1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2016 Gvozden Nešković. All rights reserved. 26 */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa.h> 30 #include <sys/vdev_impl.h> 31 #include <sys/zio.h> 32 #include <sys/zio_checksum.h> 33 #include <sys/abd.h> 34 #include <sys/fs/zfs.h> 35 #include <sys/fm/fs/zfs.h> 36 #include <sys/vdev_raidz.h> 37 #include <sys/vdev_raidz_impl.h> 38 #include <sys/vdev_draid.h> 39 40 #ifdef ZFS_DEBUG 41 #include <sys/vdev.h> /* For vdev_xlate() in vdev_raidz_io_verify() */ 42 #endif 43 44 /* 45 * Virtual device vector for RAID-Z. 46 * 47 * This vdev supports single, double, and triple parity. For single parity, 48 * we use a simple XOR of all the data columns. For double or triple parity, 49 * we use a special case of Reed-Solomon coding. This extends the 50 * technique described in "The mathematics of RAID-6" by H. Peter Anvin by 51 * drawing on the system described in "A Tutorial on Reed-Solomon Coding for 52 * Fault-Tolerance in RAID-like Systems" by James S. Plank on which the 53 * former is also based. The latter is designed to provide higher performance 54 * for writes. 55 * 56 * Note that the Plank paper claimed to support arbitrary N+M, but was then 57 * amended six years later identifying a critical flaw that invalidates its 58 * claims. Nevertheless, the technique can be adapted to work for up to 59 * triple parity. For additional parity, the amendment "Note: Correction to 60 * the 1997 Tutorial on Reed-Solomon Coding" by James S. Plank and Ying Ding 61 * is viable, but the additional complexity means that write performance will 62 * suffer. 63 * 64 * All of the methods above operate on a Galois field, defined over the 65 * integers mod 2^N. In our case we choose N=8 for GF(8) so that all elements 66 * can be expressed with a single byte. Briefly, the operations on the 67 * field are defined as follows: 68 * 69 * o addition (+) is represented by a bitwise XOR 70 * o subtraction (-) is therefore identical to addition: A + B = A - B 71 * o multiplication of A by 2 is defined by the following bitwise expression: 72 * 73 * (A * 2)_7 = A_6 74 * (A * 2)_6 = A_5 75 * (A * 2)_5 = A_4 76 * (A * 2)_4 = A_3 + A_7 77 * (A * 2)_3 = A_2 + A_7 78 * (A * 2)_2 = A_1 + A_7 79 * (A * 2)_1 = A_0 80 * (A * 2)_0 = A_7 81 * 82 * In C, multiplying by 2 is therefore ((a << 1) ^ ((a & 0x80) ? 0x1d : 0)). 83 * As an aside, this multiplication is derived from the error correcting 84 * primitive polynomial x^8 + x^4 + x^3 + x^2 + 1. 85 * 86 * Observe that any number in the field (except for 0) can be expressed as a 87 * power of 2 -- a generator for the field. We store a table of the powers of 88 * 2 and logs base 2 for quick look ups, and exploit the fact that A * B can 89 * be rewritten as 2^(log_2(A) + log_2(B)) (where '+' is normal addition rather 90 * than field addition). The inverse of a field element A (A^-1) is therefore 91 * A ^ (255 - 1) = A^254. 92 * 93 * The up-to-three parity columns, P, Q, R over several data columns, 94 * D_0, ... D_n-1, can be expressed by field operations: 95 * 96 * P = D_0 + D_1 + ... + D_n-2 + D_n-1 97 * Q = 2^n-1 * D_0 + 2^n-2 * D_1 + ... + 2^1 * D_n-2 + 2^0 * D_n-1 98 * = ((...((D_0) * 2 + D_1) * 2 + ...) * 2 + D_n-2) * 2 + D_n-1 99 * R = 4^n-1 * D_0 + 4^n-2 * D_1 + ... + 4^1 * D_n-2 + 4^0 * D_n-1 100 * = ((...((D_0) * 4 + D_1) * 4 + ...) * 4 + D_n-2) * 4 + D_n-1 101 * 102 * We chose 1, 2, and 4 as our generators because 1 corresponds to the trivial 103 * XOR operation, and 2 and 4 can be computed quickly and generate linearly- 104 * independent coefficients. (There are no additional coefficients that have 105 * this property which is why the uncorrected Plank method breaks down.) 106 * 107 * See the reconstruction code below for how P, Q and R can used individually 108 * or in concert to recover missing data columns. 109 */ 110 111 #define VDEV_RAIDZ_P 0 112 #define VDEV_RAIDZ_Q 1 113 #define VDEV_RAIDZ_R 2 114 115 #define VDEV_RAIDZ_MUL_2(x) (((x) << 1) ^ (((x) & 0x80) ? 0x1d : 0)) 116 #define VDEV_RAIDZ_MUL_4(x) (VDEV_RAIDZ_MUL_2(VDEV_RAIDZ_MUL_2(x))) 117 118 /* 119 * We provide a mechanism to perform the field multiplication operation on a 120 * 64-bit value all at once rather than a byte at a time. This works by 121 * creating a mask from the top bit in each byte and using that to 122 * conditionally apply the XOR of 0x1d. 123 */ 124 #define VDEV_RAIDZ_64MUL_2(x, mask) \ 125 { \ 126 (mask) = (x) & 0x8080808080808080ULL; \ 127 (mask) = ((mask) << 1) - ((mask) >> 7); \ 128 (x) = (((x) << 1) & 0xfefefefefefefefeULL) ^ \ 129 ((mask) & 0x1d1d1d1d1d1d1d1dULL); \ 130 } 131 132 #define VDEV_RAIDZ_64MUL_4(x, mask) \ 133 { \ 134 VDEV_RAIDZ_64MUL_2((x), mask); \ 135 VDEV_RAIDZ_64MUL_2((x), mask); \ 136 } 137 138 static void 139 vdev_raidz_row_free(raidz_row_t *rr) 140 { 141 for (int c = 0; c < rr->rr_cols; c++) { 142 raidz_col_t *rc = &rr->rr_col[c]; 143 144 if (rc->rc_size != 0) 145 abd_free(rc->rc_abd); 146 if (rc->rc_orig_data != NULL) 147 abd_free(rc->rc_orig_data); 148 } 149 150 if (rr->rr_abd_empty != NULL) 151 abd_free(rr->rr_abd_empty); 152 153 kmem_free(rr, offsetof(raidz_row_t, rr_col[rr->rr_scols])); 154 } 155 156 void 157 vdev_raidz_map_free(raidz_map_t *rm) 158 { 159 for (int i = 0; i < rm->rm_nrows; i++) 160 vdev_raidz_row_free(rm->rm_row[i]); 161 162 kmem_free(rm, offsetof(raidz_map_t, rm_row[rm->rm_nrows])); 163 } 164 165 static void 166 vdev_raidz_map_free_vsd(zio_t *zio) 167 { 168 raidz_map_t *rm = zio->io_vsd; 169 170 vdev_raidz_map_free(rm); 171 } 172 173 const zio_vsd_ops_t vdev_raidz_vsd_ops = { 174 .vsd_free = vdev_raidz_map_free_vsd, 175 }; 176 177 /* 178 * Divides the IO evenly across all child vdevs; usually, dcols is 179 * the number of children in the target vdev. 180 * 181 * Avoid inlining the function to keep vdev_raidz_io_start(), which 182 * is this functions only caller, as small as possible on the stack. 183 */ 184 noinline raidz_map_t * 185 vdev_raidz_map_alloc(zio_t *zio, uint64_t ashift, uint64_t dcols, 186 uint64_t nparity) 187 { 188 raidz_row_t *rr; 189 /* The starting RAIDZ (parent) vdev sector of the block. */ 190 uint64_t b = zio->io_offset >> ashift; 191 /* The zio's size in units of the vdev's minimum sector size. */ 192 uint64_t s = zio->io_size >> ashift; 193 /* The first column for this stripe. */ 194 uint64_t f = b % dcols; 195 /* The starting byte offset on each child vdev. */ 196 uint64_t o = (b / dcols) << ashift; 197 uint64_t q, r, c, bc, col, acols, scols, coff, devidx, asize, tot; 198 199 raidz_map_t *rm = 200 kmem_zalloc(offsetof(raidz_map_t, rm_row[1]), KM_SLEEP); 201 rm->rm_nrows = 1; 202 203 /* 204 * "Quotient": The number of data sectors for this stripe on all but 205 * the "big column" child vdevs that also contain "remainder" data. 206 */ 207 q = s / (dcols - nparity); 208 209 /* 210 * "Remainder": The number of partial stripe data sectors in this I/O. 211 * This will add a sector to some, but not all, child vdevs. 212 */ 213 r = s - q * (dcols - nparity); 214 215 /* The number of "big columns" - those which contain remainder data. */ 216 bc = (r == 0 ? 0 : r + nparity); 217 218 /* 219 * The total number of data and parity sectors associated with 220 * this I/O. 221 */ 222 tot = s + nparity * (q + (r == 0 ? 0 : 1)); 223 224 /* 225 * acols: The columns that will be accessed. 226 * scols: The columns that will be accessed or skipped. 227 */ 228 if (q == 0) { 229 /* Our I/O request doesn't span all child vdevs. */ 230 acols = bc; 231 scols = MIN(dcols, roundup(bc, nparity + 1)); 232 } else { 233 acols = dcols; 234 scols = dcols; 235 } 236 237 ASSERT3U(acols, <=, scols); 238 239 rr = kmem_alloc(offsetof(raidz_row_t, rr_col[scols]), KM_SLEEP); 240 rm->rm_row[0] = rr; 241 242 rr->rr_cols = acols; 243 rr->rr_scols = scols; 244 rr->rr_bigcols = bc; 245 rr->rr_missingdata = 0; 246 rr->rr_missingparity = 0; 247 rr->rr_firstdatacol = nparity; 248 rr->rr_abd_empty = NULL; 249 rr->rr_nempty = 0; 250 #ifdef ZFS_DEBUG 251 rr->rr_offset = zio->io_offset; 252 rr->rr_size = zio->io_size; 253 #endif 254 255 asize = 0; 256 257 for (c = 0; c < scols; c++) { 258 raidz_col_t *rc = &rr->rr_col[c]; 259 col = f + c; 260 coff = o; 261 if (col >= dcols) { 262 col -= dcols; 263 coff += 1ULL << ashift; 264 } 265 rc->rc_devidx = col; 266 rc->rc_offset = coff; 267 rc->rc_abd = NULL; 268 rc->rc_orig_data = NULL; 269 rc->rc_error = 0; 270 rc->rc_tried = 0; 271 rc->rc_skipped = 0; 272 rc->rc_repair = 0; 273 rc->rc_need_orig_restore = B_FALSE; 274 275 if (c >= acols) 276 rc->rc_size = 0; 277 else if (c < bc) 278 rc->rc_size = (q + 1) << ashift; 279 else 280 rc->rc_size = q << ashift; 281 282 asize += rc->rc_size; 283 } 284 285 ASSERT3U(asize, ==, tot << ashift); 286 rm->rm_nskip = roundup(tot, nparity + 1) - tot; 287 rm->rm_skipstart = bc; 288 289 for (c = 0; c < rr->rr_firstdatacol; c++) 290 rr->rr_col[c].rc_abd = 291 abd_alloc_linear(rr->rr_col[c].rc_size, B_FALSE); 292 293 for (uint64_t off = 0; c < acols; c++) { 294 raidz_col_t *rc = &rr->rr_col[c]; 295 rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct, 296 zio->io_abd, off, rc->rc_size); 297 off += rc->rc_size; 298 } 299 300 /* 301 * If all data stored spans all columns, there's a danger that parity 302 * will always be on the same device and, since parity isn't read 303 * during normal operation, that device's I/O bandwidth won't be 304 * used effectively. We therefore switch the parity every 1MB. 305 * 306 * ... at least that was, ostensibly, the theory. As a practical 307 * matter unless we juggle the parity between all devices evenly, we 308 * won't see any benefit. Further, occasional writes that aren't a 309 * multiple of the LCM of the number of children and the minimum 310 * stripe width are sufficient to avoid pessimal behavior. 311 * Unfortunately, this decision created an implicit on-disk format 312 * requirement that we need to support for all eternity, but only 313 * for single-parity RAID-Z. 314 * 315 * If we intend to skip a sector in the zeroth column for padding 316 * we must make sure to note this swap. We will never intend to 317 * skip the first column since at least one data and one parity 318 * column must appear in each row. 319 */ 320 ASSERT(rr->rr_cols >= 2); 321 ASSERT(rr->rr_col[0].rc_size == rr->rr_col[1].rc_size); 322 323 if (rr->rr_firstdatacol == 1 && (zio->io_offset & (1ULL << 20))) { 324 devidx = rr->rr_col[0].rc_devidx; 325 o = rr->rr_col[0].rc_offset; 326 rr->rr_col[0].rc_devidx = rr->rr_col[1].rc_devidx; 327 rr->rr_col[0].rc_offset = rr->rr_col[1].rc_offset; 328 rr->rr_col[1].rc_devidx = devidx; 329 rr->rr_col[1].rc_offset = o; 330 331 if (rm->rm_skipstart == 0) 332 rm->rm_skipstart = 1; 333 } 334 335 /* init RAIDZ parity ops */ 336 rm->rm_ops = vdev_raidz_math_get_ops(); 337 338 return (rm); 339 } 340 341 struct pqr_struct { 342 uint64_t *p; 343 uint64_t *q; 344 uint64_t *r; 345 }; 346 347 static int 348 vdev_raidz_p_func(void *buf, size_t size, void *private) 349 { 350 struct pqr_struct *pqr = private; 351 const uint64_t *src = buf; 352 int i, cnt = size / sizeof (src[0]); 353 354 ASSERT(pqr->p && !pqr->q && !pqr->r); 355 356 for (i = 0; i < cnt; i++, src++, pqr->p++) 357 *pqr->p ^= *src; 358 359 return (0); 360 } 361 362 static int 363 vdev_raidz_pq_func(void *buf, size_t size, void *private) 364 { 365 struct pqr_struct *pqr = private; 366 const uint64_t *src = buf; 367 uint64_t mask; 368 int i, cnt = size / sizeof (src[0]); 369 370 ASSERT(pqr->p && pqr->q && !pqr->r); 371 372 for (i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++) { 373 *pqr->p ^= *src; 374 VDEV_RAIDZ_64MUL_2(*pqr->q, mask); 375 *pqr->q ^= *src; 376 } 377 378 return (0); 379 } 380 381 static int 382 vdev_raidz_pqr_func(void *buf, size_t size, void *private) 383 { 384 struct pqr_struct *pqr = private; 385 const uint64_t *src = buf; 386 uint64_t mask; 387 int i, cnt = size / sizeof (src[0]); 388 389 ASSERT(pqr->p && pqr->q && pqr->r); 390 391 for (i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++, pqr->r++) { 392 *pqr->p ^= *src; 393 VDEV_RAIDZ_64MUL_2(*pqr->q, mask); 394 *pqr->q ^= *src; 395 VDEV_RAIDZ_64MUL_4(*pqr->r, mask); 396 *pqr->r ^= *src; 397 } 398 399 return (0); 400 } 401 402 static void 403 vdev_raidz_generate_parity_p(raidz_row_t *rr) 404 { 405 uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd); 406 407 for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 408 abd_t *src = rr->rr_col[c].rc_abd; 409 410 if (c == rr->rr_firstdatacol) { 411 abd_copy_to_buf(p, src, rr->rr_col[c].rc_size); 412 } else { 413 struct pqr_struct pqr = { p, NULL, NULL }; 414 (void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size, 415 vdev_raidz_p_func, &pqr); 416 } 417 } 418 } 419 420 static void 421 vdev_raidz_generate_parity_pq(raidz_row_t *rr) 422 { 423 uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd); 424 uint64_t *q = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd); 425 uint64_t pcnt = rr->rr_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]); 426 ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size == 427 rr->rr_col[VDEV_RAIDZ_Q].rc_size); 428 429 for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 430 abd_t *src = rr->rr_col[c].rc_abd; 431 432 uint64_t ccnt = rr->rr_col[c].rc_size / sizeof (p[0]); 433 434 if (c == rr->rr_firstdatacol) { 435 ASSERT(ccnt == pcnt || ccnt == 0); 436 abd_copy_to_buf(p, src, rr->rr_col[c].rc_size); 437 (void) memcpy(q, p, rr->rr_col[c].rc_size); 438 439 for (uint64_t i = ccnt; i < pcnt; i++) { 440 p[i] = 0; 441 q[i] = 0; 442 } 443 } else { 444 struct pqr_struct pqr = { p, q, NULL }; 445 446 ASSERT(ccnt <= pcnt); 447 (void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size, 448 vdev_raidz_pq_func, &pqr); 449 450 /* 451 * Treat short columns as though they are full of 0s. 452 * Note that there's therefore nothing needed for P. 453 */ 454 uint64_t mask; 455 for (uint64_t i = ccnt; i < pcnt; i++) { 456 VDEV_RAIDZ_64MUL_2(q[i], mask); 457 } 458 } 459 } 460 } 461 462 static void 463 vdev_raidz_generate_parity_pqr(raidz_row_t *rr) 464 { 465 uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd); 466 uint64_t *q = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd); 467 uint64_t *r = abd_to_buf(rr->rr_col[VDEV_RAIDZ_R].rc_abd); 468 uint64_t pcnt = rr->rr_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]); 469 ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size == 470 rr->rr_col[VDEV_RAIDZ_Q].rc_size); 471 ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size == 472 rr->rr_col[VDEV_RAIDZ_R].rc_size); 473 474 for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 475 abd_t *src = rr->rr_col[c].rc_abd; 476 477 uint64_t ccnt = rr->rr_col[c].rc_size / sizeof (p[0]); 478 479 if (c == rr->rr_firstdatacol) { 480 ASSERT(ccnt == pcnt || ccnt == 0); 481 abd_copy_to_buf(p, src, rr->rr_col[c].rc_size); 482 (void) memcpy(q, p, rr->rr_col[c].rc_size); 483 (void) memcpy(r, p, rr->rr_col[c].rc_size); 484 485 for (uint64_t i = ccnt; i < pcnt; i++) { 486 p[i] = 0; 487 q[i] = 0; 488 r[i] = 0; 489 } 490 } else { 491 struct pqr_struct pqr = { p, q, r }; 492 493 ASSERT(ccnt <= pcnt); 494 (void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size, 495 vdev_raidz_pqr_func, &pqr); 496 497 /* 498 * Treat short columns as though they are full of 0s. 499 * Note that there's therefore nothing needed for P. 500 */ 501 uint64_t mask; 502 for (uint64_t i = ccnt; i < pcnt; i++) { 503 VDEV_RAIDZ_64MUL_2(q[i], mask); 504 VDEV_RAIDZ_64MUL_4(r[i], mask); 505 } 506 } 507 } 508 } 509 510 /* 511 * Generate RAID parity in the first virtual columns according to the number of 512 * parity columns available. 513 */ 514 void 515 vdev_raidz_generate_parity_row(raidz_map_t *rm, raidz_row_t *rr) 516 { 517 ASSERT3U(rr->rr_cols, !=, 0); 518 519 /* Generate using the new math implementation */ 520 if (vdev_raidz_math_generate(rm, rr) != RAIDZ_ORIGINAL_IMPL) 521 return; 522 523 switch (rr->rr_firstdatacol) { 524 case 1: 525 vdev_raidz_generate_parity_p(rr); 526 break; 527 case 2: 528 vdev_raidz_generate_parity_pq(rr); 529 break; 530 case 3: 531 vdev_raidz_generate_parity_pqr(rr); 532 break; 533 default: 534 cmn_err(CE_PANIC, "invalid RAID-Z configuration"); 535 } 536 } 537 538 void 539 vdev_raidz_generate_parity(raidz_map_t *rm) 540 { 541 for (int i = 0; i < rm->rm_nrows; i++) { 542 raidz_row_t *rr = rm->rm_row[i]; 543 vdev_raidz_generate_parity_row(rm, rr); 544 } 545 } 546 547 /* ARGSUSED */ 548 static int 549 vdev_raidz_reconst_p_func(void *dbuf, void *sbuf, size_t size, void *private) 550 { 551 uint64_t *dst = dbuf; 552 uint64_t *src = sbuf; 553 int cnt = size / sizeof (src[0]); 554 555 for (int i = 0; i < cnt; i++) { 556 dst[i] ^= src[i]; 557 } 558 559 return (0); 560 } 561 562 /* ARGSUSED */ 563 static int 564 vdev_raidz_reconst_q_pre_func(void *dbuf, void *sbuf, size_t size, 565 void *private) 566 { 567 uint64_t *dst = dbuf; 568 uint64_t *src = sbuf; 569 uint64_t mask; 570 int cnt = size / sizeof (dst[0]); 571 572 for (int i = 0; i < cnt; i++, dst++, src++) { 573 VDEV_RAIDZ_64MUL_2(*dst, mask); 574 *dst ^= *src; 575 } 576 577 return (0); 578 } 579 580 /* ARGSUSED */ 581 static int 582 vdev_raidz_reconst_q_pre_tail_func(void *buf, size_t size, void *private) 583 { 584 uint64_t *dst = buf; 585 uint64_t mask; 586 int cnt = size / sizeof (dst[0]); 587 588 for (int i = 0; i < cnt; i++, dst++) { 589 /* same operation as vdev_raidz_reconst_q_pre_func() on dst */ 590 VDEV_RAIDZ_64MUL_2(*dst, mask); 591 } 592 593 return (0); 594 } 595 596 struct reconst_q_struct { 597 uint64_t *q; 598 int exp; 599 }; 600 601 static int 602 vdev_raidz_reconst_q_post_func(void *buf, size_t size, void *private) 603 { 604 struct reconst_q_struct *rq = private; 605 uint64_t *dst = buf; 606 int cnt = size / sizeof (dst[0]); 607 608 for (int i = 0; i < cnt; i++, dst++, rq->q++) { 609 int j; 610 uint8_t *b; 611 612 *dst ^= *rq->q; 613 for (j = 0, b = (uint8_t *)dst; j < 8; j++, b++) { 614 *b = vdev_raidz_exp2(*b, rq->exp); 615 } 616 } 617 618 return (0); 619 } 620 621 struct reconst_pq_struct { 622 uint8_t *p; 623 uint8_t *q; 624 uint8_t *pxy; 625 uint8_t *qxy; 626 int aexp; 627 int bexp; 628 }; 629 630 static int 631 vdev_raidz_reconst_pq_func(void *xbuf, void *ybuf, size_t size, void *private) 632 { 633 struct reconst_pq_struct *rpq = private; 634 uint8_t *xd = xbuf; 635 uint8_t *yd = ybuf; 636 637 for (int i = 0; i < size; 638 i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++, yd++) { 639 *xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^ 640 vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp); 641 *yd = *rpq->p ^ *rpq->pxy ^ *xd; 642 } 643 644 return (0); 645 } 646 647 static int 648 vdev_raidz_reconst_pq_tail_func(void *xbuf, size_t size, void *private) 649 { 650 struct reconst_pq_struct *rpq = private; 651 uint8_t *xd = xbuf; 652 653 for (int i = 0; i < size; 654 i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++) { 655 /* same operation as vdev_raidz_reconst_pq_func() on xd */ 656 *xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^ 657 vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp); 658 } 659 660 return (0); 661 } 662 663 static void 664 vdev_raidz_reconstruct_p(raidz_row_t *rr, int *tgts, int ntgts) 665 { 666 int x = tgts[0]; 667 abd_t *dst, *src; 668 669 ASSERT3U(ntgts, ==, 1); 670 ASSERT3U(x, >=, rr->rr_firstdatacol); 671 ASSERT3U(x, <, rr->rr_cols); 672 673 ASSERT3U(rr->rr_col[x].rc_size, <=, rr->rr_col[VDEV_RAIDZ_P].rc_size); 674 675 src = rr->rr_col[VDEV_RAIDZ_P].rc_abd; 676 dst = rr->rr_col[x].rc_abd; 677 678 abd_copy_from_buf(dst, abd_to_buf(src), rr->rr_col[x].rc_size); 679 680 for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 681 uint64_t size = MIN(rr->rr_col[x].rc_size, 682 rr->rr_col[c].rc_size); 683 684 src = rr->rr_col[c].rc_abd; 685 686 if (c == x) 687 continue; 688 689 (void) abd_iterate_func2(dst, src, 0, 0, size, 690 vdev_raidz_reconst_p_func, NULL); 691 } 692 } 693 694 static void 695 vdev_raidz_reconstruct_q(raidz_row_t *rr, int *tgts, int ntgts) 696 { 697 int x = tgts[0]; 698 int c, exp; 699 abd_t *dst, *src; 700 701 ASSERT(ntgts == 1); 702 703 ASSERT(rr->rr_col[x].rc_size <= rr->rr_col[VDEV_RAIDZ_Q].rc_size); 704 705 for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 706 uint64_t size = (c == x) ? 0 : MIN(rr->rr_col[x].rc_size, 707 rr->rr_col[c].rc_size); 708 709 src = rr->rr_col[c].rc_abd; 710 dst = rr->rr_col[x].rc_abd; 711 712 if (c == rr->rr_firstdatacol) { 713 abd_copy(dst, src, size); 714 if (rr->rr_col[x].rc_size > size) { 715 abd_zero_off(dst, size, 716 rr->rr_col[x].rc_size - size); 717 } 718 } else { 719 ASSERT3U(size, <=, rr->rr_col[x].rc_size); 720 (void) abd_iterate_func2(dst, src, 0, 0, size, 721 vdev_raidz_reconst_q_pre_func, NULL); 722 (void) abd_iterate_func(dst, 723 size, rr->rr_col[x].rc_size - size, 724 vdev_raidz_reconst_q_pre_tail_func, NULL); 725 } 726 } 727 728 src = rr->rr_col[VDEV_RAIDZ_Q].rc_abd; 729 dst = rr->rr_col[x].rc_abd; 730 exp = 255 - (rr->rr_cols - 1 - x); 731 732 struct reconst_q_struct rq = { abd_to_buf(src), exp }; 733 (void) abd_iterate_func(dst, 0, rr->rr_col[x].rc_size, 734 vdev_raidz_reconst_q_post_func, &rq); 735 } 736 737 static void 738 vdev_raidz_reconstruct_pq(raidz_row_t *rr, int *tgts, int ntgts) 739 { 740 uint8_t *p, *q, *pxy, *qxy, tmp, a, b, aexp, bexp; 741 abd_t *pdata, *qdata; 742 uint64_t xsize, ysize; 743 int x = tgts[0]; 744 int y = tgts[1]; 745 abd_t *xd, *yd; 746 747 ASSERT(ntgts == 2); 748 ASSERT(x < y); 749 ASSERT(x >= rr->rr_firstdatacol); 750 ASSERT(y < rr->rr_cols); 751 752 ASSERT(rr->rr_col[x].rc_size >= rr->rr_col[y].rc_size); 753 754 /* 755 * Move the parity data aside -- we're going to compute parity as 756 * though columns x and y were full of zeros -- Pxy and Qxy. We want to 757 * reuse the parity generation mechanism without trashing the actual 758 * parity so we make those columns appear to be full of zeros by 759 * setting their lengths to zero. 760 */ 761 pdata = rr->rr_col[VDEV_RAIDZ_P].rc_abd; 762 qdata = rr->rr_col[VDEV_RAIDZ_Q].rc_abd; 763 xsize = rr->rr_col[x].rc_size; 764 ysize = rr->rr_col[y].rc_size; 765 766 rr->rr_col[VDEV_RAIDZ_P].rc_abd = 767 abd_alloc_linear(rr->rr_col[VDEV_RAIDZ_P].rc_size, B_TRUE); 768 rr->rr_col[VDEV_RAIDZ_Q].rc_abd = 769 abd_alloc_linear(rr->rr_col[VDEV_RAIDZ_Q].rc_size, B_TRUE); 770 rr->rr_col[x].rc_size = 0; 771 rr->rr_col[y].rc_size = 0; 772 773 vdev_raidz_generate_parity_pq(rr); 774 775 rr->rr_col[x].rc_size = xsize; 776 rr->rr_col[y].rc_size = ysize; 777 778 p = abd_to_buf(pdata); 779 q = abd_to_buf(qdata); 780 pxy = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd); 781 qxy = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd); 782 xd = rr->rr_col[x].rc_abd; 783 yd = rr->rr_col[y].rc_abd; 784 785 /* 786 * We now have: 787 * Pxy = P + D_x + D_y 788 * Qxy = Q + 2^(ndevs - 1 - x) * D_x + 2^(ndevs - 1 - y) * D_y 789 * 790 * We can then solve for D_x: 791 * D_x = A * (P + Pxy) + B * (Q + Qxy) 792 * where 793 * A = 2^(x - y) * (2^(x - y) + 1)^-1 794 * B = 2^(ndevs - 1 - x) * (2^(x - y) + 1)^-1 795 * 796 * With D_x in hand, we can easily solve for D_y: 797 * D_y = P + Pxy + D_x 798 */ 799 800 a = vdev_raidz_pow2[255 + x - y]; 801 b = vdev_raidz_pow2[255 - (rr->rr_cols - 1 - x)]; 802 tmp = 255 - vdev_raidz_log2[a ^ 1]; 803 804 aexp = vdev_raidz_log2[vdev_raidz_exp2(a, tmp)]; 805 bexp = vdev_raidz_log2[vdev_raidz_exp2(b, tmp)]; 806 807 ASSERT3U(xsize, >=, ysize); 808 struct reconst_pq_struct rpq = { p, q, pxy, qxy, aexp, bexp }; 809 810 (void) abd_iterate_func2(xd, yd, 0, 0, ysize, 811 vdev_raidz_reconst_pq_func, &rpq); 812 (void) abd_iterate_func(xd, ysize, xsize - ysize, 813 vdev_raidz_reconst_pq_tail_func, &rpq); 814 815 abd_free(rr->rr_col[VDEV_RAIDZ_P].rc_abd); 816 abd_free(rr->rr_col[VDEV_RAIDZ_Q].rc_abd); 817 818 /* 819 * Restore the saved parity data. 820 */ 821 rr->rr_col[VDEV_RAIDZ_P].rc_abd = pdata; 822 rr->rr_col[VDEV_RAIDZ_Q].rc_abd = qdata; 823 } 824 825 /* BEGIN CSTYLED */ 826 /* 827 * In the general case of reconstruction, we must solve the system of linear 828 * equations defined by the coefficients used to generate parity as well as 829 * the contents of the data and parity disks. This can be expressed with 830 * vectors for the original data (D) and the actual data (d) and parity (p) 831 * and a matrix composed of the identity matrix (I) and a dispersal matrix (V): 832 * 833 * __ __ __ __ 834 * | | __ __ | p_0 | 835 * | V | | D_0 | | p_m-1 | 836 * | | x | : | = | d_0 | 837 * | I | | D_n-1 | | : | 838 * | | ~~ ~~ | d_n-1 | 839 * ~~ ~~ ~~ ~~ 840 * 841 * I is simply a square identity matrix of size n, and V is a vandermonde 842 * matrix defined by the coefficients we chose for the various parity columns 843 * (1, 2, 4). Note that these values were chosen both for simplicity, speedy 844 * computation as well as linear separability. 845 * 846 * __ __ __ __ 847 * | 1 .. 1 1 1 | | p_0 | 848 * | 2^n-1 .. 4 2 1 | __ __ | : | 849 * | 4^n-1 .. 16 4 1 | | D_0 | | p_m-1 | 850 * | 1 .. 0 0 0 | | D_1 | | d_0 | 851 * | 0 .. 0 0 0 | x | D_2 | = | d_1 | 852 * | : : : : | | : | | d_2 | 853 * | 0 .. 1 0 0 | | D_n-1 | | : | 854 * | 0 .. 0 1 0 | ~~ ~~ | : | 855 * | 0 .. 0 0 1 | | d_n-1 | 856 * ~~ ~~ ~~ ~~ 857 * 858 * Note that I, V, d, and p are known. To compute D, we must invert the 859 * matrix and use the known data and parity values to reconstruct the unknown 860 * data values. We begin by removing the rows in V|I and d|p that correspond 861 * to failed or missing columns; we then make V|I square (n x n) and d|p 862 * sized n by removing rows corresponding to unused parity from the bottom up 863 * to generate (V|I)' and (d|p)'. We can then generate the inverse of (V|I)' 864 * using Gauss-Jordan elimination. In the example below we use m=3 parity 865 * columns, n=8 data columns, with errors in d_1, d_2, and p_1: 866 * __ __ 867 * | 1 1 1 1 1 1 1 1 | 868 * | 128 64 32 16 8 4 2 1 | <-----+-+-- missing disks 869 * | 19 205 116 29 64 16 4 1 | / / 870 * | 1 0 0 0 0 0 0 0 | / / 871 * | 0 1 0 0 0 0 0 0 | <--' / 872 * (V|I) = | 0 0 1 0 0 0 0 0 | <---' 873 * | 0 0 0 1 0 0 0 0 | 874 * | 0 0 0 0 1 0 0 0 | 875 * | 0 0 0 0 0 1 0 0 | 876 * | 0 0 0 0 0 0 1 0 | 877 * | 0 0 0 0 0 0 0 1 | 878 * ~~ ~~ 879 * __ __ 880 * | 1 1 1 1 1 1 1 1 | 881 * | 128 64 32 16 8 4 2 1 | 882 * | 19 205 116 29 64 16 4 1 | 883 * | 1 0 0 0 0 0 0 0 | 884 * | 0 1 0 0 0 0 0 0 | 885 * (V|I)' = | 0 0 1 0 0 0 0 0 | 886 * | 0 0 0 1 0 0 0 0 | 887 * | 0 0 0 0 1 0 0 0 | 888 * | 0 0 0 0 0 1 0 0 | 889 * | 0 0 0 0 0 0 1 0 | 890 * | 0 0 0 0 0 0 0 1 | 891 * ~~ ~~ 892 * 893 * Here we employ Gauss-Jordan elimination to find the inverse of (V|I)'. We 894 * have carefully chosen the seed values 1, 2, and 4 to ensure that this 895 * matrix is not singular. 896 * __ __ 897 * | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 | 898 * | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 | 899 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | 900 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | 901 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | 902 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | 903 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | 904 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | 905 * ~~ ~~ 906 * __ __ 907 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | 908 * | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 | 909 * | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 | 910 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | 911 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | 912 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | 913 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | 914 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | 915 * ~~ ~~ 916 * __ __ 917 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | 918 * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 | 919 * | 0 205 116 0 0 0 0 0 0 1 19 29 64 16 4 1 | 920 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | 921 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | 922 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | 923 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | 924 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | 925 * ~~ ~~ 926 * __ __ 927 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | 928 * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 | 929 * | 0 0 185 0 0 0 0 0 205 1 222 208 141 221 201 204 | 930 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | 931 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | 932 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | 933 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | 934 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | 935 * ~~ ~~ 936 * __ __ 937 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | 938 * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 | 939 * | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 | 940 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | 941 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | 942 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | 943 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | 944 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | 945 * ~~ ~~ 946 * __ __ 947 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | 948 * | 0 1 0 0 0 0 0 0 167 100 5 41 159 169 217 208 | 949 * | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 | 950 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | 951 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | 952 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | 953 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | 954 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | 955 * ~~ ~~ 956 * __ __ 957 * | 0 0 1 0 0 0 0 0 | 958 * | 167 100 5 41 159 169 217 208 | 959 * | 166 100 4 40 158 168 216 209 | 960 * (V|I)'^-1 = | 0 0 0 1 0 0 0 0 | 961 * | 0 0 0 0 1 0 0 0 | 962 * | 0 0 0 0 0 1 0 0 | 963 * | 0 0 0 0 0 0 1 0 | 964 * | 0 0 0 0 0 0 0 1 | 965 * ~~ ~~ 966 * 967 * We can then simply compute D = (V|I)'^-1 x (d|p)' to discover the values 968 * of the missing data. 969 * 970 * As is apparent from the example above, the only non-trivial rows in the 971 * inverse matrix correspond to the data disks that we're trying to 972 * reconstruct. Indeed, those are the only rows we need as the others would 973 * only be useful for reconstructing data known or assumed to be valid. For 974 * that reason, we only build the coefficients in the rows that correspond to 975 * targeted columns. 976 */ 977 /* END CSTYLED */ 978 979 static void 980 vdev_raidz_matrix_init(raidz_row_t *rr, int n, int nmap, int *map, 981 uint8_t **rows) 982 { 983 int i, j; 984 int pow; 985 986 ASSERT(n == rr->rr_cols - rr->rr_firstdatacol); 987 988 /* 989 * Fill in the missing rows of interest. 990 */ 991 for (i = 0; i < nmap; i++) { 992 ASSERT3S(0, <=, map[i]); 993 ASSERT3S(map[i], <=, 2); 994 995 pow = map[i] * n; 996 if (pow > 255) 997 pow -= 255; 998 ASSERT(pow <= 255); 999 1000 for (j = 0; j < n; j++) { 1001 pow -= map[i]; 1002 if (pow < 0) 1003 pow += 255; 1004 rows[i][j] = vdev_raidz_pow2[pow]; 1005 } 1006 } 1007 } 1008 1009 static void 1010 vdev_raidz_matrix_invert(raidz_row_t *rr, int n, int nmissing, int *missing, 1011 uint8_t **rows, uint8_t **invrows, const uint8_t *used) 1012 { 1013 int i, j, ii, jj; 1014 uint8_t log; 1015 1016 /* 1017 * Assert that the first nmissing entries from the array of used 1018 * columns correspond to parity columns and that subsequent entries 1019 * correspond to data columns. 1020 */ 1021 for (i = 0; i < nmissing; i++) { 1022 ASSERT3S(used[i], <, rr->rr_firstdatacol); 1023 } 1024 for (; i < n; i++) { 1025 ASSERT3S(used[i], >=, rr->rr_firstdatacol); 1026 } 1027 1028 /* 1029 * First initialize the storage where we'll compute the inverse rows. 1030 */ 1031 for (i = 0; i < nmissing; i++) { 1032 for (j = 0; j < n; j++) { 1033 invrows[i][j] = (i == j) ? 1 : 0; 1034 } 1035 } 1036 1037 /* 1038 * Subtract all trivial rows from the rows of consequence. 1039 */ 1040 for (i = 0; i < nmissing; i++) { 1041 for (j = nmissing; j < n; j++) { 1042 ASSERT3U(used[j], >=, rr->rr_firstdatacol); 1043 jj = used[j] - rr->rr_firstdatacol; 1044 ASSERT3S(jj, <, n); 1045 invrows[i][j] = rows[i][jj]; 1046 rows[i][jj] = 0; 1047 } 1048 } 1049 1050 /* 1051 * For each of the rows of interest, we must normalize it and subtract 1052 * a multiple of it from the other rows. 1053 */ 1054 for (i = 0; i < nmissing; i++) { 1055 for (j = 0; j < missing[i]; j++) { 1056 ASSERT0(rows[i][j]); 1057 } 1058 ASSERT3U(rows[i][missing[i]], !=, 0); 1059 1060 /* 1061 * Compute the inverse of the first element and multiply each 1062 * element in the row by that value. 1063 */ 1064 log = 255 - vdev_raidz_log2[rows[i][missing[i]]]; 1065 1066 for (j = 0; j < n; j++) { 1067 rows[i][j] = vdev_raidz_exp2(rows[i][j], log); 1068 invrows[i][j] = vdev_raidz_exp2(invrows[i][j], log); 1069 } 1070 1071 for (ii = 0; ii < nmissing; ii++) { 1072 if (i == ii) 1073 continue; 1074 1075 ASSERT3U(rows[ii][missing[i]], !=, 0); 1076 1077 log = vdev_raidz_log2[rows[ii][missing[i]]]; 1078 1079 for (j = 0; j < n; j++) { 1080 rows[ii][j] ^= 1081 vdev_raidz_exp2(rows[i][j], log); 1082 invrows[ii][j] ^= 1083 vdev_raidz_exp2(invrows[i][j], log); 1084 } 1085 } 1086 } 1087 1088 /* 1089 * Verify that the data that is left in the rows are properly part of 1090 * an identity matrix. 1091 */ 1092 for (i = 0; i < nmissing; i++) { 1093 for (j = 0; j < n; j++) { 1094 if (j == missing[i]) { 1095 ASSERT3U(rows[i][j], ==, 1); 1096 } else { 1097 ASSERT0(rows[i][j]); 1098 } 1099 } 1100 } 1101 } 1102 1103 static void 1104 vdev_raidz_matrix_reconstruct(raidz_row_t *rr, int n, int nmissing, 1105 int *missing, uint8_t **invrows, const uint8_t *used) 1106 { 1107 int i, j, x, cc, c; 1108 uint8_t *src; 1109 uint64_t ccount; 1110 uint8_t *dst[VDEV_RAIDZ_MAXPARITY] = { NULL }; 1111 uint64_t dcount[VDEV_RAIDZ_MAXPARITY] = { 0 }; 1112 uint8_t log = 0; 1113 uint8_t val; 1114 int ll; 1115 uint8_t *invlog[VDEV_RAIDZ_MAXPARITY]; 1116 uint8_t *p, *pp; 1117 size_t psize; 1118 1119 psize = sizeof (invlog[0][0]) * n * nmissing; 1120 p = kmem_alloc(psize, KM_SLEEP); 1121 1122 for (pp = p, i = 0; i < nmissing; i++) { 1123 invlog[i] = pp; 1124 pp += n; 1125 } 1126 1127 for (i = 0; i < nmissing; i++) { 1128 for (j = 0; j < n; j++) { 1129 ASSERT3U(invrows[i][j], !=, 0); 1130 invlog[i][j] = vdev_raidz_log2[invrows[i][j]]; 1131 } 1132 } 1133 1134 for (i = 0; i < n; i++) { 1135 c = used[i]; 1136 ASSERT3U(c, <, rr->rr_cols); 1137 1138 ccount = rr->rr_col[c].rc_size; 1139 ASSERT(ccount >= rr->rr_col[missing[0]].rc_size || i > 0); 1140 if (ccount == 0) 1141 continue; 1142 src = abd_to_buf(rr->rr_col[c].rc_abd); 1143 for (j = 0; j < nmissing; j++) { 1144 cc = missing[j] + rr->rr_firstdatacol; 1145 ASSERT3U(cc, >=, rr->rr_firstdatacol); 1146 ASSERT3U(cc, <, rr->rr_cols); 1147 ASSERT3U(cc, !=, c); 1148 1149 dcount[j] = rr->rr_col[cc].rc_size; 1150 if (dcount[j] != 0) 1151 dst[j] = abd_to_buf(rr->rr_col[cc].rc_abd); 1152 } 1153 1154 for (x = 0; x < ccount; x++, src++) { 1155 if (*src != 0) 1156 log = vdev_raidz_log2[*src]; 1157 1158 for (cc = 0; cc < nmissing; cc++) { 1159 if (x >= dcount[cc]) 1160 continue; 1161 1162 if (*src == 0) { 1163 val = 0; 1164 } else { 1165 if ((ll = log + invlog[cc][i]) >= 255) 1166 ll -= 255; 1167 val = vdev_raidz_pow2[ll]; 1168 } 1169 1170 if (i == 0) 1171 dst[cc][x] = val; 1172 else 1173 dst[cc][x] ^= val; 1174 } 1175 } 1176 } 1177 1178 kmem_free(p, psize); 1179 } 1180 1181 static void 1182 vdev_raidz_reconstruct_general(raidz_row_t *rr, int *tgts, int ntgts) 1183 { 1184 int n, i, c, t, tt; 1185 int nmissing_rows; 1186 int missing_rows[VDEV_RAIDZ_MAXPARITY]; 1187 int parity_map[VDEV_RAIDZ_MAXPARITY]; 1188 uint8_t *p, *pp; 1189 size_t psize; 1190 uint8_t *rows[VDEV_RAIDZ_MAXPARITY]; 1191 uint8_t *invrows[VDEV_RAIDZ_MAXPARITY]; 1192 uint8_t *used; 1193 1194 abd_t **bufs = NULL; 1195 1196 /* 1197 * Matrix reconstruction can't use scatter ABDs yet, so we allocate 1198 * temporary linear ABDs if any non-linear ABDs are found. 1199 */ 1200 for (i = rr->rr_firstdatacol; i < rr->rr_cols; i++) { 1201 if (!abd_is_linear(rr->rr_col[i].rc_abd)) { 1202 bufs = kmem_alloc(rr->rr_cols * sizeof (abd_t *), 1203 KM_PUSHPAGE); 1204 1205 for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 1206 raidz_col_t *col = &rr->rr_col[c]; 1207 1208 bufs[c] = col->rc_abd; 1209 if (bufs[c] != NULL) { 1210 col->rc_abd = abd_alloc_linear( 1211 col->rc_size, B_TRUE); 1212 abd_copy(col->rc_abd, bufs[c], 1213 col->rc_size); 1214 } 1215 } 1216 1217 break; 1218 } 1219 } 1220 1221 n = rr->rr_cols - rr->rr_firstdatacol; 1222 1223 /* 1224 * Figure out which data columns are missing. 1225 */ 1226 nmissing_rows = 0; 1227 for (t = 0; t < ntgts; t++) { 1228 if (tgts[t] >= rr->rr_firstdatacol) { 1229 missing_rows[nmissing_rows++] = 1230 tgts[t] - rr->rr_firstdatacol; 1231 } 1232 } 1233 1234 /* 1235 * Figure out which parity columns to use to help generate the missing 1236 * data columns. 1237 */ 1238 for (tt = 0, c = 0, i = 0; i < nmissing_rows; c++) { 1239 ASSERT(tt < ntgts); 1240 ASSERT(c < rr->rr_firstdatacol); 1241 1242 /* 1243 * Skip any targeted parity columns. 1244 */ 1245 if (c == tgts[tt]) { 1246 tt++; 1247 continue; 1248 } 1249 1250 parity_map[i] = c; 1251 i++; 1252 } 1253 1254 psize = (sizeof (rows[0][0]) + sizeof (invrows[0][0])) * 1255 nmissing_rows * n + sizeof (used[0]) * n; 1256 p = kmem_alloc(psize, KM_SLEEP); 1257 1258 for (pp = p, i = 0; i < nmissing_rows; i++) { 1259 rows[i] = pp; 1260 pp += n; 1261 invrows[i] = pp; 1262 pp += n; 1263 } 1264 used = pp; 1265 1266 for (i = 0; i < nmissing_rows; i++) { 1267 used[i] = parity_map[i]; 1268 } 1269 1270 for (tt = 0, c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 1271 if (tt < nmissing_rows && 1272 c == missing_rows[tt] + rr->rr_firstdatacol) { 1273 tt++; 1274 continue; 1275 } 1276 1277 ASSERT3S(i, <, n); 1278 used[i] = c; 1279 i++; 1280 } 1281 1282 /* 1283 * Initialize the interesting rows of the matrix. 1284 */ 1285 vdev_raidz_matrix_init(rr, n, nmissing_rows, parity_map, rows); 1286 1287 /* 1288 * Invert the matrix. 1289 */ 1290 vdev_raidz_matrix_invert(rr, n, nmissing_rows, missing_rows, rows, 1291 invrows, used); 1292 1293 /* 1294 * Reconstruct the missing data using the generated matrix. 1295 */ 1296 vdev_raidz_matrix_reconstruct(rr, n, nmissing_rows, missing_rows, 1297 invrows, used); 1298 1299 kmem_free(p, psize); 1300 1301 /* 1302 * copy back from temporary linear abds and free them 1303 */ 1304 if (bufs) { 1305 for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 1306 raidz_col_t *col = &rr->rr_col[c]; 1307 1308 if (bufs[c] != NULL) { 1309 abd_copy(bufs[c], col->rc_abd, col->rc_size); 1310 abd_free(col->rc_abd); 1311 } 1312 col->rc_abd = bufs[c]; 1313 } 1314 kmem_free(bufs, rr->rr_cols * sizeof (abd_t *)); 1315 } 1316 } 1317 1318 static void 1319 vdev_raidz_reconstruct_row(raidz_map_t *rm, raidz_row_t *rr, 1320 const int *t, int nt) 1321 { 1322 int tgts[VDEV_RAIDZ_MAXPARITY], *dt; 1323 int ntgts; 1324 int i, c, ret; 1325 int nbadparity, nbaddata; 1326 int parity_valid[VDEV_RAIDZ_MAXPARITY]; 1327 1328 nbadparity = rr->rr_firstdatacol; 1329 nbaddata = rr->rr_cols - nbadparity; 1330 ntgts = 0; 1331 for (i = 0, c = 0; c < rr->rr_cols; c++) { 1332 if (c < rr->rr_firstdatacol) 1333 parity_valid[c] = B_FALSE; 1334 1335 if (i < nt && c == t[i]) { 1336 tgts[ntgts++] = c; 1337 i++; 1338 } else if (rr->rr_col[c].rc_error != 0) { 1339 tgts[ntgts++] = c; 1340 } else if (c >= rr->rr_firstdatacol) { 1341 nbaddata--; 1342 } else { 1343 parity_valid[c] = B_TRUE; 1344 nbadparity--; 1345 } 1346 } 1347 1348 ASSERT(ntgts >= nt); 1349 ASSERT(nbaddata >= 0); 1350 ASSERT(nbaddata + nbadparity == ntgts); 1351 1352 dt = &tgts[nbadparity]; 1353 1354 /* Reconstruct using the new math implementation */ 1355 ret = vdev_raidz_math_reconstruct(rm, rr, parity_valid, dt, nbaddata); 1356 if (ret != RAIDZ_ORIGINAL_IMPL) 1357 return; 1358 1359 /* 1360 * See if we can use any of our optimized reconstruction routines. 1361 */ 1362 switch (nbaddata) { 1363 case 1: 1364 if (parity_valid[VDEV_RAIDZ_P]) { 1365 vdev_raidz_reconstruct_p(rr, dt, 1); 1366 return; 1367 } 1368 1369 ASSERT(rr->rr_firstdatacol > 1); 1370 1371 if (parity_valid[VDEV_RAIDZ_Q]) { 1372 vdev_raidz_reconstruct_q(rr, dt, 1); 1373 return; 1374 } 1375 1376 ASSERT(rr->rr_firstdatacol > 2); 1377 break; 1378 1379 case 2: 1380 ASSERT(rr->rr_firstdatacol > 1); 1381 1382 if (parity_valid[VDEV_RAIDZ_P] && 1383 parity_valid[VDEV_RAIDZ_Q]) { 1384 vdev_raidz_reconstruct_pq(rr, dt, 2); 1385 return; 1386 } 1387 1388 ASSERT(rr->rr_firstdatacol > 2); 1389 1390 break; 1391 } 1392 1393 vdev_raidz_reconstruct_general(rr, tgts, ntgts); 1394 } 1395 1396 static int 1397 vdev_raidz_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize, 1398 uint64_t *logical_ashift, uint64_t *physical_ashift) 1399 { 1400 vdev_raidz_t *vdrz = vd->vdev_tsd; 1401 uint64_t nparity = vdrz->vd_nparity; 1402 int c; 1403 int lasterror = 0; 1404 int numerrors = 0; 1405 1406 ASSERT(nparity > 0); 1407 1408 if (nparity > VDEV_RAIDZ_MAXPARITY || 1409 vd->vdev_children < nparity + 1) { 1410 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 1411 return (SET_ERROR(EINVAL)); 1412 } 1413 1414 vdev_open_children(vd); 1415 1416 for (c = 0; c < vd->vdev_children; c++) { 1417 vdev_t *cvd = vd->vdev_child[c]; 1418 1419 if (cvd->vdev_open_error != 0) { 1420 lasterror = cvd->vdev_open_error; 1421 numerrors++; 1422 continue; 1423 } 1424 1425 *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1; 1426 *max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1; 1427 *logical_ashift = MAX(*logical_ashift, cvd->vdev_ashift); 1428 *physical_ashift = MAX(*physical_ashift, 1429 cvd->vdev_physical_ashift); 1430 } 1431 1432 *asize *= vd->vdev_children; 1433 *max_asize *= vd->vdev_children; 1434 1435 if (numerrors > nparity) { 1436 vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS; 1437 return (lasterror); 1438 } 1439 1440 return (0); 1441 } 1442 1443 static void 1444 vdev_raidz_close(vdev_t *vd) 1445 { 1446 for (int c = 0; c < vd->vdev_children; c++) { 1447 if (vd->vdev_child[c] != NULL) 1448 vdev_close(vd->vdev_child[c]); 1449 } 1450 } 1451 1452 static uint64_t 1453 vdev_raidz_asize(vdev_t *vd, uint64_t psize) 1454 { 1455 vdev_raidz_t *vdrz = vd->vdev_tsd; 1456 uint64_t asize; 1457 uint64_t ashift = vd->vdev_top->vdev_ashift; 1458 uint64_t cols = vdrz->vd_logical_width; 1459 uint64_t nparity = vdrz->vd_nparity; 1460 1461 asize = ((psize - 1) >> ashift) + 1; 1462 asize += nparity * ((asize + cols - nparity - 1) / (cols - nparity)); 1463 asize = roundup(asize, nparity + 1) << ashift; 1464 1465 return (asize); 1466 } 1467 1468 /* 1469 * The allocatable space for a raidz vdev is N * sizeof(smallest child) 1470 * so each child must provide at least 1/Nth of its asize. 1471 */ 1472 static uint64_t 1473 vdev_raidz_min_asize(vdev_t *vd) 1474 { 1475 return ((vd->vdev_min_asize + vd->vdev_children - 1) / 1476 vd->vdev_children); 1477 } 1478 1479 void 1480 vdev_raidz_child_done(zio_t *zio) 1481 { 1482 raidz_col_t *rc = zio->io_private; 1483 1484 rc->rc_error = zio->io_error; 1485 rc->rc_tried = 1; 1486 rc->rc_skipped = 0; 1487 } 1488 1489 static void 1490 vdev_raidz_io_verify(vdev_t *vd, raidz_row_t *rr, int col) 1491 { 1492 #ifdef ZFS_DEBUG 1493 vdev_t *tvd = vd->vdev_top; 1494 1495 range_seg64_t logical_rs, physical_rs, remain_rs; 1496 logical_rs.rs_start = rr->rr_offset; 1497 logical_rs.rs_end = logical_rs.rs_start + 1498 vdev_raidz_asize(vd, rr->rr_size); 1499 1500 raidz_col_t *rc = &rr->rr_col[col]; 1501 vdev_t *cvd = vd->vdev_child[rc->rc_devidx]; 1502 1503 vdev_xlate(cvd, &logical_rs, &physical_rs, &remain_rs); 1504 ASSERT(vdev_xlate_is_empty(&remain_rs)); 1505 ASSERT3U(rc->rc_offset, ==, physical_rs.rs_start); 1506 ASSERT3U(rc->rc_offset, <, physical_rs.rs_end); 1507 /* 1508 * It would be nice to assert that rs_end is equal 1509 * to rc_offset + rc_size but there might be an 1510 * optional I/O at the end that is not accounted in 1511 * rc_size. 1512 */ 1513 if (physical_rs.rs_end > rc->rc_offset + rc->rc_size) { 1514 ASSERT3U(physical_rs.rs_end, ==, rc->rc_offset + 1515 rc->rc_size + (1 << tvd->vdev_ashift)); 1516 } else { 1517 ASSERT3U(physical_rs.rs_end, ==, rc->rc_offset + rc->rc_size); 1518 } 1519 #endif 1520 } 1521 1522 static void 1523 vdev_raidz_io_start_write(zio_t *zio, raidz_row_t *rr, uint64_t ashift) 1524 { 1525 vdev_t *vd = zio->io_vd; 1526 raidz_map_t *rm = zio->io_vsd; 1527 int c, i; 1528 1529 vdev_raidz_generate_parity_row(rm, rr); 1530 1531 for (int c = 0; c < rr->rr_cols; c++) { 1532 raidz_col_t *rc = &rr->rr_col[c]; 1533 if (rc->rc_size == 0) 1534 continue; 1535 1536 /* Verify physical to logical translation */ 1537 vdev_raidz_io_verify(vd, rr, c); 1538 1539 zio_nowait(zio_vdev_child_io(zio, NULL, 1540 vd->vdev_child[rc->rc_devidx], rc->rc_offset, 1541 rc->rc_abd, rc->rc_size, zio->io_type, zio->io_priority, 1542 0, vdev_raidz_child_done, rc)); 1543 } 1544 1545 /* 1546 * Generate optional I/Os for skip sectors to improve aggregation 1547 * contiguity. 1548 */ 1549 for (c = rm->rm_skipstart, i = 0; i < rm->rm_nskip; c++, i++) { 1550 ASSERT(c <= rr->rr_scols); 1551 if (c == rr->rr_scols) 1552 c = 0; 1553 1554 raidz_col_t *rc = &rr->rr_col[c]; 1555 vdev_t *cvd = vd->vdev_child[rc->rc_devidx]; 1556 1557 zio_nowait(zio_vdev_child_io(zio, NULL, cvd, 1558 rc->rc_offset + rc->rc_size, NULL, 1ULL << ashift, 1559 zio->io_type, zio->io_priority, 1560 ZIO_FLAG_NODATA | ZIO_FLAG_OPTIONAL, NULL, NULL)); 1561 } 1562 } 1563 1564 static void 1565 vdev_raidz_io_start_read(zio_t *zio, raidz_row_t *rr) 1566 { 1567 vdev_t *vd = zio->io_vd; 1568 1569 /* 1570 * Iterate over the columns in reverse order so that we hit the parity 1571 * last -- any errors along the way will force us to read the parity. 1572 */ 1573 for (int c = rr->rr_cols - 1; c >= 0; c--) { 1574 raidz_col_t *rc = &rr->rr_col[c]; 1575 if (rc->rc_size == 0) 1576 continue; 1577 vdev_t *cvd = vd->vdev_child[rc->rc_devidx]; 1578 if (!vdev_readable(cvd)) { 1579 if (c >= rr->rr_firstdatacol) 1580 rr->rr_missingdata++; 1581 else 1582 rr->rr_missingparity++; 1583 rc->rc_error = SET_ERROR(ENXIO); 1584 rc->rc_tried = 1; /* don't even try */ 1585 rc->rc_skipped = 1; 1586 continue; 1587 } 1588 if (vdev_dtl_contains(cvd, DTL_MISSING, zio->io_txg, 1)) { 1589 if (c >= rr->rr_firstdatacol) 1590 rr->rr_missingdata++; 1591 else 1592 rr->rr_missingparity++; 1593 rc->rc_error = SET_ERROR(ESTALE); 1594 rc->rc_skipped = 1; 1595 continue; 1596 } 1597 if (c >= rr->rr_firstdatacol || rr->rr_missingdata > 0 || 1598 (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) { 1599 zio_nowait(zio_vdev_child_io(zio, NULL, cvd, 1600 rc->rc_offset, rc->rc_abd, rc->rc_size, 1601 zio->io_type, zio->io_priority, 0, 1602 vdev_raidz_child_done, rc)); 1603 } 1604 } 1605 } 1606 1607 /* 1608 * Start an IO operation on a RAIDZ VDev 1609 * 1610 * Outline: 1611 * - For write operations: 1612 * 1. Generate the parity data 1613 * 2. Create child zio write operations to each column's vdev, for both 1614 * data and parity. 1615 * 3. If the column skips any sectors for padding, create optional dummy 1616 * write zio children for those areas to improve aggregation continuity. 1617 * - For read operations: 1618 * 1. Create child zio read operations to each data column's vdev to read 1619 * the range of data required for zio. 1620 * 2. If this is a scrub or resilver operation, or if any of the data 1621 * vdevs have had errors, then create zio read operations to the parity 1622 * columns' VDevs as well. 1623 */ 1624 static void 1625 vdev_raidz_io_start(zio_t *zio) 1626 { 1627 vdev_t *vd = zio->io_vd; 1628 vdev_t *tvd = vd->vdev_top; 1629 vdev_raidz_t *vdrz = vd->vdev_tsd; 1630 1631 raidz_map_t *rm = vdev_raidz_map_alloc(zio, tvd->vdev_ashift, 1632 vdrz->vd_logical_width, vdrz->vd_nparity); 1633 zio->io_vsd = rm; 1634 zio->io_vsd_ops = &vdev_raidz_vsd_ops; 1635 1636 /* 1637 * Until raidz expansion is implemented all maps for a raidz vdev 1638 * contain a single row. 1639 */ 1640 ASSERT3U(rm->rm_nrows, ==, 1); 1641 raidz_row_t *rr = rm->rm_row[0]; 1642 1643 if (zio->io_type == ZIO_TYPE_WRITE) { 1644 vdev_raidz_io_start_write(zio, rr, tvd->vdev_ashift); 1645 } else { 1646 ASSERT(zio->io_type == ZIO_TYPE_READ); 1647 vdev_raidz_io_start_read(zio, rr); 1648 } 1649 1650 zio_execute(zio); 1651 } 1652 1653 /* 1654 * Report a checksum error for a child of a RAID-Z device. 1655 */ 1656 static void 1657 raidz_checksum_error(zio_t *zio, raidz_col_t *rc, abd_t *bad_data) 1658 { 1659 vdev_t *vd = zio->io_vd->vdev_child[rc->rc_devidx]; 1660 1661 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE) && 1662 zio->io_priority != ZIO_PRIORITY_REBUILD) { 1663 zio_bad_cksum_t zbc; 1664 raidz_map_t *rm = zio->io_vsd; 1665 1666 zbc.zbc_has_cksum = 0; 1667 zbc.zbc_injected = rm->rm_ecksuminjected; 1668 1669 (void) zfs_ereport_post_checksum(zio->io_spa, vd, 1670 &zio->io_bookmark, zio, rc->rc_offset, rc->rc_size, 1671 rc->rc_abd, bad_data, &zbc); 1672 mutex_enter(&vd->vdev_stat_lock); 1673 vd->vdev_stat.vs_checksum_errors++; 1674 mutex_exit(&vd->vdev_stat_lock); 1675 } 1676 } 1677 1678 /* 1679 * We keep track of whether or not there were any injected errors, so that 1680 * any ereports we generate can note it. 1681 */ 1682 static int 1683 raidz_checksum_verify(zio_t *zio) 1684 { 1685 zio_bad_cksum_t zbc; 1686 raidz_map_t *rm = zio->io_vsd; 1687 1688 bzero(&zbc, sizeof (zio_bad_cksum_t)); 1689 1690 int ret = zio_checksum_error(zio, &zbc); 1691 if (ret != 0 && zbc.zbc_injected != 0) 1692 rm->rm_ecksuminjected = 1; 1693 1694 return (ret); 1695 } 1696 1697 /* 1698 * Generate the parity from the data columns. If we tried and were able to 1699 * read the parity without error, verify that the generated parity matches the 1700 * data we read. If it doesn't, we fire off a checksum error. Return the 1701 * number of such failures. 1702 */ 1703 static int 1704 raidz_parity_verify(zio_t *zio, raidz_row_t *rr) 1705 { 1706 abd_t *orig[VDEV_RAIDZ_MAXPARITY]; 1707 int c, ret = 0; 1708 raidz_map_t *rm = zio->io_vsd; 1709 raidz_col_t *rc; 1710 1711 blkptr_t *bp = zio->io_bp; 1712 enum zio_checksum checksum = (bp == NULL ? zio->io_prop.zp_checksum : 1713 (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp))); 1714 1715 if (checksum == ZIO_CHECKSUM_NOPARITY) 1716 return (ret); 1717 1718 for (c = 0; c < rr->rr_firstdatacol; c++) { 1719 rc = &rr->rr_col[c]; 1720 if (!rc->rc_tried || rc->rc_error != 0) 1721 continue; 1722 1723 orig[c] = abd_alloc_sametype(rc->rc_abd, rc->rc_size); 1724 abd_copy(orig[c], rc->rc_abd, rc->rc_size); 1725 } 1726 1727 /* 1728 * Regenerates parity even for !tried||rc_error!=0 columns. This 1729 * isn't harmful but it does have the side effect of fixing stuff 1730 * we didn't realize was necessary (i.e. even if we return 0). 1731 */ 1732 vdev_raidz_generate_parity_row(rm, rr); 1733 1734 for (c = 0; c < rr->rr_firstdatacol; c++) { 1735 rc = &rr->rr_col[c]; 1736 1737 if (!rc->rc_tried || rc->rc_error != 0) 1738 continue; 1739 1740 if (abd_cmp(orig[c], rc->rc_abd) != 0) { 1741 raidz_checksum_error(zio, rc, orig[c]); 1742 rc->rc_error = SET_ERROR(ECKSUM); 1743 ret++; 1744 } 1745 abd_free(orig[c]); 1746 } 1747 1748 return (ret); 1749 } 1750 1751 static int 1752 vdev_raidz_worst_error(raidz_row_t *rr) 1753 { 1754 int error = 0; 1755 1756 for (int c = 0; c < rr->rr_cols; c++) 1757 error = zio_worst_error(error, rr->rr_col[c].rc_error); 1758 1759 return (error); 1760 } 1761 1762 static void 1763 vdev_raidz_io_done_verified(zio_t *zio, raidz_row_t *rr) 1764 { 1765 int unexpected_errors = 0; 1766 int parity_errors = 0; 1767 int parity_untried = 0; 1768 int data_errors = 0; 1769 1770 ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ); 1771 1772 for (int c = 0; c < rr->rr_cols; c++) { 1773 raidz_col_t *rc = &rr->rr_col[c]; 1774 1775 if (rc->rc_error) { 1776 if (c < rr->rr_firstdatacol) 1777 parity_errors++; 1778 else 1779 data_errors++; 1780 1781 if (!rc->rc_skipped) 1782 unexpected_errors++; 1783 } else if (c < rr->rr_firstdatacol && !rc->rc_tried) { 1784 parity_untried++; 1785 } 1786 } 1787 1788 /* 1789 * If we read more parity disks than were used for 1790 * reconstruction, confirm that the other parity disks produced 1791 * correct data. 1792 * 1793 * Note that we also regenerate parity when resilvering so we 1794 * can write it out to failed devices later. 1795 */ 1796 if (parity_errors + parity_untried < 1797 rr->rr_firstdatacol - data_errors || 1798 (zio->io_flags & ZIO_FLAG_RESILVER)) { 1799 int n = raidz_parity_verify(zio, rr); 1800 unexpected_errors += n; 1801 ASSERT3U(parity_errors + n, <=, rr->rr_firstdatacol); 1802 } 1803 1804 if (zio->io_error == 0 && spa_writeable(zio->io_spa) && 1805 (unexpected_errors > 0 || (zio->io_flags & ZIO_FLAG_RESILVER))) { 1806 /* 1807 * Use the good data we have in hand to repair damaged children. 1808 */ 1809 for (int c = 0; c < rr->rr_cols; c++) { 1810 raidz_col_t *rc = &rr->rr_col[c]; 1811 vdev_t *vd = zio->io_vd; 1812 vdev_t *cvd = vd->vdev_child[rc->rc_devidx]; 1813 1814 if ((rc->rc_error == 0 || rc->rc_size == 0) && 1815 (rc->rc_repair == 0)) { 1816 continue; 1817 } 1818 1819 zio_nowait(zio_vdev_child_io(zio, NULL, cvd, 1820 rc->rc_offset, rc->rc_abd, rc->rc_size, 1821 ZIO_TYPE_WRITE, 1822 zio->io_priority == ZIO_PRIORITY_REBUILD ? 1823 ZIO_PRIORITY_REBUILD : ZIO_PRIORITY_ASYNC_WRITE, 1824 ZIO_FLAG_IO_REPAIR | (unexpected_errors ? 1825 ZIO_FLAG_SELF_HEAL : 0), NULL, NULL)); 1826 } 1827 } 1828 } 1829 1830 static void 1831 raidz_restore_orig_data(raidz_map_t *rm) 1832 { 1833 for (int i = 0; i < rm->rm_nrows; i++) { 1834 raidz_row_t *rr = rm->rm_row[i]; 1835 for (int c = 0; c < rr->rr_cols; c++) { 1836 raidz_col_t *rc = &rr->rr_col[c]; 1837 if (rc->rc_need_orig_restore) { 1838 abd_copy(rc->rc_abd, 1839 rc->rc_orig_data, rc->rc_size); 1840 rc->rc_need_orig_restore = B_FALSE; 1841 } 1842 } 1843 } 1844 } 1845 1846 /* 1847 * returns EINVAL if reconstruction of the block will not be possible 1848 * returns ECKSUM if this specific reconstruction failed 1849 * returns 0 on successful reconstruction 1850 */ 1851 static int 1852 raidz_reconstruct(zio_t *zio, int *ltgts, int ntgts, int nparity) 1853 { 1854 raidz_map_t *rm = zio->io_vsd; 1855 1856 /* Reconstruct each row */ 1857 for (int r = 0; r < rm->rm_nrows; r++) { 1858 raidz_row_t *rr = rm->rm_row[r]; 1859 int my_tgts[VDEV_RAIDZ_MAXPARITY]; /* value is child id */ 1860 int t = 0; 1861 int dead = 0; 1862 int dead_data = 0; 1863 1864 for (int c = 0; c < rr->rr_cols; c++) { 1865 raidz_col_t *rc = &rr->rr_col[c]; 1866 ASSERT0(rc->rc_need_orig_restore); 1867 if (rc->rc_error != 0) { 1868 dead++; 1869 if (c >= nparity) 1870 dead_data++; 1871 continue; 1872 } 1873 if (rc->rc_size == 0) 1874 continue; 1875 for (int lt = 0; lt < ntgts; lt++) { 1876 if (rc->rc_devidx == ltgts[lt]) { 1877 if (rc->rc_orig_data == NULL) { 1878 rc->rc_orig_data = 1879 abd_alloc_linear( 1880 rc->rc_size, B_TRUE); 1881 abd_copy(rc->rc_orig_data, 1882 rc->rc_abd, rc->rc_size); 1883 } 1884 rc->rc_need_orig_restore = B_TRUE; 1885 1886 dead++; 1887 if (c >= nparity) 1888 dead_data++; 1889 my_tgts[t++] = c; 1890 break; 1891 } 1892 } 1893 } 1894 if (dead > nparity) { 1895 /* reconstruction not possible */ 1896 raidz_restore_orig_data(rm); 1897 return (EINVAL); 1898 } 1899 if (dead_data > 0) 1900 vdev_raidz_reconstruct_row(rm, rr, my_tgts, t); 1901 } 1902 1903 /* Check for success */ 1904 if (raidz_checksum_verify(zio) == 0) { 1905 1906 /* Reconstruction succeeded - report errors */ 1907 for (int i = 0; i < rm->rm_nrows; i++) { 1908 raidz_row_t *rr = rm->rm_row[i]; 1909 1910 for (int c = 0; c < rr->rr_cols; c++) { 1911 raidz_col_t *rc = &rr->rr_col[c]; 1912 if (rc->rc_need_orig_restore) { 1913 /* 1914 * Note: if this is a parity column, 1915 * we don't really know if it's wrong. 1916 * We need to let 1917 * vdev_raidz_io_done_verified() check 1918 * it, and if we set rc_error, it will 1919 * think that it is a "known" error 1920 * that doesn't need to be checked 1921 * or corrected. 1922 */ 1923 if (rc->rc_error == 0 && 1924 c >= rr->rr_firstdatacol) { 1925 raidz_checksum_error(zio, 1926 rc, rc->rc_orig_data); 1927 rc->rc_error = 1928 SET_ERROR(ECKSUM); 1929 } 1930 rc->rc_need_orig_restore = B_FALSE; 1931 } 1932 } 1933 1934 vdev_raidz_io_done_verified(zio, rr); 1935 } 1936 1937 zio_checksum_verified(zio); 1938 1939 return (0); 1940 } 1941 1942 /* Reconstruction failed - restore original data */ 1943 raidz_restore_orig_data(rm); 1944 return (ECKSUM); 1945 } 1946 1947 /* 1948 * Iterate over all combinations of N bad vdevs and attempt a reconstruction. 1949 * Note that the algorithm below is non-optimal because it doesn't take into 1950 * account how reconstruction is actually performed. For example, with 1951 * triple-parity RAID-Z the reconstruction procedure is the same if column 4 1952 * is targeted as invalid as if columns 1 and 4 are targeted since in both 1953 * cases we'd only use parity information in column 0. 1954 * 1955 * The order that we find the various possible combinations of failed 1956 * disks is dictated by these rules: 1957 * - Examine each "slot" (the "i" in tgts[i]) 1958 * - Try to increment this slot (tgts[i] = tgts[i] + 1) 1959 * - if we can't increment because it runs into the next slot, 1960 * reset our slot to the minimum, and examine the next slot 1961 * 1962 * For example, with a 6-wide RAIDZ3, and no known errors (so we have to choose 1963 * 3 columns to reconstruct), we will generate the following sequence: 1964 * 1965 * STATE ACTION 1966 * 0 1 2 special case: skip since these are all parity 1967 * 0 1 3 first slot: reset to 0; middle slot: increment to 2 1968 * 0 2 3 first slot: increment to 1 1969 * 1 2 3 first: reset to 0; middle: reset to 1; last: increment to 4 1970 * 0 1 4 first: reset to 0; middle: increment to 2 1971 * 0 2 4 first: increment to 1 1972 * 1 2 4 first: reset to 0; middle: increment to 3 1973 * 0 3 4 first: increment to 1 1974 * 1 3 4 first: increment to 2 1975 * 2 3 4 first: reset to 0; middle: reset to 1; last: increment to 5 1976 * 0 1 5 first: reset to 0; middle: increment to 2 1977 * 0 2 5 first: increment to 1 1978 * 1 2 5 first: reset to 0; middle: increment to 3 1979 * 0 3 5 first: increment to 1 1980 * 1 3 5 first: increment to 2 1981 * 2 3 5 first: reset to 0; middle: increment to 4 1982 * 0 4 5 first: increment to 1 1983 * 1 4 5 first: increment to 2 1984 * 2 4 5 first: increment to 3 1985 * 3 4 5 done 1986 * 1987 * This strategy works for dRAID but is less effecient when there are a large 1988 * number of child vdevs and therefore permutations to check. Furthermore, 1989 * since the raidz_map_t rows likely do not overlap reconstruction would be 1990 * possible as long as there are no more than nparity data errors per row. 1991 * These additional permutations are not currently checked but could be as 1992 * a future improvement. 1993 */ 1994 static int 1995 vdev_raidz_combrec(zio_t *zio) 1996 { 1997 int nparity = vdev_get_nparity(zio->io_vd); 1998 raidz_map_t *rm = zio->io_vsd; 1999 2000 /* Check if there's enough data to attempt reconstrution. */ 2001 for (int i = 0; i < rm->rm_nrows; i++) { 2002 raidz_row_t *rr = rm->rm_row[i]; 2003 int total_errors = 0; 2004 2005 for (int c = 0; c < rr->rr_cols; c++) { 2006 if (rr->rr_col[c].rc_error) 2007 total_errors++; 2008 } 2009 2010 if (total_errors > nparity) 2011 return (vdev_raidz_worst_error(rr)); 2012 } 2013 2014 for (int num_failures = 1; num_failures <= nparity; num_failures++) { 2015 int tstore[VDEV_RAIDZ_MAXPARITY + 2]; 2016 int *ltgts = &tstore[1]; /* value is logical child ID */ 2017 2018 /* Determine number of logical children, n */ 2019 int n = zio->io_vd->vdev_children; 2020 2021 ASSERT3U(num_failures, <=, nparity); 2022 ASSERT3U(num_failures, <=, VDEV_RAIDZ_MAXPARITY); 2023 2024 /* Handle corner cases in combrec logic */ 2025 ltgts[-1] = -1; 2026 for (int i = 0; i < num_failures; i++) { 2027 ltgts[i] = i; 2028 } 2029 ltgts[num_failures] = n; 2030 2031 for (;;) { 2032 int err = raidz_reconstruct(zio, ltgts, num_failures, 2033 nparity); 2034 if (err == EINVAL) { 2035 /* 2036 * Reconstruction not possible with this # 2037 * failures; try more failures. 2038 */ 2039 break; 2040 } else if (err == 0) 2041 return (0); 2042 2043 /* Compute next targets to try */ 2044 for (int t = 0; ; t++) { 2045 ASSERT3U(t, <, num_failures); 2046 ltgts[t]++; 2047 if (ltgts[t] == n) { 2048 /* try more failures */ 2049 ASSERT3U(t, ==, num_failures - 1); 2050 break; 2051 } 2052 2053 ASSERT3U(ltgts[t], <, n); 2054 ASSERT3U(ltgts[t], <=, ltgts[t + 1]); 2055 2056 /* 2057 * If that spot is available, we're done here. 2058 * Try the next combination. 2059 */ 2060 if (ltgts[t] != ltgts[t + 1]) 2061 break; 2062 2063 /* 2064 * Otherwise, reset this tgt to the minimum, 2065 * and move on to the next tgt. 2066 */ 2067 ltgts[t] = ltgts[t - 1] + 1; 2068 ASSERT3U(ltgts[t], ==, t); 2069 } 2070 2071 /* Increase the number of failures and keep trying. */ 2072 if (ltgts[num_failures - 1] == n) 2073 break; 2074 } 2075 } 2076 2077 return (ECKSUM); 2078 } 2079 2080 void 2081 vdev_raidz_reconstruct(raidz_map_t *rm, const int *t, int nt) 2082 { 2083 for (uint64_t row = 0; row < rm->rm_nrows; row++) { 2084 raidz_row_t *rr = rm->rm_row[row]; 2085 vdev_raidz_reconstruct_row(rm, rr, t, nt); 2086 } 2087 } 2088 2089 /* 2090 * Complete a write IO operation on a RAIDZ VDev 2091 * 2092 * Outline: 2093 * 1. Check for errors on the child IOs. 2094 * 2. Return, setting an error code if too few child VDevs were written 2095 * to reconstruct the data later. Note that partial writes are 2096 * considered successful if they can be reconstructed at all. 2097 */ 2098 static void 2099 vdev_raidz_io_done_write_impl(zio_t *zio, raidz_row_t *rr) 2100 { 2101 int total_errors = 0; 2102 2103 ASSERT3U(rr->rr_missingparity, <=, rr->rr_firstdatacol); 2104 ASSERT3U(rr->rr_missingdata, <=, rr->rr_cols - rr->rr_firstdatacol); 2105 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 2106 2107 for (int c = 0; c < rr->rr_cols; c++) { 2108 raidz_col_t *rc = &rr->rr_col[c]; 2109 2110 if (rc->rc_error) { 2111 ASSERT(rc->rc_error != ECKSUM); /* child has no bp */ 2112 2113 total_errors++; 2114 } 2115 } 2116 2117 /* 2118 * Treat partial writes as a success. If we couldn't write enough 2119 * columns to reconstruct the data, the I/O failed. Otherwise, 2120 * good enough. 2121 * 2122 * Now that we support write reallocation, it would be better 2123 * to treat partial failure as real failure unless there are 2124 * no non-degraded top-level vdevs left, and not update DTLs 2125 * if we intend to reallocate. 2126 */ 2127 if (total_errors > rr->rr_firstdatacol) { 2128 zio->io_error = zio_worst_error(zio->io_error, 2129 vdev_raidz_worst_error(rr)); 2130 } 2131 } 2132 2133 static void 2134 vdev_raidz_io_done_reconstruct_known_missing(zio_t *zio, raidz_map_t *rm, 2135 raidz_row_t *rr) 2136 { 2137 int parity_errors = 0; 2138 int parity_untried = 0; 2139 int data_errors = 0; 2140 int total_errors = 0; 2141 2142 ASSERT3U(rr->rr_missingparity, <=, rr->rr_firstdatacol); 2143 ASSERT3U(rr->rr_missingdata, <=, rr->rr_cols - rr->rr_firstdatacol); 2144 ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ); 2145 2146 for (int c = 0; c < rr->rr_cols; c++) { 2147 raidz_col_t *rc = &rr->rr_col[c]; 2148 2149 if (rc->rc_error) { 2150 ASSERT(rc->rc_error != ECKSUM); /* child has no bp */ 2151 2152 if (c < rr->rr_firstdatacol) 2153 parity_errors++; 2154 else 2155 data_errors++; 2156 2157 total_errors++; 2158 } else if (c < rr->rr_firstdatacol && !rc->rc_tried) { 2159 parity_untried++; 2160 } 2161 } 2162 2163 /* 2164 * If there were data errors and the number of errors we saw was 2165 * correctable -- less than or equal to the number of parity disks read 2166 * -- reconstruct based on the missing data. 2167 */ 2168 if (data_errors != 0 && 2169 total_errors <= rr->rr_firstdatacol - parity_untried) { 2170 /* 2171 * We either attempt to read all the parity columns or 2172 * none of them. If we didn't try to read parity, we 2173 * wouldn't be here in the correctable case. There must 2174 * also have been fewer parity errors than parity 2175 * columns or, again, we wouldn't be in this code path. 2176 */ 2177 ASSERT(parity_untried == 0); 2178 ASSERT(parity_errors < rr->rr_firstdatacol); 2179 2180 /* 2181 * Identify the data columns that reported an error. 2182 */ 2183 int n = 0; 2184 int tgts[VDEV_RAIDZ_MAXPARITY]; 2185 for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 2186 raidz_col_t *rc = &rr->rr_col[c]; 2187 if (rc->rc_error != 0) { 2188 ASSERT(n < VDEV_RAIDZ_MAXPARITY); 2189 tgts[n++] = c; 2190 } 2191 } 2192 2193 ASSERT(rr->rr_firstdatacol >= n); 2194 2195 vdev_raidz_reconstruct_row(rm, rr, tgts, n); 2196 } 2197 } 2198 2199 /* 2200 * Return the number of reads issued. 2201 */ 2202 static int 2203 vdev_raidz_read_all(zio_t *zio, raidz_row_t *rr) 2204 { 2205 vdev_t *vd = zio->io_vd; 2206 int nread = 0; 2207 2208 rr->rr_missingdata = 0; 2209 rr->rr_missingparity = 0; 2210 2211 /* 2212 * If this rows contains empty sectors which are not required 2213 * for a normal read then allocate an ABD for them now so they 2214 * may be read, verified, and any needed repairs performed. 2215 */ 2216 if (rr->rr_nempty && rr->rr_abd_empty == NULL) 2217 vdev_draid_map_alloc_empty(zio, rr); 2218 2219 for (int c = 0; c < rr->rr_cols; c++) { 2220 raidz_col_t *rc = &rr->rr_col[c]; 2221 if (rc->rc_tried || rc->rc_size == 0) 2222 continue; 2223 2224 zio_nowait(zio_vdev_child_io(zio, NULL, 2225 vd->vdev_child[rc->rc_devidx], 2226 rc->rc_offset, rc->rc_abd, rc->rc_size, 2227 zio->io_type, zio->io_priority, 0, 2228 vdev_raidz_child_done, rc)); 2229 nread++; 2230 } 2231 return (nread); 2232 } 2233 2234 /* 2235 * We're here because either there were too many errors to even attempt 2236 * reconstruction (total_errors == rm_first_datacol), or vdev_*_combrec() 2237 * failed. In either case, there is enough bad data to prevent reconstruction. 2238 * Start checksum ereports for all children which haven't failed. 2239 */ 2240 static void 2241 vdev_raidz_io_done_unrecoverable(zio_t *zio) 2242 { 2243 raidz_map_t *rm = zio->io_vsd; 2244 2245 for (int i = 0; i < rm->rm_nrows; i++) { 2246 raidz_row_t *rr = rm->rm_row[i]; 2247 2248 for (int c = 0; c < rr->rr_cols; c++) { 2249 raidz_col_t *rc = &rr->rr_col[c]; 2250 vdev_t *cvd = zio->io_vd->vdev_child[rc->rc_devidx]; 2251 2252 if (rc->rc_error != 0) 2253 continue; 2254 2255 zio_bad_cksum_t zbc; 2256 zbc.zbc_has_cksum = 0; 2257 zbc.zbc_injected = rm->rm_ecksuminjected; 2258 2259 (void) zfs_ereport_start_checksum(zio->io_spa, 2260 cvd, &zio->io_bookmark, zio, rc->rc_offset, 2261 rc->rc_size, &zbc); 2262 mutex_enter(&cvd->vdev_stat_lock); 2263 cvd->vdev_stat.vs_checksum_errors++; 2264 mutex_exit(&cvd->vdev_stat_lock); 2265 } 2266 } 2267 } 2268 2269 void 2270 vdev_raidz_io_done(zio_t *zio) 2271 { 2272 raidz_map_t *rm = zio->io_vsd; 2273 2274 if (zio->io_type == ZIO_TYPE_WRITE) { 2275 for (int i = 0; i < rm->rm_nrows; i++) { 2276 vdev_raidz_io_done_write_impl(zio, rm->rm_row[i]); 2277 } 2278 } else { 2279 for (int i = 0; i < rm->rm_nrows; i++) { 2280 raidz_row_t *rr = rm->rm_row[i]; 2281 vdev_raidz_io_done_reconstruct_known_missing(zio, 2282 rm, rr); 2283 } 2284 2285 if (raidz_checksum_verify(zio) == 0) { 2286 for (int i = 0; i < rm->rm_nrows; i++) { 2287 raidz_row_t *rr = rm->rm_row[i]; 2288 vdev_raidz_io_done_verified(zio, rr); 2289 } 2290 zio_checksum_verified(zio); 2291 } else { 2292 /* 2293 * A sequential resilver has no checksum which makes 2294 * combinatoral reconstruction impossible. This code 2295 * path is unreachable since raidz_checksum_verify() 2296 * has no checksum to verify and must succeed. 2297 */ 2298 ASSERT3U(zio->io_priority, !=, ZIO_PRIORITY_REBUILD); 2299 2300 /* 2301 * This isn't a typical situation -- either we got a 2302 * read error or a child silently returned bad data. 2303 * Read every block so we can try again with as much 2304 * data and parity as we can track down. If we've 2305 * already been through once before, all children will 2306 * be marked as tried so we'll proceed to combinatorial 2307 * reconstruction. 2308 */ 2309 int nread = 0; 2310 for (int i = 0; i < rm->rm_nrows; i++) { 2311 nread += vdev_raidz_read_all(zio, 2312 rm->rm_row[i]); 2313 } 2314 if (nread != 0) { 2315 /* 2316 * Normally our stage is VDEV_IO_DONE, but if 2317 * we've already called redone(), it will have 2318 * changed to VDEV_IO_START, in which case we 2319 * don't want to call redone() again. 2320 */ 2321 if (zio->io_stage != ZIO_STAGE_VDEV_IO_START) 2322 zio_vdev_io_redone(zio); 2323 return; 2324 } 2325 2326 zio->io_error = vdev_raidz_combrec(zio); 2327 if (zio->io_error == ECKSUM && 2328 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 2329 vdev_raidz_io_done_unrecoverable(zio); 2330 } 2331 } 2332 } 2333 } 2334 2335 static void 2336 vdev_raidz_state_change(vdev_t *vd, int faulted, int degraded) 2337 { 2338 vdev_raidz_t *vdrz = vd->vdev_tsd; 2339 if (faulted > vdrz->vd_nparity) 2340 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2341 VDEV_AUX_NO_REPLICAS); 2342 else if (degraded + faulted != 0) 2343 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE); 2344 else 2345 vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE); 2346 } 2347 2348 /* 2349 * Determine if any portion of the provided block resides on a child vdev 2350 * with a dirty DTL and therefore needs to be resilvered. The function 2351 * assumes that at least one DTL is dirty which implies that full stripe 2352 * width blocks must be resilvered. 2353 */ 2354 static boolean_t 2355 vdev_raidz_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 2356 uint64_t phys_birth) 2357 { 2358 vdev_raidz_t *vdrz = vd->vdev_tsd; 2359 uint64_t dcols = vd->vdev_children; 2360 uint64_t nparity = vdrz->vd_nparity; 2361 uint64_t ashift = vd->vdev_top->vdev_ashift; 2362 /* The starting RAIDZ (parent) vdev sector of the block. */ 2363 uint64_t b = DVA_GET_OFFSET(dva) >> ashift; 2364 /* The zio's size in units of the vdev's minimum sector size. */ 2365 uint64_t s = ((psize - 1) >> ashift) + 1; 2366 /* The first column for this stripe. */ 2367 uint64_t f = b % dcols; 2368 2369 /* Unreachable by sequential resilver. */ 2370 ASSERT3U(phys_birth, !=, TXG_UNKNOWN); 2371 2372 if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)) 2373 return (B_FALSE); 2374 2375 if (s + nparity >= dcols) 2376 return (B_TRUE); 2377 2378 for (uint64_t c = 0; c < s + nparity; c++) { 2379 uint64_t devidx = (f + c) % dcols; 2380 vdev_t *cvd = vd->vdev_child[devidx]; 2381 2382 /* 2383 * dsl_scan_need_resilver() already checked vd with 2384 * vdev_dtl_contains(). So here just check cvd with 2385 * vdev_dtl_empty(), cheaper and a good approximation. 2386 */ 2387 if (!vdev_dtl_empty(cvd, DTL_PARTIAL)) 2388 return (B_TRUE); 2389 } 2390 2391 return (B_FALSE); 2392 } 2393 2394 static void 2395 vdev_raidz_xlate(vdev_t *cvd, const range_seg64_t *logical_rs, 2396 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 2397 { 2398 vdev_t *raidvd = cvd->vdev_parent; 2399 ASSERT(raidvd->vdev_ops == &vdev_raidz_ops); 2400 2401 uint64_t width = raidvd->vdev_children; 2402 uint64_t tgt_col = cvd->vdev_id; 2403 uint64_t ashift = raidvd->vdev_top->vdev_ashift; 2404 2405 /* make sure the offsets are block-aligned */ 2406 ASSERT0(logical_rs->rs_start % (1 << ashift)); 2407 ASSERT0(logical_rs->rs_end % (1 << ashift)); 2408 uint64_t b_start = logical_rs->rs_start >> ashift; 2409 uint64_t b_end = logical_rs->rs_end >> ashift; 2410 2411 uint64_t start_row = 0; 2412 if (b_start > tgt_col) /* avoid underflow */ 2413 start_row = ((b_start - tgt_col - 1) / width) + 1; 2414 2415 uint64_t end_row = 0; 2416 if (b_end > tgt_col) 2417 end_row = ((b_end - tgt_col - 1) / width) + 1; 2418 2419 physical_rs->rs_start = start_row << ashift; 2420 physical_rs->rs_end = end_row << ashift; 2421 2422 ASSERT3U(physical_rs->rs_start, <=, logical_rs->rs_start); 2423 ASSERT3U(physical_rs->rs_end - physical_rs->rs_start, <=, 2424 logical_rs->rs_end - logical_rs->rs_start); 2425 } 2426 2427 /* 2428 * Initialize private RAIDZ specific fields from the nvlist. 2429 */ 2430 static int 2431 vdev_raidz_init(spa_t *spa, nvlist_t *nv, void **tsd) 2432 { 2433 vdev_raidz_t *vdrz; 2434 uint64_t nparity; 2435 2436 uint_t children; 2437 nvlist_t **child; 2438 int error = nvlist_lookup_nvlist_array(nv, 2439 ZPOOL_CONFIG_CHILDREN, &child, &children); 2440 if (error != 0) 2441 return (SET_ERROR(EINVAL)); 2442 2443 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &nparity) == 0) { 2444 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 2445 return (SET_ERROR(EINVAL)); 2446 2447 /* 2448 * Previous versions could only support 1 or 2 parity 2449 * device. 2450 */ 2451 if (nparity > 1 && spa_version(spa) < SPA_VERSION_RAIDZ2) 2452 return (SET_ERROR(EINVAL)); 2453 else if (nparity > 2 && spa_version(spa) < SPA_VERSION_RAIDZ3) 2454 return (SET_ERROR(EINVAL)); 2455 } else { 2456 /* 2457 * We require the parity to be specified for SPAs that 2458 * support multiple parity levels. 2459 */ 2460 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 2461 return (SET_ERROR(EINVAL)); 2462 2463 /* 2464 * Otherwise, we default to 1 parity device for RAID-Z. 2465 */ 2466 nparity = 1; 2467 } 2468 2469 vdrz = kmem_zalloc(sizeof (*vdrz), KM_SLEEP); 2470 vdrz->vd_logical_width = children; 2471 vdrz->vd_nparity = nparity; 2472 2473 *tsd = vdrz; 2474 2475 return (0); 2476 } 2477 2478 static void 2479 vdev_raidz_fini(vdev_t *vd) 2480 { 2481 kmem_free(vd->vdev_tsd, sizeof (vdev_raidz_t)); 2482 } 2483 2484 /* 2485 * Add RAIDZ specific fields to the config nvlist. 2486 */ 2487 static void 2488 vdev_raidz_config_generate(vdev_t *vd, nvlist_t *nv) 2489 { 2490 ASSERT3P(vd->vdev_ops, ==, &vdev_raidz_ops); 2491 vdev_raidz_t *vdrz = vd->vdev_tsd; 2492 2493 /* 2494 * Make sure someone hasn't managed to sneak a fancy new vdev 2495 * into a crufty old storage pool. 2496 */ 2497 ASSERT(vdrz->vd_nparity == 1 || 2498 (vdrz->vd_nparity <= 2 && 2499 spa_version(vd->vdev_spa) >= SPA_VERSION_RAIDZ2) || 2500 (vdrz->vd_nparity <= 3 && 2501 spa_version(vd->vdev_spa) >= SPA_VERSION_RAIDZ3)); 2502 2503 /* 2504 * Note that we'll add these even on storage pools where they 2505 * aren't strictly required -- older software will just ignore 2506 * it. 2507 */ 2508 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vdrz->vd_nparity); 2509 } 2510 2511 static uint64_t 2512 vdev_raidz_nparity(vdev_t *vd) 2513 { 2514 vdev_raidz_t *vdrz = vd->vdev_tsd; 2515 return (vdrz->vd_nparity); 2516 } 2517 2518 static uint64_t 2519 vdev_raidz_ndisks(vdev_t *vd) 2520 { 2521 return (vd->vdev_children); 2522 } 2523 2524 vdev_ops_t vdev_raidz_ops = { 2525 .vdev_op_init = vdev_raidz_init, 2526 .vdev_op_fini = vdev_raidz_fini, 2527 .vdev_op_open = vdev_raidz_open, 2528 .vdev_op_close = vdev_raidz_close, 2529 .vdev_op_asize = vdev_raidz_asize, 2530 .vdev_op_min_asize = vdev_raidz_min_asize, 2531 .vdev_op_min_alloc = NULL, 2532 .vdev_op_io_start = vdev_raidz_io_start, 2533 .vdev_op_io_done = vdev_raidz_io_done, 2534 .vdev_op_state_change = vdev_raidz_state_change, 2535 .vdev_op_need_resilver = vdev_raidz_need_resilver, 2536 .vdev_op_hold = NULL, 2537 .vdev_op_rele = NULL, 2538 .vdev_op_remap = NULL, 2539 .vdev_op_xlate = vdev_raidz_xlate, 2540 .vdev_op_rebuild_asize = NULL, 2541 .vdev_op_metaslab_init = NULL, 2542 .vdev_op_config_generate = vdev_raidz_config_generate, 2543 .vdev_op_nparity = vdev_raidz_nparity, 2544 .vdev_op_ndisks = vdev_raidz_ndisks, 2545 .vdev_op_type = VDEV_TYPE_RAIDZ, /* name of this vdev type */ 2546 .vdev_op_leaf = B_FALSE /* not a leaf vdev */ 2547 }; 2548