1*eda14cbcSMatt Macy /* 2*eda14cbcSMatt Macy * CDDL HEADER START 3*eda14cbcSMatt Macy * 4*eda14cbcSMatt Macy * The contents of this file are subject to the terms of the 5*eda14cbcSMatt Macy * Common Development and Distribution License (the "License"). 6*eda14cbcSMatt Macy * You may not use this file except in compliance with the License. 7*eda14cbcSMatt Macy * 8*eda14cbcSMatt Macy * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9*eda14cbcSMatt Macy * or http://www.opensolaris.org/os/licensing. 10*eda14cbcSMatt Macy * See the License for the specific language governing permissions 11*eda14cbcSMatt Macy * and limitations under the License. 12*eda14cbcSMatt Macy * 13*eda14cbcSMatt Macy * When distributing Covered Code, include this CDDL HEADER in each 14*eda14cbcSMatt Macy * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15*eda14cbcSMatt Macy * If applicable, add the following below this CDDL HEADER, with the 16*eda14cbcSMatt Macy * fields enclosed by brackets "[]" replaced with your own identifying 17*eda14cbcSMatt Macy * information: Portions Copyright [yyyy] [name of copyright owner] 18*eda14cbcSMatt Macy * 19*eda14cbcSMatt Macy * CDDL HEADER END 20*eda14cbcSMatt Macy */ 21*eda14cbcSMatt Macy 22*eda14cbcSMatt Macy /* 23*eda14cbcSMatt Macy * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24*eda14cbcSMatt Macy * Copyright (c) 2012, 2019 by Delphix. All rights reserved. 25*eda14cbcSMatt Macy * Copyright (c) 2016 Gvozden Nešković. All rights reserved. 26*eda14cbcSMatt Macy */ 27*eda14cbcSMatt Macy 28*eda14cbcSMatt Macy #include <sys/zfs_context.h> 29*eda14cbcSMatt Macy #include <sys/spa.h> 30*eda14cbcSMatt Macy #include <sys/vdev_impl.h> 31*eda14cbcSMatt Macy #include <sys/zio.h> 32*eda14cbcSMatt Macy #include <sys/zio_checksum.h> 33*eda14cbcSMatt Macy #include <sys/abd.h> 34*eda14cbcSMatt Macy #include <sys/fs/zfs.h> 35*eda14cbcSMatt Macy #include <sys/fm/fs/zfs.h> 36*eda14cbcSMatt Macy #include <sys/vdev_raidz.h> 37*eda14cbcSMatt Macy #include <sys/vdev_raidz_impl.h> 38*eda14cbcSMatt Macy 39*eda14cbcSMatt Macy #ifdef ZFS_DEBUG 40*eda14cbcSMatt Macy #include <sys/vdev.h> /* For vdev_xlate() in vdev_raidz_io_verify() */ 41*eda14cbcSMatt Macy #endif 42*eda14cbcSMatt Macy 43*eda14cbcSMatt Macy /* 44*eda14cbcSMatt Macy * Virtual device vector for RAID-Z. 45*eda14cbcSMatt Macy * 46*eda14cbcSMatt Macy * This vdev supports single, double, and triple parity. For single parity, 47*eda14cbcSMatt Macy * we use a simple XOR of all the data columns. For double or triple parity, 48*eda14cbcSMatt Macy * we use a special case of Reed-Solomon coding. This extends the 49*eda14cbcSMatt Macy * technique described in "The mathematics of RAID-6" by H. Peter Anvin by 50*eda14cbcSMatt Macy * drawing on the system described in "A Tutorial on Reed-Solomon Coding for 51*eda14cbcSMatt Macy * Fault-Tolerance in RAID-like Systems" by James S. Plank on which the 52*eda14cbcSMatt Macy * former is also based. The latter is designed to provide higher performance 53*eda14cbcSMatt Macy * for writes. 54*eda14cbcSMatt Macy * 55*eda14cbcSMatt Macy * Note that the Plank paper claimed to support arbitrary N+M, but was then 56*eda14cbcSMatt Macy * amended six years later identifying a critical flaw that invalidates its 57*eda14cbcSMatt Macy * claims. Nevertheless, the technique can be adapted to work for up to 58*eda14cbcSMatt Macy * triple parity. For additional parity, the amendment "Note: Correction to 59*eda14cbcSMatt Macy * the 1997 Tutorial on Reed-Solomon Coding" by James S. Plank and Ying Ding 60*eda14cbcSMatt Macy * is viable, but the additional complexity means that write performance will 61*eda14cbcSMatt Macy * suffer. 62*eda14cbcSMatt Macy * 63*eda14cbcSMatt Macy * All of the methods above operate on a Galois field, defined over the 64*eda14cbcSMatt Macy * integers mod 2^N. In our case we choose N=8 for GF(8) so that all elements 65*eda14cbcSMatt Macy * can be expressed with a single byte. Briefly, the operations on the 66*eda14cbcSMatt Macy * field are defined as follows: 67*eda14cbcSMatt Macy * 68*eda14cbcSMatt Macy * o addition (+) is represented by a bitwise XOR 69*eda14cbcSMatt Macy * o subtraction (-) is therefore identical to addition: A + B = A - B 70*eda14cbcSMatt Macy * o multiplication of A by 2 is defined by the following bitwise expression: 71*eda14cbcSMatt Macy * 72*eda14cbcSMatt Macy * (A * 2)_7 = A_6 73*eda14cbcSMatt Macy * (A * 2)_6 = A_5 74*eda14cbcSMatt Macy * (A * 2)_5 = A_4 75*eda14cbcSMatt Macy * (A * 2)_4 = A_3 + A_7 76*eda14cbcSMatt Macy * (A * 2)_3 = A_2 + A_7 77*eda14cbcSMatt Macy * (A * 2)_2 = A_1 + A_7 78*eda14cbcSMatt Macy * (A * 2)_1 = A_0 79*eda14cbcSMatt Macy * (A * 2)_0 = A_7 80*eda14cbcSMatt Macy * 81*eda14cbcSMatt Macy * In C, multiplying by 2 is therefore ((a << 1) ^ ((a & 0x80) ? 0x1d : 0)). 82*eda14cbcSMatt Macy * As an aside, this multiplication is derived from the error correcting 83*eda14cbcSMatt Macy * primitive polynomial x^8 + x^4 + x^3 + x^2 + 1. 84*eda14cbcSMatt Macy * 85*eda14cbcSMatt Macy * Observe that any number in the field (except for 0) can be expressed as a 86*eda14cbcSMatt Macy * power of 2 -- a generator for the field. We store a table of the powers of 87*eda14cbcSMatt Macy * 2 and logs base 2 for quick look ups, and exploit the fact that A * B can 88*eda14cbcSMatt Macy * be rewritten as 2^(log_2(A) + log_2(B)) (where '+' is normal addition rather 89*eda14cbcSMatt Macy * than field addition). The inverse of a field element A (A^-1) is therefore 90*eda14cbcSMatt Macy * A ^ (255 - 1) = A^254. 91*eda14cbcSMatt Macy * 92*eda14cbcSMatt Macy * The up-to-three parity columns, P, Q, R over several data columns, 93*eda14cbcSMatt Macy * D_0, ... D_n-1, can be expressed by field operations: 94*eda14cbcSMatt Macy * 95*eda14cbcSMatt Macy * P = D_0 + D_1 + ... + D_n-2 + D_n-1 96*eda14cbcSMatt Macy * Q = 2^n-1 * D_0 + 2^n-2 * D_1 + ... + 2^1 * D_n-2 + 2^0 * D_n-1 97*eda14cbcSMatt Macy * = ((...((D_0) * 2 + D_1) * 2 + ...) * 2 + D_n-2) * 2 + D_n-1 98*eda14cbcSMatt Macy * R = 4^n-1 * D_0 + 4^n-2 * D_1 + ... + 4^1 * D_n-2 + 4^0 * D_n-1 99*eda14cbcSMatt Macy * = ((...((D_0) * 4 + D_1) * 4 + ...) * 4 + D_n-2) * 4 + D_n-1 100*eda14cbcSMatt Macy * 101*eda14cbcSMatt Macy * We chose 1, 2, and 4 as our generators because 1 corresponds to the trivial 102*eda14cbcSMatt Macy * XOR operation, and 2 and 4 can be computed quickly and generate linearly- 103*eda14cbcSMatt Macy * independent coefficients. (There are no additional coefficients that have 104*eda14cbcSMatt Macy * this property which is why the uncorrected Plank method breaks down.) 105*eda14cbcSMatt Macy * 106*eda14cbcSMatt Macy * See the reconstruction code below for how P, Q and R can used individually 107*eda14cbcSMatt Macy * or in concert to recover missing data columns. 108*eda14cbcSMatt Macy */ 109*eda14cbcSMatt Macy 110*eda14cbcSMatt Macy #define VDEV_RAIDZ_P 0 111*eda14cbcSMatt Macy #define VDEV_RAIDZ_Q 1 112*eda14cbcSMatt Macy #define VDEV_RAIDZ_R 2 113*eda14cbcSMatt Macy 114*eda14cbcSMatt Macy #define VDEV_RAIDZ_MUL_2(x) (((x) << 1) ^ (((x) & 0x80) ? 0x1d : 0)) 115*eda14cbcSMatt Macy #define VDEV_RAIDZ_MUL_4(x) (VDEV_RAIDZ_MUL_2(VDEV_RAIDZ_MUL_2(x))) 116*eda14cbcSMatt Macy 117*eda14cbcSMatt Macy /* 118*eda14cbcSMatt Macy * We provide a mechanism to perform the field multiplication operation on a 119*eda14cbcSMatt Macy * 64-bit value all at once rather than a byte at a time. This works by 120*eda14cbcSMatt Macy * creating a mask from the top bit in each byte and using that to 121*eda14cbcSMatt Macy * conditionally apply the XOR of 0x1d. 122*eda14cbcSMatt Macy */ 123*eda14cbcSMatt Macy #define VDEV_RAIDZ_64MUL_2(x, mask) \ 124*eda14cbcSMatt Macy { \ 125*eda14cbcSMatt Macy (mask) = (x) & 0x8080808080808080ULL; \ 126*eda14cbcSMatt Macy (mask) = ((mask) << 1) - ((mask) >> 7); \ 127*eda14cbcSMatt Macy (x) = (((x) << 1) & 0xfefefefefefefefeULL) ^ \ 128*eda14cbcSMatt Macy ((mask) & 0x1d1d1d1d1d1d1d1dULL); \ 129*eda14cbcSMatt Macy } 130*eda14cbcSMatt Macy 131*eda14cbcSMatt Macy #define VDEV_RAIDZ_64MUL_4(x, mask) \ 132*eda14cbcSMatt Macy { \ 133*eda14cbcSMatt Macy VDEV_RAIDZ_64MUL_2((x), mask); \ 134*eda14cbcSMatt Macy VDEV_RAIDZ_64MUL_2((x), mask); \ 135*eda14cbcSMatt Macy } 136*eda14cbcSMatt Macy 137*eda14cbcSMatt Macy void 138*eda14cbcSMatt Macy vdev_raidz_map_free(raidz_map_t *rm) 139*eda14cbcSMatt Macy { 140*eda14cbcSMatt Macy int c; 141*eda14cbcSMatt Macy 142*eda14cbcSMatt Macy for (c = 0; c < rm->rm_firstdatacol; c++) { 143*eda14cbcSMatt Macy abd_free(rm->rm_col[c].rc_abd); 144*eda14cbcSMatt Macy 145*eda14cbcSMatt Macy if (rm->rm_col[c].rc_gdata != NULL) 146*eda14cbcSMatt Macy abd_free(rm->rm_col[c].rc_gdata); 147*eda14cbcSMatt Macy } 148*eda14cbcSMatt Macy 149*eda14cbcSMatt Macy for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) 150*eda14cbcSMatt Macy abd_put(rm->rm_col[c].rc_abd); 151*eda14cbcSMatt Macy 152*eda14cbcSMatt Macy if (rm->rm_abd_copy != NULL) 153*eda14cbcSMatt Macy abd_free(rm->rm_abd_copy); 154*eda14cbcSMatt Macy 155*eda14cbcSMatt Macy kmem_free(rm, offsetof(raidz_map_t, rm_col[rm->rm_scols])); 156*eda14cbcSMatt Macy } 157*eda14cbcSMatt Macy 158*eda14cbcSMatt Macy static void 159*eda14cbcSMatt Macy vdev_raidz_map_free_vsd(zio_t *zio) 160*eda14cbcSMatt Macy { 161*eda14cbcSMatt Macy raidz_map_t *rm = zio->io_vsd; 162*eda14cbcSMatt Macy 163*eda14cbcSMatt Macy ASSERT0(rm->rm_freed); 164*eda14cbcSMatt Macy rm->rm_freed = 1; 165*eda14cbcSMatt Macy 166*eda14cbcSMatt Macy if (rm->rm_reports == 0) 167*eda14cbcSMatt Macy vdev_raidz_map_free(rm); 168*eda14cbcSMatt Macy } 169*eda14cbcSMatt Macy 170*eda14cbcSMatt Macy /*ARGSUSED*/ 171*eda14cbcSMatt Macy static void 172*eda14cbcSMatt Macy vdev_raidz_cksum_free(void *arg, size_t ignored) 173*eda14cbcSMatt Macy { 174*eda14cbcSMatt Macy raidz_map_t *rm = arg; 175*eda14cbcSMatt Macy 176*eda14cbcSMatt Macy ASSERT3U(rm->rm_reports, >, 0); 177*eda14cbcSMatt Macy 178*eda14cbcSMatt Macy if (--rm->rm_reports == 0 && rm->rm_freed != 0) 179*eda14cbcSMatt Macy vdev_raidz_map_free(rm); 180*eda14cbcSMatt Macy } 181*eda14cbcSMatt Macy 182*eda14cbcSMatt Macy static void 183*eda14cbcSMatt Macy vdev_raidz_cksum_finish(zio_cksum_report_t *zcr, const abd_t *good_data) 184*eda14cbcSMatt Macy { 185*eda14cbcSMatt Macy raidz_map_t *rm = zcr->zcr_cbdata; 186*eda14cbcSMatt Macy const size_t c = zcr->zcr_cbinfo; 187*eda14cbcSMatt Macy size_t x, offset; 188*eda14cbcSMatt Macy 189*eda14cbcSMatt Macy const abd_t *good = NULL; 190*eda14cbcSMatt Macy const abd_t *bad = rm->rm_col[c].rc_abd; 191*eda14cbcSMatt Macy 192*eda14cbcSMatt Macy if (good_data == NULL) { 193*eda14cbcSMatt Macy zfs_ereport_finish_checksum(zcr, NULL, NULL, B_FALSE); 194*eda14cbcSMatt Macy return; 195*eda14cbcSMatt Macy } 196*eda14cbcSMatt Macy 197*eda14cbcSMatt Macy if (c < rm->rm_firstdatacol) { 198*eda14cbcSMatt Macy /* 199*eda14cbcSMatt Macy * The first time through, calculate the parity blocks for 200*eda14cbcSMatt Macy * the good data (this relies on the fact that the good 201*eda14cbcSMatt Macy * data never changes for a given logical ZIO) 202*eda14cbcSMatt Macy */ 203*eda14cbcSMatt Macy if (rm->rm_col[0].rc_gdata == NULL) { 204*eda14cbcSMatt Macy abd_t *bad_parity[VDEV_RAIDZ_MAXPARITY]; 205*eda14cbcSMatt Macy 206*eda14cbcSMatt Macy /* 207*eda14cbcSMatt Macy * Set up the rm_col[]s to generate the parity for 208*eda14cbcSMatt Macy * good_data, first saving the parity bufs and 209*eda14cbcSMatt Macy * replacing them with buffers to hold the result. 210*eda14cbcSMatt Macy */ 211*eda14cbcSMatt Macy for (x = 0; x < rm->rm_firstdatacol; x++) { 212*eda14cbcSMatt Macy bad_parity[x] = rm->rm_col[x].rc_abd; 213*eda14cbcSMatt Macy rm->rm_col[x].rc_abd = 214*eda14cbcSMatt Macy rm->rm_col[x].rc_gdata = 215*eda14cbcSMatt Macy abd_alloc_sametype(rm->rm_col[x].rc_abd, 216*eda14cbcSMatt Macy rm->rm_col[x].rc_size); 217*eda14cbcSMatt Macy } 218*eda14cbcSMatt Macy 219*eda14cbcSMatt Macy /* fill in the data columns from good_data */ 220*eda14cbcSMatt Macy offset = 0; 221*eda14cbcSMatt Macy for (; x < rm->rm_cols; x++) { 222*eda14cbcSMatt Macy abd_put(rm->rm_col[x].rc_abd); 223*eda14cbcSMatt Macy 224*eda14cbcSMatt Macy rm->rm_col[x].rc_abd = 225*eda14cbcSMatt Macy abd_get_offset_size((abd_t *)good_data, 226*eda14cbcSMatt Macy offset, rm->rm_col[x].rc_size); 227*eda14cbcSMatt Macy offset += rm->rm_col[x].rc_size; 228*eda14cbcSMatt Macy } 229*eda14cbcSMatt Macy 230*eda14cbcSMatt Macy /* 231*eda14cbcSMatt Macy * Construct the parity from the good data. 232*eda14cbcSMatt Macy */ 233*eda14cbcSMatt Macy vdev_raidz_generate_parity(rm); 234*eda14cbcSMatt Macy 235*eda14cbcSMatt Macy /* restore everything back to its original state */ 236*eda14cbcSMatt Macy for (x = 0; x < rm->rm_firstdatacol; x++) 237*eda14cbcSMatt Macy rm->rm_col[x].rc_abd = bad_parity[x]; 238*eda14cbcSMatt Macy 239*eda14cbcSMatt Macy offset = 0; 240*eda14cbcSMatt Macy for (x = rm->rm_firstdatacol; x < rm->rm_cols; x++) { 241*eda14cbcSMatt Macy abd_put(rm->rm_col[x].rc_abd); 242*eda14cbcSMatt Macy rm->rm_col[x].rc_abd = abd_get_offset_size( 243*eda14cbcSMatt Macy rm->rm_abd_copy, offset, 244*eda14cbcSMatt Macy rm->rm_col[x].rc_size); 245*eda14cbcSMatt Macy offset += rm->rm_col[x].rc_size; 246*eda14cbcSMatt Macy } 247*eda14cbcSMatt Macy } 248*eda14cbcSMatt Macy 249*eda14cbcSMatt Macy ASSERT3P(rm->rm_col[c].rc_gdata, !=, NULL); 250*eda14cbcSMatt Macy good = abd_get_offset_size(rm->rm_col[c].rc_gdata, 0, 251*eda14cbcSMatt Macy rm->rm_col[c].rc_size); 252*eda14cbcSMatt Macy } else { 253*eda14cbcSMatt Macy /* adjust good_data to point at the start of our column */ 254*eda14cbcSMatt Macy offset = 0; 255*eda14cbcSMatt Macy for (x = rm->rm_firstdatacol; x < c; x++) 256*eda14cbcSMatt Macy offset += rm->rm_col[x].rc_size; 257*eda14cbcSMatt Macy 258*eda14cbcSMatt Macy good = abd_get_offset_size((abd_t *)good_data, offset, 259*eda14cbcSMatt Macy rm->rm_col[c].rc_size); 260*eda14cbcSMatt Macy } 261*eda14cbcSMatt Macy 262*eda14cbcSMatt Macy /* we drop the ereport if it ends up that the data was good */ 263*eda14cbcSMatt Macy zfs_ereport_finish_checksum(zcr, good, bad, B_TRUE); 264*eda14cbcSMatt Macy abd_put((abd_t *)good); 265*eda14cbcSMatt Macy } 266*eda14cbcSMatt Macy 267*eda14cbcSMatt Macy /* 268*eda14cbcSMatt Macy * Invoked indirectly by zfs_ereport_start_checksum(), called 269*eda14cbcSMatt Macy * below when our read operation fails completely. The main point 270*eda14cbcSMatt Macy * is to keep a copy of everything we read from disk, so that at 271*eda14cbcSMatt Macy * vdev_raidz_cksum_finish() time we can compare it with the good data. 272*eda14cbcSMatt Macy */ 273*eda14cbcSMatt Macy static void 274*eda14cbcSMatt Macy vdev_raidz_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *arg) 275*eda14cbcSMatt Macy { 276*eda14cbcSMatt Macy size_t c = (size_t)(uintptr_t)arg; 277*eda14cbcSMatt Macy size_t offset; 278*eda14cbcSMatt Macy 279*eda14cbcSMatt Macy raidz_map_t *rm = zio->io_vsd; 280*eda14cbcSMatt Macy size_t size; 281*eda14cbcSMatt Macy 282*eda14cbcSMatt Macy /* set up the report and bump the refcount */ 283*eda14cbcSMatt Macy zcr->zcr_cbdata = rm; 284*eda14cbcSMatt Macy zcr->zcr_cbinfo = c; 285*eda14cbcSMatt Macy zcr->zcr_finish = vdev_raidz_cksum_finish; 286*eda14cbcSMatt Macy zcr->zcr_free = vdev_raidz_cksum_free; 287*eda14cbcSMatt Macy 288*eda14cbcSMatt Macy rm->rm_reports++; 289*eda14cbcSMatt Macy ASSERT3U(rm->rm_reports, >, 0); 290*eda14cbcSMatt Macy 291*eda14cbcSMatt Macy if (rm->rm_abd_copy != NULL) 292*eda14cbcSMatt Macy return; 293*eda14cbcSMatt Macy 294*eda14cbcSMatt Macy /* 295*eda14cbcSMatt Macy * It's the first time we're called for this raidz_map_t, so we need 296*eda14cbcSMatt Macy * to copy the data aside; there's no guarantee that our zio's buffer 297*eda14cbcSMatt Macy * won't be re-used for something else. 298*eda14cbcSMatt Macy * 299*eda14cbcSMatt Macy * Our parity data is already in separate buffers, so there's no need 300*eda14cbcSMatt Macy * to copy them. 301*eda14cbcSMatt Macy */ 302*eda14cbcSMatt Macy 303*eda14cbcSMatt Macy size = 0; 304*eda14cbcSMatt Macy for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) 305*eda14cbcSMatt Macy size += rm->rm_col[c].rc_size; 306*eda14cbcSMatt Macy 307*eda14cbcSMatt Macy rm->rm_abd_copy = abd_alloc_for_io(size, B_FALSE); 308*eda14cbcSMatt Macy 309*eda14cbcSMatt Macy for (offset = 0, c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { 310*eda14cbcSMatt Macy raidz_col_t *col = &rm->rm_col[c]; 311*eda14cbcSMatt Macy abd_t *tmp = abd_get_offset_size(rm->rm_abd_copy, offset, 312*eda14cbcSMatt Macy col->rc_size); 313*eda14cbcSMatt Macy 314*eda14cbcSMatt Macy abd_copy(tmp, col->rc_abd, col->rc_size); 315*eda14cbcSMatt Macy 316*eda14cbcSMatt Macy abd_put(col->rc_abd); 317*eda14cbcSMatt Macy col->rc_abd = tmp; 318*eda14cbcSMatt Macy 319*eda14cbcSMatt Macy offset += col->rc_size; 320*eda14cbcSMatt Macy } 321*eda14cbcSMatt Macy ASSERT3U(offset, ==, size); 322*eda14cbcSMatt Macy } 323*eda14cbcSMatt Macy 324*eda14cbcSMatt Macy static const zio_vsd_ops_t vdev_raidz_vsd_ops = { 325*eda14cbcSMatt Macy .vsd_free = vdev_raidz_map_free_vsd, 326*eda14cbcSMatt Macy .vsd_cksum_report = vdev_raidz_cksum_report 327*eda14cbcSMatt Macy }; 328*eda14cbcSMatt Macy 329*eda14cbcSMatt Macy /* 330*eda14cbcSMatt Macy * Divides the IO evenly across all child vdevs; usually, dcols is 331*eda14cbcSMatt Macy * the number of children in the target vdev. 332*eda14cbcSMatt Macy * 333*eda14cbcSMatt Macy * Avoid inlining the function to keep vdev_raidz_io_start(), which 334*eda14cbcSMatt Macy * is this functions only caller, as small as possible on the stack. 335*eda14cbcSMatt Macy */ 336*eda14cbcSMatt Macy noinline raidz_map_t * 337*eda14cbcSMatt Macy vdev_raidz_map_alloc(zio_t *zio, uint64_t ashift, uint64_t dcols, 338*eda14cbcSMatt Macy uint64_t nparity) 339*eda14cbcSMatt Macy { 340*eda14cbcSMatt Macy raidz_map_t *rm; 341*eda14cbcSMatt Macy /* The starting RAIDZ (parent) vdev sector of the block. */ 342*eda14cbcSMatt Macy uint64_t b = zio->io_offset >> ashift; 343*eda14cbcSMatt Macy /* The zio's size in units of the vdev's minimum sector size. */ 344*eda14cbcSMatt Macy uint64_t s = zio->io_size >> ashift; 345*eda14cbcSMatt Macy /* The first column for this stripe. */ 346*eda14cbcSMatt Macy uint64_t f = b % dcols; 347*eda14cbcSMatt Macy /* The starting byte offset on each child vdev. */ 348*eda14cbcSMatt Macy uint64_t o = (b / dcols) << ashift; 349*eda14cbcSMatt Macy uint64_t q, r, c, bc, col, acols, scols, coff, devidx, asize, tot; 350*eda14cbcSMatt Macy uint64_t off = 0; 351*eda14cbcSMatt Macy 352*eda14cbcSMatt Macy /* 353*eda14cbcSMatt Macy * "Quotient": The number of data sectors for this stripe on all but 354*eda14cbcSMatt Macy * the "big column" child vdevs that also contain "remainder" data. 355*eda14cbcSMatt Macy */ 356*eda14cbcSMatt Macy q = s / (dcols - nparity); 357*eda14cbcSMatt Macy 358*eda14cbcSMatt Macy /* 359*eda14cbcSMatt Macy * "Remainder": The number of partial stripe data sectors in this I/O. 360*eda14cbcSMatt Macy * This will add a sector to some, but not all, child vdevs. 361*eda14cbcSMatt Macy */ 362*eda14cbcSMatt Macy r = s - q * (dcols - nparity); 363*eda14cbcSMatt Macy 364*eda14cbcSMatt Macy /* The number of "big columns" - those which contain remainder data. */ 365*eda14cbcSMatt Macy bc = (r == 0 ? 0 : r + nparity); 366*eda14cbcSMatt Macy 367*eda14cbcSMatt Macy /* 368*eda14cbcSMatt Macy * The total number of data and parity sectors associated with 369*eda14cbcSMatt Macy * this I/O. 370*eda14cbcSMatt Macy */ 371*eda14cbcSMatt Macy tot = s + nparity * (q + (r == 0 ? 0 : 1)); 372*eda14cbcSMatt Macy 373*eda14cbcSMatt Macy /* acols: The columns that will be accessed. */ 374*eda14cbcSMatt Macy /* scols: The columns that will be accessed or skipped. */ 375*eda14cbcSMatt Macy if (q == 0) { 376*eda14cbcSMatt Macy /* Our I/O request doesn't span all child vdevs. */ 377*eda14cbcSMatt Macy acols = bc; 378*eda14cbcSMatt Macy scols = MIN(dcols, roundup(bc, nparity + 1)); 379*eda14cbcSMatt Macy } else { 380*eda14cbcSMatt Macy acols = dcols; 381*eda14cbcSMatt Macy scols = dcols; 382*eda14cbcSMatt Macy } 383*eda14cbcSMatt Macy 384*eda14cbcSMatt Macy ASSERT3U(acols, <=, scols); 385*eda14cbcSMatt Macy 386*eda14cbcSMatt Macy rm = kmem_alloc(offsetof(raidz_map_t, rm_col[scols]), KM_SLEEP); 387*eda14cbcSMatt Macy 388*eda14cbcSMatt Macy rm->rm_cols = acols; 389*eda14cbcSMatt Macy rm->rm_scols = scols; 390*eda14cbcSMatt Macy rm->rm_bigcols = bc; 391*eda14cbcSMatt Macy rm->rm_skipstart = bc; 392*eda14cbcSMatt Macy rm->rm_missingdata = 0; 393*eda14cbcSMatt Macy rm->rm_missingparity = 0; 394*eda14cbcSMatt Macy rm->rm_firstdatacol = nparity; 395*eda14cbcSMatt Macy rm->rm_abd_copy = NULL; 396*eda14cbcSMatt Macy rm->rm_reports = 0; 397*eda14cbcSMatt Macy rm->rm_freed = 0; 398*eda14cbcSMatt Macy rm->rm_ecksuminjected = 0; 399*eda14cbcSMatt Macy 400*eda14cbcSMatt Macy asize = 0; 401*eda14cbcSMatt Macy 402*eda14cbcSMatt Macy for (c = 0; c < scols; c++) { 403*eda14cbcSMatt Macy col = f + c; 404*eda14cbcSMatt Macy coff = o; 405*eda14cbcSMatt Macy if (col >= dcols) { 406*eda14cbcSMatt Macy col -= dcols; 407*eda14cbcSMatt Macy coff += 1ULL << ashift; 408*eda14cbcSMatt Macy } 409*eda14cbcSMatt Macy rm->rm_col[c].rc_devidx = col; 410*eda14cbcSMatt Macy rm->rm_col[c].rc_offset = coff; 411*eda14cbcSMatt Macy rm->rm_col[c].rc_abd = NULL; 412*eda14cbcSMatt Macy rm->rm_col[c].rc_gdata = NULL; 413*eda14cbcSMatt Macy rm->rm_col[c].rc_error = 0; 414*eda14cbcSMatt Macy rm->rm_col[c].rc_tried = 0; 415*eda14cbcSMatt Macy rm->rm_col[c].rc_skipped = 0; 416*eda14cbcSMatt Macy 417*eda14cbcSMatt Macy if (c >= acols) 418*eda14cbcSMatt Macy rm->rm_col[c].rc_size = 0; 419*eda14cbcSMatt Macy else if (c < bc) 420*eda14cbcSMatt Macy rm->rm_col[c].rc_size = (q + 1) << ashift; 421*eda14cbcSMatt Macy else 422*eda14cbcSMatt Macy rm->rm_col[c].rc_size = q << ashift; 423*eda14cbcSMatt Macy 424*eda14cbcSMatt Macy asize += rm->rm_col[c].rc_size; 425*eda14cbcSMatt Macy } 426*eda14cbcSMatt Macy 427*eda14cbcSMatt Macy ASSERT3U(asize, ==, tot << ashift); 428*eda14cbcSMatt Macy rm->rm_asize = roundup(asize, (nparity + 1) << ashift); 429*eda14cbcSMatt Macy rm->rm_nskip = roundup(tot, nparity + 1) - tot; 430*eda14cbcSMatt Macy ASSERT3U(rm->rm_asize - asize, ==, rm->rm_nskip << ashift); 431*eda14cbcSMatt Macy ASSERT3U(rm->rm_nskip, <=, nparity); 432*eda14cbcSMatt Macy 433*eda14cbcSMatt Macy for (c = 0; c < rm->rm_firstdatacol; c++) 434*eda14cbcSMatt Macy rm->rm_col[c].rc_abd = 435*eda14cbcSMatt Macy abd_alloc_linear(rm->rm_col[c].rc_size, B_FALSE); 436*eda14cbcSMatt Macy 437*eda14cbcSMatt Macy rm->rm_col[c].rc_abd = abd_get_offset_size(zio->io_abd, 0, 438*eda14cbcSMatt Macy rm->rm_col[c].rc_size); 439*eda14cbcSMatt Macy off = rm->rm_col[c].rc_size; 440*eda14cbcSMatt Macy 441*eda14cbcSMatt Macy for (c = c + 1; c < acols; c++) { 442*eda14cbcSMatt Macy rm->rm_col[c].rc_abd = abd_get_offset_size(zio->io_abd, off, 443*eda14cbcSMatt Macy rm->rm_col[c].rc_size); 444*eda14cbcSMatt Macy off += rm->rm_col[c].rc_size; 445*eda14cbcSMatt Macy } 446*eda14cbcSMatt Macy 447*eda14cbcSMatt Macy /* 448*eda14cbcSMatt Macy * If all data stored spans all columns, there's a danger that parity 449*eda14cbcSMatt Macy * will always be on the same device and, since parity isn't read 450*eda14cbcSMatt Macy * during normal operation, that device's I/O bandwidth won't be 451*eda14cbcSMatt Macy * used effectively. We therefore switch the parity every 1MB. 452*eda14cbcSMatt Macy * 453*eda14cbcSMatt Macy * ... at least that was, ostensibly, the theory. As a practical 454*eda14cbcSMatt Macy * matter unless we juggle the parity between all devices evenly, we 455*eda14cbcSMatt Macy * won't see any benefit. Further, occasional writes that aren't a 456*eda14cbcSMatt Macy * multiple of the LCM of the number of children and the minimum 457*eda14cbcSMatt Macy * stripe width are sufficient to avoid pessimal behavior. 458*eda14cbcSMatt Macy * Unfortunately, this decision created an implicit on-disk format 459*eda14cbcSMatt Macy * requirement that we need to support for all eternity, but only 460*eda14cbcSMatt Macy * for single-parity RAID-Z. 461*eda14cbcSMatt Macy * 462*eda14cbcSMatt Macy * If we intend to skip a sector in the zeroth column for padding 463*eda14cbcSMatt Macy * we must make sure to note this swap. We will never intend to 464*eda14cbcSMatt Macy * skip the first column since at least one data and one parity 465*eda14cbcSMatt Macy * column must appear in each row. 466*eda14cbcSMatt Macy */ 467*eda14cbcSMatt Macy ASSERT(rm->rm_cols >= 2); 468*eda14cbcSMatt Macy ASSERT(rm->rm_col[0].rc_size == rm->rm_col[1].rc_size); 469*eda14cbcSMatt Macy 470*eda14cbcSMatt Macy if (rm->rm_firstdatacol == 1 && (zio->io_offset & (1ULL << 20))) { 471*eda14cbcSMatt Macy devidx = rm->rm_col[0].rc_devidx; 472*eda14cbcSMatt Macy o = rm->rm_col[0].rc_offset; 473*eda14cbcSMatt Macy rm->rm_col[0].rc_devidx = rm->rm_col[1].rc_devidx; 474*eda14cbcSMatt Macy rm->rm_col[0].rc_offset = rm->rm_col[1].rc_offset; 475*eda14cbcSMatt Macy rm->rm_col[1].rc_devidx = devidx; 476*eda14cbcSMatt Macy rm->rm_col[1].rc_offset = o; 477*eda14cbcSMatt Macy 478*eda14cbcSMatt Macy if (rm->rm_skipstart == 0) 479*eda14cbcSMatt Macy rm->rm_skipstart = 1; 480*eda14cbcSMatt Macy } 481*eda14cbcSMatt Macy 482*eda14cbcSMatt Macy zio->io_vsd = rm; 483*eda14cbcSMatt Macy zio->io_vsd_ops = &vdev_raidz_vsd_ops; 484*eda14cbcSMatt Macy 485*eda14cbcSMatt Macy /* init RAIDZ parity ops */ 486*eda14cbcSMatt Macy rm->rm_ops = vdev_raidz_math_get_ops(); 487*eda14cbcSMatt Macy 488*eda14cbcSMatt Macy return (rm); 489*eda14cbcSMatt Macy } 490*eda14cbcSMatt Macy 491*eda14cbcSMatt Macy struct pqr_struct { 492*eda14cbcSMatt Macy uint64_t *p; 493*eda14cbcSMatt Macy uint64_t *q; 494*eda14cbcSMatt Macy uint64_t *r; 495*eda14cbcSMatt Macy }; 496*eda14cbcSMatt Macy 497*eda14cbcSMatt Macy static int 498*eda14cbcSMatt Macy vdev_raidz_p_func(void *buf, size_t size, void *private) 499*eda14cbcSMatt Macy { 500*eda14cbcSMatt Macy struct pqr_struct *pqr = private; 501*eda14cbcSMatt Macy const uint64_t *src = buf; 502*eda14cbcSMatt Macy int i, cnt = size / sizeof (src[0]); 503*eda14cbcSMatt Macy 504*eda14cbcSMatt Macy ASSERT(pqr->p && !pqr->q && !pqr->r); 505*eda14cbcSMatt Macy 506*eda14cbcSMatt Macy for (i = 0; i < cnt; i++, src++, pqr->p++) 507*eda14cbcSMatt Macy *pqr->p ^= *src; 508*eda14cbcSMatt Macy 509*eda14cbcSMatt Macy return (0); 510*eda14cbcSMatt Macy } 511*eda14cbcSMatt Macy 512*eda14cbcSMatt Macy static int 513*eda14cbcSMatt Macy vdev_raidz_pq_func(void *buf, size_t size, void *private) 514*eda14cbcSMatt Macy { 515*eda14cbcSMatt Macy struct pqr_struct *pqr = private; 516*eda14cbcSMatt Macy const uint64_t *src = buf; 517*eda14cbcSMatt Macy uint64_t mask; 518*eda14cbcSMatt Macy int i, cnt = size / sizeof (src[0]); 519*eda14cbcSMatt Macy 520*eda14cbcSMatt Macy ASSERT(pqr->p && pqr->q && !pqr->r); 521*eda14cbcSMatt Macy 522*eda14cbcSMatt Macy for (i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++) { 523*eda14cbcSMatt Macy *pqr->p ^= *src; 524*eda14cbcSMatt Macy VDEV_RAIDZ_64MUL_2(*pqr->q, mask); 525*eda14cbcSMatt Macy *pqr->q ^= *src; 526*eda14cbcSMatt Macy } 527*eda14cbcSMatt Macy 528*eda14cbcSMatt Macy return (0); 529*eda14cbcSMatt Macy } 530*eda14cbcSMatt Macy 531*eda14cbcSMatt Macy static int 532*eda14cbcSMatt Macy vdev_raidz_pqr_func(void *buf, size_t size, void *private) 533*eda14cbcSMatt Macy { 534*eda14cbcSMatt Macy struct pqr_struct *pqr = private; 535*eda14cbcSMatt Macy const uint64_t *src = buf; 536*eda14cbcSMatt Macy uint64_t mask; 537*eda14cbcSMatt Macy int i, cnt = size / sizeof (src[0]); 538*eda14cbcSMatt Macy 539*eda14cbcSMatt Macy ASSERT(pqr->p && pqr->q && pqr->r); 540*eda14cbcSMatt Macy 541*eda14cbcSMatt Macy for (i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++, pqr->r++) { 542*eda14cbcSMatt Macy *pqr->p ^= *src; 543*eda14cbcSMatt Macy VDEV_RAIDZ_64MUL_2(*pqr->q, mask); 544*eda14cbcSMatt Macy *pqr->q ^= *src; 545*eda14cbcSMatt Macy VDEV_RAIDZ_64MUL_4(*pqr->r, mask); 546*eda14cbcSMatt Macy *pqr->r ^= *src; 547*eda14cbcSMatt Macy } 548*eda14cbcSMatt Macy 549*eda14cbcSMatt Macy return (0); 550*eda14cbcSMatt Macy } 551*eda14cbcSMatt Macy 552*eda14cbcSMatt Macy static void 553*eda14cbcSMatt Macy vdev_raidz_generate_parity_p(raidz_map_t *rm) 554*eda14cbcSMatt Macy { 555*eda14cbcSMatt Macy uint64_t *p; 556*eda14cbcSMatt Macy int c; 557*eda14cbcSMatt Macy abd_t *src; 558*eda14cbcSMatt Macy 559*eda14cbcSMatt Macy for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { 560*eda14cbcSMatt Macy src = rm->rm_col[c].rc_abd; 561*eda14cbcSMatt Macy p = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd); 562*eda14cbcSMatt Macy 563*eda14cbcSMatt Macy if (c == rm->rm_firstdatacol) { 564*eda14cbcSMatt Macy abd_copy_to_buf(p, src, rm->rm_col[c].rc_size); 565*eda14cbcSMatt Macy } else { 566*eda14cbcSMatt Macy struct pqr_struct pqr = { p, NULL, NULL }; 567*eda14cbcSMatt Macy (void) abd_iterate_func(src, 0, rm->rm_col[c].rc_size, 568*eda14cbcSMatt Macy vdev_raidz_p_func, &pqr); 569*eda14cbcSMatt Macy } 570*eda14cbcSMatt Macy } 571*eda14cbcSMatt Macy } 572*eda14cbcSMatt Macy 573*eda14cbcSMatt Macy static void 574*eda14cbcSMatt Macy vdev_raidz_generate_parity_pq(raidz_map_t *rm) 575*eda14cbcSMatt Macy { 576*eda14cbcSMatt Macy uint64_t *p, *q, pcnt, ccnt, mask, i; 577*eda14cbcSMatt Macy int c; 578*eda14cbcSMatt Macy abd_t *src; 579*eda14cbcSMatt Macy 580*eda14cbcSMatt Macy pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]); 581*eda14cbcSMatt Macy ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size == 582*eda14cbcSMatt Macy rm->rm_col[VDEV_RAIDZ_Q].rc_size); 583*eda14cbcSMatt Macy 584*eda14cbcSMatt Macy for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { 585*eda14cbcSMatt Macy src = rm->rm_col[c].rc_abd; 586*eda14cbcSMatt Macy p = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd); 587*eda14cbcSMatt Macy q = abd_to_buf(rm->rm_col[VDEV_RAIDZ_Q].rc_abd); 588*eda14cbcSMatt Macy 589*eda14cbcSMatt Macy ccnt = rm->rm_col[c].rc_size / sizeof (p[0]); 590*eda14cbcSMatt Macy 591*eda14cbcSMatt Macy if (c == rm->rm_firstdatacol) { 592*eda14cbcSMatt Macy ASSERT(ccnt == pcnt || ccnt == 0); 593*eda14cbcSMatt Macy abd_copy_to_buf(p, src, rm->rm_col[c].rc_size); 594*eda14cbcSMatt Macy (void) memcpy(q, p, rm->rm_col[c].rc_size); 595*eda14cbcSMatt Macy 596*eda14cbcSMatt Macy for (i = ccnt; i < pcnt; i++) { 597*eda14cbcSMatt Macy p[i] = 0; 598*eda14cbcSMatt Macy q[i] = 0; 599*eda14cbcSMatt Macy } 600*eda14cbcSMatt Macy } else { 601*eda14cbcSMatt Macy struct pqr_struct pqr = { p, q, NULL }; 602*eda14cbcSMatt Macy 603*eda14cbcSMatt Macy ASSERT(ccnt <= pcnt); 604*eda14cbcSMatt Macy (void) abd_iterate_func(src, 0, rm->rm_col[c].rc_size, 605*eda14cbcSMatt Macy vdev_raidz_pq_func, &pqr); 606*eda14cbcSMatt Macy 607*eda14cbcSMatt Macy /* 608*eda14cbcSMatt Macy * Treat short columns as though they are full of 0s. 609*eda14cbcSMatt Macy * Note that there's therefore nothing needed for P. 610*eda14cbcSMatt Macy */ 611*eda14cbcSMatt Macy for (i = ccnt; i < pcnt; i++) { 612*eda14cbcSMatt Macy VDEV_RAIDZ_64MUL_2(q[i], mask); 613*eda14cbcSMatt Macy } 614*eda14cbcSMatt Macy } 615*eda14cbcSMatt Macy } 616*eda14cbcSMatt Macy } 617*eda14cbcSMatt Macy 618*eda14cbcSMatt Macy static void 619*eda14cbcSMatt Macy vdev_raidz_generate_parity_pqr(raidz_map_t *rm) 620*eda14cbcSMatt Macy { 621*eda14cbcSMatt Macy uint64_t *p, *q, *r, pcnt, ccnt, mask, i; 622*eda14cbcSMatt Macy int c; 623*eda14cbcSMatt Macy abd_t *src; 624*eda14cbcSMatt Macy 625*eda14cbcSMatt Macy pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]); 626*eda14cbcSMatt Macy ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size == 627*eda14cbcSMatt Macy rm->rm_col[VDEV_RAIDZ_Q].rc_size); 628*eda14cbcSMatt Macy ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size == 629*eda14cbcSMatt Macy rm->rm_col[VDEV_RAIDZ_R].rc_size); 630*eda14cbcSMatt Macy 631*eda14cbcSMatt Macy for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { 632*eda14cbcSMatt Macy src = rm->rm_col[c].rc_abd; 633*eda14cbcSMatt Macy p = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd); 634*eda14cbcSMatt Macy q = abd_to_buf(rm->rm_col[VDEV_RAIDZ_Q].rc_abd); 635*eda14cbcSMatt Macy r = abd_to_buf(rm->rm_col[VDEV_RAIDZ_R].rc_abd); 636*eda14cbcSMatt Macy 637*eda14cbcSMatt Macy ccnt = rm->rm_col[c].rc_size / sizeof (p[0]); 638*eda14cbcSMatt Macy 639*eda14cbcSMatt Macy if (c == rm->rm_firstdatacol) { 640*eda14cbcSMatt Macy ASSERT(ccnt == pcnt || ccnt == 0); 641*eda14cbcSMatt Macy abd_copy_to_buf(p, src, rm->rm_col[c].rc_size); 642*eda14cbcSMatt Macy (void) memcpy(q, p, rm->rm_col[c].rc_size); 643*eda14cbcSMatt Macy (void) memcpy(r, p, rm->rm_col[c].rc_size); 644*eda14cbcSMatt Macy 645*eda14cbcSMatt Macy for (i = ccnt; i < pcnt; i++) { 646*eda14cbcSMatt Macy p[i] = 0; 647*eda14cbcSMatt Macy q[i] = 0; 648*eda14cbcSMatt Macy r[i] = 0; 649*eda14cbcSMatt Macy } 650*eda14cbcSMatt Macy } else { 651*eda14cbcSMatt Macy struct pqr_struct pqr = { p, q, r }; 652*eda14cbcSMatt Macy 653*eda14cbcSMatt Macy ASSERT(ccnt <= pcnt); 654*eda14cbcSMatt Macy (void) abd_iterate_func(src, 0, rm->rm_col[c].rc_size, 655*eda14cbcSMatt Macy vdev_raidz_pqr_func, &pqr); 656*eda14cbcSMatt Macy 657*eda14cbcSMatt Macy /* 658*eda14cbcSMatt Macy * Treat short columns as though they are full of 0s. 659*eda14cbcSMatt Macy * Note that there's therefore nothing needed for P. 660*eda14cbcSMatt Macy */ 661*eda14cbcSMatt Macy for (i = ccnt; i < pcnt; i++) { 662*eda14cbcSMatt Macy VDEV_RAIDZ_64MUL_2(q[i], mask); 663*eda14cbcSMatt Macy VDEV_RAIDZ_64MUL_4(r[i], mask); 664*eda14cbcSMatt Macy } 665*eda14cbcSMatt Macy } 666*eda14cbcSMatt Macy } 667*eda14cbcSMatt Macy } 668*eda14cbcSMatt Macy 669*eda14cbcSMatt Macy /* 670*eda14cbcSMatt Macy * Generate RAID parity in the first virtual columns according to the number of 671*eda14cbcSMatt Macy * parity columns available. 672*eda14cbcSMatt Macy */ 673*eda14cbcSMatt Macy void 674*eda14cbcSMatt Macy vdev_raidz_generate_parity(raidz_map_t *rm) 675*eda14cbcSMatt Macy { 676*eda14cbcSMatt Macy /* Generate using the new math implementation */ 677*eda14cbcSMatt Macy if (vdev_raidz_math_generate(rm) != RAIDZ_ORIGINAL_IMPL) 678*eda14cbcSMatt Macy return; 679*eda14cbcSMatt Macy 680*eda14cbcSMatt Macy switch (rm->rm_firstdatacol) { 681*eda14cbcSMatt Macy case 1: 682*eda14cbcSMatt Macy vdev_raidz_generate_parity_p(rm); 683*eda14cbcSMatt Macy break; 684*eda14cbcSMatt Macy case 2: 685*eda14cbcSMatt Macy vdev_raidz_generate_parity_pq(rm); 686*eda14cbcSMatt Macy break; 687*eda14cbcSMatt Macy case 3: 688*eda14cbcSMatt Macy vdev_raidz_generate_parity_pqr(rm); 689*eda14cbcSMatt Macy break; 690*eda14cbcSMatt Macy default: 691*eda14cbcSMatt Macy cmn_err(CE_PANIC, "invalid RAID-Z configuration"); 692*eda14cbcSMatt Macy } 693*eda14cbcSMatt Macy } 694*eda14cbcSMatt Macy 695*eda14cbcSMatt Macy /* ARGSUSED */ 696*eda14cbcSMatt Macy static int 697*eda14cbcSMatt Macy vdev_raidz_reconst_p_func(void *dbuf, void *sbuf, size_t size, void *private) 698*eda14cbcSMatt Macy { 699*eda14cbcSMatt Macy uint64_t *dst = dbuf; 700*eda14cbcSMatt Macy uint64_t *src = sbuf; 701*eda14cbcSMatt Macy int cnt = size / sizeof (src[0]); 702*eda14cbcSMatt Macy 703*eda14cbcSMatt Macy for (int i = 0; i < cnt; i++) { 704*eda14cbcSMatt Macy dst[i] ^= src[i]; 705*eda14cbcSMatt Macy } 706*eda14cbcSMatt Macy 707*eda14cbcSMatt Macy return (0); 708*eda14cbcSMatt Macy } 709*eda14cbcSMatt Macy 710*eda14cbcSMatt Macy /* ARGSUSED */ 711*eda14cbcSMatt Macy static int 712*eda14cbcSMatt Macy vdev_raidz_reconst_q_pre_func(void *dbuf, void *sbuf, size_t size, 713*eda14cbcSMatt Macy void *private) 714*eda14cbcSMatt Macy { 715*eda14cbcSMatt Macy uint64_t *dst = dbuf; 716*eda14cbcSMatt Macy uint64_t *src = sbuf; 717*eda14cbcSMatt Macy uint64_t mask; 718*eda14cbcSMatt Macy int cnt = size / sizeof (dst[0]); 719*eda14cbcSMatt Macy 720*eda14cbcSMatt Macy for (int i = 0; i < cnt; i++, dst++, src++) { 721*eda14cbcSMatt Macy VDEV_RAIDZ_64MUL_2(*dst, mask); 722*eda14cbcSMatt Macy *dst ^= *src; 723*eda14cbcSMatt Macy } 724*eda14cbcSMatt Macy 725*eda14cbcSMatt Macy return (0); 726*eda14cbcSMatt Macy } 727*eda14cbcSMatt Macy 728*eda14cbcSMatt Macy /* ARGSUSED */ 729*eda14cbcSMatt Macy static int 730*eda14cbcSMatt Macy vdev_raidz_reconst_q_pre_tail_func(void *buf, size_t size, void *private) 731*eda14cbcSMatt Macy { 732*eda14cbcSMatt Macy uint64_t *dst = buf; 733*eda14cbcSMatt Macy uint64_t mask; 734*eda14cbcSMatt Macy int cnt = size / sizeof (dst[0]); 735*eda14cbcSMatt Macy 736*eda14cbcSMatt Macy for (int i = 0; i < cnt; i++, dst++) { 737*eda14cbcSMatt Macy /* same operation as vdev_raidz_reconst_q_pre_func() on dst */ 738*eda14cbcSMatt Macy VDEV_RAIDZ_64MUL_2(*dst, mask); 739*eda14cbcSMatt Macy } 740*eda14cbcSMatt Macy 741*eda14cbcSMatt Macy return (0); 742*eda14cbcSMatt Macy } 743*eda14cbcSMatt Macy 744*eda14cbcSMatt Macy struct reconst_q_struct { 745*eda14cbcSMatt Macy uint64_t *q; 746*eda14cbcSMatt Macy int exp; 747*eda14cbcSMatt Macy }; 748*eda14cbcSMatt Macy 749*eda14cbcSMatt Macy static int 750*eda14cbcSMatt Macy vdev_raidz_reconst_q_post_func(void *buf, size_t size, void *private) 751*eda14cbcSMatt Macy { 752*eda14cbcSMatt Macy struct reconst_q_struct *rq = private; 753*eda14cbcSMatt Macy uint64_t *dst = buf; 754*eda14cbcSMatt Macy int cnt = size / sizeof (dst[0]); 755*eda14cbcSMatt Macy 756*eda14cbcSMatt Macy for (int i = 0; i < cnt; i++, dst++, rq->q++) { 757*eda14cbcSMatt Macy int j; 758*eda14cbcSMatt Macy uint8_t *b; 759*eda14cbcSMatt Macy 760*eda14cbcSMatt Macy *dst ^= *rq->q; 761*eda14cbcSMatt Macy for (j = 0, b = (uint8_t *)dst; j < 8; j++, b++) { 762*eda14cbcSMatt Macy *b = vdev_raidz_exp2(*b, rq->exp); 763*eda14cbcSMatt Macy } 764*eda14cbcSMatt Macy } 765*eda14cbcSMatt Macy 766*eda14cbcSMatt Macy return (0); 767*eda14cbcSMatt Macy } 768*eda14cbcSMatt Macy 769*eda14cbcSMatt Macy struct reconst_pq_struct { 770*eda14cbcSMatt Macy uint8_t *p; 771*eda14cbcSMatt Macy uint8_t *q; 772*eda14cbcSMatt Macy uint8_t *pxy; 773*eda14cbcSMatt Macy uint8_t *qxy; 774*eda14cbcSMatt Macy int aexp; 775*eda14cbcSMatt Macy int bexp; 776*eda14cbcSMatt Macy }; 777*eda14cbcSMatt Macy 778*eda14cbcSMatt Macy static int 779*eda14cbcSMatt Macy vdev_raidz_reconst_pq_func(void *xbuf, void *ybuf, size_t size, void *private) 780*eda14cbcSMatt Macy { 781*eda14cbcSMatt Macy struct reconst_pq_struct *rpq = private; 782*eda14cbcSMatt Macy uint8_t *xd = xbuf; 783*eda14cbcSMatt Macy uint8_t *yd = ybuf; 784*eda14cbcSMatt Macy 785*eda14cbcSMatt Macy for (int i = 0; i < size; 786*eda14cbcSMatt Macy i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++, yd++) { 787*eda14cbcSMatt Macy *xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^ 788*eda14cbcSMatt Macy vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp); 789*eda14cbcSMatt Macy *yd = *rpq->p ^ *rpq->pxy ^ *xd; 790*eda14cbcSMatt Macy } 791*eda14cbcSMatt Macy 792*eda14cbcSMatt Macy return (0); 793*eda14cbcSMatt Macy } 794*eda14cbcSMatt Macy 795*eda14cbcSMatt Macy static int 796*eda14cbcSMatt Macy vdev_raidz_reconst_pq_tail_func(void *xbuf, size_t size, void *private) 797*eda14cbcSMatt Macy { 798*eda14cbcSMatt Macy struct reconst_pq_struct *rpq = private; 799*eda14cbcSMatt Macy uint8_t *xd = xbuf; 800*eda14cbcSMatt Macy 801*eda14cbcSMatt Macy for (int i = 0; i < size; 802*eda14cbcSMatt Macy i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++) { 803*eda14cbcSMatt Macy /* same operation as vdev_raidz_reconst_pq_func() on xd */ 804*eda14cbcSMatt Macy *xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^ 805*eda14cbcSMatt Macy vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp); 806*eda14cbcSMatt Macy } 807*eda14cbcSMatt Macy 808*eda14cbcSMatt Macy return (0); 809*eda14cbcSMatt Macy } 810*eda14cbcSMatt Macy 811*eda14cbcSMatt Macy static int 812*eda14cbcSMatt Macy vdev_raidz_reconstruct_p(raidz_map_t *rm, int *tgts, int ntgts) 813*eda14cbcSMatt Macy { 814*eda14cbcSMatt Macy int x = tgts[0]; 815*eda14cbcSMatt Macy int c; 816*eda14cbcSMatt Macy abd_t *dst, *src; 817*eda14cbcSMatt Macy 818*eda14cbcSMatt Macy ASSERT(ntgts == 1); 819*eda14cbcSMatt Macy ASSERT(x >= rm->rm_firstdatacol); 820*eda14cbcSMatt Macy ASSERT(x < rm->rm_cols); 821*eda14cbcSMatt Macy 822*eda14cbcSMatt Macy ASSERT(rm->rm_col[x].rc_size <= rm->rm_col[VDEV_RAIDZ_P].rc_size); 823*eda14cbcSMatt Macy ASSERT(rm->rm_col[x].rc_size > 0); 824*eda14cbcSMatt Macy 825*eda14cbcSMatt Macy src = rm->rm_col[VDEV_RAIDZ_P].rc_abd; 826*eda14cbcSMatt Macy dst = rm->rm_col[x].rc_abd; 827*eda14cbcSMatt Macy 828*eda14cbcSMatt Macy abd_copy_from_buf(dst, abd_to_buf(src), rm->rm_col[x].rc_size); 829*eda14cbcSMatt Macy 830*eda14cbcSMatt Macy for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { 831*eda14cbcSMatt Macy uint64_t size = MIN(rm->rm_col[x].rc_size, 832*eda14cbcSMatt Macy rm->rm_col[c].rc_size); 833*eda14cbcSMatt Macy 834*eda14cbcSMatt Macy src = rm->rm_col[c].rc_abd; 835*eda14cbcSMatt Macy dst = rm->rm_col[x].rc_abd; 836*eda14cbcSMatt Macy 837*eda14cbcSMatt Macy if (c == x) 838*eda14cbcSMatt Macy continue; 839*eda14cbcSMatt Macy 840*eda14cbcSMatt Macy (void) abd_iterate_func2(dst, src, 0, 0, size, 841*eda14cbcSMatt Macy vdev_raidz_reconst_p_func, NULL); 842*eda14cbcSMatt Macy } 843*eda14cbcSMatt Macy 844*eda14cbcSMatt Macy return (1 << VDEV_RAIDZ_P); 845*eda14cbcSMatt Macy } 846*eda14cbcSMatt Macy 847*eda14cbcSMatt Macy static int 848*eda14cbcSMatt Macy vdev_raidz_reconstruct_q(raidz_map_t *rm, int *tgts, int ntgts) 849*eda14cbcSMatt Macy { 850*eda14cbcSMatt Macy int x = tgts[0]; 851*eda14cbcSMatt Macy int c, exp; 852*eda14cbcSMatt Macy abd_t *dst, *src; 853*eda14cbcSMatt Macy 854*eda14cbcSMatt Macy ASSERT(ntgts == 1); 855*eda14cbcSMatt Macy 856*eda14cbcSMatt Macy ASSERT(rm->rm_col[x].rc_size <= rm->rm_col[VDEV_RAIDZ_Q].rc_size); 857*eda14cbcSMatt Macy 858*eda14cbcSMatt Macy for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { 859*eda14cbcSMatt Macy uint64_t size = (c == x) ? 0 : MIN(rm->rm_col[x].rc_size, 860*eda14cbcSMatt Macy rm->rm_col[c].rc_size); 861*eda14cbcSMatt Macy 862*eda14cbcSMatt Macy src = rm->rm_col[c].rc_abd; 863*eda14cbcSMatt Macy dst = rm->rm_col[x].rc_abd; 864*eda14cbcSMatt Macy 865*eda14cbcSMatt Macy if (c == rm->rm_firstdatacol) { 866*eda14cbcSMatt Macy abd_copy(dst, src, size); 867*eda14cbcSMatt Macy if (rm->rm_col[x].rc_size > size) 868*eda14cbcSMatt Macy abd_zero_off(dst, size, 869*eda14cbcSMatt Macy rm->rm_col[x].rc_size - size); 870*eda14cbcSMatt Macy 871*eda14cbcSMatt Macy } else { 872*eda14cbcSMatt Macy ASSERT3U(size, <=, rm->rm_col[x].rc_size); 873*eda14cbcSMatt Macy (void) abd_iterate_func2(dst, src, 0, 0, size, 874*eda14cbcSMatt Macy vdev_raidz_reconst_q_pre_func, NULL); 875*eda14cbcSMatt Macy (void) abd_iterate_func(dst, 876*eda14cbcSMatt Macy size, rm->rm_col[x].rc_size - size, 877*eda14cbcSMatt Macy vdev_raidz_reconst_q_pre_tail_func, NULL); 878*eda14cbcSMatt Macy } 879*eda14cbcSMatt Macy } 880*eda14cbcSMatt Macy 881*eda14cbcSMatt Macy src = rm->rm_col[VDEV_RAIDZ_Q].rc_abd; 882*eda14cbcSMatt Macy dst = rm->rm_col[x].rc_abd; 883*eda14cbcSMatt Macy exp = 255 - (rm->rm_cols - 1 - x); 884*eda14cbcSMatt Macy 885*eda14cbcSMatt Macy struct reconst_q_struct rq = { abd_to_buf(src), exp }; 886*eda14cbcSMatt Macy (void) abd_iterate_func(dst, 0, rm->rm_col[x].rc_size, 887*eda14cbcSMatt Macy vdev_raidz_reconst_q_post_func, &rq); 888*eda14cbcSMatt Macy 889*eda14cbcSMatt Macy return (1 << VDEV_RAIDZ_Q); 890*eda14cbcSMatt Macy } 891*eda14cbcSMatt Macy 892*eda14cbcSMatt Macy static int 893*eda14cbcSMatt Macy vdev_raidz_reconstruct_pq(raidz_map_t *rm, int *tgts, int ntgts) 894*eda14cbcSMatt Macy { 895*eda14cbcSMatt Macy uint8_t *p, *q, *pxy, *qxy, tmp, a, b, aexp, bexp; 896*eda14cbcSMatt Macy abd_t *pdata, *qdata; 897*eda14cbcSMatt Macy uint64_t xsize, ysize; 898*eda14cbcSMatt Macy int x = tgts[0]; 899*eda14cbcSMatt Macy int y = tgts[1]; 900*eda14cbcSMatt Macy abd_t *xd, *yd; 901*eda14cbcSMatt Macy 902*eda14cbcSMatt Macy ASSERT(ntgts == 2); 903*eda14cbcSMatt Macy ASSERT(x < y); 904*eda14cbcSMatt Macy ASSERT(x >= rm->rm_firstdatacol); 905*eda14cbcSMatt Macy ASSERT(y < rm->rm_cols); 906*eda14cbcSMatt Macy 907*eda14cbcSMatt Macy ASSERT(rm->rm_col[x].rc_size >= rm->rm_col[y].rc_size); 908*eda14cbcSMatt Macy 909*eda14cbcSMatt Macy /* 910*eda14cbcSMatt Macy * Move the parity data aside -- we're going to compute parity as 911*eda14cbcSMatt Macy * though columns x and y were full of zeros -- Pxy and Qxy. We want to 912*eda14cbcSMatt Macy * reuse the parity generation mechanism without trashing the actual 913*eda14cbcSMatt Macy * parity so we make those columns appear to be full of zeros by 914*eda14cbcSMatt Macy * setting their lengths to zero. 915*eda14cbcSMatt Macy */ 916*eda14cbcSMatt Macy pdata = rm->rm_col[VDEV_RAIDZ_P].rc_abd; 917*eda14cbcSMatt Macy qdata = rm->rm_col[VDEV_RAIDZ_Q].rc_abd; 918*eda14cbcSMatt Macy xsize = rm->rm_col[x].rc_size; 919*eda14cbcSMatt Macy ysize = rm->rm_col[y].rc_size; 920*eda14cbcSMatt Macy 921*eda14cbcSMatt Macy rm->rm_col[VDEV_RAIDZ_P].rc_abd = 922*eda14cbcSMatt Macy abd_alloc_linear(rm->rm_col[VDEV_RAIDZ_P].rc_size, B_TRUE); 923*eda14cbcSMatt Macy rm->rm_col[VDEV_RAIDZ_Q].rc_abd = 924*eda14cbcSMatt Macy abd_alloc_linear(rm->rm_col[VDEV_RAIDZ_Q].rc_size, B_TRUE); 925*eda14cbcSMatt Macy rm->rm_col[x].rc_size = 0; 926*eda14cbcSMatt Macy rm->rm_col[y].rc_size = 0; 927*eda14cbcSMatt Macy 928*eda14cbcSMatt Macy vdev_raidz_generate_parity_pq(rm); 929*eda14cbcSMatt Macy 930*eda14cbcSMatt Macy rm->rm_col[x].rc_size = xsize; 931*eda14cbcSMatt Macy rm->rm_col[y].rc_size = ysize; 932*eda14cbcSMatt Macy 933*eda14cbcSMatt Macy p = abd_to_buf(pdata); 934*eda14cbcSMatt Macy q = abd_to_buf(qdata); 935*eda14cbcSMatt Macy pxy = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd); 936*eda14cbcSMatt Macy qxy = abd_to_buf(rm->rm_col[VDEV_RAIDZ_Q].rc_abd); 937*eda14cbcSMatt Macy xd = rm->rm_col[x].rc_abd; 938*eda14cbcSMatt Macy yd = rm->rm_col[y].rc_abd; 939*eda14cbcSMatt Macy 940*eda14cbcSMatt Macy /* 941*eda14cbcSMatt Macy * We now have: 942*eda14cbcSMatt Macy * Pxy = P + D_x + D_y 943*eda14cbcSMatt Macy * Qxy = Q + 2^(ndevs - 1 - x) * D_x + 2^(ndevs - 1 - y) * D_y 944*eda14cbcSMatt Macy * 945*eda14cbcSMatt Macy * We can then solve for D_x: 946*eda14cbcSMatt Macy * D_x = A * (P + Pxy) + B * (Q + Qxy) 947*eda14cbcSMatt Macy * where 948*eda14cbcSMatt Macy * A = 2^(x - y) * (2^(x - y) + 1)^-1 949*eda14cbcSMatt Macy * B = 2^(ndevs - 1 - x) * (2^(x - y) + 1)^-1 950*eda14cbcSMatt Macy * 951*eda14cbcSMatt Macy * With D_x in hand, we can easily solve for D_y: 952*eda14cbcSMatt Macy * D_y = P + Pxy + D_x 953*eda14cbcSMatt Macy */ 954*eda14cbcSMatt Macy 955*eda14cbcSMatt Macy a = vdev_raidz_pow2[255 + x - y]; 956*eda14cbcSMatt Macy b = vdev_raidz_pow2[255 - (rm->rm_cols - 1 - x)]; 957*eda14cbcSMatt Macy tmp = 255 - vdev_raidz_log2[a ^ 1]; 958*eda14cbcSMatt Macy 959*eda14cbcSMatt Macy aexp = vdev_raidz_log2[vdev_raidz_exp2(a, tmp)]; 960*eda14cbcSMatt Macy bexp = vdev_raidz_log2[vdev_raidz_exp2(b, tmp)]; 961*eda14cbcSMatt Macy 962*eda14cbcSMatt Macy ASSERT3U(xsize, >=, ysize); 963*eda14cbcSMatt Macy struct reconst_pq_struct rpq = { p, q, pxy, qxy, aexp, bexp }; 964*eda14cbcSMatt Macy 965*eda14cbcSMatt Macy (void) abd_iterate_func2(xd, yd, 0, 0, ysize, 966*eda14cbcSMatt Macy vdev_raidz_reconst_pq_func, &rpq); 967*eda14cbcSMatt Macy (void) abd_iterate_func(xd, ysize, xsize - ysize, 968*eda14cbcSMatt Macy vdev_raidz_reconst_pq_tail_func, &rpq); 969*eda14cbcSMatt Macy 970*eda14cbcSMatt Macy abd_free(rm->rm_col[VDEV_RAIDZ_P].rc_abd); 971*eda14cbcSMatt Macy abd_free(rm->rm_col[VDEV_RAIDZ_Q].rc_abd); 972*eda14cbcSMatt Macy 973*eda14cbcSMatt Macy /* 974*eda14cbcSMatt Macy * Restore the saved parity data. 975*eda14cbcSMatt Macy */ 976*eda14cbcSMatt Macy rm->rm_col[VDEV_RAIDZ_P].rc_abd = pdata; 977*eda14cbcSMatt Macy rm->rm_col[VDEV_RAIDZ_Q].rc_abd = qdata; 978*eda14cbcSMatt Macy 979*eda14cbcSMatt Macy return ((1 << VDEV_RAIDZ_P) | (1 << VDEV_RAIDZ_Q)); 980*eda14cbcSMatt Macy } 981*eda14cbcSMatt Macy 982*eda14cbcSMatt Macy /* BEGIN CSTYLED */ 983*eda14cbcSMatt Macy /* 984*eda14cbcSMatt Macy * In the general case of reconstruction, we must solve the system of linear 985*eda14cbcSMatt Macy * equations defined by the coefficients used to generate parity as well as 986*eda14cbcSMatt Macy * the contents of the data and parity disks. This can be expressed with 987*eda14cbcSMatt Macy * vectors for the original data (D) and the actual data (d) and parity (p) 988*eda14cbcSMatt Macy * and a matrix composed of the identity matrix (I) and a dispersal matrix (V): 989*eda14cbcSMatt Macy * 990*eda14cbcSMatt Macy * __ __ __ __ 991*eda14cbcSMatt Macy * | | __ __ | p_0 | 992*eda14cbcSMatt Macy * | V | | D_0 | | p_m-1 | 993*eda14cbcSMatt Macy * | | x | : | = | d_0 | 994*eda14cbcSMatt Macy * | I | | D_n-1 | | : | 995*eda14cbcSMatt Macy * | | ~~ ~~ | d_n-1 | 996*eda14cbcSMatt Macy * ~~ ~~ ~~ ~~ 997*eda14cbcSMatt Macy * 998*eda14cbcSMatt Macy * I is simply a square identity matrix of size n, and V is a vandermonde 999*eda14cbcSMatt Macy * matrix defined by the coefficients we chose for the various parity columns 1000*eda14cbcSMatt Macy * (1, 2, 4). Note that these values were chosen both for simplicity, speedy 1001*eda14cbcSMatt Macy * computation as well as linear separability. 1002*eda14cbcSMatt Macy * 1003*eda14cbcSMatt Macy * __ __ __ __ 1004*eda14cbcSMatt Macy * | 1 .. 1 1 1 | | p_0 | 1005*eda14cbcSMatt Macy * | 2^n-1 .. 4 2 1 | __ __ | : | 1006*eda14cbcSMatt Macy * | 4^n-1 .. 16 4 1 | | D_0 | | p_m-1 | 1007*eda14cbcSMatt Macy * | 1 .. 0 0 0 | | D_1 | | d_0 | 1008*eda14cbcSMatt Macy * | 0 .. 0 0 0 | x | D_2 | = | d_1 | 1009*eda14cbcSMatt Macy * | : : : : | | : | | d_2 | 1010*eda14cbcSMatt Macy * | 0 .. 1 0 0 | | D_n-1 | | : | 1011*eda14cbcSMatt Macy * | 0 .. 0 1 0 | ~~ ~~ | : | 1012*eda14cbcSMatt Macy * | 0 .. 0 0 1 | | d_n-1 | 1013*eda14cbcSMatt Macy * ~~ ~~ ~~ ~~ 1014*eda14cbcSMatt Macy * 1015*eda14cbcSMatt Macy * Note that I, V, d, and p are known. To compute D, we must invert the 1016*eda14cbcSMatt Macy * matrix and use the known data and parity values to reconstruct the unknown 1017*eda14cbcSMatt Macy * data values. We begin by removing the rows in V|I and d|p that correspond 1018*eda14cbcSMatt Macy * to failed or missing columns; we then make V|I square (n x n) and d|p 1019*eda14cbcSMatt Macy * sized n by removing rows corresponding to unused parity from the bottom up 1020*eda14cbcSMatt Macy * to generate (V|I)' and (d|p)'. We can then generate the inverse of (V|I)' 1021*eda14cbcSMatt Macy * using Gauss-Jordan elimination. In the example below we use m=3 parity 1022*eda14cbcSMatt Macy * columns, n=8 data columns, with errors in d_1, d_2, and p_1: 1023*eda14cbcSMatt Macy * __ __ 1024*eda14cbcSMatt Macy * | 1 1 1 1 1 1 1 1 | 1025*eda14cbcSMatt Macy * | 128 64 32 16 8 4 2 1 | <-----+-+-- missing disks 1026*eda14cbcSMatt Macy * | 19 205 116 29 64 16 4 1 | / / 1027*eda14cbcSMatt Macy * | 1 0 0 0 0 0 0 0 | / / 1028*eda14cbcSMatt Macy * | 0 1 0 0 0 0 0 0 | <--' / 1029*eda14cbcSMatt Macy * (V|I) = | 0 0 1 0 0 0 0 0 | <---' 1030*eda14cbcSMatt Macy * | 0 0 0 1 0 0 0 0 | 1031*eda14cbcSMatt Macy * | 0 0 0 0 1 0 0 0 | 1032*eda14cbcSMatt Macy * | 0 0 0 0 0 1 0 0 | 1033*eda14cbcSMatt Macy * | 0 0 0 0 0 0 1 0 | 1034*eda14cbcSMatt Macy * | 0 0 0 0 0 0 0 1 | 1035*eda14cbcSMatt Macy * ~~ ~~ 1036*eda14cbcSMatt Macy * __ __ 1037*eda14cbcSMatt Macy * | 1 1 1 1 1 1 1 1 | 1038*eda14cbcSMatt Macy * | 128 64 32 16 8 4 2 1 | 1039*eda14cbcSMatt Macy * | 19 205 116 29 64 16 4 1 | 1040*eda14cbcSMatt Macy * | 1 0 0 0 0 0 0 0 | 1041*eda14cbcSMatt Macy * | 0 1 0 0 0 0 0 0 | 1042*eda14cbcSMatt Macy * (V|I)' = | 0 0 1 0 0 0 0 0 | 1043*eda14cbcSMatt Macy * | 0 0 0 1 0 0 0 0 | 1044*eda14cbcSMatt Macy * | 0 0 0 0 1 0 0 0 | 1045*eda14cbcSMatt Macy * | 0 0 0 0 0 1 0 0 | 1046*eda14cbcSMatt Macy * | 0 0 0 0 0 0 1 0 | 1047*eda14cbcSMatt Macy * | 0 0 0 0 0 0 0 1 | 1048*eda14cbcSMatt Macy * ~~ ~~ 1049*eda14cbcSMatt Macy * 1050*eda14cbcSMatt Macy * Here we employ Gauss-Jordan elimination to find the inverse of (V|I)'. We 1051*eda14cbcSMatt Macy * have carefully chosen the seed values 1, 2, and 4 to ensure that this 1052*eda14cbcSMatt Macy * matrix is not singular. 1053*eda14cbcSMatt Macy * __ __ 1054*eda14cbcSMatt Macy * | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 | 1055*eda14cbcSMatt Macy * | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 | 1056*eda14cbcSMatt Macy * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | 1057*eda14cbcSMatt Macy * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | 1058*eda14cbcSMatt Macy * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | 1059*eda14cbcSMatt Macy * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | 1060*eda14cbcSMatt Macy * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | 1061*eda14cbcSMatt Macy * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | 1062*eda14cbcSMatt Macy * ~~ ~~ 1063*eda14cbcSMatt Macy * __ __ 1064*eda14cbcSMatt Macy * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | 1065*eda14cbcSMatt Macy * | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 | 1066*eda14cbcSMatt Macy * | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 | 1067*eda14cbcSMatt Macy * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | 1068*eda14cbcSMatt Macy * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | 1069*eda14cbcSMatt Macy * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | 1070*eda14cbcSMatt Macy * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | 1071*eda14cbcSMatt Macy * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | 1072*eda14cbcSMatt Macy * ~~ ~~ 1073*eda14cbcSMatt Macy * __ __ 1074*eda14cbcSMatt Macy * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | 1075*eda14cbcSMatt Macy * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 | 1076*eda14cbcSMatt Macy * | 0 205 116 0 0 0 0 0 0 1 19 29 64 16 4 1 | 1077*eda14cbcSMatt Macy * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | 1078*eda14cbcSMatt Macy * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | 1079*eda14cbcSMatt Macy * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | 1080*eda14cbcSMatt Macy * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | 1081*eda14cbcSMatt Macy * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | 1082*eda14cbcSMatt Macy * ~~ ~~ 1083*eda14cbcSMatt Macy * __ __ 1084*eda14cbcSMatt Macy * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | 1085*eda14cbcSMatt Macy * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 | 1086*eda14cbcSMatt Macy * | 0 0 185 0 0 0 0 0 205 1 222 208 141 221 201 204 | 1087*eda14cbcSMatt Macy * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | 1088*eda14cbcSMatt Macy * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | 1089*eda14cbcSMatt Macy * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | 1090*eda14cbcSMatt Macy * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | 1091*eda14cbcSMatt Macy * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | 1092*eda14cbcSMatt Macy * ~~ ~~ 1093*eda14cbcSMatt Macy * __ __ 1094*eda14cbcSMatt Macy * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | 1095*eda14cbcSMatt Macy * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 | 1096*eda14cbcSMatt Macy * | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 | 1097*eda14cbcSMatt Macy * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | 1098*eda14cbcSMatt Macy * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | 1099*eda14cbcSMatt Macy * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | 1100*eda14cbcSMatt Macy * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | 1101*eda14cbcSMatt Macy * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | 1102*eda14cbcSMatt Macy * ~~ ~~ 1103*eda14cbcSMatt Macy * __ __ 1104*eda14cbcSMatt Macy * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | 1105*eda14cbcSMatt Macy * | 0 1 0 0 0 0 0 0 167 100 5 41 159 169 217 208 | 1106*eda14cbcSMatt Macy * | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 | 1107*eda14cbcSMatt Macy * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | 1108*eda14cbcSMatt Macy * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | 1109*eda14cbcSMatt Macy * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | 1110*eda14cbcSMatt Macy * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | 1111*eda14cbcSMatt Macy * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | 1112*eda14cbcSMatt Macy * ~~ ~~ 1113*eda14cbcSMatt Macy * __ __ 1114*eda14cbcSMatt Macy * | 0 0 1 0 0 0 0 0 | 1115*eda14cbcSMatt Macy * | 167 100 5 41 159 169 217 208 | 1116*eda14cbcSMatt Macy * | 166 100 4 40 158 168 216 209 | 1117*eda14cbcSMatt Macy * (V|I)'^-1 = | 0 0 0 1 0 0 0 0 | 1118*eda14cbcSMatt Macy * | 0 0 0 0 1 0 0 0 | 1119*eda14cbcSMatt Macy * | 0 0 0 0 0 1 0 0 | 1120*eda14cbcSMatt Macy * | 0 0 0 0 0 0 1 0 | 1121*eda14cbcSMatt Macy * | 0 0 0 0 0 0 0 1 | 1122*eda14cbcSMatt Macy * ~~ ~~ 1123*eda14cbcSMatt Macy * 1124*eda14cbcSMatt Macy * We can then simply compute D = (V|I)'^-1 x (d|p)' to discover the values 1125*eda14cbcSMatt Macy * of the missing data. 1126*eda14cbcSMatt Macy * 1127*eda14cbcSMatt Macy * As is apparent from the example above, the only non-trivial rows in the 1128*eda14cbcSMatt Macy * inverse matrix correspond to the data disks that we're trying to 1129*eda14cbcSMatt Macy * reconstruct. Indeed, those are the only rows we need as the others would 1130*eda14cbcSMatt Macy * only be useful for reconstructing data known or assumed to be valid. For 1131*eda14cbcSMatt Macy * that reason, we only build the coefficients in the rows that correspond to 1132*eda14cbcSMatt Macy * targeted columns. 1133*eda14cbcSMatt Macy */ 1134*eda14cbcSMatt Macy /* END CSTYLED */ 1135*eda14cbcSMatt Macy 1136*eda14cbcSMatt Macy static void 1137*eda14cbcSMatt Macy vdev_raidz_matrix_init(raidz_map_t *rm, int n, int nmap, int *map, 1138*eda14cbcSMatt Macy uint8_t **rows) 1139*eda14cbcSMatt Macy { 1140*eda14cbcSMatt Macy int i, j; 1141*eda14cbcSMatt Macy int pow; 1142*eda14cbcSMatt Macy 1143*eda14cbcSMatt Macy ASSERT(n == rm->rm_cols - rm->rm_firstdatacol); 1144*eda14cbcSMatt Macy 1145*eda14cbcSMatt Macy /* 1146*eda14cbcSMatt Macy * Fill in the missing rows of interest. 1147*eda14cbcSMatt Macy */ 1148*eda14cbcSMatt Macy for (i = 0; i < nmap; i++) { 1149*eda14cbcSMatt Macy ASSERT3S(0, <=, map[i]); 1150*eda14cbcSMatt Macy ASSERT3S(map[i], <=, 2); 1151*eda14cbcSMatt Macy 1152*eda14cbcSMatt Macy pow = map[i] * n; 1153*eda14cbcSMatt Macy if (pow > 255) 1154*eda14cbcSMatt Macy pow -= 255; 1155*eda14cbcSMatt Macy ASSERT(pow <= 255); 1156*eda14cbcSMatt Macy 1157*eda14cbcSMatt Macy for (j = 0; j < n; j++) { 1158*eda14cbcSMatt Macy pow -= map[i]; 1159*eda14cbcSMatt Macy if (pow < 0) 1160*eda14cbcSMatt Macy pow += 255; 1161*eda14cbcSMatt Macy rows[i][j] = vdev_raidz_pow2[pow]; 1162*eda14cbcSMatt Macy } 1163*eda14cbcSMatt Macy } 1164*eda14cbcSMatt Macy } 1165*eda14cbcSMatt Macy 1166*eda14cbcSMatt Macy static void 1167*eda14cbcSMatt Macy vdev_raidz_matrix_invert(raidz_map_t *rm, int n, int nmissing, int *missing, 1168*eda14cbcSMatt Macy uint8_t **rows, uint8_t **invrows, const uint8_t *used) 1169*eda14cbcSMatt Macy { 1170*eda14cbcSMatt Macy int i, j, ii, jj; 1171*eda14cbcSMatt Macy uint8_t log; 1172*eda14cbcSMatt Macy 1173*eda14cbcSMatt Macy /* 1174*eda14cbcSMatt Macy * Assert that the first nmissing entries from the array of used 1175*eda14cbcSMatt Macy * columns correspond to parity columns and that subsequent entries 1176*eda14cbcSMatt Macy * correspond to data columns. 1177*eda14cbcSMatt Macy */ 1178*eda14cbcSMatt Macy for (i = 0; i < nmissing; i++) { 1179*eda14cbcSMatt Macy ASSERT3S(used[i], <, rm->rm_firstdatacol); 1180*eda14cbcSMatt Macy } 1181*eda14cbcSMatt Macy for (; i < n; i++) { 1182*eda14cbcSMatt Macy ASSERT3S(used[i], >=, rm->rm_firstdatacol); 1183*eda14cbcSMatt Macy } 1184*eda14cbcSMatt Macy 1185*eda14cbcSMatt Macy /* 1186*eda14cbcSMatt Macy * First initialize the storage where we'll compute the inverse rows. 1187*eda14cbcSMatt Macy */ 1188*eda14cbcSMatt Macy for (i = 0; i < nmissing; i++) { 1189*eda14cbcSMatt Macy for (j = 0; j < n; j++) { 1190*eda14cbcSMatt Macy invrows[i][j] = (i == j) ? 1 : 0; 1191*eda14cbcSMatt Macy } 1192*eda14cbcSMatt Macy } 1193*eda14cbcSMatt Macy 1194*eda14cbcSMatt Macy /* 1195*eda14cbcSMatt Macy * Subtract all trivial rows from the rows of consequence. 1196*eda14cbcSMatt Macy */ 1197*eda14cbcSMatt Macy for (i = 0; i < nmissing; i++) { 1198*eda14cbcSMatt Macy for (j = nmissing; j < n; j++) { 1199*eda14cbcSMatt Macy ASSERT3U(used[j], >=, rm->rm_firstdatacol); 1200*eda14cbcSMatt Macy jj = used[j] - rm->rm_firstdatacol; 1201*eda14cbcSMatt Macy ASSERT3S(jj, <, n); 1202*eda14cbcSMatt Macy invrows[i][j] = rows[i][jj]; 1203*eda14cbcSMatt Macy rows[i][jj] = 0; 1204*eda14cbcSMatt Macy } 1205*eda14cbcSMatt Macy } 1206*eda14cbcSMatt Macy 1207*eda14cbcSMatt Macy /* 1208*eda14cbcSMatt Macy * For each of the rows of interest, we must normalize it and subtract 1209*eda14cbcSMatt Macy * a multiple of it from the other rows. 1210*eda14cbcSMatt Macy */ 1211*eda14cbcSMatt Macy for (i = 0; i < nmissing; i++) { 1212*eda14cbcSMatt Macy for (j = 0; j < missing[i]; j++) { 1213*eda14cbcSMatt Macy ASSERT0(rows[i][j]); 1214*eda14cbcSMatt Macy } 1215*eda14cbcSMatt Macy ASSERT3U(rows[i][missing[i]], !=, 0); 1216*eda14cbcSMatt Macy 1217*eda14cbcSMatt Macy /* 1218*eda14cbcSMatt Macy * Compute the inverse of the first element and multiply each 1219*eda14cbcSMatt Macy * element in the row by that value. 1220*eda14cbcSMatt Macy */ 1221*eda14cbcSMatt Macy log = 255 - vdev_raidz_log2[rows[i][missing[i]]]; 1222*eda14cbcSMatt Macy 1223*eda14cbcSMatt Macy for (j = 0; j < n; j++) { 1224*eda14cbcSMatt Macy rows[i][j] = vdev_raidz_exp2(rows[i][j], log); 1225*eda14cbcSMatt Macy invrows[i][j] = vdev_raidz_exp2(invrows[i][j], log); 1226*eda14cbcSMatt Macy } 1227*eda14cbcSMatt Macy 1228*eda14cbcSMatt Macy for (ii = 0; ii < nmissing; ii++) { 1229*eda14cbcSMatt Macy if (i == ii) 1230*eda14cbcSMatt Macy continue; 1231*eda14cbcSMatt Macy 1232*eda14cbcSMatt Macy ASSERT3U(rows[ii][missing[i]], !=, 0); 1233*eda14cbcSMatt Macy 1234*eda14cbcSMatt Macy log = vdev_raidz_log2[rows[ii][missing[i]]]; 1235*eda14cbcSMatt Macy 1236*eda14cbcSMatt Macy for (j = 0; j < n; j++) { 1237*eda14cbcSMatt Macy rows[ii][j] ^= 1238*eda14cbcSMatt Macy vdev_raidz_exp2(rows[i][j], log); 1239*eda14cbcSMatt Macy invrows[ii][j] ^= 1240*eda14cbcSMatt Macy vdev_raidz_exp2(invrows[i][j], log); 1241*eda14cbcSMatt Macy } 1242*eda14cbcSMatt Macy } 1243*eda14cbcSMatt Macy } 1244*eda14cbcSMatt Macy 1245*eda14cbcSMatt Macy /* 1246*eda14cbcSMatt Macy * Verify that the data that is left in the rows are properly part of 1247*eda14cbcSMatt Macy * an identity matrix. 1248*eda14cbcSMatt Macy */ 1249*eda14cbcSMatt Macy for (i = 0; i < nmissing; i++) { 1250*eda14cbcSMatt Macy for (j = 0; j < n; j++) { 1251*eda14cbcSMatt Macy if (j == missing[i]) { 1252*eda14cbcSMatt Macy ASSERT3U(rows[i][j], ==, 1); 1253*eda14cbcSMatt Macy } else { 1254*eda14cbcSMatt Macy ASSERT0(rows[i][j]); 1255*eda14cbcSMatt Macy } 1256*eda14cbcSMatt Macy } 1257*eda14cbcSMatt Macy } 1258*eda14cbcSMatt Macy } 1259*eda14cbcSMatt Macy 1260*eda14cbcSMatt Macy static void 1261*eda14cbcSMatt Macy vdev_raidz_matrix_reconstruct(raidz_map_t *rm, int n, int nmissing, 1262*eda14cbcSMatt Macy int *missing, uint8_t **invrows, const uint8_t *used) 1263*eda14cbcSMatt Macy { 1264*eda14cbcSMatt Macy int i, j, x, cc, c; 1265*eda14cbcSMatt Macy uint8_t *src; 1266*eda14cbcSMatt Macy uint64_t ccount; 1267*eda14cbcSMatt Macy uint8_t *dst[VDEV_RAIDZ_MAXPARITY] = { NULL }; 1268*eda14cbcSMatt Macy uint64_t dcount[VDEV_RAIDZ_MAXPARITY] = { 0 }; 1269*eda14cbcSMatt Macy uint8_t log = 0; 1270*eda14cbcSMatt Macy uint8_t val; 1271*eda14cbcSMatt Macy int ll; 1272*eda14cbcSMatt Macy uint8_t *invlog[VDEV_RAIDZ_MAXPARITY]; 1273*eda14cbcSMatt Macy uint8_t *p, *pp; 1274*eda14cbcSMatt Macy size_t psize; 1275*eda14cbcSMatt Macy 1276*eda14cbcSMatt Macy psize = sizeof (invlog[0][0]) * n * nmissing; 1277*eda14cbcSMatt Macy p = kmem_alloc(psize, KM_SLEEP); 1278*eda14cbcSMatt Macy 1279*eda14cbcSMatt Macy for (pp = p, i = 0; i < nmissing; i++) { 1280*eda14cbcSMatt Macy invlog[i] = pp; 1281*eda14cbcSMatt Macy pp += n; 1282*eda14cbcSMatt Macy } 1283*eda14cbcSMatt Macy 1284*eda14cbcSMatt Macy for (i = 0; i < nmissing; i++) { 1285*eda14cbcSMatt Macy for (j = 0; j < n; j++) { 1286*eda14cbcSMatt Macy ASSERT3U(invrows[i][j], !=, 0); 1287*eda14cbcSMatt Macy invlog[i][j] = vdev_raidz_log2[invrows[i][j]]; 1288*eda14cbcSMatt Macy } 1289*eda14cbcSMatt Macy } 1290*eda14cbcSMatt Macy 1291*eda14cbcSMatt Macy for (i = 0; i < n; i++) { 1292*eda14cbcSMatt Macy c = used[i]; 1293*eda14cbcSMatt Macy ASSERT3U(c, <, rm->rm_cols); 1294*eda14cbcSMatt Macy 1295*eda14cbcSMatt Macy src = abd_to_buf(rm->rm_col[c].rc_abd); 1296*eda14cbcSMatt Macy ccount = rm->rm_col[c].rc_size; 1297*eda14cbcSMatt Macy for (j = 0; j < nmissing; j++) { 1298*eda14cbcSMatt Macy cc = missing[j] + rm->rm_firstdatacol; 1299*eda14cbcSMatt Macy ASSERT3U(cc, >=, rm->rm_firstdatacol); 1300*eda14cbcSMatt Macy ASSERT3U(cc, <, rm->rm_cols); 1301*eda14cbcSMatt Macy ASSERT3U(cc, !=, c); 1302*eda14cbcSMatt Macy 1303*eda14cbcSMatt Macy dst[j] = abd_to_buf(rm->rm_col[cc].rc_abd); 1304*eda14cbcSMatt Macy dcount[j] = rm->rm_col[cc].rc_size; 1305*eda14cbcSMatt Macy } 1306*eda14cbcSMatt Macy 1307*eda14cbcSMatt Macy ASSERT(ccount >= rm->rm_col[missing[0]].rc_size || i > 0); 1308*eda14cbcSMatt Macy 1309*eda14cbcSMatt Macy for (x = 0; x < ccount; x++, src++) { 1310*eda14cbcSMatt Macy if (*src != 0) 1311*eda14cbcSMatt Macy log = vdev_raidz_log2[*src]; 1312*eda14cbcSMatt Macy 1313*eda14cbcSMatt Macy for (cc = 0; cc < nmissing; cc++) { 1314*eda14cbcSMatt Macy if (x >= dcount[cc]) 1315*eda14cbcSMatt Macy continue; 1316*eda14cbcSMatt Macy 1317*eda14cbcSMatt Macy if (*src == 0) { 1318*eda14cbcSMatt Macy val = 0; 1319*eda14cbcSMatt Macy } else { 1320*eda14cbcSMatt Macy if ((ll = log + invlog[cc][i]) >= 255) 1321*eda14cbcSMatt Macy ll -= 255; 1322*eda14cbcSMatt Macy val = vdev_raidz_pow2[ll]; 1323*eda14cbcSMatt Macy } 1324*eda14cbcSMatt Macy 1325*eda14cbcSMatt Macy if (i == 0) 1326*eda14cbcSMatt Macy dst[cc][x] = val; 1327*eda14cbcSMatt Macy else 1328*eda14cbcSMatt Macy dst[cc][x] ^= val; 1329*eda14cbcSMatt Macy } 1330*eda14cbcSMatt Macy } 1331*eda14cbcSMatt Macy } 1332*eda14cbcSMatt Macy 1333*eda14cbcSMatt Macy kmem_free(p, psize); 1334*eda14cbcSMatt Macy } 1335*eda14cbcSMatt Macy 1336*eda14cbcSMatt Macy static int 1337*eda14cbcSMatt Macy vdev_raidz_reconstruct_general(raidz_map_t *rm, int *tgts, int ntgts) 1338*eda14cbcSMatt Macy { 1339*eda14cbcSMatt Macy int n, i, c, t, tt; 1340*eda14cbcSMatt Macy int nmissing_rows; 1341*eda14cbcSMatt Macy int missing_rows[VDEV_RAIDZ_MAXPARITY]; 1342*eda14cbcSMatt Macy int parity_map[VDEV_RAIDZ_MAXPARITY]; 1343*eda14cbcSMatt Macy 1344*eda14cbcSMatt Macy uint8_t *p, *pp; 1345*eda14cbcSMatt Macy size_t psize; 1346*eda14cbcSMatt Macy 1347*eda14cbcSMatt Macy uint8_t *rows[VDEV_RAIDZ_MAXPARITY]; 1348*eda14cbcSMatt Macy uint8_t *invrows[VDEV_RAIDZ_MAXPARITY]; 1349*eda14cbcSMatt Macy uint8_t *used; 1350*eda14cbcSMatt Macy 1351*eda14cbcSMatt Macy abd_t **bufs = NULL; 1352*eda14cbcSMatt Macy 1353*eda14cbcSMatt Macy int code = 0; 1354*eda14cbcSMatt Macy 1355*eda14cbcSMatt Macy /* 1356*eda14cbcSMatt Macy * Matrix reconstruction can't use scatter ABDs yet, so we allocate 1357*eda14cbcSMatt Macy * temporary linear ABDs. 1358*eda14cbcSMatt Macy */ 1359*eda14cbcSMatt Macy if (!abd_is_linear(rm->rm_col[rm->rm_firstdatacol].rc_abd)) { 1360*eda14cbcSMatt Macy bufs = kmem_alloc(rm->rm_cols * sizeof (abd_t *), KM_PUSHPAGE); 1361*eda14cbcSMatt Macy 1362*eda14cbcSMatt Macy for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { 1363*eda14cbcSMatt Macy raidz_col_t *col = &rm->rm_col[c]; 1364*eda14cbcSMatt Macy 1365*eda14cbcSMatt Macy bufs[c] = col->rc_abd; 1366*eda14cbcSMatt Macy col->rc_abd = abd_alloc_linear(col->rc_size, B_TRUE); 1367*eda14cbcSMatt Macy abd_copy(col->rc_abd, bufs[c], col->rc_size); 1368*eda14cbcSMatt Macy } 1369*eda14cbcSMatt Macy } 1370*eda14cbcSMatt Macy 1371*eda14cbcSMatt Macy n = rm->rm_cols - rm->rm_firstdatacol; 1372*eda14cbcSMatt Macy 1373*eda14cbcSMatt Macy /* 1374*eda14cbcSMatt Macy * Figure out which data columns are missing. 1375*eda14cbcSMatt Macy */ 1376*eda14cbcSMatt Macy nmissing_rows = 0; 1377*eda14cbcSMatt Macy for (t = 0; t < ntgts; t++) { 1378*eda14cbcSMatt Macy if (tgts[t] >= rm->rm_firstdatacol) { 1379*eda14cbcSMatt Macy missing_rows[nmissing_rows++] = 1380*eda14cbcSMatt Macy tgts[t] - rm->rm_firstdatacol; 1381*eda14cbcSMatt Macy } 1382*eda14cbcSMatt Macy } 1383*eda14cbcSMatt Macy 1384*eda14cbcSMatt Macy /* 1385*eda14cbcSMatt Macy * Figure out which parity columns to use to help generate the missing 1386*eda14cbcSMatt Macy * data columns. 1387*eda14cbcSMatt Macy */ 1388*eda14cbcSMatt Macy for (tt = 0, c = 0, i = 0; i < nmissing_rows; c++) { 1389*eda14cbcSMatt Macy ASSERT(tt < ntgts); 1390*eda14cbcSMatt Macy ASSERT(c < rm->rm_firstdatacol); 1391*eda14cbcSMatt Macy 1392*eda14cbcSMatt Macy /* 1393*eda14cbcSMatt Macy * Skip any targeted parity columns. 1394*eda14cbcSMatt Macy */ 1395*eda14cbcSMatt Macy if (c == tgts[tt]) { 1396*eda14cbcSMatt Macy tt++; 1397*eda14cbcSMatt Macy continue; 1398*eda14cbcSMatt Macy } 1399*eda14cbcSMatt Macy 1400*eda14cbcSMatt Macy code |= 1 << c; 1401*eda14cbcSMatt Macy 1402*eda14cbcSMatt Macy parity_map[i] = c; 1403*eda14cbcSMatt Macy i++; 1404*eda14cbcSMatt Macy } 1405*eda14cbcSMatt Macy 1406*eda14cbcSMatt Macy ASSERT(code != 0); 1407*eda14cbcSMatt Macy ASSERT3U(code, <, 1 << VDEV_RAIDZ_MAXPARITY); 1408*eda14cbcSMatt Macy 1409*eda14cbcSMatt Macy psize = (sizeof (rows[0][0]) + sizeof (invrows[0][0])) * 1410*eda14cbcSMatt Macy nmissing_rows * n + sizeof (used[0]) * n; 1411*eda14cbcSMatt Macy p = kmem_alloc(psize, KM_SLEEP); 1412*eda14cbcSMatt Macy 1413*eda14cbcSMatt Macy for (pp = p, i = 0; i < nmissing_rows; i++) { 1414*eda14cbcSMatt Macy rows[i] = pp; 1415*eda14cbcSMatt Macy pp += n; 1416*eda14cbcSMatt Macy invrows[i] = pp; 1417*eda14cbcSMatt Macy pp += n; 1418*eda14cbcSMatt Macy } 1419*eda14cbcSMatt Macy used = pp; 1420*eda14cbcSMatt Macy 1421*eda14cbcSMatt Macy for (i = 0; i < nmissing_rows; i++) { 1422*eda14cbcSMatt Macy used[i] = parity_map[i]; 1423*eda14cbcSMatt Macy } 1424*eda14cbcSMatt Macy 1425*eda14cbcSMatt Macy for (tt = 0, c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { 1426*eda14cbcSMatt Macy if (tt < nmissing_rows && 1427*eda14cbcSMatt Macy c == missing_rows[tt] + rm->rm_firstdatacol) { 1428*eda14cbcSMatt Macy tt++; 1429*eda14cbcSMatt Macy continue; 1430*eda14cbcSMatt Macy } 1431*eda14cbcSMatt Macy 1432*eda14cbcSMatt Macy ASSERT3S(i, <, n); 1433*eda14cbcSMatt Macy used[i] = c; 1434*eda14cbcSMatt Macy i++; 1435*eda14cbcSMatt Macy } 1436*eda14cbcSMatt Macy 1437*eda14cbcSMatt Macy /* 1438*eda14cbcSMatt Macy * Initialize the interesting rows of the matrix. 1439*eda14cbcSMatt Macy */ 1440*eda14cbcSMatt Macy vdev_raidz_matrix_init(rm, n, nmissing_rows, parity_map, rows); 1441*eda14cbcSMatt Macy 1442*eda14cbcSMatt Macy /* 1443*eda14cbcSMatt Macy * Invert the matrix. 1444*eda14cbcSMatt Macy */ 1445*eda14cbcSMatt Macy vdev_raidz_matrix_invert(rm, n, nmissing_rows, missing_rows, rows, 1446*eda14cbcSMatt Macy invrows, used); 1447*eda14cbcSMatt Macy 1448*eda14cbcSMatt Macy /* 1449*eda14cbcSMatt Macy * Reconstruct the missing data using the generated matrix. 1450*eda14cbcSMatt Macy */ 1451*eda14cbcSMatt Macy vdev_raidz_matrix_reconstruct(rm, n, nmissing_rows, missing_rows, 1452*eda14cbcSMatt Macy invrows, used); 1453*eda14cbcSMatt Macy 1454*eda14cbcSMatt Macy kmem_free(p, psize); 1455*eda14cbcSMatt Macy 1456*eda14cbcSMatt Macy /* 1457*eda14cbcSMatt Macy * copy back from temporary linear abds and free them 1458*eda14cbcSMatt Macy */ 1459*eda14cbcSMatt Macy if (bufs) { 1460*eda14cbcSMatt Macy for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { 1461*eda14cbcSMatt Macy raidz_col_t *col = &rm->rm_col[c]; 1462*eda14cbcSMatt Macy 1463*eda14cbcSMatt Macy abd_copy(bufs[c], col->rc_abd, col->rc_size); 1464*eda14cbcSMatt Macy abd_free(col->rc_abd); 1465*eda14cbcSMatt Macy col->rc_abd = bufs[c]; 1466*eda14cbcSMatt Macy } 1467*eda14cbcSMatt Macy kmem_free(bufs, rm->rm_cols * sizeof (abd_t *)); 1468*eda14cbcSMatt Macy } 1469*eda14cbcSMatt Macy 1470*eda14cbcSMatt Macy return (code); 1471*eda14cbcSMatt Macy } 1472*eda14cbcSMatt Macy 1473*eda14cbcSMatt Macy int 1474*eda14cbcSMatt Macy vdev_raidz_reconstruct(raidz_map_t *rm, const int *t, int nt) 1475*eda14cbcSMatt Macy { 1476*eda14cbcSMatt Macy int tgts[VDEV_RAIDZ_MAXPARITY], *dt; 1477*eda14cbcSMatt Macy int ntgts; 1478*eda14cbcSMatt Macy int i, c, ret; 1479*eda14cbcSMatt Macy int code; 1480*eda14cbcSMatt Macy int nbadparity, nbaddata; 1481*eda14cbcSMatt Macy int parity_valid[VDEV_RAIDZ_MAXPARITY]; 1482*eda14cbcSMatt Macy 1483*eda14cbcSMatt Macy /* 1484*eda14cbcSMatt Macy * The tgts list must already be sorted. 1485*eda14cbcSMatt Macy */ 1486*eda14cbcSMatt Macy for (i = 1; i < nt; i++) { 1487*eda14cbcSMatt Macy ASSERT(t[i] > t[i - 1]); 1488*eda14cbcSMatt Macy } 1489*eda14cbcSMatt Macy 1490*eda14cbcSMatt Macy nbadparity = rm->rm_firstdatacol; 1491*eda14cbcSMatt Macy nbaddata = rm->rm_cols - nbadparity; 1492*eda14cbcSMatt Macy ntgts = 0; 1493*eda14cbcSMatt Macy for (i = 0, c = 0; c < rm->rm_cols; c++) { 1494*eda14cbcSMatt Macy if (c < rm->rm_firstdatacol) 1495*eda14cbcSMatt Macy parity_valid[c] = B_FALSE; 1496*eda14cbcSMatt Macy 1497*eda14cbcSMatt Macy if (i < nt && c == t[i]) { 1498*eda14cbcSMatt Macy tgts[ntgts++] = c; 1499*eda14cbcSMatt Macy i++; 1500*eda14cbcSMatt Macy } else if (rm->rm_col[c].rc_error != 0) { 1501*eda14cbcSMatt Macy tgts[ntgts++] = c; 1502*eda14cbcSMatt Macy } else if (c >= rm->rm_firstdatacol) { 1503*eda14cbcSMatt Macy nbaddata--; 1504*eda14cbcSMatt Macy } else { 1505*eda14cbcSMatt Macy parity_valid[c] = B_TRUE; 1506*eda14cbcSMatt Macy nbadparity--; 1507*eda14cbcSMatt Macy } 1508*eda14cbcSMatt Macy } 1509*eda14cbcSMatt Macy 1510*eda14cbcSMatt Macy ASSERT(ntgts >= nt); 1511*eda14cbcSMatt Macy ASSERT(nbaddata >= 0); 1512*eda14cbcSMatt Macy ASSERT(nbaddata + nbadparity == ntgts); 1513*eda14cbcSMatt Macy 1514*eda14cbcSMatt Macy dt = &tgts[nbadparity]; 1515*eda14cbcSMatt Macy 1516*eda14cbcSMatt Macy /* Reconstruct using the new math implementation */ 1517*eda14cbcSMatt Macy ret = vdev_raidz_math_reconstruct(rm, parity_valid, dt, nbaddata); 1518*eda14cbcSMatt Macy if (ret != RAIDZ_ORIGINAL_IMPL) 1519*eda14cbcSMatt Macy return (ret); 1520*eda14cbcSMatt Macy 1521*eda14cbcSMatt Macy /* 1522*eda14cbcSMatt Macy * See if we can use any of our optimized reconstruction routines. 1523*eda14cbcSMatt Macy */ 1524*eda14cbcSMatt Macy switch (nbaddata) { 1525*eda14cbcSMatt Macy case 1: 1526*eda14cbcSMatt Macy if (parity_valid[VDEV_RAIDZ_P]) 1527*eda14cbcSMatt Macy return (vdev_raidz_reconstruct_p(rm, dt, 1)); 1528*eda14cbcSMatt Macy 1529*eda14cbcSMatt Macy ASSERT(rm->rm_firstdatacol > 1); 1530*eda14cbcSMatt Macy 1531*eda14cbcSMatt Macy if (parity_valid[VDEV_RAIDZ_Q]) 1532*eda14cbcSMatt Macy return (vdev_raidz_reconstruct_q(rm, dt, 1)); 1533*eda14cbcSMatt Macy 1534*eda14cbcSMatt Macy ASSERT(rm->rm_firstdatacol > 2); 1535*eda14cbcSMatt Macy break; 1536*eda14cbcSMatt Macy 1537*eda14cbcSMatt Macy case 2: 1538*eda14cbcSMatt Macy ASSERT(rm->rm_firstdatacol > 1); 1539*eda14cbcSMatt Macy 1540*eda14cbcSMatt Macy if (parity_valid[VDEV_RAIDZ_P] && 1541*eda14cbcSMatt Macy parity_valid[VDEV_RAIDZ_Q]) 1542*eda14cbcSMatt Macy return (vdev_raidz_reconstruct_pq(rm, dt, 2)); 1543*eda14cbcSMatt Macy 1544*eda14cbcSMatt Macy ASSERT(rm->rm_firstdatacol > 2); 1545*eda14cbcSMatt Macy 1546*eda14cbcSMatt Macy break; 1547*eda14cbcSMatt Macy } 1548*eda14cbcSMatt Macy 1549*eda14cbcSMatt Macy code = vdev_raidz_reconstruct_general(rm, tgts, ntgts); 1550*eda14cbcSMatt Macy ASSERT(code < (1 << VDEV_RAIDZ_MAXPARITY)); 1551*eda14cbcSMatt Macy ASSERT(code > 0); 1552*eda14cbcSMatt Macy return (code); 1553*eda14cbcSMatt Macy } 1554*eda14cbcSMatt Macy 1555*eda14cbcSMatt Macy static int 1556*eda14cbcSMatt Macy vdev_raidz_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize, 1557*eda14cbcSMatt Macy uint64_t *logical_ashift, uint64_t *physical_ashift) 1558*eda14cbcSMatt Macy { 1559*eda14cbcSMatt Macy vdev_t *cvd; 1560*eda14cbcSMatt Macy uint64_t nparity = vd->vdev_nparity; 1561*eda14cbcSMatt Macy int c; 1562*eda14cbcSMatt Macy int lasterror = 0; 1563*eda14cbcSMatt Macy int numerrors = 0; 1564*eda14cbcSMatt Macy 1565*eda14cbcSMatt Macy ASSERT(nparity > 0); 1566*eda14cbcSMatt Macy 1567*eda14cbcSMatt Macy if (nparity > VDEV_RAIDZ_MAXPARITY || 1568*eda14cbcSMatt Macy vd->vdev_children < nparity + 1) { 1569*eda14cbcSMatt Macy vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 1570*eda14cbcSMatt Macy return (SET_ERROR(EINVAL)); 1571*eda14cbcSMatt Macy } 1572*eda14cbcSMatt Macy 1573*eda14cbcSMatt Macy vdev_open_children(vd); 1574*eda14cbcSMatt Macy 1575*eda14cbcSMatt Macy for (c = 0; c < vd->vdev_children; c++) { 1576*eda14cbcSMatt Macy cvd = vd->vdev_child[c]; 1577*eda14cbcSMatt Macy 1578*eda14cbcSMatt Macy if (cvd->vdev_open_error != 0) { 1579*eda14cbcSMatt Macy lasterror = cvd->vdev_open_error; 1580*eda14cbcSMatt Macy numerrors++; 1581*eda14cbcSMatt Macy continue; 1582*eda14cbcSMatt Macy } 1583*eda14cbcSMatt Macy 1584*eda14cbcSMatt Macy *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1; 1585*eda14cbcSMatt Macy *max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1; 1586*eda14cbcSMatt Macy *logical_ashift = MAX(*logical_ashift, cvd->vdev_ashift); 1587*eda14cbcSMatt Macy *physical_ashift = MAX(*physical_ashift, 1588*eda14cbcSMatt Macy cvd->vdev_physical_ashift); 1589*eda14cbcSMatt Macy } 1590*eda14cbcSMatt Macy 1591*eda14cbcSMatt Macy *asize *= vd->vdev_children; 1592*eda14cbcSMatt Macy *max_asize *= vd->vdev_children; 1593*eda14cbcSMatt Macy 1594*eda14cbcSMatt Macy if (numerrors > nparity) { 1595*eda14cbcSMatt Macy vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS; 1596*eda14cbcSMatt Macy return (lasterror); 1597*eda14cbcSMatt Macy } 1598*eda14cbcSMatt Macy 1599*eda14cbcSMatt Macy return (0); 1600*eda14cbcSMatt Macy } 1601*eda14cbcSMatt Macy 1602*eda14cbcSMatt Macy static void 1603*eda14cbcSMatt Macy vdev_raidz_close(vdev_t *vd) 1604*eda14cbcSMatt Macy { 1605*eda14cbcSMatt Macy int c; 1606*eda14cbcSMatt Macy 1607*eda14cbcSMatt Macy for (c = 0; c < vd->vdev_children; c++) 1608*eda14cbcSMatt Macy vdev_close(vd->vdev_child[c]); 1609*eda14cbcSMatt Macy } 1610*eda14cbcSMatt Macy 1611*eda14cbcSMatt Macy static uint64_t 1612*eda14cbcSMatt Macy vdev_raidz_asize(vdev_t *vd, uint64_t psize) 1613*eda14cbcSMatt Macy { 1614*eda14cbcSMatt Macy uint64_t asize; 1615*eda14cbcSMatt Macy uint64_t ashift = vd->vdev_top->vdev_ashift; 1616*eda14cbcSMatt Macy uint64_t cols = vd->vdev_children; 1617*eda14cbcSMatt Macy uint64_t nparity = vd->vdev_nparity; 1618*eda14cbcSMatt Macy 1619*eda14cbcSMatt Macy asize = ((psize - 1) >> ashift) + 1; 1620*eda14cbcSMatt Macy asize += nparity * ((asize + cols - nparity - 1) / (cols - nparity)); 1621*eda14cbcSMatt Macy asize = roundup(asize, nparity + 1) << ashift; 1622*eda14cbcSMatt Macy 1623*eda14cbcSMatt Macy return (asize); 1624*eda14cbcSMatt Macy } 1625*eda14cbcSMatt Macy 1626*eda14cbcSMatt Macy static void 1627*eda14cbcSMatt Macy vdev_raidz_child_done(zio_t *zio) 1628*eda14cbcSMatt Macy { 1629*eda14cbcSMatt Macy raidz_col_t *rc = zio->io_private; 1630*eda14cbcSMatt Macy 1631*eda14cbcSMatt Macy rc->rc_error = zio->io_error; 1632*eda14cbcSMatt Macy rc->rc_tried = 1; 1633*eda14cbcSMatt Macy rc->rc_skipped = 0; 1634*eda14cbcSMatt Macy } 1635*eda14cbcSMatt Macy 1636*eda14cbcSMatt Macy static void 1637*eda14cbcSMatt Macy vdev_raidz_io_verify(zio_t *zio, raidz_map_t *rm, int col) 1638*eda14cbcSMatt Macy { 1639*eda14cbcSMatt Macy #ifdef ZFS_DEBUG 1640*eda14cbcSMatt Macy vdev_t *vd = zio->io_vd; 1641*eda14cbcSMatt Macy vdev_t *tvd = vd->vdev_top; 1642*eda14cbcSMatt Macy 1643*eda14cbcSMatt Macy range_seg64_t logical_rs, physical_rs; 1644*eda14cbcSMatt Macy logical_rs.rs_start = zio->io_offset; 1645*eda14cbcSMatt Macy logical_rs.rs_end = logical_rs.rs_start + 1646*eda14cbcSMatt Macy vdev_raidz_asize(zio->io_vd, zio->io_size); 1647*eda14cbcSMatt Macy 1648*eda14cbcSMatt Macy raidz_col_t *rc = &rm->rm_col[col]; 1649*eda14cbcSMatt Macy vdev_t *cvd = vd->vdev_child[rc->rc_devidx]; 1650*eda14cbcSMatt Macy 1651*eda14cbcSMatt Macy vdev_xlate(cvd, &logical_rs, &physical_rs); 1652*eda14cbcSMatt Macy ASSERT3U(rc->rc_offset, ==, physical_rs.rs_start); 1653*eda14cbcSMatt Macy ASSERT3U(rc->rc_offset, <, physical_rs.rs_end); 1654*eda14cbcSMatt Macy /* 1655*eda14cbcSMatt Macy * It would be nice to assert that rs_end is equal 1656*eda14cbcSMatt Macy * to rc_offset + rc_size but there might be an 1657*eda14cbcSMatt Macy * optional I/O at the end that is not accounted in 1658*eda14cbcSMatt Macy * rc_size. 1659*eda14cbcSMatt Macy */ 1660*eda14cbcSMatt Macy if (physical_rs.rs_end > rc->rc_offset + rc->rc_size) { 1661*eda14cbcSMatt Macy ASSERT3U(physical_rs.rs_end, ==, rc->rc_offset + 1662*eda14cbcSMatt Macy rc->rc_size + (1 << tvd->vdev_ashift)); 1663*eda14cbcSMatt Macy } else { 1664*eda14cbcSMatt Macy ASSERT3U(physical_rs.rs_end, ==, rc->rc_offset + rc->rc_size); 1665*eda14cbcSMatt Macy } 1666*eda14cbcSMatt Macy #endif 1667*eda14cbcSMatt Macy } 1668*eda14cbcSMatt Macy 1669*eda14cbcSMatt Macy /* 1670*eda14cbcSMatt Macy * Start an IO operation on a RAIDZ VDev 1671*eda14cbcSMatt Macy * 1672*eda14cbcSMatt Macy * Outline: 1673*eda14cbcSMatt Macy * - For write operations: 1674*eda14cbcSMatt Macy * 1. Generate the parity data 1675*eda14cbcSMatt Macy * 2. Create child zio write operations to each column's vdev, for both 1676*eda14cbcSMatt Macy * data and parity. 1677*eda14cbcSMatt Macy * 3. If the column skips any sectors for padding, create optional dummy 1678*eda14cbcSMatt Macy * write zio children for those areas to improve aggregation continuity. 1679*eda14cbcSMatt Macy * - For read operations: 1680*eda14cbcSMatt Macy * 1. Create child zio read operations to each data column's vdev to read 1681*eda14cbcSMatt Macy * the range of data required for zio. 1682*eda14cbcSMatt Macy * 2. If this is a scrub or resilver operation, or if any of the data 1683*eda14cbcSMatt Macy * vdevs have had errors, then create zio read operations to the parity 1684*eda14cbcSMatt Macy * columns' VDevs as well. 1685*eda14cbcSMatt Macy */ 1686*eda14cbcSMatt Macy static void 1687*eda14cbcSMatt Macy vdev_raidz_io_start(zio_t *zio) 1688*eda14cbcSMatt Macy { 1689*eda14cbcSMatt Macy vdev_t *vd = zio->io_vd; 1690*eda14cbcSMatt Macy vdev_t *tvd = vd->vdev_top; 1691*eda14cbcSMatt Macy vdev_t *cvd; 1692*eda14cbcSMatt Macy raidz_map_t *rm; 1693*eda14cbcSMatt Macy raidz_col_t *rc; 1694*eda14cbcSMatt Macy int c, i; 1695*eda14cbcSMatt Macy 1696*eda14cbcSMatt Macy rm = vdev_raidz_map_alloc(zio, tvd->vdev_ashift, vd->vdev_children, 1697*eda14cbcSMatt Macy vd->vdev_nparity); 1698*eda14cbcSMatt Macy 1699*eda14cbcSMatt Macy ASSERT3U(rm->rm_asize, ==, vdev_psize_to_asize(vd, zio->io_size)); 1700*eda14cbcSMatt Macy 1701*eda14cbcSMatt Macy if (zio->io_type == ZIO_TYPE_WRITE) { 1702*eda14cbcSMatt Macy vdev_raidz_generate_parity(rm); 1703*eda14cbcSMatt Macy 1704*eda14cbcSMatt Macy for (c = 0; c < rm->rm_cols; c++) { 1705*eda14cbcSMatt Macy rc = &rm->rm_col[c]; 1706*eda14cbcSMatt Macy cvd = vd->vdev_child[rc->rc_devidx]; 1707*eda14cbcSMatt Macy 1708*eda14cbcSMatt Macy /* 1709*eda14cbcSMatt Macy * Verify physical to logical translation. 1710*eda14cbcSMatt Macy */ 1711*eda14cbcSMatt Macy vdev_raidz_io_verify(zio, rm, c); 1712*eda14cbcSMatt Macy 1713*eda14cbcSMatt Macy zio_nowait(zio_vdev_child_io(zio, NULL, cvd, 1714*eda14cbcSMatt Macy rc->rc_offset, rc->rc_abd, rc->rc_size, 1715*eda14cbcSMatt Macy zio->io_type, zio->io_priority, 0, 1716*eda14cbcSMatt Macy vdev_raidz_child_done, rc)); 1717*eda14cbcSMatt Macy } 1718*eda14cbcSMatt Macy 1719*eda14cbcSMatt Macy /* 1720*eda14cbcSMatt Macy * Generate optional I/Os for any skipped sectors to improve 1721*eda14cbcSMatt Macy * aggregation contiguity. 1722*eda14cbcSMatt Macy */ 1723*eda14cbcSMatt Macy for (c = rm->rm_skipstart, i = 0; i < rm->rm_nskip; c++, i++) { 1724*eda14cbcSMatt Macy ASSERT(c <= rm->rm_scols); 1725*eda14cbcSMatt Macy if (c == rm->rm_scols) 1726*eda14cbcSMatt Macy c = 0; 1727*eda14cbcSMatt Macy rc = &rm->rm_col[c]; 1728*eda14cbcSMatt Macy cvd = vd->vdev_child[rc->rc_devidx]; 1729*eda14cbcSMatt Macy zio_nowait(zio_vdev_child_io(zio, NULL, cvd, 1730*eda14cbcSMatt Macy rc->rc_offset + rc->rc_size, NULL, 1731*eda14cbcSMatt Macy 1 << tvd->vdev_ashift, 1732*eda14cbcSMatt Macy zio->io_type, zio->io_priority, 1733*eda14cbcSMatt Macy ZIO_FLAG_NODATA | ZIO_FLAG_OPTIONAL, NULL, NULL)); 1734*eda14cbcSMatt Macy } 1735*eda14cbcSMatt Macy 1736*eda14cbcSMatt Macy zio_execute(zio); 1737*eda14cbcSMatt Macy return; 1738*eda14cbcSMatt Macy } 1739*eda14cbcSMatt Macy 1740*eda14cbcSMatt Macy ASSERT(zio->io_type == ZIO_TYPE_READ); 1741*eda14cbcSMatt Macy 1742*eda14cbcSMatt Macy /* 1743*eda14cbcSMatt Macy * Iterate over the columns in reverse order so that we hit the parity 1744*eda14cbcSMatt Macy * last -- any errors along the way will force us to read the parity. 1745*eda14cbcSMatt Macy */ 1746*eda14cbcSMatt Macy for (c = rm->rm_cols - 1; c >= 0; c--) { 1747*eda14cbcSMatt Macy rc = &rm->rm_col[c]; 1748*eda14cbcSMatt Macy cvd = vd->vdev_child[rc->rc_devidx]; 1749*eda14cbcSMatt Macy if (!vdev_readable(cvd)) { 1750*eda14cbcSMatt Macy if (c >= rm->rm_firstdatacol) 1751*eda14cbcSMatt Macy rm->rm_missingdata++; 1752*eda14cbcSMatt Macy else 1753*eda14cbcSMatt Macy rm->rm_missingparity++; 1754*eda14cbcSMatt Macy rc->rc_error = SET_ERROR(ENXIO); 1755*eda14cbcSMatt Macy rc->rc_tried = 1; /* don't even try */ 1756*eda14cbcSMatt Macy rc->rc_skipped = 1; 1757*eda14cbcSMatt Macy continue; 1758*eda14cbcSMatt Macy } 1759*eda14cbcSMatt Macy if (vdev_dtl_contains(cvd, DTL_MISSING, zio->io_txg, 1)) { 1760*eda14cbcSMatt Macy if (c >= rm->rm_firstdatacol) 1761*eda14cbcSMatt Macy rm->rm_missingdata++; 1762*eda14cbcSMatt Macy else 1763*eda14cbcSMatt Macy rm->rm_missingparity++; 1764*eda14cbcSMatt Macy rc->rc_error = SET_ERROR(ESTALE); 1765*eda14cbcSMatt Macy rc->rc_skipped = 1; 1766*eda14cbcSMatt Macy continue; 1767*eda14cbcSMatt Macy } 1768*eda14cbcSMatt Macy if (c >= rm->rm_firstdatacol || rm->rm_missingdata > 0 || 1769*eda14cbcSMatt Macy (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) { 1770*eda14cbcSMatt Macy zio_nowait(zio_vdev_child_io(zio, NULL, cvd, 1771*eda14cbcSMatt Macy rc->rc_offset, rc->rc_abd, rc->rc_size, 1772*eda14cbcSMatt Macy zio->io_type, zio->io_priority, 0, 1773*eda14cbcSMatt Macy vdev_raidz_child_done, rc)); 1774*eda14cbcSMatt Macy } 1775*eda14cbcSMatt Macy } 1776*eda14cbcSMatt Macy 1777*eda14cbcSMatt Macy zio_execute(zio); 1778*eda14cbcSMatt Macy } 1779*eda14cbcSMatt Macy 1780*eda14cbcSMatt Macy 1781*eda14cbcSMatt Macy /* 1782*eda14cbcSMatt Macy * Report a checksum error for a child of a RAID-Z device. 1783*eda14cbcSMatt Macy */ 1784*eda14cbcSMatt Macy static void 1785*eda14cbcSMatt Macy raidz_checksum_error(zio_t *zio, raidz_col_t *rc, abd_t *bad_data) 1786*eda14cbcSMatt Macy { 1787*eda14cbcSMatt Macy vdev_t *vd = zio->io_vd->vdev_child[rc->rc_devidx]; 1788*eda14cbcSMatt Macy 1789*eda14cbcSMatt Macy if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 1790*eda14cbcSMatt Macy zio_bad_cksum_t zbc; 1791*eda14cbcSMatt Macy raidz_map_t *rm = zio->io_vsd; 1792*eda14cbcSMatt Macy 1793*eda14cbcSMatt Macy mutex_enter(&vd->vdev_stat_lock); 1794*eda14cbcSMatt Macy vd->vdev_stat.vs_checksum_errors++; 1795*eda14cbcSMatt Macy mutex_exit(&vd->vdev_stat_lock); 1796*eda14cbcSMatt Macy 1797*eda14cbcSMatt Macy zbc.zbc_has_cksum = 0; 1798*eda14cbcSMatt Macy zbc.zbc_injected = rm->rm_ecksuminjected; 1799*eda14cbcSMatt Macy 1800*eda14cbcSMatt Macy zfs_ereport_post_checksum(zio->io_spa, vd, 1801*eda14cbcSMatt Macy &zio->io_bookmark, zio, rc->rc_offset, rc->rc_size, 1802*eda14cbcSMatt Macy rc->rc_abd, bad_data, &zbc); 1803*eda14cbcSMatt Macy } 1804*eda14cbcSMatt Macy } 1805*eda14cbcSMatt Macy 1806*eda14cbcSMatt Macy /* 1807*eda14cbcSMatt Macy * We keep track of whether or not there were any injected errors, so that 1808*eda14cbcSMatt Macy * any ereports we generate can note it. 1809*eda14cbcSMatt Macy */ 1810*eda14cbcSMatt Macy static int 1811*eda14cbcSMatt Macy raidz_checksum_verify(zio_t *zio) 1812*eda14cbcSMatt Macy { 1813*eda14cbcSMatt Macy zio_bad_cksum_t zbc; 1814*eda14cbcSMatt Macy raidz_map_t *rm = zio->io_vsd; 1815*eda14cbcSMatt Macy 1816*eda14cbcSMatt Macy bzero(&zbc, sizeof (zio_bad_cksum_t)); 1817*eda14cbcSMatt Macy 1818*eda14cbcSMatt Macy int ret = zio_checksum_error(zio, &zbc); 1819*eda14cbcSMatt Macy if (ret != 0 && zbc.zbc_injected != 0) 1820*eda14cbcSMatt Macy rm->rm_ecksuminjected = 1; 1821*eda14cbcSMatt Macy 1822*eda14cbcSMatt Macy return (ret); 1823*eda14cbcSMatt Macy } 1824*eda14cbcSMatt Macy 1825*eda14cbcSMatt Macy /* 1826*eda14cbcSMatt Macy * Generate the parity from the data columns. If we tried and were able to 1827*eda14cbcSMatt Macy * read the parity without error, verify that the generated parity matches the 1828*eda14cbcSMatt Macy * data we read. If it doesn't, we fire off a checksum error. Return the 1829*eda14cbcSMatt Macy * number such failures. 1830*eda14cbcSMatt Macy */ 1831*eda14cbcSMatt Macy static int 1832*eda14cbcSMatt Macy raidz_parity_verify(zio_t *zio, raidz_map_t *rm) 1833*eda14cbcSMatt Macy { 1834*eda14cbcSMatt Macy abd_t *orig[VDEV_RAIDZ_MAXPARITY]; 1835*eda14cbcSMatt Macy int c, ret = 0; 1836*eda14cbcSMatt Macy raidz_col_t *rc; 1837*eda14cbcSMatt Macy 1838*eda14cbcSMatt Macy blkptr_t *bp = zio->io_bp; 1839*eda14cbcSMatt Macy enum zio_checksum checksum = (bp == NULL ? zio->io_prop.zp_checksum : 1840*eda14cbcSMatt Macy (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp))); 1841*eda14cbcSMatt Macy 1842*eda14cbcSMatt Macy if (checksum == ZIO_CHECKSUM_NOPARITY) 1843*eda14cbcSMatt Macy return (ret); 1844*eda14cbcSMatt Macy 1845*eda14cbcSMatt Macy for (c = 0; c < rm->rm_firstdatacol; c++) { 1846*eda14cbcSMatt Macy rc = &rm->rm_col[c]; 1847*eda14cbcSMatt Macy if (!rc->rc_tried || rc->rc_error != 0) 1848*eda14cbcSMatt Macy continue; 1849*eda14cbcSMatt Macy 1850*eda14cbcSMatt Macy orig[c] = abd_alloc_sametype(rc->rc_abd, rc->rc_size); 1851*eda14cbcSMatt Macy abd_copy(orig[c], rc->rc_abd, rc->rc_size); 1852*eda14cbcSMatt Macy } 1853*eda14cbcSMatt Macy 1854*eda14cbcSMatt Macy vdev_raidz_generate_parity(rm); 1855*eda14cbcSMatt Macy 1856*eda14cbcSMatt Macy for (c = 0; c < rm->rm_firstdatacol; c++) { 1857*eda14cbcSMatt Macy rc = &rm->rm_col[c]; 1858*eda14cbcSMatt Macy if (!rc->rc_tried || rc->rc_error != 0) 1859*eda14cbcSMatt Macy continue; 1860*eda14cbcSMatt Macy if (abd_cmp(orig[c], rc->rc_abd) != 0) { 1861*eda14cbcSMatt Macy raidz_checksum_error(zio, rc, orig[c]); 1862*eda14cbcSMatt Macy rc->rc_error = SET_ERROR(ECKSUM); 1863*eda14cbcSMatt Macy ret++; 1864*eda14cbcSMatt Macy } 1865*eda14cbcSMatt Macy abd_free(orig[c]); 1866*eda14cbcSMatt Macy } 1867*eda14cbcSMatt Macy 1868*eda14cbcSMatt Macy return (ret); 1869*eda14cbcSMatt Macy } 1870*eda14cbcSMatt Macy 1871*eda14cbcSMatt Macy static int 1872*eda14cbcSMatt Macy vdev_raidz_worst_error(raidz_map_t *rm) 1873*eda14cbcSMatt Macy { 1874*eda14cbcSMatt Macy int error = 0; 1875*eda14cbcSMatt Macy 1876*eda14cbcSMatt Macy for (int c = 0; c < rm->rm_cols; c++) 1877*eda14cbcSMatt Macy error = zio_worst_error(error, rm->rm_col[c].rc_error); 1878*eda14cbcSMatt Macy 1879*eda14cbcSMatt Macy return (error); 1880*eda14cbcSMatt Macy } 1881*eda14cbcSMatt Macy 1882*eda14cbcSMatt Macy /* 1883*eda14cbcSMatt Macy * Iterate over all combinations of bad data and attempt a reconstruction. 1884*eda14cbcSMatt Macy * Note that the algorithm below is non-optimal because it doesn't take into 1885*eda14cbcSMatt Macy * account how reconstruction is actually performed. For example, with 1886*eda14cbcSMatt Macy * triple-parity RAID-Z the reconstruction procedure is the same if column 4 1887*eda14cbcSMatt Macy * is targeted as invalid as if columns 1 and 4 are targeted since in both 1888*eda14cbcSMatt Macy * cases we'd only use parity information in column 0. 1889*eda14cbcSMatt Macy */ 1890*eda14cbcSMatt Macy static int 1891*eda14cbcSMatt Macy vdev_raidz_combrec(zio_t *zio, int total_errors, int data_errors) 1892*eda14cbcSMatt Macy { 1893*eda14cbcSMatt Macy raidz_map_t *rm = zio->io_vsd; 1894*eda14cbcSMatt Macy raidz_col_t *rc; 1895*eda14cbcSMatt Macy abd_t *orig[VDEV_RAIDZ_MAXPARITY]; 1896*eda14cbcSMatt Macy int tstore[VDEV_RAIDZ_MAXPARITY + 2]; 1897*eda14cbcSMatt Macy int *tgts = &tstore[1]; 1898*eda14cbcSMatt Macy int curr, next, i, c, n; 1899*eda14cbcSMatt Macy int code, ret = 0; 1900*eda14cbcSMatt Macy 1901*eda14cbcSMatt Macy ASSERT(total_errors < rm->rm_firstdatacol); 1902*eda14cbcSMatt Macy 1903*eda14cbcSMatt Macy /* 1904*eda14cbcSMatt Macy * This simplifies one edge condition. 1905*eda14cbcSMatt Macy */ 1906*eda14cbcSMatt Macy tgts[-1] = -1; 1907*eda14cbcSMatt Macy 1908*eda14cbcSMatt Macy for (n = 1; n <= rm->rm_firstdatacol - total_errors; n++) { 1909*eda14cbcSMatt Macy /* 1910*eda14cbcSMatt Macy * Initialize the targets array by finding the first n columns 1911*eda14cbcSMatt Macy * that contain no error. 1912*eda14cbcSMatt Macy * 1913*eda14cbcSMatt Macy * If there were no data errors, we need to ensure that we're 1914*eda14cbcSMatt Macy * always explicitly attempting to reconstruct at least one 1915*eda14cbcSMatt Macy * data column. To do this, we simply push the highest target 1916*eda14cbcSMatt Macy * up into the data columns. 1917*eda14cbcSMatt Macy */ 1918*eda14cbcSMatt Macy for (c = 0, i = 0; i < n; i++) { 1919*eda14cbcSMatt Macy if (i == n - 1 && data_errors == 0 && 1920*eda14cbcSMatt Macy c < rm->rm_firstdatacol) { 1921*eda14cbcSMatt Macy c = rm->rm_firstdatacol; 1922*eda14cbcSMatt Macy } 1923*eda14cbcSMatt Macy 1924*eda14cbcSMatt Macy while (rm->rm_col[c].rc_error != 0) { 1925*eda14cbcSMatt Macy c++; 1926*eda14cbcSMatt Macy ASSERT3S(c, <, rm->rm_cols); 1927*eda14cbcSMatt Macy } 1928*eda14cbcSMatt Macy 1929*eda14cbcSMatt Macy tgts[i] = c++; 1930*eda14cbcSMatt Macy } 1931*eda14cbcSMatt Macy 1932*eda14cbcSMatt Macy /* 1933*eda14cbcSMatt Macy * Setting tgts[n] simplifies the other edge condition. 1934*eda14cbcSMatt Macy */ 1935*eda14cbcSMatt Macy tgts[n] = rm->rm_cols; 1936*eda14cbcSMatt Macy 1937*eda14cbcSMatt Macy /* 1938*eda14cbcSMatt Macy * These buffers were allocated in previous iterations. 1939*eda14cbcSMatt Macy */ 1940*eda14cbcSMatt Macy for (i = 0; i < n - 1; i++) { 1941*eda14cbcSMatt Macy ASSERT(orig[i] != NULL); 1942*eda14cbcSMatt Macy } 1943*eda14cbcSMatt Macy 1944*eda14cbcSMatt Macy orig[n - 1] = abd_alloc_sametype(rm->rm_col[0].rc_abd, 1945*eda14cbcSMatt Macy rm->rm_col[0].rc_size); 1946*eda14cbcSMatt Macy 1947*eda14cbcSMatt Macy curr = 0; 1948*eda14cbcSMatt Macy next = tgts[curr]; 1949*eda14cbcSMatt Macy 1950*eda14cbcSMatt Macy while (curr != n) { 1951*eda14cbcSMatt Macy tgts[curr] = next; 1952*eda14cbcSMatt Macy curr = 0; 1953*eda14cbcSMatt Macy 1954*eda14cbcSMatt Macy /* 1955*eda14cbcSMatt Macy * Save off the original data that we're going to 1956*eda14cbcSMatt Macy * attempt to reconstruct. 1957*eda14cbcSMatt Macy */ 1958*eda14cbcSMatt Macy for (i = 0; i < n; i++) { 1959*eda14cbcSMatt Macy ASSERT(orig[i] != NULL); 1960*eda14cbcSMatt Macy c = tgts[i]; 1961*eda14cbcSMatt Macy ASSERT3S(c, >=, 0); 1962*eda14cbcSMatt Macy ASSERT3S(c, <, rm->rm_cols); 1963*eda14cbcSMatt Macy rc = &rm->rm_col[c]; 1964*eda14cbcSMatt Macy abd_copy(orig[i], rc->rc_abd, rc->rc_size); 1965*eda14cbcSMatt Macy } 1966*eda14cbcSMatt Macy 1967*eda14cbcSMatt Macy /* 1968*eda14cbcSMatt Macy * Attempt a reconstruction and exit the outer loop on 1969*eda14cbcSMatt Macy * success. 1970*eda14cbcSMatt Macy */ 1971*eda14cbcSMatt Macy code = vdev_raidz_reconstruct(rm, tgts, n); 1972*eda14cbcSMatt Macy if (raidz_checksum_verify(zio) == 0) { 1973*eda14cbcSMatt Macy 1974*eda14cbcSMatt Macy for (i = 0; i < n; i++) { 1975*eda14cbcSMatt Macy c = tgts[i]; 1976*eda14cbcSMatt Macy rc = &rm->rm_col[c]; 1977*eda14cbcSMatt Macy ASSERT(rc->rc_error == 0); 1978*eda14cbcSMatt Macy if (rc->rc_tried) 1979*eda14cbcSMatt Macy raidz_checksum_error(zio, rc, 1980*eda14cbcSMatt Macy orig[i]); 1981*eda14cbcSMatt Macy rc->rc_error = SET_ERROR(ECKSUM); 1982*eda14cbcSMatt Macy } 1983*eda14cbcSMatt Macy 1984*eda14cbcSMatt Macy ret = code; 1985*eda14cbcSMatt Macy goto done; 1986*eda14cbcSMatt Macy } 1987*eda14cbcSMatt Macy 1988*eda14cbcSMatt Macy /* 1989*eda14cbcSMatt Macy * Restore the original data. 1990*eda14cbcSMatt Macy */ 1991*eda14cbcSMatt Macy for (i = 0; i < n; i++) { 1992*eda14cbcSMatt Macy c = tgts[i]; 1993*eda14cbcSMatt Macy rc = &rm->rm_col[c]; 1994*eda14cbcSMatt Macy abd_copy(rc->rc_abd, orig[i], rc->rc_size); 1995*eda14cbcSMatt Macy } 1996*eda14cbcSMatt Macy 1997*eda14cbcSMatt Macy do { 1998*eda14cbcSMatt Macy /* 1999*eda14cbcSMatt Macy * Find the next valid column after the curr 2000*eda14cbcSMatt Macy * position.. 2001*eda14cbcSMatt Macy */ 2002*eda14cbcSMatt Macy for (next = tgts[curr] + 1; 2003*eda14cbcSMatt Macy next < rm->rm_cols && 2004*eda14cbcSMatt Macy rm->rm_col[next].rc_error != 0; next++) 2005*eda14cbcSMatt Macy continue; 2006*eda14cbcSMatt Macy 2007*eda14cbcSMatt Macy ASSERT(next <= tgts[curr + 1]); 2008*eda14cbcSMatt Macy 2009*eda14cbcSMatt Macy /* 2010*eda14cbcSMatt Macy * If that spot is available, we're done here. 2011*eda14cbcSMatt Macy */ 2012*eda14cbcSMatt Macy if (next != tgts[curr + 1]) 2013*eda14cbcSMatt Macy break; 2014*eda14cbcSMatt Macy 2015*eda14cbcSMatt Macy /* 2016*eda14cbcSMatt Macy * Otherwise, find the next valid column after 2017*eda14cbcSMatt Macy * the previous position. 2018*eda14cbcSMatt Macy */ 2019*eda14cbcSMatt Macy for (c = tgts[curr - 1] + 1; 2020*eda14cbcSMatt Macy rm->rm_col[c].rc_error != 0; c++) 2021*eda14cbcSMatt Macy continue; 2022*eda14cbcSMatt Macy 2023*eda14cbcSMatt Macy tgts[curr] = c; 2024*eda14cbcSMatt Macy curr++; 2025*eda14cbcSMatt Macy 2026*eda14cbcSMatt Macy } while (curr != n); 2027*eda14cbcSMatt Macy } 2028*eda14cbcSMatt Macy } 2029*eda14cbcSMatt Macy n--; 2030*eda14cbcSMatt Macy done: 2031*eda14cbcSMatt Macy for (i = 0; i < n; i++) 2032*eda14cbcSMatt Macy abd_free(orig[i]); 2033*eda14cbcSMatt Macy 2034*eda14cbcSMatt Macy return (ret); 2035*eda14cbcSMatt Macy } 2036*eda14cbcSMatt Macy 2037*eda14cbcSMatt Macy /* 2038*eda14cbcSMatt Macy * Complete an IO operation on a RAIDZ VDev 2039*eda14cbcSMatt Macy * 2040*eda14cbcSMatt Macy * Outline: 2041*eda14cbcSMatt Macy * - For write operations: 2042*eda14cbcSMatt Macy * 1. Check for errors on the child IOs. 2043*eda14cbcSMatt Macy * 2. Return, setting an error code if too few child VDevs were written 2044*eda14cbcSMatt Macy * to reconstruct the data later. Note that partial writes are 2045*eda14cbcSMatt Macy * considered successful if they can be reconstructed at all. 2046*eda14cbcSMatt Macy * - For read operations: 2047*eda14cbcSMatt Macy * 1. Check for errors on the child IOs. 2048*eda14cbcSMatt Macy * 2. If data errors occurred: 2049*eda14cbcSMatt Macy * a. Try to reassemble the data from the parity available. 2050*eda14cbcSMatt Macy * b. If we haven't yet read the parity drives, read them now. 2051*eda14cbcSMatt Macy * c. If all parity drives have been read but the data still doesn't 2052*eda14cbcSMatt Macy * reassemble with a correct checksum, then try combinatorial 2053*eda14cbcSMatt Macy * reconstruction. 2054*eda14cbcSMatt Macy * d. If that doesn't work, return an error. 2055*eda14cbcSMatt Macy * 3. If there were unexpected errors or this is a resilver operation, 2056*eda14cbcSMatt Macy * rewrite the vdevs that had errors. 2057*eda14cbcSMatt Macy */ 2058*eda14cbcSMatt Macy static void 2059*eda14cbcSMatt Macy vdev_raidz_io_done(zio_t *zio) 2060*eda14cbcSMatt Macy { 2061*eda14cbcSMatt Macy vdev_t *vd = zio->io_vd; 2062*eda14cbcSMatt Macy vdev_t *cvd; 2063*eda14cbcSMatt Macy raidz_map_t *rm = zio->io_vsd; 2064*eda14cbcSMatt Macy raidz_col_t *rc = NULL; 2065*eda14cbcSMatt Macy int unexpected_errors = 0; 2066*eda14cbcSMatt Macy int parity_errors = 0; 2067*eda14cbcSMatt Macy int parity_untried = 0; 2068*eda14cbcSMatt Macy int data_errors = 0; 2069*eda14cbcSMatt Macy int total_errors = 0; 2070*eda14cbcSMatt Macy int n, c; 2071*eda14cbcSMatt Macy int tgts[VDEV_RAIDZ_MAXPARITY]; 2072*eda14cbcSMatt Macy int code; 2073*eda14cbcSMatt Macy 2074*eda14cbcSMatt Macy ASSERT(zio->io_bp != NULL); /* XXX need to add code to enforce this */ 2075*eda14cbcSMatt Macy 2076*eda14cbcSMatt Macy ASSERT(rm->rm_missingparity <= rm->rm_firstdatacol); 2077*eda14cbcSMatt Macy ASSERT(rm->rm_missingdata <= rm->rm_cols - rm->rm_firstdatacol); 2078*eda14cbcSMatt Macy 2079*eda14cbcSMatt Macy for (c = 0; c < rm->rm_cols; c++) { 2080*eda14cbcSMatt Macy rc = &rm->rm_col[c]; 2081*eda14cbcSMatt Macy 2082*eda14cbcSMatt Macy if (rc->rc_error) { 2083*eda14cbcSMatt Macy ASSERT(rc->rc_error != ECKSUM); /* child has no bp */ 2084*eda14cbcSMatt Macy 2085*eda14cbcSMatt Macy if (c < rm->rm_firstdatacol) 2086*eda14cbcSMatt Macy parity_errors++; 2087*eda14cbcSMatt Macy else 2088*eda14cbcSMatt Macy data_errors++; 2089*eda14cbcSMatt Macy 2090*eda14cbcSMatt Macy if (!rc->rc_skipped) 2091*eda14cbcSMatt Macy unexpected_errors++; 2092*eda14cbcSMatt Macy 2093*eda14cbcSMatt Macy total_errors++; 2094*eda14cbcSMatt Macy } else if (c < rm->rm_firstdatacol && !rc->rc_tried) { 2095*eda14cbcSMatt Macy parity_untried++; 2096*eda14cbcSMatt Macy } 2097*eda14cbcSMatt Macy } 2098*eda14cbcSMatt Macy 2099*eda14cbcSMatt Macy if (zio->io_type == ZIO_TYPE_WRITE) { 2100*eda14cbcSMatt Macy /* 2101*eda14cbcSMatt Macy * XXX -- for now, treat partial writes as a success. 2102*eda14cbcSMatt Macy * (If we couldn't write enough columns to reconstruct 2103*eda14cbcSMatt Macy * the data, the I/O failed. Otherwise, good enough.) 2104*eda14cbcSMatt Macy * 2105*eda14cbcSMatt Macy * Now that we support write reallocation, it would be better 2106*eda14cbcSMatt Macy * to treat partial failure as real failure unless there are 2107*eda14cbcSMatt Macy * no non-degraded top-level vdevs left, and not update DTLs 2108*eda14cbcSMatt Macy * if we intend to reallocate. 2109*eda14cbcSMatt Macy */ 2110*eda14cbcSMatt Macy /* XXPOLICY */ 2111*eda14cbcSMatt Macy if (total_errors > rm->rm_firstdatacol) 2112*eda14cbcSMatt Macy zio->io_error = vdev_raidz_worst_error(rm); 2113*eda14cbcSMatt Macy 2114*eda14cbcSMatt Macy return; 2115*eda14cbcSMatt Macy } 2116*eda14cbcSMatt Macy 2117*eda14cbcSMatt Macy ASSERT(zio->io_type == ZIO_TYPE_READ); 2118*eda14cbcSMatt Macy /* 2119*eda14cbcSMatt Macy * There are three potential phases for a read: 2120*eda14cbcSMatt Macy * 1. produce valid data from the columns read 2121*eda14cbcSMatt Macy * 2. read all disks and try again 2122*eda14cbcSMatt Macy * 3. perform combinatorial reconstruction 2123*eda14cbcSMatt Macy * 2124*eda14cbcSMatt Macy * Each phase is progressively both more expensive and less likely to 2125*eda14cbcSMatt Macy * occur. If we encounter more errors than we can repair or all phases 2126*eda14cbcSMatt Macy * fail, we have no choice but to return an error. 2127*eda14cbcSMatt Macy */ 2128*eda14cbcSMatt Macy 2129*eda14cbcSMatt Macy /* 2130*eda14cbcSMatt Macy * If the number of errors we saw was correctable -- less than or equal 2131*eda14cbcSMatt Macy * to the number of parity disks read -- attempt to produce data that 2132*eda14cbcSMatt Macy * has a valid checksum. Naturally, this case applies in the absence of 2133*eda14cbcSMatt Macy * any errors. 2134*eda14cbcSMatt Macy */ 2135*eda14cbcSMatt Macy if (total_errors <= rm->rm_firstdatacol - parity_untried) { 2136*eda14cbcSMatt Macy if (data_errors == 0) { 2137*eda14cbcSMatt Macy if (raidz_checksum_verify(zio) == 0) { 2138*eda14cbcSMatt Macy /* 2139*eda14cbcSMatt Macy * If we read parity information (unnecessarily 2140*eda14cbcSMatt Macy * as it happens since no reconstruction was 2141*eda14cbcSMatt Macy * needed) regenerate and verify the parity. 2142*eda14cbcSMatt Macy * We also regenerate parity when resilvering 2143*eda14cbcSMatt Macy * so we can write it out to the failed device 2144*eda14cbcSMatt Macy * later. 2145*eda14cbcSMatt Macy */ 2146*eda14cbcSMatt Macy if (parity_errors + parity_untried < 2147*eda14cbcSMatt Macy rm->rm_firstdatacol || 2148*eda14cbcSMatt Macy (zio->io_flags & ZIO_FLAG_RESILVER)) { 2149*eda14cbcSMatt Macy n = raidz_parity_verify(zio, rm); 2150*eda14cbcSMatt Macy unexpected_errors += n; 2151*eda14cbcSMatt Macy ASSERT(parity_errors + n <= 2152*eda14cbcSMatt Macy rm->rm_firstdatacol); 2153*eda14cbcSMatt Macy } 2154*eda14cbcSMatt Macy goto done; 2155*eda14cbcSMatt Macy } 2156*eda14cbcSMatt Macy } else { 2157*eda14cbcSMatt Macy /* 2158*eda14cbcSMatt Macy * We either attempt to read all the parity columns or 2159*eda14cbcSMatt Macy * none of them. If we didn't try to read parity, we 2160*eda14cbcSMatt Macy * wouldn't be here in the correctable case. There must 2161*eda14cbcSMatt Macy * also have been fewer parity errors than parity 2162*eda14cbcSMatt Macy * columns or, again, we wouldn't be in this code path. 2163*eda14cbcSMatt Macy */ 2164*eda14cbcSMatt Macy ASSERT(parity_untried == 0); 2165*eda14cbcSMatt Macy ASSERT(parity_errors < rm->rm_firstdatacol); 2166*eda14cbcSMatt Macy 2167*eda14cbcSMatt Macy /* 2168*eda14cbcSMatt Macy * Identify the data columns that reported an error. 2169*eda14cbcSMatt Macy */ 2170*eda14cbcSMatt Macy n = 0; 2171*eda14cbcSMatt Macy for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { 2172*eda14cbcSMatt Macy rc = &rm->rm_col[c]; 2173*eda14cbcSMatt Macy if (rc->rc_error != 0) { 2174*eda14cbcSMatt Macy ASSERT(n < VDEV_RAIDZ_MAXPARITY); 2175*eda14cbcSMatt Macy tgts[n++] = c; 2176*eda14cbcSMatt Macy } 2177*eda14cbcSMatt Macy } 2178*eda14cbcSMatt Macy 2179*eda14cbcSMatt Macy ASSERT(rm->rm_firstdatacol >= n); 2180*eda14cbcSMatt Macy 2181*eda14cbcSMatt Macy code = vdev_raidz_reconstruct(rm, tgts, n); 2182*eda14cbcSMatt Macy 2183*eda14cbcSMatt Macy if (raidz_checksum_verify(zio) == 0) { 2184*eda14cbcSMatt Macy /* 2185*eda14cbcSMatt Macy * If we read more parity disks than were used 2186*eda14cbcSMatt Macy * for reconstruction, confirm that the other 2187*eda14cbcSMatt Macy * parity disks produced correct data. This 2188*eda14cbcSMatt Macy * routine is suboptimal in that it regenerates 2189*eda14cbcSMatt Macy * the parity that we already used in addition 2190*eda14cbcSMatt Macy * to the parity that we're attempting to 2191*eda14cbcSMatt Macy * verify, but this should be a relatively 2192*eda14cbcSMatt Macy * uncommon case, and can be optimized if it 2193*eda14cbcSMatt Macy * becomes a problem. Note that we regenerate 2194*eda14cbcSMatt Macy * parity when resilvering so we can write it 2195*eda14cbcSMatt Macy * out to failed devices later. 2196*eda14cbcSMatt Macy */ 2197*eda14cbcSMatt Macy if (parity_errors < rm->rm_firstdatacol - n || 2198*eda14cbcSMatt Macy (zio->io_flags & ZIO_FLAG_RESILVER)) { 2199*eda14cbcSMatt Macy n = raidz_parity_verify(zio, rm); 2200*eda14cbcSMatt Macy unexpected_errors += n; 2201*eda14cbcSMatt Macy ASSERT(parity_errors + n <= 2202*eda14cbcSMatt Macy rm->rm_firstdatacol); 2203*eda14cbcSMatt Macy } 2204*eda14cbcSMatt Macy 2205*eda14cbcSMatt Macy goto done; 2206*eda14cbcSMatt Macy } 2207*eda14cbcSMatt Macy } 2208*eda14cbcSMatt Macy } 2209*eda14cbcSMatt Macy 2210*eda14cbcSMatt Macy /* 2211*eda14cbcSMatt Macy * This isn't a typical situation -- either we got a read error or 2212*eda14cbcSMatt Macy * a child silently returned bad data. Read every block so we can 2213*eda14cbcSMatt Macy * try again with as much data and parity as we can track down. If 2214*eda14cbcSMatt Macy * we've already been through once before, all children will be marked 2215*eda14cbcSMatt Macy * as tried so we'll proceed to combinatorial reconstruction. 2216*eda14cbcSMatt Macy */ 2217*eda14cbcSMatt Macy unexpected_errors = 1; 2218*eda14cbcSMatt Macy rm->rm_missingdata = 0; 2219*eda14cbcSMatt Macy rm->rm_missingparity = 0; 2220*eda14cbcSMatt Macy 2221*eda14cbcSMatt Macy for (c = 0; c < rm->rm_cols; c++) { 2222*eda14cbcSMatt Macy if (rm->rm_col[c].rc_tried) 2223*eda14cbcSMatt Macy continue; 2224*eda14cbcSMatt Macy 2225*eda14cbcSMatt Macy zio_vdev_io_redone(zio); 2226*eda14cbcSMatt Macy do { 2227*eda14cbcSMatt Macy rc = &rm->rm_col[c]; 2228*eda14cbcSMatt Macy if (rc->rc_tried) 2229*eda14cbcSMatt Macy continue; 2230*eda14cbcSMatt Macy zio_nowait(zio_vdev_child_io(zio, NULL, 2231*eda14cbcSMatt Macy vd->vdev_child[rc->rc_devidx], 2232*eda14cbcSMatt Macy rc->rc_offset, rc->rc_abd, rc->rc_size, 2233*eda14cbcSMatt Macy zio->io_type, zio->io_priority, 0, 2234*eda14cbcSMatt Macy vdev_raidz_child_done, rc)); 2235*eda14cbcSMatt Macy } while (++c < rm->rm_cols); 2236*eda14cbcSMatt Macy 2237*eda14cbcSMatt Macy return; 2238*eda14cbcSMatt Macy } 2239*eda14cbcSMatt Macy 2240*eda14cbcSMatt Macy /* 2241*eda14cbcSMatt Macy * At this point we've attempted to reconstruct the data given the 2242*eda14cbcSMatt Macy * errors we detected, and we've attempted to read all columns. There 2243*eda14cbcSMatt Macy * must, therefore, be one or more additional problems -- silent errors 2244*eda14cbcSMatt Macy * resulting in invalid data rather than explicit I/O errors resulting 2245*eda14cbcSMatt Macy * in absent data. We check if there is enough additional data to 2246*eda14cbcSMatt Macy * possibly reconstruct the data and then perform combinatorial 2247*eda14cbcSMatt Macy * reconstruction over all possible combinations. If that fails, 2248*eda14cbcSMatt Macy * we're cooked. 2249*eda14cbcSMatt Macy */ 2250*eda14cbcSMatt Macy if (total_errors > rm->rm_firstdatacol) { 2251*eda14cbcSMatt Macy zio->io_error = vdev_raidz_worst_error(rm); 2252*eda14cbcSMatt Macy 2253*eda14cbcSMatt Macy } else if (total_errors < rm->rm_firstdatacol && 2254*eda14cbcSMatt Macy (code = vdev_raidz_combrec(zio, total_errors, data_errors)) != 0) { 2255*eda14cbcSMatt Macy /* 2256*eda14cbcSMatt Macy * If we didn't use all the available parity for the 2257*eda14cbcSMatt Macy * combinatorial reconstruction, verify that the remaining 2258*eda14cbcSMatt Macy * parity is correct. 2259*eda14cbcSMatt Macy */ 2260*eda14cbcSMatt Macy if (code != (1 << rm->rm_firstdatacol) - 1) 2261*eda14cbcSMatt Macy (void) raidz_parity_verify(zio, rm); 2262*eda14cbcSMatt Macy } else { 2263*eda14cbcSMatt Macy /* 2264*eda14cbcSMatt Macy * We're here because either: 2265*eda14cbcSMatt Macy * 2266*eda14cbcSMatt Macy * total_errors == rm_first_datacol, or 2267*eda14cbcSMatt Macy * vdev_raidz_combrec() failed 2268*eda14cbcSMatt Macy * 2269*eda14cbcSMatt Macy * In either case, there is enough bad data to prevent 2270*eda14cbcSMatt Macy * reconstruction. 2271*eda14cbcSMatt Macy * 2272*eda14cbcSMatt Macy * Start checksum ereports for all children which haven't 2273*eda14cbcSMatt Macy * failed, and the IO wasn't speculative. 2274*eda14cbcSMatt Macy */ 2275*eda14cbcSMatt Macy zio->io_error = SET_ERROR(ECKSUM); 2276*eda14cbcSMatt Macy 2277*eda14cbcSMatt Macy if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 2278*eda14cbcSMatt Macy for (c = 0; c < rm->rm_cols; c++) { 2279*eda14cbcSMatt Macy vdev_t *cvd; 2280*eda14cbcSMatt Macy rc = &rm->rm_col[c]; 2281*eda14cbcSMatt Macy cvd = vd->vdev_child[rc->rc_devidx]; 2282*eda14cbcSMatt Macy if (rc->rc_error == 0) { 2283*eda14cbcSMatt Macy zio_bad_cksum_t zbc; 2284*eda14cbcSMatt Macy zbc.zbc_has_cksum = 0; 2285*eda14cbcSMatt Macy zbc.zbc_injected = 2286*eda14cbcSMatt Macy rm->rm_ecksuminjected; 2287*eda14cbcSMatt Macy 2288*eda14cbcSMatt Macy mutex_enter(&cvd->vdev_stat_lock); 2289*eda14cbcSMatt Macy cvd->vdev_stat.vs_checksum_errors++; 2290*eda14cbcSMatt Macy mutex_exit(&cvd->vdev_stat_lock); 2291*eda14cbcSMatt Macy 2292*eda14cbcSMatt Macy zfs_ereport_start_checksum( 2293*eda14cbcSMatt Macy zio->io_spa, cvd, 2294*eda14cbcSMatt Macy &zio->io_bookmark, zio, 2295*eda14cbcSMatt Macy rc->rc_offset, rc->rc_size, 2296*eda14cbcSMatt Macy (void *)(uintptr_t)c, &zbc); 2297*eda14cbcSMatt Macy } 2298*eda14cbcSMatt Macy } 2299*eda14cbcSMatt Macy } 2300*eda14cbcSMatt Macy } 2301*eda14cbcSMatt Macy 2302*eda14cbcSMatt Macy done: 2303*eda14cbcSMatt Macy zio_checksum_verified(zio); 2304*eda14cbcSMatt Macy 2305*eda14cbcSMatt Macy if (zio->io_error == 0 && spa_writeable(zio->io_spa) && 2306*eda14cbcSMatt Macy (unexpected_errors || (zio->io_flags & ZIO_FLAG_RESILVER))) { 2307*eda14cbcSMatt Macy /* 2308*eda14cbcSMatt Macy * Use the good data we have in hand to repair damaged children. 2309*eda14cbcSMatt Macy */ 2310*eda14cbcSMatt Macy for (c = 0; c < rm->rm_cols; c++) { 2311*eda14cbcSMatt Macy rc = &rm->rm_col[c]; 2312*eda14cbcSMatt Macy cvd = vd->vdev_child[rc->rc_devidx]; 2313*eda14cbcSMatt Macy 2314*eda14cbcSMatt Macy if (rc->rc_error == 0) 2315*eda14cbcSMatt Macy continue; 2316*eda14cbcSMatt Macy 2317*eda14cbcSMatt Macy zio_nowait(zio_vdev_child_io(zio, NULL, cvd, 2318*eda14cbcSMatt Macy rc->rc_offset, rc->rc_abd, rc->rc_size, 2319*eda14cbcSMatt Macy ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE, 2320*eda14cbcSMatt Macy ZIO_FLAG_IO_REPAIR | (unexpected_errors ? 2321*eda14cbcSMatt Macy ZIO_FLAG_SELF_HEAL : 0), NULL, NULL)); 2322*eda14cbcSMatt Macy } 2323*eda14cbcSMatt Macy } 2324*eda14cbcSMatt Macy } 2325*eda14cbcSMatt Macy 2326*eda14cbcSMatt Macy static void 2327*eda14cbcSMatt Macy vdev_raidz_state_change(vdev_t *vd, int faulted, int degraded) 2328*eda14cbcSMatt Macy { 2329*eda14cbcSMatt Macy if (faulted > vd->vdev_nparity) 2330*eda14cbcSMatt Macy vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2331*eda14cbcSMatt Macy VDEV_AUX_NO_REPLICAS); 2332*eda14cbcSMatt Macy else if (degraded + faulted != 0) 2333*eda14cbcSMatt Macy vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE); 2334*eda14cbcSMatt Macy else 2335*eda14cbcSMatt Macy vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE); 2336*eda14cbcSMatt Macy } 2337*eda14cbcSMatt Macy 2338*eda14cbcSMatt Macy /* 2339*eda14cbcSMatt Macy * Determine if any portion of the provided block resides on a child vdev 2340*eda14cbcSMatt Macy * with a dirty DTL and therefore needs to be resilvered. The function 2341*eda14cbcSMatt Macy * assumes that at least one DTL is dirty which implies that full stripe 2342*eda14cbcSMatt Macy * width blocks must be resilvered. 2343*eda14cbcSMatt Macy */ 2344*eda14cbcSMatt Macy static boolean_t 2345*eda14cbcSMatt Macy vdev_raidz_need_resilver(vdev_t *vd, uint64_t offset, size_t psize) 2346*eda14cbcSMatt Macy { 2347*eda14cbcSMatt Macy uint64_t dcols = vd->vdev_children; 2348*eda14cbcSMatt Macy uint64_t nparity = vd->vdev_nparity; 2349*eda14cbcSMatt Macy uint64_t ashift = vd->vdev_top->vdev_ashift; 2350*eda14cbcSMatt Macy /* The starting RAIDZ (parent) vdev sector of the block. */ 2351*eda14cbcSMatt Macy uint64_t b = offset >> ashift; 2352*eda14cbcSMatt Macy /* The zio's size in units of the vdev's minimum sector size. */ 2353*eda14cbcSMatt Macy uint64_t s = ((psize - 1) >> ashift) + 1; 2354*eda14cbcSMatt Macy /* The first column for this stripe. */ 2355*eda14cbcSMatt Macy uint64_t f = b % dcols; 2356*eda14cbcSMatt Macy 2357*eda14cbcSMatt Macy if (s + nparity >= dcols) 2358*eda14cbcSMatt Macy return (B_TRUE); 2359*eda14cbcSMatt Macy 2360*eda14cbcSMatt Macy for (uint64_t c = 0; c < s + nparity; c++) { 2361*eda14cbcSMatt Macy uint64_t devidx = (f + c) % dcols; 2362*eda14cbcSMatt Macy vdev_t *cvd = vd->vdev_child[devidx]; 2363*eda14cbcSMatt Macy 2364*eda14cbcSMatt Macy /* 2365*eda14cbcSMatt Macy * dsl_scan_need_resilver() already checked vd with 2366*eda14cbcSMatt Macy * vdev_dtl_contains(). So here just check cvd with 2367*eda14cbcSMatt Macy * vdev_dtl_empty(), cheaper and a good approximation. 2368*eda14cbcSMatt Macy */ 2369*eda14cbcSMatt Macy if (!vdev_dtl_empty(cvd, DTL_PARTIAL)) 2370*eda14cbcSMatt Macy return (B_TRUE); 2371*eda14cbcSMatt Macy } 2372*eda14cbcSMatt Macy 2373*eda14cbcSMatt Macy return (B_FALSE); 2374*eda14cbcSMatt Macy } 2375*eda14cbcSMatt Macy 2376*eda14cbcSMatt Macy static void 2377*eda14cbcSMatt Macy vdev_raidz_xlate(vdev_t *cvd, const range_seg64_t *in, range_seg64_t *res) 2378*eda14cbcSMatt Macy { 2379*eda14cbcSMatt Macy vdev_t *raidvd = cvd->vdev_parent; 2380*eda14cbcSMatt Macy ASSERT(raidvd->vdev_ops == &vdev_raidz_ops); 2381*eda14cbcSMatt Macy 2382*eda14cbcSMatt Macy uint64_t width = raidvd->vdev_children; 2383*eda14cbcSMatt Macy uint64_t tgt_col = cvd->vdev_id; 2384*eda14cbcSMatt Macy uint64_t ashift = raidvd->vdev_top->vdev_ashift; 2385*eda14cbcSMatt Macy 2386*eda14cbcSMatt Macy /* make sure the offsets are block-aligned */ 2387*eda14cbcSMatt Macy ASSERT0(in->rs_start % (1 << ashift)); 2388*eda14cbcSMatt Macy ASSERT0(in->rs_end % (1 << ashift)); 2389*eda14cbcSMatt Macy uint64_t b_start = in->rs_start >> ashift; 2390*eda14cbcSMatt Macy uint64_t b_end = in->rs_end >> ashift; 2391*eda14cbcSMatt Macy 2392*eda14cbcSMatt Macy uint64_t start_row = 0; 2393*eda14cbcSMatt Macy if (b_start > tgt_col) /* avoid underflow */ 2394*eda14cbcSMatt Macy start_row = ((b_start - tgt_col - 1) / width) + 1; 2395*eda14cbcSMatt Macy 2396*eda14cbcSMatt Macy uint64_t end_row = 0; 2397*eda14cbcSMatt Macy if (b_end > tgt_col) 2398*eda14cbcSMatt Macy end_row = ((b_end - tgt_col - 1) / width) + 1; 2399*eda14cbcSMatt Macy 2400*eda14cbcSMatt Macy res->rs_start = start_row << ashift; 2401*eda14cbcSMatt Macy res->rs_end = end_row << ashift; 2402*eda14cbcSMatt Macy 2403*eda14cbcSMatt Macy ASSERT3U(res->rs_start, <=, in->rs_start); 2404*eda14cbcSMatt Macy ASSERT3U(res->rs_end - res->rs_start, <=, in->rs_end - in->rs_start); 2405*eda14cbcSMatt Macy } 2406*eda14cbcSMatt Macy 2407*eda14cbcSMatt Macy vdev_ops_t vdev_raidz_ops = { 2408*eda14cbcSMatt Macy .vdev_op_open = vdev_raidz_open, 2409*eda14cbcSMatt Macy .vdev_op_close = vdev_raidz_close, 2410*eda14cbcSMatt Macy .vdev_op_asize = vdev_raidz_asize, 2411*eda14cbcSMatt Macy .vdev_op_io_start = vdev_raidz_io_start, 2412*eda14cbcSMatt Macy .vdev_op_io_done = vdev_raidz_io_done, 2413*eda14cbcSMatt Macy .vdev_op_state_change = vdev_raidz_state_change, 2414*eda14cbcSMatt Macy .vdev_op_need_resilver = vdev_raidz_need_resilver, 2415*eda14cbcSMatt Macy .vdev_op_hold = NULL, 2416*eda14cbcSMatt Macy .vdev_op_rele = NULL, 2417*eda14cbcSMatt Macy .vdev_op_remap = NULL, 2418*eda14cbcSMatt Macy .vdev_op_xlate = vdev_raidz_xlate, 2419*eda14cbcSMatt Macy .vdev_op_type = VDEV_TYPE_RAIDZ, /* name of this vdev type */ 2420*eda14cbcSMatt Macy .vdev_op_leaf = B_FALSE /* not a leaf vdev */ 2421*eda14cbcSMatt Macy }; 2422