1eda14cbcSMatt Macy /* 2eda14cbcSMatt Macy * CDDL HEADER START 3eda14cbcSMatt Macy * 4eda14cbcSMatt Macy * The contents of this file are subject to the terms of the 5eda14cbcSMatt Macy * Common Development and Distribution License (the "License"). 6eda14cbcSMatt Macy * You may not use this file except in compliance with the License. 7eda14cbcSMatt Macy * 8eda14cbcSMatt Macy * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9eda14cbcSMatt Macy * or http://www.opensolaris.org/os/licensing. 10eda14cbcSMatt Macy * See the License for the specific language governing permissions 11eda14cbcSMatt Macy * and limitations under the License. 12eda14cbcSMatt Macy * 13eda14cbcSMatt Macy * When distributing Covered Code, include this CDDL HEADER in each 14eda14cbcSMatt Macy * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15eda14cbcSMatt Macy * If applicable, add the following below this CDDL HEADER, with the 16eda14cbcSMatt Macy * fields enclosed by brackets "[]" replaced with your own identifying 17eda14cbcSMatt Macy * information: Portions Copyright [yyyy] [name of copyright owner] 18eda14cbcSMatt Macy * 19eda14cbcSMatt Macy * CDDL HEADER END 20eda14cbcSMatt Macy */ 21eda14cbcSMatt Macy 22eda14cbcSMatt Macy /* 23eda14cbcSMatt Macy * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 242c48331dSMatt Macy * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25eda14cbcSMatt Macy * Copyright (c) 2016 Gvozden Nešković. All rights reserved. 26eda14cbcSMatt Macy */ 27eda14cbcSMatt Macy 28eda14cbcSMatt Macy #include <sys/zfs_context.h> 29eda14cbcSMatt Macy #include <sys/spa.h> 30eda14cbcSMatt Macy #include <sys/vdev_impl.h> 31eda14cbcSMatt Macy #include <sys/zio.h> 32eda14cbcSMatt Macy #include <sys/zio_checksum.h> 33eda14cbcSMatt Macy #include <sys/abd.h> 34eda14cbcSMatt Macy #include <sys/fs/zfs.h> 35eda14cbcSMatt Macy #include <sys/fm/fs/zfs.h> 36eda14cbcSMatt Macy #include <sys/vdev_raidz.h> 37eda14cbcSMatt Macy #include <sys/vdev_raidz_impl.h> 387877fdebSMatt Macy #include <sys/vdev_draid.h> 39eda14cbcSMatt Macy 40eda14cbcSMatt Macy #ifdef ZFS_DEBUG 41eda14cbcSMatt Macy #include <sys/vdev.h> /* For vdev_xlate() in vdev_raidz_io_verify() */ 42eda14cbcSMatt Macy #endif 43eda14cbcSMatt Macy 44eda14cbcSMatt Macy /* 45eda14cbcSMatt Macy * Virtual device vector for RAID-Z. 46eda14cbcSMatt Macy * 47eda14cbcSMatt Macy * This vdev supports single, double, and triple parity. For single parity, 48eda14cbcSMatt Macy * we use a simple XOR of all the data columns. For double or triple parity, 49eda14cbcSMatt Macy * we use a special case of Reed-Solomon coding. This extends the 50eda14cbcSMatt Macy * technique described in "The mathematics of RAID-6" by H. Peter Anvin by 51eda14cbcSMatt Macy * drawing on the system described in "A Tutorial on Reed-Solomon Coding for 52eda14cbcSMatt Macy * Fault-Tolerance in RAID-like Systems" by James S. Plank on which the 53eda14cbcSMatt Macy * former is also based. The latter is designed to provide higher performance 54eda14cbcSMatt Macy * for writes. 55eda14cbcSMatt Macy * 56eda14cbcSMatt Macy * Note that the Plank paper claimed to support arbitrary N+M, but was then 57eda14cbcSMatt Macy * amended six years later identifying a critical flaw that invalidates its 58eda14cbcSMatt Macy * claims. Nevertheless, the technique can be adapted to work for up to 59eda14cbcSMatt Macy * triple parity. For additional parity, the amendment "Note: Correction to 60eda14cbcSMatt Macy * the 1997 Tutorial on Reed-Solomon Coding" by James S. Plank and Ying Ding 61eda14cbcSMatt Macy * is viable, but the additional complexity means that write performance will 62eda14cbcSMatt Macy * suffer. 63eda14cbcSMatt Macy * 64eda14cbcSMatt Macy * All of the methods above operate on a Galois field, defined over the 65eda14cbcSMatt Macy * integers mod 2^N. In our case we choose N=8 for GF(8) so that all elements 66eda14cbcSMatt Macy * can be expressed with a single byte. Briefly, the operations on the 67eda14cbcSMatt Macy * field are defined as follows: 68eda14cbcSMatt Macy * 69eda14cbcSMatt Macy * o addition (+) is represented by a bitwise XOR 70eda14cbcSMatt Macy * o subtraction (-) is therefore identical to addition: A + B = A - B 71eda14cbcSMatt Macy * o multiplication of A by 2 is defined by the following bitwise expression: 72eda14cbcSMatt Macy * 73eda14cbcSMatt Macy * (A * 2)_7 = A_6 74eda14cbcSMatt Macy * (A * 2)_6 = A_5 75eda14cbcSMatt Macy * (A * 2)_5 = A_4 76eda14cbcSMatt Macy * (A * 2)_4 = A_3 + A_7 77eda14cbcSMatt Macy * (A * 2)_3 = A_2 + A_7 78eda14cbcSMatt Macy * (A * 2)_2 = A_1 + A_7 79eda14cbcSMatt Macy * (A * 2)_1 = A_0 80eda14cbcSMatt Macy * (A * 2)_0 = A_7 81eda14cbcSMatt Macy * 82eda14cbcSMatt Macy * In C, multiplying by 2 is therefore ((a << 1) ^ ((a & 0x80) ? 0x1d : 0)). 83eda14cbcSMatt Macy * As an aside, this multiplication is derived from the error correcting 84eda14cbcSMatt Macy * primitive polynomial x^8 + x^4 + x^3 + x^2 + 1. 85eda14cbcSMatt Macy * 86eda14cbcSMatt Macy * Observe that any number in the field (except for 0) can be expressed as a 87eda14cbcSMatt Macy * power of 2 -- a generator for the field. We store a table of the powers of 88eda14cbcSMatt Macy * 2 and logs base 2 for quick look ups, and exploit the fact that A * B can 89eda14cbcSMatt Macy * be rewritten as 2^(log_2(A) + log_2(B)) (where '+' is normal addition rather 90eda14cbcSMatt Macy * than field addition). The inverse of a field element A (A^-1) is therefore 91eda14cbcSMatt Macy * A ^ (255 - 1) = A^254. 92eda14cbcSMatt Macy * 93eda14cbcSMatt Macy * The up-to-three parity columns, P, Q, R over several data columns, 94eda14cbcSMatt Macy * D_0, ... D_n-1, can be expressed by field operations: 95eda14cbcSMatt Macy * 96eda14cbcSMatt Macy * P = D_0 + D_1 + ... + D_n-2 + D_n-1 97eda14cbcSMatt Macy * Q = 2^n-1 * D_0 + 2^n-2 * D_1 + ... + 2^1 * D_n-2 + 2^0 * D_n-1 98eda14cbcSMatt Macy * = ((...((D_0) * 2 + D_1) * 2 + ...) * 2 + D_n-2) * 2 + D_n-1 99eda14cbcSMatt Macy * R = 4^n-1 * D_0 + 4^n-2 * D_1 + ... + 4^1 * D_n-2 + 4^0 * D_n-1 100eda14cbcSMatt Macy * = ((...((D_0) * 4 + D_1) * 4 + ...) * 4 + D_n-2) * 4 + D_n-1 101eda14cbcSMatt Macy * 102eda14cbcSMatt Macy * We chose 1, 2, and 4 as our generators because 1 corresponds to the trivial 103eda14cbcSMatt Macy * XOR operation, and 2 and 4 can be computed quickly and generate linearly- 104eda14cbcSMatt Macy * independent coefficients. (There are no additional coefficients that have 105eda14cbcSMatt Macy * this property which is why the uncorrected Plank method breaks down.) 106eda14cbcSMatt Macy * 107eda14cbcSMatt Macy * See the reconstruction code below for how P, Q and R can used individually 108eda14cbcSMatt Macy * or in concert to recover missing data columns. 109eda14cbcSMatt Macy */ 110eda14cbcSMatt Macy 111eda14cbcSMatt Macy #define VDEV_RAIDZ_P 0 112eda14cbcSMatt Macy #define VDEV_RAIDZ_Q 1 113eda14cbcSMatt Macy #define VDEV_RAIDZ_R 2 114eda14cbcSMatt Macy 115eda14cbcSMatt Macy #define VDEV_RAIDZ_MUL_2(x) (((x) << 1) ^ (((x) & 0x80) ? 0x1d : 0)) 116eda14cbcSMatt Macy #define VDEV_RAIDZ_MUL_4(x) (VDEV_RAIDZ_MUL_2(VDEV_RAIDZ_MUL_2(x))) 117eda14cbcSMatt Macy 118eda14cbcSMatt Macy /* 119eda14cbcSMatt Macy * We provide a mechanism to perform the field multiplication operation on a 120eda14cbcSMatt Macy * 64-bit value all at once rather than a byte at a time. This works by 121eda14cbcSMatt Macy * creating a mask from the top bit in each byte and using that to 122eda14cbcSMatt Macy * conditionally apply the XOR of 0x1d. 123eda14cbcSMatt Macy */ 124eda14cbcSMatt Macy #define VDEV_RAIDZ_64MUL_2(x, mask) \ 125eda14cbcSMatt Macy { \ 126eda14cbcSMatt Macy (mask) = (x) & 0x8080808080808080ULL; \ 127eda14cbcSMatt Macy (mask) = ((mask) << 1) - ((mask) >> 7); \ 128eda14cbcSMatt Macy (x) = (((x) << 1) & 0xfefefefefefefefeULL) ^ \ 129eda14cbcSMatt Macy ((mask) & 0x1d1d1d1d1d1d1d1dULL); \ 130eda14cbcSMatt Macy } 131eda14cbcSMatt Macy 132eda14cbcSMatt Macy #define VDEV_RAIDZ_64MUL_4(x, mask) \ 133eda14cbcSMatt Macy { \ 134eda14cbcSMatt Macy VDEV_RAIDZ_64MUL_2((x), mask); \ 135eda14cbcSMatt Macy VDEV_RAIDZ_64MUL_2((x), mask); \ 136eda14cbcSMatt Macy } 137eda14cbcSMatt Macy 1387877fdebSMatt Macy static void 1397877fdebSMatt Macy vdev_raidz_row_free(raidz_row_t *rr) 140eda14cbcSMatt Macy { 141184c1b94SMartin Matuska for (int c = 0; c < rr->rr_cols; c++) { 142184c1b94SMartin Matuska raidz_col_t *rc = &rr->rr_col[c]; 143eda14cbcSMatt Macy 144184c1b94SMartin Matuska if (rc->rc_size != 0) 145184c1b94SMartin Matuska abd_free(rc->rc_abd); 146184c1b94SMartin Matuska if (rc->rc_orig_data != NULL) 147f9693befSMartin Matuska abd_free(rc->rc_orig_data); 148eda14cbcSMatt Macy } 149eda14cbcSMatt Macy 1507877fdebSMatt Macy if (rr->rr_abd_empty != NULL) 1517877fdebSMatt Macy abd_free(rr->rr_abd_empty); 152eda14cbcSMatt Macy 1537877fdebSMatt Macy kmem_free(rr, offsetof(raidz_row_t, rr_col[rr->rr_scols])); 1547877fdebSMatt Macy } 1557877fdebSMatt Macy 1567877fdebSMatt Macy void 1577877fdebSMatt Macy vdev_raidz_map_free(raidz_map_t *rm) 1587877fdebSMatt Macy { 1597877fdebSMatt Macy for (int i = 0; i < rm->rm_nrows; i++) 1607877fdebSMatt Macy vdev_raidz_row_free(rm->rm_row[i]); 1617877fdebSMatt Macy 1627877fdebSMatt Macy kmem_free(rm, offsetof(raidz_map_t, rm_row[rm->rm_nrows])); 163eda14cbcSMatt Macy } 164eda14cbcSMatt Macy 165eda14cbcSMatt Macy static void 166eda14cbcSMatt Macy vdev_raidz_map_free_vsd(zio_t *zio) 167eda14cbcSMatt Macy { 168eda14cbcSMatt Macy raidz_map_t *rm = zio->io_vsd; 169eda14cbcSMatt Macy 170eda14cbcSMatt Macy vdev_raidz_map_free(rm); 171eda14cbcSMatt Macy } 172eda14cbcSMatt Macy 173f9693befSMartin Matuska const zio_vsd_ops_t vdev_raidz_vsd_ops = { 174eda14cbcSMatt Macy .vsd_free = vdev_raidz_map_free_vsd, 175eda14cbcSMatt Macy }; 176eda14cbcSMatt Macy 17781b22a98SMartin Matuska static void 17881b22a98SMartin Matuska vdev_raidz_map_alloc_write(zio_t *zio, raidz_map_t *rm, uint64_t ashift) 17981b22a98SMartin Matuska { 18081b22a98SMartin Matuska int c; 18181b22a98SMartin Matuska int nwrapped = 0; 18281b22a98SMartin Matuska uint64_t off = 0; 18381b22a98SMartin Matuska raidz_row_t *rr = rm->rm_row[0]; 18481b22a98SMartin Matuska 18581b22a98SMartin Matuska ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 18681b22a98SMartin Matuska ASSERT3U(rm->rm_nrows, ==, 1); 18781b22a98SMartin Matuska 18881b22a98SMartin Matuska /* 18981b22a98SMartin Matuska * Pad any parity columns with additional space to account for skip 19081b22a98SMartin Matuska * sectors. 19181b22a98SMartin Matuska */ 19281b22a98SMartin Matuska if (rm->rm_skipstart < rr->rr_firstdatacol) { 19381b22a98SMartin Matuska ASSERT0(rm->rm_skipstart); 19481b22a98SMartin Matuska nwrapped = rm->rm_nskip; 19581b22a98SMartin Matuska } else if (rr->rr_scols < (rm->rm_skipstart + rm->rm_nskip)) { 19681b22a98SMartin Matuska nwrapped = 19781b22a98SMartin Matuska (rm->rm_skipstart + rm->rm_nskip) % rr->rr_scols; 19881b22a98SMartin Matuska } 19981b22a98SMartin Matuska 20081b22a98SMartin Matuska /* 20181b22a98SMartin Matuska * Optional single skip sectors (rc_size == 0) will be handled in 20281b22a98SMartin Matuska * vdev_raidz_io_start_write(). 20381b22a98SMartin Matuska */ 20481b22a98SMartin Matuska int skipped = rr->rr_scols - rr->rr_cols; 20581b22a98SMartin Matuska 20681b22a98SMartin Matuska /* Allocate buffers for the parity columns */ 20781b22a98SMartin Matuska for (c = 0; c < rr->rr_firstdatacol; c++) { 20881b22a98SMartin Matuska raidz_col_t *rc = &rr->rr_col[c]; 20981b22a98SMartin Matuska 21081b22a98SMartin Matuska /* 21181b22a98SMartin Matuska * Parity columns will pad out a linear ABD to account for 21281b22a98SMartin Matuska * the skip sector. A linear ABD is used here because 21381b22a98SMartin Matuska * parity calculations use the ABD buffer directly to calculate 21481b22a98SMartin Matuska * parity. This avoids doing a memcpy back to the ABD after the 21581b22a98SMartin Matuska * parity has been calculated. By issuing the parity column 21681b22a98SMartin Matuska * with the skip sector we can reduce contention on the child 21781b22a98SMartin Matuska * VDEV queue locks (vq_lock). 21881b22a98SMartin Matuska */ 21981b22a98SMartin Matuska if (c < nwrapped) { 22081b22a98SMartin Matuska rc->rc_abd = abd_alloc_linear( 22181b22a98SMartin Matuska rc->rc_size + (1ULL << ashift), B_FALSE); 22281b22a98SMartin Matuska abd_zero_off(rc->rc_abd, rc->rc_size, 1ULL << ashift); 22381b22a98SMartin Matuska skipped++; 22481b22a98SMartin Matuska } else { 22581b22a98SMartin Matuska rc->rc_abd = abd_alloc_linear(rc->rc_size, B_FALSE); 22681b22a98SMartin Matuska } 22781b22a98SMartin Matuska } 22881b22a98SMartin Matuska 22981b22a98SMartin Matuska for (off = 0; c < rr->rr_cols; c++) { 23081b22a98SMartin Matuska raidz_col_t *rc = &rr->rr_col[c]; 23181b22a98SMartin Matuska abd_t *abd = abd_get_offset_struct(&rc->rc_abdstruct, 23281b22a98SMartin Matuska zio->io_abd, off, rc->rc_size); 23381b22a98SMartin Matuska 23481b22a98SMartin Matuska /* 23581b22a98SMartin Matuska * Generate I/O for skip sectors to improve aggregation 23681b22a98SMartin Matuska * continuity. We will use gang ABD's to reduce contention 23781b22a98SMartin Matuska * on the child VDEV queue locks (vq_lock) by issuing 23881b22a98SMartin Matuska * a single I/O that contains the data and skip sector. 23981b22a98SMartin Matuska * 24081b22a98SMartin Matuska * It is important to make sure that rc_size is not updated 24181b22a98SMartin Matuska * even though we are adding a skip sector to the ABD. When 24281b22a98SMartin Matuska * calculating the parity in vdev_raidz_generate_parity_row() 24381b22a98SMartin Matuska * the rc_size is used to iterate through the ABD's. We can 24481b22a98SMartin Matuska * not have zero'd out skip sectors used for calculating 24581b22a98SMartin Matuska * parity for raidz, because those same sectors are not used 24681b22a98SMartin Matuska * during reconstruction. 24781b22a98SMartin Matuska */ 24881b22a98SMartin Matuska if (c >= rm->rm_skipstart && skipped < rm->rm_nskip) { 24981b22a98SMartin Matuska rc->rc_abd = abd_alloc_gang(); 25081b22a98SMartin Matuska abd_gang_add(rc->rc_abd, abd, B_TRUE); 25181b22a98SMartin Matuska abd_gang_add(rc->rc_abd, 25281b22a98SMartin Matuska abd_get_zeros(1ULL << ashift), B_TRUE); 25381b22a98SMartin Matuska skipped++; 25481b22a98SMartin Matuska } else { 25581b22a98SMartin Matuska rc->rc_abd = abd; 25681b22a98SMartin Matuska } 25781b22a98SMartin Matuska off += rc->rc_size; 25881b22a98SMartin Matuska } 25981b22a98SMartin Matuska 26081b22a98SMartin Matuska ASSERT3U(off, ==, zio->io_size); 26181b22a98SMartin Matuska ASSERT3S(skipped, ==, rm->rm_nskip); 26281b22a98SMartin Matuska } 26381b22a98SMartin Matuska 26481b22a98SMartin Matuska static void 26581b22a98SMartin Matuska vdev_raidz_map_alloc_read(zio_t *zio, raidz_map_t *rm) 26681b22a98SMartin Matuska { 26781b22a98SMartin Matuska int c; 26881b22a98SMartin Matuska raidz_row_t *rr = rm->rm_row[0]; 26981b22a98SMartin Matuska 27081b22a98SMartin Matuska ASSERT3U(rm->rm_nrows, ==, 1); 27181b22a98SMartin Matuska 27281b22a98SMartin Matuska /* Allocate buffers for the parity columns */ 27381b22a98SMartin Matuska for (c = 0; c < rr->rr_firstdatacol; c++) 27481b22a98SMartin Matuska rr->rr_col[c].rc_abd = 27581b22a98SMartin Matuska abd_alloc_linear(rr->rr_col[c].rc_size, B_FALSE); 27681b22a98SMartin Matuska 27781b22a98SMartin Matuska for (uint64_t off = 0; c < rr->rr_cols; c++) { 27881b22a98SMartin Matuska raidz_col_t *rc = &rr->rr_col[c]; 27981b22a98SMartin Matuska rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct, 28081b22a98SMartin Matuska zio->io_abd, off, rc->rc_size); 28181b22a98SMartin Matuska off += rc->rc_size; 28281b22a98SMartin Matuska } 28381b22a98SMartin Matuska } 28481b22a98SMartin Matuska 285eda14cbcSMatt Macy /* 286eda14cbcSMatt Macy * Divides the IO evenly across all child vdevs; usually, dcols is 287eda14cbcSMatt Macy * the number of children in the target vdev. 288eda14cbcSMatt Macy * 289eda14cbcSMatt Macy * Avoid inlining the function to keep vdev_raidz_io_start(), which 290eda14cbcSMatt Macy * is this functions only caller, as small as possible on the stack. 291eda14cbcSMatt Macy */ 292eda14cbcSMatt Macy noinline raidz_map_t * 293eda14cbcSMatt Macy vdev_raidz_map_alloc(zio_t *zio, uint64_t ashift, uint64_t dcols, 294eda14cbcSMatt Macy uint64_t nparity) 295eda14cbcSMatt Macy { 2967877fdebSMatt Macy raidz_row_t *rr; 297eda14cbcSMatt Macy /* The starting RAIDZ (parent) vdev sector of the block. */ 298eda14cbcSMatt Macy uint64_t b = zio->io_offset >> ashift; 299eda14cbcSMatt Macy /* The zio's size in units of the vdev's minimum sector size. */ 300eda14cbcSMatt Macy uint64_t s = zio->io_size >> ashift; 301eda14cbcSMatt Macy /* The first column for this stripe. */ 302eda14cbcSMatt Macy uint64_t f = b % dcols; 303eda14cbcSMatt Macy /* The starting byte offset on each child vdev. */ 304eda14cbcSMatt Macy uint64_t o = (b / dcols) << ashift; 305eda14cbcSMatt Macy uint64_t q, r, c, bc, col, acols, scols, coff, devidx, asize, tot; 306eda14cbcSMatt Macy 3077877fdebSMatt Macy raidz_map_t *rm = 3087877fdebSMatt Macy kmem_zalloc(offsetof(raidz_map_t, rm_row[1]), KM_SLEEP); 3097877fdebSMatt Macy rm->rm_nrows = 1; 3107877fdebSMatt Macy 311eda14cbcSMatt Macy /* 312eda14cbcSMatt Macy * "Quotient": The number of data sectors for this stripe on all but 313eda14cbcSMatt Macy * the "big column" child vdevs that also contain "remainder" data. 314eda14cbcSMatt Macy */ 315eda14cbcSMatt Macy q = s / (dcols - nparity); 316eda14cbcSMatt Macy 317eda14cbcSMatt Macy /* 318eda14cbcSMatt Macy * "Remainder": The number of partial stripe data sectors in this I/O. 319eda14cbcSMatt Macy * This will add a sector to some, but not all, child vdevs. 320eda14cbcSMatt Macy */ 321eda14cbcSMatt Macy r = s - q * (dcols - nparity); 322eda14cbcSMatt Macy 323eda14cbcSMatt Macy /* The number of "big columns" - those which contain remainder data. */ 324eda14cbcSMatt Macy bc = (r == 0 ? 0 : r + nparity); 325eda14cbcSMatt Macy 326eda14cbcSMatt Macy /* 327eda14cbcSMatt Macy * The total number of data and parity sectors associated with 328eda14cbcSMatt Macy * this I/O. 329eda14cbcSMatt Macy */ 330eda14cbcSMatt Macy tot = s + nparity * (q + (r == 0 ? 0 : 1)); 331eda14cbcSMatt Macy 3327877fdebSMatt Macy /* 3337877fdebSMatt Macy * acols: The columns that will be accessed. 3347877fdebSMatt Macy * scols: The columns that will be accessed or skipped. 3357877fdebSMatt Macy */ 336eda14cbcSMatt Macy if (q == 0) { 337eda14cbcSMatt Macy /* Our I/O request doesn't span all child vdevs. */ 338eda14cbcSMatt Macy acols = bc; 339eda14cbcSMatt Macy scols = MIN(dcols, roundup(bc, nparity + 1)); 340eda14cbcSMatt Macy } else { 341eda14cbcSMatt Macy acols = dcols; 342eda14cbcSMatt Macy scols = dcols; 343eda14cbcSMatt Macy } 344eda14cbcSMatt Macy 345eda14cbcSMatt Macy ASSERT3U(acols, <=, scols); 346eda14cbcSMatt Macy 3477877fdebSMatt Macy rr = kmem_alloc(offsetof(raidz_row_t, rr_col[scols]), KM_SLEEP); 3487877fdebSMatt Macy rm->rm_row[0] = rr; 349eda14cbcSMatt Macy 3507877fdebSMatt Macy rr->rr_cols = acols; 3517877fdebSMatt Macy rr->rr_scols = scols; 3527877fdebSMatt Macy rr->rr_bigcols = bc; 3537877fdebSMatt Macy rr->rr_missingdata = 0; 3547877fdebSMatt Macy rr->rr_missingparity = 0; 3557877fdebSMatt Macy rr->rr_firstdatacol = nparity; 3567877fdebSMatt Macy rr->rr_abd_empty = NULL; 3577877fdebSMatt Macy rr->rr_nempty = 0; 3587877fdebSMatt Macy #ifdef ZFS_DEBUG 3597877fdebSMatt Macy rr->rr_offset = zio->io_offset; 3607877fdebSMatt Macy rr->rr_size = zio->io_size; 3617877fdebSMatt Macy #endif 362eda14cbcSMatt Macy 363eda14cbcSMatt Macy asize = 0; 364eda14cbcSMatt Macy 365eda14cbcSMatt Macy for (c = 0; c < scols; c++) { 3667877fdebSMatt Macy raidz_col_t *rc = &rr->rr_col[c]; 367eda14cbcSMatt Macy col = f + c; 368eda14cbcSMatt Macy coff = o; 369eda14cbcSMatt Macy if (col >= dcols) { 370eda14cbcSMatt Macy col -= dcols; 371eda14cbcSMatt Macy coff += 1ULL << ashift; 372eda14cbcSMatt Macy } 3737877fdebSMatt Macy rc->rc_devidx = col; 3747877fdebSMatt Macy rc->rc_offset = coff; 3757877fdebSMatt Macy rc->rc_abd = NULL; 3767877fdebSMatt Macy rc->rc_orig_data = NULL; 3777877fdebSMatt Macy rc->rc_error = 0; 3787877fdebSMatt Macy rc->rc_tried = 0; 3797877fdebSMatt Macy rc->rc_skipped = 0; 38016038816SMartin Matuska rc->rc_force_repair = 0; 38116038816SMartin Matuska rc->rc_allow_repair = 1; 3827877fdebSMatt Macy rc->rc_need_orig_restore = B_FALSE; 383eda14cbcSMatt Macy 384eda14cbcSMatt Macy if (c >= acols) 3857877fdebSMatt Macy rc->rc_size = 0; 386eda14cbcSMatt Macy else if (c < bc) 3877877fdebSMatt Macy rc->rc_size = (q + 1) << ashift; 388eda14cbcSMatt Macy else 3897877fdebSMatt Macy rc->rc_size = q << ashift; 390eda14cbcSMatt Macy 3917877fdebSMatt Macy asize += rc->rc_size; 392eda14cbcSMatt Macy } 393eda14cbcSMatt Macy 394eda14cbcSMatt Macy ASSERT3U(asize, ==, tot << ashift); 395eda14cbcSMatt Macy rm->rm_nskip = roundup(tot, nparity + 1) - tot; 3967877fdebSMatt Macy rm->rm_skipstart = bc; 397eda14cbcSMatt Macy 398eda14cbcSMatt Macy /* 399eda14cbcSMatt Macy * If all data stored spans all columns, there's a danger that parity 400eda14cbcSMatt Macy * will always be on the same device and, since parity isn't read 401eda14cbcSMatt Macy * during normal operation, that device's I/O bandwidth won't be 402eda14cbcSMatt Macy * used effectively. We therefore switch the parity every 1MB. 403eda14cbcSMatt Macy * 404eda14cbcSMatt Macy * ... at least that was, ostensibly, the theory. As a practical 405eda14cbcSMatt Macy * matter unless we juggle the parity between all devices evenly, we 406eda14cbcSMatt Macy * won't see any benefit. Further, occasional writes that aren't a 407eda14cbcSMatt Macy * multiple of the LCM of the number of children and the minimum 408eda14cbcSMatt Macy * stripe width are sufficient to avoid pessimal behavior. 409eda14cbcSMatt Macy * Unfortunately, this decision created an implicit on-disk format 410eda14cbcSMatt Macy * requirement that we need to support for all eternity, but only 411eda14cbcSMatt Macy * for single-parity RAID-Z. 412eda14cbcSMatt Macy * 413eda14cbcSMatt Macy * If we intend to skip a sector in the zeroth column for padding 414eda14cbcSMatt Macy * we must make sure to note this swap. We will never intend to 415eda14cbcSMatt Macy * skip the first column since at least one data and one parity 416eda14cbcSMatt Macy * column must appear in each row. 417eda14cbcSMatt Macy */ 4187877fdebSMatt Macy ASSERT(rr->rr_cols >= 2); 4197877fdebSMatt Macy ASSERT(rr->rr_col[0].rc_size == rr->rr_col[1].rc_size); 420eda14cbcSMatt Macy 4217877fdebSMatt Macy if (rr->rr_firstdatacol == 1 && (zio->io_offset & (1ULL << 20))) { 4227877fdebSMatt Macy devidx = rr->rr_col[0].rc_devidx; 4237877fdebSMatt Macy o = rr->rr_col[0].rc_offset; 4247877fdebSMatt Macy rr->rr_col[0].rc_devidx = rr->rr_col[1].rc_devidx; 4257877fdebSMatt Macy rr->rr_col[0].rc_offset = rr->rr_col[1].rc_offset; 4267877fdebSMatt Macy rr->rr_col[1].rc_devidx = devidx; 4277877fdebSMatt Macy rr->rr_col[1].rc_offset = o; 428eda14cbcSMatt Macy 429eda14cbcSMatt Macy if (rm->rm_skipstart == 0) 430eda14cbcSMatt Macy rm->rm_skipstart = 1; 431eda14cbcSMatt Macy } 432eda14cbcSMatt Macy 43381b22a98SMartin Matuska if (zio->io_type == ZIO_TYPE_WRITE) { 43481b22a98SMartin Matuska vdev_raidz_map_alloc_write(zio, rm, ashift); 43581b22a98SMartin Matuska } else { 43681b22a98SMartin Matuska vdev_raidz_map_alloc_read(zio, rm); 43781b22a98SMartin Matuska } 43881b22a98SMartin Matuska 439eda14cbcSMatt Macy /* init RAIDZ parity ops */ 440eda14cbcSMatt Macy rm->rm_ops = vdev_raidz_math_get_ops(); 441eda14cbcSMatt Macy 442eda14cbcSMatt Macy return (rm); 443eda14cbcSMatt Macy } 444eda14cbcSMatt Macy 445eda14cbcSMatt Macy struct pqr_struct { 446eda14cbcSMatt Macy uint64_t *p; 447eda14cbcSMatt Macy uint64_t *q; 448eda14cbcSMatt Macy uint64_t *r; 449eda14cbcSMatt Macy }; 450eda14cbcSMatt Macy 451eda14cbcSMatt Macy static int 452eda14cbcSMatt Macy vdev_raidz_p_func(void *buf, size_t size, void *private) 453eda14cbcSMatt Macy { 454eda14cbcSMatt Macy struct pqr_struct *pqr = private; 455eda14cbcSMatt Macy const uint64_t *src = buf; 456eda14cbcSMatt Macy int i, cnt = size / sizeof (src[0]); 457eda14cbcSMatt Macy 458eda14cbcSMatt Macy ASSERT(pqr->p && !pqr->q && !pqr->r); 459eda14cbcSMatt Macy 460eda14cbcSMatt Macy for (i = 0; i < cnt; i++, src++, pqr->p++) 461eda14cbcSMatt Macy *pqr->p ^= *src; 462eda14cbcSMatt Macy 463eda14cbcSMatt Macy return (0); 464eda14cbcSMatt Macy } 465eda14cbcSMatt Macy 466eda14cbcSMatt Macy static int 467eda14cbcSMatt Macy vdev_raidz_pq_func(void *buf, size_t size, void *private) 468eda14cbcSMatt Macy { 469eda14cbcSMatt Macy struct pqr_struct *pqr = private; 470eda14cbcSMatt Macy const uint64_t *src = buf; 471eda14cbcSMatt Macy uint64_t mask; 472eda14cbcSMatt Macy int i, cnt = size / sizeof (src[0]); 473eda14cbcSMatt Macy 474eda14cbcSMatt Macy ASSERT(pqr->p && pqr->q && !pqr->r); 475eda14cbcSMatt Macy 476eda14cbcSMatt Macy for (i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++) { 477eda14cbcSMatt Macy *pqr->p ^= *src; 478eda14cbcSMatt Macy VDEV_RAIDZ_64MUL_2(*pqr->q, mask); 479eda14cbcSMatt Macy *pqr->q ^= *src; 480eda14cbcSMatt Macy } 481eda14cbcSMatt Macy 482eda14cbcSMatt Macy return (0); 483eda14cbcSMatt Macy } 484eda14cbcSMatt Macy 485eda14cbcSMatt Macy static int 486eda14cbcSMatt Macy vdev_raidz_pqr_func(void *buf, size_t size, void *private) 487eda14cbcSMatt Macy { 488eda14cbcSMatt Macy struct pqr_struct *pqr = private; 489eda14cbcSMatt Macy const uint64_t *src = buf; 490eda14cbcSMatt Macy uint64_t mask; 491eda14cbcSMatt Macy int i, cnt = size / sizeof (src[0]); 492eda14cbcSMatt Macy 493eda14cbcSMatt Macy ASSERT(pqr->p && pqr->q && pqr->r); 494eda14cbcSMatt Macy 495eda14cbcSMatt Macy for (i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++, pqr->r++) { 496eda14cbcSMatt Macy *pqr->p ^= *src; 497eda14cbcSMatt Macy VDEV_RAIDZ_64MUL_2(*pqr->q, mask); 498eda14cbcSMatt Macy *pqr->q ^= *src; 499eda14cbcSMatt Macy VDEV_RAIDZ_64MUL_4(*pqr->r, mask); 500eda14cbcSMatt Macy *pqr->r ^= *src; 501eda14cbcSMatt Macy } 502eda14cbcSMatt Macy 503eda14cbcSMatt Macy return (0); 504eda14cbcSMatt Macy } 505eda14cbcSMatt Macy 506eda14cbcSMatt Macy static void 5077877fdebSMatt Macy vdev_raidz_generate_parity_p(raidz_row_t *rr) 508eda14cbcSMatt Macy { 5097877fdebSMatt Macy uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd); 510eda14cbcSMatt Macy 5117877fdebSMatt Macy for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 5127877fdebSMatt Macy abd_t *src = rr->rr_col[c].rc_abd; 513eda14cbcSMatt Macy 5147877fdebSMatt Macy if (c == rr->rr_firstdatacol) { 5157877fdebSMatt Macy abd_copy_to_buf(p, src, rr->rr_col[c].rc_size); 516eda14cbcSMatt Macy } else { 517eda14cbcSMatt Macy struct pqr_struct pqr = { p, NULL, NULL }; 5187877fdebSMatt Macy (void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size, 519eda14cbcSMatt Macy vdev_raidz_p_func, &pqr); 520eda14cbcSMatt Macy } 521eda14cbcSMatt Macy } 522eda14cbcSMatt Macy } 523eda14cbcSMatt Macy 524eda14cbcSMatt Macy static void 5257877fdebSMatt Macy vdev_raidz_generate_parity_pq(raidz_row_t *rr) 526eda14cbcSMatt Macy { 5277877fdebSMatt Macy uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd); 5287877fdebSMatt Macy uint64_t *q = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd); 5297877fdebSMatt Macy uint64_t pcnt = rr->rr_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]); 5307877fdebSMatt Macy ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size == 5317877fdebSMatt Macy rr->rr_col[VDEV_RAIDZ_Q].rc_size); 532eda14cbcSMatt Macy 5337877fdebSMatt Macy for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 5347877fdebSMatt Macy abd_t *src = rr->rr_col[c].rc_abd; 535eda14cbcSMatt Macy 5367877fdebSMatt Macy uint64_t ccnt = rr->rr_col[c].rc_size / sizeof (p[0]); 537eda14cbcSMatt Macy 5387877fdebSMatt Macy if (c == rr->rr_firstdatacol) { 539eda14cbcSMatt Macy ASSERT(ccnt == pcnt || ccnt == 0); 5407877fdebSMatt Macy abd_copy_to_buf(p, src, rr->rr_col[c].rc_size); 5417877fdebSMatt Macy (void) memcpy(q, p, rr->rr_col[c].rc_size); 542eda14cbcSMatt Macy 5437877fdebSMatt Macy for (uint64_t i = ccnt; i < pcnt; i++) { 544eda14cbcSMatt Macy p[i] = 0; 545eda14cbcSMatt Macy q[i] = 0; 546eda14cbcSMatt Macy } 547eda14cbcSMatt Macy } else { 548eda14cbcSMatt Macy struct pqr_struct pqr = { p, q, NULL }; 549eda14cbcSMatt Macy 550eda14cbcSMatt Macy ASSERT(ccnt <= pcnt); 5517877fdebSMatt Macy (void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size, 552eda14cbcSMatt Macy vdev_raidz_pq_func, &pqr); 553eda14cbcSMatt Macy 554eda14cbcSMatt Macy /* 555eda14cbcSMatt Macy * Treat short columns as though they are full of 0s. 556eda14cbcSMatt Macy * Note that there's therefore nothing needed for P. 557eda14cbcSMatt Macy */ 5587877fdebSMatt Macy uint64_t mask; 5597877fdebSMatt Macy for (uint64_t i = ccnt; i < pcnt; i++) { 560eda14cbcSMatt Macy VDEV_RAIDZ_64MUL_2(q[i], mask); 561eda14cbcSMatt Macy } 562eda14cbcSMatt Macy } 563eda14cbcSMatt Macy } 564eda14cbcSMatt Macy } 565eda14cbcSMatt Macy 566eda14cbcSMatt Macy static void 5677877fdebSMatt Macy vdev_raidz_generate_parity_pqr(raidz_row_t *rr) 568eda14cbcSMatt Macy { 5697877fdebSMatt Macy uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd); 5707877fdebSMatt Macy uint64_t *q = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd); 5717877fdebSMatt Macy uint64_t *r = abd_to_buf(rr->rr_col[VDEV_RAIDZ_R].rc_abd); 5727877fdebSMatt Macy uint64_t pcnt = rr->rr_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]); 5737877fdebSMatt Macy ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size == 5747877fdebSMatt Macy rr->rr_col[VDEV_RAIDZ_Q].rc_size); 5757877fdebSMatt Macy ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size == 5767877fdebSMatt Macy rr->rr_col[VDEV_RAIDZ_R].rc_size); 577eda14cbcSMatt Macy 5787877fdebSMatt Macy for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 5797877fdebSMatt Macy abd_t *src = rr->rr_col[c].rc_abd; 580eda14cbcSMatt Macy 5817877fdebSMatt Macy uint64_t ccnt = rr->rr_col[c].rc_size / sizeof (p[0]); 582eda14cbcSMatt Macy 5837877fdebSMatt Macy if (c == rr->rr_firstdatacol) { 584eda14cbcSMatt Macy ASSERT(ccnt == pcnt || ccnt == 0); 5857877fdebSMatt Macy abd_copy_to_buf(p, src, rr->rr_col[c].rc_size); 5867877fdebSMatt Macy (void) memcpy(q, p, rr->rr_col[c].rc_size); 5877877fdebSMatt Macy (void) memcpy(r, p, rr->rr_col[c].rc_size); 588eda14cbcSMatt Macy 5897877fdebSMatt Macy for (uint64_t i = ccnt; i < pcnt; i++) { 590eda14cbcSMatt Macy p[i] = 0; 591eda14cbcSMatt Macy q[i] = 0; 592eda14cbcSMatt Macy r[i] = 0; 593eda14cbcSMatt Macy } 594eda14cbcSMatt Macy } else { 595eda14cbcSMatt Macy struct pqr_struct pqr = { p, q, r }; 596eda14cbcSMatt Macy 597eda14cbcSMatt Macy ASSERT(ccnt <= pcnt); 5987877fdebSMatt Macy (void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size, 599eda14cbcSMatt Macy vdev_raidz_pqr_func, &pqr); 600eda14cbcSMatt Macy 601eda14cbcSMatt Macy /* 602eda14cbcSMatt Macy * Treat short columns as though they are full of 0s. 603eda14cbcSMatt Macy * Note that there's therefore nothing needed for P. 604eda14cbcSMatt Macy */ 6057877fdebSMatt Macy uint64_t mask; 6067877fdebSMatt Macy for (uint64_t i = ccnt; i < pcnt; i++) { 607eda14cbcSMatt Macy VDEV_RAIDZ_64MUL_2(q[i], mask); 608eda14cbcSMatt Macy VDEV_RAIDZ_64MUL_4(r[i], mask); 609eda14cbcSMatt Macy } 610eda14cbcSMatt Macy } 611eda14cbcSMatt Macy } 612eda14cbcSMatt Macy } 613eda14cbcSMatt Macy 614eda14cbcSMatt Macy /* 615eda14cbcSMatt Macy * Generate RAID parity in the first virtual columns according to the number of 616eda14cbcSMatt Macy * parity columns available. 617eda14cbcSMatt Macy */ 618eda14cbcSMatt Macy void 6197877fdebSMatt Macy vdev_raidz_generate_parity_row(raidz_map_t *rm, raidz_row_t *rr) 620eda14cbcSMatt Macy { 6217877fdebSMatt Macy ASSERT3U(rr->rr_cols, !=, 0); 6227877fdebSMatt Macy 623eda14cbcSMatt Macy /* Generate using the new math implementation */ 6247877fdebSMatt Macy if (vdev_raidz_math_generate(rm, rr) != RAIDZ_ORIGINAL_IMPL) 625eda14cbcSMatt Macy return; 626eda14cbcSMatt Macy 6277877fdebSMatt Macy switch (rr->rr_firstdatacol) { 628eda14cbcSMatt Macy case 1: 6297877fdebSMatt Macy vdev_raidz_generate_parity_p(rr); 630eda14cbcSMatt Macy break; 631eda14cbcSMatt Macy case 2: 6327877fdebSMatt Macy vdev_raidz_generate_parity_pq(rr); 633eda14cbcSMatt Macy break; 634eda14cbcSMatt Macy case 3: 6357877fdebSMatt Macy vdev_raidz_generate_parity_pqr(rr); 636eda14cbcSMatt Macy break; 637eda14cbcSMatt Macy default: 638eda14cbcSMatt Macy cmn_err(CE_PANIC, "invalid RAID-Z configuration"); 639eda14cbcSMatt Macy } 640eda14cbcSMatt Macy } 641eda14cbcSMatt Macy 6427877fdebSMatt Macy void 6437877fdebSMatt Macy vdev_raidz_generate_parity(raidz_map_t *rm) 6447877fdebSMatt Macy { 6457877fdebSMatt Macy for (int i = 0; i < rm->rm_nrows; i++) { 6467877fdebSMatt Macy raidz_row_t *rr = rm->rm_row[i]; 6477877fdebSMatt Macy vdev_raidz_generate_parity_row(rm, rr); 6487877fdebSMatt Macy } 6497877fdebSMatt Macy } 6507877fdebSMatt Macy 651eda14cbcSMatt Macy static int 652eda14cbcSMatt Macy vdev_raidz_reconst_p_func(void *dbuf, void *sbuf, size_t size, void *private) 653eda14cbcSMatt Macy { 654*e92ffd9bSMartin Matuska (void) private; 655eda14cbcSMatt Macy uint64_t *dst = dbuf; 656eda14cbcSMatt Macy uint64_t *src = sbuf; 657eda14cbcSMatt Macy int cnt = size / sizeof (src[0]); 658eda14cbcSMatt Macy 659eda14cbcSMatt Macy for (int i = 0; i < cnt; i++) { 660eda14cbcSMatt Macy dst[i] ^= src[i]; 661eda14cbcSMatt Macy } 662eda14cbcSMatt Macy 663eda14cbcSMatt Macy return (0); 664eda14cbcSMatt Macy } 665eda14cbcSMatt Macy 666eda14cbcSMatt Macy static int 667eda14cbcSMatt Macy vdev_raidz_reconst_q_pre_func(void *dbuf, void *sbuf, size_t size, 668eda14cbcSMatt Macy void *private) 669eda14cbcSMatt Macy { 670*e92ffd9bSMartin Matuska (void) private; 671eda14cbcSMatt Macy uint64_t *dst = dbuf; 672eda14cbcSMatt Macy uint64_t *src = sbuf; 673eda14cbcSMatt Macy uint64_t mask; 674eda14cbcSMatt Macy int cnt = size / sizeof (dst[0]); 675eda14cbcSMatt Macy 676eda14cbcSMatt Macy for (int i = 0; i < cnt; i++, dst++, src++) { 677eda14cbcSMatt Macy VDEV_RAIDZ_64MUL_2(*dst, mask); 678eda14cbcSMatt Macy *dst ^= *src; 679eda14cbcSMatt Macy } 680eda14cbcSMatt Macy 681eda14cbcSMatt Macy return (0); 682eda14cbcSMatt Macy } 683eda14cbcSMatt Macy 684eda14cbcSMatt Macy static int 685eda14cbcSMatt Macy vdev_raidz_reconst_q_pre_tail_func(void *buf, size_t size, void *private) 686eda14cbcSMatt Macy { 687*e92ffd9bSMartin Matuska (void) private; 688eda14cbcSMatt Macy uint64_t *dst = buf; 689eda14cbcSMatt Macy uint64_t mask; 690eda14cbcSMatt Macy int cnt = size / sizeof (dst[0]); 691eda14cbcSMatt Macy 692eda14cbcSMatt Macy for (int i = 0; i < cnt; i++, dst++) { 693eda14cbcSMatt Macy /* same operation as vdev_raidz_reconst_q_pre_func() on dst */ 694eda14cbcSMatt Macy VDEV_RAIDZ_64MUL_2(*dst, mask); 695eda14cbcSMatt Macy } 696eda14cbcSMatt Macy 697eda14cbcSMatt Macy return (0); 698eda14cbcSMatt Macy } 699eda14cbcSMatt Macy 700eda14cbcSMatt Macy struct reconst_q_struct { 701eda14cbcSMatt Macy uint64_t *q; 702eda14cbcSMatt Macy int exp; 703eda14cbcSMatt Macy }; 704eda14cbcSMatt Macy 705eda14cbcSMatt Macy static int 706eda14cbcSMatt Macy vdev_raidz_reconst_q_post_func(void *buf, size_t size, void *private) 707eda14cbcSMatt Macy { 708eda14cbcSMatt Macy struct reconst_q_struct *rq = private; 709eda14cbcSMatt Macy uint64_t *dst = buf; 710eda14cbcSMatt Macy int cnt = size / sizeof (dst[0]); 711eda14cbcSMatt Macy 712eda14cbcSMatt Macy for (int i = 0; i < cnt; i++, dst++, rq->q++) { 713eda14cbcSMatt Macy int j; 714eda14cbcSMatt Macy uint8_t *b; 715eda14cbcSMatt Macy 716eda14cbcSMatt Macy *dst ^= *rq->q; 717eda14cbcSMatt Macy for (j = 0, b = (uint8_t *)dst; j < 8; j++, b++) { 718eda14cbcSMatt Macy *b = vdev_raidz_exp2(*b, rq->exp); 719eda14cbcSMatt Macy } 720eda14cbcSMatt Macy } 721eda14cbcSMatt Macy 722eda14cbcSMatt Macy return (0); 723eda14cbcSMatt Macy } 724eda14cbcSMatt Macy 725eda14cbcSMatt Macy struct reconst_pq_struct { 726eda14cbcSMatt Macy uint8_t *p; 727eda14cbcSMatt Macy uint8_t *q; 728eda14cbcSMatt Macy uint8_t *pxy; 729eda14cbcSMatt Macy uint8_t *qxy; 730eda14cbcSMatt Macy int aexp; 731eda14cbcSMatt Macy int bexp; 732eda14cbcSMatt Macy }; 733eda14cbcSMatt Macy 734eda14cbcSMatt Macy static int 735eda14cbcSMatt Macy vdev_raidz_reconst_pq_func(void *xbuf, void *ybuf, size_t size, void *private) 736eda14cbcSMatt Macy { 737eda14cbcSMatt Macy struct reconst_pq_struct *rpq = private; 738eda14cbcSMatt Macy uint8_t *xd = xbuf; 739eda14cbcSMatt Macy uint8_t *yd = ybuf; 740eda14cbcSMatt Macy 741eda14cbcSMatt Macy for (int i = 0; i < size; 742eda14cbcSMatt Macy i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++, yd++) { 743eda14cbcSMatt Macy *xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^ 744eda14cbcSMatt Macy vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp); 745eda14cbcSMatt Macy *yd = *rpq->p ^ *rpq->pxy ^ *xd; 746eda14cbcSMatt Macy } 747eda14cbcSMatt Macy 748eda14cbcSMatt Macy return (0); 749eda14cbcSMatt Macy } 750eda14cbcSMatt Macy 751eda14cbcSMatt Macy static int 752eda14cbcSMatt Macy vdev_raidz_reconst_pq_tail_func(void *xbuf, size_t size, void *private) 753eda14cbcSMatt Macy { 754eda14cbcSMatt Macy struct reconst_pq_struct *rpq = private; 755eda14cbcSMatt Macy uint8_t *xd = xbuf; 756eda14cbcSMatt Macy 757eda14cbcSMatt Macy for (int i = 0; i < size; 758eda14cbcSMatt Macy i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++) { 759eda14cbcSMatt Macy /* same operation as vdev_raidz_reconst_pq_func() on xd */ 760eda14cbcSMatt Macy *xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^ 761eda14cbcSMatt Macy vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp); 762eda14cbcSMatt Macy } 763eda14cbcSMatt Macy 764eda14cbcSMatt Macy return (0); 765eda14cbcSMatt Macy } 766eda14cbcSMatt Macy 767f9693befSMartin Matuska static void 7687877fdebSMatt Macy vdev_raidz_reconstruct_p(raidz_row_t *rr, int *tgts, int ntgts) 769eda14cbcSMatt Macy { 770eda14cbcSMatt Macy int x = tgts[0]; 771eda14cbcSMatt Macy abd_t *dst, *src; 772eda14cbcSMatt Macy 7737877fdebSMatt Macy ASSERT3U(ntgts, ==, 1); 7747877fdebSMatt Macy ASSERT3U(x, >=, rr->rr_firstdatacol); 7757877fdebSMatt Macy ASSERT3U(x, <, rr->rr_cols); 776eda14cbcSMatt Macy 7777877fdebSMatt Macy ASSERT3U(rr->rr_col[x].rc_size, <=, rr->rr_col[VDEV_RAIDZ_P].rc_size); 778eda14cbcSMatt Macy 7797877fdebSMatt Macy src = rr->rr_col[VDEV_RAIDZ_P].rc_abd; 7807877fdebSMatt Macy dst = rr->rr_col[x].rc_abd; 781eda14cbcSMatt Macy 7827877fdebSMatt Macy abd_copy_from_buf(dst, abd_to_buf(src), rr->rr_col[x].rc_size); 783eda14cbcSMatt Macy 7847877fdebSMatt Macy for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 7857877fdebSMatt Macy uint64_t size = MIN(rr->rr_col[x].rc_size, 7867877fdebSMatt Macy rr->rr_col[c].rc_size); 787eda14cbcSMatt Macy 7887877fdebSMatt Macy src = rr->rr_col[c].rc_abd; 789eda14cbcSMatt Macy 790eda14cbcSMatt Macy if (c == x) 791eda14cbcSMatt Macy continue; 792eda14cbcSMatt Macy 793eda14cbcSMatt Macy (void) abd_iterate_func2(dst, src, 0, 0, size, 794eda14cbcSMatt Macy vdev_raidz_reconst_p_func, NULL); 795eda14cbcSMatt Macy } 796eda14cbcSMatt Macy } 797eda14cbcSMatt Macy 798f9693befSMartin Matuska static void 7997877fdebSMatt Macy vdev_raidz_reconstruct_q(raidz_row_t *rr, int *tgts, int ntgts) 800eda14cbcSMatt Macy { 801eda14cbcSMatt Macy int x = tgts[0]; 802eda14cbcSMatt Macy int c, exp; 803eda14cbcSMatt Macy abd_t *dst, *src; 804eda14cbcSMatt Macy 805eda14cbcSMatt Macy ASSERT(ntgts == 1); 806eda14cbcSMatt Macy 8077877fdebSMatt Macy ASSERT(rr->rr_col[x].rc_size <= rr->rr_col[VDEV_RAIDZ_Q].rc_size); 808eda14cbcSMatt Macy 8097877fdebSMatt Macy for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 8107877fdebSMatt Macy uint64_t size = (c == x) ? 0 : MIN(rr->rr_col[x].rc_size, 8117877fdebSMatt Macy rr->rr_col[c].rc_size); 812eda14cbcSMatt Macy 8137877fdebSMatt Macy src = rr->rr_col[c].rc_abd; 8147877fdebSMatt Macy dst = rr->rr_col[x].rc_abd; 815eda14cbcSMatt Macy 8167877fdebSMatt Macy if (c == rr->rr_firstdatacol) { 817eda14cbcSMatt Macy abd_copy(dst, src, size); 8187877fdebSMatt Macy if (rr->rr_col[x].rc_size > size) { 819eda14cbcSMatt Macy abd_zero_off(dst, size, 8207877fdebSMatt Macy rr->rr_col[x].rc_size - size); 8217877fdebSMatt Macy } 822eda14cbcSMatt Macy } else { 8237877fdebSMatt Macy ASSERT3U(size, <=, rr->rr_col[x].rc_size); 824eda14cbcSMatt Macy (void) abd_iterate_func2(dst, src, 0, 0, size, 825eda14cbcSMatt Macy vdev_raidz_reconst_q_pre_func, NULL); 826eda14cbcSMatt Macy (void) abd_iterate_func(dst, 8277877fdebSMatt Macy size, rr->rr_col[x].rc_size - size, 828eda14cbcSMatt Macy vdev_raidz_reconst_q_pre_tail_func, NULL); 829eda14cbcSMatt Macy } 830eda14cbcSMatt Macy } 831eda14cbcSMatt Macy 8327877fdebSMatt Macy src = rr->rr_col[VDEV_RAIDZ_Q].rc_abd; 8337877fdebSMatt Macy dst = rr->rr_col[x].rc_abd; 8347877fdebSMatt Macy exp = 255 - (rr->rr_cols - 1 - x); 835eda14cbcSMatt Macy 836eda14cbcSMatt Macy struct reconst_q_struct rq = { abd_to_buf(src), exp }; 8377877fdebSMatt Macy (void) abd_iterate_func(dst, 0, rr->rr_col[x].rc_size, 838eda14cbcSMatt Macy vdev_raidz_reconst_q_post_func, &rq); 839eda14cbcSMatt Macy } 840eda14cbcSMatt Macy 841f9693befSMartin Matuska static void 8427877fdebSMatt Macy vdev_raidz_reconstruct_pq(raidz_row_t *rr, int *tgts, int ntgts) 843eda14cbcSMatt Macy { 844eda14cbcSMatt Macy uint8_t *p, *q, *pxy, *qxy, tmp, a, b, aexp, bexp; 845eda14cbcSMatt Macy abd_t *pdata, *qdata; 846eda14cbcSMatt Macy uint64_t xsize, ysize; 847eda14cbcSMatt Macy int x = tgts[0]; 848eda14cbcSMatt Macy int y = tgts[1]; 849eda14cbcSMatt Macy abd_t *xd, *yd; 850eda14cbcSMatt Macy 851eda14cbcSMatt Macy ASSERT(ntgts == 2); 852eda14cbcSMatt Macy ASSERT(x < y); 8537877fdebSMatt Macy ASSERT(x >= rr->rr_firstdatacol); 8547877fdebSMatt Macy ASSERT(y < rr->rr_cols); 855eda14cbcSMatt Macy 8567877fdebSMatt Macy ASSERT(rr->rr_col[x].rc_size >= rr->rr_col[y].rc_size); 857eda14cbcSMatt Macy 858eda14cbcSMatt Macy /* 859eda14cbcSMatt Macy * Move the parity data aside -- we're going to compute parity as 860eda14cbcSMatt Macy * though columns x and y were full of zeros -- Pxy and Qxy. We want to 861eda14cbcSMatt Macy * reuse the parity generation mechanism without trashing the actual 862eda14cbcSMatt Macy * parity so we make those columns appear to be full of zeros by 863eda14cbcSMatt Macy * setting their lengths to zero. 864eda14cbcSMatt Macy */ 8657877fdebSMatt Macy pdata = rr->rr_col[VDEV_RAIDZ_P].rc_abd; 8667877fdebSMatt Macy qdata = rr->rr_col[VDEV_RAIDZ_Q].rc_abd; 8677877fdebSMatt Macy xsize = rr->rr_col[x].rc_size; 8687877fdebSMatt Macy ysize = rr->rr_col[y].rc_size; 869eda14cbcSMatt Macy 8707877fdebSMatt Macy rr->rr_col[VDEV_RAIDZ_P].rc_abd = 8717877fdebSMatt Macy abd_alloc_linear(rr->rr_col[VDEV_RAIDZ_P].rc_size, B_TRUE); 8727877fdebSMatt Macy rr->rr_col[VDEV_RAIDZ_Q].rc_abd = 8737877fdebSMatt Macy abd_alloc_linear(rr->rr_col[VDEV_RAIDZ_Q].rc_size, B_TRUE); 8747877fdebSMatt Macy rr->rr_col[x].rc_size = 0; 8757877fdebSMatt Macy rr->rr_col[y].rc_size = 0; 876eda14cbcSMatt Macy 8777877fdebSMatt Macy vdev_raidz_generate_parity_pq(rr); 878eda14cbcSMatt Macy 8797877fdebSMatt Macy rr->rr_col[x].rc_size = xsize; 8807877fdebSMatt Macy rr->rr_col[y].rc_size = ysize; 881eda14cbcSMatt Macy 882eda14cbcSMatt Macy p = abd_to_buf(pdata); 883eda14cbcSMatt Macy q = abd_to_buf(qdata); 8847877fdebSMatt Macy pxy = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd); 8857877fdebSMatt Macy qxy = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd); 8867877fdebSMatt Macy xd = rr->rr_col[x].rc_abd; 8877877fdebSMatt Macy yd = rr->rr_col[y].rc_abd; 888eda14cbcSMatt Macy 889eda14cbcSMatt Macy /* 890eda14cbcSMatt Macy * We now have: 891eda14cbcSMatt Macy * Pxy = P + D_x + D_y 892eda14cbcSMatt Macy * Qxy = Q + 2^(ndevs - 1 - x) * D_x + 2^(ndevs - 1 - y) * D_y 893eda14cbcSMatt Macy * 894eda14cbcSMatt Macy * We can then solve for D_x: 895eda14cbcSMatt Macy * D_x = A * (P + Pxy) + B * (Q + Qxy) 896eda14cbcSMatt Macy * where 897eda14cbcSMatt Macy * A = 2^(x - y) * (2^(x - y) + 1)^-1 898eda14cbcSMatt Macy * B = 2^(ndevs - 1 - x) * (2^(x - y) + 1)^-1 899eda14cbcSMatt Macy * 900eda14cbcSMatt Macy * With D_x in hand, we can easily solve for D_y: 901eda14cbcSMatt Macy * D_y = P + Pxy + D_x 902eda14cbcSMatt Macy */ 903eda14cbcSMatt Macy 904eda14cbcSMatt Macy a = vdev_raidz_pow2[255 + x - y]; 9057877fdebSMatt Macy b = vdev_raidz_pow2[255 - (rr->rr_cols - 1 - x)]; 906eda14cbcSMatt Macy tmp = 255 - vdev_raidz_log2[a ^ 1]; 907eda14cbcSMatt Macy 908eda14cbcSMatt Macy aexp = vdev_raidz_log2[vdev_raidz_exp2(a, tmp)]; 909eda14cbcSMatt Macy bexp = vdev_raidz_log2[vdev_raidz_exp2(b, tmp)]; 910eda14cbcSMatt Macy 911eda14cbcSMatt Macy ASSERT3U(xsize, >=, ysize); 912eda14cbcSMatt Macy struct reconst_pq_struct rpq = { p, q, pxy, qxy, aexp, bexp }; 913eda14cbcSMatt Macy 914eda14cbcSMatt Macy (void) abd_iterate_func2(xd, yd, 0, 0, ysize, 915eda14cbcSMatt Macy vdev_raidz_reconst_pq_func, &rpq); 916eda14cbcSMatt Macy (void) abd_iterate_func(xd, ysize, xsize - ysize, 917eda14cbcSMatt Macy vdev_raidz_reconst_pq_tail_func, &rpq); 918eda14cbcSMatt Macy 9197877fdebSMatt Macy abd_free(rr->rr_col[VDEV_RAIDZ_P].rc_abd); 9207877fdebSMatt Macy abd_free(rr->rr_col[VDEV_RAIDZ_Q].rc_abd); 921eda14cbcSMatt Macy 922eda14cbcSMatt Macy /* 923eda14cbcSMatt Macy * Restore the saved parity data. 924eda14cbcSMatt Macy */ 9257877fdebSMatt Macy rr->rr_col[VDEV_RAIDZ_P].rc_abd = pdata; 9267877fdebSMatt Macy rr->rr_col[VDEV_RAIDZ_Q].rc_abd = qdata; 927eda14cbcSMatt Macy } 928eda14cbcSMatt Macy 929eda14cbcSMatt Macy /* BEGIN CSTYLED */ 930eda14cbcSMatt Macy /* 931eda14cbcSMatt Macy * In the general case of reconstruction, we must solve the system of linear 932eda14cbcSMatt Macy * equations defined by the coefficients used to generate parity as well as 933eda14cbcSMatt Macy * the contents of the data and parity disks. This can be expressed with 934eda14cbcSMatt Macy * vectors for the original data (D) and the actual data (d) and parity (p) 935eda14cbcSMatt Macy * and a matrix composed of the identity matrix (I) and a dispersal matrix (V): 936eda14cbcSMatt Macy * 937eda14cbcSMatt Macy * __ __ __ __ 938eda14cbcSMatt Macy * | | __ __ | p_0 | 939eda14cbcSMatt Macy * | V | | D_0 | | p_m-1 | 940eda14cbcSMatt Macy * | | x | : | = | d_0 | 941eda14cbcSMatt Macy * | I | | D_n-1 | | : | 942eda14cbcSMatt Macy * | | ~~ ~~ | d_n-1 | 943eda14cbcSMatt Macy * ~~ ~~ ~~ ~~ 944eda14cbcSMatt Macy * 945eda14cbcSMatt Macy * I is simply a square identity matrix of size n, and V is a vandermonde 946eda14cbcSMatt Macy * matrix defined by the coefficients we chose for the various parity columns 947eda14cbcSMatt Macy * (1, 2, 4). Note that these values were chosen both for simplicity, speedy 948eda14cbcSMatt Macy * computation as well as linear separability. 949eda14cbcSMatt Macy * 950eda14cbcSMatt Macy * __ __ __ __ 951eda14cbcSMatt Macy * | 1 .. 1 1 1 | | p_0 | 952eda14cbcSMatt Macy * | 2^n-1 .. 4 2 1 | __ __ | : | 953eda14cbcSMatt Macy * | 4^n-1 .. 16 4 1 | | D_0 | | p_m-1 | 954eda14cbcSMatt Macy * | 1 .. 0 0 0 | | D_1 | | d_0 | 955eda14cbcSMatt Macy * | 0 .. 0 0 0 | x | D_2 | = | d_1 | 956eda14cbcSMatt Macy * | : : : : | | : | | d_2 | 957eda14cbcSMatt Macy * | 0 .. 1 0 0 | | D_n-1 | | : | 958eda14cbcSMatt Macy * | 0 .. 0 1 0 | ~~ ~~ | : | 959eda14cbcSMatt Macy * | 0 .. 0 0 1 | | d_n-1 | 960eda14cbcSMatt Macy * ~~ ~~ ~~ ~~ 961eda14cbcSMatt Macy * 962eda14cbcSMatt Macy * Note that I, V, d, and p are known. To compute D, we must invert the 963eda14cbcSMatt Macy * matrix and use the known data and parity values to reconstruct the unknown 964eda14cbcSMatt Macy * data values. We begin by removing the rows in V|I and d|p that correspond 965eda14cbcSMatt Macy * to failed or missing columns; we then make V|I square (n x n) and d|p 966eda14cbcSMatt Macy * sized n by removing rows corresponding to unused parity from the bottom up 967eda14cbcSMatt Macy * to generate (V|I)' and (d|p)'. We can then generate the inverse of (V|I)' 968eda14cbcSMatt Macy * using Gauss-Jordan elimination. In the example below we use m=3 parity 969eda14cbcSMatt Macy * columns, n=8 data columns, with errors in d_1, d_2, and p_1: 970eda14cbcSMatt Macy * __ __ 971eda14cbcSMatt Macy * | 1 1 1 1 1 1 1 1 | 972eda14cbcSMatt Macy * | 128 64 32 16 8 4 2 1 | <-----+-+-- missing disks 973eda14cbcSMatt Macy * | 19 205 116 29 64 16 4 1 | / / 974eda14cbcSMatt Macy * | 1 0 0 0 0 0 0 0 | / / 975eda14cbcSMatt Macy * | 0 1 0 0 0 0 0 0 | <--' / 976eda14cbcSMatt Macy * (V|I) = | 0 0 1 0 0 0 0 0 | <---' 977eda14cbcSMatt Macy * | 0 0 0 1 0 0 0 0 | 978eda14cbcSMatt Macy * | 0 0 0 0 1 0 0 0 | 979eda14cbcSMatt Macy * | 0 0 0 0 0 1 0 0 | 980eda14cbcSMatt Macy * | 0 0 0 0 0 0 1 0 | 981eda14cbcSMatt Macy * | 0 0 0 0 0 0 0 1 | 982eda14cbcSMatt Macy * ~~ ~~ 983eda14cbcSMatt Macy * __ __ 984eda14cbcSMatt Macy * | 1 1 1 1 1 1 1 1 | 985eda14cbcSMatt Macy * | 128 64 32 16 8 4 2 1 | 986eda14cbcSMatt Macy * | 19 205 116 29 64 16 4 1 | 987eda14cbcSMatt Macy * | 1 0 0 0 0 0 0 0 | 988eda14cbcSMatt Macy * | 0 1 0 0 0 0 0 0 | 989eda14cbcSMatt Macy * (V|I)' = | 0 0 1 0 0 0 0 0 | 990eda14cbcSMatt Macy * | 0 0 0 1 0 0 0 0 | 991eda14cbcSMatt Macy * | 0 0 0 0 1 0 0 0 | 992eda14cbcSMatt Macy * | 0 0 0 0 0 1 0 0 | 993eda14cbcSMatt Macy * | 0 0 0 0 0 0 1 0 | 994eda14cbcSMatt Macy * | 0 0 0 0 0 0 0 1 | 995eda14cbcSMatt Macy * ~~ ~~ 996eda14cbcSMatt Macy * 997eda14cbcSMatt Macy * Here we employ Gauss-Jordan elimination to find the inverse of (V|I)'. We 998eda14cbcSMatt Macy * have carefully chosen the seed values 1, 2, and 4 to ensure that this 999eda14cbcSMatt Macy * matrix is not singular. 1000eda14cbcSMatt Macy * __ __ 1001eda14cbcSMatt Macy * | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 | 1002eda14cbcSMatt Macy * | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 | 1003eda14cbcSMatt Macy * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | 1004eda14cbcSMatt Macy * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | 1005eda14cbcSMatt Macy * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | 1006eda14cbcSMatt Macy * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | 1007eda14cbcSMatt Macy * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | 1008eda14cbcSMatt Macy * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | 1009eda14cbcSMatt Macy * ~~ ~~ 1010eda14cbcSMatt Macy * __ __ 1011eda14cbcSMatt Macy * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | 1012eda14cbcSMatt Macy * | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 | 1013eda14cbcSMatt Macy * | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 | 1014eda14cbcSMatt Macy * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | 1015eda14cbcSMatt Macy * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | 1016eda14cbcSMatt Macy * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | 1017eda14cbcSMatt Macy * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | 1018eda14cbcSMatt Macy * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | 1019eda14cbcSMatt Macy * ~~ ~~ 1020eda14cbcSMatt Macy * __ __ 1021eda14cbcSMatt Macy * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | 1022eda14cbcSMatt Macy * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 | 1023eda14cbcSMatt Macy * | 0 205 116 0 0 0 0 0 0 1 19 29 64 16 4 1 | 1024eda14cbcSMatt Macy * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | 1025eda14cbcSMatt Macy * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | 1026eda14cbcSMatt Macy * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | 1027eda14cbcSMatt Macy * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | 1028eda14cbcSMatt Macy * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | 1029eda14cbcSMatt Macy * ~~ ~~ 1030eda14cbcSMatt Macy * __ __ 1031eda14cbcSMatt Macy * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | 1032eda14cbcSMatt Macy * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 | 1033eda14cbcSMatt Macy * | 0 0 185 0 0 0 0 0 205 1 222 208 141 221 201 204 | 1034eda14cbcSMatt Macy * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | 1035eda14cbcSMatt Macy * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | 1036eda14cbcSMatt Macy * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | 1037eda14cbcSMatt Macy * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | 1038eda14cbcSMatt Macy * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | 1039eda14cbcSMatt Macy * ~~ ~~ 1040eda14cbcSMatt Macy * __ __ 1041eda14cbcSMatt Macy * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | 1042eda14cbcSMatt Macy * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 | 1043eda14cbcSMatt Macy * | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 | 1044eda14cbcSMatt Macy * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | 1045eda14cbcSMatt Macy * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | 1046eda14cbcSMatt Macy * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | 1047eda14cbcSMatt Macy * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | 1048eda14cbcSMatt Macy * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | 1049eda14cbcSMatt Macy * ~~ ~~ 1050eda14cbcSMatt Macy * __ __ 1051eda14cbcSMatt Macy * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | 1052eda14cbcSMatt Macy * | 0 1 0 0 0 0 0 0 167 100 5 41 159 169 217 208 | 1053eda14cbcSMatt Macy * | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 | 1054eda14cbcSMatt Macy * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | 1055eda14cbcSMatt Macy * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | 1056eda14cbcSMatt Macy * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | 1057eda14cbcSMatt Macy * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | 1058eda14cbcSMatt Macy * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | 1059eda14cbcSMatt Macy * ~~ ~~ 1060eda14cbcSMatt Macy * __ __ 1061eda14cbcSMatt Macy * | 0 0 1 0 0 0 0 0 | 1062eda14cbcSMatt Macy * | 167 100 5 41 159 169 217 208 | 1063eda14cbcSMatt Macy * | 166 100 4 40 158 168 216 209 | 1064eda14cbcSMatt Macy * (V|I)'^-1 = | 0 0 0 1 0 0 0 0 | 1065eda14cbcSMatt Macy * | 0 0 0 0 1 0 0 0 | 1066eda14cbcSMatt Macy * | 0 0 0 0 0 1 0 0 | 1067eda14cbcSMatt Macy * | 0 0 0 0 0 0 1 0 | 1068eda14cbcSMatt Macy * | 0 0 0 0 0 0 0 1 | 1069eda14cbcSMatt Macy * ~~ ~~ 1070eda14cbcSMatt Macy * 1071eda14cbcSMatt Macy * We can then simply compute D = (V|I)'^-1 x (d|p)' to discover the values 1072eda14cbcSMatt Macy * of the missing data. 1073eda14cbcSMatt Macy * 1074eda14cbcSMatt Macy * As is apparent from the example above, the only non-trivial rows in the 1075eda14cbcSMatt Macy * inverse matrix correspond to the data disks that we're trying to 1076eda14cbcSMatt Macy * reconstruct. Indeed, those are the only rows we need as the others would 1077eda14cbcSMatt Macy * only be useful for reconstructing data known or assumed to be valid. For 1078eda14cbcSMatt Macy * that reason, we only build the coefficients in the rows that correspond to 1079eda14cbcSMatt Macy * targeted columns. 1080eda14cbcSMatt Macy */ 1081eda14cbcSMatt Macy /* END CSTYLED */ 1082eda14cbcSMatt Macy 1083eda14cbcSMatt Macy static void 10847877fdebSMatt Macy vdev_raidz_matrix_init(raidz_row_t *rr, int n, int nmap, int *map, 1085eda14cbcSMatt Macy uint8_t **rows) 1086eda14cbcSMatt Macy { 1087eda14cbcSMatt Macy int i, j; 1088eda14cbcSMatt Macy int pow; 1089eda14cbcSMatt Macy 10907877fdebSMatt Macy ASSERT(n == rr->rr_cols - rr->rr_firstdatacol); 1091eda14cbcSMatt Macy 1092eda14cbcSMatt Macy /* 1093eda14cbcSMatt Macy * Fill in the missing rows of interest. 1094eda14cbcSMatt Macy */ 1095eda14cbcSMatt Macy for (i = 0; i < nmap; i++) { 1096eda14cbcSMatt Macy ASSERT3S(0, <=, map[i]); 1097eda14cbcSMatt Macy ASSERT3S(map[i], <=, 2); 1098eda14cbcSMatt Macy 1099eda14cbcSMatt Macy pow = map[i] * n; 1100eda14cbcSMatt Macy if (pow > 255) 1101eda14cbcSMatt Macy pow -= 255; 1102eda14cbcSMatt Macy ASSERT(pow <= 255); 1103eda14cbcSMatt Macy 1104eda14cbcSMatt Macy for (j = 0; j < n; j++) { 1105eda14cbcSMatt Macy pow -= map[i]; 1106eda14cbcSMatt Macy if (pow < 0) 1107eda14cbcSMatt Macy pow += 255; 1108eda14cbcSMatt Macy rows[i][j] = vdev_raidz_pow2[pow]; 1109eda14cbcSMatt Macy } 1110eda14cbcSMatt Macy } 1111eda14cbcSMatt Macy } 1112eda14cbcSMatt Macy 1113eda14cbcSMatt Macy static void 11147877fdebSMatt Macy vdev_raidz_matrix_invert(raidz_row_t *rr, int n, int nmissing, int *missing, 1115eda14cbcSMatt Macy uint8_t **rows, uint8_t **invrows, const uint8_t *used) 1116eda14cbcSMatt Macy { 1117eda14cbcSMatt Macy int i, j, ii, jj; 1118eda14cbcSMatt Macy uint8_t log; 1119eda14cbcSMatt Macy 1120eda14cbcSMatt Macy /* 1121eda14cbcSMatt Macy * Assert that the first nmissing entries from the array of used 1122eda14cbcSMatt Macy * columns correspond to parity columns and that subsequent entries 1123eda14cbcSMatt Macy * correspond to data columns. 1124eda14cbcSMatt Macy */ 1125eda14cbcSMatt Macy for (i = 0; i < nmissing; i++) { 11267877fdebSMatt Macy ASSERT3S(used[i], <, rr->rr_firstdatacol); 1127eda14cbcSMatt Macy } 1128eda14cbcSMatt Macy for (; i < n; i++) { 11297877fdebSMatt Macy ASSERT3S(used[i], >=, rr->rr_firstdatacol); 1130eda14cbcSMatt Macy } 1131eda14cbcSMatt Macy 1132eda14cbcSMatt Macy /* 1133eda14cbcSMatt Macy * First initialize the storage where we'll compute the inverse rows. 1134eda14cbcSMatt Macy */ 1135eda14cbcSMatt Macy for (i = 0; i < nmissing; i++) { 1136eda14cbcSMatt Macy for (j = 0; j < n; j++) { 1137eda14cbcSMatt Macy invrows[i][j] = (i == j) ? 1 : 0; 1138eda14cbcSMatt Macy } 1139eda14cbcSMatt Macy } 1140eda14cbcSMatt Macy 1141eda14cbcSMatt Macy /* 1142eda14cbcSMatt Macy * Subtract all trivial rows from the rows of consequence. 1143eda14cbcSMatt Macy */ 1144eda14cbcSMatt Macy for (i = 0; i < nmissing; i++) { 1145eda14cbcSMatt Macy for (j = nmissing; j < n; j++) { 11467877fdebSMatt Macy ASSERT3U(used[j], >=, rr->rr_firstdatacol); 11477877fdebSMatt Macy jj = used[j] - rr->rr_firstdatacol; 1148eda14cbcSMatt Macy ASSERT3S(jj, <, n); 1149eda14cbcSMatt Macy invrows[i][j] = rows[i][jj]; 1150eda14cbcSMatt Macy rows[i][jj] = 0; 1151eda14cbcSMatt Macy } 1152eda14cbcSMatt Macy } 1153eda14cbcSMatt Macy 1154eda14cbcSMatt Macy /* 1155eda14cbcSMatt Macy * For each of the rows of interest, we must normalize it and subtract 1156eda14cbcSMatt Macy * a multiple of it from the other rows. 1157eda14cbcSMatt Macy */ 1158eda14cbcSMatt Macy for (i = 0; i < nmissing; i++) { 1159eda14cbcSMatt Macy for (j = 0; j < missing[i]; j++) { 1160eda14cbcSMatt Macy ASSERT0(rows[i][j]); 1161eda14cbcSMatt Macy } 1162eda14cbcSMatt Macy ASSERT3U(rows[i][missing[i]], !=, 0); 1163eda14cbcSMatt Macy 1164eda14cbcSMatt Macy /* 1165eda14cbcSMatt Macy * Compute the inverse of the first element and multiply each 1166eda14cbcSMatt Macy * element in the row by that value. 1167eda14cbcSMatt Macy */ 1168eda14cbcSMatt Macy log = 255 - vdev_raidz_log2[rows[i][missing[i]]]; 1169eda14cbcSMatt Macy 1170eda14cbcSMatt Macy for (j = 0; j < n; j++) { 1171eda14cbcSMatt Macy rows[i][j] = vdev_raidz_exp2(rows[i][j], log); 1172eda14cbcSMatt Macy invrows[i][j] = vdev_raidz_exp2(invrows[i][j], log); 1173eda14cbcSMatt Macy } 1174eda14cbcSMatt Macy 1175eda14cbcSMatt Macy for (ii = 0; ii < nmissing; ii++) { 1176eda14cbcSMatt Macy if (i == ii) 1177eda14cbcSMatt Macy continue; 1178eda14cbcSMatt Macy 1179eda14cbcSMatt Macy ASSERT3U(rows[ii][missing[i]], !=, 0); 1180eda14cbcSMatt Macy 1181eda14cbcSMatt Macy log = vdev_raidz_log2[rows[ii][missing[i]]]; 1182eda14cbcSMatt Macy 1183eda14cbcSMatt Macy for (j = 0; j < n; j++) { 1184eda14cbcSMatt Macy rows[ii][j] ^= 1185eda14cbcSMatt Macy vdev_raidz_exp2(rows[i][j], log); 1186eda14cbcSMatt Macy invrows[ii][j] ^= 1187eda14cbcSMatt Macy vdev_raidz_exp2(invrows[i][j], log); 1188eda14cbcSMatt Macy } 1189eda14cbcSMatt Macy } 1190eda14cbcSMatt Macy } 1191eda14cbcSMatt Macy 1192eda14cbcSMatt Macy /* 1193eda14cbcSMatt Macy * Verify that the data that is left in the rows are properly part of 1194eda14cbcSMatt Macy * an identity matrix. 1195eda14cbcSMatt Macy */ 1196eda14cbcSMatt Macy for (i = 0; i < nmissing; i++) { 1197eda14cbcSMatt Macy for (j = 0; j < n; j++) { 1198eda14cbcSMatt Macy if (j == missing[i]) { 1199eda14cbcSMatt Macy ASSERT3U(rows[i][j], ==, 1); 1200eda14cbcSMatt Macy } else { 1201eda14cbcSMatt Macy ASSERT0(rows[i][j]); 1202eda14cbcSMatt Macy } 1203eda14cbcSMatt Macy } 1204eda14cbcSMatt Macy } 1205eda14cbcSMatt Macy } 1206eda14cbcSMatt Macy 1207eda14cbcSMatt Macy static void 12087877fdebSMatt Macy vdev_raidz_matrix_reconstruct(raidz_row_t *rr, int n, int nmissing, 1209eda14cbcSMatt Macy int *missing, uint8_t **invrows, const uint8_t *used) 1210eda14cbcSMatt Macy { 1211eda14cbcSMatt Macy int i, j, x, cc, c; 1212eda14cbcSMatt Macy uint8_t *src; 1213eda14cbcSMatt Macy uint64_t ccount; 1214eda14cbcSMatt Macy uint8_t *dst[VDEV_RAIDZ_MAXPARITY] = { NULL }; 1215eda14cbcSMatt Macy uint64_t dcount[VDEV_RAIDZ_MAXPARITY] = { 0 }; 1216eda14cbcSMatt Macy uint8_t log = 0; 1217eda14cbcSMatt Macy uint8_t val; 1218eda14cbcSMatt Macy int ll; 1219eda14cbcSMatt Macy uint8_t *invlog[VDEV_RAIDZ_MAXPARITY]; 1220eda14cbcSMatt Macy uint8_t *p, *pp; 1221eda14cbcSMatt Macy size_t psize; 1222eda14cbcSMatt Macy 1223eda14cbcSMatt Macy psize = sizeof (invlog[0][0]) * n * nmissing; 1224eda14cbcSMatt Macy p = kmem_alloc(psize, KM_SLEEP); 1225eda14cbcSMatt Macy 1226eda14cbcSMatt Macy for (pp = p, i = 0; i < nmissing; i++) { 1227eda14cbcSMatt Macy invlog[i] = pp; 1228eda14cbcSMatt Macy pp += n; 1229eda14cbcSMatt Macy } 1230eda14cbcSMatt Macy 1231eda14cbcSMatt Macy for (i = 0; i < nmissing; i++) { 1232eda14cbcSMatt Macy for (j = 0; j < n; j++) { 1233eda14cbcSMatt Macy ASSERT3U(invrows[i][j], !=, 0); 1234eda14cbcSMatt Macy invlog[i][j] = vdev_raidz_log2[invrows[i][j]]; 1235eda14cbcSMatt Macy } 1236eda14cbcSMatt Macy } 1237eda14cbcSMatt Macy 1238eda14cbcSMatt Macy for (i = 0; i < n; i++) { 1239eda14cbcSMatt Macy c = used[i]; 12407877fdebSMatt Macy ASSERT3U(c, <, rr->rr_cols); 1241eda14cbcSMatt Macy 12427877fdebSMatt Macy ccount = rr->rr_col[c].rc_size; 12437877fdebSMatt Macy ASSERT(ccount >= rr->rr_col[missing[0]].rc_size || i > 0); 12447877fdebSMatt Macy if (ccount == 0) 12457877fdebSMatt Macy continue; 12467877fdebSMatt Macy src = abd_to_buf(rr->rr_col[c].rc_abd); 1247eda14cbcSMatt Macy for (j = 0; j < nmissing; j++) { 12487877fdebSMatt Macy cc = missing[j] + rr->rr_firstdatacol; 12497877fdebSMatt Macy ASSERT3U(cc, >=, rr->rr_firstdatacol); 12507877fdebSMatt Macy ASSERT3U(cc, <, rr->rr_cols); 1251eda14cbcSMatt Macy ASSERT3U(cc, !=, c); 1252eda14cbcSMatt Macy 12537877fdebSMatt Macy dcount[j] = rr->rr_col[cc].rc_size; 12547877fdebSMatt Macy if (dcount[j] != 0) 12557877fdebSMatt Macy dst[j] = abd_to_buf(rr->rr_col[cc].rc_abd); 1256eda14cbcSMatt Macy } 1257eda14cbcSMatt Macy 1258eda14cbcSMatt Macy for (x = 0; x < ccount; x++, src++) { 1259eda14cbcSMatt Macy if (*src != 0) 1260eda14cbcSMatt Macy log = vdev_raidz_log2[*src]; 1261eda14cbcSMatt Macy 1262eda14cbcSMatt Macy for (cc = 0; cc < nmissing; cc++) { 1263eda14cbcSMatt Macy if (x >= dcount[cc]) 1264eda14cbcSMatt Macy continue; 1265eda14cbcSMatt Macy 1266eda14cbcSMatt Macy if (*src == 0) { 1267eda14cbcSMatt Macy val = 0; 1268eda14cbcSMatt Macy } else { 1269eda14cbcSMatt Macy if ((ll = log + invlog[cc][i]) >= 255) 1270eda14cbcSMatt Macy ll -= 255; 1271eda14cbcSMatt Macy val = vdev_raidz_pow2[ll]; 1272eda14cbcSMatt Macy } 1273eda14cbcSMatt Macy 1274eda14cbcSMatt Macy if (i == 0) 1275eda14cbcSMatt Macy dst[cc][x] = val; 1276eda14cbcSMatt Macy else 1277eda14cbcSMatt Macy dst[cc][x] ^= val; 1278eda14cbcSMatt Macy } 1279eda14cbcSMatt Macy } 1280eda14cbcSMatt Macy } 1281eda14cbcSMatt Macy 1282eda14cbcSMatt Macy kmem_free(p, psize); 1283eda14cbcSMatt Macy } 1284eda14cbcSMatt Macy 1285f9693befSMartin Matuska static void 12867877fdebSMatt Macy vdev_raidz_reconstruct_general(raidz_row_t *rr, int *tgts, int ntgts) 1287eda14cbcSMatt Macy { 1288eda14cbcSMatt Macy int n, i, c, t, tt; 1289eda14cbcSMatt Macy int nmissing_rows; 1290eda14cbcSMatt Macy int missing_rows[VDEV_RAIDZ_MAXPARITY]; 1291eda14cbcSMatt Macy int parity_map[VDEV_RAIDZ_MAXPARITY]; 1292eda14cbcSMatt Macy uint8_t *p, *pp; 1293eda14cbcSMatt Macy size_t psize; 1294eda14cbcSMatt Macy uint8_t *rows[VDEV_RAIDZ_MAXPARITY]; 1295eda14cbcSMatt Macy uint8_t *invrows[VDEV_RAIDZ_MAXPARITY]; 1296eda14cbcSMatt Macy uint8_t *used; 1297eda14cbcSMatt Macy 1298eda14cbcSMatt Macy abd_t **bufs = NULL; 1299eda14cbcSMatt Macy 1300eda14cbcSMatt Macy /* 1301eda14cbcSMatt Macy * Matrix reconstruction can't use scatter ABDs yet, so we allocate 13027877fdebSMatt Macy * temporary linear ABDs if any non-linear ABDs are found. 1303eda14cbcSMatt Macy */ 13047877fdebSMatt Macy for (i = rr->rr_firstdatacol; i < rr->rr_cols; i++) { 13057877fdebSMatt Macy if (!abd_is_linear(rr->rr_col[i].rc_abd)) { 13067877fdebSMatt Macy bufs = kmem_alloc(rr->rr_cols * sizeof (abd_t *), 13077877fdebSMatt Macy KM_PUSHPAGE); 1308eda14cbcSMatt Macy 13097877fdebSMatt Macy for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 13107877fdebSMatt Macy raidz_col_t *col = &rr->rr_col[c]; 1311eda14cbcSMatt Macy 1312eda14cbcSMatt Macy bufs[c] = col->rc_abd; 13137877fdebSMatt Macy if (bufs[c] != NULL) { 13147877fdebSMatt Macy col->rc_abd = abd_alloc_linear( 13157877fdebSMatt Macy col->rc_size, B_TRUE); 13167877fdebSMatt Macy abd_copy(col->rc_abd, bufs[c], 13177877fdebSMatt Macy col->rc_size); 1318eda14cbcSMatt Macy } 1319eda14cbcSMatt Macy } 1320eda14cbcSMatt Macy 13217877fdebSMatt Macy break; 13227877fdebSMatt Macy } 13237877fdebSMatt Macy } 13247877fdebSMatt Macy 13257877fdebSMatt Macy n = rr->rr_cols - rr->rr_firstdatacol; 1326eda14cbcSMatt Macy 1327eda14cbcSMatt Macy /* 1328eda14cbcSMatt Macy * Figure out which data columns are missing. 1329eda14cbcSMatt Macy */ 1330eda14cbcSMatt Macy nmissing_rows = 0; 1331eda14cbcSMatt Macy for (t = 0; t < ntgts; t++) { 13327877fdebSMatt Macy if (tgts[t] >= rr->rr_firstdatacol) { 1333eda14cbcSMatt Macy missing_rows[nmissing_rows++] = 13347877fdebSMatt Macy tgts[t] - rr->rr_firstdatacol; 1335eda14cbcSMatt Macy } 1336eda14cbcSMatt Macy } 1337eda14cbcSMatt Macy 1338eda14cbcSMatt Macy /* 1339eda14cbcSMatt Macy * Figure out which parity columns to use to help generate the missing 1340eda14cbcSMatt Macy * data columns. 1341eda14cbcSMatt Macy */ 1342eda14cbcSMatt Macy for (tt = 0, c = 0, i = 0; i < nmissing_rows; c++) { 1343eda14cbcSMatt Macy ASSERT(tt < ntgts); 13447877fdebSMatt Macy ASSERT(c < rr->rr_firstdatacol); 1345eda14cbcSMatt Macy 1346eda14cbcSMatt Macy /* 1347eda14cbcSMatt Macy * Skip any targeted parity columns. 1348eda14cbcSMatt Macy */ 1349eda14cbcSMatt Macy if (c == tgts[tt]) { 1350eda14cbcSMatt Macy tt++; 1351eda14cbcSMatt Macy continue; 1352eda14cbcSMatt Macy } 1353eda14cbcSMatt Macy 1354eda14cbcSMatt Macy parity_map[i] = c; 1355eda14cbcSMatt Macy i++; 1356eda14cbcSMatt Macy } 1357eda14cbcSMatt Macy 1358eda14cbcSMatt Macy psize = (sizeof (rows[0][0]) + sizeof (invrows[0][0])) * 1359eda14cbcSMatt Macy nmissing_rows * n + sizeof (used[0]) * n; 1360eda14cbcSMatt Macy p = kmem_alloc(psize, KM_SLEEP); 1361eda14cbcSMatt Macy 1362eda14cbcSMatt Macy for (pp = p, i = 0; i < nmissing_rows; i++) { 1363eda14cbcSMatt Macy rows[i] = pp; 1364eda14cbcSMatt Macy pp += n; 1365eda14cbcSMatt Macy invrows[i] = pp; 1366eda14cbcSMatt Macy pp += n; 1367eda14cbcSMatt Macy } 1368eda14cbcSMatt Macy used = pp; 1369eda14cbcSMatt Macy 1370eda14cbcSMatt Macy for (i = 0; i < nmissing_rows; i++) { 1371eda14cbcSMatt Macy used[i] = parity_map[i]; 1372eda14cbcSMatt Macy } 1373eda14cbcSMatt Macy 13747877fdebSMatt Macy for (tt = 0, c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 1375eda14cbcSMatt Macy if (tt < nmissing_rows && 13767877fdebSMatt Macy c == missing_rows[tt] + rr->rr_firstdatacol) { 1377eda14cbcSMatt Macy tt++; 1378eda14cbcSMatt Macy continue; 1379eda14cbcSMatt Macy } 1380eda14cbcSMatt Macy 1381eda14cbcSMatt Macy ASSERT3S(i, <, n); 1382eda14cbcSMatt Macy used[i] = c; 1383eda14cbcSMatt Macy i++; 1384eda14cbcSMatt Macy } 1385eda14cbcSMatt Macy 1386eda14cbcSMatt Macy /* 1387eda14cbcSMatt Macy * Initialize the interesting rows of the matrix. 1388eda14cbcSMatt Macy */ 13897877fdebSMatt Macy vdev_raidz_matrix_init(rr, n, nmissing_rows, parity_map, rows); 1390eda14cbcSMatt Macy 1391eda14cbcSMatt Macy /* 1392eda14cbcSMatt Macy * Invert the matrix. 1393eda14cbcSMatt Macy */ 13947877fdebSMatt Macy vdev_raidz_matrix_invert(rr, n, nmissing_rows, missing_rows, rows, 1395eda14cbcSMatt Macy invrows, used); 1396eda14cbcSMatt Macy 1397eda14cbcSMatt Macy /* 1398eda14cbcSMatt Macy * Reconstruct the missing data using the generated matrix. 1399eda14cbcSMatt Macy */ 14007877fdebSMatt Macy vdev_raidz_matrix_reconstruct(rr, n, nmissing_rows, missing_rows, 1401eda14cbcSMatt Macy invrows, used); 1402eda14cbcSMatt Macy 1403eda14cbcSMatt Macy kmem_free(p, psize); 1404eda14cbcSMatt Macy 1405eda14cbcSMatt Macy /* 1406eda14cbcSMatt Macy * copy back from temporary linear abds and free them 1407eda14cbcSMatt Macy */ 1408eda14cbcSMatt Macy if (bufs) { 14097877fdebSMatt Macy for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 14107877fdebSMatt Macy raidz_col_t *col = &rr->rr_col[c]; 1411eda14cbcSMatt Macy 14127877fdebSMatt Macy if (bufs[c] != NULL) { 1413eda14cbcSMatt Macy abd_copy(bufs[c], col->rc_abd, col->rc_size); 1414eda14cbcSMatt Macy abd_free(col->rc_abd); 14157877fdebSMatt Macy } 1416eda14cbcSMatt Macy col->rc_abd = bufs[c]; 1417eda14cbcSMatt Macy } 14187877fdebSMatt Macy kmem_free(bufs, rr->rr_cols * sizeof (abd_t *)); 1419eda14cbcSMatt Macy } 1420eda14cbcSMatt Macy } 1421eda14cbcSMatt Macy 1422f9693befSMartin Matuska static void 14237877fdebSMatt Macy vdev_raidz_reconstruct_row(raidz_map_t *rm, raidz_row_t *rr, 14247877fdebSMatt Macy const int *t, int nt) 1425eda14cbcSMatt Macy { 1426eda14cbcSMatt Macy int tgts[VDEV_RAIDZ_MAXPARITY], *dt; 1427eda14cbcSMatt Macy int ntgts; 1428eda14cbcSMatt Macy int i, c, ret; 1429eda14cbcSMatt Macy int nbadparity, nbaddata; 1430eda14cbcSMatt Macy int parity_valid[VDEV_RAIDZ_MAXPARITY]; 1431eda14cbcSMatt Macy 14327877fdebSMatt Macy nbadparity = rr->rr_firstdatacol; 14337877fdebSMatt Macy nbaddata = rr->rr_cols - nbadparity; 1434eda14cbcSMatt Macy ntgts = 0; 14357877fdebSMatt Macy for (i = 0, c = 0; c < rr->rr_cols; c++) { 14367877fdebSMatt Macy if (c < rr->rr_firstdatacol) 1437eda14cbcSMatt Macy parity_valid[c] = B_FALSE; 1438eda14cbcSMatt Macy 1439eda14cbcSMatt Macy if (i < nt && c == t[i]) { 1440eda14cbcSMatt Macy tgts[ntgts++] = c; 1441eda14cbcSMatt Macy i++; 14427877fdebSMatt Macy } else if (rr->rr_col[c].rc_error != 0) { 1443eda14cbcSMatt Macy tgts[ntgts++] = c; 14447877fdebSMatt Macy } else if (c >= rr->rr_firstdatacol) { 1445eda14cbcSMatt Macy nbaddata--; 1446eda14cbcSMatt Macy } else { 1447eda14cbcSMatt Macy parity_valid[c] = B_TRUE; 1448eda14cbcSMatt Macy nbadparity--; 1449eda14cbcSMatt Macy } 1450eda14cbcSMatt Macy } 1451eda14cbcSMatt Macy 1452eda14cbcSMatt Macy ASSERT(ntgts >= nt); 1453eda14cbcSMatt Macy ASSERT(nbaddata >= 0); 1454eda14cbcSMatt Macy ASSERT(nbaddata + nbadparity == ntgts); 1455eda14cbcSMatt Macy 1456eda14cbcSMatt Macy dt = &tgts[nbadparity]; 1457eda14cbcSMatt Macy 1458eda14cbcSMatt Macy /* Reconstruct using the new math implementation */ 14597877fdebSMatt Macy ret = vdev_raidz_math_reconstruct(rm, rr, parity_valid, dt, nbaddata); 1460eda14cbcSMatt Macy if (ret != RAIDZ_ORIGINAL_IMPL) 1461f9693befSMartin Matuska return; 1462eda14cbcSMatt Macy 1463eda14cbcSMatt Macy /* 1464eda14cbcSMatt Macy * See if we can use any of our optimized reconstruction routines. 1465eda14cbcSMatt Macy */ 1466eda14cbcSMatt Macy switch (nbaddata) { 1467eda14cbcSMatt Macy case 1: 1468f9693befSMartin Matuska if (parity_valid[VDEV_RAIDZ_P]) { 1469f9693befSMartin Matuska vdev_raidz_reconstruct_p(rr, dt, 1); 1470f9693befSMartin Matuska return; 1471f9693befSMartin Matuska } 1472eda14cbcSMatt Macy 14737877fdebSMatt Macy ASSERT(rr->rr_firstdatacol > 1); 1474eda14cbcSMatt Macy 1475f9693befSMartin Matuska if (parity_valid[VDEV_RAIDZ_Q]) { 1476f9693befSMartin Matuska vdev_raidz_reconstruct_q(rr, dt, 1); 1477f9693befSMartin Matuska return; 1478f9693befSMartin Matuska } 1479eda14cbcSMatt Macy 14807877fdebSMatt Macy ASSERT(rr->rr_firstdatacol > 2); 1481eda14cbcSMatt Macy break; 1482eda14cbcSMatt Macy 1483eda14cbcSMatt Macy case 2: 14847877fdebSMatt Macy ASSERT(rr->rr_firstdatacol > 1); 1485eda14cbcSMatt Macy 1486eda14cbcSMatt Macy if (parity_valid[VDEV_RAIDZ_P] && 1487f9693befSMartin Matuska parity_valid[VDEV_RAIDZ_Q]) { 1488f9693befSMartin Matuska vdev_raidz_reconstruct_pq(rr, dt, 2); 1489f9693befSMartin Matuska return; 1490f9693befSMartin Matuska } 1491eda14cbcSMatt Macy 14927877fdebSMatt Macy ASSERT(rr->rr_firstdatacol > 2); 1493eda14cbcSMatt Macy 1494eda14cbcSMatt Macy break; 1495eda14cbcSMatt Macy } 1496eda14cbcSMatt Macy 1497f9693befSMartin Matuska vdev_raidz_reconstruct_general(rr, tgts, ntgts); 1498eda14cbcSMatt Macy } 1499eda14cbcSMatt Macy 1500eda14cbcSMatt Macy static int 1501eda14cbcSMatt Macy vdev_raidz_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize, 1502eda14cbcSMatt Macy uint64_t *logical_ashift, uint64_t *physical_ashift) 1503eda14cbcSMatt Macy { 15047877fdebSMatt Macy vdev_raidz_t *vdrz = vd->vdev_tsd; 15057877fdebSMatt Macy uint64_t nparity = vdrz->vd_nparity; 1506eda14cbcSMatt Macy int c; 1507eda14cbcSMatt Macy int lasterror = 0; 1508eda14cbcSMatt Macy int numerrors = 0; 1509eda14cbcSMatt Macy 1510eda14cbcSMatt Macy ASSERT(nparity > 0); 1511eda14cbcSMatt Macy 1512eda14cbcSMatt Macy if (nparity > VDEV_RAIDZ_MAXPARITY || 1513eda14cbcSMatt Macy vd->vdev_children < nparity + 1) { 1514eda14cbcSMatt Macy vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 1515eda14cbcSMatt Macy return (SET_ERROR(EINVAL)); 1516eda14cbcSMatt Macy } 1517eda14cbcSMatt Macy 1518eda14cbcSMatt Macy vdev_open_children(vd); 1519eda14cbcSMatt Macy 1520eda14cbcSMatt Macy for (c = 0; c < vd->vdev_children; c++) { 15217877fdebSMatt Macy vdev_t *cvd = vd->vdev_child[c]; 1522eda14cbcSMatt Macy 1523eda14cbcSMatt Macy if (cvd->vdev_open_error != 0) { 1524eda14cbcSMatt Macy lasterror = cvd->vdev_open_error; 1525eda14cbcSMatt Macy numerrors++; 1526eda14cbcSMatt Macy continue; 1527eda14cbcSMatt Macy } 1528eda14cbcSMatt Macy 1529eda14cbcSMatt Macy *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1; 1530eda14cbcSMatt Macy *max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1; 1531eda14cbcSMatt Macy *logical_ashift = MAX(*logical_ashift, cvd->vdev_ashift); 1532eda14cbcSMatt Macy *physical_ashift = MAX(*physical_ashift, 1533eda14cbcSMatt Macy cvd->vdev_physical_ashift); 1534eda14cbcSMatt Macy } 1535eda14cbcSMatt Macy 1536eda14cbcSMatt Macy *asize *= vd->vdev_children; 1537eda14cbcSMatt Macy *max_asize *= vd->vdev_children; 1538eda14cbcSMatt Macy 1539eda14cbcSMatt Macy if (numerrors > nparity) { 1540eda14cbcSMatt Macy vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS; 1541eda14cbcSMatt Macy return (lasterror); 1542eda14cbcSMatt Macy } 1543eda14cbcSMatt Macy 1544eda14cbcSMatt Macy return (0); 1545eda14cbcSMatt Macy } 1546eda14cbcSMatt Macy 1547eda14cbcSMatt Macy static void 1548eda14cbcSMatt Macy vdev_raidz_close(vdev_t *vd) 1549eda14cbcSMatt Macy { 15507877fdebSMatt Macy for (int c = 0; c < vd->vdev_children; c++) { 15517877fdebSMatt Macy if (vd->vdev_child[c] != NULL) 1552eda14cbcSMatt Macy vdev_close(vd->vdev_child[c]); 1553eda14cbcSMatt Macy } 15547877fdebSMatt Macy } 1555eda14cbcSMatt Macy 1556eda14cbcSMatt Macy static uint64_t 1557eda14cbcSMatt Macy vdev_raidz_asize(vdev_t *vd, uint64_t psize) 1558eda14cbcSMatt Macy { 15597877fdebSMatt Macy vdev_raidz_t *vdrz = vd->vdev_tsd; 1560eda14cbcSMatt Macy uint64_t asize; 1561eda14cbcSMatt Macy uint64_t ashift = vd->vdev_top->vdev_ashift; 15627877fdebSMatt Macy uint64_t cols = vdrz->vd_logical_width; 15637877fdebSMatt Macy uint64_t nparity = vdrz->vd_nparity; 1564eda14cbcSMatt Macy 1565eda14cbcSMatt Macy asize = ((psize - 1) >> ashift) + 1; 1566eda14cbcSMatt Macy asize += nparity * ((asize + cols - nparity - 1) / (cols - nparity)); 1567eda14cbcSMatt Macy asize = roundup(asize, nparity + 1) << ashift; 1568eda14cbcSMatt Macy 1569eda14cbcSMatt Macy return (asize); 1570eda14cbcSMatt Macy } 1571eda14cbcSMatt Macy 15727877fdebSMatt Macy /* 15737877fdebSMatt Macy * The allocatable space for a raidz vdev is N * sizeof(smallest child) 15747877fdebSMatt Macy * so each child must provide at least 1/Nth of its asize. 15757877fdebSMatt Macy */ 15767877fdebSMatt Macy static uint64_t 15777877fdebSMatt Macy vdev_raidz_min_asize(vdev_t *vd) 15787877fdebSMatt Macy { 15797877fdebSMatt Macy return ((vd->vdev_min_asize + vd->vdev_children - 1) / 15807877fdebSMatt Macy vd->vdev_children); 15817877fdebSMatt Macy } 15827877fdebSMatt Macy 15837877fdebSMatt Macy void 1584eda14cbcSMatt Macy vdev_raidz_child_done(zio_t *zio) 1585eda14cbcSMatt Macy { 1586eda14cbcSMatt Macy raidz_col_t *rc = zio->io_private; 1587eda14cbcSMatt Macy 158881b22a98SMartin Matuska ASSERT3P(rc->rc_abd, !=, NULL); 1589eda14cbcSMatt Macy rc->rc_error = zio->io_error; 1590eda14cbcSMatt Macy rc->rc_tried = 1; 1591eda14cbcSMatt Macy rc->rc_skipped = 0; 1592eda14cbcSMatt Macy } 1593eda14cbcSMatt Macy 1594eda14cbcSMatt Macy static void 15957877fdebSMatt Macy vdev_raidz_io_verify(vdev_t *vd, raidz_row_t *rr, int col) 1596eda14cbcSMatt Macy { 1597eda14cbcSMatt Macy #ifdef ZFS_DEBUG 1598eda14cbcSMatt Macy vdev_t *tvd = vd->vdev_top; 1599eda14cbcSMatt Macy 16007877fdebSMatt Macy range_seg64_t logical_rs, physical_rs, remain_rs; 16017877fdebSMatt Macy logical_rs.rs_start = rr->rr_offset; 1602eda14cbcSMatt Macy logical_rs.rs_end = logical_rs.rs_start + 16037877fdebSMatt Macy vdev_raidz_asize(vd, rr->rr_size); 1604eda14cbcSMatt Macy 16057877fdebSMatt Macy raidz_col_t *rc = &rr->rr_col[col]; 1606eda14cbcSMatt Macy vdev_t *cvd = vd->vdev_child[rc->rc_devidx]; 1607eda14cbcSMatt Macy 16087877fdebSMatt Macy vdev_xlate(cvd, &logical_rs, &physical_rs, &remain_rs); 16097877fdebSMatt Macy ASSERT(vdev_xlate_is_empty(&remain_rs)); 1610eda14cbcSMatt Macy ASSERT3U(rc->rc_offset, ==, physical_rs.rs_start); 1611eda14cbcSMatt Macy ASSERT3U(rc->rc_offset, <, physical_rs.rs_end); 1612eda14cbcSMatt Macy /* 1613eda14cbcSMatt Macy * It would be nice to assert that rs_end is equal 1614eda14cbcSMatt Macy * to rc_offset + rc_size but there might be an 1615eda14cbcSMatt Macy * optional I/O at the end that is not accounted in 1616eda14cbcSMatt Macy * rc_size. 1617eda14cbcSMatt Macy */ 1618eda14cbcSMatt Macy if (physical_rs.rs_end > rc->rc_offset + rc->rc_size) { 1619eda14cbcSMatt Macy ASSERT3U(physical_rs.rs_end, ==, rc->rc_offset + 1620eda14cbcSMatt Macy rc->rc_size + (1 << tvd->vdev_ashift)); 1621eda14cbcSMatt Macy } else { 1622eda14cbcSMatt Macy ASSERT3U(physical_rs.rs_end, ==, rc->rc_offset + rc->rc_size); 1623eda14cbcSMatt Macy } 1624eda14cbcSMatt Macy #endif 1625eda14cbcSMatt Macy } 1626eda14cbcSMatt Macy 16277877fdebSMatt Macy static void 16287877fdebSMatt Macy vdev_raidz_io_start_write(zio_t *zio, raidz_row_t *rr, uint64_t ashift) 16297877fdebSMatt Macy { 16307877fdebSMatt Macy vdev_t *vd = zio->io_vd; 16317877fdebSMatt Macy raidz_map_t *rm = zio->io_vsd; 16327877fdebSMatt Macy 16337877fdebSMatt Macy vdev_raidz_generate_parity_row(rm, rr); 16347877fdebSMatt Macy 163581b22a98SMartin Matuska for (int c = 0; c < rr->rr_scols; c++) { 16367877fdebSMatt Macy raidz_col_t *rc = &rr->rr_col[c]; 163781b22a98SMartin Matuska vdev_t *cvd = vd->vdev_child[rc->rc_devidx]; 16387877fdebSMatt Macy 16397877fdebSMatt Macy /* Verify physical to logical translation */ 16407877fdebSMatt Macy vdev_raidz_io_verify(vd, rr, c); 16417877fdebSMatt Macy 164281b22a98SMartin Matuska if (rc->rc_size > 0) { 164381b22a98SMartin Matuska ASSERT3P(rc->rc_abd, !=, NULL); 16447877fdebSMatt Macy zio_nowait(zio_vdev_child_io(zio, NULL, cvd, 164581b22a98SMartin Matuska rc->rc_offset, rc->rc_abd, 164681b22a98SMartin Matuska abd_get_size(rc->rc_abd), zio->io_type, 164781b22a98SMartin Matuska zio->io_priority, 0, vdev_raidz_child_done, rc)); 164881b22a98SMartin Matuska } else { 164981b22a98SMartin Matuska /* 165081b22a98SMartin Matuska * Generate optional write for skip sector to improve 165181b22a98SMartin Matuska * aggregation contiguity. 165281b22a98SMartin Matuska */ 165381b22a98SMartin Matuska ASSERT3P(rc->rc_abd, ==, NULL); 165481b22a98SMartin Matuska zio_nowait(zio_vdev_child_io(zio, NULL, cvd, 165581b22a98SMartin Matuska rc->rc_offset, NULL, 1ULL << ashift, 16567877fdebSMatt Macy zio->io_type, zio->io_priority, 165781b22a98SMartin Matuska ZIO_FLAG_NODATA | ZIO_FLAG_OPTIONAL, NULL, 165881b22a98SMartin Matuska NULL)); 165981b22a98SMartin Matuska } 16607877fdebSMatt Macy } 16617877fdebSMatt Macy } 16627877fdebSMatt Macy 16637877fdebSMatt Macy static void 16647877fdebSMatt Macy vdev_raidz_io_start_read(zio_t *zio, raidz_row_t *rr) 16657877fdebSMatt Macy { 16667877fdebSMatt Macy vdev_t *vd = zio->io_vd; 16677877fdebSMatt Macy 16687877fdebSMatt Macy /* 16697877fdebSMatt Macy * Iterate over the columns in reverse order so that we hit the parity 16707877fdebSMatt Macy * last -- any errors along the way will force us to read the parity. 16717877fdebSMatt Macy */ 16727877fdebSMatt Macy for (int c = rr->rr_cols - 1; c >= 0; c--) { 16737877fdebSMatt Macy raidz_col_t *rc = &rr->rr_col[c]; 16747877fdebSMatt Macy if (rc->rc_size == 0) 16757877fdebSMatt Macy continue; 16767877fdebSMatt Macy vdev_t *cvd = vd->vdev_child[rc->rc_devidx]; 16777877fdebSMatt Macy if (!vdev_readable(cvd)) { 16787877fdebSMatt Macy if (c >= rr->rr_firstdatacol) 16797877fdebSMatt Macy rr->rr_missingdata++; 16807877fdebSMatt Macy else 16817877fdebSMatt Macy rr->rr_missingparity++; 16827877fdebSMatt Macy rc->rc_error = SET_ERROR(ENXIO); 16837877fdebSMatt Macy rc->rc_tried = 1; /* don't even try */ 16847877fdebSMatt Macy rc->rc_skipped = 1; 16857877fdebSMatt Macy continue; 16867877fdebSMatt Macy } 16877877fdebSMatt Macy if (vdev_dtl_contains(cvd, DTL_MISSING, zio->io_txg, 1)) { 16887877fdebSMatt Macy if (c >= rr->rr_firstdatacol) 16897877fdebSMatt Macy rr->rr_missingdata++; 16907877fdebSMatt Macy else 16917877fdebSMatt Macy rr->rr_missingparity++; 16927877fdebSMatt Macy rc->rc_error = SET_ERROR(ESTALE); 16937877fdebSMatt Macy rc->rc_skipped = 1; 16947877fdebSMatt Macy continue; 16957877fdebSMatt Macy } 16967877fdebSMatt Macy if (c >= rr->rr_firstdatacol || rr->rr_missingdata > 0 || 16977877fdebSMatt Macy (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) { 16987877fdebSMatt Macy zio_nowait(zio_vdev_child_io(zio, NULL, cvd, 16997877fdebSMatt Macy rc->rc_offset, rc->rc_abd, rc->rc_size, 17007877fdebSMatt Macy zio->io_type, zio->io_priority, 0, 17017877fdebSMatt Macy vdev_raidz_child_done, rc)); 17027877fdebSMatt Macy } 17037877fdebSMatt Macy } 17047877fdebSMatt Macy } 17057877fdebSMatt Macy 1706eda14cbcSMatt Macy /* 1707eda14cbcSMatt Macy * Start an IO operation on a RAIDZ VDev 1708eda14cbcSMatt Macy * 1709eda14cbcSMatt Macy * Outline: 1710eda14cbcSMatt Macy * - For write operations: 1711eda14cbcSMatt Macy * 1. Generate the parity data 1712eda14cbcSMatt Macy * 2. Create child zio write operations to each column's vdev, for both 1713eda14cbcSMatt Macy * data and parity. 1714eda14cbcSMatt Macy * 3. If the column skips any sectors for padding, create optional dummy 1715eda14cbcSMatt Macy * write zio children for those areas to improve aggregation continuity. 1716eda14cbcSMatt Macy * - For read operations: 1717eda14cbcSMatt Macy * 1. Create child zio read operations to each data column's vdev to read 1718eda14cbcSMatt Macy * the range of data required for zio. 1719eda14cbcSMatt Macy * 2. If this is a scrub or resilver operation, or if any of the data 1720eda14cbcSMatt Macy * vdevs have had errors, then create zio read operations to the parity 1721eda14cbcSMatt Macy * columns' VDevs as well. 1722eda14cbcSMatt Macy */ 1723eda14cbcSMatt Macy static void 1724eda14cbcSMatt Macy vdev_raidz_io_start(zio_t *zio) 1725eda14cbcSMatt Macy { 1726eda14cbcSMatt Macy vdev_t *vd = zio->io_vd; 1727eda14cbcSMatt Macy vdev_t *tvd = vd->vdev_top; 17287877fdebSMatt Macy vdev_raidz_t *vdrz = vd->vdev_tsd; 1729eda14cbcSMatt Macy 1730f9693befSMartin Matuska raidz_map_t *rm = vdev_raidz_map_alloc(zio, tvd->vdev_ashift, 17317877fdebSMatt Macy vdrz->vd_logical_width, vdrz->vd_nparity); 1732f9693befSMartin Matuska zio->io_vsd = rm; 1733f9693befSMartin Matuska zio->io_vsd_ops = &vdev_raidz_vsd_ops; 1734eda14cbcSMatt Macy 17357877fdebSMatt Macy /* 17367877fdebSMatt Macy * Until raidz expansion is implemented all maps for a raidz vdev 17377877fdebSMatt Macy * contain a single row. 17387877fdebSMatt Macy */ 17397877fdebSMatt Macy ASSERT3U(rm->rm_nrows, ==, 1); 17407877fdebSMatt Macy raidz_row_t *rr = rm->rm_row[0]; 17417877fdebSMatt Macy 1742eda14cbcSMatt Macy if (zio->io_type == ZIO_TYPE_WRITE) { 17437877fdebSMatt Macy vdev_raidz_io_start_write(zio, rr, tvd->vdev_ashift); 17447877fdebSMatt Macy } else { 1745eda14cbcSMatt Macy ASSERT(zio->io_type == ZIO_TYPE_READ); 17467877fdebSMatt Macy vdev_raidz_io_start_read(zio, rr); 1747eda14cbcSMatt Macy } 1748eda14cbcSMatt Macy 1749eda14cbcSMatt Macy zio_execute(zio); 1750eda14cbcSMatt Macy } 1751eda14cbcSMatt Macy 1752eda14cbcSMatt Macy /* 1753eda14cbcSMatt Macy * Report a checksum error for a child of a RAID-Z device. 1754eda14cbcSMatt Macy */ 1755*e92ffd9bSMartin Matuska void 1756*e92ffd9bSMartin Matuska vdev_raidz_checksum_error(zio_t *zio, raidz_col_t *rc, abd_t *bad_data) 1757eda14cbcSMatt Macy { 1758eda14cbcSMatt Macy vdev_t *vd = zio->io_vd->vdev_child[rc->rc_devidx]; 1759eda14cbcSMatt Macy 17607877fdebSMatt Macy if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE) && 17617877fdebSMatt Macy zio->io_priority != ZIO_PRIORITY_REBUILD) { 1762eda14cbcSMatt Macy zio_bad_cksum_t zbc; 1763eda14cbcSMatt Macy raidz_map_t *rm = zio->io_vsd; 1764eda14cbcSMatt Macy 1765eda14cbcSMatt Macy zbc.zbc_has_cksum = 0; 1766eda14cbcSMatt Macy zbc.zbc_injected = rm->rm_ecksuminjected; 1767eda14cbcSMatt Macy 1768ba27dd8bSMartin Matuska (void) zfs_ereport_post_checksum(zio->io_spa, vd, 1769eda14cbcSMatt Macy &zio->io_bookmark, zio, rc->rc_offset, rc->rc_size, 1770eda14cbcSMatt Macy rc->rc_abd, bad_data, &zbc); 17712c48331dSMatt Macy mutex_enter(&vd->vdev_stat_lock); 17722c48331dSMatt Macy vd->vdev_stat.vs_checksum_errors++; 17732c48331dSMatt Macy mutex_exit(&vd->vdev_stat_lock); 17742c48331dSMatt Macy } 1775eda14cbcSMatt Macy } 1776eda14cbcSMatt Macy 1777eda14cbcSMatt Macy /* 1778eda14cbcSMatt Macy * We keep track of whether or not there were any injected errors, so that 1779eda14cbcSMatt Macy * any ereports we generate can note it. 1780eda14cbcSMatt Macy */ 1781eda14cbcSMatt Macy static int 1782eda14cbcSMatt Macy raidz_checksum_verify(zio_t *zio) 1783eda14cbcSMatt Macy { 1784eda14cbcSMatt Macy zio_bad_cksum_t zbc; 1785eda14cbcSMatt Macy raidz_map_t *rm = zio->io_vsd; 1786eda14cbcSMatt Macy 1787eda14cbcSMatt Macy bzero(&zbc, sizeof (zio_bad_cksum_t)); 1788eda14cbcSMatt Macy 1789eda14cbcSMatt Macy int ret = zio_checksum_error(zio, &zbc); 1790eda14cbcSMatt Macy if (ret != 0 && zbc.zbc_injected != 0) 1791eda14cbcSMatt Macy rm->rm_ecksuminjected = 1; 1792eda14cbcSMatt Macy 1793eda14cbcSMatt Macy return (ret); 1794eda14cbcSMatt Macy } 1795eda14cbcSMatt Macy 1796eda14cbcSMatt Macy /* 1797eda14cbcSMatt Macy * Generate the parity from the data columns. If we tried and were able to 1798eda14cbcSMatt Macy * read the parity without error, verify that the generated parity matches the 1799eda14cbcSMatt Macy * data we read. If it doesn't, we fire off a checksum error. Return the 18007877fdebSMatt Macy * number of such failures. 1801eda14cbcSMatt Macy */ 1802eda14cbcSMatt Macy static int 18037877fdebSMatt Macy raidz_parity_verify(zio_t *zio, raidz_row_t *rr) 1804eda14cbcSMatt Macy { 1805eda14cbcSMatt Macy abd_t *orig[VDEV_RAIDZ_MAXPARITY]; 1806eda14cbcSMatt Macy int c, ret = 0; 18077877fdebSMatt Macy raidz_map_t *rm = zio->io_vsd; 1808eda14cbcSMatt Macy raidz_col_t *rc; 1809eda14cbcSMatt Macy 1810eda14cbcSMatt Macy blkptr_t *bp = zio->io_bp; 1811eda14cbcSMatt Macy enum zio_checksum checksum = (bp == NULL ? zio->io_prop.zp_checksum : 1812eda14cbcSMatt Macy (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp))); 1813eda14cbcSMatt Macy 1814eda14cbcSMatt Macy if (checksum == ZIO_CHECKSUM_NOPARITY) 1815eda14cbcSMatt Macy return (ret); 1816eda14cbcSMatt Macy 18177877fdebSMatt Macy for (c = 0; c < rr->rr_firstdatacol; c++) { 18187877fdebSMatt Macy rc = &rr->rr_col[c]; 1819eda14cbcSMatt Macy if (!rc->rc_tried || rc->rc_error != 0) 1820eda14cbcSMatt Macy continue; 1821eda14cbcSMatt Macy 1822eda14cbcSMatt Macy orig[c] = abd_alloc_sametype(rc->rc_abd, rc->rc_size); 1823eda14cbcSMatt Macy abd_copy(orig[c], rc->rc_abd, rc->rc_size); 1824eda14cbcSMatt Macy } 1825eda14cbcSMatt Macy 18267877fdebSMatt Macy /* 1827*e92ffd9bSMartin Matuska * Verify any empty sectors are zero filled to ensure the parity 1828*e92ffd9bSMartin Matuska * is calculated correctly even if these non-data sectors are damaged. 1829*e92ffd9bSMartin Matuska */ 1830*e92ffd9bSMartin Matuska if (rr->rr_nempty && rr->rr_abd_empty != NULL) 1831*e92ffd9bSMartin Matuska ret += vdev_draid_map_verify_empty(zio, rr); 1832*e92ffd9bSMartin Matuska 1833*e92ffd9bSMartin Matuska /* 18347877fdebSMatt Macy * Regenerates parity even for !tried||rc_error!=0 columns. This 18357877fdebSMatt Macy * isn't harmful but it does have the side effect of fixing stuff 18367877fdebSMatt Macy * we didn't realize was necessary (i.e. even if we return 0). 18377877fdebSMatt Macy */ 18387877fdebSMatt Macy vdev_raidz_generate_parity_row(rm, rr); 1839eda14cbcSMatt Macy 18407877fdebSMatt Macy for (c = 0; c < rr->rr_firstdatacol; c++) { 18417877fdebSMatt Macy rc = &rr->rr_col[c]; 18427877fdebSMatt Macy 1843eda14cbcSMatt Macy if (!rc->rc_tried || rc->rc_error != 0) 1844eda14cbcSMatt Macy continue; 18457877fdebSMatt Macy 1846eda14cbcSMatt Macy if (abd_cmp(orig[c], rc->rc_abd) != 0) { 1847*e92ffd9bSMartin Matuska vdev_raidz_checksum_error(zio, rc, orig[c]); 1848eda14cbcSMatt Macy rc->rc_error = SET_ERROR(ECKSUM); 1849eda14cbcSMatt Macy ret++; 1850eda14cbcSMatt Macy } 1851eda14cbcSMatt Macy abd_free(orig[c]); 1852eda14cbcSMatt Macy } 1853eda14cbcSMatt Macy 1854eda14cbcSMatt Macy return (ret); 1855eda14cbcSMatt Macy } 1856eda14cbcSMatt Macy 1857eda14cbcSMatt Macy static int 18587877fdebSMatt Macy vdev_raidz_worst_error(raidz_row_t *rr) 1859eda14cbcSMatt Macy { 1860eda14cbcSMatt Macy int error = 0; 1861eda14cbcSMatt Macy 18627877fdebSMatt Macy for (int c = 0; c < rr->rr_cols; c++) 18637877fdebSMatt Macy error = zio_worst_error(error, rr->rr_col[c].rc_error); 1864eda14cbcSMatt Macy 1865eda14cbcSMatt Macy return (error); 1866eda14cbcSMatt Macy } 1867eda14cbcSMatt Macy 1868eda14cbcSMatt Macy static void 18697877fdebSMatt Macy vdev_raidz_io_done_verified(zio_t *zio, raidz_row_t *rr) 1870eda14cbcSMatt Macy { 1871eda14cbcSMatt Macy int unexpected_errors = 0; 1872eda14cbcSMatt Macy int parity_errors = 0; 1873eda14cbcSMatt Macy int parity_untried = 0; 1874eda14cbcSMatt Macy int data_errors = 0; 1875eda14cbcSMatt Macy 18767877fdebSMatt Macy ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ); 1877eda14cbcSMatt Macy 18787877fdebSMatt Macy for (int c = 0; c < rr->rr_cols; c++) { 18797877fdebSMatt Macy raidz_col_t *rc = &rr->rr_col[c]; 1880eda14cbcSMatt Macy 1881eda14cbcSMatt Macy if (rc->rc_error) { 18827877fdebSMatt Macy if (c < rr->rr_firstdatacol) 1883eda14cbcSMatt Macy parity_errors++; 1884eda14cbcSMatt Macy else 1885eda14cbcSMatt Macy data_errors++; 1886eda14cbcSMatt Macy 1887eda14cbcSMatt Macy if (!rc->rc_skipped) 1888eda14cbcSMatt Macy unexpected_errors++; 18897877fdebSMatt Macy } else if (c < rr->rr_firstdatacol && !rc->rc_tried) { 1890eda14cbcSMatt Macy parity_untried++; 1891eda14cbcSMatt Macy } 1892eda14cbcSMatt Macy } 1893eda14cbcSMatt Macy 1894eda14cbcSMatt Macy /* 18957877fdebSMatt Macy * If we read more parity disks than were used for 18967877fdebSMatt Macy * reconstruction, confirm that the other parity disks produced 18977877fdebSMatt Macy * correct data. 18987877fdebSMatt Macy * 18997877fdebSMatt Macy * Note that we also regenerate parity when resilvering so we 19007877fdebSMatt Macy * can write it out to failed devices later. 19017877fdebSMatt Macy */ 19027877fdebSMatt Macy if (parity_errors + parity_untried < 19037877fdebSMatt Macy rr->rr_firstdatacol - data_errors || 19047877fdebSMatt Macy (zio->io_flags & ZIO_FLAG_RESILVER)) { 19057877fdebSMatt Macy int n = raidz_parity_verify(zio, rr); 19067877fdebSMatt Macy unexpected_errors += n; 19077877fdebSMatt Macy } 19087877fdebSMatt Macy 19097877fdebSMatt Macy if (zio->io_error == 0 && spa_writeable(zio->io_spa) && 19107877fdebSMatt Macy (unexpected_errors > 0 || (zio->io_flags & ZIO_FLAG_RESILVER))) { 19117877fdebSMatt Macy /* 19127877fdebSMatt Macy * Use the good data we have in hand to repair damaged children. 19137877fdebSMatt Macy */ 19147877fdebSMatt Macy for (int c = 0; c < rr->rr_cols; c++) { 19157877fdebSMatt Macy raidz_col_t *rc = &rr->rr_col[c]; 19167877fdebSMatt Macy vdev_t *vd = zio->io_vd; 19177877fdebSMatt Macy vdev_t *cvd = vd->vdev_child[rc->rc_devidx]; 19187877fdebSMatt Macy 191916038816SMartin Matuska if (!rc->rc_allow_repair) { 192016038816SMartin Matuska continue; 192116038816SMartin Matuska } else if (!rc->rc_force_repair && 192216038816SMartin Matuska (rc->rc_error == 0 || rc->rc_size == 0)) { 19237877fdebSMatt Macy continue; 19247877fdebSMatt Macy } 19257877fdebSMatt Macy 19267877fdebSMatt Macy zio_nowait(zio_vdev_child_io(zio, NULL, cvd, 19277877fdebSMatt Macy rc->rc_offset, rc->rc_abd, rc->rc_size, 19287877fdebSMatt Macy ZIO_TYPE_WRITE, 19297877fdebSMatt Macy zio->io_priority == ZIO_PRIORITY_REBUILD ? 19307877fdebSMatt Macy ZIO_PRIORITY_REBUILD : ZIO_PRIORITY_ASYNC_WRITE, 19317877fdebSMatt Macy ZIO_FLAG_IO_REPAIR | (unexpected_errors ? 19327877fdebSMatt Macy ZIO_FLAG_SELF_HEAL : 0), NULL, NULL)); 19337877fdebSMatt Macy } 19347877fdebSMatt Macy } 19357877fdebSMatt Macy } 19367877fdebSMatt Macy 19377877fdebSMatt Macy static void 19387877fdebSMatt Macy raidz_restore_orig_data(raidz_map_t *rm) 19397877fdebSMatt Macy { 19407877fdebSMatt Macy for (int i = 0; i < rm->rm_nrows; i++) { 19417877fdebSMatt Macy raidz_row_t *rr = rm->rm_row[i]; 19427877fdebSMatt Macy for (int c = 0; c < rr->rr_cols; c++) { 19437877fdebSMatt Macy raidz_col_t *rc = &rr->rr_col[c]; 19447877fdebSMatt Macy if (rc->rc_need_orig_restore) { 1945f9693befSMartin Matuska abd_copy(rc->rc_abd, 19467877fdebSMatt Macy rc->rc_orig_data, rc->rc_size); 19477877fdebSMatt Macy rc->rc_need_orig_restore = B_FALSE; 19487877fdebSMatt Macy } 19497877fdebSMatt Macy } 19507877fdebSMatt Macy } 19517877fdebSMatt Macy } 19527877fdebSMatt Macy 19537877fdebSMatt Macy /* 19547877fdebSMatt Macy * returns EINVAL if reconstruction of the block will not be possible 19557877fdebSMatt Macy * returns ECKSUM if this specific reconstruction failed 19567877fdebSMatt Macy * returns 0 on successful reconstruction 19577877fdebSMatt Macy */ 19587877fdebSMatt Macy static int 19597877fdebSMatt Macy raidz_reconstruct(zio_t *zio, int *ltgts, int ntgts, int nparity) 19607877fdebSMatt Macy { 19617877fdebSMatt Macy raidz_map_t *rm = zio->io_vsd; 19627877fdebSMatt Macy 19637877fdebSMatt Macy /* Reconstruct each row */ 19647877fdebSMatt Macy for (int r = 0; r < rm->rm_nrows; r++) { 19657877fdebSMatt Macy raidz_row_t *rr = rm->rm_row[r]; 19667877fdebSMatt Macy int my_tgts[VDEV_RAIDZ_MAXPARITY]; /* value is child id */ 19677877fdebSMatt Macy int t = 0; 19687877fdebSMatt Macy int dead = 0; 19697877fdebSMatt Macy int dead_data = 0; 19707877fdebSMatt Macy 19717877fdebSMatt Macy for (int c = 0; c < rr->rr_cols; c++) { 19727877fdebSMatt Macy raidz_col_t *rc = &rr->rr_col[c]; 19737877fdebSMatt Macy ASSERT0(rc->rc_need_orig_restore); 19747877fdebSMatt Macy if (rc->rc_error != 0) { 19757877fdebSMatt Macy dead++; 19767877fdebSMatt Macy if (c >= nparity) 19777877fdebSMatt Macy dead_data++; 19787877fdebSMatt Macy continue; 19797877fdebSMatt Macy } 19807877fdebSMatt Macy if (rc->rc_size == 0) 19817877fdebSMatt Macy continue; 19827877fdebSMatt Macy for (int lt = 0; lt < ntgts; lt++) { 19837877fdebSMatt Macy if (rc->rc_devidx == ltgts[lt]) { 19847877fdebSMatt Macy if (rc->rc_orig_data == NULL) { 19857877fdebSMatt Macy rc->rc_orig_data = 1986f9693befSMartin Matuska abd_alloc_linear( 1987f9693befSMartin Matuska rc->rc_size, B_TRUE); 1988f9693befSMartin Matuska abd_copy(rc->rc_orig_data, 19897877fdebSMatt Macy rc->rc_abd, rc->rc_size); 19907877fdebSMatt Macy } 19917877fdebSMatt Macy rc->rc_need_orig_restore = B_TRUE; 19927877fdebSMatt Macy 19937877fdebSMatt Macy dead++; 19947877fdebSMatt Macy if (c >= nparity) 19957877fdebSMatt Macy dead_data++; 19967877fdebSMatt Macy my_tgts[t++] = c; 19977877fdebSMatt Macy break; 19987877fdebSMatt Macy } 19997877fdebSMatt Macy } 20007877fdebSMatt Macy } 20017877fdebSMatt Macy if (dead > nparity) { 20027877fdebSMatt Macy /* reconstruction not possible */ 20037877fdebSMatt Macy raidz_restore_orig_data(rm); 20047877fdebSMatt Macy return (EINVAL); 20057877fdebSMatt Macy } 20067877fdebSMatt Macy if (dead_data > 0) 2007f9693befSMartin Matuska vdev_raidz_reconstruct_row(rm, rr, my_tgts, t); 20087877fdebSMatt Macy } 20097877fdebSMatt Macy 20107877fdebSMatt Macy /* Check for success */ 20117877fdebSMatt Macy if (raidz_checksum_verify(zio) == 0) { 20127877fdebSMatt Macy 20137877fdebSMatt Macy /* Reconstruction succeeded - report errors */ 20147877fdebSMatt Macy for (int i = 0; i < rm->rm_nrows; i++) { 20157877fdebSMatt Macy raidz_row_t *rr = rm->rm_row[i]; 20167877fdebSMatt Macy 20177877fdebSMatt Macy for (int c = 0; c < rr->rr_cols; c++) { 20187877fdebSMatt Macy raidz_col_t *rc = &rr->rr_col[c]; 20197877fdebSMatt Macy if (rc->rc_need_orig_restore) { 20207877fdebSMatt Macy /* 20217877fdebSMatt Macy * Note: if this is a parity column, 20227877fdebSMatt Macy * we don't really know if it's wrong. 20237877fdebSMatt Macy * We need to let 20247877fdebSMatt Macy * vdev_raidz_io_done_verified() check 20257877fdebSMatt Macy * it, and if we set rc_error, it will 20267877fdebSMatt Macy * think that it is a "known" error 20277877fdebSMatt Macy * that doesn't need to be checked 20287877fdebSMatt Macy * or corrected. 20297877fdebSMatt Macy */ 20307877fdebSMatt Macy if (rc->rc_error == 0 && 20317877fdebSMatt Macy c >= rr->rr_firstdatacol) { 2032*e92ffd9bSMartin Matuska vdev_raidz_checksum_error(zio, 2033f9693befSMartin Matuska rc, rc->rc_orig_data); 20347877fdebSMatt Macy rc->rc_error = 20357877fdebSMatt Macy SET_ERROR(ECKSUM); 20367877fdebSMatt Macy } 20377877fdebSMatt Macy rc->rc_need_orig_restore = B_FALSE; 20387877fdebSMatt Macy } 20397877fdebSMatt Macy } 20407877fdebSMatt Macy 20417877fdebSMatt Macy vdev_raidz_io_done_verified(zio, rr); 20427877fdebSMatt Macy } 20437877fdebSMatt Macy 20447877fdebSMatt Macy zio_checksum_verified(zio); 20457877fdebSMatt Macy 20467877fdebSMatt Macy return (0); 20477877fdebSMatt Macy } 20487877fdebSMatt Macy 20497877fdebSMatt Macy /* Reconstruction failed - restore original data */ 20507877fdebSMatt Macy raidz_restore_orig_data(rm); 20517877fdebSMatt Macy return (ECKSUM); 20527877fdebSMatt Macy } 20537877fdebSMatt Macy 20547877fdebSMatt Macy /* 20557877fdebSMatt Macy * Iterate over all combinations of N bad vdevs and attempt a reconstruction. 20567877fdebSMatt Macy * Note that the algorithm below is non-optimal because it doesn't take into 20577877fdebSMatt Macy * account how reconstruction is actually performed. For example, with 20587877fdebSMatt Macy * triple-parity RAID-Z the reconstruction procedure is the same if column 4 20597877fdebSMatt Macy * is targeted as invalid as if columns 1 and 4 are targeted since in both 20607877fdebSMatt Macy * cases we'd only use parity information in column 0. 20617877fdebSMatt Macy * 20627877fdebSMatt Macy * The order that we find the various possible combinations of failed 20637877fdebSMatt Macy * disks is dictated by these rules: 20647877fdebSMatt Macy * - Examine each "slot" (the "i" in tgts[i]) 20657877fdebSMatt Macy * - Try to increment this slot (tgts[i] = tgts[i] + 1) 20667877fdebSMatt Macy * - if we can't increment because it runs into the next slot, 20677877fdebSMatt Macy * reset our slot to the minimum, and examine the next slot 20687877fdebSMatt Macy * 20697877fdebSMatt Macy * For example, with a 6-wide RAIDZ3, and no known errors (so we have to choose 20707877fdebSMatt Macy * 3 columns to reconstruct), we will generate the following sequence: 20717877fdebSMatt Macy * 20727877fdebSMatt Macy * STATE ACTION 20737877fdebSMatt Macy * 0 1 2 special case: skip since these are all parity 20747877fdebSMatt Macy * 0 1 3 first slot: reset to 0; middle slot: increment to 2 20757877fdebSMatt Macy * 0 2 3 first slot: increment to 1 20767877fdebSMatt Macy * 1 2 3 first: reset to 0; middle: reset to 1; last: increment to 4 20777877fdebSMatt Macy * 0 1 4 first: reset to 0; middle: increment to 2 20787877fdebSMatt Macy * 0 2 4 first: increment to 1 20797877fdebSMatt Macy * 1 2 4 first: reset to 0; middle: increment to 3 20807877fdebSMatt Macy * 0 3 4 first: increment to 1 20817877fdebSMatt Macy * 1 3 4 first: increment to 2 20827877fdebSMatt Macy * 2 3 4 first: reset to 0; middle: reset to 1; last: increment to 5 20837877fdebSMatt Macy * 0 1 5 first: reset to 0; middle: increment to 2 20847877fdebSMatt Macy * 0 2 5 first: increment to 1 20857877fdebSMatt Macy * 1 2 5 first: reset to 0; middle: increment to 3 20867877fdebSMatt Macy * 0 3 5 first: increment to 1 20877877fdebSMatt Macy * 1 3 5 first: increment to 2 20887877fdebSMatt Macy * 2 3 5 first: reset to 0; middle: increment to 4 20897877fdebSMatt Macy * 0 4 5 first: increment to 1 20907877fdebSMatt Macy * 1 4 5 first: increment to 2 20917877fdebSMatt Macy * 2 4 5 first: increment to 3 20927877fdebSMatt Macy * 3 4 5 done 20937877fdebSMatt Macy * 209416038816SMartin Matuska * This strategy works for dRAID but is less efficient when there are a large 20957877fdebSMatt Macy * number of child vdevs and therefore permutations to check. Furthermore, 20967877fdebSMatt Macy * since the raidz_map_t rows likely do not overlap reconstruction would be 20977877fdebSMatt Macy * possible as long as there are no more than nparity data errors per row. 20987877fdebSMatt Macy * These additional permutations are not currently checked but could be as 20997877fdebSMatt Macy * a future improvement. 21007877fdebSMatt Macy */ 21017877fdebSMatt Macy static int 21027877fdebSMatt Macy vdev_raidz_combrec(zio_t *zio) 21037877fdebSMatt Macy { 21047877fdebSMatt Macy int nparity = vdev_get_nparity(zio->io_vd); 21057877fdebSMatt Macy raidz_map_t *rm = zio->io_vsd; 21067877fdebSMatt Macy 21077877fdebSMatt Macy /* Check if there's enough data to attempt reconstrution. */ 21087877fdebSMatt Macy for (int i = 0; i < rm->rm_nrows; i++) { 21097877fdebSMatt Macy raidz_row_t *rr = rm->rm_row[i]; 21107877fdebSMatt Macy int total_errors = 0; 21117877fdebSMatt Macy 21127877fdebSMatt Macy for (int c = 0; c < rr->rr_cols; c++) { 21137877fdebSMatt Macy if (rr->rr_col[c].rc_error) 21147877fdebSMatt Macy total_errors++; 21157877fdebSMatt Macy } 21167877fdebSMatt Macy 21177877fdebSMatt Macy if (total_errors > nparity) 21187877fdebSMatt Macy return (vdev_raidz_worst_error(rr)); 21197877fdebSMatt Macy } 21207877fdebSMatt Macy 21217877fdebSMatt Macy for (int num_failures = 1; num_failures <= nparity; num_failures++) { 21227877fdebSMatt Macy int tstore[VDEV_RAIDZ_MAXPARITY + 2]; 21237877fdebSMatt Macy int *ltgts = &tstore[1]; /* value is logical child ID */ 21247877fdebSMatt Macy 21257877fdebSMatt Macy /* Determine number of logical children, n */ 21267877fdebSMatt Macy int n = zio->io_vd->vdev_children; 21277877fdebSMatt Macy 21287877fdebSMatt Macy ASSERT3U(num_failures, <=, nparity); 21297877fdebSMatt Macy ASSERT3U(num_failures, <=, VDEV_RAIDZ_MAXPARITY); 21307877fdebSMatt Macy 21317877fdebSMatt Macy /* Handle corner cases in combrec logic */ 21327877fdebSMatt Macy ltgts[-1] = -1; 21337877fdebSMatt Macy for (int i = 0; i < num_failures; i++) { 21347877fdebSMatt Macy ltgts[i] = i; 21357877fdebSMatt Macy } 21367877fdebSMatt Macy ltgts[num_failures] = n; 21377877fdebSMatt Macy 21387877fdebSMatt Macy for (;;) { 21397877fdebSMatt Macy int err = raidz_reconstruct(zio, ltgts, num_failures, 21407877fdebSMatt Macy nparity); 21417877fdebSMatt Macy if (err == EINVAL) { 21427877fdebSMatt Macy /* 21437877fdebSMatt Macy * Reconstruction not possible with this # 21447877fdebSMatt Macy * failures; try more failures. 21457877fdebSMatt Macy */ 21467877fdebSMatt Macy break; 21477877fdebSMatt Macy } else if (err == 0) 21487877fdebSMatt Macy return (0); 21497877fdebSMatt Macy 21507877fdebSMatt Macy /* Compute next targets to try */ 21517877fdebSMatt Macy for (int t = 0; ; t++) { 21527877fdebSMatt Macy ASSERT3U(t, <, num_failures); 21537877fdebSMatt Macy ltgts[t]++; 21547877fdebSMatt Macy if (ltgts[t] == n) { 21557877fdebSMatt Macy /* try more failures */ 21567877fdebSMatt Macy ASSERT3U(t, ==, num_failures - 1); 21577877fdebSMatt Macy break; 21587877fdebSMatt Macy } 21597877fdebSMatt Macy 21607877fdebSMatt Macy ASSERT3U(ltgts[t], <, n); 21617877fdebSMatt Macy ASSERT3U(ltgts[t], <=, ltgts[t + 1]); 21627877fdebSMatt Macy 21637877fdebSMatt Macy /* 21647877fdebSMatt Macy * If that spot is available, we're done here. 21657877fdebSMatt Macy * Try the next combination. 21667877fdebSMatt Macy */ 21677877fdebSMatt Macy if (ltgts[t] != ltgts[t + 1]) 21687877fdebSMatt Macy break; 21697877fdebSMatt Macy 21707877fdebSMatt Macy /* 21717877fdebSMatt Macy * Otherwise, reset this tgt to the minimum, 21727877fdebSMatt Macy * and move on to the next tgt. 21737877fdebSMatt Macy */ 21747877fdebSMatt Macy ltgts[t] = ltgts[t - 1] + 1; 21757877fdebSMatt Macy ASSERT3U(ltgts[t], ==, t); 21767877fdebSMatt Macy } 21777877fdebSMatt Macy 21787877fdebSMatt Macy /* Increase the number of failures and keep trying. */ 21797877fdebSMatt Macy if (ltgts[num_failures - 1] == n) 21807877fdebSMatt Macy break; 21817877fdebSMatt Macy } 21827877fdebSMatt Macy } 21837877fdebSMatt Macy 21847877fdebSMatt Macy return (ECKSUM); 21857877fdebSMatt Macy } 21867877fdebSMatt Macy 21877877fdebSMatt Macy void 21887877fdebSMatt Macy vdev_raidz_reconstruct(raidz_map_t *rm, const int *t, int nt) 21897877fdebSMatt Macy { 21907877fdebSMatt Macy for (uint64_t row = 0; row < rm->rm_nrows; row++) { 21917877fdebSMatt Macy raidz_row_t *rr = rm->rm_row[row]; 21927877fdebSMatt Macy vdev_raidz_reconstruct_row(rm, rr, t, nt); 21937877fdebSMatt Macy } 21947877fdebSMatt Macy } 21957877fdebSMatt Macy 21967877fdebSMatt Macy /* 21977877fdebSMatt Macy * Complete a write IO operation on a RAIDZ VDev 21987877fdebSMatt Macy * 21997877fdebSMatt Macy * Outline: 22007877fdebSMatt Macy * 1. Check for errors on the child IOs. 22017877fdebSMatt Macy * 2. Return, setting an error code if too few child VDevs were written 22027877fdebSMatt Macy * to reconstruct the data later. Note that partial writes are 22037877fdebSMatt Macy * considered successful if they can be reconstructed at all. 22047877fdebSMatt Macy */ 22057877fdebSMatt Macy static void 22067877fdebSMatt Macy vdev_raidz_io_done_write_impl(zio_t *zio, raidz_row_t *rr) 22077877fdebSMatt Macy { 22087877fdebSMatt Macy int total_errors = 0; 22097877fdebSMatt Macy 22107877fdebSMatt Macy ASSERT3U(rr->rr_missingparity, <=, rr->rr_firstdatacol); 22117877fdebSMatt Macy ASSERT3U(rr->rr_missingdata, <=, rr->rr_cols - rr->rr_firstdatacol); 22127877fdebSMatt Macy ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 22137877fdebSMatt Macy 22147877fdebSMatt Macy for (int c = 0; c < rr->rr_cols; c++) { 22157877fdebSMatt Macy raidz_col_t *rc = &rr->rr_col[c]; 22167877fdebSMatt Macy 22177877fdebSMatt Macy if (rc->rc_error) { 22187877fdebSMatt Macy ASSERT(rc->rc_error != ECKSUM); /* child has no bp */ 22197877fdebSMatt Macy 22207877fdebSMatt Macy total_errors++; 22217877fdebSMatt Macy } 22227877fdebSMatt Macy } 22237877fdebSMatt Macy 22247877fdebSMatt Macy /* 22257877fdebSMatt Macy * Treat partial writes as a success. If we couldn't write enough 22267877fdebSMatt Macy * columns to reconstruct the data, the I/O failed. Otherwise, 22277877fdebSMatt Macy * good enough. 2228eda14cbcSMatt Macy * 2229eda14cbcSMatt Macy * Now that we support write reallocation, it would be better 2230eda14cbcSMatt Macy * to treat partial failure as real failure unless there are 2231eda14cbcSMatt Macy * no non-degraded top-level vdevs left, and not update DTLs 2232eda14cbcSMatt Macy * if we intend to reallocate. 2233eda14cbcSMatt Macy */ 22347877fdebSMatt Macy if (total_errors > rr->rr_firstdatacol) { 22357877fdebSMatt Macy zio->io_error = zio_worst_error(zio->io_error, 22367877fdebSMatt Macy vdev_raidz_worst_error(rr)); 22377877fdebSMatt Macy } 2238eda14cbcSMatt Macy } 2239eda14cbcSMatt Macy 2240f9693befSMartin Matuska static void 22417877fdebSMatt Macy vdev_raidz_io_done_reconstruct_known_missing(zio_t *zio, raidz_map_t *rm, 22427877fdebSMatt Macy raidz_row_t *rr) 22437877fdebSMatt Macy { 22447877fdebSMatt Macy int parity_errors = 0; 22457877fdebSMatt Macy int parity_untried = 0; 22467877fdebSMatt Macy int data_errors = 0; 22477877fdebSMatt Macy int total_errors = 0; 22487877fdebSMatt Macy 22497877fdebSMatt Macy ASSERT3U(rr->rr_missingparity, <=, rr->rr_firstdatacol); 22507877fdebSMatt Macy ASSERT3U(rr->rr_missingdata, <=, rr->rr_cols - rr->rr_firstdatacol); 22517877fdebSMatt Macy ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ); 22527877fdebSMatt Macy 22537877fdebSMatt Macy for (int c = 0; c < rr->rr_cols; c++) { 22547877fdebSMatt Macy raidz_col_t *rc = &rr->rr_col[c]; 22557877fdebSMatt Macy 22567877fdebSMatt Macy if (rc->rc_error) { 22577877fdebSMatt Macy ASSERT(rc->rc_error != ECKSUM); /* child has no bp */ 22587877fdebSMatt Macy 22597877fdebSMatt Macy if (c < rr->rr_firstdatacol) 22607877fdebSMatt Macy parity_errors++; 22617877fdebSMatt Macy else 22627877fdebSMatt Macy data_errors++; 22637877fdebSMatt Macy 22647877fdebSMatt Macy total_errors++; 22657877fdebSMatt Macy } else if (c < rr->rr_firstdatacol && !rc->rc_tried) { 22667877fdebSMatt Macy parity_untried++; 22677877fdebSMatt Macy } 22687877fdebSMatt Macy } 2269eda14cbcSMatt Macy 2270eda14cbcSMatt Macy /* 22717877fdebSMatt Macy * If there were data errors and the number of errors we saw was 22727877fdebSMatt Macy * correctable -- less than or equal to the number of parity disks read 22737877fdebSMatt Macy * -- reconstruct based on the missing data. 2274eda14cbcSMatt Macy */ 22757877fdebSMatt Macy if (data_errors != 0 && 22767877fdebSMatt Macy total_errors <= rr->rr_firstdatacol - parity_untried) { 2277eda14cbcSMatt Macy /* 2278eda14cbcSMatt Macy * We either attempt to read all the parity columns or 2279eda14cbcSMatt Macy * none of them. If we didn't try to read parity, we 2280eda14cbcSMatt Macy * wouldn't be here in the correctable case. There must 2281eda14cbcSMatt Macy * also have been fewer parity errors than parity 2282eda14cbcSMatt Macy * columns or, again, we wouldn't be in this code path. 2283eda14cbcSMatt Macy */ 2284eda14cbcSMatt Macy ASSERT(parity_untried == 0); 22857877fdebSMatt Macy ASSERT(parity_errors < rr->rr_firstdatacol); 2286eda14cbcSMatt Macy 2287eda14cbcSMatt Macy /* 2288eda14cbcSMatt Macy * Identify the data columns that reported an error. 2289eda14cbcSMatt Macy */ 22907877fdebSMatt Macy int n = 0; 22917877fdebSMatt Macy int tgts[VDEV_RAIDZ_MAXPARITY]; 22927877fdebSMatt Macy for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 22937877fdebSMatt Macy raidz_col_t *rc = &rr->rr_col[c]; 2294eda14cbcSMatt Macy if (rc->rc_error != 0) { 2295eda14cbcSMatt Macy ASSERT(n < VDEV_RAIDZ_MAXPARITY); 2296eda14cbcSMatt Macy tgts[n++] = c; 2297eda14cbcSMatt Macy } 2298eda14cbcSMatt Macy } 2299eda14cbcSMatt Macy 23007877fdebSMatt Macy ASSERT(rr->rr_firstdatacol >= n); 2301eda14cbcSMatt Macy 2302f9693befSMartin Matuska vdev_raidz_reconstruct_row(rm, rr, tgts, n); 2303eda14cbcSMatt Macy } 2304eda14cbcSMatt Macy } 2305eda14cbcSMatt Macy 2306eda14cbcSMatt Macy /* 23077877fdebSMatt Macy * Return the number of reads issued. 2308eda14cbcSMatt Macy */ 23097877fdebSMatt Macy static int 23107877fdebSMatt Macy vdev_raidz_read_all(zio_t *zio, raidz_row_t *rr) 23117877fdebSMatt Macy { 23127877fdebSMatt Macy vdev_t *vd = zio->io_vd; 23137877fdebSMatt Macy int nread = 0; 2314eda14cbcSMatt Macy 23157877fdebSMatt Macy rr->rr_missingdata = 0; 23167877fdebSMatt Macy rr->rr_missingparity = 0; 23177877fdebSMatt Macy 23187877fdebSMatt Macy /* 23197877fdebSMatt Macy * If this rows contains empty sectors which are not required 23207877fdebSMatt Macy * for a normal read then allocate an ABD for them now so they 23217877fdebSMatt Macy * may be read, verified, and any needed repairs performed. 23227877fdebSMatt Macy */ 23237877fdebSMatt Macy if (rr->rr_nempty && rr->rr_abd_empty == NULL) 23247877fdebSMatt Macy vdev_draid_map_alloc_empty(zio, rr); 23257877fdebSMatt Macy 23267877fdebSMatt Macy for (int c = 0; c < rr->rr_cols; c++) { 23277877fdebSMatt Macy raidz_col_t *rc = &rr->rr_col[c]; 23287877fdebSMatt Macy if (rc->rc_tried || rc->rc_size == 0) 2329eda14cbcSMatt Macy continue; 2330eda14cbcSMatt Macy 2331eda14cbcSMatt Macy zio_nowait(zio_vdev_child_io(zio, NULL, 2332eda14cbcSMatt Macy vd->vdev_child[rc->rc_devidx], 2333eda14cbcSMatt Macy rc->rc_offset, rc->rc_abd, rc->rc_size, 2334eda14cbcSMatt Macy zio->io_type, zio->io_priority, 0, 2335eda14cbcSMatt Macy vdev_raidz_child_done, rc)); 23367877fdebSMatt Macy nread++; 23377877fdebSMatt Macy } 23387877fdebSMatt Macy return (nread); 2339eda14cbcSMatt Macy } 2340eda14cbcSMatt Macy 2341eda14cbcSMatt Macy /* 23427877fdebSMatt Macy * We're here because either there were too many errors to even attempt 23437877fdebSMatt Macy * reconstruction (total_errors == rm_first_datacol), or vdev_*_combrec() 23447877fdebSMatt Macy * failed. In either case, there is enough bad data to prevent reconstruction. 23457877fdebSMatt Macy * Start checksum ereports for all children which haven't failed. 2346eda14cbcSMatt Macy */ 23477877fdebSMatt Macy static void 23487877fdebSMatt Macy vdev_raidz_io_done_unrecoverable(zio_t *zio) 23497877fdebSMatt Macy { 23507877fdebSMatt Macy raidz_map_t *rm = zio->io_vsd; 2351eda14cbcSMatt Macy 23527877fdebSMatt Macy for (int i = 0; i < rm->rm_nrows; i++) { 23537877fdebSMatt Macy raidz_row_t *rr = rm->rm_row[i]; 2354eda14cbcSMatt Macy 23557877fdebSMatt Macy for (int c = 0; c < rr->rr_cols; c++) { 23567877fdebSMatt Macy raidz_col_t *rc = &rr->rr_col[c]; 23577877fdebSMatt Macy vdev_t *cvd = zio->io_vd->vdev_child[rc->rc_devidx]; 23587877fdebSMatt Macy 23592c48331dSMatt Macy if (rc->rc_error != 0) 23602c48331dSMatt Macy continue; 23612c48331dSMatt Macy 2362eda14cbcSMatt Macy zio_bad_cksum_t zbc; 2363eda14cbcSMatt Macy zbc.zbc_has_cksum = 0; 23642c48331dSMatt Macy zbc.zbc_injected = rm->rm_ecksuminjected; 2365eda14cbcSMatt Macy 2366ba27dd8bSMartin Matuska (void) zfs_ereport_start_checksum(zio->io_spa, 23677877fdebSMatt Macy cvd, &zio->io_bookmark, zio, rc->rc_offset, 2368f9693befSMartin Matuska rc->rc_size, &zbc); 2369eda14cbcSMatt Macy mutex_enter(&cvd->vdev_stat_lock); 2370eda14cbcSMatt Macy cvd->vdev_stat.vs_checksum_errors++; 2371eda14cbcSMatt Macy mutex_exit(&cvd->vdev_stat_lock); 2372eda14cbcSMatt Macy } 2373eda14cbcSMatt Macy } 2374eda14cbcSMatt Macy } 2375eda14cbcSMatt Macy 23767877fdebSMatt Macy void 23777877fdebSMatt Macy vdev_raidz_io_done(zio_t *zio) 23787877fdebSMatt Macy { 23797877fdebSMatt Macy raidz_map_t *rm = zio->io_vsd; 23807877fdebSMatt Macy 23817877fdebSMatt Macy if (zio->io_type == ZIO_TYPE_WRITE) { 23827877fdebSMatt Macy for (int i = 0; i < rm->rm_nrows; i++) { 23837877fdebSMatt Macy vdev_raidz_io_done_write_impl(zio, rm->rm_row[i]); 23847877fdebSMatt Macy } 23857877fdebSMatt Macy } else { 23867877fdebSMatt Macy for (int i = 0; i < rm->rm_nrows; i++) { 23877877fdebSMatt Macy raidz_row_t *rr = rm->rm_row[i]; 23887877fdebSMatt Macy vdev_raidz_io_done_reconstruct_known_missing(zio, 23897877fdebSMatt Macy rm, rr); 23907877fdebSMatt Macy } 23917877fdebSMatt Macy 23927877fdebSMatt Macy if (raidz_checksum_verify(zio) == 0) { 23937877fdebSMatt Macy for (int i = 0; i < rm->rm_nrows; i++) { 23947877fdebSMatt Macy raidz_row_t *rr = rm->rm_row[i]; 23957877fdebSMatt Macy vdev_raidz_io_done_verified(zio, rr); 23967877fdebSMatt Macy } 2397eda14cbcSMatt Macy zio_checksum_verified(zio); 23987877fdebSMatt Macy } else { 2399eda14cbcSMatt Macy /* 24007877fdebSMatt Macy * A sequential resilver has no checksum which makes 24017877fdebSMatt Macy * combinatoral reconstruction impossible. This code 24027877fdebSMatt Macy * path is unreachable since raidz_checksum_verify() 24037877fdebSMatt Macy * has no checksum to verify and must succeed. 2404eda14cbcSMatt Macy */ 24057877fdebSMatt Macy ASSERT3U(zio->io_priority, !=, ZIO_PRIORITY_REBUILD); 2406eda14cbcSMatt Macy 24077877fdebSMatt Macy /* 24087877fdebSMatt Macy * This isn't a typical situation -- either we got a 24097877fdebSMatt Macy * read error or a child silently returned bad data. 24107877fdebSMatt Macy * Read every block so we can try again with as much 24117877fdebSMatt Macy * data and parity as we can track down. If we've 24127877fdebSMatt Macy * already been through once before, all children will 24137877fdebSMatt Macy * be marked as tried so we'll proceed to combinatorial 24147877fdebSMatt Macy * reconstruction. 24157877fdebSMatt Macy */ 24167877fdebSMatt Macy int nread = 0; 24177877fdebSMatt Macy for (int i = 0; i < rm->rm_nrows; i++) { 24187877fdebSMatt Macy nread += vdev_raidz_read_all(zio, 24197877fdebSMatt Macy rm->rm_row[i]); 24207877fdebSMatt Macy } 24217877fdebSMatt Macy if (nread != 0) { 24227877fdebSMatt Macy /* 24237877fdebSMatt Macy * Normally our stage is VDEV_IO_DONE, but if 24247877fdebSMatt Macy * we've already called redone(), it will have 24257877fdebSMatt Macy * changed to VDEV_IO_START, in which case we 24267877fdebSMatt Macy * don't want to call redone() again. 24277877fdebSMatt Macy */ 24287877fdebSMatt Macy if (zio->io_stage != ZIO_STAGE_VDEV_IO_START) 24297877fdebSMatt Macy zio_vdev_io_redone(zio); 24307877fdebSMatt Macy return; 24317877fdebSMatt Macy } 2432eda14cbcSMatt Macy 24337877fdebSMatt Macy zio->io_error = vdev_raidz_combrec(zio); 24347877fdebSMatt Macy if (zio->io_error == ECKSUM && 24357877fdebSMatt Macy !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 24367877fdebSMatt Macy vdev_raidz_io_done_unrecoverable(zio); 24377877fdebSMatt Macy } 2438eda14cbcSMatt Macy } 2439eda14cbcSMatt Macy } 2440eda14cbcSMatt Macy } 2441eda14cbcSMatt Macy 2442eda14cbcSMatt Macy static void 2443eda14cbcSMatt Macy vdev_raidz_state_change(vdev_t *vd, int faulted, int degraded) 2444eda14cbcSMatt Macy { 24457877fdebSMatt Macy vdev_raidz_t *vdrz = vd->vdev_tsd; 24467877fdebSMatt Macy if (faulted > vdrz->vd_nparity) 2447eda14cbcSMatt Macy vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2448eda14cbcSMatt Macy VDEV_AUX_NO_REPLICAS); 2449eda14cbcSMatt Macy else if (degraded + faulted != 0) 2450eda14cbcSMatt Macy vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE); 2451eda14cbcSMatt Macy else 2452eda14cbcSMatt Macy vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE); 2453eda14cbcSMatt Macy } 2454eda14cbcSMatt Macy 2455eda14cbcSMatt Macy /* 2456eda14cbcSMatt Macy * Determine if any portion of the provided block resides on a child vdev 2457eda14cbcSMatt Macy * with a dirty DTL and therefore needs to be resilvered. The function 2458eda14cbcSMatt Macy * assumes that at least one DTL is dirty which implies that full stripe 2459eda14cbcSMatt Macy * width blocks must be resilvered. 2460eda14cbcSMatt Macy */ 2461eda14cbcSMatt Macy static boolean_t 24627877fdebSMatt Macy vdev_raidz_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 24637877fdebSMatt Macy uint64_t phys_birth) 2464eda14cbcSMatt Macy { 24657877fdebSMatt Macy vdev_raidz_t *vdrz = vd->vdev_tsd; 2466eda14cbcSMatt Macy uint64_t dcols = vd->vdev_children; 24677877fdebSMatt Macy uint64_t nparity = vdrz->vd_nparity; 2468eda14cbcSMatt Macy uint64_t ashift = vd->vdev_top->vdev_ashift; 2469eda14cbcSMatt Macy /* The starting RAIDZ (parent) vdev sector of the block. */ 24707877fdebSMatt Macy uint64_t b = DVA_GET_OFFSET(dva) >> ashift; 2471eda14cbcSMatt Macy /* The zio's size in units of the vdev's minimum sector size. */ 2472eda14cbcSMatt Macy uint64_t s = ((psize - 1) >> ashift) + 1; 2473eda14cbcSMatt Macy /* The first column for this stripe. */ 2474eda14cbcSMatt Macy uint64_t f = b % dcols; 2475eda14cbcSMatt Macy 24767877fdebSMatt Macy /* Unreachable by sequential resilver. */ 24777877fdebSMatt Macy ASSERT3U(phys_birth, !=, TXG_UNKNOWN); 24787877fdebSMatt Macy 24797877fdebSMatt Macy if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)) 24807877fdebSMatt Macy return (B_FALSE); 24817877fdebSMatt Macy 2482eda14cbcSMatt Macy if (s + nparity >= dcols) 2483eda14cbcSMatt Macy return (B_TRUE); 2484eda14cbcSMatt Macy 2485eda14cbcSMatt Macy for (uint64_t c = 0; c < s + nparity; c++) { 2486eda14cbcSMatt Macy uint64_t devidx = (f + c) % dcols; 2487eda14cbcSMatt Macy vdev_t *cvd = vd->vdev_child[devidx]; 2488eda14cbcSMatt Macy 2489eda14cbcSMatt Macy /* 2490eda14cbcSMatt Macy * dsl_scan_need_resilver() already checked vd with 2491eda14cbcSMatt Macy * vdev_dtl_contains(). So here just check cvd with 2492eda14cbcSMatt Macy * vdev_dtl_empty(), cheaper and a good approximation. 2493eda14cbcSMatt Macy */ 2494eda14cbcSMatt Macy if (!vdev_dtl_empty(cvd, DTL_PARTIAL)) 2495eda14cbcSMatt Macy return (B_TRUE); 2496eda14cbcSMatt Macy } 2497eda14cbcSMatt Macy 2498eda14cbcSMatt Macy return (B_FALSE); 2499eda14cbcSMatt Macy } 2500eda14cbcSMatt Macy 2501eda14cbcSMatt Macy static void 25027877fdebSMatt Macy vdev_raidz_xlate(vdev_t *cvd, const range_seg64_t *logical_rs, 25037877fdebSMatt Macy range_seg64_t *physical_rs, range_seg64_t *remain_rs) 2504eda14cbcSMatt Macy { 2505*e92ffd9bSMartin Matuska (void) remain_rs; 2506*e92ffd9bSMartin Matuska 2507eda14cbcSMatt Macy vdev_t *raidvd = cvd->vdev_parent; 2508eda14cbcSMatt Macy ASSERT(raidvd->vdev_ops == &vdev_raidz_ops); 2509eda14cbcSMatt Macy 2510eda14cbcSMatt Macy uint64_t width = raidvd->vdev_children; 2511eda14cbcSMatt Macy uint64_t tgt_col = cvd->vdev_id; 2512eda14cbcSMatt Macy uint64_t ashift = raidvd->vdev_top->vdev_ashift; 2513eda14cbcSMatt Macy 2514eda14cbcSMatt Macy /* make sure the offsets are block-aligned */ 25157877fdebSMatt Macy ASSERT0(logical_rs->rs_start % (1 << ashift)); 25167877fdebSMatt Macy ASSERT0(logical_rs->rs_end % (1 << ashift)); 25177877fdebSMatt Macy uint64_t b_start = logical_rs->rs_start >> ashift; 25187877fdebSMatt Macy uint64_t b_end = logical_rs->rs_end >> ashift; 2519eda14cbcSMatt Macy 2520eda14cbcSMatt Macy uint64_t start_row = 0; 2521eda14cbcSMatt Macy if (b_start > tgt_col) /* avoid underflow */ 2522eda14cbcSMatt Macy start_row = ((b_start - tgt_col - 1) / width) + 1; 2523eda14cbcSMatt Macy 2524eda14cbcSMatt Macy uint64_t end_row = 0; 2525eda14cbcSMatt Macy if (b_end > tgt_col) 2526eda14cbcSMatt Macy end_row = ((b_end - tgt_col - 1) / width) + 1; 2527eda14cbcSMatt Macy 25287877fdebSMatt Macy physical_rs->rs_start = start_row << ashift; 25297877fdebSMatt Macy physical_rs->rs_end = end_row << ashift; 2530eda14cbcSMatt Macy 25317877fdebSMatt Macy ASSERT3U(physical_rs->rs_start, <=, logical_rs->rs_start); 25327877fdebSMatt Macy ASSERT3U(physical_rs->rs_end - physical_rs->rs_start, <=, 25337877fdebSMatt Macy logical_rs->rs_end - logical_rs->rs_start); 25347877fdebSMatt Macy } 25357877fdebSMatt Macy 25367877fdebSMatt Macy /* 25377877fdebSMatt Macy * Initialize private RAIDZ specific fields from the nvlist. 25387877fdebSMatt Macy */ 25397877fdebSMatt Macy static int 25407877fdebSMatt Macy vdev_raidz_init(spa_t *spa, nvlist_t *nv, void **tsd) 25417877fdebSMatt Macy { 25427877fdebSMatt Macy vdev_raidz_t *vdrz; 25437877fdebSMatt Macy uint64_t nparity; 25447877fdebSMatt Macy 25457877fdebSMatt Macy uint_t children; 25467877fdebSMatt Macy nvlist_t **child; 25477877fdebSMatt Macy int error = nvlist_lookup_nvlist_array(nv, 25487877fdebSMatt Macy ZPOOL_CONFIG_CHILDREN, &child, &children); 25497877fdebSMatt Macy if (error != 0) 25507877fdebSMatt Macy return (SET_ERROR(EINVAL)); 25517877fdebSMatt Macy 25527877fdebSMatt Macy if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &nparity) == 0) { 25537877fdebSMatt Macy if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 25547877fdebSMatt Macy return (SET_ERROR(EINVAL)); 25557877fdebSMatt Macy 25567877fdebSMatt Macy /* 25577877fdebSMatt Macy * Previous versions could only support 1 or 2 parity 25587877fdebSMatt Macy * device. 25597877fdebSMatt Macy */ 25607877fdebSMatt Macy if (nparity > 1 && spa_version(spa) < SPA_VERSION_RAIDZ2) 25617877fdebSMatt Macy return (SET_ERROR(EINVAL)); 25627877fdebSMatt Macy else if (nparity > 2 && spa_version(spa) < SPA_VERSION_RAIDZ3) 25637877fdebSMatt Macy return (SET_ERROR(EINVAL)); 25647877fdebSMatt Macy } else { 25657877fdebSMatt Macy /* 25667877fdebSMatt Macy * We require the parity to be specified for SPAs that 25677877fdebSMatt Macy * support multiple parity levels. 25687877fdebSMatt Macy */ 25697877fdebSMatt Macy if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 25707877fdebSMatt Macy return (SET_ERROR(EINVAL)); 25717877fdebSMatt Macy 25727877fdebSMatt Macy /* 25737877fdebSMatt Macy * Otherwise, we default to 1 parity device for RAID-Z. 25747877fdebSMatt Macy */ 25757877fdebSMatt Macy nparity = 1; 25767877fdebSMatt Macy } 25777877fdebSMatt Macy 25787877fdebSMatt Macy vdrz = kmem_zalloc(sizeof (*vdrz), KM_SLEEP); 25797877fdebSMatt Macy vdrz->vd_logical_width = children; 25807877fdebSMatt Macy vdrz->vd_nparity = nparity; 25817877fdebSMatt Macy 25827877fdebSMatt Macy *tsd = vdrz; 25837877fdebSMatt Macy 25847877fdebSMatt Macy return (0); 25857877fdebSMatt Macy } 25867877fdebSMatt Macy 25877877fdebSMatt Macy static void 25887877fdebSMatt Macy vdev_raidz_fini(vdev_t *vd) 25897877fdebSMatt Macy { 25907877fdebSMatt Macy kmem_free(vd->vdev_tsd, sizeof (vdev_raidz_t)); 25917877fdebSMatt Macy } 25927877fdebSMatt Macy 25937877fdebSMatt Macy /* 25947877fdebSMatt Macy * Add RAIDZ specific fields to the config nvlist. 25957877fdebSMatt Macy */ 25967877fdebSMatt Macy static void 25977877fdebSMatt Macy vdev_raidz_config_generate(vdev_t *vd, nvlist_t *nv) 25987877fdebSMatt Macy { 25997877fdebSMatt Macy ASSERT3P(vd->vdev_ops, ==, &vdev_raidz_ops); 26007877fdebSMatt Macy vdev_raidz_t *vdrz = vd->vdev_tsd; 26017877fdebSMatt Macy 26027877fdebSMatt Macy /* 26037877fdebSMatt Macy * Make sure someone hasn't managed to sneak a fancy new vdev 26047877fdebSMatt Macy * into a crufty old storage pool. 26057877fdebSMatt Macy */ 26067877fdebSMatt Macy ASSERT(vdrz->vd_nparity == 1 || 26077877fdebSMatt Macy (vdrz->vd_nparity <= 2 && 26087877fdebSMatt Macy spa_version(vd->vdev_spa) >= SPA_VERSION_RAIDZ2) || 26097877fdebSMatt Macy (vdrz->vd_nparity <= 3 && 26107877fdebSMatt Macy spa_version(vd->vdev_spa) >= SPA_VERSION_RAIDZ3)); 26117877fdebSMatt Macy 26127877fdebSMatt Macy /* 26137877fdebSMatt Macy * Note that we'll add these even on storage pools where they 26147877fdebSMatt Macy * aren't strictly required -- older software will just ignore 26157877fdebSMatt Macy * it. 26167877fdebSMatt Macy */ 26177877fdebSMatt Macy fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vdrz->vd_nparity); 26187877fdebSMatt Macy } 26197877fdebSMatt Macy 26207877fdebSMatt Macy static uint64_t 26217877fdebSMatt Macy vdev_raidz_nparity(vdev_t *vd) 26227877fdebSMatt Macy { 26237877fdebSMatt Macy vdev_raidz_t *vdrz = vd->vdev_tsd; 26247877fdebSMatt Macy return (vdrz->vd_nparity); 26257877fdebSMatt Macy } 26267877fdebSMatt Macy 26277877fdebSMatt Macy static uint64_t 26287877fdebSMatt Macy vdev_raidz_ndisks(vdev_t *vd) 26297877fdebSMatt Macy { 26307877fdebSMatt Macy return (vd->vdev_children); 2631eda14cbcSMatt Macy } 2632eda14cbcSMatt Macy 2633eda14cbcSMatt Macy vdev_ops_t vdev_raidz_ops = { 26347877fdebSMatt Macy .vdev_op_init = vdev_raidz_init, 26357877fdebSMatt Macy .vdev_op_fini = vdev_raidz_fini, 2636eda14cbcSMatt Macy .vdev_op_open = vdev_raidz_open, 2637eda14cbcSMatt Macy .vdev_op_close = vdev_raidz_close, 2638eda14cbcSMatt Macy .vdev_op_asize = vdev_raidz_asize, 26397877fdebSMatt Macy .vdev_op_min_asize = vdev_raidz_min_asize, 26407877fdebSMatt Macy .vdev_op_min_alloc = NULL, 2641eda14cbcSMatt Macy .vdev_op_io_start = vdev_raidz_io_start, 2642eda14cbcSMatt Macy .vdev_op_io_done = vdev_raidz_io_done, 2643eda14cbcSMatt Macy .vdev_op_state_change = vdev_raidz_state_change, 2644eda14cbcSMatt Macy .vdev_op_need_resilver = vdev_raidz_need_resilver, 2645eda14cbcSMatt Macy .vdev_op_hold = NULL, 2646eda14cbcSMatt Macy .vdev_op_rele = NULL, 2647eda14cbcSMatt Macy .vdev_op_remap = NULL, 2648eda14cbcSMatt Macy .vdev_op_xlate = vdev_raidz_xlate, 26497877fdebSMatt Macy .vdev_op_rebuild_asize = NULL, 26507877fdebSMatt Macy .vdev_op_metaslab_init = NULL, 26517877fdebSMatt Macy .vdev_op_config_generate = vdev_raidz_config_generate, 26527877fdebSMatt Macy .vdev_op_nparity = vdev_raidz_nparity, 26537877fdebSMatt Macy .vdev_op_ndisks = vdev_raidz_ndisks, 2654eda14cbcSMatt Macy .vdev_op_type = VDEV_TYPE_RAIDZ, /* name of this vdev type */ 2655eda14cbcSMatt Macy .vdev_op_leaf = B_FALSE /* not a leaf vdev */ 2656eda14cbcSMatt Macy }; 2657