xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_raidz.c (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2016 Gvozden Nešković. All rights reserved.
26  */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa.h>
30 #include <sys/vdev_impl.h>
31 #include <sys/zio.h>
32 #include <sys/zio_checksum.h>
33 #include <sys/abd.h>
34 #include <sys/fs/zfs.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/vdev_raidz.h>
37 #include <sys/vdev_raidz_impl.h>
38 #include <sys/vdev_draid.h>
39 
40 #ifdef ZFS_DEBUG
41 #include <sys/vdev.h>	/* For vdev_xlate() in vdev_raidz_io_verify() */
42 #endif
43 
44 /*
45  * Virtual device vector for RAID-Z.
46  *
47  * This vdev supports single, double, and triple parity. For single parity,
48  * we use a simple XOR of all the data columns. For double or triple parity,
49  * we use a special case of Reed-Solomon coding. This extends the
50  * technique described in "The mathematics of RAID-6" by H. Peter Anvin by
51  * drawing on the system described in "A Tutorial on Reed-Solomon Coding for
52  * Fault-Tolerance in RAID-like Systems" by James S. Plank on which the
53  * former is also based. The latter is designed to provide higher performance
54  * for writes.
55  *
56  * Note that the Plank paper claimed to support arbitrary N+M, but was then
57  * amended six years later identifying a critical flaw that invalidates its
58  * claims. Nevertheless, the technique can be adapted to work for up to
59  * triple parity. For additional parity, the amendment "Note: Correction to
60  * the 1997 Tutorial on Reed-Solomon Coding" by James S. Plank and Ying Ding
61  * is viable, but the additional complexity means that write performance will
62  * suffer.
63  *
64  * All of the methods above operate on a Galois field, defined over the
65  * integers mod 2^N. In our case we choose N=8 for GF(8) so that all elements
66  * can be expressed with a single byte. Briefly, the operations on the
67  * field are defined as follows:
68  *
69  *   o addition (+) is represented by a bitwise XOR
70  *   o subtraction (-) is therefore identical to addition: A + B = A - B
71  *   o multiplication of A by 2 is defined by the following bitwise expression:
72  *
73  *	(A * 2)_7 = A_6
74  *	(A * 2)_6 = A_5
75  *	(A * 2)_5 = A_4
76  *	(A * 2)_4 = A_3 + A_7
77  *	(A * 2)_3 = A_2 + A_7
78  *	(A * 2)_2 = A_1 + A_7
79  *	(A * 2)_1 = A_0
80  *	(A * 2)_0 = A_7
81  *
82  * In C, multiplying by 2 is therefore ((a << 1) ^ ((a & 0x80) ? 0x1d : 0)).
83  * As an aside, this multiplication is derived from the error correcting
84  * primitive polynomial x^8 + x^4 + x^3 + x^2 + 1.
85  *
86  * Observe that any number in the field (except for 0) can be expressed as a
87  * power of 2 -- a generator for the field. We store a table of the powers of
88  * 2 and logs base 2 for quick look ups, and exploit the fact that A * B can
89  * be rewritten as 2^(log_2(A) + log_2(B)) (where '+' is normal addition rather
90  * than field addition). The inverse of a field element A (A^-1) is therefore
91  * A ^ (255 - 1) = A^254.
92  *
93  * The up-to-three parity columns, P, Q, R over several data columns,
94  * D_0, ... D_n-1, can be expressed by field operations:
95  *
96  *	P = D_0 + D_1 + ... + D_n-2 + D_n-1
97  *	Q = 2^n-1 * D_0 + 2^n-2 * D_1 + ... + 2^1 * D_n-2 + 2^0 * D_n-1
98  *	  = ((...((D_0) * 2 + D_1) * 2 + ...) * 2 + D_n-2) * 2 + D_n-1
99  *	R = 4^n-1 * D_0 + 4^n-2 * D_1 + ... + 4^1 * D_n-2 + 4^0 * D_n-1
100  *	  = ((...((D_0) * 4 + D_1) * 4 + ...) * 4 + D_n-2) * 4 + D_n-1
101  *
102  * We chose 1, 2, and 4 as our generators because 1 corresponds to the trivial
103  * XOR operation, and 2 and 4 can be computed quickly and generate linearly-
104  * independent coefficients. (There are no additional coefficients that have
105  * this property which is why the uncorrected Plank method breaks down.)
106  *
107  * See the reconstruction code below for how P, Q and R can used individually
108  * or in concert to recover missing data columns.
109  */
110 
111 #define	VDEV_RAIDZ_P		0
112 #define	VDEV_RAIDZ_Q		1
113 #define	VDEV_RAIDZ_R		2
114 
115 #define	VDEV_RAIDZ_MUL_2(x)	(((x) << 1) ^ (((x) & 0x80) ? 0x1d : 0))
116 #define	VDEV_RAIDZ_MUL_4(x)	(VDEV_RAIDZ_MUL_2(VDEV_RAIDZ_MUL_2(x)))
117 
118 /*
119  * We provide a mechanism to perform the field multiplication operation on a
120  * 64-bit value all at once rather than a byte at a time. This works by
121  * creating a mask from the top bit in each byte and using that to
122  * conditionally apply the XOR of 0x1d.
123  */
124 #define	VDEV_RAIDZ_64MUL_2(x, mask) \
125 { \
126 	(mask) = (x) & 0x8080808080808080ULL; \
127 	(mask) = ((mask) << 1) - ((mask) >> 7); \
128 	(x) = (((x) << 1) & 0xfefefefefefefefeULL) ^ \
129 	    ((mask) & 0x1d1d1d1d1d1d1d1dULL); \
130 }
131 
132 #define	VDEV_RAIDZ_64MUL_4(x, mask) \
133 { \
134 	VDEV_RAIDZ_64MUL_2((x), mask); \
135 	VDEV_RAIDZ_64MUL_2((x), mask); \
136 }
137 
138 static void
139 vdev_raidz_row_free(raidz_row_t *rr)
140 {
141 	for (int c = 0; c < rr->rr_cols; c++) {
142 		raidz_col_t *rc = &rr->rr_col[c];
143 
144 		if (rc->rc_size != 0)
145 			abd_free(rc->rc_abd);
146 		if (rc->rc_orig_data != NULL)
147 			abd_free(rc->rc_orig_data);
148 	}
149 
150 	if (rr->rr_abd_empty != NULL)
151 		abd_free(rr->rr_abd_empty);
152 
153 	kmem_free(rr, offsetof(raidz_row_t, rr_col[rr->rr_scols]));
154 }
155 
156 void
157 vdev_raidz_map_free(raidz_map_t *rm)
158 {
159 	for (int i = 0; i < rm->rm_nrows; i++)
160 		vdev_raidz_row_free(rm->rm_row[i]);
161 
162 	kmem_free(rm, offsetof(raidz_map_t, rm_row[rm->rm_nrows]));
163 }
164 
165 static void
166 vdev_raidz_map_free_vsd(zio_t *zio)
167 {
168 	raidz_map_t *rm = zio->io_vsd;
169 
170 	vdev_raidz_map_free(rm);
171 }
172 
173 const zio_vsd_ops_t vdev_raidz_vsd_ops = {
174 	.vsd_free = vdev_raidz_map_free_vsd,
175 };
176 
177 static void
178 vdev_raidz_map_alloc_write(zio_t *zio, raidz_map_t *rm, uint64_t ashift)
179 {
180 	int c;
181 	int nwrapped = 0;
182 	uint64_t off = 0;
183 	raidz_row_t *rr = rm->rm_row[0];
184 
185 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
186 	ASSERT3U(rm->rm_nrows, ==, 1);
187 
188 	/*
189 	 * Pad any parity columns with additional space to account for skip
190 	 * sectors.
191 	 */
192 	if (rm->rm_skipstart < rr->rr_firstdatacol) {
193 		ASSERT0(rm->rm_skipstart);
194 		nwrapped = rm->rm_nskip;
195 	} else if (rr->rr_scols < (rm->rm_skipstart + rm->rm_nskip)) {
196 		nwrapped =
197 		    (rm->rm_skipstart + rm->rm_nskip) % rr->rr_scols;
198 	}
199 
200 	/*
201 	 * Optional single skip sectors (rc_size == 0) will be handled in
202 	 * vdev_raidz_io_start_write().
203 	 */
204 	int skipped = rr->rr_scols - rr->rr_cols;
205 
206 	/* Allocate buffers for the parity columns */
207 	for (c = 0; c < rr->rr_firstdatacol; c++) {
208 		raidz_col_t *rc = &rr->rr_col[c];
209 
210 		/*
211 		 * Parity columns will pad out a linear ABD to account for
212 		 * the skip sector. A linear ABD is used here because
213 		 * parity calculations use the ABD buffer directly to calculate
214 		 * parity. This avoids doing a memcpy back to the ABD after the
215 		 * parity has been calculated. By issuing the parity column
216 		 * with the skip sector we can reduce contention on the child
217 		 * VDEV queue locks (vq_lock).
218 		 */
219 		if (c < nwrapped) {
220 			rc->rc_abd = abd_alloc_linear(
221 			    rc->rc_size + (1ULL << ashift), B_FALSE);
222 			abd_zero_off(rc->rc_abd, rc->rc_size, 1ULL << ashift);
223 			skipped++;
224 		} else {
225 			rc->rc_abd = abd_alloc_linear(rc->rc_size, B_FALSE);
226 		}
227 	}
228 
229 	for (off = 0; c < rr->rr_cols; c++) {
230 		raidz_col_t *rc = &rr->rr_col[c];
231 		abd_t *abd = abd_get_offset_struct(&rc->rc_abdstruct,
232 		    zio->io_abd, off, rc->rc_size);
233 
234 		/*
235 		 * Generate I/O for skip sectors to improve aggregation
236 		 * continuity. We will use gang ABD's to reduce contention
237 		 * on the child VDEV queue locks (vq_lock) by issuing
238 		 * a single I/O that contains the data and skip sector.
239 		 *
240 		 * It is important to make sure that rc_size is not updated
241 		 * even though we are adding a skip sector to the ABD. When
242 		 * calculating the parity in vdev_raidz_generate_parity_row()
243 		 * the rc_size is used to iterate through the ABD's. We can
244 		 * not have zero'd out skip sectors used for calculating
245 		 * parity for raidz, because those same sectors are not used
246 		 * during reconstruction.
247 		 */
248 		if (c >= rm->rm_skipstart && skipped < rm->rm_nskip) {
249 			rc->rc_abd = abd_alloc_gang();
250 			abd_gang_add(rc->rc_abd, abd, B_TRUE);
251 			abd_gang_add(rc->rc_abd,
252 			    abd_get_zeros(1ULL << ashift), B_TRUE);
253 			skipped++;
254 		} else {
255 			rc->rc_abd = abd;
256 		}
257 		off += rc->rc_size;
258 	}
259 
260 	ASSERT3U(off, ==, zio->io_size);
261 	ASSERT3S(skipped, ==, rm->rm_nskip);
262 }
263 
264 static void
265 vdev_raidz_map_alloc_read(zio_t *zio, raidz_map_t *rm)
266 {
267 	int c;
268 	raidz_row_t *rr = rm->rm_row[0];
269 
270 	ASSERT3U(rm->rm_nrows, ==, 1);
271 
272 	/* Allocate buffers for the parity columns */
273 	for (c = 0; c < rr->rr_firstdatacol; c++)
274 		rr->rr_col[c].rc_abd =
275 		    abd_alloc_linear(rr->rr_col[c].rc_size, B_FALSE);
276 
277 	for (uint64_t off = 0; c < rr->rr_cols; c++) {
278 		raidz_col_t *rc = &rr->rr_col[c];
279 		rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
280 		    zio->io_abd, off, rc->rc_size);
281 		off += rc->rc_size;
282 	}
283 }
284 
285 /*
286  * Divides the IO evenly across all child vdevs; usually, dcols is
287  * the number of children in the target vdev.
288  *
289  * Avoid inlining the function to keep vdev_raidz_io_start(), which
290  * is this functions only caller, as small as possible on the stack.
291  */
292 noinline raidz_map_t *
293 vdev_raidz_map_alloc(zio_t *zio, uint64_t ashift, uint64_t dcols,
294     uint64_t nparity)
295 {
296 	raidz_row_t *rr;
297 	/* The starting RAIDZ (parent) vdev sector of the block. */
298 	uint64_t b = zio->io_offset >> ashift;
299 	/* The zio's size in units of the vdev's minimum sector size. */
300 	uint64_t s = zio->io_size >> ashift;
301 	/* The first column for this stripe. */
302 	uint64_t f = b % dcols;
303 	/* The starting byte offset on each child vdev. */
304 	uint64_t o = (b / dcols) << ashift;
305 	uint64_t q, r, c, bc, col, acols, scols, coff, devidx, asize, tot;
306 
307 	raidz_map_t *rm =
308 	    kmem_zalloc(offsetof(raidz_map_t, rm_row[1]), KM_SLEEP);
309 	rm->rm_nrows = 1;
310 
311 	/*
312 	 * "Quotient": The number of data sectors for this stripe on all but
313 	 * the "big column" child vdevs that also contain "remainder" data.
314 	 */
315 	q = s / (dcols - nparity);
316 
317 	/*
318 	 * "Remainder": The number of partial stripe data sectors in this I/O.
319 	 * This will add a sector to some, but not all, child vdevs.
320 	 */
321 	r = s - q * (dcols - nparity);
322 
323 	/* The number of "big columns" - those which contain remainder data. */
324 	bc = (r == 0 ? 0 : r + nparity);
325 
326 	/*
327 	 * The total number of data and parity sectors associated with
328 	 * this I/O.
329 	 */
330 	tot = s + nparity * (q + (r == 0 ? 0 : 1));
331 
332 	/*
333 	 * acols: The columns that will be accessed.
334 	 * scols: The columns that will be accessed or skipped.
335 	 */
336 	if (q == 0) {
337 		/* Our I/O request doesn't span all child vdevs. */
338 		acols = bc;
339 		scols = MIN(dcols, roundup(bc, nparity + 1));
340 	} else {
341 		acols = dcols;
342 		scols = dcols;
343 	}
344 
345 	ASSERT3U(acols, <=, scols);
346 
347 	rr = kmem_alloc(offsetof(raidz_row_t, rr_col[scols]), KM_SLEEP);
348 	rm->rm_row[0] = rr;
349 
350 	rr->rr_cols = acols;
351 	rr->rr_scols = scols;
352 	rr->rr_bigcols = bc;
353 	rr->rr_missingdata = 0;
354 	rr->rr_missingparity = 0;
355 	rr->rr_firstdatacol = nparity;
356 	rr->rr_abd_empty = NULL;
357 	rr->rr_nempty = 0;
358 #ifdef ZFS_DEBUG
359 	rr->rr_offset = zio->io_offset;
360 	rr->rr_size = zio->io_size;
361 #endif
362 
363 	asize = 0;
364 
365 	for (c = 0; c < scols; c++) {
366 		raidz_col_t *rc = &rr->rr_col[c];
367 		col = f + c;
368 		coff = o;
369 		if (col >= dcols) {
370 			col -= dcols;
371 			coff += 1ULL << ashift;
372 		}
373 		rc->rc_devidx = col;
374 		rc->rc_offset = coff;
375 		rc->rc_abd = NULL;
376 		rc->rc_orig_data = NULL;
377 		rc->rc_error = 0;
378 		rc->rc_tried = 0;
379 		rc->rc_skipped = 0;
380 		rc->rc_force_repair = 0;
381 		rc->rc_allow_repair = 1;
382 		rc->rc_need_orig_restore = B_FALSE;
383 
384 		if (c >= acols)
385 			rc->rc_size = 0;
386 		else if (c < bc)
387 			rc->rc_size = (q + 1) << ashift;
388 		else
389 			rc->rc_size = q << ashift;
390 
391 		asize += rc->rc_size;
392 	}
393 
394 	ASSERT3U(asize, ==, tot << ashift);
395 	rm->rm_nskip = roundup(tot, nparity + 1) - tot;
396 	rm->rm_skipstart = bc;
397 
398 	/*
399 	 * If all data stored spans all columns, there's a danger that parity
400 	 * will always be on the same device and, since parity isn't read
401 	 * during normal operation, that device's I/O bandwidth won't be
402 	 * used effectively. We therefore switch the parity every 1MB.
403 	 *
404 	 * ... at least that was, ostensibly, the theory. As a practical
405 	 * matter unless we juggle the parity between all devices evenly, we
406 	 * won't see any benefit. Further, occasional writes that aren't a
407 	 * multiple of the LCM of the number of children and the minimum
408 	 * stripe width are sufficient to avoid pessimal behavior.
409 	 * Unfortunately, this decision created an implicit on-disk format
410 	 * requirement that we need to support for all eternity, but only
411 	 * for single-parity RAID-Z.
412 	 *
413 	 * If we intend to skip a sector in the zeroth column for padding
414 	 * we must make sure to note this swap. We will never intend to
415 	 * skip the first column since at least one data and one parity
416 	 * column must appear in each row.
417 	 */
418 	ASSERT(rr->rr_cols >= 2);
419 	ASSERT(rr->rr_col[0].rc_size == rr->rr_col[1].rc_size);
420 
421 	if (rr->rr_firstdatacol == 1 && (zio->io_offset & (1ULL << 20))) {
422 		devidx = rr->rr_col[0].rc_devidx;
423 		o = rr->rr_col[0].rc_offset;
424 		rr->rr_col[0].rc_devidx = rr->rr_col[1].rc_devidx;
425 		rr->rr_col[0].rc_offset = rr->rr_col[1].rc_offset;
426 		rr->rr_col[1].rc_devidx = devidx;
427 		rr->rr_col[1].rc_offset = o;
428 
429 		if (rm->rm_skipstart == 0)
430 			rm->rm_skipstart = 1;
431 	}
432 
433 	if (zio->io_type == ZIO_TYPE_WRITE) {
434 		vdev_raidz_map_alloc_write(zio, rm, ashift);
435 	} else {
436 		vdev_raidz_map_alloc_read(zio, rm);
437 	}
438 
439 	/* init RAIDZ parity ops */
440 	rm->rm_ops = vdev_raidz_math_get_ops();
441 
442 	return (rm);
443 }
444 
445 struct pqr_struct {
446 	uint64_t *p;
447 	uint64_t *q;
448 	uint64_t *r;
449 };
450 
451 static int
452 vdev_raidz_p_func(void *buf, size_t size, void *private)
453 {
454 	struct pqr_struct *pqr = private;
455 	const uint64_t *src = buf;
456 	int i, cnt = size / sizeof (src[0]);
457 
458 	ASSERT(pqr->p && !pqr->q && !pqr->r);
459 
460 	for (i = 0; i < cnt; i++, src++, pqr->p++)
461 		*pqr->p ^= *src;
462 
463 	return (0);
464 }
465 
466 static int
467 vdev_raidz_pq_func(void *buf, size_t size, void *private)
468 {
469 	struct pqr_struct *pqr = private;
470 	const uint64_t *src = buf;
471 	uint64_t mask;
472 	int i, cnt = size / sizeof (src[0]);
473 
474 	ASSERT(pqr->p && pqr->q && !pqr->r);
475 
476 	for (i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++) {
477 		*pqr->p ^= *src;
478 		VDEV_RAIDZ_64MUL_2(*pqr->q, mask);
479 		*pqr->q ^= *src;
480 	}
481 
482 	return (0);
483 }
484 
485 static int
486 vdev_raidz_pqr_func(void *buf, size_t size, void *private)
487 {
488 	struct pqr_struct *pqr = private;
489 	const uint64_t *src = buf;
490 	uint64_t mask;
491 	int i, cnt = size / sizeof (src[0]);
492 
493 	ASSERT(pqr->p && pqr->q && pqr->r);
494 
495 	for (i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++, pqr->r++) {
496 		*pqr->p ^= *src;
497 		VDEV_RAIDZ_64MUL_2(*pqr->q, mask);
498 		*pqr->q ^= *src;
499 		VDEV_RAIDZ_64MUL_4(*pqr->r, mask);
500 		*pqr->r ^= *src;
501 	}
502 
503 	return (0);
504 }
505 
506 static void
507 vdev_raidz_generate_parity_p(raidz_row_t *rr)
508 {
509 	uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
510 
511 	for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
512 		abd_t *src = rr->rr_col[c].rc_abd;
513 
514 		if (c == rr->rr_firstdatacol) {
515 			abd_copy_to_buf(p, src, rr->rr_col[c].rc_size);
516 		} else {
517 			struct pqr_struct pqr = { p, NULL, NULL };
518 			(void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size,
519 			    vdev_raidz_p_func, &pqr);
520 		}
521 	}
522 }
523 
524 static void
525 vdev_raidz_generate_parity_pq(raidz_row_t *rr)
526 {
527 	uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
528 	uint64_t *q = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd);
529 	uint64_t pcnt = rr->rr_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]);
530 	ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size ==
531 	    rr->rr_col[VDEV_RAIDZ_Q].rc_size);
532 
533 	for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
534 		abd_t *src = rr->rr_col[c].rc_abd;
535 
536 		uint64_t ccnt = rr->rr_col[c].rc_size / sizeof (p[0]);
537 
538 		if (c == rr->rr_firstdatacol) {
539 			ASSERT(ccnt == pcnt || ccnt == 0);
540 			abd_copy_to_buf(p, src, rr->rr_col[c].rc_size);
541 			(void) memcpy(q, p, rr->rr_col[c].rc_size);
542 
543 			for (uint64_t i = ccnt; i < pcnt; i++) {
544 				p[i] = 0;
545 				q[i] = 0;
546 			}
547 		} else {
548 			struct pqr_struct pqr = { p, q, NULL };
549 
550 			ASSERT(ccnt <= pcnt);
551 			(void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size,
552 			    vdev_raidz_pq_func, &pqr);
553 
554 			/*
555 			 * Treat short columns as though they are full of 0s.
556 			 * Note that there's therefore nothing needed for P.
557 			 */
558 			uint64_t mask;
559 			for (uint64_t i = ccnt; i < pcnt; i++) {
560 				VDEV_RAIDZ_64MUL_2(q[i], mask);
561 			}
562 		}
563 	}
564 }
565 
566 static void
567 vdev_raidz_generate_parity_pqr(raidz_row_t *rr)
568 {
569 	uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
570 	uint64_t *q = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd);
571 	uint64_t *r = abd_to_buf(rr->rr_col[VDEV_RAIDZ_R].rc_abd);
572 	uint64_t pcnt = rr->rr_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]);
573 	ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size ==
574 	    rr->rr_col[VDEV_RAIDZ_Q].rc_size);
575 	ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size ==
576 	    rr->rr_col[VDEV_RAIDZ_R].rc_size);
577 
578 	for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
579 		abd_t *src = rr->rr_col[c].rc_abd;
580 
581 		uint64_t ccnt = rr->rr_col[c].rc_size / sizeof (p[0]);
582 
583 		if (c == rr->rr_firstdatacol) {
584 			ASSERT(ccnt == pcnt || ccnt == 0);
585 			abd_copy_to_buf(p, src, rr->rr_col[c].rc_size);
586 			(void) memcpy(q, p, rr->rr_col[c].rc_size);
587 			(void) memcpy(r, p, rr->rr_col[c].rc_size);
588 
589 			for (uint64_t i = ccnt; i < pcnt; i++) {
590 				p[i] = 0;
591 				q[i] = 0;
592 				r[i] = 0;
593 			}
594 		} else {
595 			struct pqr_struct pqr = { p, q, r };
596 
597 			ASSERT(ccnt <= pcnt);
598 			(void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size,
599 			    vdev_raidz_pqr_func, &pqr);
600 
601 			/*
602 			 * Treat short columns as though they are full of 0s.
603 			 * Note that there's therefore nothing needed for P.
604 			 */
605 			uint64_t mask;
606 			for (uint64_t i = ccnt; i < pcnt; i++) {
607 				VDEV_RAIDZ_64MUL_2(q[i], mask);
608 				VDEV_RAIDZ_64MUL_4(r[i], mask);
609 			}
610 		}
611 	}
612 }
613 
614 /*
615  * Generate RAID parity in the first virtual columns according to the number of
616  * parity columns available.
617  */
618 void
619 vdev_raidz_generate_parity_row(raidz_map_t *rm, raidz_row_t *rr)
620 {
621 	ASSERT3U(rr->rr_cols, !=, 0);
622 
623 	/* Generate using the new math implementation */
624 	if (vdev_raidz_math_generate(rm, rr) != RAIDZ_ORIGINAL_IMPL)
625 		return;
626 
627 	switch (rr->rr_firstdatacol) {
628 	case 1:
629 		vdev_raidz_generate_parity_p(rr);
630 		break;
631 	case 2:
632 		vdev_raidz_generate_parity_pq(rr);
633 		break;
634 	case 3:
635 		vdev_raidz_generate_parity_pqr(rr);
636 		break;
637 	default:
638 		cmn_err(CE_PANIC, "invalid RAID-Z configuration");
639 	}
640 }
641 
642 void
643 vdev_raidz_generate_parity(raidz_map_t *rm)
644 {
645 	for (int i = 0; i < rm->rm_nrows; i++) {
646 		raidz_row_t *rr = rm->rm_row[i];
647 		vdev_raidz_generate_parity_row(rm, rr);
648 	}
649 }
650 
651 static int
652 vdev_raidz_reconst_p_func(void *dbuf, void *sbuf, size_t size, void *private)
653 {
654 	(void) private;
655 	uint64_t *dst = dbuf;
656 	uint64_t *src = sbuf;
657 	int cnt = size / sizeof (src[0]);
658 
659 	for (int i = 0; i < cnt; i++) {
660 		dst[i] ^= src[i];
661 	}
662 
663 	return (0);
664 }
665 
666 static int
667 vdev_raidz_reconst_q_pre_func(void *dbuf, void *sbuf, size_t size,
668     void *private)
669 {
670 	(void) private;
671 	uint64_t *dst = dbuf;
672 	uint64_t *src = sbuf;
673 	uint64_t mask;
674 	int cnt = size / sizeof (dst[0]);
675 
676 	for (int i = 0; i < cnt; i++, dst++, src++) {
677 		VDEV_RAIDZ_64MUL_2(*dst, mask);
678 		*dst ^= *src;
679 	}
680 
681 	return (0);
682 }
683 
684 static int
685 vdev_raidz_reconst_q_pre_tail_func(void *buf, size_t size, void *private)
686 {
687 	(void) private;
688 	uint64_t *dst = buf;
689 	uint64_t mask;
690 	int cnt = size / sizeof (dst[0]);
691 
692 	for (int i = 0; i < cnt; i++, dst++) {
693 		/* same operation as vdev_raidz_reconst_q_pre_func() on dst */
694 		VDEV_RAIDZ_64MUL_2(*dst, mask);
695 	}
696 
697 	return (0);
698 }
699 
700 struct reconst_q_struct {
701 	uint64_t *q;
702 	int exp;
703 };
704 
705 static int
706 vdev_raidz_reconst_q_post_func(void *buf, size_t size, void *private)
707 {
708 	struct reconst_q_struct *rq = private;
709 	uint64_t *dst = buf;
710 	int cnt = size / sizeof (dst[0]);
711 
712 	for (int i = 0; i < cnt; i++, dst++, rq->q++) {
713 		int j;
714 		uint8_t *b;
715 
716 		*dst ^= *rq->q;
717 		for (j = 0, b = (uint8_t *)dst; j < 8; j++, b++) {
718 			*b = vdev_raidz_exp2(*b, rq->exp);
719 		}
720 	}
721 
722 	return (0);
723 }
724 
725 struct reconst_pq_struct {
726 	uint8_t *p;
727 	uint8_t *q;
728 	uint8_t *pxy;
729 	uint8_t *qxy;
730 	int aexp;
731 	int bexp;
732 };
733 
734 static int
735 vdev_raidz_reconst_pq_func(void *xbuf, void *ybuf, size_t size, void *private)
736 {
737 	struct reconst_pq_struct *rpq = private;
738 	uint8_t *xd = xbuf;
739 	uint8_t *yd = ybuf;
740 
741 	for (int i = 0; i < size;
742 	    i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++, yd++) {
743 		*xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^
744 		    vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp);
745 		*yd = *rpq->p ^ *rpq->pxy ^ *xd;
746 	}
747 
748 	return (0);
749 }
750 
751 static int
752 vdev_raidz_reconst_pq_tail_func(void *xbuf, size_t size, void *private)
753 {
754 	struct reconst_pq_struct *rpq = private;
755 	uint8_t *xd = xbuf;
756 
757 	for (int i = 0; i < size;
758 	    i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++) {
759 		/* same operation as vdev_raidz_reconst_pq_func() on xd */
760 		*xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^
761 		    vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp);
762 	}
763 
764 	return (0);
765 }
766 
767 static void
768 vdev_raidz_reconstruct_p(raidz_row_t *rr, int *tgts, int ntgts)
769 {
770 	int x = tgts[0];
771 	abd_t *dst, *src;
772 
773 	ASSERT3U(ntgts, ==, 1);
774 	ASSERT3U(x, >=, rr->rr_firstdatacol);
775 	ASSERT3U(x, <, rr->rr_cols);
776 
777 	ASSERT3U(rr->rr_col[x].rc_size, <=, rr->rr_col[VDEV_RAIDZ_P].rc_size);
778 
779 	src = rr->rr_col[VDEV_RAIDZ_P].rc_abd;
780 	dst = rr->rr_col[x].rc_abd;
781 
782 	abd_copy_from_buf(dst, abd_to_buf(src), rr->rr_col[x].rc_size);
783 
784 	for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
785 		uint64_t size = MIN(rr->rr_col[x].rc_size,
786 		    rr->rr_col[c].rc_size);
787 
788 		src = rr->rr_col[c].rc_abd;
789 
790 		if (c == x)
791 			continue;
792 
793 		(void) abd_iterate_func2(dst, src, 0, 0, size,
794 		    vdev_raidz_reconst_p_func, NULL);
795 	}
796 }
797 
798 static void
799 vdev_raidz_reconstruct_q(raidz_row_t *rr, int *tgts, int ntgts)
800 {
801 	int x = tgts[0];
802 	int c, exp;
803 	abd_t *dst, *src;
804 
805 	ASSERT(ntgts == 1);
806 
807 	ASSERT(rr->rr_col[x].rc_size <= rr->rr_col[VDEV_RAIDZ_Q].rc_size);
808 
809 	for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
810 		uint64_t size = (c == x) ? 0 : MIN(rr->rr_col[x].rc_size,
811 		    rr->rr_col[c].rc_size);
812 
813 		src = rr->rr_col[c].rc_abd;
814 		dst = rr->rr_col[x].rc_abd;
815 
816 		if (c == rr->rr_firstdatacol) {
817 			abd_copy(dst, src, size);
818 			if (rr->rr_col[x].rc_size > size) {
819 				abd_zero_off(dst, size,
820 				    rr->rr_col[x].rc_size - size);
821 			}
822 		} else {
823 			ASSERT3U(size, <=, rr->rr_col[x].rc_size);
824 			(void) abd_iterate_func2(dst, src, 0, 0, size,
825 			    vdev_raidz_reconst_q_pre_func, NULL);
826 			(void) abd_iterate_func(dst,
827 			    size, rr->rr_col[x].rc_size - size,
828 			    vdev_raidz_reconst_q_pre_tail_func, NULL);
829 		}
830 	}
831 
832 	src = rr->rr_col[VDEV_RAIDZ_Q].rc_abd;
833 	dst = rr->rr_col[x].rc_abd;
834 	exp = 255 - (rr->rr_cols - 1 - x);
835 
836 	struct reconst_q_struct rq = { abd_to_buf(src), exp };
837 	(void) abd_iterate_func(dst, 0, rr->rr_col[x].rc_size,
838 	    vdev_raidz_reconst_q_post_func, &rq);
839 }
840 
841 static void
842 vdev_raidz_reconstruct_pq(raidz_row_t *rr, int *tgts, int ntgts)
843 {
844 	uint8_t *p, *q, *pxy, *qxy, tmp, a, b, aexp, bexp;
845 	abd_t *pdata, *qdata;
846 	uint64_t xsize, ysize;
847 	int x = tgts[0];
848 	int y = tgts[1];
849 	abd_t *xd, *yd;
850 
851 	ASSERT(ntgts == 2);
852 	ASSERT(x < y);
853 	ASSERT(x >= rr->rr_firstdatacol);
854 	ASSERT(y < rr->rr_cols);
855 
856 	ASSERT(rr->rr_col[x].rc_size >= rr->rr_col[y].rc_size);
857 
858 	/*
859 	 * Move the parity data aside -- we're going to compute parity as
860 	 * though columns x and y were full of zeros -- Pxy and Qxy. We want to
861 	 * reuse the parity generation mechanism without trashing the actual
862 	 * parity so we make those columns appear to be full of zeros by
863 	 * setting their lengths to zero.
864 	 */
865 	pdata = rr->rr_col[VDEV_RAIDZ_P].rc_abd;
866 	qdata = rr->rr_col[VDEV_RAIDZ_Q].rc_abd;
867 	xsize = rr->rr_col[x].rc_size;
868 	ysize = rr->rr_col[y].rc_size;
869 
870 	rr->rr_col[VDEV_RAIDZ_P].rc_abd =
871 	    abd_alloc_linear(rr->rr_col[VDEV_RAIDZ_P].rc_size, B_TRUE);
872 	rr->rr_col[VDEV_RAIDZ_Q].rc_abd =
873 	    abd_alloc_linear(rr->rr_col[VDEV_RAIDZ_Q].rc_size, B_TRUE);
874 	rr->rr_col[x].rc_size = 0;
875 	rr->rr_col[y].rc_size = 0;
876 
877 	vdev_raidz_generate_parity_pq(rr);
878 
879 	rr->rr_col[x].rc_size = xsize;
880 	rr->rr_col[y].rc_size = ysize;
881 
882 	p = abd_to_buf(pdata);
883 	q = abd_to_buf(qdata);
884 	pxy = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
885 	qxy = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd);
886 	xd = rr->rr_col[x].rc_abd;
887 	yd = rr->rr_col[y].rc_abd;
888 
889 	/*
890 	 * We now have:
891 	 *	Pxy = P + D_x + D_y
892 	 *	Qxy = Q + 2^(ndevs - 1 - x) * D_x + 2^(ndevs - 1 - y) * D_y
893 	 *
894 	 * We can then solve for D_x:
895 	 *	D_x = A * (P + Pxy) + B * (Q + Qxy)
896 	 * where
897 	 *	A = 2^(x - y) * (2^(x - y) + 1)^-1
898 	 *	B = 2^(ndevs - 1 - x) * (2^(x - y) + 1)^-1
899 	 *
900 	 * With D_x in hand, we can easily solve for D_y:
901 	 *	D_y = P + Pxy + D_x
902 	 */
903 
904 	a = vdev_raidz_pow2[255 + x - y];
905 	b = vdev_raidz_pow2[255 - (rr->rr_cols - 1 - x)];
906 	tmp = 255 - vdev_raidz_log2[a ^ 1];
907 
908 	aexp = vdev_raidz_log2[vdev_raidz_exp2(a, tmp)];
909 	bexp = vdev_raidz_log2[vdev_raidz_exp2(b, tmp)];
910 
911 	ASSERT3U(xsize, >=, ysize);
912 	struct reconst_pq_struct rpq = { p, q, pxy, qxy, aexp, bexp };
913 
914 	(void) abd_iterate_func2(xd, yd, 0, 0, ysize,
915 	    vdev_raidz_reconst_pq_func, &rpq);
916 	(void) abd_iterate_func(xd, ysize, xsize - ysize,
917 	    vdev_raidz_reconst_pq_tail_func, &rpq);
918 
919 	abd_free(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
920 	abd_free(rr->rr_col[VDEV_RAIDZ_Q].rc_abd);
921 
922 	/*
923 	 * Restore the saved parity data.
924 	 */
925 	rr->rr_col[VDEV_RAIDZ_P].rc_abd = pdata;
926 	rr->rr_col[VDEV_RAIDZ_Q].rc_abd = qdata;
927 }
928 
929 /* BEGIN CSTYLED */
930 /*
931  * In the general case of reconstruction, we must solve the system of linear
932  * equations defined by the coefficients used to generate parity as well as
933  * the contents of the data and parity disks. This can be expressed with
934  * vectors for the original data (D) and the actual data (d) and parity (p)
935  * and a matrix composed of the identity matrix (I) and a dispersal matrix (V):
936  *
937  *            __   __                     __     __
938  *            |     |         __     __   |  p_0  |
939  *            |  V  |         |  D_0  |   | p_m-1 |
940  *            |     |    x    |   :   | = |  d_0  |
941  *            |  I  |         | D_n-1 |   |   :   |
942  *            |     |         ~~     ~~   | d_n-1 |
943  *            ~~   ~~                     ~~     ~~
944  *
945  * I is simply a square identity matrix of size n, and V is a vandermonde
946  * matrix defined by the coefficients we chose for the various parity columns
947  * (1, 2, 4). Note that these values were chosen both for simplicity, speedy
948  * computation as well as linear separability.
949  *
950  *      __               __               __     __
951  *      |   1   ..  1 1 1 |               |  p_0  |
952  *      | 2^n-1 ..  4 2 1 |   __     __   |   :   |
953  *      | 4^n-1 .. 16 4 1 |   |  D_0  |   | p_m-1 |
954  *      |   1   ..  0 0 0 |   |  D_1  |   |  d_0  |
955  *      |   0   ..  0 0 0 | x |  D_2  | = |  d_1  |
956  *      |   :       : : : |   |   :   |   |  d_2  |
957  *      |   0   ..  1 0 0 |   | D_n-1 |   |   :   |
958  *      |   0   ..  0 1 0 |   ~~     ~~   |   :   |
959  *      |   0   ..  0 0 1 |               | d_n-1 |
960  *      ~~               ~~               ~~     ~~
961  *
962  * Note that I, V, d, and p are known. To compute D, we must invert the
963  * matrix and use the known data and parity values to reconstruct the unknown
964  * data values. We begin by removing the rows in V|I and d|p that correspond
965  * to failed or missing columns; we then make V|I square (n x n) and d|p
966  * sized n by removing rows corresponding to unused parity from the bottom up
967  * to generate (V|I)' and (d|p)'. We can then generate the inverse of (V|I)'
968  * using Gauss-Jordan elimination. In the example below we use m=3 parity
969  * columns, n=8 data columns, with errors in d_1, d_2, and p_1:
970  *           __                               __
971  *           |  1   1   1   1   1   1   1   1  |
972  *           | 128  64  32  16  8   4   2   1  | <-----+-+-- missing disks
973  *           |  19 205 116  29  64  16  4   1  |      / /
974  *           |  1   0   0   0   0   0   0   0  |     / /
975  *           |  0   1   0   0   0   0   0   0  | <--' /
976  *  (V|I)  = |  0   0   1   0   0   0   0   0  | <---'
977  *           |  0   0   0   1   0   0   0   0  |
978  *           |  0   0   0   0   1   0   0   0  |
979  *           |  0   0   0   0   0   1   0   0  |
980  *           |  0   0   0   0   0   0   1   0  |
981  *           |  0   0   0   0   0   0   0   1  |
982  *           ~~                               ~~
983  *           __                               __
984  *           |  1   1   1   1   1   1   1   1  |
985  *           | 128  64  32  16  8   4   2   1  |
986  *           |  19 205 116  29  64  16  4   1  |
987  *           |  1   0   0   0   0   0   0   0  |
988  *           |  0   1   0   0   0   0   0   0  |
989  *  (V|I)' = |  0   0   1   0   0   0   0   0  |
990  *           |  0   0   0   1   0   0   0   0  |
991  *           |  0   0   0   0   1   0   0   0  |
992  *           |  0   0   0   0   0   1   0   0  |
993  *           |  0   0   0   0   0   0   1   0  |
994  *           |  0   0   0   0   0   0   0   1  |
995  *           ~~                               ~~
996  *
997  * Here we employ Gauss-Jordan elimination to find the inverse of (V|I)'. We
998  * have carefully chosen the seed values 1, 2, and 4 to ensure that this
999  * matrix is not singular.
1000  * __                                                                 __
1001  * |  1   1   1   1   1   1   1   1     1   0   0   0   0   0   0   0  |
1002  * |  19 205 116  29  64  16  4   1     0   1   0   0   0   0   0   0  |
1003  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1004  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1005  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1006  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1007  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1008  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1009  * ~~                                                                 ~~
1010  * __                                                                 __
1011  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1012  * |  1   1   1   1   1   1   1   1     1   0   0   0   0   0   0   0  |
1013  * |  19 205 116  29  64  16  4   1     0   1   0   0   0   0   0   0  |
1014  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1015  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1016  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1017  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1018  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1019  * ~~                                                                 ~~
1020  * __                                                                 __
1021  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1022  * |  0   1   1   0   0   0   0   0     1   0   1   1   1   1   1   1  |
1023  * |  0  205 116  0   0   0   0   0     0   1   19  29  64  16  4   1  |
1024  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1025  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1026  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1027  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1028  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1029  * ~~                                                                 ~~
1030  * __                                                                 __
1031  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1032  * |  0   1   1   0   0   0   0   0     1   0   1   1   1   1   1   1  |
1033  * |  0   0  185  0   0   0   0   0    205  1  222 208 141 221 201 204 |
1034  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1035  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1036  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1037  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1038  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1039  * ~~                                                                 ~~
1040  * __                                                                 __
1041  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1042  * |  0   1   1   0   0   0   0   0     1   0   1   1   1   1   1   1  |
1043  * |  0   0   1   0   0   0   0   0    166 100  4   40 158 168 216 209 |
1044  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1045  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1046  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1047  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1048  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1049  * ~~                                                                 ~~
1050  * __                                                                 __
1051  * |  1   0   0   0   0   0   0   0     0   0   1   0   0   0   0   0  |
1052  * |  0   1   0   0   0   0   0   0    167 100  5   41 159 169 217 208 |
1053  * |  0   0   1   0   0   0   0   0    166 100  4   40 158 168 216 209 |
1054  * |  0   0   0   1   0   0   0   0     0   0   0   1   0   0   0   0  |
1055  * |  0   0   0   0   1   0   0   0     0   0   0   0   1   0   0   0  |
1056  * |  0   0   0   0   0   1   0   0     0   0   0   0   0   1   0   0  |
1057  * |  0   0   0   0   0   0   1   0     0   0   0   0   0   0   1   0  |
1058  * |  0   0   0   0   0   0   0   1     0   0   0   0   0   0   0   1  |
1059  * ~~                                                                 ~~
1060  *                   __                               __
1061  *                   |  0   0   1   0   0   0   0   0  |
1062  *                   | 167 100  5   41 159 169 217 208 |
1063  *                   | 166 100  4   40 158 168 216 209 |
1064  *       (V|I)'^-1 = |  0   0   0   1   0   0   0   0  |
1065  *                   |  0   0   0   0   1   0   0   0  |
1066  *                   |  0   0   0   0   0   1   0   0  |
1067  *                   |  0   0   0   0   0   0   1   0  |
1068  *                   |  0   0   0   0   0   0   0   1  |
1069  *                   ~~                               ~~
1070  *
1071  * We can then simply compute D = (V|I)'^-1 x (d|p)' to discover the values
1072  * of the missing data.
1073  *
1074  * As is apparent from the example above, the only non-trivial rows in the
1075  * inverse matrix correspond to the data disks that we're trying to
1076  * reconstruct. Indeed, those are the only rows we need as the others would
1077  * only be useful for reconstructing data known or assumed to be valid. For
1078  * that reason, we only build the coefficients in the rows that correspond to
1079  * targeted columns.
1080  */
1081 /* END CSTYLED */
1082 
1083 static void
1084 vdev_raidz_matrix_init(raidz_row_t *rr, int n, int nmap, int *map,
1085     uint8_t **rows)
1086 {
1087 	int i, j;
1088 	int pow;
1089 
1090 	ASSERT(n == rr->rr_cols - rr->rr_firstdatacol);
1091 
1092 	/*
1093 	 * Fill in the missing rows of interest.
1094 	 */
1095 	for (i = 0; i < nmap; i++) {
1096 		ASSERT3S(0, <=, map[i]);
1097 		ASSERT3S(map[i], <=, 2);
1098 
1099 		pow = map[i] * n;
1100 		if (pow > 255)
1101 			pow -= 255;
1102 		ASSERT(pow <= 255);
1103 
1104 		for (j = 0; j < n; j++) {
1105 			pow -= map[i];
1106 			if (pow < 0)
1107 				pow += 255;
1108 			rows[i][j] = vdev_raidz_pow2[pow];
1109 		}
1110 	}
1111 }
1112 
1113 static void
1114 vdev_raidz_matrix_invert(raidz_row_t *rr, int n, int nmissing, int *missing,
1115     uint8_t **rows, uint8_t **invrows, const uint8_t *used)
1116 {
1117 	int i, j, ii, jj;
1118 	uint8_t log;
1119 
1120 	/*
1121 	 * Assert that the first nmissing entries from the array of used
1122 	 * columns correspond to parity columns and that subsequent entries
1123 	 * correspond to data columns.
1124 	 */
1125 	for (i = 0; i < nmissing; i++) {
1126 		ASSERT3S(used[i], <, rr->rr_firstdatacol);
1127 	}
1128 	for (; i < n; i++) {
1129 		ASSERT3S(used[i], >=, rr->rr_firstdatacol);
1130 	}
1131 
1132 	/*
1133 	 * First initialize the storage where we'll compute the inverse rows.
1134 	 */
1135 	for (i = 0; i < nmissing; i++) {
1136 		for (j = 0; j < n; j++) {
1137 			invrows[i][j] = (i == j) ? 1 : 0;
1138 		}
1139 	}
1140 
1141 	/*
1142 	 * Subtract all trivial rows from the rows of consequence.
1143 	 */
1144 	for (i = 0; i < nmissing; i++) {
1145 		for (j = nmissing; j < n; j++) {
1146 			ASSERT3U(used[j], >=, rr->rr_firstdatacol);
1147 			jj = used[j] - rr->rr_firstdatacol;
1148 			ASSERT3S(jj, <, n);
1149 			invrows[i][j] = rows[i][jj];
1150 			rows[i][jj] = 0;
1151 		}
1152 	}
1153 
1154 	/*
1155 	 * For each of the rows of interest, we must normalize it and subtract
1156 	 * a multiple of it from the other rows.
1157 	 */
1158 	for (i = 0; i < nmissing; i++) {
1159 		for (j = 0; j < missing[i]; j++) {
1160 			ASSERT0(rows[i][j]);
1161 		}
1162 		ASSERT3U(rows[i][missing[i]], !=, 0);
1163 
1164 		/*
1165 		 * Compute the inverse of the first element and multiply each
1166 		 * element in the row by that value.
1167 		 */
1168 		log = 255 - vdev_raidz_log2[rows[i][missing[i]]];
1169 
1170 		for (j = 0; j < n; j++) {
1171 			rows[i][j] = vdev_raidz_exp2(rows[i][j], log);
1172 			invrows[i][j] = vdev_raidz_exp2(invrows[i][j], log);
1173 		}
1174 
1175 		for (ii = 0; ii < nmissing; ii++) {
1176 			if (i == ii)
1177 				continue;
1178 
1179 			ASSERT3U(rows[ii][missing[i]], !=, 0);
1180 
1181 			log = vdev_raidz_log2[rows[ii][missing[i]]];
1182 
1183 			for (j = 0; j < n; j++) {
1184 				rows[ii][j] ^=
1185 				    vdev_raidz_exp2(rows[i][j], log);
1186 				invrows[ii][j] ^=
1187 				    vdev_raidz_exp2(invrows[i][j], log);
1188 			}
1189 		}
1190 	}
1191 
1192 	/*
1193 	 * Verify that the data that is left in the rows are properly part of
1194 	 * an identity matrix.
1195 	 */
1196 	for (i = 0; i < nmissing; i++) {
1197 		for (j = 0; j < n; j++) {
1198 			if (j == missing[i]) {
1199 				ASSERT3U(rows[i][j], ==, 1);
1200 			} else {
1201 				ASSERT0(rows[i][j]);
1202 			}
1203 		}
1204 	}
1205 }
1206 
1207 static void
1208 vdev_raidz_matrix_reconstruct(raidz_row_t *rr, int n, int nmissing,
1209     int *missing, uint8_t **invrows, const uint8_t *used)
1210 {
1211 	int i, j, x, cc, c;
1212 	uint8_t *src;
1213 	uint64_t ccount;
1214 	uint8_t *dst[VDEV_RAIDZ_MAXPARITY] = { NULL };
1215 	uint64_t dcount[VDEV_RAIDZ_MAXPARITY] = { 0 };
1216 	uint8_t log = 0;
1217 	uint8_t val;
1218 	int ll;
1219 	uint8_t *invlog[VDEV_RAIDZ_MAXPARITY];
1220 	uint8_t *p, *pp;
1221 	size_t psize;
1222 
1223 	psize = sizeof (invlog[0][0]) * n * nmissing;
1224 	p = kmem_alloc(psize, KM_SLEEP);
1225 
1226 	for (pp = p, i = 0; i < nmissing; i++) {
1227 		invlog[i] = pp;
1228 		pp += n;
1229 	}
1230 
1231 	for (i = 0; i < nmissing; i++) {
1232 		for (j = 0; j < n; j++) {
1233 			ASSERT3U(invrows[i][j], !=, 0);
1234 			invlog[i][j] = vdev_raidz_log2[invrows[i][j]];
1235 		}
1236 	}
1237 
1238 	for (i = 0; i < n; i++) {
1239 		c = used[i];
1240 		ASSERT3U(c, <, rr->rr_cols);
1241 
1242 		ccount = rr->rr_col[c].rc_size;
1243 		ASSERT(ccount >= rr->rr_col[missing[0]].rc_size || i > 0);
1244 		if (ccount == 0)
1245 			continue;
1246 		src = abd_to_buf(rr->rr_col[c].rc_abd);
1247 		for (j = 0; j < nmissing; j++) {
1248 			cc = missing[j] + rr->rr_firstdatacol;
1249 			ASSERT3U(cc, >=, rr->rr_firstdatacol);
1250 			ASSERT3U(cc, <, rr->rr_cols);
1251 			ASSERT3U(cc, !=, c);
1252 
1253 			dcount[j] = rr->rr_col[cc].rc_size;
1254 			if (dcount[j] != 0)
1255 				dst[j] = abd_to_buf(rr->rr_col[cc].rc_abd);
1256 		}
1257 
1258 		for (x = 0; x < ccount; x++, src++) {
1259 			if (*src != 0)
1260 				log = vdev_raidz_log2[*src];
1261 
1262 			for (cc = 0; cc < nmissing; cc++) {
1263 				if (x >= dcount[cc])
1264 					continue;
1265 
1266 				if (*src == 0) {
1267 					val = 0;
1268 				} else {
1269 					if ((ll = log + invlog[cc][i]) >= 255)
1270 						ll -= 255;
1271 					val = vdev_raidz_pow2[ll];
1272 				}
1273 
1274 				if (i == 0)
1275 					dst[cc][x] = val;
1276 				else
1277 					dst[cc][x] ^= val;
1278 			}
1279 		}
1280 	}
1281 
1282 	kmem_free(p, psize);
1283 }
1284 
1285 static void
1286 vdev_raidz_reconstruct_general(raidz_row_t *rr, int *tgts, int ntgts)
1287 {
1288 	int n, i, c, t, tt;
1289 	int nmissing_rows;
1290 	int missing_rows[VDEV_RAIDZ_MAXPARITY];
1291 	int parity_map[VDEV_RAIDZ_MAXPARITY];
1292 	uint8_t *p, *pp;
1293 	size_t psize;
1294 	uint8_t *rows[VDEV_RAIDZ_MAXPARITY];
1295 	uint8_t *invrows[VDEV_RAIDZ_MAXPARITY];
1296 	uint8_t *used;
1297 
1298 	abd_t **bufs = NULL;
1299 
1300 	/*
1301 	 * Matrix reconstruction can't use scatter ABDs yet, so we allocate
1302 	 * temporary linear ABDs if any non-linear ABDs are found.
1303 	 */
1304 	for (i = rr->rr_firstdatacol; i < rr->rr_cols; i++) {
1305 		if (!abd_is_linear(rr->rr_col[i].rc_abd)) {
1306 			bufs = kmem_alloc(rr->rr_cols * sizeof (abd_t *),
1307 			    KM_PUSHPAGE);
1308 
1309 			for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
1310 				raidz_col_t *col = &rr->rr_col[c];
1311 
1312 				bufs[c] = col->rc_abd;
1313 				if (bufs[c] != NULL) {
1314 					col->rc_abd = abd_alloc_linear(
1315 					    col->rc_size, B_TRUE);
1316 					abd_copy(col->rc_abd, bufs[c],
1317 					    col->rc_size);
1318 				}
1319 			}
1320 
1321 			break;
1322 		}
1323 	}
1324 
1325 	n = rr->rr_cols - rr->rr_firstdatacol;
1326 
1327 	/*
1328 	 * Figure out which data columns are missing.
1329 	 */
1330 	nmissing_rows = 0;
1331 	for (t = 0; t < ntgts; t++) {
1332 		if (tgts[t] >= rr->rr_firstdatacol) {
1333 			missing_rows[nmissing_rows++] =
1334 			    tgts[t] - rr->rr_firstdatacol;
1335 		}
1336 	}
1337 
1338 	/*
1339 	 * Figure out which parity columns to use to help generate the missing
1340 	 * data columns.
1341 	 */
1342 	for (tt = 0, c = 0, i = 0; i < nmissing_rows; c++) {
1343 		ASSERT(tt < ntgts);
1344 		ASSERT(c < rr->rr_firstdatacol);
1345 
1346 		/*
1347 		 * Skip any targeted parity columns.
1348 		 */
1349 		if (c == tgts[tt]) {
1350 			tt++;
1351 			continue;
1352 		}
1353 
1354 		parity_map[i] = c;
1355 		i++;
1356 	}
1357 
1358 	psize = (sizeof (rows[0][0]) + sizeof (invrows[0][0])) *
1359 	    nmissing_rows * n + sizeof (used[0]) * n;
1360 	p = kmem_alloc(psize, KM_SLEEP);
1361 
1362 	for (pp = p, i = 0; i < nmissing_rows; i++) {
1363 		rows[i] = pp;
1364 		pp += n;
1365 		invrows[i] = pp;
1366 		pp += n;
1367 	}
1368 	used = pp;
1369 
1370 	for (i = 0; i < nmissing_rows; i++) {
1371 		used[i] = parity_map[i];
1372 	}
1373 
1374 	for (tt = 0, c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
1375 		if (tt < nmissing_rows &&
1376 		    c == missing_rows[tt] + rr->rr_firstdatacol) {
1377 			tt++;
1378 			continue;
1379 		}
1380 
1381 		ASSERT3S(i, <, n);
1382 		used[i] = c;
1383 		i++;
1384 	}
1385 
1386 	/*
1387 	 * Initialize the interesting rows of the matrix.
1388 	 */
1389 	vdev_raidz_matrix_init(rr, n, nmissing_rows, parity_map, rows);
1390 
1391 	/*
1392 	 * Invert the matrix.
1393 	 */
1394 	vdev_raidz_matrix_invert(rr, n, nmissing_rows, missing_rows, rows,
1395 	    invrows, used);
1396 
1397 	/*
1398 	 * Reconstruct the missing data using the generated matrix.
1399 	 */
1400 	vdev_raidz_matrix_reconstruct(rr, n, nmissing_rows, missing_rows,
1401 	    invrows, used);
1402 
1403 	kmem_free(p, psize);
1404 
1405 	/*
1406 	 * copy back from temporary linear abds and free them
1407 	 */
1408 	if (bufs) {
1409 		for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
1410 			raidz_col_t *col = &rr->rr_col[c];
1411 
1412 			if (bufs[c] != NULL) {
1413 				abd_copy(bufs[c], col->rc_abd, col->rc_size);
1414 				abd_free(col->rc_abd);
1415 			}
1416 			col->rc_abd = bufs[c];
1417 		}
1418 		kmem_free(bufs, rr->rr_cols * sizeof (abd_t *));
1419 	}
1420 }
1421 
1422 static void
1423 vdev_raidz_reconstruct_row(raidz_map_t *rm, raidz_row_t *rr,
1424     const int *t, int nt)
1425 {
1426 	int tgts[VDEV_RAIDZ_MAXPARITY], *dt;
1427 	int ntgts;
1428 	int i, c, ret;
1429 	int nbadparity, nbaddata;
1430 	int parity_valid[VDEV_RAIDZ_MAXPARITY];
1431 
1432 	nbadparity = rr->rr_firstdatacol;
1433 	nbaddata = rr->rr_cols - nbadparity;
1434 	ntgts = 0;
1435 	for (i = 0, c = 0; c < rr->rr_cols; c++) {
1436 		if (c < rr->rr_firstdatacol)
1437 			parity_valid[c] = B_FALSE;
1438 
1439 		if (i < nt && c == t[i]) {
1440 			tgts[ntgts++] = c;
1441 			i++;
1442 		} else if (rr->rr_col[c].rc_error != 0) {
1443 			tgts[ntgts++] = c;
1444 		} else if (c >= rr->rr_firstdatacol) {
1445 			nbaddata--;
1446 		} else {
1447 			parity_valid[c] = B_TRUE;
1448 			nbadparity--;
1449 		}
1450 	}
1451 
1452 	ASSERT(ntgts >= nt);
1453 	ASSERT(nbaddata >= 0);
1454 	ASSERT(nbaddata + nbadparity == ntgts);
1455 
1456 	dt = &tgts[nbadparity];
1457 
1458 	/* Reconstruct using the new math implementation */
1459 	ret = vdev_raidz_math_reconstruct(rm, rr, parity_valid, dt, nbaddata);
1460 	if (ret != RAIDZ_ORIGINAL_IMPL)
1461 		return;
1462 
1463 	/*
1464 	 * See if we can use any of our optimized reconstruction routines.
1465 	 */
1466 	switch (nbaddata) {
1467 	case 1:
1468 		if (parity_valid[VDEV_RAIDZ_P]) {
1469 			vdev_raidz_reconstruct_p(rr, dt, 1);
1470 			return;
1471 		}
1472 
1473 		ASSERT(rr->rr_firstdatacol > 1);
1474 
1475 		if (parity_valid[VDEV_RAIDZ_Q]) {
1476 			vdev_raidz_reconstruct_q(rr, dt, 1);
1477 			return;
1478 		}
1479 
1480 		ASSERT(rr->rr_firstdatacol > 2);
1481 		break;
1482 
1483 	case 2:
1484 		ASSERT(rr->rr_firstdatacol > 1);
1485 
1486 		if (parity_valid[VDEV_RAIDZ_P] &&
1487 		    parity_valid[VDEV_RAIDZ_Q]) {
1488 			vdev_raidz_reconstruct_pq(rr, dt, 2);
1489 			return;
1490 		}
1491 
1492 		ASSERT(rr->rr_firstdatacol > 2);
1493 
1494 		break;
1495 	}
1496 
1497 	vdev_raidz_reconstruct_general(rr, tgts, ntgts);
1498 }
1499 
1500 static int
1501 vdev_raidz_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
1502     uint64_t *logical_ashift, uint64_t *physical_ashift)
1503 {
1504 	vdev_raidz_t *vdrz = vd->vdev_tsd;
1505 	uint64_t nparity = vdrz->vd_nparity;
1506 	int c;
1507 	int lasterror = 0;
1508 	int numerrors = 0;
1509 
1510 	ASSERT(nparity > 0);
1511 
1512 	if (nparity > VDEV_RAIDZ_MAXPARITY ||
1513 	    vd->vdev_children < nparity + 1) {
1514 		vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
1515 		return (SET_ERROR(EINVAL));
1516 	}
1517 
1518 	vdev_open_children(vd);
1519 
1520 	for (c = 0; c < vd->vdev_children; c++) {
1521 		vdev_t *cvd = vd->vdev_child[c];
1522 
1523 		if (cvd->vdev_open_error != 0) {
1524 			lasterror = cvd->vdev_open_error;
1525 			numerrors++;
1526 			continue;
1527 		}
1528 
1529 		*asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
1530 		*max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
1531 		*logical_ashift = MAX(*logical_ashift, cvd->vdev_ashift);
1532 		*physical_ashift = MAX(*physical_ashift,
1533 		    cvd->vdev_physical_ashift);
1534 	}
1535 
1536 	*asize *= vd->vdev_children;
1537 	*max_asize *= vd->vdev_children;
1538 
1539 	if (numerrors > nparity) {
1540 		vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
1541 		return (lasterror);
1542 	}
1543 
1544 	return (0);
1545 }
1546 
1547 static void
1548 vdev_raidz_close(vdev_t *vd)
1549 {
1550 	for (int c = 0; c < vd->vdev_children; c++) {
1551 		if (vd->vdev_child[c] != NULL)
1552 			vdev_close(vd->vdev_child[c]);
1553 	}
1554 }
1555 
1556 static uint64_t
1557 vdev_raidz_asize(vdev_t *vd, uint64_t psize)
1558 {
1559 	vdev_raidz_t *vdrz = vd->vdev_tsd;
1560 	uint64_t asize;
1561 	uint64_t ashift = vd->vdev_top->vdev_ashift;
1562 	uint64_t cols = vdrz->vd_logical_width;
1563 	uint64_t nparity = vdrz->vd_nparity;
1564 
1565 	asize = ((psize - 1) >> ashift) + 1;
1566 	asize += nparity * ((asize + cols - nparity - 1) / (cols - nparity));
1567 	asize = roundup(asize, nparity + 1) << ashift;
1568 
1569 	return (asize);
1570 }
1571 
1572 /*
1573  * The allocatable space for a raidz vdev is N * sizeof(smallest child)
1574  * so each child must provide at least 1/Nth of its asize.
1575  */
1576 static uint64_t
1577 vdev_raidz_min_asize(vdev_t *vd)
1578 {
1579 	return ((vd->vdev_min_asize + vd->vdev_children - 1) /
1580 	    vd->vdev_children);
1581 }
1582 
1583 void
1584 vdev_raidz_child_done(zio_t *zio)
1585 {
1586 	raidz_col_t *rc = zio->io_private;
1587 
1588 	ASSERT3P(rc->rc_abd, !=, NULL);
1589 	rc->rc_error = zio->io_error;
1590 	rc->rc_tried = 1;
1591 	rc->rc_skipped = 0;
1592 }
1593 
1594 static void
1595 vdev_raidz_io_verify(vdev_t *vd, raidz_row_t *rr, int col)
1596 {
1597 #ifdef ZFS_DEBUG
1598 	vdev_t *tvd = vd->vdev_top;
1599 
1600 	range_seg64_t logical_rs, physical_rs, remain_rs;
1601 	logical_rs.rs_start = rr->rr_offset;
1602 	logical_rs.rs_end = logical_rs.rs_start +
1603 	    vdev_raidz_asize(vd, rr->rr_size);
1604 
1605 	raidz_col_t *rc = &rr->rr_col[col];
1606 	vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
1607 
1608 	vdev_xlate(cvd, &logical_rs, &physical_rs, &remain_rs);
1609 	ASSERT(vdev_xlate_is_empty(&remain_rs));
1610 	ASSERT3U(rc->rc_offset, ==, physical_rs.rs_start);
1611 	ASSERT3U(rc->rc_offset, <, physical_rs.rs_end);
1612 	/*
1613 	 * It would be nice to assert that rs_end is equal
1614 	 * to rc_offset + rc_size but there might be an
1615 	 * optional I/O at the end that is not accounted in
1616 	 * rc_size.
1617 	 */
1618 	if (physical_rs.rs_end > rc->rc_offset + rc->rc_size) {
1619 		ASSERT3U(physical_rs.rs_end, ==, rc->rc_offset +
1620 		    rc->rc_size + (1 << tvd->vdev_ashift));
1621 	} else {
1622 		ASSERT3U(physical_rs.rs_end, ==, rc->rc_offset + rc->rc_size);
1623 	}
1624 #endif
1625 }
1626 
1627 static void
1628 vdev_raidz_io_start_write(zio_t *zio, raidz_row_t *rr, uint64_t ashift)
1629 {
1630 	vdev_t *vd = zio->io_vd;
1631 	raidz_map_t *rm = zio->io_vsd;
1632 
1633 	vdev_raidz_generate_parity_row(rm, rr);
1634 
1635 	for (int c = 0; c < rr->rr_scols; c++) {
1636 		raidz_col_t *rc = &rr->rr_col[c];
1637 		vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
1638 
1639 		/* Verify physical to logical translation */
1640 		vdev_raidz_io_verify(vd, rr, c);
1641 
1642 		if (rc->rc_size > 0) {
1643 			ASSERT3P(rc->rc_abd, !=, NULL);
1644 			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
1645 			    rc->rc_offset, rc->rc_abd,
1646 			    abd_get_size(rc->rc_abd), zio->io_type,
1647 			    zio->io_priority, 0, vdev_raidz_child_done, rc));
1648 		} else {
1649 			/*
1650 			 * Generate optional write for skip sector to improve
1651 			 * aggregation contiguity.
1652 			 */
1653 			ASSERT3P(rc->rc_abd, ==, NULL);
1654 			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
1655 			    rc->rc_offset, NULL, 1ULL << ashift,
1656 			    zio->io_type, zio->io_priority,
1657 			    ZIO_FLAG_NODATA | ZIO_FLAG_OPTIONAL, NULL,
1658 			    NULL));
1659 		}
1660 	}
1661 }
1662 
1663 static void
1664 vdev_raidz_io_start_read(zio_t *zio, raidz_row_t *rr)
1665 {
1666 	vdev_t *vd = zio->io_vd;
1667 
1668 	/*
1669 	 * Iterate over the columns in reverse order so that we hit the parity
1670 	 * last -- any errors along the way will force us to read the parity.
1671 	 */
1672 	for (int c = rr->rr_cols - 1; c >= 0; c--) {
1673 		raidz_col_t *rc = &rr->rr_col[c];
1674 		if (rc->rc_size == 0)
1675 			continue;
1676 		vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
1677 		if (!vdev_readable(cvd)) {
1678 			if (c >= rr->rr_firstdatacol)
1679 				rr->rr_missingdata++;
1680 			else
1681 				rr->rr_missingparity++;
1682 			rc->rc_error = SET_ERROR(ENXIO);
1683 			rc->rc_tried = 1;	/* don't even try */
1684 			rc->rc_skipped = 1;
1685 			continue;
1686 		}
1687 		if (vdev_dtl_contains(cvd, DTL_MISSING, zio->io_txg, 1)) {
1688 			if (c >= rr->rr_firstdatacol)
1689 				rr->rr_missingdata++;
1690 			else
1691 				rr->rr_missingparity++;
1692 			rc->rc_error = SET_ERROR(ESTALE);
1693 			rc->rc_skipped = 1;
1694 			continue;
1695 		}
1696 		if (c >= rr->rr_firstdatacol || rr->rr_missingdata > 0 ||
1697 		    (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
1698 			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
1699 			    rc->rc_offset, rc->rc_abd, rc->rc_size,
1700 			    zio->io_type, zio->io_priority, 0,
1701 			    vdev_raidz_child_done, rc));
1702 		}
1703 	}
1704 }
1705 
1706 /*
1707  * Start an IO operation on a RAIDZ VDev
1708  *
1709  * Outline:
1710  * - For write operations:
1711  *   1. Generate the parity data
1712  *   2. Create child zio write operations to each column's vdev, for both
1713  *      data and parity.
1714  *   3. If the column skips any sectors for padding, create optional dummy
1715  *      write zio children for those areas to improve aggregation continuity.
1716  * - For read operations:
1717  *   1. Create child zio read operations to each data column's vdev to read
1718  *      the range of data required for zio.
1719  *   2. If this is a scrub or resilver operation, or if any of the data
1720  *      vdevs have had errors, then create zio read operations to the parity
1721  *      columns' VDevs as well.
1722  */
1723 static void
1724 vdev_raidz_io_start(zio_t *zio)
1725 {
1726 	vdev_t *vd = zio->io_vd;
1727 	vdev_t *tvd = vd->vdev_top;
1728 	vdev_raidz_t *vdrz = vd->vdev_tsd;
1729 
1730 	raidz_map_t *rm = vdev_raidz_map_alloc(zio, tvd->vdev_ashift,
1731 	    vdrz->vd_logical_width, vdrz->vd_nparity);
1732 	zio->io_vsd = rm;
1733 	zio->io_vsd_ops = &vdev_raidz_vsd_ops;
1734 
1735 	/*
1736 	 * Until raidz expansion is implemented all maps for a raidz vdev
1737 	 * contain a single row.
1738 	 */
1739 	ASSERT3U(rm->rm_nrows, ==, 1);
1740 	raidz_row_t *rr = rm->rm_row[0];
1741 
1742 	if (zio->io_type == ZIO_TYPE_WRITE) {
1743 		vdev_raidz_io_start_write(zio, rr, tvd->vdev_ashift);
1744 	} else {
1745 		ASSERT(zio->io_type == ZIO_TYPE_READ);
1746 		vdev_raidz_io_start_read(zio, rr);
1747 	}
1748 
1749 	zio_execute(zio);
1750 }
1751 
1752 /*
1753  * Report a checksum error for a child of a RAID-Z device.
1754  */
1755 void
1756 vdev_raidz_checksum_error(zio_t *zio, raidz_col_t *rc, abd_t *bad_data)
1757 {
1758 	vdev_t *vd = zio->io_vd->vdev_child[rc->rc_devidx];
1759 
1760 	if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE) &&
1761 	    zio->io_priority != ZIO_PRIORITY_REBUILD) {
1762 		zio_bad_cksum_t zbc;
1763 		raidz_map_t *rm = zio->io_vsd;
1764 
1765 		zbc.zbc_has_cksum = 0;
1766 		zbc.zbc_injected = rm->rm_ecksuminjected;
1767 
1768 		(void) zfs_ereport_post_checksum(zio->io_spa, vd,
1769 		    &zio->io_bookmark, zio, rc->rc_offset, rc->rc_size,
1770 		    rc->rc_abd, bad_data, &zbc);
1771 		mutex_enter(&vd->vdev_stat_lock);
1772 		vd->vdev_stat.vs_checksum_errors++;
1773 		mutex_exit(&vd->vdev_stat_lock);
1774 	}
1775 }
1776 
1777 /*
1778  * We keep track of whether or not there were any injected errors, so that
1779  * any ereports we generate can note it.
1780  */
1781 static int
1782 raidz_checksum_verify(zio_t *zio)
1783 {
1784 	zio_bad_cksum_t zbc;
1785 	raidz_map_t *rm = zio->io_vsd;
1786 
1787 	bzero(&zbc, sizeof (zio_bad_cksum_t));
1788 
1789 	int ret = zio_checksum_error(zio, &zbc);
1790 	if (ret != 0 && zbc.zbc_injected != 0)
1791 		rm->rm_ecksuminjected = 1;
1792 
1793 	return (ret);
1794 }
1795 
1796 /*
1797  * Generate the parity from the data columns. If we tried and were able to
1798  * read the parity without error, verify that the generated parity matches the
1799  * data we read. If it doesn't, we fire off a checksum error. Return the
1800  * number of such failures.
1801  */
1802 static int
1803 raidz_parity_verify(zio_t *zio, raidz_row_t *rr)
1804 {
1805 	abd_t *orig[VDEV_RAIDZ_MAXPARITY];
1806 	int c, ret = 0;
1807 	raidz_map_t *rm = zio->io_vsd;
1808 	raidz_col_t *rc;
1809 
1810 	blkptr_t *bp = zio->io_bp;
1811 	enum zio_checksum checksum = (bp == NULL ? zio->io_prop.zp_checksum :
1812 	    (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp)));
1813 
1814 	if (checksum == ZIO_CHECKSUM_NOPARITY)
1815 		return (ret);
1816 
1817 	for (c = 0; c < rr->rr_firstdatacol; c++) {
1818 		rc = &rr->rr_col[c];
1819 		if (!rc->rc_tried || rc->rc_error != 0)
1820 			continue;
1821 
1822 		orig[c] = abd_alloc_sametype(rc->rc_abd, rc->rc_size);
1823 		abd_copy(orig[c], rc->rc_abd, rc->rc_size);
1824 	}
1825 
1826 	/*
1827 	 * Verify any empty sectors are zero filled to ensure the parity
1828 	 * is calculated correctly even if these non-data sectors are damaged.
1829 	 */
1830 	if (rr->rr_nempty && rr->rr_abd_empty != NULL)
1831 		ret += vdev_draid_map_verify_empty(zio, rr);
1832 
1833 	/*
1834 	 * Regenerates parity even for !tried||rc_error!=0 columns.  This
1835 	 * isn't harmful but it does have the side effect of fixing stuff
1836 	 * we didn't realize was necessary (i.e. even if we return 0).
1837 	 */
1838 	vdev_raidz_generate_parity_row(rm, rr);
1839 
1840 	for (c = 0; c < rr->rr_firstdatacol; c++) {
1841 		rc = &rr->rr_col[c];
1842 
1843 		if (!rc->rc_tried || rc->rc_error != 0)
1844 			continue;
1845 
1846 		if (abd_cmp(orig[c], rc->rc_abd) != 0) {
1847 			vdev_raidz_checksum_error(zio, rc, orig[c]);
1848 			rc->rc_error = SET_ERROR(ECKSUM);
1849 			ret++;
1850 		}
1851 		abd_free(orig[c]);
1852 	}
1853 
1854 	return (ret);
1855 }
1856 
1857 static int
1858 vdev_raidz_worst_error(raidz_row_t *rr)
1859 {
1860 	int error = 0;
1861 
1862 	for (int c = 0; c < rr->rr_cols; c++)
1863 		error = zio_worst_error(error, rr->rr_col[c].rc_error);
1864 
1865 	return (error);
1866 }
1867 
1868 static void
1869 vdev_raidz_io_done_verified(zio_t *zio, raidz_row_t *rr)
1870 {
1871 	int unexpected_errors = 0;
1872 	int parity_errors = 0;
1873 	int parity_untried = 0;
1874 	int data_errors = 0;
1875 
1876 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
1877 
1878 	for (int c = 0; c < rr->rr_cols; c++) {
1879 		raidz_col_t *rc = &rr->rr_col[c];
1880 
1881 		if (rc->rc_error) {
1882 			if (c < rr->rr_firstdatacol)
1883 				parity_errors++;
1884 			else
1885 				data_errors++;
1886 
1887 			if (!rc->rc_skipped)
1888 				unexpected_errors++;
1889 		} else if (c < rr->rr_firstdatacol && !rc->rc_tried) {
1890 			parity_untried++;
1891 		}
1892 	}
1893 
1894 	/*
1895 	 * If we read more parity disks than were used for
1896 	 * reconstruction, confirm that the other parity disks produced
1897 	 * correct data.
1898 	 *
1899 	 * Note that we also regenerate parity when resilvering so we
1900 	 * can write it out to failed devices later.
1901 	 */
1902 	if (parity_errors + parity_untried <
1903 	    rr->rr_firstdatacol - data_errors ||
1904 	    (zio->io_flags & ZIO_FLAG_RESILVER)) {
1905 		int n = raidz_parity_verify(zio, rr);
1906 		unexpected_errors += n;
1907 	}
1908 
1909 	if (zio->io_error == 0 && spa_writeable(zio->io_spa) &&
1910 	    (unexpected_errors > 0 || (zio->io_flags & ZIO_FLAG_RESILVER))) {
1911 		/*
1912 		 * Use the good data we have in hand to repair damaged children.
1913 		 */
1914 		for (int c = 0; c < rr->rr_cols; c++) {
1915 			raidz_col_t *rc = &rr->rr_col[c];
1916 			vdev_t *vd = zio->io_vd;
1917 			vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
1918 
1919 			if (!rc->rc_allow_repair) {
1920 				continue;
1921 			} else if (!rc->rc_force_repair &&
1922 			    (rc->rc_error == 0 || rc->rc_size == 0)) {
1923 				continue;
1924 			}
1925 
1926 			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
1927 			    rc->rc_offset, rc->rc_abd, rc->rc_size,
1928 			    ZIO_TYPE_WRITE,
1929 			    zio->io_priority == ZIO_PRIORITY_REBUILD ?
1930 			    ZIO_PRIORITY_REBUILD : ZIO_PRIORITY_ASYNC_WRITE,
1931 			    ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
1932 			    ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
1933 		}
1934 	}
1935 }
1936 
1937 static void
1938 raidz_restore_orig_data(raidz_map_t *rm)
1939 {
1940 	for (int i = 0; i < rm->rm_nrows; i++) {
1941 		raidz_row_t *rr = rm->rm_row[i];
1942 		for (int c = 0; c < rr->rr_cols; c++) {
1943 			raidz_col_t *rc = &rr->rr_col[c];
1944 			if (rc->rc_need_orig_restore) {
1945 				abd_copy(rc->rc_abd,
1946 				    rc->rc_orig_data, rc->rc_size);
1947 				rc->rc_need_orig_restore = B_FALSE;
1948 			}
1949 		}
1950 	}
1951 }
1952 
1953 /*
1954  * returns EINVAL if reconstruction of the block will not be possible
1955  * returns ECKSUM if this specific reconstruction failed
1956  * returns 0 on successful reconstruction
1957  */
1958 static int
1959 raidz_reconstruct(zio_t *zio, int *ltgts, int ntgts, int nparity)
1960 {
1961 	raidz_map_t *rm = zio->io_vsd;
1962 
1963 	/* Reconstruct each row */
1964 	for (int r = 0; r < rm->rm_nrows; r++) {
1965 		raidz_row_t *rr = rm->rm_row[r];
1966 		int my_tgts[VDEV_RAIDZ_MAXPARITY]; /* value is child id */
1967 		int t = 0;
1968 		int dead = 0;
1969 		int dead_data = 0;
1970 
1971 		for (int c = 0; c < rr->rr_cols; c++) {
1972 			raidz_col_t *rc = &rr->rr_col[c];
1973 			ASSERT0(rc->rc_need_orig_restore);
1974 			if (rc->rc_error != 0) {
1975 				dead++;
1976 				if (c >= nparity)
1977 					dead_data++;
1978 				continue;
1979 			}
1980 			if (rc->rc_size == 0)
1981 				continue;
1982 			for (int lt = 0; lt < ntgts; lt++) {
1983 				if (rc->rc_devidx == ltgts[lt]) {
1984 					if (rc->rc_orig_data == NULL) {
1985 						rc->rc_orig_data =
1986 						    abd_alloc_linear(
1987 						    rc->rc_size, B_TRUE);
1988 						abd_copy(rc->rc_orig_data,
1989 						    rc->rc_abd, rc->rc_size);
1990 					}
1991 					rc->rc_need_orig_restore = B_TRUE;
1992 
1993 					dead++;
1994 					if (c >= nparity)
1995 						dead_data++;
1996 					my_tgts[t++] = c;
1997 					break;
1998 				}
1999 			}
2000 		}
2001 		if (dead > nparity) {
2002 			/* reconstruction not possible */
2003 			raidz_restore_orig_data(rm);
2004 			return (EINVAL);
2005 		}
2006 		if (dead_data > 0)
2007 			vdev_raidz_reconstruct_row(rm, rr, my_tgts, t);
2008 	}
2009 
2010 	/* Check for success */
2011 	if (raidz_checksum_verify(zio) == 0) {
2012 
2013 		/* Reconstruction succeeded - report errors */
2014 		for (int i = 0; i < rm->rm_nrows; i++) {
2015 			raidz_row_t *rr = rm->rm_row[i];
2016 
2017 			for (int c = 0; c < rr->rr_cols; c++) {
2018 				raidz_col_t *rc = &rr->rr_col[c];
2019 				if (rc->rc_need_orig_restore) {
2020 					/*
2021 					 * Note: if this is a parity column,
2022 					 * we don't really know if it's wrong.
2023 					 * We need to let
2024 					 * vdev_raidz_io_done_verified() check
2025 					 * it, and if we set rc_error, it will
2026 					 * think that it is a "known" error
2027 					 * that doesn't need to be checked
2028 					 * or corrected.
2029 					 */
2030 					if (rc->rc_error == 0 &&
2031 					    c >= rr->rr_firstdatacol) {
2032 						vdev_raidz_checksum_error(zio,
2033 						    rc, rc->rc_orig_data);
2034 						rc->rc_error =
2035 						    SET_ERROR(ECKSUM);
2036 					}
2037 					rc->rc_need_orig_restore = B_FALSE;
2038 				}
2039 			}
2040 
2041 			vdev_raidz_io_done_verified(zio, rr);
2042 		}
2043 
2044 		zio_checksum_verified(zio);
2045 
2046 		return (0);
2047 	}
2048 
2049 	/* Reconstruction failed - restore original data */
2050 	raidz_restore_orig_data(rm);
2051 	return (ECKSUM);
2052 }
2053 
2054 /*
2055  * Iterate over all combinations of N bad vdevs and attempt a reconstruction.
2056  * Note that the algorithm below is non-optimal because it doesn't take into
2057  * account how reconstruction is actually performed. For example, with
2058  * triple-parity RAID-Z the reconstruction procedure is the same if column 4
2059  * is targeted as invalid as if columns 1 and 4 are targeted since in both
2060  * cases we'd only use parity information in column 0.
2061  *
2062  * The order that we find the various possible combinations of failed
2063  * disks is dictated by these rules:
2064  * - Examine each "slot" (the "i" in tgts[i])
2065  *   - Try to increment this slot (tgts[i] = tgts[i] + 1)
2066  *   - if we can't increment because it runs into the next slot,
2067  *     reset our slot to the minimum, and examine the next slot
2068  *
2069  *  For example, with a 6-wide RAIDZ3, and no known errors (so we have to choose
2070  *  3 columns to reconstruct), we will generate the following sequence:
2071  *
2072  *  STATE        ACTION
2073  *  0 1 2        special case: skip since these are all parity
2074  *  0 1   3      first slot: reset to 0; middle slot: increment to 2
2075  *  0   2 3      first slot: increment to 1
2076  *    1 2 3      first: reset to 0; middle: reset to 1; last: increment to 4
2077  *  0 1     4    first: reset to 0; middle: increment to 2
2078  *  0   2   4    first: increment to 1
2079  *    1 2   4    first: reset to 0; middle: increment to 3
2080  *  0     3 4    first: increment to 1
2081  *    1   3 4    first: increment to 2
2082  *      2 3 4    first: reset to 0; middle: reset to 1; last: increment to 5
2083  *  0 1       5  first: reset to 0; middle: increment to 2
2084  *  0   2     5  first: increment to 1
2085  *    1 2     5  first: reset to 0; middle: increment to 3
2086  *  0     3   5  first: increment to 1
2087  *    1   3   5  first: increment to 2
2088  *      2 3   5  first: reset to 0; middle: increment to 4
2089  *  0       4 5  first: increment to 1
2090  *    1     4 5  first: increment to 2
2091  *      2   4 5  first: increment to 3
2092  *        3 4 5  done
2093  *
2094  * This strategy works for dRAID but is less efficient when there are a large
2095  * number of child vdevs and therefore permutations to check. Furthermore,
2096  * since the raidz_map_t rows likely do not overlap reconstruction would be
2097  * possible as long as there are no more than nparity data errors per row.
2098  * These additional permutations are not currently checked but could be as
2099  * a future improvement.
2100  */
2101 static int
2102 vdev_raidz_combrec(zio_t *zio)
2103 {
2104 	int nparity = vdev_get_nparity(zio->io_vd);
2105 	raidz_map_t *rm = zio->io_vsd;
2106 
2107 	/* Check if there's enough data to attempt reconstrution. */
2108 	for (int i = 0; i < rm->rm_nrows; i++) {
2109 		raidz_row_t *rr = rm->rm_row[i];
2110 		int total_errors = 0;
2111 
2112 		for (int c = 0; c < rr->rr_cols; c++) {
2113 			if (rr->rr_col[c].rc_error)
2114 				total_errors++;
2115 		}
2116 
2117 		if (total_errors > nparity)
2118 			return (vdev_raidz_worst_error(rr));
2119 	}
2120 
2121 	for (int num_failures = 1; num_failures <= nparity; num_failures++) {
2122 		int tstore[VDEV_RAIDZ_MAXPARITY + 2];
2123 		int *ltgts = &tstore[1]; /* value is logical child ID */
2124 
2125 		/* Determine number of logical children, n */
2126 		int n = zio->io_vd->vdev_children;
2127 
2128 		ASSERT3U(num_failures, <=, nparity);
2129 		ASSERT3U(num_failures, <=, VDEV_RAIDZ_MAXPARITY);
2130 
2131 		/* Handle corner cases in combrec logic */
2132 		ltgts[-1] = -1;
2133 		for (int i = 0; i < num_failures; i++) {
2134 			ltgts[i] = i;
2135 		}
2136 		ltgts[num_failures] = n;
2137 
2138 		for (;;) {
2139 			int err = raidz_reconstruct(zio, ltgts, num_failures,
2140 			    nparity);
2141 			if (err == EINVAL) {
2142 				/*
2143 				 * Reconstruction not possible with this #
2144 				 * failures; try more failures.
2145 				 */
2146 				break;
2147 			} else if (err == 0)
2148 				return (0);
2149 
2150 			/* Compute next targets to try */
2151 			for (int t = 0; ; t++) {
2152 				ASSERT3U(t, <, num_failures);
2153 				ltgts[t]++;
2154 				if (ltgts[t] == n) {
2155 					/* try more failures */
2156 					ASSERT3U(t, ==, num_failures - 1);
2157 					break;
2158 				}
2159 
2160 				ASSERT3U(ltgts[t], <, n);
2161 				ASSERT3U(ltgts[t], <=, ltgts[t + 1]);
2162 
2163 				/*
2164 				 * If that spot is available, we're done here.
2165 				 * Try the next combination.
2166 				 */
2167 				if (ltgts[t] != ltgts[t + 1])
2168 					break;
2169 
2170 				/*
2171 				 * Otherwise, reset this tgt to the minimum,
2172 				 * and move on to the next tgt.
2173 				 */
2174 				ltgts[t] = ltgts[t - 1] + 1;
2175 				ASSERT3U(ltgts[t], ==, t);
2176 			}
2177 
2178 			/* Increase the number of failures and keep trying. */
2179 			if (ltgts[num_failures - 1] == n)
2180 				break;
2181 		}
2182 	}
2183 
2184 	return (ECKSUM);
2185 }
2186 
2187 void
2188 vdev_raidz_reconstruct(raidz_map_t *rm, const int *t, int nt)
2189 {
2190 	for (uint64_t row = 0; row < rm->rm_nrows; row++) {
2191 		raidz_row_t *rr = rm->rm_row[row];
2192 		vdev_raidz_reconstruct_row(rm, rr, t, nt);
2193 	}
2194 }
2195 
2196 /*
2197  * Complete a write IO operation on a RAIDZ VDev
2198  *
2199  * Outline:
2200  *   1. Check for errors on the child IOs.
2201  *   2. Return, setting an error code if too few child VDevs were written
2202  *      to reconstruct the data later.  Note that partial writes are
2203  *      considered successful if they can be reconstructed at all.
2204  */
2205 static void
2206 vdev_raidz_io_done_write_impl(zio_t *zio, raidz_row_t *rr)
2207 {
2208 	int total_errors = 0;
2209 
2210 	ASSERT3U(rr->rr_missingparity, <=, rr->rr_firstdatacol);
2211 	ASSERT3U(rr->rr_missingdata, <=, rr->rr_cols - rr->rr_firstdatacol);
2212 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
2213 
2214 	for (int c = 0; c < rr->rr_cols; c++) {
2215 		raidz_col_t *rc = &rr->rr_col[c];
2216 
2217 		if (rc->rc_error) {
2218 			ASSERT(rc->rc_error != ECKSUM);	/* child has no bp */
2219 
2220 			total_errors++;
2221 		}
2222 	}
2223 
2224 	/*
2225 	 * Treat partial writes as a success. If we couldn't write enough
2226 	 * columns to reconstruct the data, the I/O failed.  Otherwise,
2227 	 * good enough.
2228 	 *
2229 	 * Now that we support write reallocation, it would be better
2230 	 * to treat partial failure as real failure unless there are
2231 	 * no non-degraded top-level vdevs left, and not update DTLs
2232 	 * if we intend to reallocate.
2233 	 */
2234 	if (total_errors > rr->rr_firstdatacol) {
2235 		zio->io_error = zio_worst_error(zio->io_error,
2236 		    vdev_raidz_worst_error(rr));
2237 	}
2238 }
2239 
2240 static void
2241 vdev_raidz_io_done_reconstruct_known_missing(zio_t *zio, raidz_map_t *rm,
2242     raidz_row_t *rr)
2243 {
2244 	int parity_errors = 0;
2245 	int parity_untried = 0;
2246 	int data_errors = 0;
2247 	int total_errors = 0;
2248 
2249 	ASSERT3U(rr->rr_missingparity, <=, rr->rr_firstdatacol);
2250 	ASSERT3U(rr->rr_missingdata, <=, rr->rr_cols - rr->rr_firstdatacol);
2251 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
2252 
2253 	for (int c = 0; c < rr->rr_cols; c++) {
2254 		raidz_col_t *rc = &rr->rr_col[c];
2255 
2256 		if (rc->rc_error) {
2257 			ASSERT(rc->rc_error != ECKSUM);	/* child has no bp */
2258 
2259 			if (c < rr->rr_firstdatacol)
2260 				parity_errors++;
2261 			else
2262 				data_errors++;
2263 
2264 			total_errors++;
2265 		} else if (c < rr->rr_firstdatacol && !rc->rc_tried) {
2266 			parity_untried++;
2267 		}
2268 	}
2269 
2270 	/*
2271 	 * If there were data errors and the number of errors we saw was
2272 	 * correctable -- less than or equal to the number of parity disks read
2273 	 * -- reconstruct based on the missing data.
2274 	 */
2275 	if (data_errors != 0 &&
2276 	    total_errors <= rr->rr_firstdatacol - parity_untried) {
2277 		/*
2278 		 * We either attempt to read all the parity columns or
2279 		 * none of them. If we didn't try to read parity, we
2280 		 * wouldn't be here in the correctable case. There must
2281 		 * also have been fewer parity errors than parity
2282 		 * columns or, again, we wouldn't be in this code path.
2283 		 */
2284 		ASSERT(parity_untried == 0);
2285 		ASSERT(parity_errors < rr->rr_firstdatacol);
2286 
2287 		/*
2288 		 * Identify the data columns that reported an error.
2289 		 */
2290 		int n = 0;
2291 		int tgts[VDEV_RAIDZ_MAXPARITY];
2292 		for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
2293 			raidz_col_t *rc = &rr->rr_col[c];
2294 			if (rc->rc_error != 0) {
2295 				ASSERT(n < VDEV_RAIDZ_MAXPARITY);
2296 				tgts[n++] = c;
2297 			}
2298 		}
2299 
2300 		ASSERT(rr->rr_firstdatacol >= n);
2301 
2302 		vdev_raidz_reconstruct_row(rm, rr, tgts, n);
2303 	}
2304 }
2305 
2306 /*
2307  * Return the number of reads issued.
2308  */
2309 static int
2310 vdev_raidz_read_all(zio_t *zio, raidz_row_t *rr)
2311 {
2312 	vdev_t *vd = zio->io_vd;
2313 	int nread = 0;
2314 
2315 	rr->rr_missingdata = 0;
2316 	rr->rr_missingparity = 0;
2317 
2318 	/*
2319 	 * If this rows contains empty sectors which are not required
2320 	 * for a normal read then allocate an ABD for them now so they
2321 	 * may be read, verified, and any needed repairs performed.
2322 	 */
2323 	if (rr->rr_nempty && rr->rr_abd_empty == NULL)
2324 		vdev_draid_map_alloc_empty(zio, rr);
2325 
2326 	for (int c = 0; c < rr->rr_cols; c++) {
2327 		raidz_col_t *rc = &rr->rr_col[c];
2328 		if (rc->rc_tried || rc->rc_size == 0)
2329 			continue;
2330 
2331 		zio_nowait(zio_vdev_child_io(zio, NULL,
2332 		    vd->vdev_child[rc->rc_devidx],
2333 		    rc->rc_offset, rc->rc_abd, rc->rc_size,
2334 		    zio->io_type, zio->io_priority, 0,
2335 		    vdev_raidz_child_done, rc));
2336 		nread++;
2337 	}
2338 	return (nread);
2339 }
2340 
2341 /*
2342  * We're here because either there were too many errors to even attempt
2343  * reconstruction (total_errors == rm_first_datacol), or vdev_*_combrec()
2344  * failed. In either case, there is enough bad data to prevent reconstruction.
2345  * Start checksum ereports for all children which haven't failed.
2346  */
2347 static void
2348 vdev_raidz_io_done_unrecoverable(zio_t *zio)
2349 {
2350 	raidz_map_t *rm = zio->io_vsd;
2351 
2352 	for (int i = 0; i < rm->rm_nrows; i++) {
2353 		raidz_row_t *rr = rm->rm_row[i];
2354 
2355 		for (int c = 0; c < rr->rr_cols; c++) {
2356 			raidz_col_t *rc = &rr->rr_col[c];
2357 			vdev_t *cvd = zio->io_vd->vdev_child[rc->rc_devidx];
2358 
2359 			if (rc->rc_error != 0)
2360 				continue;
2361 
2362 			zio_bad_cksum_t zbc;
2363 			zbc.zbc_has_cksum = 0;
2364 			zbc.zbc_injected = rm->rm_ecksuminjected;
2365 
2366 			(void) zfs_ereport_start_checksum(zio->io_spa,
2367 			    cvd, &zio->io_bookmark, zio, rc->rc_offset,
2368 			    rc->rc_size, &zbc);
2369 			mutex_enter(&cvd->vdev_stat_lock);
2370 			cvd->vdev_stat.vs_checksum_errors++;
2371 			mutex_exit(&cvd->vdev_stat_lock);
2372 		}
2373 	}
2374 }
2375 
2376 void
2377 vdev_raidz_io_done(zio_t *zio)
2378 {
2379 	raidz_map_t *rm = zio->io_vsd;
2380 
2381 	if (zio->io_type == ZIO_TYPE_WRITE) {
2382 		for (int i = 0; i < rm->rm_nrows; i++) {
2383 			vdev_raidz_io_done_write_impl(zio, rm->rm_row[i]);
2384 		}
2385 	} else {
2386 		for (int i = 0; i < rm->rm_nrows; i++) {
2387 			raidz_row_t *rr = rm->rm_row[i];
2388 			vdev_raidz_io_done_reconstruct_known_missing(zio,
2389 			    rm, rr);
2390 		}
2391 
2392 		if (raidz_checksum_verify(zio) == 0) {
2393 			for (int i = 0; i < rm->rm_nrows; i++) {
2394 				raidz_row_t *rr = rm->rm_row[i];
2395 				vdev_raidz_io_done_verified(zio, rr);
2396 			}
2397 			zio_checksum_verified(zio);
2398 		} else {
2399 			/*
2400 			 * A sequential resilver has no checksum which makes
2401 			 * combinatoral reconstruction impossible. This code
2402 			 * path is unreachable since raidz_checksum_verify()
2403 			 * has no checksum to verify and must succeed.
2404 			 */
2405 			ASSERT3U(zio->io_priority, !=, ZIO_PRIORITY_REBUILD);
2406 
2407 			/*
2408 			 * This isn't a typical situation -- either we got a
2409 			 * read error or a child silently returned bad data.
2410 			 * Read every block so we can try again with as much
2411 			 * data and parity as we can track down. If we've
2412 			 * already been through once before, all children will
2413 			 * be marked as tried so we'll proceed to combinatorial
2414 			 * reconstruction.
2415 			 */
2416 			int nread = 0;
2417 			for (int i = 0; i < rm->rm_nrows; i++) {
2418 				nread += vdev_raidz_read_all(zio,
2419 				    rm->rm_row[i]);
2420 			}
2421 			if (nread != 0) {
2422 				/*
2423 				 * Normally our stage is VDEV_IO_DONE, but if
2424 				 * we've already called redone(), it will have
2425 				 * changed to VDEV_IO_START, in which case we
2426 				 * don't want to call redone() again.
2427 				 */
2428 				if (zio->io_stage != ZIO_STAGE_VDEV_IO_START)
2429 					zio_vdev_io_redone(zio);
2430 				return;
2431 			}
2432 
2433 			zio->io_error = vdev_raidz_combrec(zio);
2434 			if (zio->io_error == ECKSUM &&
2435 			    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2436 				vdev_raidz_io_done_unrecoverable(zio);
2437 			}
2438 		}
2439 	}
2440 }
2441 
2442 static void
2443 vdev_raidz_state_change(vdev_t *vd, int faulted, int degraded)
2444 {
2445 	vdev_raidz_t *vdrz = vd->vdev_tsd;
2446 	if (faulted > vdrz->vd_nparity)
2447 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2448 		    VDEV_AUX_NO_REPLICAS);
2449 	else if (degraded + faulted != 0)
2450 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
2451 	else
2452 		vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
2453 }
2454 
2455 /*
2456  * Determine if any portion of the provided block resides on a child vdev
2457  * with a dirty DTL and therefore needs to be resilvered.  The function
2458  * assumes that at least one DTL is dirty which implies that full stripe
2459  * width blocks must be resilvered.
2460  */
2461 static boolean_t
2462 vdev_raidz_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2463     uint64_t phys_birth)
2464 {
2465 	vdev_raidz_t *vdrz = vd->vdev_tsd;
2466 	uint64_t dcols = vd->vdev_children;
2467 	uint64_t nparity = vdrz->vd_nparity;
2468 	uint64_t ashift = vd->vdev_top->vdev_ashift;
2469 	/* The starting RAIDZ (parent) vdev sector of the block. */
2470 	uint64_t b = DVA_GET_OFFSET(dva) >> ashift;
2471 	/* The zio's size in units of the vdev's minimum sector size. */
2472 	uint64_t s = ((psize - 1) >> ashift) + 1;
2473 	/* The first column for this stripe. */
2474 	uint64_t f = b % dcols;
2475 
2476 	/* Unreachable by sequential resilver. */
2477 	ASSERT3U(phys_birth, !=, TXG_UNKNOWN);
2478 
2479 	if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
2480 		return (B_FALSE);
2481 
2482 	if (s + nparity >= dcols)
2483 		return (B_TRUE);
2484 
2485 	for (uint64_t c = 0; c < s + nparity; c++) {
2486 		uint64_t devidx = (f + c) % dcols;
2487 		vdev_t *cvd = vd->vdev_child[devidx];
2488 
2489 		/*
2490 		 * dsl_scan_need_resilver() already checked vd with
2491 		 * vdev_dtl_contains(). So here just check cvd with
2492 		 * vdev_dtl_empty(), cheaper and a good approximation.
2493 		 */
2494 		if (!vdev_dtl_empty(cvd, DTL_PARTIAL))
2495 			return (B_TRUE);
2496 	}
2497 
2498 	return (B_FALSE);
2499 }
2500 
2501 static void
2502 vdev_raidz_xlate(vdev_t *cvd, const range_seg64_t *logical_rs,
2503     range_seg64_t *physical_rs, range_seg64_t *remain_rs)
2504 {
2505 	(void) remain_rs;
2506 
2507 	vdev_t *raidvd = cvd->vdev_parent;
2508 	ASSERT(raidvd->vdev_ops == &vdev_raidz_ops);
2509 
2510 	uint64_t width = raidvd->vdev_children;
2511 	uint64_t tgt_col = cvd->vdev_id;
2512 	uint64_t ashift = raidvd->vdev_top->vdev_ashift;
2513 
2514 	/* make sure the offsets are block-aligned */
2515 	ASSERT0(logical_rs->rs_start % (1 << ashift));
2516 	ASSERT0(logical_rs->rs_end % (1 << ashift));
2517 	uint64_t b_start = logical_rs->rs_start >> ashift;
2518 	uint64_t b_end = logical_rs->rs_end >> ashift;
2519 
2520 	uint64_t start_row = 0;
2521 	if (b_start > tgt_col) /* avoid underflow */
2522 		start_row = ((b_start - tgt_col - 1) / width) + 1;
2523 
2524 	uint64_t end_row = 0;
2525 	if (b_end > tgt_col)
2526 		end_row = ((b_end - tgt_col - 1) / width) + 1;
2527 
2528 	physical_rs->rs_start = start_row << ashift;
2529 	physical_rs->rs_end = end_row << ashift;
2530 
2531 	ASSERT3U(physical_rs->rs_start, <=, logical_rs->rs_start);
2532 	ASSERT3U(physical_rs->rs_end - physical_rs->rs_start, <=,
2533 	    logical_rs->rs_end - logical_rs->rs_start);
2534 }
2535 
2536 /*
2537  * Initialize private RAIDZ specific fields from the nvlist.
2538  */
2539 static int
2540 vdev_raidz_init(spa_t *spa, nvlist_t *nv, void **tsd)
2541 {
2542 	vdev_raidz_t *vdrz;
2543 	uint64_t nparity;
2544 
2545 	uint_t children;
2546 	nvlist_t **child;
2547 	int error = nvlist_lookup_nvlist_array(nv,
2548 	    ZPOOL_CONFIG_CHILDREN, &child, &children);
2549 	if (error != 0)
2550 		return (SET_ERROR(EINVAL));
2551 
2552 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &nparity) == 0) {
2553 		if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
2554 			return (SET_ERROR(EINVAL));
2555 
2556 		/*
2557 		 * Previous versions could only support 1 or 2 parity
2558 		 * device.
2559 		 */
2560 		if (nparity > 1 && spa_version(spa) < SPA_VERSION_RAIDZ2)
2561 			return (SET_ERROR(EINVAL));
2562 		else if (nparity > 2 && spa_version(spa) < SPA_VERSION_RAIDZ3)
2563 			return (SET_ERROR(EINVAL));
2564 	} else {
2565 		/*
2566 		 * We require the parity to be specified for SPAs that
2567 		 * support multiple parity levels.
2568 		 */
2569 		if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
2570 			return (SET_ERROR(EINVAL));
2571 
2572 		/*
2573 		 * Otherwise, we default to 1 parity device for RAID-Z.
2574 		 */
2575 		nparity = 1;
2576 	}
2577 
2578 	vdrz = kmem_zalloc(sizeof (*vdrz), KM_SLEEP);
2579 	vdrz->vd_logical_width = children;
2580 	vdrz->vd_nparity = nparity;
2581 
2582 	*tsd = vdrz;
2583 
2584 	return (0);
2585 }
2586 
2587 static void
2588 vdev_raidz_fini(vdev_t *vd)
2589 {
2590 	kmem_free(vd->vdev_tsd, sizeof (vdev_raidz_t));
2591 }
2592 
2593 /*
2594  * Add RAIDZ specific fields to the config nvlist.
2595  */
2596 static void
2597 vdev_raidz_config_generate(vdev_t *vd, nvlist_t *nv)
2598 {
2599 	ASSERT3P(vd->vdev_ops, ==, &vdev_raidz_ops);
2600 	vdev_raidz_t *vdrz = vd->vdev_tsd;
2601 
2602 	/*
2603 	 * Make sure someone hasn't managed to sneak a fancy new vdev
2604 	 * into a crufty old storage pool.
2605 	 */
2606 	ASSERT(vdrz->vd_nparity == 1 ||
2607 	    (vdrz->vd_nparity <= 2 &&
2608 	    spa_version(vd->vdev_spa) >= SPA_VERSION_RAIDZ2) ||
2609 	    (vdrz->vd_nparity <= 3 &&
2610 	    spa_version(vd->vdev_spa) >= SPA_VERSION_RAIDZ3));
2611 
2612 	/*
2613 	 * Note that we'll add these even on storage pools where they
2614 	 * aren't strictly required -- older software will just ignore
2615 	 * it.
2616 	 */
2617 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vdrz->vd_nparity);
2618 }
2619 
2620 static uint64_t
2621 vdev_raidz_nparity(vdev_t *vd)
2622 {
2623 	vdev_raidz_t *vdrz = vd->vdev_tsd;
2624 	return (vdrz->vd_nparity);
2625 }
2626 
2627 static uint64_t
2628 vdev_raidz_ndisks(vdev_t *vd)
2629 {
2630 	return (vd->vdev_children);
2631 }
2632 
2633 vdev_ops_t vdev_raidz_ops = {
2634 	.vdev_op_init = vdev_raidz_init,
2635 	.vdev_op_fini = vdev_raidz_fini,
2636 	.vdev_op_open = vdev_raidz_open,
2637 	.vdev_op_close = vdev_raidz_close,
2638 	.vdev_op_asize = vdev_raidz_asize,
2639 	.vdev_op_min_asize = vdev_raidz_min_asize,
2640 	.vdev_op_min_alloc = NULL,
2641 	.vdev_op_io_start = vdev_raidz_io_start,
2642 	.vdev_op_io_done = vdev_raidz_io_done,
2643 	.vdev_op_state_change = vdev_raidz_state_change,
2644 	.vdev_op_need_resilver = vdev_raidz_need_resilver,
2645 	.vdev_op_hold = NULL,
2646 	.vdev_op_rele = NULL,
2647 	.vdev_op_remap = NULL,
2648 	.vdev_op_xlate = vdev_raidz_xlate,
2649 	.vdev_op_rebuild_asize = NULL,
2650 	.vdev_op_metaslab_init = NULL,
2651 	.vdev_op_config_generate = vdev_raidz_config_generate,
2652 	.vdev_op_nparity = vdev_raidz_nparity,
2653 	.vdev_op_ndisks = vdev_raidz_ndisks,
2654 	.vdev_op_type = VDEV_TYPE_RAIDZ,	/* name of this vdev type */
2655 	.vdev_op_leaf = B_FALSE			/* not a leaf vdev */
2656 };
2657