1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/vdev_impl.h> 32 #include <sys/spa_impl.h> 33 #include <sys/zio.h> 34 #include <sys/avl.h> 35 #include <sys/dsl_pool.h> 36 #include <sys/metaslab_impl.h> 37 #include <sys/spa.h> 38 #include <sys/spa_impl.h> 39 #include <sys/kstat.h> 40 #include <sys/abd.h> 41 42 /* 43 * ZFS I/O Scheduler 44 * --------------- 45 * 46 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The 47 * I/O scheduler determines when and in what order those operations are 48 * issued. The I/O scheduler divides operations into five I/O classes 49 * prioritized in the following order: sync read, sync write, async read, 50 * async write, and scrub/resilver. Each queue defines the minimum and 51 * maximum number of concurrent operations that may be issued to the device. 52 * In addition, the device has an aggregate maximum. Note that the sum of the 53 * per-queue minimums must not exceed the aggregate maximum. If the 54 * sum of the per-queue maximums exceeds the aggregate maximum, then the 55 * number of active i/os may reach zfs_vdev_max_active, in which case no 56 * further i/os will be issued regardless of whether all per-queue 57 * minimums have been met. 58 * 59 * For many physical devices, throughput increases with the number of 60 * concurrent operations, but latency typically suffers. Further, physical 61 * devices typically have a limit at which more concurrent operations have no 62 * effect on throughput or can actually cause it to decrease. 63 * 64 * The scheduler selects the next operation to issue by first looking for an 65 * I/O class whose minimum has not been satisfied. Once all are satisfied and 66 * the aggregate maximum has not been hit, the scheduler looks for classes 67 * whose maximum has not been satisfied. Iteration through the I/O classes is 68 * done in the order specified above. No further operations are issued if the 69 * aggregate maximum number of concurrent operations has been hit or if there 70 * are no operations queued for an I/O class that has not hit its maximum. 71 * Every time an i/o is queued or an operation completes, the I/O scheduler 72 * looks for new operations to issue. 73 * 74 * All I/O classes have a fixed maximum number of outstanding operations 75 * except for the async write class. Asynchronous writes represent the data 76 * that is committed to stable storage during the syncing stage for 77 * transaction groups (see txg.c). Transaction groups enter the syncing state 78 * periodically so the number of queued async writes will quickly burst up and 79 * then bleed down to zero. Rather than servicing them as quickly as possible, 80 * the I/O scheduler changes the maximum number of active async write i/os 81 * according to the amount of dirty data in the pool (see dsl_pool.c). Since 82 * both throughput and latency typically increase with the number of 83 * concurrent operations issued to physical devices, reducing the burstiness 84 * in the number of concurrent operations also stabilizes the response time of 85 * operations from other -- and in particular synchronous -- queues. In broad 86 * strokes, the I/O scheduler will issue more concurrent operations from the 87 * async write queue as there's more dirty data in the pool. 88 * 89 * Async Writes 90 * 91 * The number of concurrent operations issued for the async write I/O class 92 * follows a piece-wise linear function defined by a few adjustable points. 93 * 94 * | o---------| <-- zfs_vdev_async_write_max_active 95 * ^ | /^ | 96 * | | / | | 97 * active | / | | 98 * I/O | / | | 99 * count | / | | 100 * | / | | 101 * |------------o | | <-- zfs_vdev_async_write_min_active 102 * 0|____________^______|_________| 103 * 0% | | 100% of zfs_dirty_data_max 104 * | | 105 * | `-- zfs_vdev_async_write_active_max_dirty_percent 106 * `--------- zfs_vdev_async_write_active_min_dirty_percent 107 * 108 * Until the amount of dirty data exceeds a minimum percentage of the dirty 109 * data allowed in the pool, the I/O scheduler will limit the number of 110 * concurrent operations to the minimum. As that threshold is crossed, the 111 * number of concurrent operations issued increases linearly to the maximum at 112 * the specified maximum percentage of the dirty data allowed in the pool. 113 * 114 * Ideally, the amount of dirty data on a busy pool will stay in the sloped 115 * part of the function between zfs_vdev_async_write_active_min_dirty_percent 116 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the 117 * maximum percentage, this indicates that the rate of incoming data is 118 * greater than the rate that the backend storage can handle. In this case, we 119 * must further throttle incoming writes (see dmu_tx_delay() for details). 120 */ 121 122 /* 123 * The maximum number of i/os active to each device. Ideally, this will be >= 124 * the sum of each queue's max_active. 125 */ 126 uint32_t zfs_vdev_max_active = 1000; 127 128 /* 129 * Per-queue limits on the number of i/os active to each device. If the 130 * number of active i/os is < zfs_vdev_max_active, then the min_active comes 131 * into play. We will send min_active from each queue round-robin, and then 132 * send from queues in the order defined by zio_priority_t up to max_active. 133 * Some queues have additional mechanisms to limit number of active I/Os in 134 * addition to min_active and max_active, see below. 135 * 136 * In general, smaller max_active's will lead to lower latency of synchronous 137 * operations. Larger max_active's may lead to higher overall throughput, 138 * depending on underlying storage. 139 * 140 * The ratio of the queues' max_actives determines the balance of performance 141 * between reads, writes, and scrubs. E.g., increasing 142 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete 143 * more quickly, but reads and writes to have higher latency and lower 144 * throughput. 145 */ 146 uint32_t zfs_vdev_sync_read_min_active = 10; 147 uint32_t zfs_vdev_sync_read_max_active = 10; 148 uint32_t zfs_vdev_sync_write_min_active = 10; 149 uint32_t zfs_vdev_sync_write_max_active = 10; 150 uint32_t zfs_vdev_async_read_min_active = 1; 151 uint32_t zfs_vdev_async_read_max_active = 3; 152 uint32_t zfs_vdev_async_write_min_active = 2; 153 uint32_t zfs_vdev_async_write_max_active = 10; 154 uint32_t zfs_vdev_scrub_min_active = 1; 155 uint32_t zfs_vdev_scrub_max_active = 3; 156 uint32_t zfs_vdev_removal_min_active = 1; 157 uint32_t zfs_vdev_removal_max_active = 2; 158 uint32_t zfs_vdev_initializing_min_active = 1; 159 uint32_t zfs_vdev_initializing_max_active = 1; 160 uint32_t zfs_vdev_trim_min_active = 1; 161 uint32_t zfs_vdev_trim_max_active = 2; 162 uint32_t zfs_vdev_rebuild_min_active = 1; 163 uint32_t zfs_vdev_rebuild_max_active = 3; 164 165 /* 166 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent 167 * dirty data, use zfs_vdev_async_write_min_active. When it has more than 168 * zfs_vdev_async_write_active_max_dirty_percent, use 169 * zfs_vdev_async_write_max_active. The value is linearly interpolated 170 * between min and max. 171 */ 172 int zfs_vdev_async_write_active_min_dirty_percent = 30; 173 int zfs_vdev_async_write_active_max_dirty_percent = 60; 174 175 /* 176 * For non-interactive I/O (scrub, resilver, removal, initialize and rebuild), 177 * the number of concurrently-active I/O's is limited to *_min_active, unless 178 * the vdev is "idle". When there are no interactive I/Os active (sync or 179 * async), and zfs_vdev_nia_delay I/Os have completed since the last 180 * interactive I/O, then the vdev is considered to be "idle", and the number 181 * of concurrently-active non-interactive I/O's is increased to *_max_active. 182 */ 183 uint_t zfs_vdev_nia_delay = 5; 184 185 /* 186 * Some HDDs tend to prioritize sequential I/O so high that concurrent 187 * random I/O latency reaches several seconds. On some HDDs it happens 188 * even if sequential I/Os are submitted one at a time, and so setting 189 * *_max_active to 1 does not help. To prevent non-interactive I/Os, like 190 * scrub, from monopolizing the device no more than zfs_vdev_nia_credit 191 * I/Os can be sent while there are outstanding incomplete interactive 192 * I/Os. This enforced wait ensures the HDD services the interactive I/O 193 * within a reasonable amount of time. 194 */ 195 uint_t zfs_vdev_nia_credit = 5; 196 197 /* 198 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O. 199 * For read I/Os, we also aggregate across small adjacency gaps; for writes 200 * we include spans of optional I/Os to aid aggregation at the disk even when 201 * they aren't able to help us aggregate at this level. 202 */ 203 int zfs_vdev_aggregation_limit = 1 << 20; 204 int zfs_vdev_aggregation_limit_non_rotating = SPA_OLD_MAXBLOCKSIZE; 205 int zfs_vdev_read_gap_limit = 32 << 10; 206 int zfs_vdev_write_gap_limit = 4 << 10; 207 208 /* 209 * Define the queue depth percentage for each top-level. This percentage is 210 * used in conjunction with zfs_vdev_async_max_active to determine how many 211 * allocations a specific top-level vdev should handle. Once the queue depth 212 * reaches zfs_vdev_queue_depth_pct * zfs_vdev_async_write_max_active / 100 213 * then allocator will stop allocating blocks on that top-level device. 214 * The default kernel setting is 1000% which will yield 100 allocations per 215 * device. For userland testing, the default setting is 300% which equates 216 * to 30 allocations per device. 217 */ 218 #ifdef _KERNEL 219 int zfs_vdev_queue_depth_pct = 1000; 220 #else 221 int zfs_vdev_queue_depth_pct = 300; 222 #endif 223 224 /* 225 * When performing allocations for a given metaslab, we want to make sure that 226 * there are enough IOs to aggregate together to improve throughput. We want to 227 * ensure that there are at least 128k worth of IOs that can be aggregated, and 228 * we assume that the average allocation size is 4k, so we need the queue depth 229 * to be 32 per allocator to get good aggregation of sequential writes. 230 */ 231 int zfs_vdev_def_queue_depth = 32; 232 233 /* 234 * Allow TRIM I/Os to be aggregated. This should normally not be needed since 235 * TRIM I/O for extents up to zfs_trim_extent_bytes_max (128M) can be submitted 236 * by the TRIM code in zfs_trim.c. 237 */ 238 int zfs_vdev_aggregate_trim = 0; 239 240 static int 241 vdev_queue_offset_compare(const void *x1, const void *x2) 242 { 243 const zio_t *z1 = (const zio_t *)x1; 244 const zio_t *z2 = (const zio_t *)x2; 245 246 int cmp = TREE_CMP(z1->io_offset, z2->io_offset); 247 248 if (likely(cmp)) 249 return (cmp); 250 251 return (TREE_PCMP(z1, z2)); 252 } 253 254 static inline avl_tree_t * 255 vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p) 256 { 257 return (&vq->vq_class[p].vqc_queued_tree); 258 } 259 260 static inline avl_tree_t * 261 vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t) 262 { 263 ASSERT(t == ZIO_TYPE_READ || t == ZIO_TYPE_WRITE || t == ZIO_TYPE_TRIM); 264 if (t == ZIO_TYPE_READ) 265 return (&vq->vq_read_offset_tree); 266 else if (t == ZIO_TYPE_WRITE) 267 return (&vq->vq_write_offset_tree); 268 else 269 return (&vq->vq_trim_offset_tree); 270 } 271 272 static int 273 vdev_queue_timestamp_compare(const void *x1, const void *x2) 274 { 275 const zio_t *z1 = (const zio_t *)x1; 276 const zio_t *z2 = (const zio_t *)x2; 277 278 int cmp = TREE_CMP(z1->io_timestamp, z2->io_timestamp); 279 280 if (likely(cmp)) 281 return (cmp); 282 283 return (TREE_PCMP(z1, z2)); 284 } 285 286 static int 287 vdev_queue_class_min_active(vdev_queue_t *vq, zio_priority_t p) 288 { 289 switch (p) { 290 case ZIO_PRIORITY_SYNC_READ: 291 return (zfs_vdev_sync_read_min_active); 292 case ZIO_PRIORITY_SYNC_WRITE: 293 return (zfs_vdev_sync_write_min_active); 294 case ZIO_PRIORITY_ASYNC_READ: 295 return (zfs_vdev_async_read_min_active); 296 case ZIO_PRIORITY_ASYNC_WRITE: 297 return (zfs_vdev_async_write_min_active); 298 case ZIO_PRIORITY_SCRUB: 299 return (vq->vq_ia_active == 0 ? zfs_vdev_scrub_min_active : 300 MIN(vq->vq_nia_credit, zfs_vdev_scrub_min_active)); 301 case ZIO_PRIORITY_REMOVAL: 302 return (vq->vq_ia_active == 0 ? zfs_vdev_removal_min_active : 303 MIN(vq->vq_nia_credit, zfs_vdev_removal_min_active)); 304 case ZIO_PRIORITY_INITIALIZING: 305 return (vq->vq_ia_active == 0 ?zfs_vdev_initializing_min_active: 306 MIN(vq->vq_nia_credit, zfs_vdev_initializing_min_active)); 307 case ZIO_PRIORITY_TRIM: 308 return (zfs_vdev_trim_min_active); 309 case ZIO_PRIORITY_REBUILD: 310 return (vq->vq_ia_active == 0 ? zfs_vdev_rebuild_min_active : 311 MIN(vq->vq_nia_credit, zfs_vdev_rebuild_min_active)); 312 default: 313 panic("invalid priority %u", p); 314 return (0); 315 } 316 } 317 318 static int 319 vdev_queue_max_async_writes(spa_t *spa) 320 { 321 int writes; 322 uint64_t dirty = 0; 323 dsl_pool_t *dp = spa_get_dsl(spa); 324 uint64_t min_bytes = zfs_dirty_data_max * 325 zfs_vdev_async_write_active_min_dirty_percent / 100; 326 uint64_t max_bytes = zfs_dirty_data_max * 327 zfs_vdev_async_write_active_max_dirty_percent / 100; 328 329 /* 330 * Async writes may occur before the assignment of the spa's 331 * dsl_pool_t if a self-healing zio is issued prior to the 332 * completion of dmu_objset_open_impl(). 333 */ 334 if (dp == NULL) 335 return (zfs_vdev_async_write_max_active); 336 337 /* 338 * Sync tasks correspond to interactive user actions. To reduce the 339 * execution time of those actions we push data out as fast as possible. 340 */ 341 dirty = dp->dp_dirty_total; 342 if (dirty > max_bytes || spa_has_pending_synctask(spa)) 343 return (zfs_vdev_async_write_max_active); 344 345 if (dirty < min_bytes) 346 return (zfs_vdev_async_write_min_active); 347 348 /* 349 * linear interpolation: 350 * slope = (max_writes - min_writes) / (max_bytes - min_bytes) 351 * move right by min_bytes 352 * move up by min_writes 353 */ 354 writes = (dirty - min_bytes) * 355 (zfs_vdev_async_write_max_active - 356 zfs_vdev_async_write_min_active) / 357 (max_bytes - min_bytes) + 358 zfs_vdev_async_write_min_active; 359 ASSERT3U(writes, >=, zfs_vdev_async_write_min_active); 360 ASSERT3U(writes, <=, zfs_vdev_async_write_max_active); 361 return (writes); 362 } 363 364 static int 365 vdev_queue_class_max_active(spa_t *spa, vdev_queue_t *vq, zio_priority_t p) 366 { 367 switch (p) { 368 case ZIO_PRIORITY_SYNC_READ: 369 return (zfs_vdev_sync_read_max_active); 370 case ZIO_PRIORITY_SYNC_WRITE: 371 return (zfs_vdev_sync_write_max_active); 372 case ZIO_PRIORITY_ASYNC_READ: 373 return (zfs_vdev_async_read_max_active); 374 case ZIO_PRIORITY_ASYNC_WRITE: 375 return (vdev_queue_max_async_writes(spa)); 376 case ZIO_PRIORITY_SCRUB: 377 if (vq->vq_ia_active > 0) { 378 return (MIN(vq->vq_nia_credit, 379 zfs_vdev_scrub_min_active)); 380 } else if (vq->vq_nia_credit < zfs_vdev_nia_delay) 381 return (MAX(1, zfs_vdev_scrub_min_active)); 382 return (zfs_vdev_scrub_max_active); 383 case ZIO_PRIORITY_REMOVAL: 384 if (vq->vq_ia_active > 0) { 385 return (MIN(vq->vq_nia_credit, 386 zfs_vdev_removal_min_active)); 387 } else if (vq->vq_nia_credit < zfs_vdev_nia_delay) 388 return (MAX(1, zfs_vdev_removal_min_active)); 389 return (zfs_vdev_removal_max_active); 390 case ZIO_PRIORITY_INITIALIZING: 391 if (vq->vq_ia_active > 0) { 392 return (MIN(vq->vq_nia_credit, 393 zfs_vdev_initializing_min_active)); 394 } else if (vq->vq_nia_credit < zfs_vdev_nia_delay) 395 return (MAX(1, zfs_vdev_initializing_min_active)); 396 return (zfs_vdev_initializing_max_active); 397 case ZIO_PRIORITY_TRIM: 398 return (zfs_vdev_trim_max_active); 399 case ZIO_PRIORITY_REBUILD: 400 if (vq->vq_ia_active > 0) { 401 return (MIN(vq->vq_nia_credit, 402 zfs_vdev_rebuild_min_active)); 403 } else if (vq->vq_nia_credit < zfs_vdev_nia_delay) 404 return (MAX(1, zfs_vdev_rebuild_min_active)); 405 return (zfs_vdev_rebuild_max_active); 406 default: 407 panic("invalid priority %u", p); 408 return (0); 409 } 410 } 411 412 /* 413 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if 414 * there is no eligible class. 415 */ 416 static zio_priority_t 417 vdev_queue_class_to_issue(vdev_queue_t *vq) 418 { 419 spa_t *spa = vq->vq_vdev->vdev_spa; 420 zio_priority_t p, n; 421 422 if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active) 423 return (ZIO_PRIORITY_NUM_QUEUEABLE); 424 425 /* 426 * Find a queue that has not reached its minimum # outstanding i/os. 427 * Do round-robin to reduce starvation due to zfs_vdev_max_active 428 * and vq_nia_credit limits. 429 */ 430 for (n = 0; n < ZIO_PRIORITY_NUM_QUEUEABLE; n++) { 431 p = (vq->vq_last_prio + n + 1) % ZIO_PRIORITY_NUM_QUEUEABLE; 432 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 && 433 vq->vq_class[p].vqc_active < 434 vdev_queue_class_min_active(vq, p)) { 435 vq->vq_last_prio = p; 436 return (p); 437 } 438 } 439 440 /* 441 * If we haven't found a queue, look for one that hasn't reached its 442 * maximum # outstanding i/os. 443 */ 444 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 445 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 && 446 vq->vq_class[p].vqc_active < 447 vdev_queue_class_max_active(spa, vq, p)) { 448 vq->vq_last_prio = p; 449 return (p); 450 } 451 } 452 453 /* No eligible queued i/os */ 454 return (ZIO_PRIORITY_NUM_QUEUEABLE); 455 } 456 457 void 458 vdev_queue_init(vdev_t *vd) 459 { 460 vdev_queue_t *vq = &vd->vdev_queue; 461 zio_priority_t p; 462 463 mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL); 464 vq->vq_vdev = vd; 465 taskq_init_ent(&vd->vdev_queue.vq_io_search.io_tqent); 466 467 avl_create(&vq->vq_active_tree, vdev_queue_offset_compare, 468 sizeof (zio_t), offsetof(struct zio, io_queue_node)); 469 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ), 470 vdev_queue_offset_compare, sizeof (zio_t), 471 offsetof(struct zio, io_offset_node)); 472 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE), 473 vdev_queue_offset_compare, sizeof (zio_t), 474 offsetof(struct zio, io_offset_node)); 475 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_TRIM), 476 vdev_queue_offset_compare, sizeof (zio_t), 477 offsetof(struct zio, io_offset_node)); 478 479 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 480 int (*compfn) (const void *, const void *); 481 482 /* 483 * The synchronous/trim i/o queues are dispatched in FIFO rather 484 * than LBA order. This provides more consistent latency for 485 * these i/os. 486 */ 487 if (p == ZIO_PRIORITY_SYNC_READ || 488 p == ZIO_PRIORITY_SYNC_WRITE || 489 p == ZIO_PRIORITY_TRIM) { 490 compfn = vdev_queue_timestamp_compare; 491 } else { 492 compfn = vdev_queue_offset_compare; 493 } 494 avl_create(vdev_queue_class_tree(vq, p), compfn, 495 sizeof (zio_t), offsetof(struct zio, io_queue_node)); 496 } 497 498 vq->vq_last_offset = 0; 499 } 500 501 void 502 vdev_queue_fini(vdev_t *vd) 503 { 504 vdev_queue_t *vq = &vd->vdev_queue; 505 506 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) 507 avl_destroy(vdev_queue_class_tree(vq, p)); 508 avl_destroy(&vq->vq_active_tree); 509 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ)); 510 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE)); 511 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_TRIM)); 512 513 mutex_destroy(&vq->vq_lock); 514 } 515 516 static void 517 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio) 518 { 519 spa_t *spa = zio->io_spa; 520 spa_history_kstat_t *shk = &spa->spa_stats.io_history; 521 522 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 523 avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio); 524 avl_add(vdev_queue_type_tree(vq, zio->io_type), zio); 525 526 if (shk->kstat != NULL) { 527 mutex_enter(&shk->lock); 528 kstat_waitq_enter(shk->kstat->ks_data); 529 mutex_exit(&shk->lock); 530 } 531 } 532 533 static void 534 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio) 535 { 536 spa_t *spa = zio->io_spa; 537 spa_history_kstat_t *shk = &spa->spa_stats.io_history; 538 539 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 540 avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio); 541 avl_remove(vdev_queue_type_tree(vq, zio->io_type), zio); 542 543 if (shk->kstat != NULL) { 544 mutex_enter(&shk->lock); 545 kstat_waitq_exit(shk->kstat->ks_data); 546 mutex_exit(&shk->lock); 547 } 548 } 549 550 static boolean_t 551 vdev_queue_is_interactive(zio_priority_t p) 552 { 553 switch (p) { 554 case ZIO_PRIORITY_SCRUB: 555 case ZIO_PRIORITY_REMOVAL: 556 case ZIO_PRIORITY_INITIALIZING: 557 case ZIO_PRIORITY_REBUILD: 558 return (B_FALSE); 559 default: 560 return (B_TRUE); 561 } 562 } 563 564 static void 565 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio) 566 { 567 spa_t *spa = zio->io_spa; 568 spa_history_kstat_t *shk = &spa->spa_stats.io_history; 569 570 ASSERT(MUTEX_HELD(&vq->vq_lock)); 571 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 572 vq->vq_class[zio->io_priority].vqc_active++; 573 if (vdev_queue_is_interactive(zio->io_priority)) { 574 if (++vq->vq_ia_active == 1) 575 vq->vq_nia_credit = 1; 576 } else if (vq->vq_ia_active > 0) { 577 vq->vq_nia_credit--; 578 } 579 avl_add(&vq->vq_active_tree, zio); 580 581 if (shk->kstat != NULL) { 582 mutex_enter(&shk->lock); 583 kstat_runq_enter(shk->kstat->ks_data); 584 mutex_exit(&shk->lock); 585 } 586 } 587 588 static void 589 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio) 590 { 591 spa_t *spa = zio->io_spa; 592 spa_history_kstat_t *shk = &spa->spa_stats.io_history; 593 594 ASSERT(MUTEX_HELD(&vq->vq_lock)); 595 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 596 vq->vq_class[zio->io_priority].vqc_active--; 597 if (vdev_queue_is_interactive(zio->io_priority)) { 598 if (--vq->vq_ia_active == 0) 599 vq->vq_nia_credit = 0; 600 else 601 vq->vq_nia_credit = zfs_vdev_nia_credit; 602 } else if (vq->vq_ia_active == 0) 603 vq->vq_nia_credit++; 604 avl_remove(&vq->vq_active_tree, zio); 605 606 if (shk->kstat != NULL) { 607 kstat_io_t *ksio = shk->kstat->ks_data; 608 609 mutex_enter(&shk->lock); 610 kstat_runq_exit(ksio); 611 if (zio->io_type == ZIO_TYPE_READ) { 612 ksio->reads++; 613 ksio->nread += zio->io_size; 614 } else if (zio->io_type == ZIO_TYPE_WRITE) { 615 ksio->writes++; 616 ksio->nwritten += zio->io_size; 617 } 618 mutex_exit(&shk->lock); 619 } 620 } 621 622 static void 623 vdev_queue_agg_io_done(zio_t *aio) 624 { 625 abd_free(aio->io_abd); 626 } 627 628 /* 629 * Compute the range spanned by two i/os, which is the endpoint of the last 630 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset). 631 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio); 632 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0. 633 */ 634 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset) 635 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio)) 636 637 /* 638 * Sufficiently adjacent io_offset's in ZIOs will be aggregated. We do this 639 * by creating a gang ABD from the adjacent ZIOs io_abd's. By using 640 * a gang ABD we avoid doing memory copies to and from the parent, 641 * child ZIOs. The gang ABD also accounts for gaps between adjacent 642 * io_offsets by simply getting the zero ABD for writes or allocating 643 * a new ABD for reads and placing them in the gang ABD as well. 644 */ 645 static zio_t * 646 vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio) 647 { 648 zio_t *first, *last, *aio, *dio, *mandatory, *nio; 649 zio_link_t *zl = NULL; 650 uint64_t maxgap = 0; 651 uint64_t size; 652 uint64_t limit; 653 int maxblocksize; 654 boolean_t stretch = B_FALSE; 655 avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type); 656 enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT; 657 uint64_t next_offset; 658 abd_t *abd; 659 660 maxblocksize = spa_maxblocksize(vq->vq_vdev->vdev_spa); 661 if (vq->vq_vdev->vdev_nonrot) 662 limit = zfs_vdev_aggregation_limit_non_rotating; 663 else 664 limit = zfs_vdev_aggregation_limit; 665 limit = MAX(MIN(limit, maxblocksize), 0); 666 667 if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE || limit == 0) 668 return (NULL); 669 670 /* 671 * While TRIM commands could be aggregated based on offset this 672 * behavior is disabled until it's determined to be beneficial. 673 */ 674 if (zio->io_type == ZIO_TYPE_TRIM && !zfs_vdev_aggregate_trim) 675 return (NULL); 676 677 /* 678 * I/Os to distributed spares are directly dispatched to the dRAID 679 * leaf vdevs for aggregation. See the comment at the end of the 680 * zio_vdev_io_start() function. 681 */ 682 ASSERT(vq->vq_vdev->vdev_ops != &vdev_draid_spare_ops); 683 684 first = last = zio; 685 686 if (zio->io_type == ZIO_TYPE_READ) 687 maxgap = zfs_vdev_read_gap_limit; 688 689 /* 690 * We can aggregate I/Os that are sufficiently adjacent and of 691 * the same flavor, as expressed by the AGG_INHERIT flags. 692 * The latter requirement is necessary so that certain 693 * attributes of the I/O, such as whether it's a normal I/O 694 * or a scrub/resilver, can be preserved in the aggregate. 695 * We can include optional I/Os, but don't allow them 696 * to begin a range as they add no benefit in that situation. 697 */ 698 699 /* 700 * We keep track of the last non-optional I/O. 701 */ 702 mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first; 703 704 /* 705 * Walk backwards through sufficiently contiguous I/Os 706 * recording the last non-optional I/O. 707 */ 708 while ((dio = AVL_PREV(t, first)) != NULL && 709 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && 710 IO_SPAN(dio, last) <= limit && 711 IO_GAP(dio, first) <= maxgap && 712 dio->io_type == zio->io_type) { 713 first = dio; 714 if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL)) 715 mandatory = first; 716 } 717 718 /* 719 * Skip any initial optional I/Os. 720 */ 721 while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) { 722 first = AVL_NEXT(t, first); 723 ASSERT(first != NULL); 724 } 725 726 727 /* 728 * Walk forward through sufficiently contiguous I/Os. 729 * The aggregation limit does not apply to optional i/os, so that 730 * we can issue contiguous writes even if they are larger than the 731 * aggregation limit. 732 */ 733 while ((dio = AVL_NEXT(t, last)) != NULL && 734 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && 735 (IO_SPAN(first, dio) <= limit || 736 (dio->io_flags & ZIO_FLAG_OPTIONAL)) && 737 IO_SPAN(first, dio) <= maxblocksize && 738 IO_GAP(last, dio) <= maxgap && 739 dio->io_type == zio->io_type) { 740 last = dio; 741 if (!(last->io_flags & ZIO_FLAG_OPTIONAL)) 742 mandatory = last; 743 } 744 745 /* 746 * Now that we've established the range of the I/O aggregation 747 * we must decide what to do with trailing optional I/Os. 748 * For reads, there's nothing to do. While we are unable to 749 * aggregate further, it's possible that a trailing optional 750 * I/O would allow the underlying device to aggregate with 751 * subsequent I/Os. We must therefore determine if the next 752 * non-optional I/O is close enough to make aggregation 753 * worthwhile. 754 */ 755 if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) { 756 zio_t *nio = last; 757 while ((dio = AVL_NEXT(t, nio)) != NULL && 758 IO_GAP(nio, dio) == 0 && 759 IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) { 760 nio = dio; 761 if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) { 762 stretch = B_TRUE; 763 break; 764 } 765 } 766 } 767 768 if (stretch) { 769 /* 770 * We are going to include an optional io in our aggregated 771 * span, thus closing the write gap. Only mandatory i/os can 772 * start aggregated spans, so make sure that the next i/o 773 * after our span is mandatory. 774 */ 775 dio = AVL_NEXT(t, last); 776 dio->io_flags &= ~ZIO_FLAG_OPTIONAL; 777 } else { 778 /* do not include the optional i/o */ 779 while (last != mandatory && last != first) { 780 ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL); 781 last = AVL_PREV(t, last); 782 ASSERT(last != NULL); 783 } 784 } 785 786 if (first == last) 787 return (NULL); 788 789 size = IO_SPAN(first, last); 790 ASSERT3U(size, <=, maxblocksize); 791 792 abd = abd_alloc_gang_abd(); 793 if (abd == NULL) 794 return (NULL); 795 796 aio = zio_vdev_delegated_io(first->io_vd, first->io_offset, 797 abd, size, first->io_type, zio->io_priority, 798 flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE, 799 vdev_queue_agg_io_done, NULL); 800 aio->io_timestamp = first->io_timestamp; 801 802 nio = first; 803 next_offset = first->io_offset; 804 do { 805 dio = nio; 806 nio = AVL_NEXT(t, dio); 807 zio_add_child(dio, aio); 808 vdev_queue_io_remove(vq, dio); 809 810 if (dio->io_offset != next_offset) { 811 /* allocate a buffer for a read gap */ 812 ASSERT3U(dio->io_type, ==, ZIO_TYPE_READ); 813 ASSERT3U(dio->io_offset, >, next_offset); 814 abd = abd_alloc_for_io( 815 dio->io_offset - next_offset, B_TRUE); 816 abd_gang_add(aio->io_abd, abd, B_TRUE); 817 } 818 if (dio->io_abd && 819 (dio->io_size != abd_get_size(dio->io_abd))) { 820 /* abd size not the same as IO size */ 821 ASSERT3U(abd_get_size(dio->io_abd), >, dio->io_size); 822 abd = abd_get_offset_size(dio->io_abd, 0, dio->io_size); 823 abd_gang_add(aio->io_abd, abd, B_TRUE); 824 } else { 825 if (dio->io_flags & ZIO_FLAG_NODATA) { 826 /* allocate a buffer for a write gap */ 827 ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE); 828 ASSERT3P(dio->io_abd, ==, NULL); 829 abd_gang_add(aio->io_abd, 830 abd_get_zeros(dio->io_size), B_TRUE); 831 } else { 832 /* 833 * We pass B_FALSE to abd_gang_add() 834 * because we did not allocate a new 835 * ABD, so it is assumed the caller 836 * will free this ABD. 837 */ 838 abd_gang_add(aio->io_abd, dio->io_abd, 839 B_FALSE); 840 } 841 } 842 next_offset = dio->io_offset + dio->io_size; 843 } while (dio != last); 844 ASSERT3U(abd_get_size(aio->io_abd), ==, aio->io_size); 845 846 /* 847 * We need to drop the vdev queue's lock during zio_execute() to 848 * avoid a deadlock that we could encounter due to lock order 849 * reversal between vq_lock and io_lock in zio_change_priority(). 850 */ 851 mutex_exit(&vq->vq_lock); 852 while ((dio = zio_walk_parents(aio, &zl)) != NULL) { 853 ASSERT3U(dio->io_type, ==, aio->io_type); 854 855 zio_vdev_io_bypass(dio); 856 zio_execute(dio); 857 } 858 mutex_enter(&vq->vq_lock); 859 860 return (aio); 861 } 862 863 static zio_t * 864 vdev_queue_io_to_issue(vdev_queue_t *vq) 865 { 866 zio_t *zio, *aio; 867 zio_priority_t p; 868 avl_index_t idx; 869 avl_tree_t *tree; 870 871 again: 872 ASSERT(MUTEX_HELD(&vq->vq_lock)); 873 874 p = vdev_queue_class_to_issue(vq); 875 876 if (p == ZIO_PRIORITY_NUM_QUEUEABLE) { 877 /* No eligible queued i/os */ 878 return (NULL); 879 } 880 881 /* 882 * For LBA-ordered queues (async / scrub / initializing), issue the 883 * i/o which follows the most recently issued i/o in LBA (offset) order. 884 * 885 * For FIFO queues (sync/trim), issue the i/o with the lowest timestamp. 886 */ 887 tree = vdev_queue_class_tree(vq, p); 888 vq->vq_io_search.io_timestamp = 0; 889 vq->vq_io_search.io_offset = vq->vq_last_offset - 1; 890 VERIFY3P(avl_find(tree, &vq->vq_io_search, &idx), ==, NULL); 891 zio = avl_nearest(tree, idx, AVL_AFTER); 892 if (zio == NULL) 893 zio = avl_first(tree); 894 ASSERT3U(zio->io_priority, ==, p); 895 896 aio = vdev_queue_aggregate(vq, zio); 897 if (aio != NULL) 898 zio = aio; 899 else 900 vdev_queue_io_remove(vq, zio); 901 902 /* 903 * If the I/O is or was optional and therefore has no data, we need to 904 * simply discard it. We need to drop the vdev queue's lock to avoid a 905 * deadlock that we could encounter since this I/O will complete 906 * immediately. 907 */ 908 if (zio->io_flags & ZIO_FLAG_NODATA) { 909 mutex_exit(&vq->vq_lock); 910 zio_vdev_io_bypass(zio); 911 zio_execute(zio); 912 mutex_enter(&vq->vq_lock); 913 goto again; 914 } 915 916 vdev_queue_pending_add(vq, zio); 917 vq->vq_last_offset = zio->io_offset + zio->io_size; 918 919 return (zio); 920 } 921 922 zio_t * 923 vdev_queue_io(zio_t *zio) 924 { 925 vdev_queue_t *vq = &zio->io_vd->vdev_queue; 926 zio_t *nio; 927 928 if (zio->io_flags & ZIO_FLAG_DONT_QUEUE) 929 return (zio); 930 931 /* 932 * Children i/os inherent their parent's priority, which might 933 * not match the child's i/o type. Fix it up here. 934 */ 935 if (zio->io_type == ZIO_TYPE_READ) { 936 ASSERT(zio->io_priority != ZIO_PRIORITY_TRIM); 937 938 if (zio->io_priority != ZIO_PRIORITY_SYNC_READ && 939 zio->io_priority != ZIO_PRIORITY_ASYNC_READ && 940 zio->io_priority != ZIO_PRIORITY_SCRUB && 941 zio->io_priority != ZIO_PRIORITY_REMOVAL && 942 zio->io_priority != ZIO_PRIORITY_INITIALIZING && 943 zio->io_priority != ZIO_PRIORITY_REBUILD) { 944 zio->io_priority = ZIO_PRIORITY_ASYNC_READ; 945 } 946 } else if (zio->io_type == ZIO_TYPE_WRITE) { 947 ASSERT(zio->io_priority != ZIO_PRIORITY_TRIM); 948 949 if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE && 950 zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE && 951 zio->io_priority != ZIO_PRIORITY_REMOVAL && 952 zio->io_priority != ZIO_PRIORITY_INITIALIZING && 953 zio->io_priority != ZIO_PRIORITY_REBUILD) { 954 zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE; 955 } 956 } else { 957 ASSERT(zio->io_type == ZIO_TYPE_TRIM); 958 ASSERT(zio->io_priority == ZIO_PRIORITY_TRIM); 959 } 960 961 zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE; 962 963 mutex_enter(&vq->vq_lock); 964 zio->io_timestamp = gethrtime(); 965 vdev_queue_io_add(vq, zio); 966 nio = vdev_queue_io_to_issue(vq); 967 mutex_exit(&vq->vq_lock); 968 969 if (nio == NULL) 970 return (NULL); 971 972 if (nio->io_done == vdev_queue_agg_io_done) { 973 zio_nowait(nio); 974 return (NULL); 975 } 976 977 return (nio); 978 } 979 980 void 981 vdev_queue_io_done(zio_t *zio) 982 { 983 vdev_queue_t *vq = &zio->io_vd->vdev_queue; 984 zio_t *nio; 985 986 mutex_enter(&vq->vq_lock); 987 988 vdev_queue_pending_remove(vq, zio); 989 990 zio->io_delta = gethrtime() - zio->io_timestamp; 991 vq->vq_io_complete_ts = gethrtime(); 992 vq->vq_io_delta_ts = vq->vq_io_complete_ts - zio->io_timestamp; 993 994 while ((nio = vdev_queue_io_to_issue(vq)) != NULL) { 995 mutex_exit(&vq->vq_lock); 996 if (nio->io_done == vdev_queue_agg_io_done) { 997 zio_nowait(nio); 998 } else { 999 zio_vdev_io_reissue(nio); 1000 zio_execute(nio); 1001 } 1002 mutex_enter(&vq->vq_lock); 1003 } 1004 1005 mutex_exit(&vq->vq_lock); 1006 } 1007 1008 void 1009 vdev_queue_change_io_priority(zio_t *zio, zio_priority_t priority) 1010 { 1011 vdev_queue_t *vq = &zio->io_vd->vdev_queue; 1012 avl_tree_t *tree; 1013 1014 /* 1015 * ZIO_PRIORITY_NOW is used by the vdev cache code and the aggregate zio 1016 * code to issue IOs without adding them to the vdev queue. In this 1017 * case, the zio is already going to be issued as quickly as possible 1018 * and so it doesn't need any reprioritization to help. 1019 */ 1020 if (zio->io_priority == ZIO_PRIORITY_NOW) 1021 return; 1022 1023 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 1024 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 1025 1026 if (zio->io_type == ZIO_TYPE_READ) { 1027 if (priority != ZIO_PRIORITY_SYNC_READ && 1028 priority != ZIO_PRIORITY_ASYNC_READ && 1029 priority != ZIO_PRIORITY_SCRUB) 1030 priority = ZIO_PRIORITY_ASYNC_READ; 1031 } else { 1032 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 1033 if (priority != ZIO_PRIORITY_SYNC_WRITE && 1034 priority != ZIO_PRIORITY_ASYNC_WRITE) 1035 priority = ZIO_PRIORITY_ASYNC_WRITE; 1036 } 1037 1038 mutex_enter(&vq->vq_lock); 1039 1040 /* 1041 * If the zio is in none of the queues we can simply change 1042 * the priority. If the zio is waiting to be submitted we must 1043 * remove it from the queue and re-insert it with the new priority. 1044 * Otherwise, the zio is currently active and we cannot change its 1045 * priority. 1046 */ 1047 tree = vdev_queue_class_tree(vq, zio->io_priority); 1048 if (avl_find(tree, zio, NULL) == zio) { 1049 avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio); 1050 zio->io_priority = priority; 1051 avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio); 1052 } else if (avl_find(&vq->vq_active_tree, zio, NULL) != zio) { 1053 zio->io_priority = priority; 1054 } 1055 1056 mutex_exit(&vq->vq_lock); 1057 } 1058 1059 /* 1060 * As these two methods are only used for load calculations we're not 1061 * concerned if we get an incorrect value on 32bit platforms due to lack of 1062 * vq_lock mutex use here, instead we prefer to keep it lock free for 1063 * performance. 1064 */ 1065 int 1066 vdev_queue_length(vdev_t *vd) 1067 { 1068 return (avl_numnodes(&vd->vdev_queue.vq_active_tree)); 1069 } 1070 1071 uint64_t 1072 vdev_queue_last_offset(vdev_t *vd) 1073 { 1074 return (vd->vdev_queue.vq_last_offset); 1075 } 1076 1077 /* BEGIN CSTYLED */ 1078 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregation_limit, INT, ZMOD_RW, 1079 "Max vdev I/O aggregation size"); 1080 1081 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregation_limit_non_rotating, INT, ZMOD_RW, 1082 "Max vdev I/O aggregation size for non-rotating media"); 1083 1084 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregate_trim, INT, ZMOD_RW, 1085 "Allow TRIM I/O to be aggregated"); 1086 1087 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, read_gap_limit, INT, ZMOD_RW, 1088 "Aggregate read I/O over gap"); 1089 1090 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, write_gap_limit, INT, ZMOD_RW, 1091 "Aggregate write I/O over gap"); 1092 1093 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_active, INT, ZMOD_RW, 1094 "Maximum number of active I/Os per vdev"); 1095 1096 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_active_max_dirty_percent, INT, ZMOD_RW, 1097 "Async write concurrency max threshold"); 1098 1099 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_active_min_dirty_percent, INT, ZMOD_RW, 1100 "Async write concurrency min threshold"); 1101 1102 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_read_max_active, INT, ZMOD_RW, 1103 "Max active async read I/Os per vdev"); 1104 1105 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_read_min_active, INT, ZMOD_RW, 1106 "Min active async read I/Os per vdev"); 1107 1108 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_max_active, INT, ZMOD_RW, 1109 "Max active async write I/Os per vdev"); 1110 1111 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_min_active, INT, ZMOD_RW, 1112 "Min active async write I/Os per vdev"); 1113 1114 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, initializing_max_active, INT, ZMOD_RW, 1115 "Max active initializing I/Os per vdev"); 1116 1117 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, initializing_min_active, INT, ZMOD_RW, 1118 "Min active initializing I/Os per vdev"); 1119 1120 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, removal_max_active, INT, ZMOD_RW, 1121 "Max active removal I/Os per vdev"); 1122 1123 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, removal_min_active, INT, ZMOD_RW, 1124 "Min active removal I/Os per vdev"); 1125 1126 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, scrub_max_active, INT, ZMOD_RW, 1127 "Max active scrub I/Os per vdev"); 1128 1129 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, scrub_min_active, INT, ZMOD_RW, 1130 "Min active scrub I/Os per vdev"); 1131 1132 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_read_max_active, INT, ZMOD_RW, 1133 "Max active sync read I/Os per vdev"); 1134 1135 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_read_min_active, INT, ZMOD_RW, 1136 "Min active sync read I/Os per vdev"); 1137 1138 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_write_max_active, INT, ZMOD_RW, 1139 "Max active sync write I/Os per vdev"); 1140 1141 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_write_min_active, INT, ZMOD_RW, 1142 "Min active sync write I/Os per vdev"); 1143 1144 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, trim_max_active, INT, ZMOD_RW, 1145 "Max active trim/discard I/Os per vdev"); 1146 1147 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, trim_min_active, INT, ZMOD_RW, 1148 "Min active trim/discard I/Os per vdev"); 1149 1150 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, rebuild_max_active, INT, ZMOD_RW, 1151 "Max active rebuild I/Os per vdev"); 1152 1153 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, rebuild_min_active, INT, ZMOD_RW, 1154 "Min active rebuild I/Os per vdev"); 1155 1156 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, nia_credit, INT, ZMOD_RW, 1157 "Number of non-interactive I/Os to allow in sequence"); 1158 1159 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, nia_delay, INT, ZMOD_RW, 1160 "Number of non-interactive I/Os before _max_active"); 1161 1162 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, queue_depth_pct, INT, ZMOD_RW, 1163 "Queue depth percentage for each top-level vdev"); 1164 /* END CSTYLED */ 1165