1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2016 Gvozden Nešković. All rights reserved. 26 */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa.h> 30 #include <sys/vdev_impl.h> 31 #include <sys/zio.h> 32 #include <sys/zio_checksum.h> 33 #include <sys/abd.h> 34 #include <sys/fs/zfs.h> 35 #include <sys/fm/fs/zfs.h> 36 #include <sys/vdev_raidz.h> 37 #include <sys/vdev_raidz_impl.h> 38 #include <sys/vdev_draid.h> 39 40 #ifdef ZFS_DEBUG 41 #include <sys/vdev.h> /* For vdev_xlate() in vdev_raidz_io_verify() */ 42 #endif 43 44 /* 45 * Virtual device vector for RAID-Z. 46 * 47 * This vdev supports single, double, and triple parity. For single parity, 48 * we use a simple XOR of all the data columns. For double or triple parity, 49 * we use a special case of Reed-Solomon coding. This extends the 50 * technique described in "The mathematics of RAID-6" by H. Peter Anvin by 51 * drawing on the system described in "A Tutorial on Reed-Solomon Coding for 52 * Fault-Tolerance in RAID-like Systems" by James S. Plank on which the 53 * former is also based. The latter is designed to provide higher performance 54 * for writes. 55 * 56 * Note that the Plank paper claimed to support arbitrary N+M, but was then 57 * amended six years later identifying a critical flaw that invalidates its 58 * claims. Nevertheless, the technique can be adapted to work for up to 59 * triple parity. For additional parity, the amendment "Note: Correction to 60 * the 1997 Tutorial on Reed-Solomon Coding" by James S. Plank and Ying Ding 61 * is viable, but the additional complexity means that write performance will 62 * suffer. 63 * 64 * All of the methods above operate on a Galois field, defined over the 65 * integers mod 2^N. In our case we choose N=8 for GF(8) so that all elements 66 * can be expressed with a single byte. Briefly, the operations on the 67 * field are defined as follows: 68 * 69 * o addition (+) is represented by a bitwise XOR 70 * o subtraction (-) is therefore identical to addition: A + B = A - B 71 * o multiplication of A by 2 is defined by the following bitwise expression: 72 * 73 * (A * 2)_7 = A_6 74 * (A * 2)_6 = A_5 75 * (A * 2)_5 = A_4 76 * (A * 2)_4 = A_3 + A_7 77 * (A * 2)_3 = A_2 + A_7 78 * (A * 2)_2 = A_1 + A_7 79 * (A * 2)_1 = A_0 80 * (A * 2)_0 = A_7 81 * 82 * In C, multiplying by 2 is therefore ((a << 1) ^ ((a & 0x80) ? 0x1d : 0)). 83 * As an aside, this multiplication is derived from the error correcting 84 * primitive polynomial x^8 + x^4 + x^3 + x^2 + 1. 85 * 86 * Observe that any number in the field (except for 0) can be expressed as a 87 * power of 2 -- a generator for the field. We store a table of the powers of 88 * 2 and logs base 2 for quick look ups, and exploit the fact that A * B can 89 * be rewritten as 2^(log_2(A) + log_2(B)) (where '+' is normal addition rather 90 * than field addition). The inverse of a field element A (A^-1) is therefore 91 * A ^ (255 - 1) = A^254. 92 * 93 * The up-to-three parity columns, P, Q, R over several data columns, 94 * D_0, ... D_n-1, can be expressed by field operations: 95 * 96 * P = D_0 + D_1 + ... + D_n-2 + D_n-1 97 * Q = 2^n-1 * D_0 + 2^n-2 * D_1 + ... + 2^1 * D_n-2 + 2^0 * D_n-1 98 * = ((...((D_0) * 2 + D_1) * 2 + ...) * 2 + D_n-2) * 2 + D_n-1 99 * R = 4^n-1 * D_0 + 4^n-2 * D_1 + ... + 4^1 * D_n-2 + 4^0 * D_n-1 100 * = ((...((D_0) * 4 + D_1) * 4 + ...) * 4 + D_n-2) * 4 + D_n-1 101 * 102 * We chose 1, 2, and 4 as our generators because 1 corresponds to the trivial 103 * XOR operation, and 2 and 4 can be computed quickly and generate linearly- 104 * independent coefficients. (There are no additional coefficients that have 105 * this property which is why the uncorrected Plank method breaks down.) 106 * 107 * See the reconstruction code below for how P, Q and R can used individually 108 * or in concert to recover missing data columns. 109 */ 110 111 #define VDEV_RAIDZ_P 0 112 #define VDEV_RAIDZ_Q 1 113 #define VDEV_RAIDZ_R 2 114 115 #define VDEV_RAIDZ_MUL_2(x) (((x) << 1) ^ (((x) & 0x80) ? 0x1d : 0)) 116 #define VDEV_RAIDZ_MUL_4(x) (VDEV_RAIDZ_MUL_2(VDEV_RAIDZ_MUL_2(x))) 117 118 /* 119 * We provide a mechanism to perform the field multiplication operation on a 120 * 64-bit value all at once rather than a byte at a time. This works by 121 * creating a mask from the top bit in each byte and using that to 122 * conditionally apply the XOR of 0x1d. 123 */ 124 #define VDEV_RAIDZ_64MUL_2(x, mask) \ 125 { \ 126 (mask) = (x) & 0x8080808080808080ULL; \ 127 (mask) = ((mask) << 1) - ((mask) >> 7); \ 128 (x) = (((x) << 1) & 0xfefefefefefefefeULL) ^ \ 129 ((mask) & 0x1d1d1d1d1d1d1d1dULL); \ 130 } 131 132 #define VDEV_RAIDZ_64MUL_4(x, mask) \ 133 { \ 134 VDEV_RAIDZ_64MUL_2((x), mask); \ 135 VDEV_RAIDZ_64MUL_2((x), mask); \ 136 } 137 138 static void 139 vdev_raidz_row_free(raidz_row_t *rr) 140 { 141 int c; 142 143 for (c = 0; c < rr->rr_firstdatacol && c < rr->rr_cols; c++) { 144 abd_free(rr->rr_col[c].rc_abd); 145 146 if (rr->rr_col[c].rc_gdata != NULL) { 147 abd_free(rr->rr_col[c].rc_gdata); 148 } 149 if (rr->rr_col[c].rc_orig_data != NULL) { 150 zio_buf_free(rr->rr_col[c].rc_orig_data, 151 rr->rr_col[c].rc_size); 152 } 153 } 154 for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 155 if (rr->rr_col[c].rc_size != 0) { 156 if (abd_is_gang(rr->rr_col[c].rc_abd)) 157 abd_free(rr->rr_col[c].rc_abd); 158 else 159 abd_put(rr->rr_col[c].rc_abd); 160 } 161 if (rr->rr_col[c].rc_orig_data != NULL) { 162 zio_buf_free(rr->rr_col[c].rc_orig_data, 163 rr->rr_col[c].rc_size); 164 } 165 } 166 167 if (rr->rr_abd_copy != NULL) 168 abd_free(rr->rr_abd_copy); 169 170 if (rr->rr_abd_empty != NULL) 171 abd_free(rr->rr_abd_empty); 172 173 kmem_free(rr, offsetof(raidz_row_t, rr_col[rr->rr_scols])); 174 } 175 176 void 177 vdev_raidz_map_free(raidz_map_t *rm) 178 { 179 for (int i = 0; i < rm->rm_nrows; i++) 180 vdev_raidz_row_free(rm->rm_row[i]); 181 182 kmem_free(rm, offsetof(raidz_map_t, rm_row[rm->rm_nrows])); 183 } 184 185 static void 186 vdev_raidz_map_free_vsd(zio_t *zio) 187 { 188 raidz_map_t *rm = zio->io_vsd; 189 190 ASSERT0(rm->rm_freed); 191 rm->rm_freed = B_TRUE; 192 193 if (rm->rm_reports == 0) { 194 vdev_raidz_map_free(rm); 195 } 196 } 197 198 /*ARGSUSED*/ 199 static void 200 vdev_raidz_cksum_free(void *arg, size_t ignored) 201 { 202 raidz_map_t *rm = arg; 203 204 ASSERT3U(rm->rm_reports, >, 0); 205 206 if (--rm->rm_reports == 0 && rm->rm_freed) 207 vdev_raidz_map_free(rm); 208 } 209 210 static void 211 vdev_raidz_cksum_finish(zio_cksum_report_t *zcr, const abd_t *good_data) 212 { 213 raidz_map_t *rm = zcr->zcr_cbdata; 214 const size_t c = zcr->zcr_cbinfo; 215 size_t x, offset; 216 217 if (good_data == NULL) { 218 zfs_ereport_finish_checksum(zcr, NULL, NULL, B_FALSE); 219 return; 220 } 221 222 ASSERT3U(rm->rm_nrows, ==, 1); 223 raidz_row_t *rr = rm->rm_row[0]; 224 225 const abd_t *good = NULL; 226 const abd_t *bad = rr->rr_col[c].rc_abd; 227 228 if (c < rr->rr_firstdatacol) { 229 /* 230 * The first time through, calculate the parity blocks for 231 * the good data (this relies on the fact that the good 232 * data never changes for a given logical ZIO) 233 */ 234 if (rr->rr_col[0].rc_gdata == NULL) { 235 abd_t *bad_parity[VDEV_RAIDZ_MAXPARITY]; 236 237 /* 238 * Set up the rr_col[]s to generate the parity for 239 * good_data, first saving the parity bufs and 240 * replacing them with buffers to hold the result. 241 */ 242 for (x = 0; x < rr->rr_firstdatacol; x++) { 243 bad_parity[x] = rr->rr_col[x].rc_abd; 244 rr->rr_col[x].rc_abd = rr->rr_col[x].rc_gdata = 245 abd_alloc_sametype(rr->rr_col[x].rc_abd, 246 rr->rr_col[x].rc_size); 247 } 248 249 /* fill in the data columns from good_data */ 250 offset = 0; 251 for (; x < rr->rr_cols; x++) { 252 abd_put(rr->rr_col[x].rc_abd); 253 254 rr->rr_col[x].rc_abd = 255 abd_get_offset_size((abd_t *)good_data, 256 offset, rr->rr_col[x].rc_size); 257 offset += rr->rr_col[x].rc_size; 258 } 259 260 /* 261 * Construct the parity from the good data. 262 */ 263 vdev_raidz_generate_parity_row(rm, rr); 264 265 /* restore everything back to its original state */ 266 for (x = 0; x < rr->rr_firstdatacol; x++) 267 rr->rr_col[x].rc_abd = bad_parity[x]; 268 269 offset = 0; 270 for (x = rr->rr_firstdatacol; x < rr->rr_cols; x++) { 271 abd_put(rr->rr_col[x].rc_abd); 272 rr->rr_col[x].rc_abd = abd_get_offset_size( 273 rr->rr_abd_copy, offset, 274 rr->rr_col[x].rc_size); 275 offset += rr->rr_col[x].rc_size; 276 } 277 } 278 279 ASSERT3P(rr->rr_col[c].rc_gdata, !=, NULL); 280 good = abd_get_offset_size(rr->rr_col[c].rc_gdata, 0, 281 rr->rr_col[c].rc_size); 282 } else { 283 /* adjust good_data to point at the start of our column */ 284 offset = 0; 285 for (x = rr->rr_firstdatacol; x < c; x++) 286 offset += rr->rr_col[x].rc_size; 287 288 good = abd_get_offset_size((abd_t *)good_data, offset, 289 rr->rr_col[c].rc_size); 290 } 291 292 /* we drop the ereport if it ends up that the data was good */ 293 zfs_ereport_finish_checksum(zcr, good, bad, B_TRUE); 294 abd_put((abd_t *)good); 295 } 296 297 /* 298 * Invoked indirectly by zfs_ereport_start_checksum(), called 299 * below when our read operation fails completely. The main point 300 * is to keep a copy of everything we read from disk, so that at 301 * vdev_raidz_cksum_finish() time we can compare it with the good data. 302 */ 303 static void 304 vdev_raidz_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *arg) 305 { 306 size_t c = (size_t)(uintptr_t)arg; 307 raidz_map_t *rm = zio->io_vsd; 308 309 /* set up the report and bump the refcount */ 310 zcr->zcr_cbdata = rm; 311 zcr->zcr_cbinfo = c; 312 zcr->zcr_finish = vdev_raidz_cksum_finish; 313 zcr->zcr_free = vdev_raidz_cksum_free; 314 315 rm->rm_reports++; 316 ASSERT3U(rm->rm_reports, >, 0); 317 ASSERT3U(rm->rm_nrows, ==, 1); 318 319 if (rm->rm_row[0]->rr_abd_copy != NULL) 320 return; 321 322 /* 323 * It's the first time we're called for this raidz_map_t, so we need 324 * to copy the data aside; there's no guarantee that our zio's buffer 325 * won't be re-used for something else. 326 * 327 * Our parity data is already in separate buffers, so there's no need 328 * to copy them. 329 */ 330 for (int i = 0; i < rm->rm_nrows; i++) { 331 raidz_row_t *rr = rm->rm_row[i]; 332 size_t offset = 0; 333 size_t size = 0; 334 335 for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) 336 size += rr->rr_col[c].rc_size; 337 338 rr->rr_abd_copy = abd_alloc_for_io(size, B_FALSE); 339 340 for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 341 raidz_col_t *col = &rr->rr_col[c]; 342 abd_t *tmp = abd_get_offset_size(rr->rr_abd_copy, 343 offset, col->rc_size); 344 345 abd_copy(tmp, col->rc_abd, col->rc_size); 346 347 abd_put(col->rc_abd); 348 col->rc_abd = tmp; 349 350 offset += col->rc_size; 351 } 352 ASSERT3U(offset, ==, size); 353 } 354 } 355 356 static const zio_vsd_ops_t vdev_raidz_vsd_ops = { 357 .vsd_free = vdev_raidz_map_free_vsd, 358 .vsd_cksum_report = vdev_raidz_cksum_report 359 }; 360 361 /* 362 * Divides the IO evenly across all child vdevs; usually, dcols is 363 * the number of children in the target vdev. 364 * 365 * Avoid inlining the function to keep vdev_raidz_io_start(), which 366 * is this functions only caller, as small as possible on the stack. 367 */ 368 noinline raidz_map_t * 369 vdev_raidz_map_alloc(zio_t *zio, uint64_t ashift, uint64_t dcols, 370 uint64_t nparity) 371 { 372 raidz_row_t *rr; 373 /* The starting RAIDZ (parent) vdev sector of the block. */ 374 uint64_t b = zio->io_offset >> ashift; 375 /* The zio's size in units of the vdev's minimum sector size. */ 376 uint64_t s = zio->io_size >> ashift; 377 /* The first column for this stripe. */ 378 uint64_t f = b % dcols; 379 /* The starting byte offset on each child vdev. */ 380 uint64_t o = (b / dcols) << ashift; 381 uint64_t q, r, c, bc, col, acols, scols, coff, devidx, asize, tot; 382 uint64_t off = 0; 383 384 raidz_map_t *rm = 385 kmem_zalloc(offsetof(raidz_map_t, rm_row[1]), KM_SLEEP); 386 rm->rm_nrows = 1; 387 388 /* 389 * "Quotient": The number of data sectors for this stripe on all but 390 * the "big column" child vdevs that also contain "remainder" data. 391 */ 392 q = s / (dcols - nparity); 393 394 /* 395 * "Remainder": The number of partial stripe data sectors in this I/O. 396 * This will add a sector to some, but not all, child vdevs. 397 */ 398 r = s - q * (dcols - nparity); 399 400 /* The number of "big columns" - those which contain remainder data. */ 401 bc = (r == 0 ? 0 : r + nparity); 402 403 /* 404 * The total number of data and parity sectors associated with 405 * this I/O. 406 */ 407 tot = s + nparity * (q + (r == 0 ? 0 : 1)); 408 409 /* 410 * acols: The columns that will be accessed. 411 * scols: The columns that will be accessed or skipped. 412 */ 413 if (q == 0) { 414 /* Our I/O request doesn't span all child vdevs. */ 415 acols = bc; 416 scols = MIN(dcols, roundup(bc, nparity + 1)); 417 } else { 418 acols = dcols; 419 scols = dcols; 420 } 421 422 ASSERT3U(acols, <=, scols); 423 424 rr = kmem_alloc(offsetof(raidz_row_t, rr_col[scols]), KM_SLEEP); 425 rm->rm_row[0] = rr; 426 427 rr->rr_cols = acols; 428 rr->rr_scols = scols; 429 rr->rr_bigcols = bc; 430 rr->rr_missingdata = 0; 431 rr->rr_missingparity = 0; 432 rr->rr_firstdatacol = nparity; 433 rr->rr_abd_copy = NULL; 434 rr->rr_abd_empty = NULL; 435 rr->rr_nempty = 0; 436 #ifdef ZFS_DEBUG 437 rr->rr_offset = zio->io_offset; 438 rr->rr_size = zio->io_size; 439 #endif 440 441 asize = 0; 442 443 for (c = 0; c < scols; c++) { 444 raidz_col_t *rc = &rr->rr_col[c]; 445 col = f + c; 446 coff = o; 447 if (col >= dcols) { 448 col -= dcols; 449 coff += 1ULL << ashift; 450 } 451 rc->rc_devidx = col; 452 rc->rc_offset = coff; 453 rc->rc_abd = NULL; 454 rc->rc_gdata = NULL; 455 rc->rc_orig_data = NULL; 456 rc->rc_error = 0; 457 rc->rc_tried = 0; 458 rc->rc_skipped = 0; 459 rc->rc_repair = 0; 460 rc->rc_need_orig_restore = B_FALSE; 461 462 if (c >= acols) 463 rc->rc_size = 0; 464 else if (c < bc) 465 rc->rc_size = (q + 1) << ashift; 466 else 467 rc->rc_size = q << ashift; 468 469 asize += rc->rc_size; 470 } 471 472 ASSERT3U(asize, ==, tot << ashift); 473 rm->rm_nskip = roundup(tot, nparity + 1) - tot; 474 rm->rm_skipstart = bc; 475 476 for (c = 0; c < rr->rr_firstdatacol; c++) 477 rr->rr_col[c].rc_abd = 478 abd_alloc_linear(rr->rr_col[c].rc_size, B_FALSE); 479 480 rr->rr_col[c].rc_abd = abd_get_offset_size(zio->io_abd, 0, 481 rr->rr_col[c].rc_size); 482 off = rr->rr_col[c].rc_size; 483 484 for (c = c + 1; c < acols; c++) { 485 raidz_col_t *rc = &rr->rr_col[c]; 486 rc->rc_abd = abd_get_offset_size(zio->io_abd, off, rc->rc_size); 487 off += rc->rc_size; 488 } 489 490 /* 491 * If all data stored spans all columns, there's a danger that parity 492 * will always be on the same device and, since parity isn't read 493 * during normal operation, that device's I/O bandwidth won't be 494 * used effectively. We therefore switch the parity every 1MB. 495 * 496 * ... at least that was, ostensibly, the theory. As a practical 497 * matter unless we juggle the parity between all devices evenly, we 498 * won't see any benefit. Further, occasional writes that aren't a 499 * multiple of the LCM of the number of children and the minimum 500 * stripe width are sufficient to avoid pessimal behavior. 501 * Unfortunately, this decision created an implicit on-disk format 502 * requirement that we need to support for all eternity, but only 503 * for single-parity RAID-Z. 504 * 505 * If we intend to skip a sector in the zeroth column for padding 506 * we must make sure to note this swap. We will never intend to 507 * skip the first column since at least one data and one parity 508 * column must appear in each row. 509 */ 510 ASSERT(rr->rr_cols >= 2); 511 ASSERT(rr->rr_col[0].rc_size == rr->rr_col[1].rc_size); 512 513 if (rr->rr_firstdatacol == 1 && (zio->io_offset & (1ULL << 20))) { 514 devidx = rr->rr_col[0].rc_devidx; 515 o = rr->rr_col[0].rc_offset; 516 rr->rr_col[0].rc_devidx = rr->rr_col[1].rc_devidx; 517 rr->rr_col[0].rc_offset = rr->rr_col[1].rc_offset; 518 rr->rr_col[1].rc_devidx = devidx; 519 rr->rr_col[1].rc_offset = o; 520 521 if (rm->rm_skipstart == 0) 522 rm->rm_skipstart = 1; 523 } 524 525 /* init RAIDZ parity ops */ 526 rm->rm_ops = vdev_raidz_math_get_ops(); 527 528 return (rm); 529 } 530 531 struct pqr_struct { 532 uint64_t *p; 533 uint64_t *q; 534 uint64_t *r; 535 }; 536 537 static int 538 vdev_raidz_p_func(void *buf, size_t size, void *private) 539 { 540 struct pqr_struct *pqr = private; 541 const uint64_t *src = buf; 542 int i, cnt = size / sizeof (src[0]); 543 544 ASSERT(pqr->p && !pqr->q && !pqr->r); 545 546 for (i = 0; i < cnt; i++, src++, pqr->p++) 547 *pqr->p ^= *src; 548 549 return (0); 550 } 551 552 static int 553 vdev_raidz_pq_func(void *buf, size_t size, void *private) 554 { 555 struct pqr_struct *pqr = private; 556 const uint64_t *src = buf; 557 uint64_t mask; 558 int i, cnt = size / sizeof (src[0]); 559 560 ASSERT(pqr->p && pqr->q && !pqr->r); 561 562 for (i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++) { 563 *pqr->p ^= *src; 564 VDEV_RAIDZ_64MUL_2(*pqr->q, mask); 565 *pqr->q ^= *src; 566 } 567 568 return (0); 569 } 570 571 static int 572 vdev_raidz_pqr_func(void *buf, size_t size, void *private) 573 { 574 struct pqr_struct *pqr = private; 575 const uint64_t *src = buf; 576 uint64_t mask; 577 int i, cnt = size / sizeof (src[0]); 578 579 ASSERT(pqr->p && pqr->q && pqr->r); 580 581 for (i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++, pqr->r++) { 582 *pqr->p ^= *src; 583 VDEV_RAIDZ_64MUL_2(*pqr->q, mask); 584 *pqr->q ^= *src; 585 VDEV_RAIDZ_64MUL_4(*pqr->r, mask); 586 *pqr->r ^= *src; 587 } 588 589 return (0); 590 } 591 592 static void 593 vdev_raidz_generate_parity_p(raidz_row_t *rr) 594 { 595 uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd); 596 597 for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 598 abd_t *src = rr->rr_col[c].rc_abd; 599 600 if (c == rr->rr_firstdatacol) { 601 abd_copy_to_buf(p, src, rr->rr_col[c].rc_size); 602 } else { 603 struct pqr_struct pqr = { p, NULL, NULL }; 604 (void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size, 605 vdev_raidz_p_func, &pqr); 606 } 607 } 608 } 609 610 static void 611 vdev_raidz_generate_parity_pq(raidz_row_t *rr) 612 { 613 uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd); 614 uint64_t *q = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd); 615 uint64_t pcnt = rr->rr_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]); 616 ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size == 617 rr->rr_col[VDEV_RAIDZ_Q].rc_size); 618 619 for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 620 abd_t *src = rr->rr_col[c].rc_abd; 621 622 uint64_t ccnt = rr->rr_col[c].rc_size / sizeof (p[0]); 623 624 if (c == rr->rr_firstdatacol) { 625 ASSERT(ccnt == pcnt || ccnt == 0); 626 abd_copy_to_buf(p, src, rr->rr_col[c].rc_size); 627 (void) memcpy(q, p, rr->rr_col[c].rc_size); 628 629 for (uint64_t i = ccnt; i < pcnt; i++) { 630 p[i] = 0; 631 q[i] = 0; 632 } 633 } else { 634 struct pqr_struct pqr = { p, q, NULL }; 635 636 ASSERT(ccnt <= pcnt); 637 (void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size, 638 vdev_raidz_pq_func, &pqr); 639 640 /* 641 * Treat short columns as though they are full of 0s. 642 * Note that there's therefore nothing needed for P. 643 */ 644 uint64_t mask; 645 for (uint64_t i = ccnt; i < pcnt; i++) { 646 VDEV_RAIDZ_64MUL_2(q[i], mask); 647 } 648 } 649 } 650 } 651 652 static void 653 vdev_raidz_generate_parity_pqr(raidz_row_t *rr) 654 { 655 uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd); 656 uint64_t *q = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd); 657 uint64_t *r = abd_to_buf(rr->rr_col[VDEV_RAIDZ_R].rc_abd); 658 uint64_t pcnt = rr->rr_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]); 659 ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size == 660 rr->rr_col[VDEV_RAIDZ_Q].rc_size); 661 ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size == 662 rr->rr_col[VDEV_RAIDZ_R].rc_size); 663 664 for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 665 abd_t *src = rr->rr_col[c].rc_abd; 666 667 uint64_t ccnt = rr->rr_col[c].rc_size / sizeof (p[0]); 668 669 if (c == rr->rr_firstdatacol) { 670 ASSERT(ccnt == pcnt || ccnt == 0); 671 abd_copy_to_buf(p, src, rr->rr_col[c].rc_size); 672 (void) memcpy(q, p, rr->rr_col[c].rc_size); 673 (void) memcpy(r, p, rr->rr_col[c].rc_size); 674 675 for (uint64_t i = ccnt; i < pcnt; i++) { 676 p[i] = 0; 677 q[i] = 0; 678 r[i] = 0; 679 } 680 } else { 681 struct pqr_struct pqr = { p, q, r }; 682 683 ASSERT(ccnt <= pcnt); 684 (void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size, 685 vdev_raidz_pqr_func, &pqr); 686 687 /* 688 * Treat short columns as though they are full of 0s. 689 * Note that there's therefore nothing needed for P. 690 */ 691 uint64_t mask; 692 for (uint64_t i = ccnt; i < pcnt; i++) { 693 VDEV_RAIDZ_64MUL_2(q[i], mask); 694 VDEV_RAIDZ_64MUL_4(r[i], mask); 695 } 696 } 697 } 698 } 699 700 /* 701 * Generate RAID parity in the first virtual columns according to the number of 702 * parity columns available. 703 */ 704 void 705 vdev_raidz_generate_parity_row(raidz_map_t *rm, raidz_row_t *rr) 706 { 707 ASSERT3U(rr->rr_cols, !=, 0); 708 709 /* Generate using the new math implementation */ 710 if (vdev_raidz_math_generate(rm, rr) != RAIDZ_ORIGINAL_IMPL) 711 return; 712 713 switch (rr->rr_firstdatacol) { 714 case 1: 715 vdev_raidz_generate_parity_p(rr); 716 break; 717 case 2: 718 vdev_raidz_generate_parity_pq(rr); 719 break; 720 case 3: 721 vdev_raidz_generate_parity_pqr(rr); 722 break; 723 default: 724 cmn_err(CE_PANIC, "invalid RAID-Z configuration"); 725 } 726 } 727 728 void 729 vdev_raidz_generate_parity(raidz_map_t *rm) 730 { 731 for (int i = 0; i < rm->rm_nrows; i++) { 732 raidz_row_t *rr = rm->rm_row[i]; 733 vdev_raidz_generate_parity_row(rm, rr); 734 } 735 } 736 737 /* ARGSUSED */ 738 static int 739 vdev_raidz_reconst_p_func(void *dbuf, void *sbuf, size_t size, void *private) 740 { 741 uint64_t *dst = dbuf; 742 uint64_t *src = sbuf; 743 int cnt = size / sizeof (src[0]); 744 745 for (int i = 0; i < cnt; i++) { 746 dst[i] ^= src[i]; 747 } 748 749 return (0); 750 } 751 752 /* ARGSUSED */ 753 static int 754 vdev_raidz_reconst_q_pre_func(void *dbuf, void *sbuf, size_t size, 755 void *private) 756 { 757 uint64_t *dst = dbuf; 758 uint64_t *src = sbuf; 759 uint64_t mask; 760 int cnt = size / sizeof (dst[0]); 761 762 for (int i = 0; i < cnt; i++, dst++, src++) { 763 VDEV_RAIDZ_64MUL_2(*dst, mask); 764 *dst ^= *src; 765 } 766 767 return (0); 768 } 769 770 /* ARGSUSED */ 771 static int 772 vdev_raidz_reconst_q_pre_tail_func(void *buf, size_t size, void *private) 773 { 774 uint64_t *dst = buf; 775 uint64_t mask; 776 int cnt = size / sizeof (dst[0]); 777 778 for (int i = 0; i < cnt; i++, dst++) { 779 /* same operation as vdev_raidz_reconst_q_pre_func() on dst */ 780 VDEV_RAIDZ_64MUL_2(*dst, mask); 781 } 782 783 return (0); 784 } 785 786 struct reconst_q_struct { 787 uint64_t *q; 788 int exp; 789 }; 790 791 static int 792 vdev_raidz_reconst_q_post_func(void *buf, size_t size, void *private) 793 { 794 struct reconst_q_struct *rq = private; 795 uint64_t *dst = buf; 796 int cnt = size / sizeof (dst[0]); 797 798 for (int i = 0; i < cnt; i++, dst++, rq->q++) { 799 int j; 800 uint8_t *b; 801 802 *dst ^= *rq->q; 803 for (j = 0, b = (uint8_t *)dst; j < 8; j++, b++) { 804 *b = vdev_raidz_exp2(*b, rq->exp); 805 } 806 } 807 808 return (0); 809 } 810 811 struct reconst_pq_struct { 812 uint8_t *p; 813 uint8_t *q; 814 uint8_t *pxy; 815 uint8_t *qxy; 816 int aexp; 817 int bexp; 818 }; 819 820 static int 821 vdev_raidz_reconst_pq_func(void *xbuf, void *ybuf, size_t size, void *private) 822 { 823 struct reconst_pq_struct *rpq = private; 824 uint8_t *xd = xbuf; 825 uint8_t *yd = ybuf; 826 827 for (int i = 0; i < size; 828 i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++, yd++) { 829 *xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^ 830 vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp); 831 *yd = *rpq->p ^ *rpq->pxy ^ *xd; 832 } 833 834 return (0); 835 } 836 837 static int 838 vdev_raidz_reconst_pq_tail_func(void *xbuf, size_t size, void *private) 839 { 840 struct reconst_pq_struct *rpq = private; 841 uint8_t *xd = xbuf; 842 843 for (int i = 0; i < size; 844 i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++) { 845 /* same operation as vdev_raidz_reconst_pq_func() on xd */ 846 *xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^ 847 vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp); 848 } 849 850 return (0); 851 } 852 853 static int 854 vdev_raidz_reconstruct_p(raidz_row_t *rr, int *tgts, int ntgts) 855 { 856 int x = tgts[0]; 857 abd_t *dst, *src; 858 859 ASSERT3U(ntgts, ==, 1); 860 ASSERT3U(x, >=, rr->rr_firstdatacol); 861 ASSERT3U(x, <, rr->rr_cols); 862 863 ASSERT3U(rr->rr_col[x].rc_size, <=, rr->rr_col[VDEV_RAIDZ_P].rc_size); 864 865 src = rr->rr_col[VDEV_RAIDZ_P].rc_abd; 866 dst = rr->rr_col[x].rc_abd; 867 868 abd_copy_from_buf(dst, abd_to_buf(src), rr->rr_col[x].rc_size); 869 870 for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 871 uint64_t size = MIN(rr->rr_col[x].rc_size, 872 rr->rr_col[c].rc_size); 873 874 src = rr->rr_col[c].rc_abd; 875 876 if (c == x) 877 continue; 878 879 (void) abd_iterate_func2(dst, src, 0, 0, size, 880 vdev_raidz_reconst_p_func, NULL); 881 } 882 883 return (1 << VDEV_RAIDZ_P); 884 } 885 886 static int 887 vdev_raidz_reconstruct_q(raidz_row_t *rr, int *tgts, int ntgts) 888 { 889 int x = tgts[0]; 890 int c, exp; 891 abd_t *dst, *src; 892 893 ASSERT(ntgts == 1); 894 895 ASSERT(rr->rr_col[x].rc_size <= rr->rr_col[VDEV_RAIDZ_Q].rc_size); 896 897 for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 898 uint64_t size = (c == x) ? 0 : MIN(rr->rr_col[x].rc_size, 899 rr->rr_col[c].rc_size); 900 901 src = rr->rr_col[c].rc_abd; 902 dst = rr->rr_col[x].rc_abd; 903 904 if (c == rr->rr_firstdatacol) { 905 abd_copy(dst, src, size); 906 if (rr->rr_col[x].rc_size > size) { 907 abd_zero_off(dst, size, 908 rr->rr_col[x].rc_size - size); 909 } 910 } else { 911 ASSERT3U(size, <=, rr->rr_col[x].rc_size); 912 (void) abd_iterate_func2(dst, src, 0, 0, size, 913 vdev_raidz_reconst_q_pre_func, NULL); 914 (void) abd_iterate_func(dst, 915 size, rr->rr_col[x].rc_size - size, 916 vdev_raidz_reconst_q_pre_tail_func, NULL); 917 } 918 } 919 920 src = rr->rr_col[VDEV_RAIDZ_Q].rc_abd; 921 dst = rr->rr_col[x].rc_abd; 922 exp = 255 - (rr->rr_cols - 1 - x); 923 924 struct reconst_q_struct rq = { abd_to_buf(src), exp }; 925 (void) abd_iterate_func(dst, 0, rr->rr_col[x].rc_size, 926 vdev_raidz_reconst_q_post_func, &rq); 927 928 return (1 << VDEV_RAIDZ_Q); 929 } 930 931 static int 932 vdev_raidz_reconstruct_pq(raidz_row_t *rr, int *tgts, int ntgts) 933 { 934 uint8_t *p, *q, *pxy, *qxy, tmp, a, b, aexp, bexp; 935 abd_t *pdata, *qdata; 936 uint64_t xsize, ysize; 937 int x = tgts[0]; 938 int y = tgts[1]; 939 abd_t *xd, *yd; 940 941 ASSERT(ntgts == 2); 942 ASSERT(x < y); 943 ASSERT(x >= rr->rr_firstdatacol); 944 ASSERT(y < rr->rr_cols); 945 946 ASSERT(rr->rr_col[x].rc_size >= rr->rr_col[y].rc_size); 947 948 /* 949 * Move the parity data aside -- we're going to compute parity as 950 * though columns x and y were full of zeros -- Pxy and Qxy. We want to 951 * reuse the parity generation mechanism without trashing the actual 952 * parity so we make those columns appear to be full of zeros by 953 * setting their lengths to zero. 954 */ 955 pdata = rr->rr_col[VDEV_RAIDZ_P].rc_abd; 956 qdata = rr->rr_col[VDEV_RAIDZ_Q].rc_abd; 957 xsize = rr->rr_col[x].rc_size; 958 ysize = rr->rr_col[y].rc_size; 959 960 rr->rr_col[VDEV_RAIDZ_P].rc_abd = 961 abd_alloc_linear(rr->rr_col[VDEV_RAIDZ_P].rc_size, B_TRUE); 962 rr->rr_col[VDEV_RAIDZ_Q].rc_abd = 963 abd_alloc_linear(rr->rr_col[VDEV_RAIDZ_Q].rc_size, B_TRUE); 964 rr->rr_col[x].rc_size = 0; 965 rr->rr_col[y].rc_size = 0; 966 967 vdev_raidz_generate_parity_pq(rr); 968 969 rr->rr_col[x].rc_size = xsize; 970 rr->rr_col[y].rc_size = ysize; 971 972 p = abd_to_buf(pdata); 973 q = abd_to_buf(qdata); 974 pxy = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd); 975 qxy = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd); 976 xd = rr->rr_col[x].rc_abd; 977 yd = rr->rr_col[y].rc_abd; 978 979 /* 980 * We now have: 981 * Pxy = P + D_x + D_y 982 * Qxy = Q + 2^(ndevs - 1 - x) * D_x + 2^(ndevs - 1 - y) * D_y 983 * 984 * We can then solve for D_x: 985 * D_x = A * (P + Pxy) + B * (Q + Qxy) 986 * where 987 * A = 2^(x - y) * (2^(x - y) + 1)^-1 988 * B = 2^(ndevs - 1 - x) * (2^(x - y) + 1)^-1 989 * 990 * With D_x in hand, we can easily solve for D_y: 991 * D_y = P + Pxy + D_x 992 */ 993 994 a = vdev_raidz_pow2[255 + x - y]; 995 b = vdev_raidz_pow2[255 - (rr->rr_cols - 1 - x)]; 996 tmp = 255 - vdev_raidz_log2[a ^ 1]; 997 998 aexp = vdev_raidz_log2[vdev_raidz_exp2(a, tmp)]; 999 bexp = vdev_raidz_log2[vdev_raidz_exp2(b, tmp)]; 1000 1001 ASSERT3U(xsize, >=, ysize); 1002 struct reconst_pq_struct rpq = { p, q, pxy, qxy, aexp, bexp }; 1003 1004 (void) abd_iterate_func2(xd, yd, 0, 0, ysize, 1005 vdev_raidz_reconst_pq_func, &rpq); 1006 (void) abd_iterate_func(xd, ysize, xsize - ysize, 1007 vdev_raidz_reconst_pq_tail_func, &rpq); 1008 1009 abd_free(rr->rr_col[VDEV_RAIDZ_P].rc_abd); 1010 abd_free(rr->rr_col[VDEV_RAIDZ_Q].rc_abd); 1011 1012 /* 1013 * Restore the saved parity data. 1014 */ 1015 rr->rr_col[VDEV_RAIDZ_P].rc_abd = pdata; 1016 rr->rr_col[VDEV_RAIDZ_Q].rc_abd = qdata; 1017 1018 return ((1 << VDEV_RAIDZ_P) | (1 << VDEV_RAIDZ_Q)); 1019 } 1020 1021 /* BEGIN CSTYLED */ 1022 /* 1023 * In the general case of reconstruction, we must solve the system of linear 1024 * equations defined by the coefficients used to generate parity as well as 1025 * the contents of the data and parity disks. This can be expressed with 1026 * vectors for the original data (D) and the actual data (d) and parity (p) 1027 * and a matrix composed of the identity matrix (I) and a dispersal matrix (V): 1028 * 1029 * __ __ __ __ 1030 * | | __ __ | p_0 | 1031 * | V | | D_0 | | p_m-1 | 1032 * | | x | : | = | d_0 | 1033 * | I | | D_n-1 | | : | 1034 * | | ~~ ~~ | d_n-1 | 1035 * ~~ ~~ ~~ ~~ 1036 * 1037 * I is simply a square identity matrix of size n, and V is a vandermonde 1038 * matrix defined by the coefficients we chose for the various parity columns 1039 * (1, 2, 4). Note that these values were chosen both for simplicity, speedy 1040 * computation as well as linear separability. 1041 * 1042 * __ __ __ __ 1043 * | 1 .. 1 1 1 | | p_0 | 1044 * | 2^n-1 .. 4 2 1 | __ __ | : | 1045 * | 4^n-1 .. 16 4 1 | | D_0 | | p_m-1 | 1046 * | 1 .. 0 0 0 | | D_1 | | d_0 | 1047 * | 0 .. 0 0 0 | x | D_2 | = | d_1 | 1048 * | : : : : | | : | | d_2 | 1049 * | 0 .. 1 0 0 | | D_n-1 | | : | 1050 * | 0 .. 0 1 0 | ~~ ~~ | : | 1051 * | 0 .. 0 0 1 | | d_n-1 | 1052 * ~~ ~~ ~~ ~~ 1053 * 1054 * Note that I, V, d, and p are known. To compute D, we must invert the 1055 * matrix and use the known data and parity values to reconstruct the unknown 1056 * data values. We begin by removing the rows in V|I and d|p that correspond 1057 * to failed or missing columns; we then make V|I square (n x n) and d|p 1058 * sized n by removing rows corresponding to unused parity from the bottom up 1059 * to generate (V|I)' and (d|p)'. We can then generate the inverse of (V|I)' 1060 * using Gauss-Jordan elimination. In the example below we use m=3 parity 1061 * columns, n=8 data columns, with errors in d_1, d_2, and p_1: 1062 * __ __ 1063 * | 1 1 1 1 1 1 1 1 | 1064 * | 128 64 32 16 8 4 2 1 | <-----+-+-- missing disks 1065 * | 19 205 116 29 64 16 4 1 | / / 1066 * | 1 0 0 0 0 0 0 0 | / / 1067 * | 0 1 0 0 0 0 0 0 | <--' / 1068 * (V|I) = | 0 0 1 0 0 0 0 0 | <---' 1069 * | 0 0 0 1 0 0 0 0 | 1070 * | 0 0 0 0 1 0 0 0 | 1071 * | 0 0 0 0 0 1 0 0 | 1072 * | 0 0 0 0 0 0 1 0 | 1073 * | 0 0 0 0 0 0 0 1 | 1074 * ~~ ~~ 1075 * __ __ 1076 * | 1 1 1 1 1 1 1 1 | 1077 * | 128 64 32 16 8 4 2 1 | 1078 * | 19 205 116 29 64 16 4 1 | 1079 * | 1 0 0 0 0 0 0 0 | 1080 * | 0 1 0 0 0 0 0 0 | 1081 * (V|I)' = | 0 0 1 0 0 0 0 0 | 1082 * | 0 0 0 1 0 0 0 0 | 1083 * | 0 0 0 0 1 0 0 0 | 1084 * | 0 0 0 0 0 1 0 0 | 1085 * | 0 0 0 0 0 0 1 0 | 1086 * | 0 0 0 0 0 0 0 1 | 1087 * ~~ ~~ 1088 * 1089 * Here we employ Gauss-Jordan elimination to find the inverse of (V|I)'. We 1090 * have carefully chosen the seed values 1, 2, and 4 to ensure that this 1091 * matrix is not singular. 1092 * __ __ 1093 * | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 | 1094 * | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 | 1095 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | 1096 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | 1097 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | 1098 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | 1099 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | 1100 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | 1101 * ~~ ~~ 1102 * __ __ 1103 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | 1104 * | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 | 1105 * | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 | 1106 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | 1107 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | 1108 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | 1109 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | 1110 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | 1111 * ~~ ~~ 1112 * __ __ 1113 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | 1114 * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 | 1115 * | 0 205 116 0 0 0 0 0 0 1 19 29 64 16 4 1 | 1116 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | 1117 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | 1118 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | 1119 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | 1120 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | 1121 * ~~ ~~ 1122 * __ __ 1123 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | 1124 * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 | 1125 * | 0 0 185 0 0 0 0 0 205 1 222 208 141 221 201 204 | 1126 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | 1127 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | 1128 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | 1129 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | 1130 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | 1131 * ~~ ~~ 1132 * __ __ 1133 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | 1134 * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 | 1135 * | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 | 1136 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | 1137 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | 1138 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | 1139 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | 1140 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | 1141 * ~~ ~~ 1142 * __ __ 1143 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | 1144 * | 0 1 0 0 0 0 0 0 167 100 5 41 159 169 217 208 | 1145 * | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 | 1146 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | 1147 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | 1148 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | 1149 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | 1150 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | 1151 * ~~ ~~ 1152 * __ __ 1153 * | 0 0 1 0 0 0 0 0 | 1154 * | 167 100 5 41 159 169 217 208 | 1155 * | 166 100 4 40 158 168 216 209 | 1156 * (V|I)'^-1 = | 0 0 0 1 0 0 0 0 | 1157 * | 0 0 0 0 1 0 0 0 | 1158 * | 0 0 0 0 0 1 0 0 | 1159 * | 0 0 0 0 0 0 1 0 | 1160 * | 0 0 0 0 0 0 0 1 | 1161 * ~~ ~~ 1162 * 1163 * We can then simply compute D = (V|I)'^-1 x (d|p)' to discover the values 1164 * of the missing data. 1165 * 1166 * As is apparent from the example above, the only non-trivial rows in the 1167 * inverse matrix correspond to the data disks that we're trying to 1168 * reconstruct. Indeed, those are the only rows we need as the others would 1169 * only be useful for reconstructing data known or assumed to be valid. For 1170 * that reason, we only build the coefficients in the rows that correspond to 1171 * targeted columns. 1172 */ 1173 /* END CSTYLED */ 1174 1175 static void 1176 vdev_raidz_matrix_init(raidz_row_t *rr, int n, int nmap, int *map, 1177 uint8_t **rows) 1178 { 1179 int i, j; 1180 int pow; 1181 1182 ASSERT(n == rr->rr_cols - rr->rr_firstdatacol); 1183 1184 /* 1185 * Fill in the missing rows of interest. 1186 */ 1187 for (i = 0; i < nmap; i++) { 1188 ASSERT3S(0, <=, map[i]); 1189 ASSERT3S(map[i], <=, 2); 1190 1191 pow = map[i] * n; 1192 if (pow > 255) 1193 pow -= 255; 1194 ASSERT(pow <= 255); 1195 1196 for (j = 0; j < n; j++) { 1197 pow -= map[i]; 1198 if (pow < 0) 1199 pow += 255; 1200 rows[i][j] = vdev_raidz_pow2[pow]; 1201 } 1202 } 1203 } 1204 1205 static void 1206 vdev_raidz_matrix_invert(raidz_row_t *rr, int n, int nmissing, int *missing, 1207 uint8_t **rows, uint8_t **invrows, const uint8_t *used) 1208 { 1209 int i, j, ii, jj; 1210 uint8_t log; 1211 1212 /* 1213 * Assert that the first nmissing entries from the array of used 1214 * columns correspond to parity columns and that subsequent entries 1215 * correspond to data columns. 1216 */ 1217 for (i = 0; i < nmissing; i++) { 1218 ASSERT3S(used[i], <, rr->rr_firstdatacol); 1219 } 1220 for (; i < n; i++) { 1221 ASSERT3S(used[i], >=, rr->rr_firstdatacol); 1222 } 1223 1224 /* 1225 * First initialize the storage where we'll compute the inverse rows. 1226 */ 1227 for (i = 0; i < nmissing; i++) { 1228 for (j = 0; j < n; j++) { 1229 invrows[i][j] = (i == j) ? 1 : 0; 1230 } 1231 } 1232 1233 /* 1234 * Subtract all trivial rows from the rows of consequence. 1235 */ 1236 for (i = 0; i < nmissing; i++) { 1237 for (j = nmissing; j < n; j++) { 1238 ASSERT3U(used[j], >=, rr->rr_firstdatacol); 1239 jj = used[j] - rr->rr_firstdatacol; 1240 ASSERT3S(jj, <, n); 1241 invrows[i][j] = rows[i][jj]; 1242 rows[i][jj] = 0; 1243 } 1244 } 1245 1246 /* 1247 * For each of the rows of interest, we must normalize it and subtract 1248 * a multiple of it from the other rows. 1249 */ 1250 for (i = 0; i < nmissing; i++) { 1251 for (j = 0; j < missing[i]; j++) { 1252 ASSERT0(rows[i][j]); 1253 } 1254 ASSERT3U(rows[i][missing[i]], !=, 0); 1255 1256 /* 1257 * Compute the inverse of the first element and multiply each 1258 * element in the row by that value. 1259 */ 1260 log = 255 - vdev_raidz_log2[rows[i][missing[i]]]; 1261 1262 for (j = 0; j < n; j++) { 1263 rows[i][j] = vdev_raidz_exp2(rows[i][j], log); 1264 invrows[i][j] = vdev_raidz_exp2(invrows[i][j], log); 1265 } 1266 1267 for (ii = 0; ii < nmissing; ii++) { 1268 if (i == ii) 1269 continue; 1270 1271 ASSERT3U(rows[ii][missing[i]], !=, 0); 1272 1273 log = vdev_raidz_log2[rows[ii][missing[i]]]; 1274 1275 for (j = 0; j < n; j++) { 1276 rows[ii][j] ^= 1277 vdev_raidz_exp2(rows[i][j], log); 1278 invrows[ii][j] ^= 1279 vdev_raidz_exp2(invrows[i][j], log); 1280 } 1281 } 1282 } 1283 1284 /* 1285 * Verify that the data that is left in the rows are properly part of 1286 * an identity matrix. 1287 */ 1288 for (i = 0; i < nmissing; i++) { 1289 for (j = 0; j < n; j++) { 1290 if (j == missing[i]) { 1291 ASSERT3U(rows[i][j], ==, 1); 1292 } else { 1293 ASSERT0(rows[i][j]); 1294 } 1295 } 1296 } 1297 } 1298 1299 static void 1300 vdev_raidz_matrix_reconstruct(raidz_row_t *rr, int n, int nmissing, 1301 int *missing, uint8_t **invrows, const uint8_t *used) 1302 { 1303 int i, j, x, cc, c; 1304 uint8_t *src; 1305 uint64_t ccount; 1306 uint8_t *dst[VDEV_RAIDZ_MAXPARITY] = { NULL }; 1307 uint64_t dcount[VDEV_RAIDZ_MAXPARITY] = { 0 }; 1308 uint8_t log = 0; 1309 uint8_t val; 1310 int ll; 1311 uint8_t *invlog[VDEV_RAIDZ_MAXPARITY]; 1312 uint8_t *p, *pp; 1313 size_t psize; 1314 1315 psize = sizeof (invlog[0][0]) * n * nmissing; 1316 p = kmem_alloc(psize, KM_SLEEP); 1317 1318 for (pp = p, i = 0; i < nmissing; i++) { 1319 invlog[i] = pp; 1320 pp += n; 1321 } 1322 1323 for (i = 0; i < nmissing; i++) { 1324 for (j = 0; j < n; j++) { 1325 ASSERT3U(invrows[i][j], !=, 0); 1326 invlog[i][j] = vdev_raidz_log2[invrows[i][j]]; 1327 } 1328 } 1329 1330 for (i = 0; i < n; i++) { 1331 c = used[i]; 1332 ASSERT3U(c, <, rr->rr_cols); 1333 1334 ccount = rr->rr_col[c].rc_size; 1335 ASSERT(ccount >= rr->rr_col[missing[0]].rc_size || i > 0); 1336 if (ccount == 0) 1337 continue; 1338 src = abd_to_buf(rr->rr_col[c].rc_abd); 1339 for (j = 0; j < nmissing; j++) { 1340 cc = missing[j] + rr->rr_firstdatacol; 1341 ASSERT3U(cc, >=, rr->rr_firstdatacol); 1342 ASSERT3U(cc, <, rr->rr_cols); 1343 ASSERT3U(cc, !=, c); 1344 1345 dcount[j] = rr->rr_col[cc].rc_size; 1346 if (dcount[j] != 0) 1347 dst[j] = abd_to_buf(rr->rr_col[cc].rc_abd); 1348 } 1349 1350 for (x = 0; x < ccount; x++, src++) { 1351 if (*src != 0) 1352 log = vdev_raidz_log2[*src]; 1353 1354 for (cc = 0; cc < nmissing; cc++) { 1355 if (x >= dcount[cc]) 1356 continue; 1357 1358 if (*src == 0) { 1359 val = 0; 1360 } else { 1361 if ((ll = log + invlog[cc][i]) >= 255) 1362 ll -= 255; 1363 val = vdev_raidz_pow2[ll]; 1364 } 1365 1366 if (i == 0) 1367 dst[cc][x] = val; 1368 else 1369 dst[cc][x] ^= val; 1370 } 1371 } 1372 } 1373 1374 kmem_free(p, psize); 1375 } 1376 1377 static int 1378 vdev_raidz_reconstruct_general(raidz_row_t *rr, int *tgts, int ntgts) 1379 { 1380 int n, i, c, t, tt; 1381 int nmissing_rows; 1382 int missing_rows[VDEV_RAIDZ_MAXPARITY]; 1383 int parity_map[VDEV_RAIDZ_MAXPARITY]; 1384 uint8_t *p, *pp; 1385 size_t psize; 1386 uint8_t *rows[VDEV_RAIDZ_MAXPARITY]; 1387 uint8_t *invrows[VDEV_RAIDZ_MAXPARITY]; 1388 uint8_t *used; 1389 1390 abd_t **bufs = NULL; 1391 1392 int code = 0; 1393 1394 /* 1395 * Matrix reconstruction can't use scatter ABDs yet, so we allocate 1396 * temporary linear ABDs if any non-linear ABDs are found. 1397 */ 1398 for (i = rr->rr_firstdatacol; i < rr->rr_cols; i++) { 1399 if (!abd_is_linear(rr->rr_col[i].rc_abd)) { 1400 bufs = kmem_alloc(rr->rr_cols * sizeof (abd_t *), 1401 KM_PUSHPAGE); 1402 1403 for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 1404 raidz_col_t *col = &rr->rr_col[c]; 1405 1406 bufs[c] = col->rc_abd; 1407 if (bufs[c] != NULL) { 1408 col->rc_abd = abd_alloc_linear( 1409 col->rc_size, B_TRUE); 1410 abd_copy(col->rc_abd, bufs[c], 1411 col->rc_size); 1412 } 1413 } 1414 1415 break; 1416 } 1417 } 1418 1419 n = rr->rr_cols - rr->rr_firstdatacol; 1420 1421 /* 1422 * Figure out which data columns are missing. 1423 */ 1424 nmissing_rows = 0; 1425 for (t = 0; t < ntgts; t++) { 1426 if (tgts[t] >= rr->rr_firstdatacol) { 1427 missing_rows[nmissing_rows++] = 1428 tgts[t] - rr->rr_firstdatacol; 1429 } 1430 } 1431 1432 /* 1433 * Figure out which parity columns to use to help generate the missing 1434 * data columns. 1435 */ 1436 for (tt = 0, c = 0, i = 0; i < nmissing_rows; c++) { 1437 ASSERT(tt < ntgts); 1438 ASSERT(c < rr->rr_firstdatacol); 1439 1440 /* 1441 * Skip any targeted parity columns. 1442 */ 1443 if (c == tgts[tt]) { 1444 tt++; 1445 continue; 1446 } 1447 1448 code |= 1 << c; 1449 1450 parity_map[i] = c; 1451 i++; 1452 } 1453 1454 ASSERT(code != 0); 1455 ASSERT3U(code, <, 1 << VDEV_RAIDZ_MAXPARITY); 1456 1457 psize = (sizeof (rows[0][0]) + sizeof (invrows[0][0])) * 1458 nmissing_rows * n + sizeof (used[0]) * n; 1459 p = kmem_alloc(psize, KM_SLEEP); 1460 1461 for (pp = p, i = 0; i < nmissing_rows; i++) { 1462 rows[i] = pp; 1463 pp += n; 1464 invrows[i] = pp; 1465 pp += n; 1466 } 1467 used = pp; 1468 1469 for (i = 0; i < nmissing_rows; i++) { 1470 used[i] = parity_map[i]; 1471 } 1472 1473 for (tt = 0, c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 1474 if (tt < nmissing_rows && 1475 c == missing_rows[tt] + rr->rr_firstdatacol) { 1476 tt++; 1477 continue; 1478 } 1479 1480 ASSERT3S(i, <, n); 1481 used[i] = c; 1482 i++; 1483 } 1484 1485 /* 1486 * Initialize the interesting rows of the matrix. 1487 */ 1488 vdev_raidz_matrix_init(rr, n, nmissing_rows, parity_map, rows); 1489 1490 /* 1491 * Invert the matrix. 1492 */ 1493 vdev_raidz_matrix_invert(rr, n, nmissing_rows, missing_rows, rows, 1494 invrows, used); 1495 1496 /* 1497 * Reconstruct the missing data using the generated matrix. 1498 */ 1499 vdev_raidz_matrix_reconstruct(rr, n, nmissing_rows, missing_rows, 1500 invrows, used); 1501 1502 kmem_free(p, psize); 1503 1504 /* 1505 * copy back from temporary linear abds and free them 1506 */ 1507 if (bufs) { 1508 for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 1509 raidz_col_t *col = &rr->rr_col[c]; 1510 1511 if (bufs[c] != NULL) { 1512 abd_copy(bufs[c], col->rc_abd, col->rc_size); 1513 abd_free(col->rc_abd); 1514 } 1515 col->rc_abd = bufs[c]; 1516 } 1517 kmem_free(bufs, rr->rr_cols * sizeof (abd_t *)); 1518 } 1519 1520 return (code); 1521 } 1522 1523 static int 1524 vdev_raidz_reconstruct_row(raidz_map_t *rm, raidz_row_t *rr, 1525 const int *t, int nt) 1526 { 1527 int tgts[VDEV_RAIDZ_MAXPARITY], *dt; 1528 int ntgts; 1529 int i, c, ret; 1530 int code; 1531 int nbadparity, nbaddata; 1532 int parity_valid[VDEV_RAIDZ_MAXPARITY]; 1533 1534 nbadparity = rr->rr_firstdatacol; 1535 nbaddata = rr->rr_cols - nbadparity; 1536 ntgts = 0; 1537 for (i = 0, c = 0; c < rr->rr_cols; c++) { 1538 if (c < rr->rr_firstdatacol) 1539 parity_valid[c] = B_FALSE; 1540 1541 if (i < nt && c == t[i]) { 1542 tgts[ntgts++] = c; 1543 i++; 1544 } else if (rr->rr_col[c].rc_error != 0) { 1545 tgts[ntgts++] = c; 1546 } else if (c >= rr->rr_firstdatacol) { 1547 nbaddata--; 1548 } else { 1549 parity_valid[c] = B_TRUE; 1550 nbadparity--; 1551 } 1552 } 1553 1554 ASSERT(ntgts >= nt); 1555 ASSERT(nbaddata >= 0); 1556 ASSERT(nbaddata + nbadparity == ntgts); 1557 1558 dt = &tgts[nbadparity]; 1559 1560 /* Reconstruct using the new math implementation */ 1561 ret = vdev_raidz_math_reconstruct(rm, rr, parity_valid, dt, nbaddata); 1562 if (ret != RAIDZ_ORIGINAL_IMPL) 1563 return (ret); 1564 1565 /* 1566 * See if we can use any of our optimized reconstruction routines. 1567 */ 1568 switch (nbaddata) { 1569 case 1: 1570 if (parity_valid[VDEV_RAIDZ_P]) 1571 return (vdev_raidz_reconstruct_p(rr, dt, 1)); 1572 1573 ASSERT(rr->rr_firstdatacol > 1); 1574 1575 if (parity_valid[VDEV_RAIDZ_Q]) 1576 return (vdev_raidz_reconstruct_q(rr, dt, 1)); 1577 1578 ASSERT(rr->rr_firstdatacol > 2); 1579 break; 1580 1581 case 2: 1582 ASSERT(rr->rr_firstdatacol > 1); 1583 1584 if (parity_valid[VDEV_RAIDZ_P] && 1585 parity_valid[VDEV_RAIDZ_Q]) 1586 return (vdev_raidz_reconstruct_pq(rr, dt, 2)); 1587 1588 ASSERT(rr->rr_firstdatacol > 2); 1589 1590 break; 1591 } 1592 1593 code = vdev_raidz_reconstruct_general(rr, tgts, ntgts); 1594 ASSERT(code < (1 << VDEV_RAIDZ_MAXPARITY)); 1595 ASSERT(code > 0); 1596 return (code); 1597 } 1598 1599 static int 1600 vdev_raidz_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize, 1601 uint64_t *logical_ashift, uint64_t *physical_ashift) 1602 { 1603 vdev_raidz_t *vdrz = vd->vdev_tsd; 1604 uint64_t nparity = vdrz->vd_nparity; 1605 int c; 1606 int lasterror = 0; 1607 int numerrors = 0; 1608 1609 ASSERT(nparity > 0); 1610 1611 if (nparity > VDEV_RAIDZ_MAXPARITY || 1612 vd->vdev_children < nparity + 1) { 1613 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 1614 return (SET_ERROR(EINVAL)); 1615 } 1616 1617 vdev_open_children(vd); 1618 1619 for (c = 0; c < vd->vdev_children; c++) { 1620 vdev_t *cvd = vd->vdev_child[c]; 1621 1622 if (cvd->vdev_open_error != 0) { 1623 lasterror = cvd->vdev_open_error; 1624 numerrors++; 1625 continue; 1626 } 1627 1628 *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1; 1629 *max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1; 1630 *logical_ashift = MAX(*logical_ashift, cvd->vdev_ashift); 1631 *physical_ashift = MAX(*physical_ashift, 1632 cvd->vdev_physical_ashift); 1633 } 1634 1635 *asize *= vd->vdev_children; 1636 *max_asize *= vd->vdev_children; 1637 1638 if (numerrors > nparity) { 1639 vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS; 1640 return (lasterror); 1641 } 1642 1643 return (0); 1644 } 1645 1646 static void 1647 vdev_raidz_close(vdev_t *vd) 1648 { 1649 for (int c = 0; c < vd->vdev_children; c++) { 1650 if (vd->vdev_child[c] != NULL) 1651 vdev_close(vd->vdev_child[c]); 1652 } 1653 } 1654 1655 static uint64_t 1656 vdev_raidz_asize(vdev_t *vd, uint64_t psize) 1657 { 1658 vdev_raidz_t *vdrz = vd->vdev_tsd; 1659 uint64_t asize; 1660 uint64_t ashift = vd->vdev_top->vdev_ashift; 1661 uint64_t cols = vdrz->vd_logical_width; 1662 uint64_t nparity = vdrz->vd_nparity; 1663 1664 asize = ((psize - 1) >> ashift) + 1; 1665 asize += nparity * ((asize + cols - nparity - 1) / (cols - nparity)); 1666 asize = roundup(asize, nparity + 1) << ashift; 1667 1668 return (asize); 1669 } 1670 1671 /* 1672 * The allocatable space for a raidz vdev is N * sizeof(smallest child) 1673 * so each child must provide at least 1/Nth of its asize. 1674 */ 1675 static uint64_t 1676 vdev_raidz_min_asize(vdev_t *vd) 1677 { 1678 return ((vd->vdev_min_asize + vd->vdev_children - 1) / 1679 vd->vdev_children); 1680 } 1681 1682 void 1683 vdev_raidz_child_done(zio_t *zio) 1684 { 1685 raidz_col_t *rc = zio->io_private; 1686 1687 rc->rc_error = zio->io_error; 1688 rc->rc_tried = 1; 1689 rc->rc_skipped = 0; 1690 } 1691 1692 static void 1693 vdev_raidz_io_verify(vdev_t *vd, raidz_row_t *rr, int col) 1694 { 1695 #ifdef ZFS_DEBUG 1696 vdev_t *tvd = vd->vdev_top; 1697 1698 range_seg64_t logical_rs, physical_rs, remain_rs; 1699 logical_rs.rs_start = rr->rr_offset; 1700 logical_rs.rs_end = logical_rs.rs_start + 1701 vdev_raidz_asize(vd, rr->rr_size); 1702 1703 raidz_col_t *rc = &rr->rr_col[col]; 1704 vdev_t *cvd = vd->vdev_child[rc->rc_devidx]; 1705 1706 vdev_xlate(cvd, &logical_rs, &physical_rs, &remain_rs); 1707 ASSERT(vdev_xlate_is_empty(&remain_rs)); 1708 ASSERT3U(rc->rc_offset, ==, physical_rs.rs_start); 1709 ASSERT3U(rc->rc_offset, <, physical_rs.rs_end); 1710 /* 1711 * It would be nice to assert that rs_end is equal 1712 * to rc_offset + rc_size but there might be an 1713 * optional I/O at the end that is not accounted in 1714 * rc_size. 1715 */ 1716 if (physical_rs.rs_end > rc->rc_offset + rc->rc_size) { 1717 ASSERT3U(physical_rs.rs_end, ==, rc->rc_offset + 1718 rc->rc_size + (1 << tvd->vdev_ashift)); 1719 } else { 1720 ASSERT3U(physical_rs.rs_end, ==, rc->rc_offset + rc->rc_size); 1721 } 1722 #endif 1723 } 1724 1725 static void 1726 vdev_raidz_io_start_write(zio_t *zio, raidz_row_t *rr, uint64_t ashift) 1727 { 1728 vdev_t *vd = zio->io_vd; 1729 raidz_map_t *rm = zio->io_vsd; 1730 int c, i; 1731 1732 vdev_raidz_generate_parity_row(rm, rr); 1733 1734 for (int c = 0; c < rr->rr_cols; c++) { 1735 raidz_col_t *rc = &rr->rr_col[c]; 1736 if (rc->rc_size == 0) 1737 continue; 1738 1739 /* Verify physical to logical translation */ 1740 vdev_raidz_io_verify(vd, rr, c); 1741 1742 zio_nowait(zio_vdev_child_io(zio, NULL, 1743 vd->vdev_child[rc->rc_devidx], rc->rc_offset, 1744 rc->rc_abd, rc->rc_size, zio->io_type, zio->io_priority, 1745 0, vdev_raidz_child_done, rc)); 1746 } 1747 1748 /* 1749 * Generate optional I/Os for skip sectors to improve aggregation 1750 * contiguity. 1751 */ 1752 for (c = rm->rm_skipstart, i = 0; i < rm->rm_nskip; c++, i++) { 1753 ASSERT(c <= rr->rr_scols); 1754 if (c == rr->rr_scols) 1755 c = 0; 1756 1757 raidz_col_t *rc = &rr->rr_col[c]; 1758 vdev_t *cvd = vd->vdev_child[rc->rc_devidx]; 1759 1760 zio_nowait(zio_vdev_child_io(zio, NULL, cvd, 1761 rc->rc_offset + rc->rc_size, NULL, 1ULL << ashift, 1762 zio->io_type, zio->io_priority, 1763 ZIO_FLAG_NODATA | ZIO_FLAG_OPTIONAL, NULL, NULL)); 1764 } 1765 } 1766 1767 static void 1768 vdev_raidz_io_start_read(zio_t *zio, raidz_row_t *rr) 1769 { 1770 vdev_t *vd = zio->io_vd; 1771 1772 /* 1773 * Iterate over the columns in reverse order so that we hit the parity 1774 * last -- any errors along the way will force us to read the parity. 1775 */ 1776 for (int c = rr->rr_cols - 1; c >= 0; c--) { 1777 raidz_col_t *rc = &rr->rr_col[c]; 1778 if (rc->rc_size == 0) 1779 continue; 1780 vdev_t *cvd = vd->vdev_child[rc->rc_devidx]; 1781 if (!vdev_readable(cvd)) { 1782 if (c >= rr->rr_firstdatacol) 1783 rr->rr_missingdata++; 1784 else 1785 rr->rr_missingparity++; 1786 rc->rc_error = SET_ERROR(ENXIO); 1787 rc->rc_tried = 1; /* don't even try */ 1788 rc->rc_skipped = 1; 1789 continue; 1790 } 1791 if (vdev_dtl_contains(cvd, DTL_MISSING, zio->io_txg, 1)) { 1792 if (c >= rr->rr_firstdatacol) 1793 rr->rr_missingdata++; 1794 else 1795 rr->rr_missingparity++; 1796 rc->rc_error = SET_ERROR(ESTALE); 1797 rc->rc_skipped = 1; 1798 continue; 1799 } 1800 if (c >= rr->rr_firstdatacol || rr->rr_missingdata > 0 || 1801 (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) { 1802 zio_nowait(zio_vdev_child_io(zio, NULL, cvd, 1803 rc->rc_offset, rc->rc_abd, rc->rc_size, 1804 zio->io_type, zio->io_priority, 0, 1805 vdev_raidz_child_done, rc)); 1806 } 1807 } 1808 } 1809 1810 /* 1811 * Start an IO operation on a RAIDZ VDev 1812 * 1813 * Outline: 1814 * - For write operations: 1815 * 1. Generate the parity data 1816 * 2. Create child zio write operations to each column's vdev, for both 1817 * data and parity. 1818 * 3. If the column skips any sectors for padding, create optional dummy 1819 * write zio children for those areas to improve aggregation continuity. 1820 * - For read operations: 1821 * 1. Create child zio read operations to each data column's vdev to read 1822 * the range of data required for zio. 1823 * 2. If this is a scrub or resilver operation, or if any of the data 1824 * vdevs have had errors, then create zio read operations to the parity 1825 * columns' VDevs as well. 1826 */ 1827 static void 1828 vdev_raidz_io_start(zio_t *zio) 1829 { 1830 vdev_t *vd = zio->io_vd; 1831 vdev_t *tvd = vd->vdev_top; 1832 vdev_raidz_t *vdrz = vd->vdev_tsd; 1833 raidz_map_t *rm; 1834 1835 rm = vdev_raidz_map_alloc(zio, tvd->vdev_ashift, 1836 vdrz->vd_logical_width, vdrz->vd_nparity); 1837 1838 /* 1839 * Until raidz expansion is implemented all maps for a raidz vdev 1840 * contain a single row. 1841 */ 1842 ASSERT3U(rm->rm_nrows, ==, 1); 1843 raidz_row_t *rr = rm->rm_row[0]; 1844 1845 zio->io_vsd = rm; 1846 zio->io_vsd_ops = &vdev_raidz_vsd_ops; 1847 1848 if (zio->io_type == ZIO_TYPE_WRITE) { 1849 vdev_raidz_io_start_write(zio, rr, tvd->vdev_ashift); 1850 } else { 1851 ASSERT(zio->io_type == ZIO_TYPE_READ); 1852 vdev_raidz_io_start_read(zio, rr); 1853 } 1854 1855 zio_execute(zio); 1856 } 1857 1858 /* 1859 * Report a checksum error for a child of a RAID-Z device. 1860 */ 1861 static void 1862 raidz_checksum_error(zio_t *zio, raidz_col_t *rc, abd_t *bad_data) 1863 { 1864 vdev_t *vd = zio->io_vd->vdev_child[rc->rc_devidx]; 1865 1866 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE) && 1867 zio->io_priority != ZIO_PRIORITY_REBUILD) { 1868 zio_bad_cksum_t zbc; 1869 raidz_map_t *rm = zio->io_vsd; 1870 1871 zbc.zbc_has_cksum = 0; 1872 zbc.zbc_injected = rm->rm_ecksuminjected; 1873 1874 int ret = zfs_ereport_post_checksum(zio->io_spa, vd, 1875 &zio->io_bookmark, zio, rc->rc_offset, rc->rc_size, 1876 rc->rc_abd, bad_data, &zbc); 1877 if (ret != EALREADY) { 1878 mutex_enter(&vd->vdev_stat_lock); 1879 vd->vdev_stat.vs_checksum_errors++; 1880 mutex_exit(&vd->vdev_stat_lock); 1881 } 1882 } 1883 } 1884 1885 /* 1886 * We keep track of whether or not there were any injected errors, so that 1887 * any ereports we generate can note it. 1888 */ 1889 static int 1890 raidz_checksum_verify(zio_t *zio) 1891 { 1892 zio_bad_cksum_t zbc; 1893 raidz_map_t *rm = zio->io_vsd; 1894 1895 bzero(&zbc, sizeof (zio_bad_cksum_t)); 1896 1897 int ret = zio_checksum_error(zio, &zbc); 1898 if (ret != 0 && zbc.zbc_injected != 0) 1899 rm->rm_ecksuminjected = 1; 1900 1901 return (ret); 1902 } 1903 1904 /* 1905 * Generate the parity from the data columns. If we tried and were able to 1906 * read the parity without error, verify that the generated parity matches the 1907 * data we read. If it doesn't, we fire off a checksum error. Return the 1908 * number of such failures. 1909 */ 1910 static int 1911 raidz_parity_verify(zio_t *zio, raidz_row_t *rr) 1912 { 1913 abd_t *orig[VDEV_RAIDZ_MAXPARITY]; 1914 int c, ret = 0; 1915 raidz_map_t *rm = zio->io_vsd; 1916 raidz_col_t *rc; 1917 1918 blkptr_t *bp = zio->io_bp; 1919 enum zio_checksum checksum = (bp == NULL ? zio->io_prop.zp_checksum : 1920 (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp))); 1921 1922 if (checksum == ZIO_CHECKSUM_NOPARITY) 1923 return (ret); 1924 1925 for (c = 0; c < rr->rr_firstdatacol; c++) { 1926 rc = &rr->rr_col[c]; 1927 if (!rc->rc_tried || rc->rc_error != 0) 1928 continue; 1929 1930 orig[c] = abd_alloc_sametype(rc->rc_abd, rc->rc_size); 1931 abd_copy(orig[c], rc->rc_abd, rc->rc_size); 1932 } 1933 1934 /* 1935 * Regenerates parity even for !tried||rc_error!=0 columns. This 1936 * isn't harmful but it does have the side effect of fixing stuff 1937 * we didn't realize was necessary (i.e. even if we return 0). 1938 */ 1939 vdev_raidz_generate_parity_row(rm, rr); 1940 1941 for (c = 0; c < rr->rr_firstdatacol; c++) { 1942 rc = &rr->rr_col[c]; 1943 1944 if (!rc->rc_tried || rc->rc_error != 0) 1945 continue; 1946 1947 if (abd_cmp(orig[c], rc->rc_abd) != 0) { 1948 raidz_checksum_error(zio, rc, orig[c]); 1949 rc->rc_error = SET_ERROR(ECKSUM); 1950 ret++; 1951 } 1952 abd_free(orig[c]); 1953 } 1954 1955 return (ret); 1956 } 1957 1958 static int 1959 vdev_raidz_worst_error(raidz_row_t *rr) 1960 { 1961 int error = 0; 1962 1963 for (int c = 0; c < rr->rr_cols; c++) 1964 error = zio_worst_error(error, rr->rr_col[c].rc_error); 1965 1966 return (error); 1967 } 1968 1969 static void 1970 vdev_raidz_io_done_verified(zio_t *zio, raidz_row_t *rr) 1971 { 1972 int unexpected_errors = 0; 1973 int parity_errors = 0; 1974 int parity_untried = 0; 1975 int data_errors = 0; 1976 1977 ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ); 1978 1979 for (int c = 0; c < rr->rr_cols; c++) { 1980 raidz_col_t *rc = &rr->rr_col[c]; 1981 1982 if (rc->rc_error) { 1983 if (c < rr->rr_firstdatacol) 1984 parity_errors++; 1985 else 1986 data_errors++; 1987 1988 if (!rc->rc_skipped) 1989 unexpected_errors++; 1990 } else if (c < rr->rr_firstdatacol && !rc->rc_tried) { 1991 parity_untried++; 1992 } 1993 } 1994 1995 /* 1996 * If we read more parity disks than were used for 1997 * reconstruction, confirm that the other parity disks produced 1998 * correct data. 1999 * 2000 * Note that we also regenerate parity when resilvering so we 2001 * can write it out to failed devices later. 2002 */ 2003 if (parity_errors + parity_untried < 2004 rr->rr_firstdatacol - data_errors || 2005 (zio->io_flags & ZIO_FLAG_RESILVER)) { 2006 int n = raidz_parity_verify(zio, rr); 2007 unexpected_errors += n; 2008 ASSERT3U(parity_errors + n, <=, rr->rr_firstdatacol); 2009 } 2010 2011 if (zio->io_error == 0 && spa_writeable(zio->io_spa) && 2012 (unexpected_errors > 0 || (zio->io_flags & ZIO_FLAG_RESILVER))) { 2013 /* 2014 * Use the good data we have in hand to repair damaged children. 2015 */ 2016 for (int c = 0; c < rr->rr_cols; c++) { 2017 raidz_col_t *rc = &rr->rr_col[c]; 2018 vdev_t *vd = zio->io_vd; 2019 vdev_t *cvd = vd->vdev_child[rc->rc_devidx]; 2020 2021 if ((rc->rc_error == 0 || rc->rc_size == 0) && 2022 (rc->rc_repair == 0)) { 2023 continue; 2024 } 2025 2026 zio_nowait(zio_vdev_child_io(zio, NULL, cvd, 2027 rc->rc_offset, rc->rc_abd, rc->rc_size, 2028 ZIO_TYPE_WRITE, 2029 zio->io_priority == ZIO_PRIORITY_REBUILD ? 2030 ZIO_PRIORITY_REBUILD : ZIO_PRIORITY_ASYNC_WRITE, 2031 ZIO_FLAG_IO_REPAIR | (unexpected_errors ? 2032 ZIO_FLAG_SELF_HEAL : 0), NULL, NULL)); 2033 } 2034 } 2035 } 2036 2037 static void 2038 raidz_restore_orig_data(raidz_map_t *rm) 2039 { 2040 for (int i = 0; i < rm->rm_nrows; i++) { 2041 raidz_row_t *rr = rm->rm_row[i]; 2042 for (int c = 0; c < rr->rr_cols; c++) { 2043 raidz_col_t *rc = &rr->rr_col[c]; 2044 if (rc->rc_need_orig_restore) { 2045 abd_copy_from_buf(rc->rc_abd, 2046 rc->rc_orig_data, rc->rc_size); 2047 rc->rc_need_orig_restore = B_FALSE; 2048 } 2049 } 2050 } 2051 } 2052 2053 /* 2054 * returns EINVAL if reconstruction of the block will not be possible 2055 * returns ECKSUM if this specific reconstruction failed 2056 * returns 0 on successful reconstruction 2057 */ 2058 static int 2059 raidz_reconstruct(zio_t *zio, int *ltgts, int ntgts, int nparity) 2060 { 2061 raidz_map_t *rm = zio->io_vsd; 2062 2063 /* Reconstruct each row */ 2064 for (int r = 0; r < rm->rm_nrows; r++) { 2065 raidz_row_t *rr = rm->rm_row[r]; 2066 int my_tgts[VDEV_RAIDZ_MAXPARITY]; /* value is child id */ 2067 int t = 0; 2068 int dead = 0; 2069 int dead_data = 0; 2070 2071 for (int c = 0; c < rr->rr_cols; c++) { 2072 raidz_col_t *rc = &rr->rr_col[c]; 2073 ASSERT0(rc->rc_need_orig_restore); 2074 if (rc->rc_error != 0) { 2075 dead++; 2076 if (c >= nparity) 2077 dead_data++; 2078 continue; 2079 } 2080 if (rc->rc_size == 0) 2081 continue; 2082 for (int lt = 0; lt < ntgts; lt++) { 2083 if (rc->rc_devidx == ltgts[lt]) { 2084 if (rc->rc_orig_data == NULL) { 2085 rc->rc_orig_data = 2086 zio_buf_alloc(rc->rc_size); 2087 abd_copy_to_buf( 2088 rc->rc_orig_data, 2089 rc->rc_abd, rc->rc_size); 2090 } 2091 rc->rc_need_orig_restore = B_TRUE; 2092 2093 dead++; 2094 if (c >= nparity) 2095 dead_data++; 2096 my_tgts[t++] = c; 2097 break; 2098 } 2099 } 2100 } 2101 if (dead > nparity) { 2102 /* reconstruction not possible */ 2103 raidz_restore_orig_data(rm); 2104 return (EINVAL); 2105 } 2106 rr->rr_code = 0; 2107 if (dead_data > 0) 2108 rr->rr_code = vdev_raidz_reconstruct_row(rm, rr, 2109 my_tgts, t); 2110 } 2111 2112 /* Check for success */ 2113 if (raidz_checksum_verify(zio) == 0) { 2114 2115 /* Reconstruction succeeded - report errors */ 2116 for (int i = 0; i < rm->rm_nrows; i++) { 2117 raidz_row_t *rr = rm->rm_row[i]; 2118 2119 for (int c = 0; c < rr->rr_cols; c++) { 2120 raidz_col_t *rc = &rr->rr_col[c]; 2121 if (rc->rc_need_orig_restore) { 2122 /* 2123 * Note: if this is a parity column, 2124 * we don't really know if it's wrong. 2125 * We need to let 2126 * vdev_raidz_io_done_verified() check 2127 * it, and if we set rc_error, it will 2128 * think that it is a "known" error 2129 * that doesn't need to be checked 2130 * or corrected. 2131 */ 2132 if (rc->rc_error == 0 && 2133 c >= rr->rr_firstdatacol) { 2134 raidz_checksum_error(zio, 2135 rc, rc->rc_gdata); 2136 rc->rc_error = 2137 SET_ERROR(ECKSUM); 2138 } 2139 rc->rc_need_orig_restore = B_FALSE; 2140 } 2141 } 2142 2143 vdev_raidz_io_done_verified(zio, rr); 2144 } 2145 2146 zio_checksum_verified(zio); 2147 2148 return (0); 2149 } 2150 2151 /* Reconstruction failed - restore original data */ 2152 raidz_restore_orig_data(rm); 2153 return (ECKSUM); 2154 } 2155 2156 /* 2157 * Iterate over all combinations of N bad vdevs and attempt a reconstruction. 2158 * Note that the algorithm below is non-optimal because it doesn't take into 2159 * account how reconstruction is actually performed. For example, with 2160 * triple-parity RAID-Z the reconstruction procedure is the same if column 4 2161 * is targeted as invalid as if columns 1 and 4 are targeted since in both 2162 * cases we'd only use parity information in column 0. 2163 * 2164 * The order that we find the various possible combinations of failed 2165 * disks is dictated by these rules: 2166 * - Examine each "slot" (the "i" in tgts[i]) 2167 * - Try to increment this slot (tgts[i] = tgts[i] + 1) 2168 * - if we can't increment because it runs into the next slot, 2169 * reset our slot to the minimum, and examine the next slot 2170 * 2171 * For example, with a 6-wide RAIDZ3, and no known errors (so we have to choose 2172 * 3 columns to reconstruct), we will generate the following sequence: 2173 * 2174 * STATE ACTION 2175 * 0 1 2 special case: skip since these are all parity 2176 * 0 1 3 first slot: reset to 0; middle slot: increment to 2 2177 * 0 2 3 first slot: increment to 1 2178 * 1 2 3 first: reset to 0; middle: reset to 1; last: increment to 4 2179 * 0 1 4 first: reset to 0; middle: increment to 2 2180 * 0 2 4 first: increment to 1 2181 * 1 2 4 first: reset to 0; middle: increment to 3 2182 * 0 3 4 first: increment to 1 2183 * 1 3 4 first: increment to 2 2184 * 2 3 4 first: reset to 0; middle: reset to 1; last: increment to 5 2185 * 0 1 5 first: reset to 0; middle: increment to 2 2186 * 0 2 5 first: increment to 1 2187 * 1 2 5 first: reset to 0; middle: increment to 3 2188 * 0 3 5 first: increment to 1 2189 * 1 3 5 first: increment to 2 2190 * 2 3 5 first: reset to 0; middle: increment to 4 2191 * 0 4 5 first: increment to 1 2192 * 1 4 5 first: increment to 2 2193 * 2 4 5 first: increment to 3 2194 * 3 4 5 done 2195 * 2196 * This strategy works for dRAID but is less effecient when there are a large 2197 * number of child vdevs and therefore permutations to check. Furthermore, 2198 * since the raidz_map_t rows likely do not overlap reconstruction would be 2199 * possible as long as there are no more than nparity data errors per row. 2200 * These additional permutations are not currently checked but could be as 2201 * a future improvement. 2202 */ 2203 static int 2204 vdev_raidz_combrec(zio_t *zio) 2205 { 2206 int nparity = vdev_get_nparity(zio->io_vd); 2207 raidz_map_t *rm = zio->io_vsd; 2208 2209 /* Check if there's enough data to attempt reconstrution. */ 2210 for (int i = 0; i < rm->rm_nrows; i++) { 2211 raidz_row_t *rr = rm->rm_row[i]; 2212 int total_errors = 0; 2213 2214 for (int c = 0; c < rr->rr_cols; c++) { 2215 if (rr->rr_col[c].rc_error) 2216 total_errors++; 2217 } 2218 2219 if (total_errors > nparity) 2220 return (vdev_raidz_worst_error(rr)); 2221 } 2222 2223 for (int num_failures = 1; num_failures <= nparity; num_failures++) { 2224 int tstore[VDEV_RAIDZ_MAXPARITY + 2]; 2225 int *ltgts = &tstore[1]; /* value is logical child ID */ 2226 2227 /* Determine number of logical children, n */ 2228 int n = zio->io_vd->vdev_children; 2229 2230 ASSERT3U(num_failures, <=, nparity); 2231 ASSERT3U(num_failures, <=, VDEV_RAIDZ_MAXPARITY); 2232 2233 /* Handle corner cases in combrec logic */ 2234 ltgts[-1] = -1; 2235 for (int i = 0; i < num_failures; i++) { 2236 ltgts[i] = i; 2237 } 2238 ltgts[num_failures] = n; 2239 2240 for (;;) { 2241 int err = raidz_reconstruct(zio, ltgts, num_failures, 2242 nparity); 2243 if (err == EINVAL) { 2244 /* 2245 * Reconstruction not possible with this # 2246 * failures; try more failures. 2247 */ 2248 break; 2249 } else if (err == 0) 2250 return (0); 2251 2252 /* Compute next targets to try */ 2253 for (int t = 0; ; t++) { 2254 ASSERT3U(t, <, num_failures); 2255 ltgts[t]++; 2256 if (ltgts[t] == n) { 2257 /* try more failures */ 2258 ASSERT3U(t, ==, num_failures - 1); 2259 break; 2260 } 2261 2262 ASSERT3U(ltgts[t], <, n); 2263 ASSERT3U(ltgts[t], <=, ltgts[t + 1]); 2264 2265 /* 2266 * If that spot is available, we're done here. 2267 * Try the next combination. 2268 */ 2269 if (ltgts[t] != ltgts[t + 1]) 2270 break; 2271 2272 /* 2273 * Otherwise, reset this tgt to the minimum, 2274 * and move on to the next tgt. 2275 */ 2276 ltgts[t] = ltgts[t - 1] + 1; 2277 ASSERT3U(ltgts[t], ==, t); 2278 } 2279 2280 /* Increase the number of failures and keep trying. */ 2281 if (ltgts[num_failures - 1] == n) 2282 break; 2283 } 2284 } 2285 2286 return (ECKSUM); 2287 } 2288 2289 void 2290 vdev_raidz_reconstruct(raidz_map_t *rm, const int *t, int nt) 2291 { 2292 for (uint64_t row = 0; row < rm->rm_nrows; row++) { 2293 raidz_row_t *rr = rm->rm_row[row]; 2294 vdev_raidz_reconstruct_row(rm, rr, t, nt); 2295 } 2296 } 2297 2298 /* 2299 * Complete a write IO operation on a RAIDZ VDev 2300 * 2301 * Outline: 2302 * 1. Check for errors on the child IOs. 2303 * 2. Return, setting an error code if too few child VDevs were written 2304 * to reconstruct the data later. Note that partial writes are 2305 * considered successful if they can be reconstructed at all. 2306 */ 2307 static void 2308 vdev_raidz_io_done_write_impl(zio_t *zio, raidz_row_t *rr) 2309 { 2310 int total_errors = 0; 2311 2312 ASSERT3U(rr->rr_missingparity, <=, rr->rr_firstdatacol); 2313 ASSERT3U(rr->rr_missingdata, <=, rr->rr_cols - rr->rr_firstdatacol); 2314 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 2315 2316 for (int c = 0; c < rr->rr_cols; c++) { 2317 raidz_col_t *rc = &rr->rr_col[c]; 2318 2319 if (rc->rc_error) { 2320 ASSERT(rc->rc_error != ECKSUM); /* child has no bp */ 2321 2322 total_errors++; 2323 } 2324 } 2325 2326 /* 2327 * Treat partial writes as a success. If we couldn't write enough 2328 * columns to reconstruct the data, the I/O failed. Otherwise, 2329 * good enough. 2330 * 2331 * Now that we support write reallocation, it would be better 2332 * to treat partial failure as real failure unless there are 2333 * no non-degraded top-level vdevs left, and not update DTLs 2334 * if we intend to reallocate. 2335 */ 2336 if (total_errors > rr->rr_firstdatacol) { 2337 zio->io_error = zio_worst_error(zio->io_error, 2338 vdev_raidz_worst_error(rr)); 2339 } 2340 } 2341 2342 /* 2343 * return 0 if no reconstruction occurred, otherwise the "code" from 2344 * vdev_raidz_reconstruct(). 2345 */ 2346 static int 2347 vdev_raidz_io_done_reconstruct_known_missing(zio_t *zio, raidz_map_t *rm, 2348 raidz_row_t *rr) 2349 { 2350 int parity_errors = 0; 2351 int parity_untried = 0; 2352 int data_errors = 0; 2353 int total_errors = 0; 2354 int code = 0; 2355 2356 ASSERT3U(rr->rr_missingparity, <=, rr->rr_firstdatacol); 2357 ASSERT3U(rr->rr_missingdata, <=, rr->rr_cols - rr->rr_firstdatacol); 2358 ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ); 2359 2360 for (int c = 0; c < rr->rr_cols; c++) { 2361 raidz_col_t *rc = &rr->rr_col[c]; 2362 2363 if (rc->rc_error) { 2364 ASSERT(rc->rc_error != ECKSUM); /* child has no bp */ 2365 2366 if (c < rr->rr_firstdatacol) 2367 parity_errors++; 2368 else 2369 data_errors++; 2370 2371 total_errors++; 2372 } else if (c < rr->rr_firstdatacol && !rc->rc_tried) { 2373 parity_untried++; 2374 } 2375 } 2376 2377 /* 2378 * If there were data errors and the number of errors we saw was 2379 * correctable -- less than or equal to the number of parity disks read 2380 * -- reconstruct based on the missing data. 2381 */ 2382 if (data_errors != 0 && 2383 total_errors <= rr->rr_firstdatacol - parity_untried) { 2384 /* 2385 * We either attempt to read all the parity columns or 2386 * none of them. If we didn't try to read parity, we 2387 * wouldn't be here in the correctable case. There must 2388 * also have been fewer parity errors than parity 2389 * columns or, again, we wouldn't be in this code path. 2390 */ 2391 ASSERT(parity_untried == 0); 2392 ASSERT(parity_errors < rr->rr_firstdatacol); 2393 2394 /* 2395 * Identify the data columns that reported an error. 2396 */ 2397 int n = 0; 2398 int tgts[VDEV_RAIDZ_MAXPARITY]; 2399 for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 2400 raidz_col_t *rc = &rr->rr_col[c]; 2401 if (rc->rc_error != 0) { 2402 ASSERT(n < VDEV_RAIDZ_MAXPARITY); 2403 tgts[n++] = c; 2404 } 2405 } 2406 2407 ASSERT(rr->rr_firstdatacol >= n); 2408 2409 code = vdev_raidz_reconstruct_row(rm, rr, tgts, n); 2410 } 2411 2412 return (code); 2413 } 2414 2415 /* 2416 * Return the number of reads issued. 2417 */ 2418 static int 2419 vdev_raidz_read_all(zio_t *zio, raidz_row_t *rr) 2420 { 2421 vdev_t *vd = zio->io_vd; 2422 int nread = 0; 2423 2424 rr->rr_missingdata = 0; 2425 rr->rr_missingparity = 0; 2426 2427 /* 2428 * If this rows contains empty sectors which are not required 2429 * for a normal read then allocate an ABD for them now so they 2430 * may be read, verified, and any needed repairs performed. 2431 */ 2432 if (rr->rr_nempty && rr->rr_abd_empty == NULL) 2433 vdev_draid_map_alloc_empty(zio, rr); 2434 2435 for (int c = 0; c < rr->rr_cols; c++) { 2436 raidz_col_t *rc = &rr->rr_col[c]; 2437 if (rc->rc_tried || rc->rc_size == 0) 2438 continue; 2439 2440 zio_nowait(zio_vdev_child_io(zio, NULL, 2441 vd->vdev_child[rc->rc_devidx], 2442 rc->rc_offset, rc->rc_abd, rc->rc_size, 2443 zio->io_type, zio->io_priority, 0, 2444 vdev_raidz_child_done, rc)); 2445 nread++; 2446 } 2447 return (nread); 2448 } 2449 2450 /* 2451 * We're here because either there were too many errors to even attempt 2452 * reconstruction (total_errors == rm_first_datacol), or vdev_*_combrec() 2453 * failed. In either case, there is enough bad data to prevent reconstruction. 2454 * Start checksum ereports for all children which haven't failed. 2455 */ 2456 static void 2457 vdev_raidz_io_done_unrecoverable(zio_t *zio) 2458 { 2459 raidz_map_t *rm = zio->io_vsd; 2460 2461 for (int i = 0; i < rm->rm_nrows; i++) { 2462 raidz_row_t *rr = rm->rm_row[i]; 2463 2464 for (int c = 0; c < rr->rr_cols; c++) { 2465 raidz_col_t *rc = &rr->rr_col[c]; 2466 vdev_t *cvd = zio->io_vd->vdev_child[rc->rc_devidx]; 2467 2468 if (rc->rc_error != 0) 2469 continue; 2470 2471 zio_bad_cksum_t zbc; 2472 zbc.zbc_has_cksum = 0; 2473 zbc.zbc_injected = rm->rm_ecksuminjected; 2474 2475 int ret = zfs_ereport_start_checksum(zio->io_spa, 2476 cvd, &zio->io_bookmark, zio, rc->rc_offset, 2477 rc->rc_size, (void *)(uintptr_t)c, &zbc); 2478 if (ret != EALREADY) { 2479 mutex_enter(&cvd->vdev_stat_lock); 2480 cvd->vdev_stat.vs_checksum_errors++; 2481 mutex_exit(&cvd->vdev_stat_lock); 2482 } 2483 } 2484 } 2485 } 2486 2487 void 2488 vdev_raidz_io_done(zio_t *zio) 2489 { 2490 raidz_map_t *rm = zio->io_vsd; 2491 2492 if (zio->io_type == ZIO_TYPE_WRITE) { 2493 for (int i = 0; i < rm->rm_nrows; i++) { 2494 vdev_raidz_io_done_write_impl(zio, rm->rm_row[i]); 2495 } 2496 } else { 2497 for (int i = 0; i < rm->rm_nrows; i++) { 2498 raidz_row_t *rr = rm->rm_row[i]; 2499 rr->rr_code = 2500 vdev_raidz_io_done_reconstruct_known_missing(zio, 2501 rm, rr); 2502 } 2503 2504 if (raidz_checksum_verify(zio) == 0) { 2505 for (int i = 0; i < rm->rm_nrows; i++) { 2506 raidz_row_t *rr = rm->rm_row[i]; 2507 vdev_raidz_io_done_verified(zio, rr); 2508 } 2509 zio_checksum_verified(zio); 2510 } else { 2511 /* 2512 * A sequential resilver has no checksum which makes 2513 * combinatoral reconstruction impossible. This code 2514 * path is unreachable since raidz_checksum_verify() 2515 * has no checksum to verify and must succeed. 2516 */ 2517 ASSERT3U(zio->io_priority, !=, ZIO_PRIORITY_REBUILD); 2518 2519 /* 2520 * This isn't a typical situation -- either we got a 2521 * read error or a child silently returned bad data. 2522 * Read every block so we can try again with as much 2523 * data and parity as we can track down. If we've 2524 * already been through once before, all children will 2525 * be marked as tried so we'll proceed to combinatorial 2526 * reconstruction. 2527 */ 2528 int nread = 0; 2529 for (int i = 0; i < rm->rm_nrows; i++) { 2530 nread += vdev_raidz_read_all(zio, 2531 rm->rm_row[i]); 2532 } 2533 if (nread != 0) { 2534 /* 2535 * Normally our stage is VDEV_IO_DONE, but if 2536 * we've already called redone(), it will have 2537 * changed to VDEV_IO_START, in which case we 2538 * don't want to call redone() again. 2539 */ 2540 if (zio->io_stage != ZIO_STAGE_VDEV_IO_START) 2541 zio_vdev_io_redone(zio); 2542 return; 2543 } 2544 2545 zio->io_error = vdev_raidz_combrec(zio); 2546 if (zio->io_error == ECKSUM && 2547 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 2548 vdev_raidz_io_done_unrecoverable(zio); 2549 } 2550 } 2551 } 2552 } 2553 2554 static void 2555 vdev_raidz_state_change(vdev_t *vd, int faulted, int degraded) 2556 { 2557 vdev_raidz_t *vdrz = vd->vdev_tsd; 2558 if (faulted > vdrz->vd_nparity) 2559 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2560 VDEV_AUX_NO_REPLICAS); 2561 else if (degraded + faulted != 0) 2562 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE); 2563 else 2564 vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE); 2565 } 2566 2567 /* 2568 * Determine if any portion of the provided block resides on a child vdev 2569 * with a dirty DTL and therefore needs to be resilvered. The function 2570 * assumes that at least one DTL is dirty which implies that full stripe 2571 * width blocks must be resilvered. 2572 */ 2573 static boolean_t 2574 vdev_raidz_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 2575 uint64_t phys_birth) 2576 { 2577 vdev_raidz_t *vdrz = vd->vdev_tsd; 2578 uint64_t dcols = vd->vdev_children; 2579 uint64_t nparity = vdrz->vd_nparity; 2580 uint64_t ashift = vd->vdev_top->vdev_ashift; 2581 /* The starting RAIDZ (parent) vdev sector of the block. */ 2582 uint64_t b = DVA_GET_OFFSET(dva) >> ashift; 2583 /* The zio's size in units of the vdev's minimum sector size. */ 2584 uint64_t s = ((psize - 1) >> ashift) + 1; 2585 /* The first column for this stripe. */ 2586 uint64_t f = b % dcols; 2587 2588 /* Unreachable by sequential resilver. */ 2589 ASSERT3U(phys_birth, !=, TXG_UNKNOWN); 2590 2591 if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)) 2592 return (B_FALSE); 2593 2594 if (s + nparity >= dcols) 2595 return (B_TRUE); 2596 2597 for (uint64_t c = 0; c < s + nparity; c++) { 2598 uint64_t devidx = (f + c) % dcols; 2599 vdev_t *cvd = vd->vdev_child[devidx]; 2600 2601 /* 2602 * dsl_scan_need_resilver() already checked vd with 2603 * vdev_dtl_contains(). So here just check cvd with 2604 * vdev_dtl_empty(), cheaper and a good approximation. 2605 */ 2606 if (!vdev_dtl_empty(cvd, DTL_PARTIAL)) 2607 return (B_TRUE); 2608 } 2609 2610 return (B_FALSE); 2611 } 2612 2613 static void 2614 vdev_raidz_xlate(vdev_t *cvd, const range_seg64_t *logical_rs, 2615 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 2616 { 2617 vdev_t *raidvd = cvd->vdev_parent; 2618 ASSERT(raidvd->vdev_ops == &vdev_raidz_ops); 2619 2620 uint64_t width = raidvd->vdev_children; 2621 uint64_t tgt_col = cvd->vdev_id; 2622 uint64_t ashift = raidvd->vdev_top->vdev_ashift; 2623 2624 /* make sure the offsets are block-aligned */ 2625 ASSERT0(logical_rs->rs_start % (1 << ashift)); 2626 ASSERT0(logical_rs->rs_end % (1 << ashift)); 2627 uint64_t b_start = logical_rs->rs_start >> ashift; 2628 uint64_t b_end = logical_rs->rs_end >> ashift; 2629 2630 uint64_t start_row = 0; 2631 if (b_start > tgt_col) /* avoid underflow */ 2632 start_row = ((b_start - tgt_col - 1) / width) + 1; 2633 2634 uint64_t end_row = 0; 2635 if (b_end > tgt_col) 2636 end_row = ((b_end - tgt_col - 1) / width) + 1; 2637 2638 physical_rs->rs_start = start_row << ashift; 2639 physical_rs->rs_end = end_row << ashift; 2640 2641 ASSERT3U(physical_rs->rs_start, <=, logical_rs->rs_start); 2642 ASSERT3U(physical_rs->rs_end - physical_rs->rs_start, <=, 2643 logical_rs->rs_end - logical_rs->rs_start); 2644 } 2645 2646 /* 2647 * Initialize private RAIDZ specific fields from the nvlist. 2648 */ 2649 static int 2650 vdev_raidz_init(spa_t *spa, nvlist_t *nv, void **tsd) 2651 { 2652 vdev_raidz_t *vdrz; 2653 uint64_t nparity; 2654 2655 uint_t children; 2656 nvlist_t **child; 2657 int error = nvlist_lookup_nvlist_array(nv, 2658 ZPOOL_CONFIG_CHILDREN, &child, &children); 2659 if (error != 0) 2660 return (SET_ERROR(EINVAL)); 2661 2662 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &nparity) == 0) { 2663 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 2664 return (SET_ERROR(EINVAL)); 2665 2666 /* 2667 * Previous versions could only support 1 or 2 parity 2668 * device. 2669 */ 2670 if (nparity > 1 && spa_version(spa) < SPA_VERSION_RAIDZ2) 2671 return (SET_ERROR(EINVAL)); 2672 else if (nparity > 2 && spa_version(spa) < SPA_VERSION_RAIDZ3) 2673 return (SET_ERROR(EINVAL)); 2674 } else { 2675 /* 2676 * We require the parity to be specified for SPAs that 2677 * support multiple parity levels. 2678 */ 2679 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 2680 return (SET_ERROR(EINVAL)); 2681 2682 /* 2683 * Otherwise, we default to 1 parity device for RAID-Z. 2684 */ 2685 nparity = 1; 2686 } 2687 2688 vdrz = kmem_zalloc(sizeof (*vdrz), KM_SLEEP); 2689 vdrz->vd_logical_width = children; 2690 vdrz->vd_nparity = nparity; 2691 2692 *tsd = vdrz; 2693 2694 return (0); 2695 } 2696 2697 static void 2698 vdev_raidz_fini(vdev_t *vd) 2699 { 2700 kmem_free(vd->vdev_tsd, sizeof (vdev_raidz_t)); 2701 } 2702 2703 /* 2704 * Add RAIDZ specific fields to the config nvlist. 2705 */ 2706 static void 2707 vdev_raidz_config_generate(vdev_t *vd, nvlist_t *nv) 2708 { 2709 ASSERT3P(vd->vdev_ops, ==, &vdev_raidz_ops); 2710 vdev_raidz_t *vdrz = vd->vdev_tsd; 2711 2712 /* 2713 * Make sure someone hasn't managed to sneak a fancy new vdev 2714 * into a crufty old storage pool. 2715 */ 2716 ASSERT(vdrz->vd_nparity == 1 || 2717 (vdrz->vd_nparity <= 2 && 2718 spa_version(vd->vdev_spa) >= SPA_VERSION_RAIDZ2) || 2719 (vdrz->vd_nparity <= 3 && 2720 spa_version(vd->vdev_spa) >= SPA_VERSION_RAIDZ3)); 2721 2722 /* 2723 * Note that we'll add these even on storage pools where they 2724 * aren't strictly required -- older software will just ignore 2725 * it. 2726 */ 2727 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vdrz->vd_nparity); 2728 } 2729 2730 static uint64_t 2731 vdev_raidz_nparity(vdev_t *vd) 2732 { 2733 vdev_raidz_t *vdrz = vd->vdev_tsd; 2734 return (vdrz->vd_nparity); 2735 } 2736 2737 static uint64_t 2738 vdev_raidz_ndisks(vdev_t *vd) 2739 { 2740 return (vd->vdev_children); 2741 } 2742 2743 vdev_ops_t vdev_raidz_ops = { 2744 .vdev_op_init = vdev_raidz_init, 2745 .vdev_op_fini = vdev_raidz_fini, 2746 .vdev_op_open = vdev_raidz_open, 2747 .vdev_op_close = vdev_raidz_close, 2748 .vdev_op_asize = vdev_raidz_asize, 2749 .vdev_op_min_asize = vdev_raidz_min_asize, 2750 .vdev_op_min_alloc = NULL, 2751 .vdev_op_io_start = vdev_raidz_io_start, 2752 .vdev_op_io_done = vdev_raidz_io_done, 2753 .vdev_op_state_change = vdev_raidz_state_change, 2754 .vdev_op_need_resilver = vdev_raidz_need_resilver, 2755 .vdev_op_hold = NULL, 2756 .vdev_op_rele = NULL, 2757 .vdev_op_remap = NULL, 2758 .vdev_op_xlate = vdev_raidz_xlate, 2759 .vdev_op_rebuild_asize = NULL, 2760 .vdev_op_metaslab_init = NULL, 2761 .vdev_op_config_generate = vdev_raidz_config_generate, 2762 .vdev_op_nparity = vdev_raidz_nparity, 2763 .vdev_op_ndisks = vdev_raidz_ndisks, 2764 .vdev_op_type = VDEV_TYPE_RAIDZ, /* name of this vdev type */ 2765 .vdev_op_leaf = B_FALSE /* not a leaf vdev */ 2766 }; 2767