1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (C) 2016 Gvozden Nešković. All rights reserved. 23 */ 24 25 #include <sys/zfs_context.h> 26 #include <sys/types.h> 27 #include <sys/zio.h> 28 #include <sys/debug.h> 29 #include <sys/zfs_debug.h> 30 #include <sys/vdev_raidz.h> 31 #include <sys/vdev_raidz_impl.h> 32 #include <sys/simd.h> 33 34 /* Opaque implementation with NULL methods to represent original methods */ 35 static const raidz_impl_ops_t vdev_raidz_original_impl = { 36 .name = "original", 37 .is_supported = raidz_will_scalar_work, 38 }; 39 40 /* RAIDZ parity op that contain the fastest methods */ 41 static raidz_impl_ops_t vdev_raidz_fastest_impl = { 42 .name = "fastest" 43 }; 44 45 /* All compiled in implementations */ 46 const raidz_impl_ops_t *raidz_all_maths[] = { 47 &vdev_raidz_original_impl, 48 &vdev_raidz_scalar_impl, 49 #if defined(__x86_64) && defined(HAVE_SSE2) /* only x86_64 for now */ 50 &vdev_raidz_sse2_impl, 51 #endif 52 #if defined(__x86_64) && defined(HAVE_SSSE3) /* only x86_64 for now */ 53 &vdev_raidz_ssse3_impl, 54 #endif 55 #if defined(__x86_64) && defined(HAVE_AVX2) /* only x86_64 for now */ 56 &vdev_raidz_avx2_impl, 57 #endif 58 #if defined(__x86_64) && defined(HAVE_AVX512F) /* only x86_64 for now */ 59 &vdev_raidz_avx512f_impl, 60 #endif 61 #if defined(__x86_64) && defined(HAVE_AVX512BW) /* only x86_64 for now */ 62 &vdev_raidz_avx512bw_impl, 63 #endif 64 #if defined(__aarch64__) && !defined(__FreeBSD__) 65 &vdev_raidz_aarch64_neon_impl, 66 &vdev_raidz_aarch64_neonx2_impl, 67 #endif 68 #if defined(__powerpc__) && defined(__altivec__) 69 &vdev_raidz_powerpc_altivec_impl, 70 #endif 71 }; 72 73 /* Indicate that benchmark has been completed */ 74 static boolean_t raidz_math_initialized = B_FALSE; 75 76 /* Select raidz implementation */ 77 #define IMPL_FASTEST (UINT32_MAX) 78 #define IMPL_CYCLE (UINT32_MAX - 1) 79 #define IMPL_ORIGINAL (0) 80 #define IMPL_SCALAR (1) 81 82 #define RAIDZ_IMPL_READ(i) (*(volatile uint32_t *) &(i)) 83 84 static uint32_t zfs_vdev_raidz_impl = IMPL_SCALAR; 85 static uint32_t user_sel_impl = IMPL_FASTEST; 86 87 /* Hold all supported implementations */ 88 static size_t raidz_supp_impl_cnt = 0; 89 static raidz_impl_ops_t *raidz_supp_impl[ARRAY_SIZE(raidz_all_maths)]; 90 91 #if defined(_KERNEL) 92 /* 93 * kstats values for supported implementations 94 * Values represent per disk throughput of 8 disk+parity raidz vdev [B/s] 95 */ 96 static raidz_impl_kstat_t raidz_impl_kstats[ARRAY_SIZE(raidz_all_maths) + 1]; 97 98 /* kstat for benchmarked implementations */ 99 static kstat_t *raidz_math_kstat = NULL; 100 #endif 101 102 /* 103 * Returns the RAIDZ operations for raidz_map() parity calculations. When 104 * a SIMD implementation is not allowed in the current context, then fallback 105 * to the fastest generic implementation. 106 */ 107 const raidz_impl_ops_t * 108 vdev_raidz_math_get_ops(void) 109 { 110 if (!kfpu_allowed()) 111 return (&vdev_raidz_scalar_impl); 112 113 raidz_impl_ops_t *ops = NULL; 114 const uint32_t impl = RAIDZ_IMPL_READ(zfs_vdev_raidz_impl); 115 116 switch (impl) { 117 case IMPL_FASTEST: 118 ASSERT(raidz_math_initialized); 119 ops = &vdev_raidz_fastest_impl; 120 break; 121 case IMPL_CYCLE: 122 /* Cycle through all supported implementations */ 123 ASSERT(raidz_math_initialized); 124 ASSERT3U(raidz_supp_impl_cnt, >, 0); 125 static size_t cycle_impl_idx = 0; 126 size_t idx = (++cycle_impl_idx) % raidz_supp_impl_cnt; 127 ops = raidz_supp_impl[idx]; 128 break; 129 case IMPL_ORIGINAL: 130 ops = (raidz_impl_ops_t *)&vdev_raidz_original_impl; 131 break; 132 case IMPL_SCALAR: 133 ops = (raidz_impl_ops_t *)&vdev_raidz_scalar_impl; 134 break; 135 default: 136 ASSERT3U(impl, <, raidz_supp_impl_cnt); 137 ASSERT3U(raidz_supp_impl_cnt, >, 0); 138 if (impl < ARRAY_SIZE(raidz_all_maths)) 139 ops = raidz_supp_impl[impl]; 140 break; 141 } 142 143 ASSERT3P(ops, !=, NULL); 144 145 return (ops); 146 } 147 148 /* 149 * Select parity generation method for raidz_map 150 */ 151 int 152 vdev_raidz_math_generate(raidz_map_t *rm, raidz_row_t *rr) 153 { 154 raidz_gen_f gen_parity = NULL; 155 156 switch (raidz_parity(rm)) { 157 case 1: 158 gen_parity = rm->rm_ops->gen[RAIDZ_GEN_P]; 159 break; 160 case 2: 161 gen_parity = rm->rm_ops->gen[RAIDZ_GEN_PQ]; 162 break; 163 case 3: 164 gen_parity = rm->rm_ops->gen[RAIDZ_GEN_PQR]; 165 break; 166 default: 167 gen_parity = NULL; 168 cmn_err(CE_PANIC, "invalid RAID-Z configuration %llu", 169 (u_longlong_t)raidz_parity(rm)); 170 break; 171 } 172 173 /* if method is NULL execute the original implementation */ 174 if (gen_parity == NULL) 175 return (RAIDZ_ORIGINAL_IMPL); 176 177 gen_parity(rr); 178 179 return (0); 180 } 181 182 static raidz_rec_f 183 reconstruct_fun_p_sel(raidz_map_t *rm, const int *parity_valid, 184 const int nbaddata) 185 { 186 if (nbaddata == 1 && parity_valid[CODE_P]) { 187 return (rm->rm_ops->rec[RAIDZ_REC_P]); 188 } 189 return ((raidz_rec_f) NULL); 190 } 191 192 static raidz_rec_f 193 reconstruct_fun_pq_sel(raidz_map_t *rm, const int *parity_valid, 194 const int nbaddata) 195 { 196 if (nbaddata == 1) { 197 if (parity_valid[CODE_P]) { 198 return (rm->rm_ops->rec[RAIDZ_REC_P]); 199 } else if (parity_valid[CODE_Q]) { 200 return (rm->rm_ops->rec[RAIDZ_REC_Q]); 201 } 202 } else if (nbaddata == 2 && 203 parity_valid[CODE_P] && parity_valid[CODE_Q]) { 204 return (rm->rm_ops->rec[RAIDZ_REC_PQ]); 205 } 206 return ((raidz_rec_f) NULL); 207 } 208 209 static raidz_rec_f 210 reconstruct_fun_pqr_sel(raidz_map_t *rm, const int *parity_valid, 211 const int nbaddata) 212 { 213 if (nbaddata == 1) { 214 if (parity_valid[CODE_P]) { 215 return (rm->rm_ops->rec[RAIDZ_REC_P]); 216 } else if (parity_valid[CODE_Q]) { 217 return (rm->rm_ops->rec[RAIDZ_REC_Q]); 218 } else if (parity_valid[CODE_R]) { 219 return (rm->rm_ops->rec[RAIDZ_REC_R]); 220 } 221 } else if (nbaddata == 2) { 222 if (parity_valid[CODE_P] && parity_valid[CODE_Q]) { 223 return (rm->rm_ops->rec[RAIDZ_REC_PQ]); 224 } else if (parity_valid[CODE_P] && parity_valid[CODE_R]) { 225 return (rm->rm_ops->rec[RAIDZ_REC_PR]); 226 } else if (parity_valid[CODE_Q] && parity_valid[CODE_R]) { 227 return (rm->rm_ops->rec[RAIDZ_REC_QR]); 228 } 229 } else if (nbaddata == 3 && 230 parity_valid[CODE_P] && parity_valid[CODE_Q] && 231 parity_valid[CODE_R]) { 232 return (rm->rm_ops->rec[RAIDZ_REC_PQR]); 233 } 234 return ((raidz_rec_f) NULL); 235 } 236 237 /* 238 * Select data reconstruction method for raidz_map 239 * @parity_valid - Parity validity flag 240 * @dt - Failed data index array 241 * @nbaddata - Number of failed data columns 242 */ 243 int 244 vdev_raidz_math_reconstruct(raidz_map_t *rm, raidz_row_t *rr, 245 const int *parity_valid, const int *dt, const int nbaddata) 246 { 247 raidz_rec_f rec_fn = NULL; 248 249 switch (raidz_parity(rm)) { 250 case PARITY_P: 251 rec_fn = reconstruct_fun_p_sel(rm, parity_valid, nbaddata); 252 break; 253 case PARITY_PQ: 254 rec_fn = reconstruct_fun_pq_sel(rm, parity_valid, nbaddata); 255 break; 256 case PARITY_PQR: 257 rec_fn = reconstruct_fun_pqr_sel(rm, parity_valid, nbaddata); 258 break; 259 default: 260 cmn_err(CE_PANIC, "invalid RAID-Z configuration %llu", 261 (u_longlong_t)raidz_parity(rm)); 262 break; 263 } 264 265 if (rec_fn == NULL) 266 return (RAIDZ_ORIGINAL_IMPL); 267 else 268 return (rec_fn(rr, dt)); 269 } 270 271 const char *raidz_gen_name[] = { 272 "gen_p", "gen_pq", "gen_pqr" 273 }; 274 const char *raidz_rec_name[] = { 275 "rec_p", "rec_q", "rec_r", 276 "rec_pq", "rec_pr", "rec_qr", "rec_pqr" 277 }; 278 279 #if defined(_KERNEL) 280 281 #define RAIDZ_KSTAT_LINE_LEN (17 + 10*12 + 1) 282 283 static int 284 raidz_math_kstat_headers(char *buf, size_t size) 285 { 286 int i; 287 ssize_t off; 288 289 ASSERT3U(size, >=, RAIDZ_KSTAT_LINE_LEN); 290 291 off = snprintf(buf, size, "%-17s", "implementation"); 292 293 for (i = 0; i < ARRAY_SIZE(raidz_gen_name); i++) 294 off += snprintf(buf + off, size - off, "%-16s", 295 raidz_gen_name[i]); 296 297 for (i = 0; i < ARRAY_SIZE(raidz_rec_name); i++) 298 off += snprintf(buf + off, size - off, "%-16s", 299 raidz_rec_name[i]); 300 301 (void) snprintf(buf + off, size - off, "\n"); 302 303 return (0); 304 } 305 306 static int 307 raidz_math_kstat_data(char *buf, size_t size, void *data) 308 { 309 raidz_impl_kstat_t *fstat = &raidz_impl_kstats[raidz_supp_impl_cnt]; 310 raidz_impl_kstat_t *cstat = (raidz_impl_kstat_t *)data; 311 ssize_t off = 0; 312 int i; 313 314 ASSERT3U(size, >=, RAIDZ_KSTAT_LINE_LEN); 315 316 if (cstat == fstat) { 317 off += snprintf(buf + off, size - off, "%-17s", "fastest"); 318 319 for (i = 0; i < ARRAY_SIZE(raidz_gen_name); i++) { 320 int id = fstat->gen[i]; 321 off += snprintf(buf + off, size - off, "%-16s", 322 raidz_supp_impl[id]->name); 323 } 324 for (i = 0; i < ARRAY_SIZE(raidz_rec_name); i++) { 325 int id = fstat->rec[i]; 326 off += snprintf(buf + off, size - off, "%-16s", 327 raidz_supp_impl[id]->name); 328 } 329 } else { 330 ptrdiff_t id = cstat - raidz_impl_kstats; 331 332 off += snprintf(buf + off, size - off, "%-17s", 333 raidz_supp_impl[id]->name); 334 335 for (i = 0; i < ARRAY_SIZE(raidz_gen_name); i++) 336 off += snprintf(buf + off, size - off, "%-16llu", 337 (u_longlong_t)cstat->gen[i]); 338 339 for (i = 0; i < ARRAY_SIZE(raidz_rec_name); i++) 340 off += snprintf(buf + off, size - off, "%-16llu", 341 (u_longlong_t)cstat->rec[i]); 342 } 343 344 (void) snprintf(buf + off, size - off, "\n"); 345 346 return (0); 347 } 348 349 static void * 350 raidz_math_kstat_addr(kstat_t *ksp, loff_t n) 351 { 352 if (n <= raidz_supp_impl_cnt) 353 ksp->ks_private = (void *) (raidz_impl_kstats + n); 354 else 355 ksp->ks_private = NULL; 356 357 return (ksp->ks_private); 358 } 359 360 #define BENCH_D_COLS (8ULL) 361 #define BENCH_COLS (BENCH_D_COLS + PARITY_PQR) 362 #define BENCH_ZIO_SIZE (1ULL << SPA_OLD_MAXBLOCKSHIFT) /* 128 kiB */ 363 #define BENCH_NS MSEC2NSEC(1) /* 1ms */ 364 365 typedef void (*benchmark_fn)(raidz_map_t *rm, const int fn); 366 367 static void 368 benchmark_gen_impl(raidz_map_t *rm, const int fn) 369 { 370 (void) fn; 371 vdev_raidz_generate_parity(rm); 372 } 373 374 static void 375 benchmark_rec_impl(raidz_map_t *rm, const int fn) 376 { 377 static const int rec_tgt[7][3] = { 378 {1, 2, 3}, /* rec_p: bad QR & D[0] */ 379 {0, 2, 3}, /* rec_q: bad PR & D[0] */ 380 {0, 1, 3}, /* rec_r: bad PQ & D[0] */ 381 {2, 3, 4}, /* rec_pq: bad R & D[0][1] */ 382 {1, 3, 4}, /* rec_pr: bad Q & D[0][1] */ 383 {0, 3, 4}, /* rec_qr: bad P & D[0][1] */ 384 {3, 4, 5} /* rec_pqr: bad & D[0][1][2] */ 385 }; 386 387 vdev_raidz_reconstruct(rm, rec_tgt[fn], 3); 388 } 389 390 /* 391 * Benchmarking of all supported implementations (raidz_supp_impl_cnt) 392 * is performed by setting the rm_ops pointer and calling the top level 393 * generate/reconstruct methods of bench_rm. 394 */ 395 static void 396 benchmark_raidz_impl(raidz_map_t *bench_rm, const int fn, benchmark_fn bench_fn) 397 { 398 uint64_t run_cnt, speed, best_speed = 0; 399 hrtime_t t_start, t_diff; 400 raidz_impl_ops_t *curr_impl; 401 raidz_impl_kstat_t *fstat = &raidz_impl_kstats[raidz_supp_impl_cnt]; 402 int impl, i; 403 404 for (impl = 0; impl < raidz_supp_impl_cnt; impl++) { 405 /* set an implementation to benchmark */ 406 curr_impl = raidz_supp_impl[impl]; 407 bench_rm->rm_ops = curr_impl; 408 409 run_cnt = 0; 410 t_start = gethrtime(); 411 412 do { 413 for (i = 0; i < 5; i++, run_cnt++) 414 bench_fn(bench_rm, fn); 415 416 t_diff = gethrtime() - t_start; 417 } while (t_diff < BENCH_NS); 418 419 speed = run_cnt * BENCH_ZIO_SIZE * NANOSEC; 420 speed /= (t_diff * BENCH_COLS); 421 422 if (bench_fn == benchmark_gen_impl) 423 raidz_impl_kstats[impl].gen[fn] = speed; 424 else 425 raidz_impl_kstats[impl].rec[fn] = speed; 426 427 /* Update fastest implementation method */ 428 if (speed > best_speed) { 429 best_speed = speed; 430 431 if (bench_fn == benchmark_gen_impl) { 432 fstat->gen[fn] = impl; 433 vdev_raidz_fastest_impl.gen[fn] = 434 curr_impl->gen[fn]; 435 } else { 436 fstat->rec[fn] = impl; 437 vdev_raidz_fastest_impl.rec[fn] = 438 curr_impl->rec[fn]; 439 } 440 } 441 } 442 } 443 #endif 444 445 /* 446 * Initialize and benchmark all supported implementations. 447 */ 448 static void 449 benchmark_raidz(void) 450 { 451 raidz_impl_ops_t *curr_impl; 452 int i, c; 453 454 /* Move supported impl into raidz_supp_impl */ 455 for (i = 0, c = 0; i < ARRAY_SIZE(raidz_all_maths); i++) { 456 curr_impl = (raidz_impl_ops_t *)raidz_all_maths[i]; 457 458 if (curr_impl->init) 459 curr_impl->init(); 460 461 if (curr_impl->is_supported()) 462 raidz_supp_impl[c++] = (raidz_impl_ops_t *)curr_impl; 463 } 464 membar_producer(); /* complete raidz_supp_impl[] init */ 465 raidz_supp_impl_cnt = c; /* number of supported impl */ 466 467 #if defined(_KERNEL) 468 abd_t *pabd; 469 zio_t *bench_zio = NULL; 470 raidz_map_t *bench_rm = NULL; 471 uint64_t bench_parity; 472 473 /* Fake a zio and run the benchmark on a warmed up buffer */ 474 bench_zio = kmem_zalloc(sizeof (zio_t), KM_SLEEP); 475 bench_zio->io_offset = 0; 476 bench_zio->io_size = BENCH_ZIO_SIZE; /* only data columns */ 477 bench_zio->io_abd = abd_alloc_linear(BENCH_ZIO_SIZE, B_TRUE); 478 memset(abd_to_buf(bench_zio->io_abd), 0xAA, BENCH_ZIO_SIZE); 479 480 /* Benchmark parity generation methods */ 481 for (int fn = 0; fn < RAIDZ_GEN_NUM; fn++) { 482 bench_parity = fn + 1; 483 /* New raidz_map is needed for each generate_p/q/r */ 484 bench_rm = vdev_raidz_map_alloc(bench_zio, SPA_MINBLOCKSHIFT, 485 BENCH_D_COLS + bench_parity, bench_parity); 486 487 benchmark_raidz_impl(bench_rm, fn, benchmark_gen_impl); 488 489 vdev_raidz_map_free(bench_rm); 490 } 491 492 /* Benchmark data reconstruction methods */ 493 bench_rm = vdev_raidz_map_alloc(bench_zio, SPA_MINBLOCKSHIFT, 494 BENCH_COLS, PARITY_PQR); 495 496 /* Ensure that fake parity blocks are initialized */ 497 for (c = 0; c < bench_rm->rm_row[0]->rr_firstdatacol; c++) { 498 pabd = bench_rm->rm_row[0]->rr_col[c].rc_abd; 499 memset(abd_to_buf(pabd), 0xAA, abd_get_size(pabd)); 500 } 501 502 for (int fn = 0; fn < RAIDZ_REC_NUM; fn++) 503 benchmark_raidz_impl(bench_rm, fn, benchmark_rec_impl); 504 505 vdev_raidz_map_free(bench_rm); 506 507 /* cleanup the bench zio */ 508 abd_free(bench_zio->io_abd); 509 kmem_free(bench_zio, sizeof (zio_t)); 510 #else 511 /* 512 * Skip the benchmark in user space to avoid impacting libzpool 513 * consumers (zdb, zhack, zinject, ztest). The last implementation 514 * is assumed to be the fastest and used by default. 515 */ 516 memcpy(&vdev_raidz_fastest_impl, 517 raidz_supp_impl[raidz_supp_impl_cnt - 1], 518 sizeof (vdev_raidz_fastest_impl)); 519 strcpy(vdev_raidz_fastest_impl.name, "fastest"); 520 #endif /* _KERNEL */ 521 } 522 523 void 524 vdev_raidz_math_init(void) 525 { 526 /* Determine the fastest available implementation. */ 527 benchmark_raidz(); 528 529 #if defined(_KERNEL) 530 /* Install kstats for all implementations */ 531 raidz_math_kstat = kstat_create("zfs", 0, "vdev_raidz_bench", "misc", 532 KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL); 533 if (raidz_math_kstat != NULL) { 534 raidz_math_kstat->ks_data = NULL; 535 raidz_math_kstat->ks_ndata = UINT32_MAX; 536 kstat_set_raw_ops(raidz_math_kstat, 537 raidz_math_kstat_headers, 538 raidz_math_kstat_data, 539 raidz_math_kstat_addr); 540 kstat_install(raidz_math_kstat); 541 } 542 #endif 543 544 /* Finish initialization */ 545 atomic_swap_32(&zfs_vdev_raidz_impl, user_sel_impl); 546 raidz_math_initialized = B_TRUE; 547 } 548 549 void 550 vdev_raidz_math_fini(void) 551 { 552 raidz_impl_ops_t const *curr_impl; 553 554 #if defined(_KERNEL) 555 if (raidz_math_kstat != NULL) { 556 kstat_delete(raidz_math_kstat); 557 raidz_math_kstat = NULL; 558 } 559 #endif 560 561 for (int i = 0; i < ARRAY_SIZE(raidz_all_maths); i++) { 562 curr_impl = raidz_all_maths[i]; 563 if (curr_impl->fini) 564 curr_impl->fini(); 565 } 566 } 567 568 static const struct { 569 char *name; 570 uint32_t sel; 571 } math_impl_opts[] = { 572 { "cycle", IMPL_CYCLE }, 573 { "fastest", IMPL_FASTEST }, 574 { "original", IMPL_ORIGINAL }, 575 { "scalar", IMPL_SCALAR } 576 }; 577 578 /* 579 * Function sets desired raidz implementation. 580 * 581 * If we are called before init(), user preference will be saved in 582 * user_sel_impl, and applied in later init() call. This occurs when module 583 * parameter is specified on module load. Otherwise, directly update 584 * zfs_vdev_raidz_impl. 585 * 586 * @val Name of raidz implementation to use 587 * @param Unused. 588 */ 589 int 590 vdev_raidz_impl_set(const char *val) 591 { 592 int err = -EINVAL; 593 char req_name[RAIDZ_IMPL_NAME_MAX]; 594 uint32_t impl = RAIDZ_IMPL_READ(user_sel_impl); 595 size_t i; 596 597 /* sanitize input */ 598 i = strnlen(val, RAIDZ_IMPL_NAME_MAX); 599 if (i == 0 || i == RAIDZ_IMPL_NAME_MAX) 600 return (err); 601 602 strlcpy(req_name, val, RAIDZ_IMPL_NAME_MAX); 603 while (i > 0 && !!isspace(req_name[i-1])) 604 i--; 605 req_name[i] = '\0'; 606 607 /* Check mandatory options */ 608 for (i = 0; i < ARRAY_SIZE(math_impl_opts); i++) { 609 if (strcmp(req_name, math_impl_opts[i].name) == 0) { 610 impl = math_impl_opts[i].sel; 611 err = 0; 612 break; 613 } 614 } 615 616 /* check all supported impl if init() was already called */ 617 if (err != 0 && raidz_math_initialized) { 618 /* check all supported implementations */ 619 for (i = 0; i < raidz_supp_impl_cnt; i++) { 620 if (strcmp(req_name, raidz_supp_impl[i]->name) == 0) { 621 impl = i; 622 err = 0; 623 break; 624 } 625 } 626 } 627 628 if (err == 0) { 629 if (raidz_math_initialized) 630 atomic_swap_32(&zfs_vdev_raidz_impl, impl); 631 else 632 atomic_swap_32(&user_sel_impl, impl); 633 } 634 635 return (err); 636 } 637 638 #if defined(_KERNEL) && defined(__linux__) 639 640 static int 641 zfs_vdev_raidz_impl_set(const char *val, zfs_kernel_param_t *kp) 642 { 643 return (vdev_raidz_impl_set(val)); 644 } 645 646 static int 647 zfs_vdev_raidz_impl_get(char *buffer, zfs_kernel_param_t *kp) 648 { 649 int i, cnt = 0; 650 char *fmt; 651 const uint32_t impl = RAIDZ_IMPL_READ(zfs_vdev_raidz_impl); 652 653 ASSERT(raidz_math_initialized); 654 655 /* list mandatory options */ 656 for (i = 0; i < ARRAY_SIZE(math_impl_opts) - 2; i++) { 657 fmt = (impl == math_impl_opts[i].sel) ? "[%s] " : "%s "; 658 cnt += sprintf(buffer + cnt, fmt, math_impl_opts[i].name); 659 } 660 661 /* list all supported implementations */ 662 for (i = 0; i < raidz_supp_impl_cnt; i++) { 663 fmt = (i == impl) ? "[%s] " : "%s "; 664 cnt += sprintf(buffer + cnt, fmt, raidz_supp_impl[i]->name); 665 } 666 667 return (cnt); 668 } 669 670 module_param_call(zfs_vdev_raidz_impl, zfs_vdev_raidz_impl_set, 671 zfs_vdev_raidz_impl_get, NULL, 0644); 672 MODULE_PARM_DESC(zfs_vdev_raidz_impl, "Select raidz implementation."); 673 #endif 674