_root_vdev;
760 	int error = 0;
761 
762 	/*
763 	 * If there's a scrub in process request that it be stopped.  This
764 	 * is not required for a correct rebuild, but we do want rebuilds to
765 	 * emulate the resilver behavior as much as possible.
766 	 */
767 	dsl_pool_t *dsl = spa_get_dsl(spa);
768 	if (dsl_scan_scrubbing(dsl))
769 		dsl_scan_cancel(dsl);
770 
771 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
772 	mutex_enter(&vd->vdev_rebuild_lock);
773 
774 	ASSERT3P(vd->vdev_top, ==, vd);
775 	ASSERT3P(vd->vdev_rebuild_thread, !=, NULL);
776 	ASSERT(vd->vdev_rebuilding);
777 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REBUILD));
778 	ASSERT3B(vd->vdev_rebuild_cancel_wanted, ==, B_FALSE);
779 
780 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
781 	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
782 	vr->vr_top_vdev = vd;
783 	vr->vr_scan_msp = NULL;
784 	vr->vr_scan_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
785 	mutex_init(&vr->vr_io_lock, NULL, MUTEX_DEFAULT, NULL);
786 	cv_init(&vr->vr_io_cv, NULL, CV_DEFAULT, NULL);
787 
788 	vr->vr_pass_start_time = gethrtime();
789 	vr->vr_pass_bytes_scanned = 0;
790 	vr->vr_pass_bytes_issued = 0;
791 	vr->vr_pass_bytes_skipped = 0;
792 
793 	uint64_t update_est_time = gethrtime();
794 	vdev_rebuild_update_bytes_est(vd, 0);
795 
796 	clear_rebuild_bytes(vr->vr_top_vdev);
797 
798 	mutex_exit(&vd->vdev_rebuild_lock);
799 
800 	/*
801 	 * Systematically walk the metaslabs and issue rebuild I/Os for
802 	 * all ranges in the allocated space map.
803 	 */
804 	for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
805 		metaslab_t *msp = vd->vdev_ms[i];
806 		vr->vr_scan_msp = msp;
807 
808 		/*
809 		 * Calculate the max number of in-flight bytes for top-level
810 		 * vdev scanning operations (minimum 1MB, maximum 1/2 of
811 		 * arc_c_max shared by all top-level vdevs).  Limits for the
812 		 * issuing phase are done per top-level vdev and are handled
813 		 * separately.
814 		 */
815 		uint64_t limit = (arc_c_max / 2) / MAX(rvd->vdev_children, 1);
816 		vr->vr_bytes_inflight_max = MIN(limit, MAX(1ULL << 20,
817 		    zfs_rebuild_vdev_limit * vd->vdev_children));
818 
819 		/*
820 		 * Removal of vdevs from the vdev tree may eliminate the need
821 		 * for the rebuild, in which case it should be canceled.  The
822 		 * vdev_rebuild_cancel_wanted flag is set until the sync task
823 		 * completes.  This may be after the rebuild thread exits.
824 		 */
825 		if (vdev_rebuild_should_cancel(vd)) {
826 			vd->vdev_rebuild_cancel_wanted = B_TRUE;
827 			error = EINTR;
828 			break;
829 		}
830 
831 		ASSERT0(range_tree_space(vr->vr_scan_tree));
832 
833 		/* Disable any new allocations to this metaslab */
834 		spa_config_exit(spa, SCL_CONFIG, FTAG);
835 		metaslab_disable(msp);
836 
837 		mutex_enter(&msp->ms_sync_lock);
838 		mutex_enter(&msp->ms_lock);
839 
840 		/*
841 		 * If there are outstanding allocations wait for them to be
842 		 * synced.  This is needed to ensure all allocated ranges are
843 		 * on disk and therefore will be rebuilt.
844 		 */
845 		for (int j = 0; j < TXG_SIZE; j++) {
846 			if (range_tree_space(msp->ms_allocating[j])) {
847 				mutex_exit(&msp->ms_lock);
848 				mutex_exit(&msp->ms_sync_lock);
849 				txg_wait_synced(dsl, 0);
850 				mutex_enter(&msp->ms_sync_lock);
851 				mutex_enter(&msp->ms_lock);
852 				break;
853 			}
854 		}
855 
856 		/*
857 		 * When a metaslab has been allocated from read its allocated
858 		 * ranges from the space map object into the vr_scan_tree.
859 		 * Then add inflight / unflushed ranges and remove inflight /
860 		 * unflushed frees.  This is the minimum range to be rebuilt.
861 		 */
862 		if (msp->ms_sm != NULL) {
863 			VERIFY0(space_map_load(msp->ms_sm,
864 			    vr->vr_scan_tree, SM_ALLOC));
865 
866 			for (int i = 0; i < TXG_SIZE; i++) {
867 				ASSERT0(range_tree_space(
868 				    msp->ms_allocating[i]));
869 			}
870 
871 			range_tree_walk(msp->ms_unflushed_allocs,
872 			    range_tree_add, vr->vr_scan_tree);
873 			range_tree_walk(msp->ms_unflushed_frees,
874 			    range_tree_remove, vr->vr_scan_tree);
875 
876 			/*
877 			 * Remove ranges which have already been rebuilt based
878 			 * on the last offset.  This can happen when restarting
879 			 * a scan after exporting and re-importing the pool.
880 			 */
881 			range_tree_clear(vr->vr_scan_tree, 0,
882 			    vrp->vrp_last_offset);
883 		}
884 
885 		mutex_exit(&msp->ms_lock);
886 		mutex_exit(&msp->ms_sync_lock);
887 
888 		/*
889 		 * To provide an accurate estimate re-calculate the estimated
890 		 * size every 5 minutes to account for recent allocations and
891 		 * frees made to space maps which have not yet been rebuilt.
892 		 */
893 		if (gethrtime() > update_est_time + SEC2NSEC(300)) {
894 			update_est_time = gethrtime();
895 			vdev_rebuild_update_bytes_est(vd, i);
896 		}
897 
898 		/*
899 		 * Walk the allocated space map and issue the rebuild I/O.
900 		 */
901 		error = vdev_rebuild_ranges(vr);
902 		range_tree_vacate(vr->vr_scan_tree, NULL, NULL);
903 
904 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
905 		metaslab_enable(msp, B_FALSE, B_FALSE);
906 
907 		if (error != 0)
908 			break;
909 	}
910 
911 	range_tree_destroy(vr->vr_scan_tree);
912 	spa_config_exit(spa, SCL_CONFIG, FTAG);
913 
914 	/* Wait for any remaining rebuild I/O to complete */
915 	mutex_enter(&vr->vr_io_lock);
916 	while (vr->vr_bytes_inflight > 0)
917 		cv_wait(&vr->vr_io_cv, &vr->vr_io_lock);
918 
919 	mutex_exit(&vr->vr_io_lock);
920 
921 	mutex_destroy(&vr->vr_io_lock);
922 	cv_destroy(&vr->vr_io_cv);
923 
924 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
925 
926 	dsl_pool_t *dp = spa_get_dsl(spa);
927 	dmu_tx_t *tx = dmu_tx_create_dd(dp->dp_mos_dir);
928 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
929 
930 	mutex_enter(&vd->vdev_rebuild_lock);
931 	if (error == 0) {
932 		/*
933 		 * After a successful rebuild clear the DTLs of all ranges
934 		 * which were missing when the rebuild was started.  These
935 		 * ranges must have been rebuilt as a consequence of rebuilding
936 		 * all allocated space.  Note that unlike a scrub or resilver
937 		 * the rebuild operation will reconstruct data only referenced
938 		 * by a pool checkpoint.  See the dsl_scan_done() comments.
939 		 */
940 		dsl_sync_task_nowait(dp, vdev_rebuild_complete_sync,
941 		    (void *)(uintptr_t)vd->vdev_id, tx);
942 	} else if (vd->vdev_rebuild_cancel_wanted) {
943 		/*
944 		 * The rebuild operation was canceled.  This will occur when
945 		 * a device participating in the rebuild is detached.
946 		 */
947 		dsl_sync_task_nowait(dp, vdev_rebuild_cancel_sync,
948 		    (void *)(uintptr_t)vd->vdev_id, tx);
949 	} else if (vd->vdev_rebuild_reset_wanted) {
950 		/*
951 		 * Reset the running rebuild without canceling and restarting
952 		 * it.  This will occur when a new device is attached and must
953 		 * participate in the rebuild.
954 		 */
955 		dsl_sync_task_nowait(dp, vdev_rebuild_reset_sync,
956 		    (void *)(uintptr_t)vd->vdev_id, tx);
957 	} else {
958 		/*
959 		 * The rebuild operation should be suspended.  This may occur
960 		 * when detaching a child vdev or when exporting the pool.  The
961 		 * rebuild is left in the active state so it will be resumed.
962 		 */
963 		ASSERT(vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
964 		vd->vdev_rebuilding = B_FALSE;
965 	}
966 
967 	dmu_tx_commit(tx);
968 
969 	vd->vdev_rebuild_thread = NULL;
970 	mutex_exit(&vd->vdev_rebuild_lock);
971 	spa_config_exit(spa, SCL_CONFIG, FTAG);
972 
973 	cv_broadcast(&vd->vdev_rebuild_cv);
974 
975 	thread_exit();
976 }
977 
978 /*
979  * Returns B_TRUE if any top-level vdev are rebuilding.
980  */
981 boolean_t
982 vdev_rebuild_active(vdev_t *vd)
983 {
984 	spa_t *spa = vd->vdev_spa;
985 	boolean_t ret = B_FALSE;
986 
987 	if (vd == spa->spa_root_vdev) {
988 		for (uint64_t i = 0; i < vd->vdev_children; i++) {
989 			ret = vdev_rebuild_active(vd->vdev_child[i]);
990 			if (ret)
991 				return (ret);
992 		}
993 	} else if (vd->vdev_top_zap != 0) {
994 		vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
995 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
996 
997 		mutex_enter(&vd->vdev_rebuild_lock);
998 		ret = (vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
999 		mutex_exit(&vd->vdev_rebuild_lock);
1000 	}
1001 
1002 	return (ret);
1003 }
1004 
1005 /*
1006  * Start a rebuild operation.  The rebuild may be restarted when the
1007  * top-level vdev is currently actively rebuilding.
1008  */
1009 void
1010 vdev_rebuild(vdev_t *vd)
1011 {
1012 	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
1013 	vdev_rebuild_phys_t *vrp __maybe_unused = &vr->vr_rebuild_phys;
1014 
1015 	ASSERT(vd->vdev_top == vd);
1016 	ASSERT(vdev_is_concrete(vd));
1017 	ASSERT(!vd->vdev_removing);
1018 	ASSERT(spa_feature_is_enabled(vd->vdev_spa,
1019 	    SPA_FEATURE_DEVICE_REBUILD));
1020 
1021 	mutex_enter(&vd->vdev_rebuild_lock);
1022 	if (vd->vdev_rebuilding) {
1023 		ASSERT3U(vrp->vrp_rebuild_state, ==, VDEV_REBUILD_ACTIVE);
1024 
1025 		/*
1026 		 * Signal a running rebuild operation that it should restart
1027 		 * from the beginning because a new device was attached.  The
1028 		 * vdev_rebuild_reset_wanted flag is set until the sync task
1029 		 * completes.  This may be after the rebuild thread exits.
1030 		 */
1031 		if (!vd->vdev_rebuild_reset_wanted)
1032 			vd->vdev_rebuild_reset_wanted = B_TRUE;
1033 	} else {
1034 		vdev_rebuild_initiate(vd);
1035 	}
1036 	mutex_exit(&vd->vdev_rebuild_lock);
1037 }
1038 
1039 static void
1040 vdev_rebuild_restart_impl(vdev_t *vd)
1041 {
1042 	spa_t *spa = vd->vdev_spa;
1043 
1044 	if (vd == spa->spa_root_vdev) {
1045 		for (uint64_t i = 0; i < vd->vdev_children; i++)
1046 			vdev_rebuild_restart_impl(vd->vdev_child[i]);
1047 
1048 	} else if (vd->vdev_top_zap != 0) {
1049 		vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
1050 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
1051 
1052 		mutex_enter(&vd->vdev_rebuild_lock);
1053 		if (vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE &&
1054 		    vdev_writeable(vd) && !vd->vdev_rebuilding) {
1055 			ASSERT(spa_feature_is_active(spa,
1056 			    SPA_FEATURE_DEVICE_REBUILD));
1057 			vd->vdev_rebuilding = B_TRUE;
1058 			vd->vdev_rebuild_thread = thread_create(NULL, 0,
1059 			    vdev_rebuild_thread, vd, 0, &p0, TS_RUN,
1060 			    maxclsyspri);
1061 		}
1062 		mutex_exit(&vd->vdev_rebuild_lock);
1063 	}
1064 }
1065 
1066 /*
1067  * Conditionally restart all of the vdev_rebuild_thread's for a pool.  The
1068  * feature flag must be active and the rebuild in the active state.   This
1069  * cannot be used to start a new rebuild.
1070  */
1071 void
1072 vdev_rebuild_restart(spa_t *spa)
1073 {
1074 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1075 
1076 	vdev_rebuild_restart_impl(spa->spa_root_vdev);
1077 }
1078 
1079 /*
1080  * Stop and wait for all of the vdev_rebuild_thread's associated with the
1081  * vdev tree provide to be terminated (canceled or stopped).
1082  */
1083 void
1084 vdev_rebuild_stop_wait(vdev_t *vd)
1085 {
1086 	spa_t *spa = vd->vdev_spa;
1087 
1088 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1089 
1090 	if (vd == spa->spa_root_vdev) {
1091 		for (uint64_t i = 0; i < vd->vdev_children; i++)
1092 			vdev_rebuild_stop_wait(vd->vdev_child[i]);
1093 
1094 	} else if (vd->vdev_top_zap != 0) {
1095 		ASSERT(vd == vd->vdev_top);
1096 
1097 		mutex_enter(&vd->vdev_rebuild_lock);
1098 		if (vd->vdev_rebuild_thread != NULL) {
1099 			vd->vdev_rebuild_exit_wanted = B_TRUE;
1100 			while (vd->vdev_rebuilding) {
1101 				cv_wait(&vd->vdev_rebuild_cv,
1102 				    &vd->vdev_rebuild_lock);
1103 			}
1104 			vd->vdev_rebuild_exit_wanted = B_FALSE;
1105 		}
1106 		mutex_exit(&vd->vdev_rebuild_lock);
1107 	}
1108 }
1109 
1110 /*
1111  * Stop all rebuild operations but leave them in the active state so they
1112  * will be resumed when importing the pool.
1113  */
1114 void
1115 vdev_rebuild_stop_all(spa_t *spa)
1116 {
1117 	vdev_rebuild_stop_wait(spa->spa_root_vdev);
1118 }
1119 
1120 /*
1121  * Rebuild statistics reported per top-level vdev.
1122  */
1123 int
1124 vdev_rebuild_get_stats(vdev_t *tvd, vdev_rebuild_stat_t *vrs)
1125 {
1126 	spa_t *spa = tvd->vdev_spa;
1127 
1128 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
1129 		return (SET_ERROR(ENOTSUP));
1130 
1131 	if (tvd != tvd->vdev_top || tvd->vdev_top_zap == 0)
1132 		return (SET_ERROR(EINVAL));
1133 
1134 	int error = zap_contains(spa_meta_objset(spa),
1135 	    tvd->vdev_top_zap, VDEV_TOP_ZAP_VDEV_REBUILD_PHYS);
1136 
1137 	if (error == ENOENT) {
1138 		memset(vrs, 0, sizeof (vdev_rebuild_stat_t));
1139 		vrs->vrs_state = VDEV_REBUILD_NONE;
1140 		error = 0;
1141 	} else if (error == 0) {
1142 		vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
1143 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
1144 
1145 		mutex_enter(&tvd->vdev_rebuild_lock);
1146 		vrs->vrs_state = vrp->vrp_rebuild_state;
1147 		vrs->vrs_start_time = vrp->vrp_start_time;
1148 		vrs->vrs_end_time = vrp->vrp_end_time;
1149 		vrs->vrs_scan_time_ms = vrp->vrp_scan_time_ms;
1150 		vrs->vrs_bytes_scanned = vrp->vrp_bytes_scanned;
1151 		vrs->vrs_bytes_issued = vrp->vrp_bytes_issued;
1152 		vrs->vrs_bytes_rebuilt = vrp->vrp_bytes_rebuilt;
1153 		vrs->vrs_bytes_est = vrp->vrp_bytes_est;
1154 		vrs->vrs_errors = vrp->vrp_errors;
1155 		vrs->vrs_pass_time_ms = NSEC2MSEC(gethrtime() -
1156 		    vr->vr_pass_start_time);
1157 		vrs->vrs_pass_bytes_scanned = vr->vr_pass_bytes_scanned;
1158 		vrs->vrs_pass_bytes_issued = vr->vr_pass_bytes_issued;
1159 		vrs->vrs_pass_bytes_skipped = vr->vr_pass_bytes_skipped;
1160 		mutex_exit(&tvd->vdev_rebuild_lock);
1161 	}
1162 
1163 	return (error);
1164 }
1165 
1166 ZFS_MODULE_PARAM(zfs, zfs_, rebuild_max_segment, U64, ZMOD_RW,
1167 	"Max segment size in bytes of rebuild reads");
1168 
1169 ZFS_MODULE_PARAM(zfs, zfs_, rebuild_vdev_limit, U64, ZMOD_RW,
1170 	"Max bytes in flight per leaf vdev for sequential resilvers");
1171 
1172 ZFS_MODULE_PARAM(zfs, zfs_, rebuild_scrub_enabled, INT, ZMOD_RW,
1173 	"Automatically scrub after sequential resilver completes");
1174