xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_queue.c (revision bc5304a006238115291e7568583632889dffbab9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
28  */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/spa_impl.h>
33 #include <sys/zio.h>
34 #include <sys/avl.h>
35 #include <sys/dsl_pool.h>
36 #include <sys/metaslab_impl.h>
37 #include <sys/spa.h>
38 #include <sys/abd.h>
39 
40 /*
41  * ZFS I/O Scheduler
42  * ---------------
43  *
44  * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios.  The
45  * I/O scheduler determines when and in what order those operations are
46  * issued.  The I/O scheduler divides operations into five I/O classes
47  * prioritized in the following order: sync read, sync write, async read,
48  * async write, and scrub/resilver.  Each queue defines the minimum and
49  * maximum number of concurrent operations that may be issued to the device.
50  * In addition, the device has an aggregate maximum. Note that the sum of the
51  * per-queue minimums must not exceed the aggregate maximum. If the
52  * sum of the per-queue maximums exceeds the aggregate maximum, then the
53  * number of active i/os may reach zfs_vdev_max_active, in which case no
54  * further i/os will be issued regardless of whether all per-queue
55  * minimums have been met.
56  *
57  * For many physical devices, throughput increases with the number of
58  * concurrent operations, but latency typically suffers. Further, physical
59  * devices typically have a limit at which more concurrent operations have no
60  * effect on throughput or can actually cause it to decrease.
61  *
62  * The scheduler selects the next operation to issue by first looking for an
63  * I/O class whose minimum has not been satisfied. Once all are satisfied and
64  * the aggregate maximum has not been hit, the scheduler looks for classes
65  * whose maximum has not been satisfied. Iteration through the I/O classes is
66  * done in the order specified above. No further operations are issued if the
67  * aggregate maximum number of concurrent operations has been hit or if there
68  * are no operations queued for an I/O class that has not hit its maximum.
69  * Every time an i/o is queued or an operation completes, the I/O scheduler
70  * looks for new operations to issue.
71  *
72  * All I/O classes have a fixed maximum number of outstanding operations
73  * except for the async write class. Asynchronous writes represent the data
74  * that is committed to stable storage during the syncing stage for
75  * transaction groups (see txg.c). Transaction groups enter the syncing state
76  * periodically so the number of queued async writes will quickly burst up and
77  * then bleed down to zero. Rather than servicing them as quickly as possible,
78  * the I/O scheduler changes the maximum number of active async write i/os
79  * according to the amount of dirty data in the pool (see dsl_pool.c). Since
80  * both throughput and latency typically increase with the number of
81  * concurrent operations issued to physical devices, reducing the burstiness
82  * in the number of concurrent operations also stabilizes the response time of
83  * operations from other -- and in particular synchronous -- queues. In broad
84  * strokes, the I/O scheduler will issue more concurrent operations from the
85  * async write queue as there's more dirty data in the pool.
86  *
87  * Async Writes
88  *
89  * The number of concurrent operations issued for the async write I/O class
90  * follows a piece-wise linear function defined by a few adjustable points.
91  *
92  *        |                   o---------| <-- zfs_vdev_async_write_max_active
93  *   ^    |                  /^         |
94  *   |    |                 / |         |
95  * active |                /  |         |
96  *  I/O   |               /   |         |
97  * count  |              /    |         |
98  *        |             /     |         |
99  *        |------------o      |         | <-- zfs_vdev_async_write_min_active
100  *       0|____________^______|_________|
101  *        0%           |      |       100% of zfs_dirty_data_max
102  *                     |      |
103  *                     |      `-- zfs_vdev_async_write_active_max_dirty_percent
104  *                     `--------- zfs_vdev_async_write_active_min_dirty_percent
105  *
106  * Until the amount of dirty data exceeds a minimum percentage of the dirty
107  * data allowed in the pool, the I/O scheduler will limit the number of
108  * concurrent operations to the minimum. As that threshold is crossed, the
109  * number of concurrent operations issued increases linearly to the maximum at
110  * the specified maximum percentage of the dirty data allowed in the pool.
111  *
112  * Ideally, the amount of dirty data on a busy pool will stay in the sloped
113  * part of the function between zfs_vdev_async_write_active_min_dirty_percent
114  * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
115  * maximum percentage, this indicates that the rate of incoming data is
116  * greater than the rate that the backend storage can handle. In this case, we
117  * must further throttle incoming writes (see dmu_tx_delay() for details).
118  */
119 
120 /*
121  * The maximum number of i/os active to each device.  Ideally, this will be >=
122  * the sum of each queue's max_active.
123  */
124 uint32_t zfs_vdev_max_active = 1000;
125 
126 /*
127  * Per-queue limits on the number of i/os active to each device.  If the
128  * number of active i/os is < zfs_vdev_max_active, then the min_active comes
129  * into play.  We will send min_active from each queue round-robin, and then
130  * send from queues in the order defined by zio_priority_t up to max_active.
131  * Some queues have additional mechanisms to limit number of active I/Os in
132  * addition to min_active and max_active, see below.
133  *
134  * In general, smaller max_active's will lead to lower latency of synchronous
135  * operations.  Larger max_active's may lead to higher overall throughput,
136  * depending on underlying storage.
137  *
138  * The ratio of the queues' max_actives determines the balance of performance
139  * between reads, writes, and scrubs.  E.g., increasing
140  * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
141  * more quickly, but reads and writes to have higher latency and lower
142  * throughput.
143  */
144 uint32_t zfs_vdev_sync_read_min_active = 10;
145 uint32_t zfs_vdev_sync_read_max_active = 10;
146 uint32_t zfs_vdev_sync_write_min_active = 10;
147 uint32_t zfs_vdev_sync_write_max_active = 10;
148 uint32_t zfs_vdev_async_read_min_active = 1;
149 uint32_t zfs_vdev_async_read_max_active = 3;
150 uint32_t zfs_vdev_async_write_min_active = 2;
151 uint32_t zfs_vdev_async_write_max_active = 10;
152 uint32_t zfs_vdev_scrub_min_active = 1;
153 uint32_t zfs_vdev_scrub_max_active = 3;
154 uint32_t zfs_vdev_removal_min_active = 1;
155 uint32_t zfs_vdev_removal_max_active = 2;
156 uint32_t zfs_vdev_initializing_min_active = 1;
157 uint32_t zfs_vdev_initializing_max_active = 1;
158 uint32_t zfs_vdev_trim_min_active = 1;
159 uint32_t zfs_vdev_trim_max_active = 2;
160 uint32_t zfs_vdev_rebuild_min_active = 1;
161 uint32_t zfs_vdev_rebuild_max_active = 3;
162 
163 /*
164  * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
165  * dirty data, use zfs_vdev_async_write_min_active.  When it has more than
166  * zfs_vdev_async_write_active_max_dirty_percent, use
167  * zfs_vdev_async_write_max_active. The value is linearly interpolated
168  * between min and max.
169  */
170 int zfs_vdev_async_write_active_min_dirty_percent = 30;
171 int zfs_vdev_async_write_active_max_dirty_percent = 60;
172 
173 /*
174  * For non-interactive I/O (scrub, resilver, removal, initialize and rebuild),
175  * the number of concurrently-active I/O's is limited to *_min_active, unless
176  * the vdev is "idle".  When there are no interactive I/Os active (sync or
177  * async), and zfs_vdev_nia_delay I/Os have completed since the last
178  * interactive I/O, then the vdev is considered to be "idle", and the number
179  * of concurrently-active non-interactive I/O's is increased to *_max_active.
180  */
181 uint_t zfs_vdev_nia_delay = 5;
182 
183 /*
184  * Some HDDs tend to prioritize sequential I/O so high that concurrent
185  * random I/O latency reaches several seconds.  On some HDDs it happens
186  * even if sequential I/Os are submitted one at a time, and so setting
187  * *_max_active to 1 does not help.  To prevent non-interactive I/Os, like
188  * scrub, from monopolizing the device no more than zfs_vdev_nia_credit
189  * I/Os can be sent while there are outstanding incomplete interactive
190  * I/Os.  This enforced wait ensures the HDD services the interactive I/O
191  * within a reasonable amount of time.
192  */
193 uint_t zfs_vdev_nia_credit = 5;
194 
195 /*
196  * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
197  * For read I/Os, we also aggregate across small adjacency gaps; for writes
198  * we include spans of optional I/Os to aid aggregation at the disk even when
199  * they aren't able to help us aggregate at this level.
200  */
201 int zfs_vdev_aggregation_limit = 1 << 20;
202 int zfs_vdev_aggregation_limit_non_rotating = SPA_OLD_MAXBLOCKSIZE;
203 int zfs_vdev_read_gap_limit = 32 << 10;
204 int zfs_vdev_write_gap_limit = 4 << 10;
205 
206 /*
207  * Define the queue depth percentage for each top-level. This percentage is
208  * used in conjunction with zfs_vdev_async_max_active to determine how many
209  * allocations a specific top-level vdev should handle. Once the queue depth
210  * reaches zfs_vdev_queue_depth_pct * zfs_vdev_async_write_max_active / 100
211  * then allocator will stop allocating blocks on that top-level device.
212  * The default kernel setting is 1000% which will yield 100 allocations per
213  * device. For userland testing, the default setting is 300% which equates
214  * to 30 allocations per device.
215  */
216 #ifdef _KERNEL
217 int zfs_vdev_queue_depth_pct = 1000;
218 #else
219 int zfs_vdev_queue_depth_pct = 300;
220 #endif
221 
222 /*
223  * When performing allocations for a given metaslab, we want to make sure that
224  * there are enough IOs to aggregate together to improve throughput. We want to
225  * ensure that there are at least 128k worth of IOs that can be aggregated, and
226  * we assume that the average allocation size is 4k, so we need the queue depth
227  * to be 32 per allocator to get good aggregation of sequential writes.
228  */
229 int zfs_vdev_def_queue_depth = 32;
230 
231 /*
232  * Allow TRIM I/Os to be aggregated.  This should normally not be needed since
233  * TRIM I/O for extents up to zfs_trim_extent_bytes_max (128M) can be submitted
234  * by the TRIM code in zfs_trim.c.
235  */
236 int zfs_vdev_aggregate_trim = 0;
237 
238 static int
239 vdev_queue_offset_compare(const void *x1, const void *x2)
240 {
241 	const zio_t *z1 = (const zio_t *)x1;
242 	const zio_t *z2 = (const zio_t *)x2;
243 
244 	int cmp = TREE_CMP(z1->io_offset, z2->io_offset);
245 
246 	if (likely(cmp))
247 		return (cmp);
248 
249 	return (TREE_PCMP(z1, z2));
250 }
251 
252 static inline avl_tree_t *
253 vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p)
254 {
255 	return (&vq->vq_class[p].vqc_queued_tree);
256 }
257 
258 static inline avl_tree_t *
259 vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t)
260 {
261 	ASSERT(t == ZIO_TYPE_READ || t == ZIO_TYPE_WRITE || t == ZIO_TYPE_TRIM);
262 	if (t == ZIO_TYPE_READ)
263 		return (&vq->vq_read_offset_tree);
264 	else if (t == ZIO_TYPE_WRITE)
265 		return (&vq->vq_write_offset_tree);
266 	else
267 		return (&vq->vq_trim_offset_tree);
268 }
269 
270 static int
271 vdev_queue_timestamp_compare(const void *x1, const void *x2)
272 {
273 	const zio_t *z1 = (const zio_t *)x1;
274 	const zio_t *z2 = (const zio_t *)x2;
275 
276 	int cmp = TREE_CMP(z1->io_timestamp, z2->io_timestamp);
277 
278 	if (likely(cmp))
279 		return (cmp);
280 
281 	return (TREE_PCMP(z1, z2));
282 }
283 
284 static int
285 vdev_queue_class_min_active(vdev_queue_t *vq, zio_priority_t p)
286 {
287 	switch (p) {
288 	case ZIO_PRIORITY_SYNC_READ:
289 		return (zfs_vdev_sync_read_min_active);
290 	case ZIO_PRIORITY_SYNC_WRITE:
291 		return (zfs_vdev_sync_write_min_active);
292 	case ZIO_PRIORITY_ASYNC_READ:
293 		return (zfs_vdev_async_read_min_active);
294 	case ZIO_PRIORITY_ASYNC_WRITE:
295 		return (zfs_vdev_async_write_min_active);
296 	case ZIO_PRIORITY_SCRUB:
297 		return (vq->vq_ia_active == 0 ? zfs_vdev_scrub_min_active :
298 		    MIN(vq->vq_nia_credit, zfs_vdev_scrub_min_active));
299 	case ZIO_PRIORITY_REMOVAL:
300 		return (vq->vq_ia_active == 0 ? zfs_vdev_removal_min_active :
301 		    MIN(vq->vq_nia_credit, zfs_vdev_removal_min_active));
302 	case ZIO_PRIORITY_INITIALIZING:
303 		return (vq->vq_ia_active == 0 ?zfs_vdev_initializing_min_active:
304 		    MIN(vq->vq_nia_credit, zfs_vdev_initializing_min_active));
305 	case ZIO_PRIORITY_TRIM:
306 		return (zfs_vdev_trim_min_active);
307 	case ZIO_PRIORITY_REBUILD:
308 		return (vq->vq_ia_active == 0 ? zfs_vdev_rebuild_min_active :
309 		    MIN(vq->vq_nia_credit, zfs_vdev_rebuild_min_active));
310 	default:
311 		panic("invalid priority %u", p);
312 		return (0);
313 	}
314 }
315 
316 static int
317 vdev_queue_max_async_writes(spa_t *spa)
318 {
319 	int writes;
320 	uint64_t dirty = 0;
321 	dsl_pool_t *dp = spa_get_dsl(spa);
322 	uint64_t min_bytes = zfs_dirty_data_max *
323 	    zfs_vdev_async_write_active_min_dirty_percent / 100;
324 	uint64_t max_bytes = zfs_dirty_data_max *
325 	    zfs_vdev_async_write_active_max_dirty_percent / 100;
326 
327 	/*
328 	 * Async writes may occur before the assignment of the spa's
329 	 * dsl_pool_t if a self-healing zio is issued prior to the
330 	 * completion of dmu_objset_open_impl().
331 	 */
332 	if (dp == NULL)
333 		return (zfs_vdev_async_write_max_active);
334 
335 	/*
336 	 * Sync tasks correspond to interactive user actions. To reduce the
337 	 * execution time of those actions we push data out as fast as possible.
338 	 */
339 	dirty = dp->dp_dirty_total;
340 	if (dirty > max_bytes || spa_has_pending_synctask(spa))
341 		return (zfs_vdev_async_write_max_active);
342 
343 	if (dirty < min_bytes)
344 		return (zfs_vdev_async_write_min_active);
345 
346 	/*
347 	 * linear interpolation:
348 	 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
349 	 * move right by min_bytes
350 	 * move up by min_writes
351 	 */
352 	writes = (dirty - min_bytes) *
353 	    (zfs_vdev_async_write_max_active -
354 	    zfs_vdev_async_write_min_active) /
355 	    (max_bytes - min_bytes) +
356 	    zfs_vdev_async_write_min_active;
357 	ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
358 	ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
359 	return (writes);
360 }
361 
362 static int
363 vdev_queue_class_max_active(spa_t *spa, vdev_queue_t *vq, zio_priority_t p)
364 {
365 	switch (p) {
366 	case ZIO_PRIORITY_SYNC_READ:
367 		return (zfs_vdev_sync_read_max_active);
368 	case ZIO_PRIORITY_SYNC_WRITE:
369 		return (zfs_vdev_sync_write_max_active);
370 	case ZIO_PRIORITY_ASYNC_READ:
371 		return (zfs_vdev_async_read_max_active);
372 	case ZIO_PRIORITY_ASYNC_WRITE:
373 		return (vdev_queue_max_async_writes(spa));
374 	case ZIO_PRIORITY_SCRUB:
375 		if (vq->vq_ia_active > 0) {
376 			return (MIN(vq->vq_nia_credit,
377 			    zfs_vdev_scrub_min_active));
378 		} else if (vq->vq_nia_credit < zfs_vdev_nia_delay)
379 			return (MAX(1, zfs_vdev_scrub_min_active));
380 		return (zfs_vdev_scrub_max_active);
381 	case ZIO_PRIORITY_REMOVAL:
382 		if (vq->vq_ia_active > 0) {
383 			return (MIN(vq->vq_nia_credit,
384 			    zfs_vdev_removal_min_active));
385 		} else if (vq->vq_nia_credit < zfs_vdev_nia_delay)
386 			return (MAX(1, zfs_vdev_removal_min_active));
387 		return (zfs_vdev_removal_max_active);
388 	case ZIO_PRIORITY_INITIALIZING:
389 		if (vq->vq_ia_active > 0) {
390 			return (MIN(vq->vq_nia_credit,
391 			    zfs_vdev_initializing_min_active));
392 		} else if (vq->vq_nia_credit < zfs_vdev_nia_delay)
393 			return (MAX(1, zfs_vdev_initializing_min_active));
394 		return (zfs_vdev_initializing_max_active);
395 	case ZIO_PRIORITY_TRIM:
396 		return (zfs_vdev_trim_max_active);
397 	case ZIO_PRIORITY_REBUILD:
398 		if (vq->vq_ia_active > 0) {
399 			return (MIN(vq->vq_nia_credit,
400 			    zfs_vdev_rebuild_min_active));
401 		} else if (vq->vq_nia_credit < zfs_vdev_nia_delay)
402 			return (MAX(1, zfs_vdev_rebuild_min_active));
403 		return (zfs_vdev_rebuild_max_active);
404 	default:
405 		panic("invalid priority %u", p);
406 		return (0);
407 	}
408 }
409 
410 /*
411  * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
412  * there is no eligible class.
413  */
414 static zio_priority_t
415 vdev_queue_class_to_issue(vdev_queue_t *vq)
416 {
417 	spa_t *spa = vq->vq_vdev->vdev_spa;
418 	zio_priority_t p, n;
419 
420 	if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
421 		return (ZIO_PRIORITY_NUM_QUEUEABLE);
422 
423 	/*
424 	 * Find a queue that has not reached its minimum # outstanding i/os.
425 	 * Do round-robin to reduce starvation due to zfs_vdev_max_active
426 	 * and vq_nia_credit limits.
427 	 */
428 	for (n = 0; n < ZIO_PRIORITY_NUM_QUEUEABLE; n++) {
429 		p = (vq->vq_last_prio + n + 1) % ZIO_PRIORITY_NUM_QUEUEABLE;
430 		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
431 		    vq->vq_class[p].vqc_active <
432 		    vdev_queue_class_min_active(vq, p)) {
433 			vq->vq_last_prio = p;
434 			return (p);
435 		}
436 	}
437 
438 	/*
439 	 * If we haven't found a queue, look for one that hasn't reached its
440 	 * maximum # outstanding i/os.
441 	 */
442 	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
443 		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
444 		    vq->vq_class[p].vqc_active <
445 		    vdev_queue_class_max_active(spa, vq, p)) {
446 			vq->vq_last_prio = p;
447 			return (p);
448 		}
449 	}
450 
451 	/* No eligible queued i/os */
452 	return (ZIO_PRIORITY_NUM_QUEUEABLE);
453 }
454 
455 void
456 vdev_queue_init(vdev_t *vd)
457 {
458 	vdev_queue_t *vq = &vd->vdev_queue;
459 	zio_priority_t p;
460 
461 	mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
462 	vq->vq_vdev = vd;
463 	taskq_init_ent(&vd->vdev_queue.vq_io_search.io_tqent);
464 
465 	avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
466 	    sizeof (zio_t), offsetof(struct zio, io_queue_node));
467 	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ),
468 	    vdev_queue_offset_compare, sizeof (zio_t),
469 	    offsetof(struct zio, io_offset_node));
470 	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE),
471 	    vdev_queue_offset_compare, sizeof (zio_t),
472 	    offsetof(struct zio, io_offset_node));
473 	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_TRIM),
474 	    vdev_queue_offset_compare, sizeof (zio_t),
475 	    offsetof(struct zio, io_offset_node));
476 
477 	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
478 		int (*compfn) (const void *, const void *);
479 
480 		/*
481 		 * The synchronous/trim i/o queues are dispatched in FIFO rather
482 		 * than LBA order. This provides more consistent latency for
483 		 * these i/os.
484 		 */
485 		if (p == ZIO_PRIORITY_SYNC_READ ||
486 		    p == ZIO_PRIORITY_SYNC_WRITE ||
487 		    p == ZIO_PRIORITY_TRIM) {
488 			compfn = vdev_queue_timestamp_compare;
489 		} else {
490 			compfn = vdev_queue_offset_compare;
491 		}
492 		avl_create(vdev_queue_class_tree(vq, p), compfn,
493 		    sizeof (zio_t), offsetof(struct zio, io_queue_node));
494 	}
495 
496 	vq->vq_last_offset = 0;
497 }
498 
499 void
500 vdev_queue_fini(vdev_t *vd)
501 {
502 	vdev_queue_t *vq = &vd->vdev_queue;
503 
504 	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
505 		avl_destroy(vdev_queue_class_tree(vq, p));
506 	avl_destroy(&vq->vq_active_tree);
507 	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ));
508 	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE));
509 	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_TRIM));
510 
511 	mutex_destroy(&vq->vq_lock);
512 }
513 
514 static void
515 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
516 {
517 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
518 	avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
519 	avl_add(vdev_queue_type_tree(vq, zio->io_type), zio);
520 }
521 
522 static void
523 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
524 {
525 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
526 	avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
527 	avl_remove(vdev_queue_type_tree(vq, zio->io_type), zio);
528 }
529 
530 static boolean_t
531 vdev_queue_is_interactive(zio_priority_t p)
532 {
533 	switch (p) {
534 	case ZIO_PRIORITY_SCRUB:
535 	case ZIO_PRIORITY_REMOVAL:
536 	case ZIO_PRIORITY_INITIALIZING:
537 	case ZIO_PRIORITY_REBUILD:
538 		return (B_FALSE);
539 	default:
540 		return (B_TRUE);
541 	}
542 }
543 
544 static void
545 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
546 {
547 	ASSERT(MUTEX_HELD(&vq->vq_lock));
548 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
549 	vq->vq_class[zio->io_priority].vqc_active++;
550 	if (vdev_queue_is_interactive(zio->io_priority)) {
551 		if (++vq->vq_ia_active == 1)
552 			vq->vq_nia_credit = 1;
553 	} else if (vq->vq_ia_active > 0) {
554 		vq->vq_nia_credit--;
555 	}
556 	avl_add(&vq->vq_active_tree, zio);
557 }
558 
559 static void
560 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
561 {
562 	ASSERT(MUTEX_HELD(&vq->vq_lock));
563 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
564 	vq->vq_class[zio->io_priority].vqc_active--;
565 	if (vdev_queue_is_interactive(zio->io_priority)) {
566 		if (--vq->vq_ia_active == 0)
567 			vq->vq_nia_credit = 0;
568 		else
569 			vq->vq_nia_credit = zfs_vdev_nia_credit;
570 	} else if (vq->vq_ia_active == 0)
571 		vq->vq_nia_credit++;
572 	avl_remove(&vq->vq_active_tree, zio);
573 }
574 
575 static void
576 vdev_queue_agg_io_done(zio_t *aio)
577 {
578 	abd_free(aio->io_abd);
579 }
580 
581 /*
582  * Compute the range spanned by two i/os, which is the endpoint of the last
583  * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
584  * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
585  * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
586  */
587 #define	IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
588 #define	IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
589 
590 /*
591  * Sufficiently adjacent io_offset's in ZIOs will be aggregated. We do this
592  * by creating a gang ABD from the adjacent ZIOs io_abd's. By using
593  * a gang ABD we avoid doing memory copies to and from the parent,
594  * child ZIOs. The gang ABD also accounts for gaps between adjacent
595  * io_offsets by simply getting the zero ABD for writes or allocating
596  * a new ABD for reads and placing them in the gang ABD as well.
597  */
598 static zio_t *
599 vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
600 {
601 	zio_t *first, *last, *aio, *dio, *mandatory, *nio;
602 	uint64_t maxgap = 0;
603 	uint64_t size;
604 	uint64_t limit;
605 	int maxblocksize;
606 	boolean_t stretch = B_FALSE;
607 	avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type);
608 	enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
609 	uint64_t next_offset;
610 	abd_t *abd;
611 
612 	maxblocksize = spa_maxblocksize(vq->vq_vdev->vdev_spa);
613 	if (vq->vq_vdev->vdev_nonrot)
614 		limit = zfs_vdev_aggregation_limit_non_rotating;
615 	else
616 		limit = zfs_vdev_aggregation_limit;
617 	limit = MAX(MIN(limit, maxblocksize), 0);
618 
619 	if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE || limit == 0)
620 		return (NULL);
621 
622 	/*
623 	 * While TRIM commands could be aggregated based on offset this
624 	 * behavior is disabled until it's determined to be beneficial.
625 	 */
626 	if (zio->io_type == ZIO_TYPE_TRIM && !zfs_vdev_aggregate_trim)
627 		return (NULL);
628 
629 	/*
630 	 * I/Os to distributed spares are directly dispatched to the dRAID
631 	 * leaf vdevs for aggregation.  See the comment at the end of the
632 	 * zio_vdev_io_start() function.
633 	 */
634 	ASSERT(vq->vq_vdev->vdev_ops != &vdev_draid_spare_ops);
635 
636 	first = last = zio;
637 
638 	if (zio->io_type == ZIO_TYPE_READ)
639 		maxgap = zfs_vdev_read_gap_limit;
640 
641 	/*
642 	 * We can aggregate I/Os that are sufficiently adjacent and of
643 	 * the same flavor, as expressed by the AGG_INHERIT flags.
644 	 * The latter requirement is necessary so that certain
645 	 * attributes of the I/O, such as whether it's a normal I/O
646 	 * or a scrub/resilver, can be preserved in the aggregate.
647 	 * We can include optional I/Os, but don't allow them
648 	 * to begin a range as they add no benefit in that situation.
649 	 */
650 
651 	/*
652 	 * We keep track of the last non-optional I/O.
653 	 */
654 	mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
655 
656 	/*
657 	 * Walk backwards through sufficiently contiguous I/Os
658 	 * recording the last non-optional I/O.
659 	 */
660 	while ((dio = AVL_PREV(t, first)) != NULL &&
661 	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
662 	    IO_SPAN(dio, last) <= limit &&
663 	    IO_GAP(dio, first) <= maxgap &&
664 	    dio->io_type == zio->io_type) {
665 		first = dio;
666 		if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
667 			mandatory = first;
668 	}
669 
670 	/*
671 	 * Skip any initial optional I/Os.
672 	 */
673 	while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
674 		first = AVL_NEXT(t, first);
675 		ASSERT(first != NULL);
676 	}
677 
678 
679 	/*
680 	 * Walk forward through sufficiently contiguous I/Os.
681 	 * The aggregation limit does not apply to optional i/os, so that
682 	 * we can issue contiguous writes even if they are larger than the
683 	 * aggregation limit.
684 	 */
685 	while ((dio = AVL_NEXT(t, last)) != NULL &&
686 	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
687 	    (IO_SPAN(first, dio) <= limit ||
688 	    (dio->io_flags & ZIO_FLAG_OPTIONAL)) &&
689 	    IO_SPAN(first, dio) <= maxblocksize &&
690 	    IO_GAP(last, dio) <= maxgap &&
691 	    dio->io_type == zio->io_type) {
692 		last = dio;
693 		if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
694 			mandatory = last;
695 	}
696 
697 	/*
698 	 * Now that we've established the range of the I/O aggregation
699 	 * we must decide what to do with trailing optional I/Os.
700 	 * For reads, there's nothing to do. While we are unable to
701 	 * aggregate further, it's possible that a trailing optional
702 	 * I/O would allow the underlying device to aggregate with
703 	 * subsequent I/Os. We must therefore determine if the next
704 	 * non-optional I/O is close enough to make aggregation
705 	 * worthwhile.
706 	 */
707 	if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
708 		zio_t *nio = last;
709 		while ((dio = AVL_NEXT(t, nio)) != NULL &&
710 		    IO_GAP(nio, dio) == 0 &&
711 		    IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
712 			nio = dio;
713 			if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
714 				stretch = B_TRUE;
715 				break;
716 			}
717 		}
718 	}
719 
720 	if (stretch) {
721 		/*
722 		 * We are going to include an optional io in our aggregated
723 		 * span, thus closing the write gap.  Only mandatory i/os can
724 		 * start aggregated spans, so make sure that the next i/o
725 		 * after our span is mandatory.
726 		 */
727 		dio = AVL_NEXT(t, last);
728 		dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
729 	} else {
730 		/* do not include the optional i/o */
731 		while (last != mandatory && last != first) {
732 			ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
733 			last = AVL_PREV(t, last);
734 			ASSERT(last != NULL);
735 		}
736 	}
737 
738 	if (first == last)
739 		return (NULL);
740 
741 	size = IO_SPAN(first, last);
742 	ASSERT3U(size, <=, maxblocksize);
743 
744 	abd = abd_alloc_gang();
745 	if (abd == NULL)
746 		return (NULL);
747 
748 	aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
749 	    abd, size, first->io_type, zio->io_priority,
750 	    flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
751 	    vdev_queue_agg_io_done, NULL);
752 	aio->io_timestamp = first->io_timestamp;
753 
754 	nio = first;
755 	next_offset = first->io_offset;
756 	do {
757 		dio = nio;
758 		nio = AVL_NEXT(t, dio);
759 		zio_add_child(dio, aio);
760 		vdev_queue_io_remove(vq, dio);
761 
762 		if (dio->io_offset != next_offset) {
763 			/* allocate a buffer for a read gap */
764 			ASSERT3U(dio->io_type, ==, ZIO_TYPE_READ);
765 			ASSERT3U(dio->io_offset, >, next_offset);
766 			abd = abd_alloc_for_io(
767 			    dio->io_offset - next_offset, B_TRUE);
768 			abd_gang_add(aio->io_abd, abd, B_TRUE);
769 		}
770 		if (dio->io_abd &&
771 		    (dio->io_size != abd_get_size(dio->io_abd))) {
772 			/* abd size not the same as IO size */
773 			ASSERT3U(abd_get_size(dio->io_abd), >, dio->io_size);
774 			abd = abd_get_offset_size(dio->io_abd, 0, dio->io_size);
775 			abd_gang_add(aio->io_abd, abd, B_TRUE);
776 		} else {
777 			if (dio->io_flags & ZIO_FLAG_NODATA) {
778 				/* allocate a buffer for a write gap */
779 				ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
780 				ASSERT3P(dio->io_abd, ==, NULL);
781 				abd_gang_add(aio->io_abd,
782 				    abd_get_zeros(dio->io_size), B_TRUE);
783 			} else {
784 				/*
785 				 * We pass B_FALSE to abd_gang_add()
786 				 * because we did not allocate a new
787 				 * ABD, so it is assumed the caller
788 				 * will free this ABD.
789 				 */
790 				abd_gang_add(aio->io_abd, dio->io_abd,
791 				    B_FALSE);
792 			}
793 		}
794 		next_offset = dio->io_offset + dio->io_size;
795 	} while (dio != last);
796 	ASSERT3U(abd_get_size(aio->io_abd), ==, aio->io_size);
797 
798 	/*
799 	 * Callers must call zio_vdev_io_bypass() and zio_execute() for
800 	 * aggregated (parent) I/Os so that we could avoid dropping the
801 	 * queue's lock here to avoid a deadlock that we could encounter
802 	 * due to lock order reversal between vq_lock and io_lock in
803 	 * zio_change_priority().
804 	 */
805 	return (aio);
806 }
807 
808 static zio_t *
809 vdev_queue_io_to_issue(vdev_queue_t *vq)
810 {
811 	zio_t *zio, *aio;
812 	zio_priority_t p;
813 	avl_index_t idx;
814 	avl_tree_t *tree;
815 
816 again:
817 	ASSERT(MUTEX_HELD(&vq->vq_lock));
818 
819 	p = vdev_queue_class_to_issue(vq);
820 
821 	if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
822 		/* No eligible queued i/os */
823 		return (NULL);
824 	}
825 
826 	/*
827 	 * For LBA-ordered queues (async / scrub / initializing), issue the
828 	 * i/o which follows the most recently issued i/o in LBA (offset) order.
829 	 *
830 	 * For FIFO queues (sync/trim), issue the i/o with the lowest timestamp.
831 	 */
832 	tree = vdev_queue_class_tree(vq, p);
833 	vq->vq_io_search.io_timestamp = 0;
834 	vq->vq_io_search.io_offset = vq->vq_last_offset - 1;
835 	VERIFY3P(avl_find(tree, &vq->vq_io_search, &idx), ==, NULL);
836 	zio = avl_nearest(tree, idx, AVL_AFTER);
837 	if (zio == NULL)
838 		zio = avl_first(tree);
839 	ASSERT3U(zio->io_priority, ==, p);
840 
841 	aio = vdev_queue_aggregate(vq, zio);
842 	if (aio != NULL) {
843 		zio = aio;
844 	} else {
845 		vdev_queue_io_remove(vq, zio);
846 
847 		/*
848 		 * If the I/O is or was optional and therefore has no data, we
849 		 * need to simply discard it. We need to drop the vdev queue's
850 		 * lock to avoid a deadlock that we could encounter since this
851 		 * I/O will complete immediately.
852 		 */
853 		if (zio->io_flags & ZIO_FLAG_NODATA) {
854 			mutex_exit(&vq->vq_lock);
855 			zio_vdev_io_bypass(zio);
856 			zio_execute(zio);
857 			mutex_enter(&vq->vq_lock);
858 			goto again;
859 		}
860 	}
861 
862 	vdev_queue_pending_add(vq, zio);
863 	vq->vq_last_offset = zio->io_offset + zio->io_size;
864 
865 	return (zio);
866 }
867 
868 zio_t *
869 vdev_queue_io(zio_t *zio)
870 {
871 	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
872 	zio_t *dio, *nio;
873 	zio_link_t *zl = NULL;
874 
875 	if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
876 		return (zio);
877 
878 	/*
879 	 * Children i/os inherent their parent's priority, which might
880 	 * not match the child's i/o type.  Fix it up here.
881 	 */
882 	if (zio->io_type == ZIO_TYPE_READ) {
883 		ASSERT(zio->io_priority != ZIO_PRIORITY_TRIM);
884 
885 		if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
886 		    zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
887 		    zio->io_priority != ZIO_PRIORITY_SCRUB &&
888 		    zio->io_priority != ZIO_PRIORITY_REMOVAL &&
889 		    zio->io_priority != ZIO_PRIORITY_INITIALIZING &&
890 		    zio->io_priority != ZIO_PRIORITY_REBUILD) {
891 			zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
892 		}
893 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
894 		ASSERT(zio->io_priority != ZIO_PRIORITY_TRIM);
895 
896 		if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
897 		    zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE &&
898 		    zio->io_priority != ZIO_PRIORITY_REMOVAL &&
899 		    zio->io_priority != ZIO_PRIORITY_INITIALIZING &&
900 		    zio->io_priority != ZIO_PRIORITY_REBUILD) {
901 			zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
902 		}
903 	} else {
904 		ASSERT(zio->io_type == ZIO_TYPE_TRIM);
905 		ASSERT(zio->io_priority == ZIO_PRIORITY_TRIM);
906 	}
907 
908 	zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
909 	zio->io_timestamp = gethrtime();
910 
911 	mutex_enter(&vq->vq_lock);
912 	vdev_queue_io_add(vq, zio);
913 	nio = vdev_queue_io_to_issue(vq);
914 	mutex_exit(&vq->vq_lock);
915 
916 	if (nio == NULL)
917 		return (NULL);
918 
919 	if (nio->io_done == vdev_queue_agg_io_done) {
920 		while ((dio = zio_walk_parents(nio, &zl)) != NULL) {
921 			ASSERT3U(dio->io_type, ==, nio->io_type);
922 			zio_vdev_io_bypass(dio);
923 			zio_execute(dio);
924 		}
925 		zio_nowait(nio);
926 		return (NULL);
927 	}
928 
929 	return (nio);
930 }
931 
932 void
933 vdev_queue_io_done(zio_t *zio)
934 {
935 	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
936 	zio_t *dio, *nio;
937 	zio_link_t *zl = NULL;
938 
939 	hrtime_t now = gethrtime();
940 	vq->vq_io_complete_ts = now;
941 	vq->vq_io_delta_ts = zio->io_delta = now - zio->io_timestamp;
942 
943 	mutex_enter(&vq->vq_lock);
944 	vdev_queue_pending_remove(vq, zio);
945 
946 	while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
947 		mutex_exit(&vq->vq_lock);
948 		if (nio->io_done == vdev_queue_agg_io_done) {
949 			while ((dio = zio_walk_parents(nio, &zl)) != NULL) {
950 				ASSERT3U(dio->io_type, ==, nio->io_type);
951 				zio_vdev_io_bypass(dio);
952 				zio_execute(dio);
953 			}
954 			zio_nowait(nio);
955 		} else {
956 			zio_vdev_io_reissue(nio);
957 			zio_execute(nio);
958 		}
959 		mutex_enter(&vq->vq_lock);
960 	}
961 
962 	mutex_exit(&vq->vq_lock);
963 }
964 
965 void
966 vdev_queue_change_io_priority(zio_t *zio, zio_priority_t priority)
967 {
968 	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
969 	avl_tree_t *tree;
970 
971 	/*
972 	 * ZIO_PRIORITY_NOW is used by the vdev cache code and the aggregate zio
973 	 * code to issue IOs without adding them to the vdev queue. In this
974 	 * case, the zio is already going to be issued as quickly as possible
975 	 * and so it doesn't need any reprioritization to help.
976 	 */
977 	if (zio->io_priority == ZIO_PRIORITY_NOW)
978 		return;
979 
980 	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
981 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
982 
983 	if (zio->io_type == ZIO_TYPE_READ) {
984 		if (priority != ZIO_PRIORITY_SYNC_READ &&
985 		    priority != ZIO_PRIORITY_ASYNC_READ &&
986 		    priority != ZIO_PRIORITY_SCRUB)
987 			priority = ZIO_PRIORITY_ASYNC_READ;
988 	} else {
989 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
990 		if (priority != ZIO_PRIORITY_SYNC_WRITE &&
991 		    priority != ZIO_PRIORITY_ASYNC_WRITE)
992 			priority = ZIO_PRIORITY_ASYNC_WRITE;
993 	}
994 
995 	mutex_enter(&vq->vq_lock);
996 
997 	/*
998 	 * If the zio is in none of the queues we can simply change
999 	 * the priority. If the zio is waiting to be submitted we must
1000 	 * remove it from the queue and re-insert it with the new priority.
1001 	 * Otherwise, the zio is currently active and we cannot change its
1002 	 * priority.
1003 	 */
1004 	tree = vdev_queue_class_tree(vq, zio->io_priority);
1005 	if (avl_find(tree, zio, NULL) == zio) {
1006 		avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
1007 		zio->io_priority = priority;
1008 		avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
1009 	} else if (avl_find(&vq->vq_active_tree, zio, NULL) != zio) {
1010 		zio->io_priority = priority;
1011 	}
1012 
1013 	mutex_exit(&vq->vq_lock);
1014 }
1015 
1016 /*
1017  * As these two methods are only used for load calculations we're not
1018  * concerned if we get an incorrect value on 32bit platforms due to lack of
1019  * vq_lock mutex use here, instead we prefer to keep it lock free for
1020  * performance.
1021  */
1022 int
1023 vdev_queue_length(vdev_t *vd)
1024 {
1025 	return (avl_numnodes(&vd->vdev_queue.vq_active_tree));
1026 }
1027 
1028 uint64_t
1029 vdev_queue_last_offset(vdev_t *vd)
1030 {
1031 	return (vd->vdev_queue.vq_last_offset);
1032 }
1033 
1034 /* BEGIN CSTYLED */
1035 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregation_limit, INT, ZMOD_RW,
1036 	"Max vdev I/O aggregation size");
1037 
1038 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregation_limit_non_rotating, INT, ZMOD_RW,
1039 	"Max vdev I/O aggregation size for non-rotating media");
1040 
1041 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregate_trim, INT, ZMOD_RW,
1042 	"Allow TRIM I/O to be aggregated");
1043 
1044 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, read_gap_limit, INT, ZMOD_RW,
1045 	"Aggregate read I/O over gap");
1046 
1047 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, write_gap_limit, INT, ZMOD_RW,
1048 	"Aggregate write I/O over gap");
1049 
1050 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_active, INT, ZMOD_RW,
1051 	"Maximum number of active I/Os per vdev");
1052 
1053 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_active_max_dirty_percent, INT, ZMOD_RW,
1054 	"Async write concurrency max threshold");
1055 
1056 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_active_min_dirty_percent, INT, ZMOD_RW,
1057 	"Async write concurrency min threshold");
1058 
1059 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_read_max_active, INT, ZMOD_RW,
1060 	"Max active async read I/Os per vdev");
1061 
1062 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_read_min_active, INT, ZMOD_RW,
1063 	"Min active async read I/Os per vdev");
1064 
1065 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_max_active, INT, ZMOD_RW,
1066 	"Max active async write I/Os per vdev");
1067 
1068 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_min_active, INT, ZMOD_RW,
1069 	"Min active async write I/Os per vdev");
1070 
1071 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, initializing_max_active, INT, ZMOD_RW,
1072 	"Max active initializing I/Os per vdev");
1073 
1074 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, initializing_min_active, INT, ZMOD_RW,
1075 	"Min active initializing I/Os per vdev");
1076 
1077 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, removal_max_active, INT, ZMOD_RW,
1078 	"Max active removal I/Os per vdev");
1079 
1080 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, removal_min_active, INT, ZMOD_RW,
1081 	"Min active removal I/Os per vdev");
1082 
1083 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, scrub_max_active, INT, ZMOD_RW,
1084 	"Max active scrub I/Os per vdev");
1085 
1086 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, scrub_min_active, INT, ZMOD_RW,
1087 	"Min active scrub I/Os per vdev");
1088 
1089 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_read_max_active, INT, ZMOD_RW,
1090 	"Max active sync read I/Os per vdev");
1091 
1092 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_read_min_active, INT, ZMOD_RW,
1093 	"Min active sync read I/Os per vdev");
1094 
1095 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_write_max_active, INT, ZMOD_RW,
1096 	"Max active sync write I/Os per vdev");
1097 
1098 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_write_min_active, INT, ZMOD_RW,
1099 	"Min active sync write I/Os per vdev");
1100 
1101 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, trim_max_active, INT, ZMOD_RW,
1102 	"Max active trim/discard I/Os per vdev");
1103 
1104 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, trim_min_active, INT, ZMOD_RW,
1105 	"Min active trim/discard I/Os per vdev");
1106 
1107 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, rebuild_max_active, INT, ZMOD_RW,
1108 	"Max active rebuild I/Os per vdev");
1109 
1110 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, rebuild_min_active, INT, ZMOD_RW,
1111 	"Min active rebuild I/Os per vdev");
1112 
1113 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, nia_credit, INT, ZMOD_RW,
1114 	"Number of non-interactive I/Os to allow in sequence");
1115 
1116 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, nia_delay, INT, ZMOD_RW,
1117 	"Number of non-interactive I/Os before _max_active");
1118 
1119 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, queue_depth_pct, INT, ZMOD_RW,
1120 	"Queue depth percentage for each top-level vdev");
1121 /* END CSTYLED */
1122