1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (C) 2016 Gvozden Nešković. All rights reserved. 23 */ 24 25 #include <sys/zfs_context.h> 26 #include <sys/types.h> 27 #include <sys/zio.h> 28 #include <sys/debug.h> 29 #include <sys/zfs_debug.h> 30 #include <sys/vdev_raidz.h> 31 #include <sys/vdev_raidz_impl.h> 32 #include <sys/simd.h> 33 34 /* Opaque implementation with NULL methods to represent original methods */ 35 static const raidz_impl_ops_t vdev_raidz_original_impl = { 36 .name = "original", 37 .is_supported = raidz_will_scalar_work, 38 }; 39 40 /* RAIDZ parity op that contain the fastest methods */ 41 static raidz_impl_ops_t vdev_raidz_fastest_impl = { 42 .name = "fastest" 43 }; 44 45 /* All compiled in implementations */ 46 static const raidz_impl_ops_t *const raidz_all_maths[] = { 47 &vdev_raidz_original_impl, 48 &vdev_raidz_scalar_impl, 49 #if defined(__x86_64) && defined(HAVE_SSE2) /* only x86_64 for now */ 50 &vdev_raidz_sse2_impl, 51 #endif 52 #if defined(__x86_64) && defined(HAVE_SSSE3) /* only x86_64 for now */ 53 &vdev_raidz_ssse3_impl, 54 #endif 55 #if defined(__x86_64) && defined(HAVE_AVX2) /* only x86_64 for now */ 56 &vdev_raidz_avx2_impl, 57 #endif 58 #if defined(__x86_64) && defined(HAVE_AVX512F) /* only x86_64 for now */ 59 &vdev_raidz_avx512f_impl, 60 #endif 61 #if defined(__x86_64) && defined(HAVE_AVX512BW) /* only x86_64 for now */ 62 &vdev_raidz_avx512bw_impl, 63 #endif 64 #if defined(__aarch64__) && !defined(__FreeBSD__) 65 &vdev_raidz_aarch64_neon_impl, 66 &vdev_raidz_aarch64_neonx2_impl, 67 #endif 68 #if defined(__powerpc__) && defined(__altivec__) 69 &vdev_raidz_powerpc_altivec_impl, 70 #endif 71 }; 72 73 /* Indicate that benchmark has been completed */ 74 static boolean_t raidz_math_initialized = B_FALSE; 75 76 /* Select raidz implementation */ 77 #define IMPL_FASTEST (UINT32_MAX) 78 #define IMPL_CYCLE (UINT32_MAX - 1) 79 #define IMPL_ORIGINAL (0) 80 #define IMPL_SCALAR (1) 81 82 #define RAIDZ_IMPL_READ(i) (*(volatile uint32_t *) &(i)) 83 84 static uint32_t zfs_vdev_raidz_impl = IMPL_SCALAR; 85 static uint32_t user_sel_impl = IMPL_FASTEST; 86 87 /* Hold all supported implementations */ 88 static size_t raidz_supp_impl_cnt = 0; 89 static raidz_impl_ops_t *raidz_supp_impl[ARRAY_SIZE(raidz_all_maths)]; 90 91 #if defined(_KERNEL) 92 /* 93 * kstats values for supported implementations 94 * Values represent per disk throughput of 8 disk+parity raidz vdev [B/s] 95 */ 96 static raidz_impl_kstat_t raidz_impl_kstats[ARRAY_SIZE(raidz_all_maths) + 1]; 97 98 /* kstat for benchmarked implementations */ 99 static kstat_t *raidz_math_kstat = NULL; 100 #endif 101 102 /* 103 * Returns the RAIDZ operations for raidz_map() parity calculations. When 104 * a SIMD implementation is not allowed in the current context, then fallback 105 * to the fastest generic implementation. 106 */ 107 const raidz_impl_ops_t * 108 vdev_raidz_math_get_ops(void) 109 { 110 if (!kfpu_allowed()) 111 return (&vdev_raidz_scalar_impl); 112 113 raidz_impl_ops_t *ops = NULL; 114 const uint32_t impl = RAIDZ_IMPL_READ(zfs_vdev_raidz_impl); 115 116 switch (impl) { 117 case IMPL_FASTEST: 118 ASSERT(raidz_math_initialized); 119 ops = &vdev_raidz_fastest_impl; 120 break; 121 case IMPL_CYCLE: 122 /* Cycle through all supported implementations */ 123 ASSERT(raidz_math_initialized); 124 ASSERT3U(raidz_supp_impl_cnt, >, 0); 125 static size_t cycle_impl_idx = 0; 126 size_t idx = (++cycle_impl_idx) % raidz_supp_impl_cnt; 127 ops = raidz_supp_impl[idx]; 128 break; 129 case IMPL_ORIGINAL: 130 ops = (raidz_impl_ops_t *)&vdev_raidz_original_impl; 131 break; 132 case IMPL_SCALAR: 133 ops = (raidz_impl_ops_t *)&vdev_raidz_scalar_impl; 134 break; 135 default: 136 ASSERT3U(impl, <, raidz_supp_impl_cnt); 137 ASSERT3U(raidz_supp_impl_cnt, >, 0); 138 if (impl < ARRAY_SIZE(raidz_all_maths)) 139 ops = raidz_supp_impl[impl]; 140 break; 141 } 142 143 ASSERT3P(ops, !=, NULL); 144 145 return (ops); 146 } 147 148 /* 149 * Select parity generation method for raidz_map 150 */ 151 int 152 vdev_raidz_math_generate(raidz_map_t *rm, raidz_row_t *rr) 153 { 154 raidz_gen_f gen_parity = NULL; 155 156 switch (raidz_parity(rm)) { 157 case 1: 158 gen_parity = rm->rm_ops->gen[RAIDZ_GEN_P]; 159 break; 160 case 2: 161 gen_parity = rm->rm_ops->gen[RAIDZ_GEN_PQ]; 162 break; 163 case 3: 164 gen_parity = rm->rm_ops->gen[RAIDZ_GEN_PQR]; 165 break; 166 default: 167 gen_parity = NULL; 168 cmn_err(CE_PANIC, "invalid RAID-Z configuration %llu", 169 (u_longlong_t)raidz_parity(rm)); 170 break; 171 } 172 173 /* if method is NULL execute the original implementation */ 174 if (gen_parity == NULL) 175 return (RAIDZ_ORIGINAL_IMPL); 176 177 gen_parity(rr); 178 179 return (0); 180 } 181 182 static raidz_rec_f 183 reconstruct_fun_p_sel(raidz_map_t *rm, const int *parity_valid, 184 const int nbaddata) 185 { 186 if (nbaddata == 1 && parity_valid[CODE_P]) { 187 return (rm->rm_ops->rec[RAIDZ_REC_P]); 188 } 189 return ((raidz_rec_f) NULL); 190 } 191 192 static raidz_rec_f 193 reconstruct_fun_pq_sel(raidz_map_t *rm, const int *parity_valid, 194 const int nbaddata) 195 { 196 if (nbaddata == 1) { 197 if (parity_valid[CODE_P]) { 198 return (rm->rm_ops->rec[RAIDZ_REC_P]); 199 } else if (parity_valid[CODE_Q]) { 200 return (rm->rm_ops->rec[RAIDZ_REC_Q]); 201 } 202 } else if (nbaddata == 2 && 203 parity_valid[CODE_P] && parity_valid[CODE_Q]) { 204 return (rm->rm_ops->rec[RAIDZ_REC_PQ]); 205 } 206 return ((raidz_rec_f) NULL); 207 } 208 209 static raidz_rec_f 210 reconstruct_fun_pqr_sel(raidz_map_t *rm, const int *parity_valid, 211 const int nbaddata) 212 { 213 if (nbaddata == 1) { 214 if (parity_valid[CODE_P]) { 215 return (rm->rm_ops->rec[RAIDZ_REC_P]); 216 } else if (parity_valid[CODE_Q]) { 217 return (rm->rm_ops->rec[RAIDZ_REC_Q]); 218 } else if (parity_valid[CODE_R]) { 219 return (rm->rm_ops->rec[RAIDZ_REC_R]); 220 } 221 } else if (nbaddata == 2) { 222 if (parity_valid[CODE_P] && parity_valid[CODE_Q]) { 223 return (rm->rm_ops->rec[RAIDZ_REC_PQ]); 224 } else if (parity_valid[CODE_P] && parity_valid[CODE_R]) { 225 return (rm->rm_ops->rec[RAIDZ_REC_PR]); 226 } else if (parity_valid[CODE_Q] && parity_valid[CODE_R]) { 227 return (rm->rm_ops->rec[RAIDZ_REC_QR]); 228 } 229 } else if (nbaddata == 3 && 230 parity_valid[CODE_P] && parity_valid[CODE_Q] && 231 parity_valid[CODE_R]) { 232 return (rm->rm_ops->rec[RAIDZ_REC_PQR]); 233 } 234 return ((raidz_rec_f) NULL); 235 } 236 237 /* 238 * Select data reconstruction method for raidz_map 239 * @parity_valid - Parity validity flag 240 * @dt - Failed data index array 241 * @nbaddata - Number of failed data columns 242 */ 243 int 244 vdev_raidz_math_reconstruct(raidz_map_t *rm, raidz_row_t *rr, 245 const int *parity_valid, const int *dt, const int nbaddata) 246 { 247 raidz_rec_f rec_fn = NULL; 248 249 switch (raidz_parity(rm)) { 250 case PARITY_P: 251 rec_fn = reconstruct_fun_p_sel(rm, parity_valid, nbaddata); 252 break; 253 case PARITY_PQ: 254 rec_fn = reconstruct_fun_pq_sel(rm, parity_valid, nbaddata); 255 break; 256 case PARITY_PQR: 257 rec_fn = reconstruct_fun_pqr_sel(rm, parity_valid, nbaddata); 258 break; 259 default: 260 cmn_err(CE_PANIC, "invalid RAID-Z configuration %llu", 261 (u_longlong_t)raidz_parity(rm)); 262 break; 263 } 264 265 if (rec_fn == NULL) 266 return (RAIDZ_ORIGINAL_IMPL); 267 else 268 return (rec_fn(rr, dt)); 269 } 270 271 const char *const raidz_gen_name[] = { 272 "gen_p", "gen_pq", "gen_pqr" 273 }; 274 const char *const raidz_rec_name[] = { 275 "rec_p", "rec_q", "rec_r", 276 "rec_pq", "rec_pr", "rec_qr", "rec_pqr" 277 }; 278 279 #if defined(_KERNEL) 280 281 #define RAIDZ_KSTAT_LINE_LEN (17 + 10*12 + 1) 282 283 static int 284 raidz_math_kstat_headers(char *buf, size_t size) 285 { 286 ASSERT3U(size, >=, RAIDZ_KSTAT_LINE_LEN); 287 288 ssize_t off = snprintf(buf, size, "%-17s", "implementation"); 289 290 for (int i = 0; i < ARRAY_SIZE(raidz_gen_name); i++) 291 off += snprintf(buf + off, size - off, "%-16s", 292 raidz_gen_name[i]); 293 294 for (int i = 0; i < ARRAY_SIZE(raidz_rec_name); i++) 295 off += snprintf(buf + off, size - off, "%-16s", 296 raidz_rec_name[i]); 297 298 (void) snprintf(buf + off, size - off, "\n"); 299 300 return (0); 301 } 302 303 static int 304 raidz_math_kstat_data(char *buf, size_t size, void *data) 305 { 306 raidz_impl_kstat_t *fstat = &raidz_impl_kstats[raidz_supp_impl_cnt]; 307 raidz_impl_kstat_t *cstat = (raidz_impl_kstat_t *)data; 308 ssize_t off = 0; 309 int i; 310 311 ASSERT3U(size, >=, RAIDZ_KSTAT_LINE_LEN); 312 313 if (cstat == fstat) { 314 off += snprintf(buf + off, size - off, "%-17s", "fastest"); 315 316 for (i = 0; i < ARRAY_SIZE(raidz_gen_name); i++) { 317 int id = fstat->gen[i]; 318 off += snprintf(buf + off, size - off, "%-16s", 319 raidz_supp_impl[id]->name); 320 } 321 for (i = 0; i < ARRAY_SIZE(raidz_rec_name); i++) { 322 int id = fstat->rec[i]; 323 off += snprintf(buf + off, size - off, "%-16s", 324 raidz_supp_impl[id]->name); 325 } 326 } else { 327 ptrdiff_t id = cstat - raidz_impl_kstats; 328 329 off += snprintf(buf + off, size - off, "%-17s", 330 raidz_supp_impl[id]->name); 331 332 for (i = 0; i < ARRAY_SIZE(raidz_gen_name); i++) 333 off += snprintf(buf + off, size - off, "%-16llu", 334 (u_longlong_t)cstat->gen[i]); 335 336 for (i = 0; i < ARRAY_SIZE(raidz_rec_name); i++) 337 off += snprintf(buf + off, size - off, "%-16llu", 338 (u_longlong_t)cstat->rec[i]); 339 } 340 341 (void) snprintf(buf + off, size - off, "\n"); 342 343 return (0); 344 } 345 346 static void * 347 raidz_math_kstat_addr(kstat_t *ksp, loff_t n) 348 { 349 if (n <= raidz_supp_impl_cnt) 350 ksp->ks_private = (void *) (raidz_impl_kstats + n); 351 else 352 ksp->ks_private = NULL; 353 354 return (ksp->ks_private); 355 } 356 357 #define BENCH_D_COLS (8ULL) 358 #define BENCH_COLS (BENCH_D_COLS + PARITY_PQR) 359 #define BENCH_ZIO_SIZE (1ULL << SPA_OLD_MAXBLOCKSHIFT) /* 128 kiB */ 360 #define BENCH_NS MSEC2NSEC(1) /* 1ms */ 361 362 typedef void (*benchmark_fn)(raidz_map_t *rm, const int fn); 363 364 static void 365 benchmark_gen_impl(raidz_map_t *rm, const int fn) 366 { 367 (void) fn; 368 vdev_raidz_generate_parity(rm); 369 } 370 371 static void 372 benchmark_rec_impl(raidz_map_t *rm, const int fn) 373 { 374 static const int rec_tgt[7][3] = { 375 {1, 2, 3}, /* rec_p: bad QR & D[0] */ 376 {0, 2, 3}, /* rec_q: bad PR & D[0] */ 377 {0, 1, 3}, /* rec_r: bad PQ & D[0] */ 378 {2, 3, 4}, /* rec_pq: bad R & D[0][1] */ 379 {1, 3, 4}, /* rec_pr: bad Q & D[0][1] */ 380 {0, 3, 4}, /* rec_qr: bad P & D[0][1] */ 381 {3, 4, 5} /* rec_pqr: bad & D[0][1][2] */ 382 }; 383 384 vdev_raidz_reconstruct(rm, rec_tgt[fn], 3); 385 } 386 387 /* 388 * Benchmarking of all supported implementations (raidz_supp_impl_cnt) 389 * is performed by setting the rm_ops pointer and calling the top level 390 * generate/reconstruct methods of bench_rm. 391 */ 392 static void 393 benchmark_raidz_impl(raidz_map_t *bench_rm, const int fn, benchmark_fn bench_fn) 394 { 395 uint64_t run_cnt, speed, best_speed = 0; 396 hrtime_t t_start, t_diff; 397 raidz_impl_ops_t *curr_impl; 398 raidz_impl_kstat_t *fstat = &raidz_impl_kstats[raidz_supp_impl_cnt]; 399 int impl, i; 400 401 for (impl = 0; impl < raidz_supp_impl_cnt; impl++) { 402 /* set an implementation to benchmark */ 403 curr_impl = raidz_supp_impl[impl]; 404 bench_rm->rm_ops = curr_impl; 405 406 run_cnt = 0; 407 t_start = gethrtime(); 408 409 do { 410 for (i = 0; i < 5; i++, run_cnt++) 411 bench_fn(bench_rm, fn); 412 413 t_diff = gethrtime() - t_start; 414 } while (t_diff < BENCH_NS); 415 416 speed = run_cnt * BENCH_ZIO_SIZE * NANOSEC; 417 speed /= (t_diff * BENCH_COLS); 418 419 if (bench_fn == benchmark_gen_impl) 420 raidz_impl_kstats[impl].gen[fn] = speed; 421 else 422 raidz_impl_kstats[impl].rec[fn] = speed; 423 424 /* Update fastest implementation method */ 425 if (speed > best_speed) { 426 best_speed = speed; 427 428 if (bench_fn == benchmark_gen_impl) { 429 fstat->gen[fn] = impl; 430 vdev_raidz_fastest_impl.gen[fn] = 431 curr_impl->gen[fn]; 432 } else { 433 fstat->rec[fn] = impl; 434 vdev_raidz_fastest_impl.rec[fn] = 435 curr_impl->rec[fn]; 436 } 437 } 438 } 439 } 440 #endif 441 442 /* 443 * Initialize and benchmark all supported implementations. 444 */ 445 static void 446 benchmark_raidz(void) 447 { 448 raidz_impl_ops_t *curr_impl; 449 int i, c; 450 451 /* Move supported impl into raidz_supp_impl */ 452 for (i = 0, c = 0; i < ARRAY_SIZE(raidz_all_maths); i++) { 453 curr_impl = (raidz_impl_ops_t *)raidz_all_maths[i]; 454 455 if (curr_impl->init) 456 curr_impl->init(); 457 458 if (curr_impl->is_supported()) 459 raidz_supp_impl[c++] = (raidz_impl_ops_t *)curr_impl; 460 } 461 membar_producer(); /* complete raidz_supp_impl[] init */ 462 raidz_supp_impl_cnt = c; /* number of supported impl */ 463 464 #if defined(_KERNEL) 465 abd_t *pabd; 466 zio_t *bench_zio = NULL; 467 raidz_map_t *bench_rm = NULL; 468 uint64_t bench_parity; 469 470 /* Fake a zio and run the benchmark on a warmed up buffer */ 471 bench_zio = kmem_zalloc(sizeof (zio_t), KM_SLEEP); 472 bench_zio->io_offset = 0; 473 bench_zio->io_size = BENCH_ZIO_SIZE; /* only data columns */ 474 bench_zio->io_abd = abd_alloc_linear(BENCH_ZIO_SIZE, B_TRUE); 475 memset(abd_to_buf(bench_zio->io_abd), 0xAA, BENCH_ZIO_SIZE); 476 477 /* Benchmark parity generation methods */ 478 for (int fn = 0; fn < RAIDZ_GEN_NUM; fn++) { 479 bench_parity = fn + 1; 480 /* New raidz_map is needed for each generate_p/q/r */ 481 bench_rm = vdev_raidz_map_alloc(bench_zio, SPA_MINBLOCKSHIFT, 482 BENCH_D_COLS + bench_parity, bench_parity); 483 484 benchmark_raidz_impl(bench_rm, fn, benchmark_gen_impl); 485 486 vdev_raidz_map_free(bench_rm); 487 } 488 489 /* Benchmark data reconstruction methods */ 490 bench_rm = vdev_raidz_map_alloc(bench_zio, SPA_MINBLOCKSHIFT, 491 BENCH_COLS, PARITY_PQR); 492 493 /* Ensure that fake parity blocks are initialized */ 494 for (c = 0; c < bench_rm->rm_row[0]->rr_firstdatacol; c++) { 495 pabd = bench_rm->rm_row[0]->rr_col[c].rc_abd; 496 memset(abd_to_buf(pabd), 0xAA, abd_get_size(pabd)); 497 } 498 499 for (int fn = 0; fn < RAIDZ_REC_NUM; fn++) 500 benchmark_raidz_impl(bench_rm, fn, benchmark_rec_impl); 501 502 vdev_raidz_map_free(bench_rm); 503 504 /* cleanup the bench zio */ 505 abd_free(bench_zio->io_abd); 506 kmem_free(bench_zio, sizeof (zio_t)); 507 #else 508 /* 509 * Skip the benchmark in user space to avoid impacting libzpool 510 * consumers (zdb, zhack, zinject, ztest). The last implementation 511 * is assumed to be the fastest and used by default. 512 */ 513 memcpy(&vdev_raidz_fastest_impl, 514 raidz_supp_impl[raidz_supp_impl_cnt - 1], 515 sizeof (vdev_raidz_fastest_impl)); 516 strcpy(vdev_raidz_fastest_impl.name, "fastest"); 517 #endif /* _KERNEL */ 518 } 519 520 void 521 vdev_raidz_math_init(void) 522 { 523 /* Determine the fastest available implementation. */ 524 benchmark_raidz(); 525 526 #if defined(_KERNEL) 527 /* Install kstats for all implementations */ 528 raidz_math_kstat = kstat_create("zfs", 0, "vdev_raidz_bench", "misc", 529 KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL); 530 if (raidz_math_kstat != NULL) { 531 raidz_math_kstat->ks_data = NULL; 532 raidz_math_kstat->ks_ndata = UINT32_MAX; 533 kstat_set_raw_ops(raidz_math_kstat, 534 raidz_math_kstat_headers, 535 raidz_math_kstat_data, 536 raidz_math_kstat_addr); 537 kstat_install(raidz_math_kstat); 538 } 539 #endif 540 541 /* Finish initialization */ 542 atomic_swap_32(&zfs_vdev_raidz_impl, user_sel_impl); 543 raidz_math_initialized = B_TRUE; 544 } 545 546 void 547 vdev_raidz_math_fini(void) 548 { 549 raidz_impl_ops_t const *curr_impl; 550 551 #if defined(_KERNEL) 552 if (raidz_math_kstat != NULL) { 553 kstat_delete(raidz_math_kstat); 554 raidz_math_kstat = NULL; 555 } 556 #endif 557 558 for (int i = 0; i < ARRAY_SIZE(raidz_all_maths); i++) { 559 curr_impl = raidz_all_maths[i]; 560 if (curr_impl->fini) 561 curr_impl->fini(); 562 } 563 } 564 565 static const struct { 566 const char *name; 567 uint32_t sel; 568 } math_impl_opts[] = { 569 { "cycle", IMPL_CYCLE }, 570 { "fastest", IMPL_FASTEST }, 571 { "original", IMPL_ORIGINAL }, 572 { "scalar", IMPL_SCALAR } 573 }; 574 575 /* 576 * Function sets desired raidz implementation. 577 * 578 * If we are called before init(), user preference will be saved in 579 * user_sel_impl, and applied in later init() call. This occurs when module 580 * parameter is specified on module load. Otherwise, directly update 581 * zfs_vdev_raidz_impl. 582 * 583 * @val Name of raidz implementation to use 584 * @param Unused. 585 */ 586 int 587 vdev_raidz_impl_set(const char *val) 588 { 589 int err = -EINVAL; 590 char req_name[RAIDZ_IMPL_NAME_MAX]; 591 uint32_t impl = RAIDZ_IMPL_READ(user_sel_impl); 592 size_t i; 593 594 /* sanitize input */ 595 i = strnlen(val, RAIDZ_IMPL_NAME_MAX); 596 if (i == 0 || i == RAIDZ_IMPL_NAME_MAX) 597 return (err); 598 599 strlcpy(req_name, val, RAIDZ_IMPL_NAME_MAX); 600 while (i > 0 && !!isspace(req_name[i-1])) 601 i--; 602 req_name[i] = '\0'; 603 604 /* Check mandatory options */ 605 for (i = 0; i < ARRAY_SIZE(math_impl_opts); i++) { 606 if (strcmp(req_name, math_impl_opts[i].name) == 0) { 607 impl = math_impl_opts[i].sel; 608 err = 0; 609 break; 610 } 611 } 612 613 /* check all supported impl if init() was already called */ 614 if (err != 0 && raidz_math_initialized) { 615 /* check all supported implementations */ 616 for (i = 0; i < raidz_supp_impl_cnt; i++) { 617 if (strcmp(req_name, raidz_supp_impl[i]->name) == 0) { 618 impl = i; 619 err = 0; 620 break; 621 } 622 } 623 } 624 625 if (err == 0) { 626 if (raidz_math_initialized) 627 atomic_swap_32(&zfs_vdev_raidz_impl, impl); 628 else 629 atomic_swap_32(&user_sel_impl, impl); 630 } 631 632 return (err); 633 } 634 635 #if defined(_KERNEL) && defined(__linux__) 636 637 static int 638 zfs_vdev_raidz_impl_set(const char *val, zfs_kernel_param_t *kp) 639 { 640 return (vdev_raidz_impl_set(val)); 641 } 642 643 static int 644 zfs_vdev_raidz_impl_get(char *buffer, zfs_kernel_param_t *kp) 645 { 646 int i, cnt = 0; 647 char *fmt; 648 const uint32_t impl = RAIDZ_IMPL_READ(zfs_vdev_raidz_impl); 649 650 ASSERT(raidz_math_initialized); 651 652 /* list mandatory options */ 653 for (i = 0; i < ARRAY_SIZE(math_impl_opts) - 2; i++) { 654 fmt = (impl == math_impl_opts[i].sel) ? "[%s] " : "%s "; 655 cnt += sprintf(buffer + cnt, fmt, math_impl_opts[i].name); 656 } 657 658 /* list all supported implementations */ 659 for (i = 0; i < raidz_supp_impl_cnt; i++) { 660 fmt = (i == impl) ? "[%s] " : "%s "; 661 cnt += sprintf(buffer + cnt, fmt, raidz_supp_impl[i]->name); 662 } 663 664 return (cnt); 665 } 666 667 module_param_call(zfs_vdev_raidz_impl, zfs_vdev_raidz_impl_set, 668 zfs_vdev_raidz_impl_get, NULL, 0644); 669 MODULE_PARM_DESC(zfs_vdev_raidz_impl, "Select raidz implementation."); 670 #endif 671