1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/spa_impl.h> 34 #include <sys/zio.h> 35 #include <sys/avl.h> 36 #include <sys/dsl_pool.h> 37 #include <sys/metaslab_impl.h> 38 #include <sys/spa.h> 39 #include <sys/abd.h> 40 41 /* 42 * ZFS I/O Scheduler 43 * --------------- 44 * 45 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The 46 * I/O scheduler determines when and in what order those operations are 47 * issued. The I/O scheduler divides operations into five I/O classes 48 * prioritized in the following order: sync read, sync write, async read, 49 * async write, and scrub/resilver. Each queue defines the minimum and 50 * maximum number of concurrent operations that may be issued to the device. 51 * In addition, the device has an aggregate maximum. Note that the sum of the 52 * per-queue minimums must not exceed the aggregate maximum. If the 53 * sum of the per-queue maximums exceeds the aggregate maximum, then the 54 * number of active i/os may reach zfs_vdev_max_active, in which case no 55 * further i/os will be issued regardless of whether all per-queue 56 * minimums have been met. 57 * 58 * For many physical devices, throughput increases with the number of 59 * concurrent operations, but latency typically suffers. Further, physical 60 * devices typically have a limit at which more concurrent operations have no 61 * effect on throughput or can actually cause it to decrease. 62 * 63 * The scheduler selects the next operation to issue by first looking for an 64 * I/O class whose minimum has not been satisfied. Once all are satisfied and 65 * the aggregate maximum has not been hit, the scheduler looks for classes 66 * whose maximum has not been satisfied. Iteration through the I/O classes is 67 * done in the order specified above. No further operations are issued if the 68 * aggregate maximum number of concurrent operations has been hit or if there 69 * are no operations queued for an I/O class that has not hit its maximum. 70 * Every time an i/o is queued or an operation completes, the I/O scheduler 71 * looks for new operations to issue. 72 * 73 * All I/O classes have a fixed maximum number of outstanding operations 74 * except for the async write class. Asynchronous writes represent the data 75 * that is committed to stable storage during the syncing stage for 76 * transaction groups (see txg.c). Transaction groups enter the syncing state 77 * periodically so the number of queued async writes will quickly burst up and 78 * then bleed down to zero. Rather than servicing them as quickly as possible, 79 * the I/O scheduler changes the maximum number of active async write i/os 80 * according to the amount of dirty data in the pool (see dsl_pool.c). Since 81 * both throughput and latency typically increase with the number of 82 * concurrent operations issued to physical devices, reducing the burstiness 83 * in the number of concurrent operations also stabilizes the response time of 84 * operations from other -- and in particular synchronous -- queues. In broad 85 * strokes, the I/O scheduler will issue more concurrent operations from the 86 * async write queue as there's more dirty data in the pool. 87 * 88 * Async Writes 89 * 90 * The number of concurrent operations issued for the async write I/O class 91 * follows a piece-wise linear function defined by a few adjustable points. 92 * 93 * | o---------| <-- zfs_vdev_async_write_max_active 94 * ^ | /^ | 95 * | | / | | 96 * active | / | | 97 * I/O | / | | 98 * count | / | | 99 * | / | | 100 * |------------o | | <-- zfs_vdev_async_write_min_active 101 * 0|____________^______|_________| 102 * 0% | | 100% of zfs_dirty_data_max 103 * | | 104 * | `-- zfs_vdev_async_write_active_max_dirty_percent 105 * `--------- zfs_vdev_async_write_active_min_dirty_percent 106 * 107 * Until the amount of dirty data exceeds a minimum percentage of the dirty 108 * data allowed in the pool, the I/O scheduler will limit the number of 109 * concurrent operations to the minimum. As that threshold is crossed, the 110 * number of concurrent operations issued increases linearly to the maximum at 111 * the specified maximum percentage of the dirty data allowed in the pool. 112 * 113 * Ideally, the amount of dirty data on a busy pool will stay in the sloped 114 * part of the function between zfs_vdev_async_write_active_min_dirty_percent 115 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the 116 * maximum percentage, this indicates that the rate of incoming data is 117 * greater than the rate that the backend storage can handle. In this case, we 118 * must further throttle incoming writes (see dmu_tx_delay() for details). 119 */ 120 121 /* 122 * The maximum number of i/os active to each device. Ideally, this will be >= 123 * the sum of each queue's max_active. 124 */ 125 uint_t zfs_vdev_max_active = 1000; 126 127 /* 128 * Per-queue limits on the number of i/os active to each device. If the 129 * number of active i/os is < zfs_vdev_max_active, then the min_active comes 130 * into play. We will send min_active from each queue round-robin, and then 131 * send from queues in the order defined by zio_priority_t up to max_active. 132 * Some queues have additional mechanisms to limit number of active I/Os in 133 * addition to min_active and max_active, see below. 134 * 135 * In general, smaller max_active's will lead to lower latency of synchronous 136 * operations. Larger max_active's may lead to higher overall throughput, 137 * depending on underlying storage. 138 * 139 * The ratio of the queues' max_actives determines the balance of performance 140 * between reads, writes, and scrubs. E.g., increasing 141 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete 142 * more quickly, but reads and writes to have higher latency and lower 143 * throughput. 144 */ 145 static uint_t zfs_vdev_sync_read_min_active = 10; 146 static uint_t zfs_vdev_sync_read_max_active = 10; 147 static uint_t zfs_vdev_sync_write_min_active = 10; 148 static uint_t zfs_vdev_sync_write_max_active = 10; 149 static uint_t zfs_vdev_async_read_min_active = 1; 150 /* */ uint_t zfs_vdev_async_read_max_active = 3; 151 static uint_t zfs_vdev_async_write_min_active = 2; 152 static uint_t zfs_vdev_async_write_max_active = 10; 153 static uint_t zfs_vdev_scrub_min_active = 1; 154 static uint_t zfs_vdev_scrub_max_active = 3; 155 static uint_t zfs_vdev_removal_min_active = 1; 156 static uint_t zfs_vdev_removal_max_active = 2; 157 static uint_t zfs_vdev_initializing_min_active = 1; 158 static uint_t zfs_vdev_initializing_max_active = 1; 159 static uint_t zfs_vdev_trim_min_active = 1; 160 static uint_t zfs_vdev_trim_max_active = 2; 161 static uint_t zfs_vdev_rebuild_min_active = 1; 162 static uint_t zfs_vdev_rebuild_max_active = 3; 163 164 /* 165 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent 166 * dirty data, use zfs_vdev_async_write_min_active. When it has more than 167 * zfs_vdev_async_write_active_max_dirty_percent, use 168 * zfs_vdev_async_write_max_active. The value is linearly interpolated 169 * between min and max. 170 */ 171 uint_t zfs_vdev_async_write_active_min_dirty_percent = 30; 172 uint_t zfs_vdev_async_write_active_max_dirty_percent = 60; 173 174 /* 175 * For non-interactive I/O (scrub, resilver, removal, initialize and rebuild), 176 * the number of concurrently-active I/O's is limited to *_min_active, unless 177 * the vdev is "idle". When there are no interactive I/Os active (sync or 178 * async), and zfs_vdev_nia_delay I/Os have completed since the last 179 * interactive I/O, then the vdev is considered to be "idle", and the number 180 * of concurrently-active non-interactive I/O's is increased to *_max_active. 181 */ 182 static uint_t zfs_vdev_nia_delay = 5; 183 184 /* 185 * Some HDDs tend to prioritize sequential I/O so high that concurrent 186 * random I/O latency reaches several seconds. On some HDDs it happens 187 * even if sequential I/Os are submitted one at a time, and so setting 188 * *_max_active to 1 does not help. To prevent non-interactive I/Os, like 189 * scrub, from monopolizing the device no more than zfs_vdev_nia_credit 190 * I/Os can be sent while there are outstanding incomplete interactive 191 * I/Os. This enforced wait ensures the HDD services the interactive I/O 192 * within a reasonable amount of time. 193 */ 194 static uint_t zfs_vdev_nia_credit = 5; 195 196 /* 197 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O. 198 * For read I/Os, we also aggregate across small adjacency gaps; for writes 199 * we include spans of optional I/Os to aid aggregation at the disk even when 200 * they aren't able to help us aggregate at this level. 201 */ 202 static uint_t zfs_vdev_aggregation_limit = 1 << 20; 203 static uint_t zfs_vdev_aggregation_limit_non_rotating = SPA_OLD_MAXBLOCKSIZE; 204 static uint_t zfs_vdev_read_gap_limit = 32 << 10; 205 static uint_t zfs_vdev_write_gap_limit = 4 << 10; 206 207 static int 208 vdev_queue_offset_compare(const void *x1, const void *x2) 209 { 210 const zio_t *z1 = (const zio_t *)x1; 211 const zio_t *z2 = (const zio_t *)x2; 212 213 int cmp = TREE_CMP(z1->io_offset, z2->io_offset); 214 215 if (likely(cmp)) 216 return (cmp); 217 218 return (TREE_PCMP(z1, z2)); 219 } 220 221 #define VDQ_T_SHIFT 29 222 223 static int 224 vdev_queue_to_compare(const void *x1, const void *x2) 225 { 226 const zio_t *z1 = (const zio_t *)x1; 227 const zio_t *z2 = (const zio_t *)x2; 228 229 int tcmp = TREE_CMP(z1->io_timestamp >> VDQ_T_SHIFT, 230 z2->io_timestamp >> VDQ_T_SHIFT); 231 int ocmp = TREE_CMP(z1->io_offset, z2->io_offset); 232 int cmp = tcmp ? tcmp : ocmp; 233 234 if (likely(cmp | (z1->io_queue_state == ZIO_QS_NONE))) 235 return (cmp); 236 237 return (TREE_PCMP(z1, z2)); 238 } 239 240 static inline boolean_t 241 vdev_queue_class_fifo(zio_priority_t p) 242 { 243 return (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE || 244 p == ZIO_PRIORITY_TRIM); 245 } 246 247 static void 248 vdev_queue_class_add(vdev_queue_t *vq, zio_t *zio) 249 { 250 zio_priority_t p = zio->io_priority; 251 vq->vq_cqueued |= 1U << p; 252 if (vdev_queue_class_fifo(p)) { 253 list_insert_tail(&vq->vq_class[p].vqc_list, zio); 254 vq->vq_class[p].vqc_list_numnodes++; 255 } 256 else 257 avl_add(&vq->vq_class[p].vqc_tree, zio); 258 } 259 260 static void 261 vdev_queue_class_remove(vdev_queue_t *vq, zio_t *zio) 262 { 263 zio_priority_t p = zio->io_priority; 264 uint32_t empty; 265 if (vdev_queue_class_fifo(p)) { 266 list_t *list = &vq->vq_class[p].vqc_list; 267 list_remove(list, zio); 268 empty = list_is_empty(list); 269 vq->vq_class[p].vqc_list_numnodes--; 270 } else { 271 avl_tree_t *tree = &vq->vq_class[p].vqc_tree; 272 avl_remove(tree, zio); 273 empty = avl_is_empty(tree); 274 } 275 vq->vq_cqueued &= ~(empty << p); 276 } 277 278 static uint_t 279 vdev_queue_class_min_active(vdev_queue_t *vq, zio_priority_t p) 280 { 281 switch (p) { 282 case ZIO_PRIORITY_SYNC_READ: 283 return (zfs_vdev_sync_read_min_active); 284 case ZIO_PRIORITY_SYNC_WRITE: 285 return (zfs_vdev_sync_write_min_active); 286 case ZIO_PRIORITY_ASYNC_READ: 287 return (zfs_vdev_async_read_min_active); 288 case ZIO_PRIORITY_ASYNC_WRITE: 289 return (zfs_vdev_async_write_min_active); 290 case ZIO_PRIORITY_SCRUB: 291 return (vq->vq_ia_active == 0 ? zfs_vdev_scrub_min_active : 292 MIN(vq->vq_nia_credit, zfs_vdev_scrub_min_active)); 293 case ZIO_PRIORITY_REMOVAL: 294 return (vq->vq_ia_active == 0 ? zfs_vdev_removal_min_active : 295 MIN(vq->vq_nia_credit, zfs_vdev_removal_min_active)); 296 case ZIO_PRIORITY_INITIALIZING: 297 return (vq->vq_ia_active == 0 ?zfs_vdev_initializing_min_active: 298 MIN(vq->vq_nia_credit, zfs_vdev_initializing_min_active)); 299 case ZIO_PRIORITY_TRIM: 300 return (zfs_vdev_trim_min_active); 301 case ZIO_PRIORITY_REBUILD: 302 return (vq->vq_ia_active == 0 ? zfs_vdev_rebuild_min_active : 303 MIN(vq->vq_nia_credit, zfs_vdev_rebuild_min_active)); 304 default: 305 panic("invalid priority %u", p); 306 return (0); 307 } 308 } 309 310 static uint_t 311 vdev_queue_max_async_writes(spa_t *spa) 312 { 313 uint_t writes; 314 uint64_t dirty = 0; 315 dsl_pool_t *dp = spa_get_dsl(spa); 316 uint64_t min_bytes = zfs_dirty_data_max * 317 zfs_vdev_async_write_active_min_dirty_percent / 100; 318 uint64_t max_bytes = zfs_dirty_data_max * 319 zfs_vdev_async_write_active_max_dirty_percent / 100; 320 321 /* 322 * Async writes may occur before the assignment of the spa's 323 * dsl_pool_t if a self-healing zio is issued prior to the 324 * completion of dmu_objset_open_impl(). 325 */ 326 if (dp == NULL) 327 return (zfs_vdev_async_write_max_active); 328 329 /* 330 * Sync tasks correspond to interactive user actions. To reduce the 331 * execution time of those actions we push data out as fast as possible. 332 */ 333 dirty = dp->dp_dirty_total; 334 if (dirty > max_bytes || spa_has_pending_synctask(spa)) 335 return (zfs_vdev_async_write_max_active); 336 337 if (dirty < min_bytes) 338 return (zfs_vdev_async_write_min_active); 339 340 /* 341 * linear interpolation: 342 * slope = (max_writes - min_writes) / (max_bytes - min_bytes) 343 * move right by min_bytes 344 * move up by min_writes 345 */ 346 writes = (dirty - min_bytes) * 347 (zfs_vdev_async_write_max_active - 348 zfs_vdev_async_write_min_active) / 349 (max_bytes - min_bytes) + 350 zfs_vdev_async_write_min_active; 351 ASSERT3U(writes, >=, zfs_vdev_async_write_min_active); 352 ASSERT3U(writes, <=, zfs_vdev_async_write_max_active); 353 return (writes); 354 } 355 356 static uint_t 357 vdev_queue_class_max_active(vdev_queue_t *vq, zio_priority_t p) 358 { 359 switch (p) { 360 case ZIO_PRIORITY_SYNC_READ: 361 return (zfs_vdev_sync_read_max_active); 362 case ZIO_PRIORITY_SYNC_WRITE: 363 return (zfs_vdev_sync_write_max_active); 364 case ZIO_PRIORITY_ASYNC_READ: 365 return (zfs_vdev_async_read_max_active); 366 case ZIO_PRIORITY_ASYNC_WRITE: 367 return (vdev_queue_max_async_writes(vq->vq_vdev->vdev_spa)); 368 case ZIO_PRIORITY_SCRUB: 369 if (vq->vq_ia_active > 0) { 370 return (MIN(vq->vq_nia_credit, 371 zfs_vdev_scrub_min_active)); 372 } else if (vq->vq_nia_credit < zfs_vdev_nia_delay) 373 return (MAX(1, zfs_vdev_scrub_min_active)); 374 return (zfs_vdev_scrub_max_active); 375 case ZIO_PRIORITY_REMOVAL: 376 if (vq->vq_ia_active > 0) { 377 return (MIN(vq->vq_nia_credit, 378 zfs_vdev_removal_min_active)); 379 } else if (vq->vq_nia_credit < zfs_vdev_nia_delay) 380 return (MAX(1, zfs_vdev_removal_min_active)); 381 return (zfs_vdev_removal_max_active); 382 case ZIO_PRIORITY_INITIALIZING: 383 if (vq->vq_ia_active > 0) { 384 return (MIN(vq->vq_nia_credit, 385 zfs_vdev_initializing_min_active)); 386 } else if (vq->vq_nia_credit < zfs_vdev_nia_delay) 387 return (MAX(1, zfs_vdev_initializing_min_active)); 388 return (zfs_vdev_initializing_max_active); 389 case ZIO_PRIORITY_TRIM: 390 return (zfs_vdev_trim_max_active); 391 case ZIO_PRIORITY_REBUILD: 392 if (vq->vq_ia_active > 0) { 393 return (MIN(vq->vq_nia_credit, 394 zfs_vdev_rebuild_min_active)); 395 } else if (vq->vq_nia_credit < zfs_vdev_nia_delay) 396 return (MAX(1, zfs_vdev_rebuild_min_active)); 397 return (zfs_vdev_rebuild_max_active); 398 default: 399 panic("invalid priority %u", p); 400 return (0); 401 } 402 } 403 404 /* 405 * Return the i/o class to issue from, or ZIO_PRIORITY_NUM_QUEUEABLE if 406 * there is no eligible class. 407 */ 408 static zio_priority_t 409 vdev_queue_class_to_issue(vdev_queue_t *vq) 410 { 411 uint32_t cq = vq->vq_cqueued; 412 zio_priority_t p, p1; 413 414 if (cq == 0 || vq->vq_active >= zfs_vdev_max_active) 415 return (ZIO_PRIORITY_NUM_QUEUEABLE); 416 417 /* 418 * Find a queue that has not reached its minimum # outstanding i/os. 419 * Do round-robin to reduce starvation due to zfs_vdev_max_active 420 * and vq_nia_credit limits. 421 */ 422 p1 = vq->vq_last_prio + 1; 423 if (p1 >= ZIO_PRIORITY_NUM_QUEUEABLE) 424 p1 = 0; 425 for (p = p1; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 426 if ((cq & (1U << p)) != 0 && vq->vq_cactive[p] < 427 vdev_queue_class_min_active(vq, p)) 428 goto found; 429 } 430 for (p = 0; p < p1; p++) { 431 if ((cq & (1U << p)) != 0 && vq->vq_cactive[p] < 432 vdev_queue_class_min_active(vq, p)) 433 goto found; 434 } 435 436 /* 437 * If we haven't found a queue, look for one that hasn't reached its 438 * maximum # outstanding i/os. 439 */ 440 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 441 if ((cq & (1U << p)) != 0 && vq->vq_cactive[p] < 442 vdev_queue_class_max_active(vq, p)) 443 break; 444 } 445 446 found: 447 vq->vq_last_prio = p; 448 return (p); 449 } 450 451 void 452 vdev_queue_init(vdev_t *vd) 453 { 454 vdev_queue_t *vq = &vd->vdev_queue; 455 zio_priority_t p; 456 457 vq->vq_vdev = vd; 458 459 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 460 if (vdev_queue_class_fifo(p)) { 461 list_create(&vq->vq_class[p].vqc_list, 462 sizeof (zio_t), 463 offsetof(struct zio, io_queue_node.l)); 464 } else { 465 avl_create(&vq->vq_class[p].vqc_tree, 466 vdev_queue_to_compare, sizeof (zio_t), 467 offsetof(struct zio, io_queue_node.a)); 468 } 469 } 470 avl_create(&vq->vq_read_offset_tree, 471 vdev_queue_offset_compare, sizeof (zio_t), 472 offsetof(struct zio, io_offset_node)); 473 avl_create(&vq->vq_write_offset_tree, 474 vdev_queue_offset_compare, sizeof (zio_t), 475 offsetof(struct zio, io_offset_node)); 476 477 vq->vq_last_offset = 0; 478 list_create(&vq->vq_active_list, sizeof (struct zio), 479 offsetof(struct zio, io_queue_node.l)); 480 mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL); 481 } 482 483 void 484 vdev_queue_fini(vdev_t *vd) 485 { 486 vdev_queue_t *vq = &vd->vdev_queue; 487 488 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 489 if (vdev_queue_class_fifo(p)) 490 list_destroy(&vq->vq_class[p].vqc_list); 491 else 492 avl_destroy(&vq->vq_class[p].vqc_tree); 493 } 494 avl_destroy(&vq->vq_read_offset_tree); 495 avl_destroy(&vq->vq_write_offset_tree); 496 497 list_destroy(&vq->vq_active_list); 498 mutex_destroy(&vq->vq_lock); 499 } 500 501 static void 502 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio) 503 { 504 zio->io_queue_state = ZIO_QS_QUEUED; 505 vdev_queue_class_add(vq, zio); 506 if (zio->io_type == ZIO_TYPE_READ) 507 avl_add(&vq->vq_read_offset_tree, zio); 508 else if (zio->io_type == ZIO_TYPE_WRITE) 509 avl_add(&vq->vq_write_offset_tree, zio); 510 } 511 512 static void 513 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio) 514 { 515 vdev_queue_class_remove(vq, zio); 516 if (zio->io_type == ZIO_TYPE_READ) 517 avl_remove(&vq->vq_read_offset_tree, zio); 518 else if (zio->io_type == ZIO_TYPE_WRITE) 519 avl_remove(&vq->vq_write_offset_tree, zio); 520 zio->io_queue_state = ZIO_QS_NONE; 521 } 522 523 static boolean_t 524 vdev_queue_is_interactive(zio_priority_t p) 525 { 526 switch (p) { 527 case ZIO_PRIORITY_SCRUB: 528 case ZIO_PRIORITY_REMOVAL: 529 case ZIO_PRIORITY_INITIALIZING: 530 case ZIO_PRIORITY_REBUILD: 531 return (B_FALSE); 532 default: 533 return (B_TRUE); 534 } 535 } 536 537 static void 538 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio) 539 { 540 ASSERT(MUTEX_HELD(&vq->vq_lock)); 541 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 542 vq->vq_cactive[zio->io_priority]++; 543 vq->vq_active++; 544 if (vdev_queue_is_interactive(zio->io_priority)) { 545 if (++vq->vq_ia_active == 1) 546 vq->vq_nia_credit = 1; 547 } else if (vq->vq_ia_active > 0) { 548 vq->vq_nia_credit--; 549 } 550 zio->io_queue_state = ZIO_QS_ACTIVE; 551 list_insert_tail(&vq->vq_active_list, zio); 552 } 553 554 static void 555 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio) 556 { 557 ASSERT(MUTEX_HELD(&vq->vq_lock)); 558 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 559 vq->vq_cactive[zio->io_priority]--; 560 vq->vq_active--; 561 if (vdev_queue_is_interactive(zio->io_priority)) { 562 if (--vq->vq_ia_active == 0) 563 vq->vq_nia_credit = 0; 564 else 565 vq->vq_nia_credit = zfs_vdev_nia_credit; 566 } else if (vq->vq_ia_active == 0) 567 vq->vq_nia_credit++; 568 list_remove(&vq->vq_active_list, zio); 569 zio->io_queue_state = ZIO_QS_NONE; 570 } 571 572 static void 573 vdev_queue_agg_io_done(zio_t *aio) 574 { 575 abd_free(aio->io_abd); 576 } 577 578 /* 579 * Compute the range spanned by two i/os, which is the endpoint of the last 580 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset). 581 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio); 582 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0. 583 */ 584 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset) 585 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio)) 586 587 /* 588 * Sufficiently adjacent io_offset's in ZIOs will be aggregated. We do this 589 * by creating a gang ABD from the adjacent ZIOs io_abd's. By using 590 * a gang ABD we avoid doing memory copies to and from the parent, 591 * child ZIOs. The gang ABD also accounts for gaps between adjacent 592 * io_offsets by simply getting the zero ABD for writes or allocating 593 * a new ABD for reads and placing them in the gang ABD as well. 594 */ 595 static zio_t * 596 vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio) 597 { 598 zio_t *first, *last, *aio, *dio, *mandatory, *nio; 599 uint64_t maxgap = 0; 600 uint64_t size; 601 uint64_t limit; 602 boolean_t stretch = B_FALSE; 603 uint64_t next_offset; 604 abd_t *abd; 605 avl_tree_t *t; 606 607 /* 608 * TRIM aggregation should not be needed since code in zfs_trim.c can 609 * submit TRIM I/O for extents up to zfs_trim_extent_bytes_max (128M). 610 */ 611 if (zio->io_type == ZIO_TYPE_TRIM) 612 return (NULL); 613 614 if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE) 615 return (NULL); 616 617 if (vq->vq_vdev->vdev_nonrot) 618 limit = zfs_vdev_aggregation_limit_non_rotating; 619 else 620 limit = zfs_vdev_aggregation_limit; 621 if (limit == 0) 622 return (NULL); 623 limit = MIN(limit, SPA_MAXBLOCKSIZE); 624 625 /* 626 * I/Os to distributed spares are directly dispatched to the dRAID 627 * leaf vdevs for aggregation. See the comment at the end of the 628 * zio_vdev_io_start() function. 629 */ 630 ASSERT(vq->vq_vdev->vdev_ops != &vdev_draid_spare_ops); 631 632 first = last = zio; 633 634 if (zio->io_type == ZIO_TYPE_READ) { 635 maxgap = zfs_vdev_read_gap_limit; 636 t = &vq->vq_read_offset_tree; 637 } else { 638 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 639 t = &vq->vq_write_offset_tree; 640 } 641 642 /* 643 * We can aggregate I/Os that are sufficiently adjacent and of 644 * the same flavor, as expressed by the AGG_INHERIT flags. 645 * The latter requirement is necessary so that certain 646 * attributes of the I/O, such as whether it's a normal I/O 647 * or a scrub/resilver, can be preserved in the aggregate. 648 * We can include optional I/Os, but don't allow them 649 * to begin a range as they add no benefit in that situation. 650 */ 651 652 /* 653 * We keep track of the last non-optional I/O. 654 */ 655 mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first; 656 657 /* 658 * Walk backwards through sufficiently contiguous I/Os 659 * recording the last non-optional I/O. 660 */ 661 zio_flag_t flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT; 662 while ((dio = AVL_PREV(t, first)) != NULL && 663 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && 664 IO_SPAN(dio, last) <= limit && 665 IO_GAP(dio, first) <= maxgap && 666 dio->io_type == zio->io_type) { 667 first = dio; 668 if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL)) 669 mandatory = first; 670 } 671 672 /* 673 * Skip any initial optional I/Os. 674 */ 675 while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) { 676 first = AVL_NEXT(t, first); 677 ASSERT(first != NULL); 678 } 679 680 681 /* 682 * Walk forward through sufficiently contiguous I/Os. 683 * The aggregation limit does not apply to optional i/os, so that 684 * we can issue contiguous writes even if they are larger than the 685 * aggregation limit. 686 */ 687 while ((dio = AVL_NEXT(t, last)) != NULL && 688 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && 689 (IO_SPAN(first, dio) <= limit || 690 (dio->io_flags & ZIO_FLAG_OPTIONAL)) && 691 IO_SPAN(first, dio) <= SPA_MAXBLOCKSIZE && 692 IO_GAP(last, dio) <= maxgap && 693 dio->io_type == zio->io_type) { 694 last = dio; 695 if (!(last->io_flags & ZIO_FLAG_OPTIONAL)) 696 mandatory = last; 697 } 698 699 /* 700 * Now that we've established the range of the I/O aggregation 701 * we must decide what to do with trailing optional I/Os. 702 * For reads, there's nothing to do. While we are unable to 703 * aggregate further, it's possible that a trailing optional 704 * I/O would allow the underlying device to aggregate with 705 * subsequent I/Os. We must therefore determine if the next 706 * non-optional I/O is close enough to make aggregation 707 * worthwhile. 708 */ 709 if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) { 710 zio_t *nio = last; 711 while ((dio = AVL_NEXT(t, nio)) != NULL && 712 IO_GAP(nio, dio) == 0 && 713 IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) { 714 nio = dio; 715 if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) { 716 stretch = B_TRUE; 717 break; 718 } 719 } 720 } 721 722 if (stretch) { 723 /* 724 * We are going to include an optional io in our aggregated 725 * span, thus closing the write gap. Only mandatory i/os can 726 * start aggregated spans, so make sure that the next i/o 727 * after our span is mandatory. 728 */ 729 dio = AVL_NEXT(t, last); 730 ASSERT3P(dio, !=, NULL); 731 dio->io_flags &= ~ZIO_FLAG_OPTIONAL; 732 } else { 733 /* do not include the optional i/o */ 734 while (last != mandatory && last != first) { 735 ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL); 736 last = AVL_PREV(t, last); 737 ASSERT(last != NULL); 738 } 739 } 740 741 if (first == last) 742 return (NULL); 743 744 size = IO_SPAN(first, last); 745 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 746 747 abd = abd_alloc_gang(); 748 if (abd == NULL) 749 return (NULL); 750 751 aio = zio_vdev_delegated_io(first->io_vd, first->io_offset, 752 abd, size, first->io_type, zio->io_priority, 753 flags | ZIO_FLAG_DONT_QUEUE, vdev_queue_agg_io_done, NULL); 754 aio->io_timestamp = first->io_timestamp; 755 756 nio = first; 757 next_offset = first->io_offset; 758 do { 759 dio = nio; 760 nio = AVL_NEXT(t, dio); 761 ASSERT3P(dio, !=, NULL); 762 zio_add_child(dio, aio); 763 vdev_queue_io_remove(vq, dio); 764 765 if (dio->io_offset != next_offset) { 766 /* allocate a buffer for a read gap */ 767 ASSERT3U(dio->io_type, ==, ZIO_TYPE_READ); 768 ASSERT3U(dio->io_offset, >, next_offset); 769 abd = abd_alloc_for_io( 770 dio->io_offset - next_offset, B_TRUE); 771 abd_gang_add(aio->io_abd, abd, B_TRUE); 772 } 773 if (dio->io_abd && 774 (dio->io_size != abd_get_size(dio->io_abd))) { 775 /* abd size not the same as IO size */ 776 ASSERT3U(abd_get_size(dio->io_abd), >, dio->io_size); 777 abd = abd_get_offset_size(dio->io_abd, 0, dio->io_size); 778 abd_gang_add(aio->io_abd, abd, B_TRUE); 779 } else { 780 if (dio->io_flags & ZIO_FLAG_NODATA) { 781 /* allocate a buffer for a write gap */ 782 ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE); 783 ASSERT3P(dio->io_abd, ==, NULL); 784 abd_gang_add(aio->io_abd, 785 abd_get_zeros(dio->io_size), B_TRUE); 786 } else { 787 /* 788 * We pass B_FALSE to abd_gang_add() 789 * because we did not allocate a new 790 * ABD, so it is assumed the caller 791 * will free this ABD. 792 */ 793 abd_gang_add(aio->io_abd, dio->io_abd, 794 B_FALSE); 795 } 796 } 797 next_offset = dio->io_offset + dio->io_size; 798 } while (dio != last); 799 ASSERT3U(abd_get_size(aio->io_abd), ==, aio->io_size); 800 801 /* 802 * Callers must call zio_vdev_io_bypass() and zio_execute() for 803 * aggregated (parent) I/Os so that we could avoid dropping the 804 * queue's lock here to avoid a deadlock that we could encounter 805 * due to lock order reversal between vq_lock and io_lock in 806 * zio_change_priority(). 807 */ 808 return (aio); 809 } 810 811 static zio_t * 812 vdev_queue_io_to_issue(vdev_queue_t *vq) 813 { 814 zio_t *zio, *aio; 815 zio_priority_t p; 816 avl_index_t idx; 817 avl_tree_t *tree; 818 819 again: 820 ASSERT(MUTEX_HELD(&vq->vq_lock)); 821 822 p = vdev_queue_class_to_issue(vq); 823 824 if (p == ZIO_PRIORITY_NUM_QUEUEABLE) { 825 /* No eligible queued i/os */ 826 return (NULL); 827 } 828 829 if (vdev_queue_class_fifo(p)) { 830 zio = list_head(&vq->vq_class[p].vqc_list); 831 } else { 832 /* 833 * For LBA-ordered queues (async / scrub / initializing), 834 * issue the I/O which follows the most recently issued I/O 835 * in LBA (offset) order, but to avoid starvation only within 836 * the same 0.5 second interval as the first I/O. 837 */ 838 tree = &vq->vq_class[p].vqc_tree; 839 zio = aio = avl_first(tree); 840 if (zio->io_offset < vq->vq_last_offset) { 841 vq->vq_io_search.io_timestamp = zio->io_timestamp; 842 vq->vq_io_search.io_offset = vq->vq_last_offset; 843 zio = avl_find(tree, &vq->vq_io_search, &idx); 844 if (zio == NULL) { 845 zio = avl_nearest(tree, idx, AVL_AFTER); 846 if (zio == NULL || 847 (zio->io_timestamp >> VDQ_T_SHIFT) != 848 (aio->io_timestamp >> VDQ_T_SHIFT)) 849 zio = aio; 850 } 851 } 852 } 853 ASSERT3U(zio->io_priority, ==, p); 854 855 aio = vdev_queue_aggregate(vq, zio); 856 if (aio != NULL) { 857 zio = aio; 858 } else { 859 vdev_queue_io_remove(vq, zio); 860 861 /* 862 * If the I/O is or was optional and therefore has no data, we 863 * need to simply discard it. We need to drop the vdev queue's 864 * lock to avoid a deadlock that we could encounter since this 865 * I/O will complete immediately. 866 */ 867 if (zio->io_flags & ZIO_FLAG_NODATA) { 868 mutex_exit(&vq->vq_lock); 869 zio_vdev_io_bypass(zio); 870 zio_execute(zio); 871 mutex_enter(&vq->vq_lock); 872 goto again; 873 } 874 } 875 876 vdev_queue_pending_add(vq, zio); 877 vq->vq_last_offset = zio->io_offset + zio->io_size; 878 879 return (zio); 880 } 881 882 zio_t * 883 vdev_queue_io(zio_t *zio) 884 { 885 vdev_queue_t *vq = &zio->io_vd->vdev_queue; 886 zio_t *dio, *nio; 887 zio_link_t *zl = NULL; 888 889 if (zio->io_flags & ZIO_FLAG_DONT_QUEUE) 890 return (zio); 891 892 /* 893 * Children i/os inherent their parent's priority, which might 894 * not match the child's i/o type. Fix it up here. 895 */ 896 if (zio->io_type == ZIO_TYPE_READ) { 897 ASSERT(zio->io_priority != ZIO_PRIORITY_TRIM); 898 899 if (zio->io_priority != ZIO_PRIORITY_SYNC_READ && 900 zio->io_priority != ZIO_PRIORITY_ASYNC_READ && 901 zio->io_priority != ZIO_PRIORITY_SCRUB && 902 zio->io_priority != ZIO_PRIORITY_REMOVAL && 903 zio->io_priority != ZIO_PRIORITY_INITIALIZING && 904 zio->io_priority != ZIO_PRIORITY_REBUILD) { 905 zio->io_priority = ZIO_PRIORITY_ASYNC_READ; 906 } 907 } else if (zio->io_type == ZIO_TYPE_WRITE) { 908 ASSERT(zio->io_priority != ZIO_PRIORITY_TRIM); 909 910 if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE && 911 zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE && 912 zio->io_priority != ZIO_PRIORITY_REMOVAL && 913 zio->io_priority != ZIO_PRIORITY_INITIALIZING && 914 zio->io_priority != ZIO_PRIORITY_REBUILD) { 915 zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE; 916 } 917 } else { 918 ASSERT(zio->io_type == ZIO_TYPE_TRIM); 919 ASSERT(zio->io_priority == ZIO_PRIORITY_TRIM); 920 } 921 922 zio->io_flags |= ZIO_FLAG_DONT_QUEUE; 923 zio->io_timestamp = gethrtime(); 924 925 mutex_enter(&vq->vq_lock); 926 vdev_queue_io_add(vq, zio); 927 nio = vdev_queue_io_to_issue(vq); 928 mutex_exit(&vq->vq_lock); 929 930 if (nio == NULL) 931 return (NULL); 932 933 if (nio->io_done == vdev_queue_agg_io_done) { 934 while ((dio = zio_walk_parents(nio, &zl)) != NULL) { 935 ASSERT3U(dio->io_type, ==, nio->io_type); 936 zio_vdev_io_bypass(dio); 937 zio_execute(dio); 938 } 939 zio_nowait(nio); 940 return (NULL); 941 } 942 943 return (nio); 944 } 945 946 void 947 vdev_queue_io_done(zio_t *zio) 948 { 949 vdev_queue_t *vq = &zio->io_vd->vdev_queue; 950 zio_t *dio, *nio; 951 zio_link_t *zl = NULL; 952 953 hrtime_t now = gethrtime(); 954 vq->vq_io_complete_ts = now; 955 vq->vq_io_delta_ts = zio->io_delta = now - zio->io_timestamp; 956 957 mutex_enter(&vq->vq_lock); 958 vdev_queue_pending_remove(vq, zio); 959 960 while ((nio = vdev_queue_io_to_issue(vq)) != NULL) { 961 mutex_exit(&vq->vq_lock); 962 if (nio->io_done == vdev_queue_agg_io_done) { 963 while ((dio = zio_walk_parents(nio, &zl)) != NULL) { 964 ASSERT3U(dio->io_type, ==, nio->io_type); 965 zio_vdev_io_bypass(dio); 966 zio_execute(dio); 967 } 968 zio_nowait(nio); 969 } else { 970 zio_vdev_io_reissue(nio); 971 zio_execute(nio); 972 } 973 mutex_enter(&vq->vq_lock); 974 } 975 976 mutex_exit(&vq->vq_lock); 977 } 978 979 void 980 vdev_queue_change_io_priority(zio_t *zio, zio_priority_t priority) 981 { 982 vdev_queue_t *vq = &zio->io_vd->vdev_queue; 983 984 /* 985 * ZIO_PRIORITY_NOW is used by the vdev cache code and the aggregate zio 986 * code to issue IOs without adding them to the vdev queue. In this 987 * case, the zio is already going to be issued as quickly as possible 988 * and so it doesn't need any reprioritization to help. 989 */ 990 if (zio->io_priority == ZIO_PRIORITY_NOW) 991 return; 992 993 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 994 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 995 996 if (zio->io_type == ZIO_TYPE_READ) { 997 if (priority != ZIO_PRIORITY_SYNC_READ && 998 priority != ZIO_PRIORITY_ASYNC_READ && 999 priority != ZIO_PRIORITY_SCRUB) 1000 priority = ZIO_PRIORITY_ASYNC_READ; 1001 } else { 1002 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 1003 if (priority != ZIO_PRIORITY_SYNC_WRITE && 1004 priority != ZIO_PRIORITY_ASYNC_WRITE) 1005 priority = ZIO_PRIORITY_ASYNC_WRITE; 1006 } 1007 1008 mutex_enter(&vq->vq_lock); 1009 1010 /* 1011 * If the zio is in none of the queues we can simply change 1012 * the priority. If the zio is waiting to be submitted we must 1013 * remove it from the queue and re-insert it with the new priority. 1014 * Otherwise, the zio is currently active and we cannot change its 1015 * priority. 1016 */ 1017 if (zio->io_queue_state == ZIO_QS_QUEUED) { 1018 vdev_queue_class_remove(vq, zio); 1019 zio->io_priority = priority; 1020 vdev_queue_class_add(vq, zio); 1021 } else if (zio->io_queue_state == ZIO_QS_NONE) { 1022 zio->io_priority = priority; 1023 } 1024 1025 mutex_exit(&vq->vq_lock); 1026 } 1027 1028 boolean_t 1029 vdev_queue_pool_busy(spa_t *spa) 1030 { 1031 dsl_pool_t *dp = spa_get_dsl(spa); 1032 uint64_t min_bytes = zfs_dirty_data_max * 1033 zfs_vdev_async_write_active_min_dirty_percent / 100; 1034 1035 return (dp->dp_dirty_total > min_bytes); 1036 } 1037 1038 /* 1039 * As these two methods are only used for load calculations we're not 1040 * concerned if we get an incorrect value on 32bit platforms due to lack of 1041 * vq_lock mutex use here, instead we prefer to keep it lock free for 1042 * performance. 1043 */ 1044 uint32_t 1045 vdev_queue_length(vdev_t *vd) 1046 { 1047 return (vd->vdev_queue.vq_active); 1048 } 1049 1050 uint64_t 1051 vdev_queue_last_offset(vdev_t *vd) 1052 { 1053 return (vd->vdev_queue.vq_last_offset); 1054 } 1055 1056 uint64_t 1057 vdev_queue_class_length(vdev_t *vd, zio_priority_t p) 1058 { 1059 vdev_queue_t *vq = &vd->vdev_queue; 1060 if (vdev_queue_class_fifo(p)) 1061 return (vq->vq_class[p].vqc_list_numnodes); 1062 else 1063 return (avl_numnodes(&vq->vq_class[p].vqc_tree)); 1064 } 1065 1066 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregation_limit, UINT, ZMOD_RW, 1067 "Max vdev I/O aggregation size"); 1068 1069 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregation_limit_non_rotating, UINT, 1070 ZMOD_RW, "Max vdev I/O aggregation size for non-rotating media"); 1071 1072 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, read_gap_limit, UINT, ZMOD_RW, 1073 "Aggregate read I/O over gap"); 1074 1075 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, write_gap_limit, UINT, ZMOD_RW, 1076 "Aggregate write I/O over gap"); 1077 1078 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_active, UINT, ZMOD_RW, 1079 "Maximum number of active I/Os per vdev"); 1080 1081 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_active_max_dirty_percent, 1082 UINT, ZMOD_RW, "Async write concurrency max threshold"); 1083 1084 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_active_min_dirty_percent, 1085 UINT, ZMOD_RW, "Async write concurrency min threshold"); 1086 1087 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_read_max_active, UINT, ZMOD_RW, 1088 "Max active async read I/Os per vdev"); 1089 1090 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_read_min_active, UINT, ZMOD_RW, 1091 "Min active async read I/Os per vdev"); 1092 1093 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_max_active, UINT, ZMOD_RW, 1094 "Max active async write I/Os per vdev"); 1095 1096 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_min_active, UINT, ZMOD_RW, 1097 "Min active async write I/Os per vdev"); 1098 1099 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, initializing_max_active, UINT, ZMOD_RW, 1100 "Max active initializing I/Os per vdev"); 1101 1102 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, initializing_min_active, UINT, ZMOD_RW, 1103 "Min active initializing I/Os per vdev"); 1104 1105 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, removal_max_active, UINT, ZMOD_RW, 1106 "Max active removal I/Os per vdev"); 1107 1108 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, removal_min_active, UINT, ZMOD_RW, 1109 "Min active removal I/Os per vdev"); 1110 1111 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, scrub_max_active, UINT, ZMOD_RW, 1112 "Max active scrub I/Os per vdev"); 1113 1114 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, scrub_min_active, UINT, ZMOD_RW, 1115 "Min active scrub I/Os per vdev"); 1116 1117 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_read_max_active, UINT, ZMOD_RW, 1118 "Max active sync read I/Os per vdev"); 1119 1120 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_read_min_active, UINT, ZMOD_RW, 1121 "Min active sync read I/Os per vdev"); 1122 1123 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_write_max_active, UINT, ZMOD_RW, 1124 "Max active sync write I/Os per vdev"); 1125 1126 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_write_min_active, UINT, ZMOD_RW, 1127 "Min active sync write I/Os per vdev"); 1128 1129 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, trim_max_active, UINT, ZMOD_RW, 1130 "Max active trim/discard I/Os per vdev"); 1131 1132 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, trim_min_active, UINT, ZMOD_RW, 1133 "Min active trim/discard I/Os per vdev"); 1134 1135 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, rebuild_max_active, UINT, ZMOD_RW, 1136 "Max active rebuild I/Os per vdev"); 1137 1138 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, rebuild_min_active, UINT, ZMOD_RW, 1139 "Min active rebuild I/Os per vdev"); 1140 1141 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, nia_credit, UINT, ZMOD_RW, 1142 "Number of non-interactive I/Os to allow in sequence"); 1143 1144 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, nia_delay, UINT, ZMOD_RW, 1145 "Number of non-interactive I/Os before _max_active"); 1146