1eda14cbcSMatt Macy /* 2eda14cbcSMatt Macy * CDDL HEADER START 3eda14cbcSMatt Macy * 4eda14cbcSMatt Macy * The contents of this file are subject to the terms of the 5eda14cbcSMatt Macy * Common Development and Distribution License (the "License"). 6eda14cbcSMatt Macy * You may not use this file except in compliance with the License. 7eda14cbcSMatt Macy * 8eda14cbcSMatt Macy * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9eda14cbcSMatt Macy * or http://www.opensolaris.org/os/licensing. 10eda14cbcSMatt Macy * See the License for the specific language governing permissions 11eda14cbcSMatt Macy * and limitations under the License. 12eda14cbcSMatt Macy * 13eda14cbcSMatt Macy * When distributing Covered Code, include this CDDL HEADER in each 14eda14cbcSMatt Macy * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15eda14cbcSMatt Macy * If applicable, add the following below this CDDL HEADER, with the 16eda14cbcSMatt Macy * fields enclosed by brackets "[]" replaced with your own identifying 17eda14cbcSMatt Macy * information: Portions Copyright [yyyy] [name of copyright owner] 18eda14cbcSMatt Macy * 19eda14cbcSMatt Macy * CDDL HEADER END 20eda14cbcSMatt Macy */ 21eda14cbcSMatt Macy /* 22eda14cbcSMatt Macy * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23eda14cbcSMatt Macy * Use is subject to license terms. 24eda14cbcSMatt Macy */ 25eda14cbcSMatt Macy 26eda14cbcSMatt Macy /* 27eda14cbcSMatt Macy * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 28eda14cbcSMatt Macy */ 29eda14cbcSMatt Macy 30eda14cbcSMatt Macy #include <sys/zfs_context.h> 31eda14cbcSMatt Macy #include <sys/vdev_impl.h> 32eda14cbcSMatt Macy #include <sys/spa_impl.h> 33eda14cbcSMatt Macy #include <sys/zio.h> 34eda14cbcSMatt Macy #include <sys/avl.h> 35eda14cbcSMatt Macy #include <sys/dsl_pool.h> 36eda14cbcSMatt Macy #include <sys/metaslab_impl.h> 37eda14cbcSMatt Macy #include <sys/spa.h> 38eda14cbcSMatt Macy #include <sys/abd.h> 39eda14cbcSMatt Macy 40eda14cbcSMatt Macy /* 41eda14cbcSMatt Macy * ZFS I/O Scheduler 42eda14cbcSMatt Macy * --------------- 43eda14cbcSMatt Macy * 44eda14cbcSMatt Macy * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The 45eda14cbcSMatt Macy * I/O scheduler determines when and in what order those operations are 46eda14cbcSMatt Macy * issued. The I/O scheduler divides operations into five I/O classes 47eda14cbcSMatt Macy * prioritized in the following order: sync read, sync write, async read, 48eda14cbcSMatt Macy * async write, and scrub/resilver. Each queue defines the minimum and 49eda14cbcSMatt Macy * maximum number of concurrent operations that may be issued to the device. 50eda14cbcSMatt Macy * In addition, the device has an aggregate maximum. Note that the sum of the 51eda14cbcSMatt Macy * per-queue minimums must not exceed the aggregate maximum. If the 52eda14cbcSMatt Macy * sum of the per-queue maximums exceeds the aggregate maximum, then the 53eda14cbcSMatt Macy * number of active i/os may reach zfs_vdev_max_active, in which case no 54eda14cbcSMatt Macy * further i/os will be issued regardless of whether all per-queue 55eda14cbcSMatt Macy * minimums have been met. 56eda14cbcSMatt Macy * 57eda14cbcSMatt Macy * For many physical devices, throughput increases with the number of 58eda14cbcSMatt Macy * concurrent operations, but latency typically suffers. Further, physical 59eda14cbcSMatt Macy * devices typically have a limit at which more concurrent operations have no 60eda14cbcSMatt Macy * effect on throughput or can actually cause it to decrease. 61eda14cbcSMatt Macy * 62eda14cbcSMatt Macy * The scheduler selects the next operation to issue by first looking for an 63eda14cbcSMatt Macy * I/O class whose minimum has not been satisfied. Once all are satisfied and 64eda14cbcSMatt Macy * the aggregate maximum has not been hit, the scheduler looks for classes 65eda14cbcSMatt Macy * whose maximum has not been satisfied. Iteration through the I/O classes is 66eda14cbcSMatt Macy * done in the order specified above. No further operations are issued if the 67eda14cbcSMatt Macy * aggregate maximum number of concurrent operations has been hit or if there 68eda14cbcSMatt Macy * are no operations queued for an I/O class that has not hit its maximum. 69eda14cbcSMatt Macy * Every time an i/o is queued or an operation completes, the I/O scheduler 70eda14cbcSMatt Macy * looks for new operations to issue. 71eda14cbcSMatt Macy * 72eda14cbcSMatt Macy * All I/O classes have a fixed maximum number of outstanding operations 73eda14cbcSMatt Macy * except for the async write class. Asynchronous writes represent the data 74eda14cbcSMatt Macy * that is committed to stable storage during the syncing stage for 75eda14cbcSMatt Macy * transaction groups (see txg.c). Transaction groups enter the syncing state 76eda14cbcSMatt Macy * periodically so the number of queued async writes will quickly burst up and 77eda14cbcSMatt Macy * then bleed down to zero. Rather than servicing them as quickly as possible, 78eda14cbcSMatt Macy * the I/O scheduler changes the maximum number of active async write i/os 79eda14cbcSMatt Macy * according to the amount of dirty data in the pool (see dsl_pool.c). Since 80eda14cbcSMatt Macy * both throughput and latency typically increase with the number of 81eda14cbcSMatt Macy * concurrent operations issued to physical devices, reducing the burstiness 82eda14cbcSMatt Macy * in the number of concurrent operations also stabilizes the response time of 83eda14cbcSMatt Macy * operations from other -- and in particular synchronous -- queues. In broad 84eda14cbcSMatt Macy * strokes, the I/O scheduler will issue more concurrent operations from the 85eda14cbcSMatt Macy * async write queue as there's more dirty data in the pool. 86eda14cbcSMatt Macy * 87eda14cbcSMatt Macy * Async Writes 88eda14cbcSMatt Macy * 89eda14cbcSMatt Macy * The number of concurrent operations issued for the async write I/O class 90eda14cbcSMatt Macy * follows a piece-wise linear function defined by a few adjustable points. 91eda14cbcSMatt Macy * 92eda14cbcSMatt Macy * | o---------| <-- zfs_vdev_async_write_max_active 93eda14cbcSMatt Macy * ^ | /^ | 94eda14cbcSMatt Macy * | | / | | 95eda14cbcSMatt Macy * active | / | | 96eda14cbcSMatt Macy * I/O | / | | 97eda14cbcSMatt Macy * count | / | | 98eda14cbcSMatt Macy * | / | | 99eda14cbcSMatt Macy * |------------o | | <-- zfs_vdev_async_write_min_active 100eda14cbcSMatt Macy * 0|____________^______|_________| 101eda14cbcSMatt Macy * 0% | | 100% of zfs_dirty_data_max 102eda14cbcSMatt Macy * | | 103eda14cbcSMatt Macy * | `-- zfs_vdev_async_write_active_max_dirty_percent 104eda14cbcSMatt Macy * `--------- zfs_vdev_async_write_active_min_dirty_percent 105eda14cbcSMatt Macy * 106eda14cbcSMatt Macy * Until the amount of dirty data exceeds a minimum percentage of the dirty 107eda14cbcSMatt Macy * data allowed in the pool, the I/O scheduler will limit the number of 108eda14cbcSMatt Macy * concurrent operations to the minimum. As that threshold is crossed, the 109eda14cbcSMatt Macy * number of concurrent operations issued increases linearly to the maximum at 110eda14cbcSMatt Macy * the specified maximum percentage of the dirty data allowed in the pool. 111eda14cbcSMatt Macy * 112eda14cbcSMatt Macy * Ideally, the amount of dirty data on a busy pool will stay in the sloped 113eda14cbcSMatt Macy * part of the function between zfs_vdev_async_write_active_min_dirty_percent 114eda14cbcSMatt Macy * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the 115eda14cbcSMatt Macy * maximum percentage, this indicates that the rate of incoming data is 116eda14cbcSMatt Macy * greater than the rate that the backend storage can handle. In this case, we 117eda14cbcSMatt Macy * must further throttle incoming writes (see dmu_tx_delay() for details). 118eda14cbcSMatt Macy */ 119eda14cbcSMatt Macy 120eda14cbcSMatt Macy /* 121eda14cbcSMatt Macy * The maximum number of i/os active to each device. Ideally, this will be >= 1227877fdebSMatt Macy * the sum of each queue's max_active. 123eda14cbcSMatt Macy */ 124eda14cbcSMatt Macy uint32_t zfs_vdev_max_active = 1000; 125eda14cbcSMatt Macy 126eda14cbcSMatt Macy /* 127eda14cbcSMatt Macy * Per-queue limits on the number of i/os active to each device. If the 128eda14cbcSMatt Macy * number of active i/os is < zfs_vdev_max_active, then the min_active comes 1297877fdebSMatt Macy * into play. We will send min_active from each queue round-robin, and then 1307877fdebSMatt Macy * send from queues in the order defined by zio_priority_t up to max_active. 1317877fdebSMatt Macy * Some queues have additional mechanisms to limit number of active I/Os in 1327877fdebSMatt Macy * addition to min_active and max_active, see below. 133eda14cbcSMatt Macy * 134eda14cbcSMatt Macy * In general, smaller max_active's will lead to lower latency of synchronous 135eda14cbcSMatt Macy * operations. Larger max_active's may lead to higher overall throughput, 136eda14cbcSMatt Macy * depending on underlying storage. 137eda14cbcSMatt Macy * 138eda14cbcSMatt Macy * The ratio of the queues' max_actives determines the balance of performance 139eda14cbcSMatt Macy * between reads, writes, and scrubs. E.g., increasing 140eda14cbcSMatt Macy * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete 141eda14cbcSMatt Macy * more quickly, but reads and writes to have higher latency and lower 142eda14cbcSMatt Macy * throughput. 143eda14cbcSMatt Macy */ 144eda14cbcSMatt Macy uint32_t zfs_vdev_sync_read_min_active = 10; 145eda14cbcSMatt Macy uint32_t zfs_vdev_sync_read_max_active = 10; 146eda14cbcSMatt Macy uint32_t zfs_vdev_sync_write_min_active = 10; 147eda14cbcSMatt Macy uint32_t zfs_vdev_sync_write_max_active = 10; 148eda14cbcSMatt Macy uint32_t zfs_vdev_async_read_min_active = 1; 149eda14cbcSMatt Macy uint32_t zfs_vdev_async_read_max_active = 3; 150eda14cbcSMatt Macy uint32_t zfs_vdev_async_write_min_active = 2; 151eda14cbcSMatt Macy uint32_t zfs_vdev_async_write_max_active = 10; 152eda14cbcSMatt Macy uint32_t zfs_vdev_scrub_min_active = 1; 1537877fdebSMatt Macy uint32_t zfs_vdev_scrub_max_active = 3; 154eda14cbcSMatt Macy uint32_t zfs_vdev_removal_min_active = 1; 155eda14cbcSMatt Macy uint32_t zfs_vdev_removal_max_active = 2; 156eda14cbcSMatt Macy uint32_t zfs_vdev_initializing_min_active = 1; 157eda14cbcSMatt Macy uint32_t zfs_vdev_initializing_max_active = 1; 158eda14cbcSMatt Macy uint32_t zfs_vdev_trim_min_active = 1; 159eda14cbcSMatt Macy uint32_t zfs_vdev_trim_max_active = 2; 160eda14cbcSMatt Macy uint32_t zfs_vdev_rebuild_min_active = 1; 161eda14cbcSMatt Macy uint32_t zfs_vdev_rebuild_max_active = 3; 162eda14cbcSMatt Macy 163eda14cbcSMatt Macy /* 164eda14cbcSMatt Macy * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent 165eda14cbcSMatt Macy * dirty data, use zfs_vdev_async_write_min_active. When it has more than 166eda14cbcSMatt Macy * zfs_vdev_async_write_active_max_dirty_percent, use 167eda14cbcSMatt Macy * zfs_vdev_async_write_max_active. The value is linearly interpolated 168eda14cbcSMatt Macy * between min and max. 169eda14cbcSMatt Macy */ 170eda14cbcSMatt Macy int zfs_vdev_async_write_active_min_dirty_percent = 30; 171eda14cbcSMatt Macy int zfs_vdev_async_write_active_max_dirty_percent = 60; 172eda14cbcSMatt Macy 173eda14cbcSMatt Macy /* 1747877fdebSMatt Macy * For non-interactive I/O (scrub, resilver, removal, initialize and rebuild), 1757877fdebSMatt Macy * the number of concurrently-active I/O's is limited to *_min_active, unless 1767877fdebSMatt Macy * the vdev is "idle". When there are no interactive I/Os active (sync or 1777877fdebSMatt Macy * async), and zfs_vdev_nia_delay I/Os have completed since the last 1787877fdebSMatt Macy * interactive I/O, then the vdev is considered to be "idle", and the number 1797877fdebSMatt Macy * of concurrently-active non-interactive I/O's is increased to *_max_active. 1807877fdebSMatt Macy */ 1817877fdebSMatt Macy uint_t zfs_vdev_nia_delay = 5; 1827877fdebSMatt Macy 1837877fdebSMatt Macy /* 1847877fdebSMatt Macy * Some HDDs tend to prioritize sequential I/O so high that concurrent 1857877fdebSMatt Macy * random I/O latency reaches several seconds. On some HDDs it happens 1867877fdebSMatt Macy * even if sequential I/Os are submitted one at a time, and so setting 1877877fdebSMatt Macy * *_max_active to 1 does not help. To prevent non-interactive I/Os, like 1887877fdebSMatt Macy * scrub, from monopolizing the device no more than zfs_vdev_nia_credit 1897877fdebSMatt Macy * I/Os can be sent while there are outstanding incomplete interactive 1907877fdebSMatt Macy * I/Os. This enforced wait ensures the HDD services the interactive I/O 1917877fdebSMatt Macy * within a reasonable amount of time. 1927877fdebSMatt Macy */ 1937877fdebSMatt Macy uint_t zfs_vdev_nia_credit = 5; 1947877fdebSMatt Macy 1957877fdebSMatt Macy /* 196eda14cbcSMatt Macy * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O. 197eda14cbcSMatt Macy * For read I/Os, we also aggregate across small adjacency gaps; for writes 198eda14cbcSMatt Macy * we include spans of optional I/Os to aid aggregation at the disk even when 199eda14cbcSMatt Macy * they aren't able to help us aggregate at this level. 200eda14cbcSMatt Macy */ 201eda14cbcSMatt Macy int zfs_vdev_aggregation_limit = 1 << 20; 202eda14cbcSMatt Macy int zfs_vdev_aggregation_limit_non_rotating = SPA_OLD_MAXBLOCKSIZE; 203eda14cbcSMatt Macy int zfs_vdev_read_gap_limit = 32 << 10; 204eda14cbcSMatt Macy int zfs_vdev_write_gap_limit = 4 << 10; 205eda14cbcSMatt Macy 206eda14cbcSMatt Macy /* 207eda14cbcSMatt Macy * Define the queue depth percentage for each top-level. This percentage is 208eda14cbcSMatt Macy * used in conjunction with zfs_vdev_async_max_active to determine how many 209eda14cbcSMatt Macy * allocations a specific top-level vdev should handle. Once the queue depth 210eda14cbcSMatt Macy * reaches zfs_vdev_queue_depth_pct * zfs_vdev_async_write_max_active / 100 211eda14cbcSMatt Macy * then allocator will stop allocating blocks on that top-level device. 212eda14cbcSMatt Macy * The default kernel setting is 1000% which will yield 100 allocations per 213eda14cbcSMatt Macy * device. For userland testing, the default setting is 300% which equates 214eda14cbcSMatt Macy * to 30 allocations per device. 215eda14cbcSMatt Macy */ 216eda14cbcSMatt Macy #ifdef _KERNEL 217eda14cbcSMatt Macy int zfs_vdev_queue_depth_pct = 1000; 218eda14cbcSMatt Macy #else 219eda14cbcSMatt Macy int zfs_vdev_queue_depth_pct = 300; 220eda14cbcSMatt Macy #endif 221eda14cbcSMatt Macy 222eda14cbcSMatt Macy /* 223eda14cbcSMatt Macy * When performing allocations for a given metaslab, we want to make sure that 224eda14cbcSMatt Macy * there are enough IOs to aggregate together to improve throughput. We want to 225eda14cbcSMatt Macy * ensure that there are at least 128k worth of IOs that can be aggregated, and 226eda14cbcSMatt Macy * we assume that the average allocation size is 4k, so we need the queue depth 227eda14cbcSMatt Macy * to be 32 per allocator to get good aggregation of sequential writes. 228eda14cbcSMatt Macy */ 229eda14cbcSMatt Macy int zfs_vdev_def_queue_depth = 32; 230eda14cbcSMatt Macy 231eda14cbcSMatt Macy /* 232eda14cbcSMatt Macy * Allow TRIM I/Os to be aggregated. This should normally not be needed since 233eda14cbcSMatt Macy * TRIM I/O for extents up to zfs_trim_extent_bytes_max (128M) can be submitted 234eda14cbcSMatt Macy * by the TRIM code in zfs_trim.c. 235eda14cbcSMatt Macy */ 236eda14cbcSMatt Macy int zfs_vdev_aggregate_trim = 0; 237eda14cbcSMatt Macy 238eda14cbcSMatt Macy static int 239eda14cbcSMatt Macy vdev_queue_offset_compare(const void *x1, const void *x2) 240eda14cbcSMatt Macy { 241eda14cbcSMatt Macy const zio_t *z1 = (const zio_t *)x1; 242eda14cbcSMatt Macy const zio_t *z2 = (const zio_t *)x2; 243eda14cbcSMatt Macy 244eda14cbcSMatt Macy int cmp = TREE_CMP(z1->io_offset, z2->io_offset); 245eda14cbcSMatt Macy 246eda14cbcSMatt Macy if (likely(cmp)) 247eda14cbcSMatt Macy return (cmp); 248eda14cbcSMatt Macy 249eda14cbcSMatt Macy return (TREE_PCMP(z1, z2)); 250eda14cbcSMatt Macy } 251eda14cbcSMatt Macy 252eda14cbcSMatt Macy static inline avl_tree_t * 253eda14cbcSMatt Macy vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p) 254eda14cbcSMatt Macy { 255eda14cbcSMatt Macy return (&vq->vq_class[p].vqc_queued_tree); 256eda14cbcSMatt Macy } 257eda14cbcSMatt Macy 258eda14cbcSMatt Macy static inline avl_tree_t * 259eda14cbcSMatt Macy vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t) 260eda14cbcSMatt Macy { 261eda14cbcSMatt Macy ASSERT(t == ZIO_TYPE_READ || t == ZIO_TYPE_WRITE || t == ZIO_TYPE_TRIM); 262eda14cbcSMatt Macy if (t == ZIO_TYPE_READ) 263eda14cbcSMatt Macy return (&vq->vq_read_offset_tree); 264eda14cbcSMatt Macy else if (t == ZIO_TYPE_WRITE) 265eda14cbcSMatt Macy return (&vq->vq_write_offset_tree); 266eda14cbcSMatt Macy else 267eda14cbcSMatt Macy return (&vq->vq_trim_offset_tree); 268eda14cbcSMatt Macy } 269eda14cbcSMatt Macy 270eda14cbcSMatt Macy static int 271eda14cbcSMatt Macy vdev_queue_timestamp_compare(const void *x1, const void *x2) 272eda14cbcSMatt Macy { 273eda14cbcSMatt Macy const zio_t *z1 = (const zio_t *)x1; 274eda14cbcSMatt Macy const zio_t *z2 = (const zio_t *)x2; 275eda14cbcSMatt Macy 276eda14cbcSMatt Macy int cmp = TREE_CMP(z1->io_timestamp, z2->io_timestamp); 277eda14cbcSMatt Macy 278eda14cbcSMatt Macy if (likely(cmp)) 279eda14cbcSMatt Macy return (cmp); 280eda14cbcSMatt Macy 281eda14cbcSMatt Macy return (TREE_PCMP(z1, z2)); 282eda14cbcSMatt Macy } 283eda14cbcSMatt Macy 284eda14cbcSMatt Macy static int 2857877fdebSMatt Macy vdev_queue_class_min_active(vdev_queue_t *vq, zio_priority_t p) 286eda14cbcSMatt Macy { 287eda14cbcSMatt Macy switch (p) { 288eda14cbcSMatt Macy case ZIO_PRIORITY_SYNC_READ: 289eda14cbcSMatt Macy return (zfs_vdev_sync_read_min_active); 290eda14cbcSMatt Macy case ZIO_PRIORITY_SYNC_WRITE: 291eda14cbcSMatt Macy return (zfs_vdev_sync_write_min_active); 292eda14cbcSMatt Macy case ZIO_PRIORITY_ASYNC_READ: 293eda14cbcSMatt Macy return (zfs_vdev_async_read_min_active); 294eda14cbcSMatt Macy case ZIO_PRIORITY_ASYNC_WRITE: 295eda14cbcSMatt Macy return (zfs_vdev_async_write_min_active); 296eda14cbcSMatt Macy case ZIO_PRIORITY_SCRUB: 2977877fdebSMatt Macy return (vq->vq_ia_active == 0 ? zfs_vdev_scrub_min_active : 2987877fdebSMatt Macy MIN(vq->vq_nia_credit, zfs_vdev_scrub_min_active)); 299eda14cbcSMatt Macy case ZIO_PRIORITY_REMOVAL: 3007877fdebSMatt Macy return (vq->vq_ia_active == 0 ? zfs_vdev_removal_min_active : 3017877fdebSMatt Macy MIN(vq->vq_nia_credit, zfs_vdev_removal_min_active)); 302eda14cbcSMatt Macy case ZIO_PRIORITY_INITIALIZING: 3037877fdebSMatt Macy return (vq->vq_ia_active == 0 ?zfs_vdev_initializing_min_active: 3047877fdebSMatt Macy MIN(vq->vq_nia_credit, zfs_vdev_initializing_min_active)); 305eda14cbcSMatt Macy case ZIO_PRIORITY_TRIM: 306eda14cbcSMatt Macy return (zfs_vdev_trim_min_active); 307eda14cbcSMatt Macy case ZIO_PRIORITY_REBUILD: 3087877fdebSMatt Macy return (vq->vq_ia_active == 0 ? zfs_vdev_rebuild_min_active : 3097877fdebSMatt Macy MIN(vq->vq_nia_credit, zfs_vdev_rebuild_min_active)); 310eda14cbcSMatt Macy default: 311eda14cbcSMatt Macy panic("invalid priority %u", p); 312eda14cbcSMatt Macy return (0); 313eda14cbcSMatt Macy } 314eda14cbcSMatt Macy } 315eda14cbcSMatt Macy 316eda14cbcSMatt Macy static int 317eda14cbcSMatt Macy vdev_queue_max_async_writes(spa_t *spa) 318eda14cbcSMatt Macy { 319eda14cbcSMatt Macy int writes; 320eda14cbcSMatt Macy uint64_t dirty = 0; 321eda14cbcSMatt Macy dsl_pool_t *dp = spa_get_dsl(spa); 322eda14cbcSMatt Macy uint64_t min_bytes = zfs_dirty_data_max * 323eda14cbcSMatt Macy zfs_vdev_async_write_active_min_dirty_percent / 100; 324eda14cbcSMatt Macy uint64_t max_bytes = zfs_dirty_data_max * 325eda14cbcSMatt Macy zfs_vdev_async_write_active_max_dirty_percent / 100; 326eda14cbcSMatt Macy 327eda14cbcSMatt Macy /* 328eda14cbcSMatt Macy * Async writes may occur before the assignment of the spa's 329eda14cbcSMatt Macy * dsl_pool_t if a self-healing zio is issued prior to the 330eda14cbcSMatt Macy * completion of dmu_objset_open_impl(). 331eda14cbcSMatt Macy */ 332eda14cbcSMatt Macy if (dp == NULL) 333eda14cbcSMatt Macy return (zfs_vdev_async_write_max_active); 334eda14cbcSMatt Macy 335eda14cbcSMatt Macy /* 336eda14cbcSMatt Macy * Sync tasks correspond to interactive user actions. To reduce the 337eda14cbcSMatt Macy * execution time of those actions we push data out as fast as possible. 338eda14cbcSMatt Macy */ 3397877fdebSMatt Macy dirty = dp->dp_dirty_total; 3407877fdebSMatt Macy if (dirty > max_bytes || spa_has_pending_synctask(spa)) 341eda14cbcSMatt Macy return (zfs_vdev_async_write_max_active); 342eda14cbcSMatt Macy 343eda14cbcSMatt Macy if (dirty < min_bytes) 344eda14cbcSMatt Macy return (zfs_vdev_async_write_min_active); 345eda14cbcSMatt Macy 346eda14cbcSMatt Macy /* 347eda14cbcSMatt Macy * linear interpolation: 348eda14cbcSMatt Macy * slope = (max_writes - min_writes) / (max_bytes - min_bytes) 349eda14cbcSMatt Macy * move right by min_bytes 350eda14cbcSMatt Macy * move up by min_writes 351eda14cbcSMatt Macy */ 352eda14cbcSMatt Macy writes = (dirty - min_bytes) * 353eda14cbcSMatt Macy (zfs_vdev_async_write_max_active - 354eda14cbcSMatt Macy zfs_vdev_async_write_min_active) / 355eda14cbcSMatt Macy (max_bytes - min_bytes) + 356eda14cbcSMatt Macy zfs_vdev_async_write_min_active; 357eda14cbcSMatt Macy ASSERT3U(writes, >=, zfs_vdev_async_write_min_active); 358eda14cbcSMatt Macy ASSERT3U(writes, <=, zfs_vdev_async_write_max_active); 359eda14cbcSMatt Macy return (writes); 360eda14cbcSMatt Macy } 361eda14cbcSMatt Macy 362eda14cbcSMatt Macy static int 3637877fdebSMatt Macy vdev_queue_class_max_active(spa_t *spa, vdev_queue_t *vq, zio_priority_t p) 364eda14cbcSMatt Macy { 365eda14cbcSMatt Macy switch (p) { 366eda14cbcSMatt Macy case ZIO_PRIORITY_SYNC_READ: 367eda14cbcSMatt Macy return (zfs_vdev_sync_read_max_active); 368eda14cbcSMatt Macy case ZIO_PRIORITY_SYNC_WRITE: 369eda14cbcSMatt Macy return (zfs_vdev_sync_write_max_active); 370eda14cbcSMatt Macy case ZIO_PRIORITY_ASYNC_READ: 371eda14cbcSMatt Macy return (zfs_vdev_async_read_max_active); 372eda14cbcSMatt Macy case ZIO_PRIORITY_ASYNC_WRITE: 373eda14cbcSMatt Macy return (vdev_queue_max_async_writes(spa)); 374eda14cbcSMatt Macy case ZIO_PRIORITY_SCRUB: 3757877fdebSMatt Macy if (vq->vq_ia_active > 0) { 3767877fdebSMatt Macy return (MIN(vq->vq_nia_credit, 3777877fdebSMatt Macy zfs_vdev_scrub_min_active)); 3787877fdebSMatt Macy } else if (vq->vq_nia_credit < zfs_vdev_nia_delay) 3797877fdebSMatt Macy return (MAX(1, zfs_vdev_scrub_min_active)); 380eda14cbcSMatt Macy return (zfs_vdev_scrub_max_active); 381eda14cbcSMatt Macy case ZIO_PRIORITY_REMOVAL: 3827877fdebSMatt Macy if (vq->vq_ia_active > 0) { 3837877fdebSMatt Macy return (MIN(vq->vq_nia_credit, 3847877fdebSMatt Macy zfs_vdev_removal_min_active)); 3857877fdebSMatt Macy } else if (vq->vq_nia_credit < zfs_vdev_nia_delay) 3867877fdebSMatt Macy return (MAX(1, zfs_vdev_removal_min_active)); 387eda14cbcSMatt Macy return (zfs_vdev_removal_max_active); 388eda14cbcSMatt Macy case ZIO_PRIORITY_INITIALIZING: 3897877fdebSMatt Macy if (vq->vq_ia_active > 0) { 3907877fdebSMatt Macy return (MIN(vq->vq_nia_credit, 3917877fdebSMatt Macy zfs_vdev_initializing_min_active)); 3927877fdebSMatt Macy } else if (vq->vq_nia_credit < zfs_vdev_nia_delay) 3937877fdebSMatt Macy return (MAX(1, zfs_vdev_initializing_min_active)); 394eda14cbcSMatt Macy return (zfs_vdev_initializing_max_active); 395eda14cbcSMatt Macy case ZIO_PRIORITY_TRIM: 396eda14cbcSMatt Macy return (zfs_vdev_trim_max_active); 397eda14cbcSMatt Macy case ZIO_PRIORITY_REBUILD: 3987877fdebSMatt Macy if (vq->vq_ia_active > 0) { 3997877fdebSMatt Macy return (MIN(vq->vq_nia_credit, 4007877fdebSMatt Macy zfs_vdev_rebuild_min_active)); 4017877fdebSMatt Macy } else if (vq->vq_nia_credit < zfs_vdev_nia_delay) 4027877fdebSMatt Macy return (MAX(1, zfs_vdev_rebuild_min_active)); 403eda14cbcSMatt Macy return (zfs_vdev_rebuild_max_active); 404eda14cbcSMatt Macy default: 405eda14cbcSMatt Macy panic("invalid priority %u", p); 406eda14cbcSMatt Macy return (0); 407eda14cbcSMatt Macy } 408eda14cbcSMatt Macy } 409eda14cbcSMatt Macy 410eda14cbcSMatt Macy /* 411eda14cbcSMatt Macy * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if 412eda14cbcSMatt Macy * there is no eligible class. 413eda14cbcSMatt Macy */ 414eda14cbcSMatt Macy static zio_priority_t 415eda14cbcSMatt Macy vdev_queue_class_to_issue(vdev_queue_t *vq) 416eda14cbcSMatt Macy { 417eda14cbcSMatt Macy spa_t *spa = vq->vq_vdev->vdev_spa; 4187877fdebSMatt Macy zio_priority_t p, n; 419eda14cbcSMatt Macy 420eda14cbcSMatt Macy if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active) 421eda14cbcSMatt Macy return (ZIO_PRIORITY_NUM_QUEUEABLE); 422eda14cbcSMatt Macy 4237877fdebSMatt Macy /* 4247877fdebSMatt Macy * Find a queue that has not reached its minimum # outstanding i/os. 4257877fdebSMatt Macy * Do round-robin to reduce starvation due to zfs_vdev_max_active 4267877fdebSMatt Macy * and vq_nia_credit limits. 4277877fdebSMatt Macy */ 4287877fdebSMatt Macy for (n = 0; n < ZIO_PRIORITY_NUM_QUEUEABLE; n++) { 4297877fdebSMatt Macy p = (vq->vq_last_prio + n + 1) % ZIO_PRIORITY_NUM_QUEUEABLE; 430eda14cbcSMatt Macy if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 && 431eda14cbcSMatt Macy vq->vq_class[p].vqc_active < 4327877fdebSMatt Macy vdev_queue_class_min_active(vq, p)) { 4337877fdebSMatt Macy vq->vq_last_prio = p; 434eda14cbcSMatt Macy return (p); 435eda14cbcSMatt Macy } 4367877fdebSMatt Macy } 437eda14cbcSMatt Macy 438eda14cbcSMatt Macy /* 439eda14cbcSMatt Macy * If we haven't found a queue, look for one that hasn't reached its 440eda14cbcSMatt Macy * maximum # outstanding i/os. 441eda14cbcSMatt Macy */ 442eda14cbcSMatt Macy for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 443eda14cbcSMatt Macy if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 && 444eda14cbcSMatt Macy vq->vq_class[p].vqc_active < 4457877fdebSMatt Macy vdev_queue_class_max_active(spa, vq, p)) { 4467877fdebSMatt Macy vq->vq_last_prio = p; 447eda14cbcSMatt Macy return (p); 448eda14cbcSMatt Macy } 4497877fdebSMatt Macy } 450eda14cbcSMatt Macy 451eda14cbcSMatt Macy /* No eligible queued i/os */ 452eda14cbcSMatt Macy return (ZIO_PRIORITY_NUM_QUEUEABLE); 453eda14cbcSMatt Macy } 454eda14cbcSMatt Macy 455eda14cbcSMatt Macy void 456eda14cbcSMatt Macy vdev_queue_init(vdev_t *vd) 457eda14cbcSMatt Macy { 458eda14cbcSMatt Macy vdev_queue_t *vq = &vd->vdev_queue; 459eda14cbcSMatt Macy zio_priority_t p; 460eda14cbcSMatt Macy 461eda14cbcSMatt Macy mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL); 462eda14cbcSMatt Macy vq->vq_vdev = vd; 463eda14cbcSMatt Macy taskq_init_ent(&vd->vdev_queue.vq_io_search.io_tqent); 464eda14cbcSMatt Macy 465eda14cbcSMatt Macy avl_create(&vq->vq_active_tree, vdev_queue_offset_compare, 466eda14cbcSMatt Macy sizeof (zio_t), offsetof(struct zio, io_queue_node)); 467eda14cbcSMatt Macy avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ), 468eda14cbcSMatt Macy vdev_queue_offset_compare, sizeof (zio_t), 469eda14cbcSMatt Macy offsetof(struct zio, io_offset_node)); 470eda14cbcSMatt Macy avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE), 471eda14cbcSMatt Macy vdev_queue_offset_compare, sizeof (zio_t), 472eda14cbcSMatt Macy offsetof(struct zio, io_offset_node)); 473eda14cbcSMatt Macy avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_TRIM), 474eda14cbcSMatt Macy vdev_queue_offset_compare, sizeof (zio_t), 475eda14cbcSMatt Macy offsetof(struct zio, io_offset_node)); 476eda14cbcSMatt Macy 477eda14cbcSMatt Macy for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 478eda14cbcSMatt Macy int (*compfn) (const void *, const void *); 479eda14cbcSMatt Macy 480eda14cbcSMatt Macy /* 481eda14cbcSMatt Macy * The synchronous/trim i/o queues are dispatched in FIFO rather 482eda14cbcSMatt Macy * than LBA order. This provides more consistent latency for 483eda14cbcSMatt Macy * these i/os. 484eda14cbcSMatt Macy */ 485eda14cbcSMatt Macy if (p == ZIO_PRIORITY_SYNC_READ || 486eda14cbcSMatt Macy p == ZIO_PRIORITY_SYNC_WRITE || 487eda14cbcSMatt Macy p == ZIO_PRIORITY_TRIM) { 488eda14cbcSMatt Macy compfn = vdev_queue_timestamp_compare; 489eda14cbcSMatt Macy } else { 490eda14cbcSMatt Macy compfn = vdev_queue_offset_compare; 491eda14cbcSMatt Macy } 492eda14cbcSMatt Macy avl_create(vdev_queue_class_tree(vq, p), compfn, 493eda14cbcSMatt Macy sizeof (zio_t), offsetof(struct zio, io_queue_node)); 494eda14cbcSMatt Macy } 495eda14cbcSMatt Macy 496eda14cbcSMatt Macy vq->vq_last_offset = 0; 497eda14cbcSMatt Macy } 498eda14cbcSMatt Macy 499eda14cbcSMatt Macy void 500eda14cbcSMatt Macy vdev_queue_fini(vdev_t *vd) 501eda14cbcSMatt Macy { 502eda14cbcSMatt Macy vdev_queue_t *vq = &vd->vdev_queue; 503eda14cbcSMatt Macy 504eda14cbcSMatt Macy for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) 505eda14cbcSMatt Macy avl_destroy(vdev_queue_class_tree(vq, p)); 506eda14cbcSMatt Macy avl_destroy(&vq->vq_active_tree); 507eda14cbcSMatt Macy avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ)); 508eda14cbcSMatt Macy avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE)); 509eda14cbcSMatt Macy avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_TRIM)); 510eda14cbcSMatt Macy 511eda14cbcSMatt Macy mutex_destroy(&vq->vq_lock); 512eda14cbcSMatt Macy } 513eda14cbcSMatt Macy 514eda14cbcSMatt Macy static void 515eda14cbcSMatt Macy vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio) 516eda14cbcSMatt Macy { 517eda14cbcSMatt Macy ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 518eda14cbcSMatt Macy avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio); 519eda14cbcSMatt Macy avl_add(vdev_queue_type_tree(vq, zio->io_type), zio); 520eda14cbcSMatt Macy } 521eda14cbcSMatt Macy 522eda14cbcSMatt Macy static void 523eda14cbcSMatt Macy vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio) 524eda14cbcSMatt Macy { 525eda14cbcSMatt Macy ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 526eda14cbcSMatt Macy avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio); 527eda14cbcSMatt Macy avl_remove(vdev_queue_type_tree(vq, zio->io_type), zio); 528eda14cbcSMatt Macy } 529eda14cbcSMatt Macy 5307877fdebSMatt Macy static boolean_t 5317877fdebSMatt Macy vdev_queue_is_interactive(zio_priority_t p) 5327877fdebSMatt Macy { 5337877fdebSMatt Macy switch (p) { 5347877fdebSMatt Macy case ZIO_PRIORITY_SCRUB: 5357877fdebSMatt Macy case ZIO_PRIORITY_REMOVAL: 5367877fdebSMatt Macy case ZIO_PRIORITY_INITIALIZING: 5377877fdebSMatt Macy case ZIO_PRIORITY_REBUILD: 5387877fdebSMatt Macy return (B_FALSE); 5397877fdebSMatt Macy default: 5407877fdebSMatt Macy return (B_TRUE); 5417877fdebSMatt Macy } 5427877fdebSMatt Macy } 5437877fdebSMatt Macy 544eda14cbcSMatt Macy static void 545eda14cbcSMatt Macy vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio) 546eda14cbcSMatt Macy { 547eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&vq->vq_lock)); 548eda14cbcSMatt Macy ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 549eda14cbcSMatt Macy vq->vq_class[zio->io_priority].vqc_active++; 5507877fdebSMatt Macy if (vdev_queue_is_interactive(zio->io_priority)) { 5517877fdebSMatt Macy if (++vq->vq_ia_active == 1) 5527877fdebSMatt Macy vq->vq_nia_credit = 1; 5537877fdebSMatt Macy } else if (vq->vq_ia_active > 0) { 5547877fdebSMatt Macy vq->vq_nia_credit--; 5557877fdebSMatt Macy } 556eda14cbcSMatt Macy avl_add(&vq->vq_active_tree, zio); 557eda14cbcSMatt Macy } 558eda14cbcSMatt Macy 559eda14cbcSMatt Macy static void 560eda14cbcSMatt Macy vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio) 561eda14cbcSMatt Macy { 562eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&vq->vq_lock)); 563eda14cbcSMatt Macy ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 564eda14cbcSMatt Macy vq->vq_class[zio->io_priority].vqc_active--; 5657877fdebSMatt Macy if (vdev_queue_is_interactive(zio->io_priority)) { 5667877fdebSMatt Macy if (--vq->vq_ia_active == 0) 5677877fdebSMatt Macy vq->vq_nia_credit = 0; 5687877fdebSMatt Macy else 5697877fdebSMatt Macy vq->vq_nia_credit = zfs_vdev_nia_credit; 5707877fdebSMatt Macy } else if (vq->vq_ia_active == 0) 5717877fdebSMatt Macy vq->vq_nia_credit++; 572eda14cbcSMatt Macy avl_remove(&vq->vq_active_tree, zio); 573eda14cbcSMatt Macy } 574eda14cbcSMatt Macy 575eda14cbcSMatt Macy static void 576eda14cbcSMatt Macy vdev_queue_agg_io_done(zio_t *aio) 577eda14cbcSMatt Macy { 578eda14cbcSMatt Macy abd_free(aio->io_abd); 579eda14cbcSMatt Macy } 580eda14cbcSMatt Macy 581eda14cbcSMatt Macy /* 582eda14cbcSMatt Macy * Compute the range spanned by two i/os, which is the endpoint of the last 583eda14cbcSMatt Macy * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset). 584eda14cbcSMatt Macy * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio); 585eda14cbcSMatt Macy * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0. 586eda14cbcSMatt Macy */ 587eda14cbcSMatt Macy #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset) 588eda14cbcSMatt Macy #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio)) 589eda14cbcSMatt Macy 590eda14cbcSMatt Macy /* 591eda14cbcSMatt Macy * Sufficiently adjacent io_offset's in ZIOs will be aggregated. We do this 592eda14cbcSMatt Macy * by creating a gang ABD from the adjacent ZIOs io_abd's. By using 593eda14cbcSMatt Macy * a gang ABD we avoid doing memory copies to and from the parent, 594eda14cbcSMatt Macy * child ZIOs. The gang ABD also accounts for gaps between adjacent 595eda14cbcSMatt Macy * io_offsets by simply getting the zero ABD for writes or allocating 596eda14cbcSMatt Macy * a new ABD for reads and placing them in the gang ABD as well. 597eda14cbcSMatt Macy */ 598eda14cbcSMatt Macy static zio_t * 599eda14cbcSMatt Macy vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio) 600eda14cbcSMatt Macy { 601eda14cbcSMatt Macy zio_t *first, *last, *aio, *dio, *mandatory, *nio; 602eda14cbcSMatt Macy uint64_t maxgap = 0; 603eda14cbcSMatt Macy uint64_t size; 604eda14cbcSMatt Macy uint64_t limit; 605eda14cbcSMatt Macy int maxblocksize; 606eda14cbcSMatt Macy boolean_t stretch = B_FALSE; 607eda14cbcSMatt Macy avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type); 608eda14cbcSMatt Macy enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT; 609eda14cbcSMatt Macy uint64_t next_offset; 610eda14cbcSMatt Macy abd_t *abd; 611eda14cbcSMatt Macy 612eda14cbcSMatt Macy maxblocksize = spa_maxblocksize(vq->vq_vdev->vdev_spa); 613eda14cbcSMatt Macy if (vq->vq_vdev->vdev_nonrot) 614eda14cbcSMatt Macy limit = zfs_vdev_aggregation_limit_non_rotating; 615eda14cbcSMatt Macy else 616eda14cbcSMatt Macy limit = zfs_vdev_aggregation_limit; 617eda14cbcSMatt Macy limit = MAX(MIN(limit, maxblocksize), 0); 618eda14cbcSMatt Macy 619eda14cbcSMatt Macy if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE || limit == 0) 620eda14cbcSMatt Macy return (NULL); 621eda14cbcSMatt Macy 622eda14cbcSMatt Macy /* 623eda14cbcSMatt Macy * While TRIM commands could be aggregated based on offset this 624eda14cbcSMatt Macy * behavior is disabled until it's determined to be beneficial. 625eda14cbcSMatt Macy */ 626eda14cbcSMatt Macy if (zio->io_type == ZIO_TYPE_TRIM && !zfs_vdev_aggregate_trim) 627eda14cbcSMatt Macy return (NULL); 628eda14cbcSMatt Macy 6297877fdebSMatt Macy /* 6307877fdebSMatt Macy * I/Os to distributed spares are directly dispatched to the dRAID 6317877fdebSMatt Macy * leaf vdevs for aggregation. See the comment at the end of the 6327877fdebSMatt Macy * zio_vdev_io_start() function. 6337877fdebSMatt Macy */ 6347877fdebSMatt Macy ASSERT(vq->vq_vdev->vdev_ops != &vdev_draid_spare_ops); 6357877fdebSMatt Macy 636eda14cbcSMatt Macy first = last = zio; 637eda14cbcSMatt Macy 638eda14cbcSMatt Macy if (zio->io_type == ZIO_TYPE_READ) 639eda14cbcSMatt Macy maxgap = zfs_vdev_read_gap_limit; 640eda14cbcSMatt Macy 641eda14cbcSMatt Macy /* 642eda14cbcSMatt Macy * We can aggregate I/Os that are sufficiently adjacent and of 643eda14cbcSMatt Macy * the same flavor, as expressed by the AGG_INHERIT flags. 644eda14cbcSMatt Macy * The latter requirement is necessary so that certain 645eda14cbcSMatt Macy * attributes of the I/O, such as whether it's a normal I/O 646eda14cbcSMatt Macy * or a scrub/resilver, can be preserved in the aggregate. 647eda14cbcSMatt Macy * We can include optional I/Os, but don't allow them 648eda14cbcSMatt Macy * to begin a range as they add no benefit in that situation. 649eda14cbcSMatt Macy */ 650eda14cbcSMatt Macy 651eda14cbcSMatt Macy /* 652eda14cbcSMatt Macy * We keep track of the last non-optional I/O. 653eda14cbcSMatt Macy */ 654eda14cbcSMatt Macy mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first; 655eda14cbcSMatt Macy 656eda14cbcSMatt Macy /* 657eda14cbcSMatt Macy * Walk backwards through sufficiently contiguous I/Os 658eda14cbcSMatt Macy * recording the last non-optional I/O. 659eda14cbcSMatt Macy */ 660eda14cbcSMatt Macy while ((dio = AVL_PREV(t, first)) != NULL && 661eda14cbcSMatt Macy (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && 662eda14cbcSMatt Macy IO_SPAN(dio, last) <= limit && 663eda14cbcSMatt Macy IO_GAP(dio, first) <= maxgap && 664eda14cbcSMatt Macy dio->io_type == zio->io_type) { 665eda14cbcSMatt Macy first = dio; 666eda14cbcSMatt Macy if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL)) 667eda14cbcSMatt Macy mandatory = first; 668eda14cbcSMatt Macy } 669eda14cbcSMatt Macy 670eda14cbcSMatt Macy /* 671eda14cbcSMatt Macy * Skip any initial optional I/Os. 672eda14cbcSMatt Macy */ 673eda14cbcSMatt Macy while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) { 674eda14cbcSMatt Macy first = AVL_NEXT(t, first); 675eda14cbcSMatt Macy ASSERT(first != NULL); 676eda14cbcSMatt Macy } 677eda14cbcSMatt Macy 678eda14cbcSMatt Macy 679eda14cbcSMatt Macy /* 680eda14cbcSMatt Macy * Walk forward through sufficiently contiguous I/Os. 681eda14cbcSMatt Macy * The aggregation limit does not apply to optional i/os, so that 682eda14cbcSMatt Macy * we can issue contiguous writes even if they are larger than the 683eda14cbcSMatt Macy * aggregation limit. 684eda14cbcSMatt Macy */ 685eda14cbcSMatt Macy while ((dio = AVL_NEXT(t, last)) != NULL && 686eda14cbcSMatt Macy (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && 687eda14cbcSMatt Macy (IO_SPAN(first, dio) <= limit || 688eda14cbcSMatt Macy (dio->io_flags & ZIO_FLAG_OPTIONAL)) && 689eda14cbcSMatt Macy IO_SPAN(first, dio) <= maxblocksize && 690eda14cbcSMatt Macy IO_GAP(last, dio) <= maxgap && 691eda14cbcSMatt Macy dio->io_type == zio->io_type) { 692eda14cbcSMatt Macy last = dio; 693eda14cbcSMatt Macy if (!(last->io_flags & ZIO_FLAG_OPTIONAL)) 694eda14cbcSMatt Macy mandatory = last; 695eda14cbcSMatt Macy } 696eda14cbcSMatt Macy 697eda14cbcSMatt Macy /* 698eda14cbcSMatt Macy * Now that we've established the range of the I/O aggregation 699eda14cbcSMatt Macy * we must decide what to do with trailing optional I/Os. 700eda14cbcSMatt Macy * For reads, there's nothing to do. While we are unable to 701eda14cbcSMatt Macy * aggregate further, it's possible that a trailing optional 702eda14cbcSMatt Macy * I/O would allow the underlying device to aggregate with 703eda14cbcSMatt Macy * subsequent I/Os. We must therefore determine if the next 704eda14cbcSMatt Macy * non-optional I/O is close enough to make aggregation 705eda14cbcSMatt Macy * worthwhile. 706eda14cbcSMatt Macy */ 707eda14cbcSMatt Macy if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) { 708eda14cbcSMatt Macy zio_t *nio = last; 709eda14cbcSMatt Macy while ((dio = AVL_NEXT(t, nio)) != NULL && 710eda14cbcSMatt Macy IO_GAP(nio, dio) == 0 && 711eda14cbcSMatt Macy IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) { 712eda14cbcSMatt Macy nio = dio; 713eda14cbcSMatt Macy if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) { 714eda14cbcSMatt Macy stretch = B_TRUE; 715eda14cbcSMatt Macy break; 716eda14cbcSMatt Macy } 717eda14cbcSMatt Macy } 718eda14cbcSMatt Macy } 719eda14cbcSMatt Macy 720eda14cbcSMatt Macy if (stretch) { 721eda14cbcSMatt Macy /* 722eda14cbcSMatt Macy * We are going to include an optional io in our aggregated 723eda14cbcSMatt Macy * span, thus closing the write gap. Only mandatory i/os can 724eda14cbcSMatt Macy * start aggregated spans, so make sure that the next i/o 725eda14cbcSMatt Macy * after our span is mandatory. 726eda14cbcSMatt Macy */ 727eda14cbcSMatt Macy dio = AVL_NEXT(t, last); 728eda14cbcSMatt Macy dio->io_flags &= ~ZIO_FLAG_OPTIONAL; 729eda14cbcSMatt Macy } else { 730eda14cbcSMatt Macy /* do not include the optional i/o */ 731eda14cbcSMatt Macy while (last != mandatory && last != first) { 732eda14cbcSMatt Macy ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL); 733eda14cbcSMatt Macy last = AVL_PREV(t, last); 734eda14cbcSMatt Macy ASSERT(last != NULL); 735eda14cbcSMatt Macy } 736eda14cbcSMatt Macy } 737eda14cbcSMatt Macy 738eda14cbcSMatt Macy if (first == last) 739eda14cbcSMatt Macy return (NULL); 740eda14cbcSMatt Macy 741eda14cbcSMatt Macy size = IO_SPAN(first, last); 742eda14cbcSMatt Macy ASSERT3U(size, <=, maxblocksize); 743eda14cbcSMatt Macy 744184c1b94SMartin Matuska abd = abd_alloc_gang(); 745eda14cbcSMatt Macy if (abd == NULL) 746eda14cbcSMatt Macy return (NULL); 747eda14cbcSMatt Macy 748eda14cbcSMatt Macy aio = zio_vdev_delegated_io(first->io_vd, first->io_offset, 749eda14cbcSMatt Macy abd, size, first->io_type, zio->io_priority, 750eda14cbcSMatt Macy flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE, 751eda14cbcSMatt Macy vdev_queue_agg_io_done, NULL); 752eda14cbcSMatt Macy aio->io_timestamp = first->io_timestamp; 753eda14cbcSMatt Macy 754eda14cbcSMatt Macy nio = first; 755eda14cbcSMatt Macy next_offset = first->io_offset; 756eda14cbcSMatt Macy do { 757eda14cbcSMatt Macy dio = nio; 758eda14cbcSMatt Macy nio = AVL_NEXT(t, dio); 759eda14cbcSMatt Macy zio_add_child(dio, aio); 760eda14cbcSMatt Macy vdev_queue_io_remove(vq, dio); 761eda14cbcSMatt Macy 762eda14cbcSMatt Macy if (dio->io_offset != next_offset) { 763eda14cbcSMatt Macy /* allocate a buffer for a read gap */ 764eda14cbcSMatt Macy ASSERT3U(dio->io_type, ==, ZIO_TYPE_READ); 765eda14cbcSMatt Macy ASSERT3U(dio->io_offset, >, next_offset); 766eda14cbcSMatt Macy abd = abd_alloc_for_io( 767eda14cbcSMatt Macy dio->io_offset - next_offset, B_TRUE); 768eda14cbcSMatt Macy abd_gang_add(aio->io_abd, abd, B_TRUE); 769eda14cbcSMatt Macy } 770eda14cbcSMatt Macy if (dio->io_abd && 771eda14cbcSMatt Macy (dio->io_size != abd_get_size(dio->io_abd))) { 772eda14cbcSMatt Macy /* abd size not the same as IO size */ 773eda14cbcSMatt Macy ASSERT3U(abd_get_size(dio->io_abd), >, dio->io_size); 774eda14cbcSMatt Macy abd = abd_get_offset_size(dio->io_abd, 0, dio->io_size); 775eda14cbcSMatt Macy abd_gang_add(aio->io_abd, abd, B_TRUE); 776eda14cbcSMatt Macy } else { 777eda14cbcSMatt Macy if (dio->io_flags & ZIO_FLAG_NODATA) { 778eda14cbcSMatt Macy /* allocate a buffer for a write gap */ 779eda14cbcSMatt Macy ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE); 780eda14cbcSMatt Macy ASSERT3P(dio->io_abd, ==, NULL); 781eda14cbcSMatt Macy abd_gang_add(aio->io_abd, 782eda14cbcSMatt Macy abd_get_zeros(dio->io_size), B_TRUE); 783eda14cbcSMatt Macy } else { 784eda14cbcSMatt Macy /* 785eda14cbcSMatt Macy * We pass B_FALSE to abd_gang_add() 786eda14cbcSMatt Macy * because we did not allocate a new 787eda14cbcSMatt Macy * ABD, so it is assumed the caller 788eda14cbcSMatt Macy * will free this ABD. 789eda14cbcSMatt Macy */ 790eda14cbcSMatt Macy abd_gang_add(aio->io_abd, dio->io_abd, 791eda14cbcSMatt Macy B_FALSE); 792eda14cbcSMatt Macy } 793eda14cbcSMatt Macy } 794eda14cbcSMatt Macy next_offset = dio->io_offset + dio->io_size; 795eda14cbcSMatt Macy } while (dio != last); 796eda14cbcSMatt Macy ASSERT3U(abd_get_size(aio->io_abd), ==, aio->io_size); 797eda14cbcSMatt Macy 798eda14cbcSMatt Macy /* 799*2faf504dSMartin Matuska * Callers must call zio_vdev_io_bypass() and zio_execute() for 800*2faf504dSMartin Matuska * aggregated (parent) I/Os so that we could avoid dropping the 801*2faf504dSMartin Matuska * queue's lock here to avoid a deadlock that we could encounter 802*2faf504dSMartin Matuska * due to lock order reversal between vq_lock and io_lock in 803*2faf504dSMartin Matuska * zio_change_priority(). 804eda14cbcSMatt Macy */ 805eda14cbcSMatt Macy return (aio); 806eda14cbcSMatt Macy } 807eda14cbcSMatt Macy 808eda14cbcSMatt Macy static zio_t * 809eda14cbcSMatt Macy vdev_queue_io_to_issue(vdev_queue_t *vq) 810eda14cbcSMatt Macy { 811eda14cbcSMatt Macy zio_t *zio, *aio; 812eda14cbcSMatt Macy zio_priority_t p; 813eda14cbcSMatt Macy avl_index_t idx; 814eda14cbcSMatt Macy avl_tree_t *tree; 815eda14cbcSMatt Macy 816eda14cbcSMatt Macy again: 817eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&vq->vq_lock)); 818eda14cbcSMatt Macy 819eda14cbcSMatt Macy p = vdev_queue_class_to_issue(vq); 820eda14cbcSMatt Macy 821eda14cbcSMatt Macy if (p == ZIO_PRIORITY_NUM_QUEUEABLE) { 822eda14cbcSMatt Macy /* No eligible queued i/os */ 823eda14cbcSMatt Macy return (NULL); 824eda14cbcSMatt Macy } 825eda14cbcSMatt Macy 826eda14cbcSMatt Macy /* 827eda14cbcSMatt Macy * For LBA-ordered queues (async / scrub / initializing), issue the 828eda14cbcSMatt Macy * i/o which follows the most recently issued i/o in LBA (offset) order. 829eda14cbcSMatt Macy * 830eda14cbcSMatt Macy * For FIFO queues (sync/trim), issue the i/o with the lowest timestamp. 831eda14cbcSMatt Macy */ 832eda14cbcSMatt Macy tree = vdev_queue_class_tree(vq, p); 833eda14cbcSMatt Macy vq->vq_io_search.io_timestamp = 0; 834eda14cbcSMatt Macy vq->vq_io_search.io_offset = vq->vq_last_offset - 1; 835eda14cbcSMatt Macy VERIFY3P(avl_find(tree, &vq->vq_io_search, &idx), ==, NULL); 836eda14cbcSMatt Macy zio = avl_nearest(tree, idx, AVL_AFTER); 837eda14cbcSMatt Macy if (zio == NULL) 838eda14cbcSMatt Macy zio = avl_first(tree); 839eda14cbcSMatt Macy ASSERT3U(zio->io_priority, ==, p); 840eda14cbcSMatt Macy 841eda14cbcSMatt Macy aio = vdev_queue_aggregate(vq, zio); 842*2faf504dSMartin Matuska if (aio != NULL) { 843eda14cbcSMatt Macy zio = aio; 844*2faf504dSMartin Matuska } else { 845eda14cbcSMatt Macy vdev_queue_io_remove(vq, zio); 846eda14cbcSMatt Macy 847eda14cbcSMatt Macy /* 848*2faf504dSMartin Matuska * If the I/O is or was optional and therefore has no data, we 849*2faf504dSMartin Matuska * need to simply discard it. We need to drop the vdev queue's 850*2faf504dSMartin Matuska * lock to avoid a deadlock that we could encounter since this 851*2faf504dSMartin Matuska * I/O will complete immediately. 852eda14cbcSMatt Macy */ 853eda14cbcSMatt Macy if (zio->io_flags & ZIO_FLAG_NODATA) { 854eda14cbcSMatt Macy mutex_exit(&vq->vq_lock); 855eda14cbcSMatt Macy zio_vdev_io_bypass(zio); 856eda14cbcSMatt Macy zio_execute(zio); 857eda14cbcSMatt Macy mutex_enter(&vq->vq_lock); 858eda14cbcSMatt Macy goto again; 859eda14cbcSMatt Macy } 860*2faf504dSMartin Matuska } 861eda14cbcSMatt Macy 862eda14cbcSMatt Macy vdev_queue_pending_add(vq, zio); 863eda14cbcSMatt Macy vq->vq_last_offset = zio->io_offset + zio->io_size; 864eda14cbcSMatt Macy 865eda14cbcSMatt Macy return (zio); 866eda14cbcSMatt Macy } 867eda14cbcSMatt Macy 868eda14cbcSMatt Macy zio_t * 869eda14cbcSMatt Macy vdev_queue_io(zio_t *zio) 870eda14cbcSMatt Macy { 871eda14cbcSMatt Macy vdev_queue_t *vq = &zio->io_vd->vdev_queue; 872*2faf504dSMartin Matuska zio_t *dio, *nio; 873*2faf504dSMartin Matuska zio_link_t *zl = NULL; 874eda14cbcSMatt Macy 875eda14cbcSMatt Macy if (zio->io_flags & ZIO_FLAG_DONT_QUEUE) 876eda14cbcSMatt Macy return (zio); 877eda14cbcSMatt Macy 878eda14cbcSMatt Macy /* 879eda14cbcSMatt Macy * Children i/os inherent their parent's priority, which might 880eda14cbcSMatt Macy * not match the child's i/o type. Fix it up here. 881eda14cbcSMatt Macy */ 882eda14cbcSMatt Macy if (zio->io_type == ZIO_TYPE_READ) { 883eda14cbcSMatt Macy ASSERT(zio->io_priority != ZIO_PRIORITY_TRIM); 884eda14cbcSMatt Macy 885eda14cbcSMatt Macy if (zio->io_priority != ZIO_PRIORITY_SYNC_READ && 886eda14cbcSMatt Macy zio->io_priority != ZIO_PRIORITY_ASYNC_READ && 887eda14cbcSMatt Macy zio->io_priority != ZIO_PRIORITY_SCRUB && 888eda14cbcSMatt Macy zio->io_priority != ZIO_PRIORITY_REMOVAL && 889eda14cbcSMatt Macy zio->io_priority != ZIO_PRIORITY_INITIALIZING && 890eda14cbcSMatt Macy zio->io_priority != ZIO_PRIORITY_REBUILD) { 891eda14cbcSMatt Macy zio->io_priority = ZIO_PRIORITY_ASYNC_READ; 892eda14cbcSMatt Macy } 893eda14cbcSMatt Macy } else if (zio->io_type == ZIO_TYPE_WRITE) { 894eda14cbcSMatt Macy ASSERT(zio->io_priority != ZIO_PRIORITY_TRIM); 895eda14cbcSMatt Macy 896eda14cbcSMatt Macy if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE && 897eda14cbcSMatt Macy zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE && 898eda14cbcSMatt Macy zio->io_priority != ZIO_PRIORITY_REMOVAL && 899eda14cbcSMatt Macy zio->io_priority != ZIO_PRIORITY_INITIALIZING && 900eda14cbcSMatt Macy zio->io_priority != ZIO_PRIORITY_REBUILD) { 901eda14cbcSMatt Macy zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE; 902eda14cbcSMatt Macy } 903eda14cbcSMatt Macy } else { 904eda14cbcSMatt Macy ASSERT(zio->io_type == ZIO_TYPE_TRIM); 905eda14cbcSMatt Macy ASSERT(zio->io_priority == ZIO_PRIORITY_TRIM); 906eda14cbcSMatt Macy } 907eda14cbcSMatt Macy 908eda14cbcSMatt Macy zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE; 9097cd22ac4SMartin Matuska zio->io_timestamp = gethrtime(); 910eda14cbcSMatt Macy 911eda14cbcSMatt Macy mutex_enter(&vq->vq_lock); 912eda14cbcSMatt Macy vdev_queue_io_add(vq, zio); 913eda14cbcSMatt Macy nio = vdev_queue_io_to_issue(vq); 914eda14cbcSMatt Macy mutex_exit(&vq->vq_lock); 915eda14cbcSMatt Macy 916eda14cbcSMatt Macy if (nio == NULL) 917eda14cbcSMatt Macy return (NULL); 918eda14cbcSMatt Macy 919eda14cbcSMatt Macy if (nio->io_done == vdev_queue_agg_io_done) { 920*2faf504dSMartin Matuska while ((dio = zio_walk_parents(nio, &zl)) != NULL) { 921*2faf504dSMartin Matuska ASSERT3U(dio->io_type, ==, nio->io_type); 922*2faf504dSMartin Matuska zio_vdev_io_bypass(dio); 923*2faf504dSMartin Matuska zio_execute(dio); 924*2faf504dSMartin Matuska } 925eda14cbcSMatt Macy zio_nowait(nio); 926eda14cbcSMatt Macy return (NULL); 927eda14cbcSMatt Macy } 928eda14cbcSMatt Macy 929eda14cbcSMatt Macy return (nio); 930eda14cbcSMatt Macy } 931eda14cbcSMatt Macy 932eda14cbcSMatt Macy void 933eda14cbcSMatt Macy vdev_queue_io_done(zio_t *zio) 934eda14cbcSMatt Macy { 935eda14cbcSMatt Macy vdev_queue_t *vq = &zio->io_vd->vdev_queue; 936*2faf504dSMartin Matuska zio_t *dio, *nio; 937*2faf504dSMartin Matuska zio_link_t *zl = NULL; 938eda14cbcSMatt Macy 9397cd22ac4SMartin Matuska hrtime_t now = gethrtime(); 9407cd22ac4SMartin Matuska vq->vq_io_complete_ts = now; 9417cd22ac4SMartin Matuska vq->vq_io_delta_ts = zio->io_delta = now - zio->io_timestamp; 9427cd22ac4SMartin Matuska 943eda14cbcSMatt Macy mutex_enter(&vq->vq_lock); 944eda14cbcSMatt Macy vdev_queue_pending_remove(vq, zio); 945eda14cbcSMatt Macy 946eda14cbcSMatt Macy while ((nio = vdev_queue_io_to_issue(vq)) != NULL) { 947eda14cbcSMatt Macy mutex_exit(&vq->vq_lock); 948eda14cbcSMatt Macy if (nio->io_done == vdev_queue_agg_io_done) { 949*2faf504dSMartin Matuska while ((dio = zio_walk_parents(nio, &zl)) != NULL) { 950*2faf504dSMartin Matuska ASSERT3U(dio->io_type, ==, nio->io_type); 951*2faf504dSMartin Matuska zio_vdev_io_bypass(dio); 952*2faf504dSMartin Matuska zio_execute(dio); 953*2faf504dSMartin Matuska } 954eda14cbcSMatt Macy zio_nowait(nio); 955eda14cbcSMatt Macy } else { 956eda14cbcSMatt Macy zio_vdev_io_reissue(nio); 957eda14cbcSMatt Macy zio_execute(nio); 958eda14cbcSMatt Macy } 959eda14cbcSMatt Macy mutex_enter(&vq->vq_lock); 960eda14cbcSMatt Macy } 961eda14cbcSMatt Macy 962eda14cbcSMatt Macy mutex_exit(&vq->vq_lock); 963eda14cbcSMatt Macy } 964eda14cbcSMatt Macy 965eda14cbcSMatt Macy void 966eda14cbcSMatt Macy vdev_queue_change_io_priority(zio_t *zio, zio_priority_t priority) 967eda14cbcSMatt Macy { 968eda14cbcSMatt Macy vdev_queue_t *vq = &zio->io_vd->vdev_queue; 969eda14cbcSMatt Macy avl_tree_t *tree; 970eda14cbcSMatt Macy 971eda14cbcSMatt Macy /* 972eda14cbcSMatt Macy * ZIO_PRIORITY_NOW is used by the vdev cache code and the aggregate zio 973eda14cbcSMatt Macy * code to issue IOs without adding them to the vdev queue. In this 974eda14cbcSMatt Macy * case, the zio is already going to be issued as quickly as possible 975eda14cbcSMatt Macy * and so it doesn't need any reprioritization to help. 976eda14cbcSMatt Macy */ 977eda14cbcSMatt Macy if (zio->io_priority == ZIO_PRIORITY_NOW) 978eda14cbcSMatt Macy return; 979eda14cbcSMatt Macy 980eda14cbcSMatt Macy ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 981eda14cbcSMatt Macy ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 982eda14cbcSMatt Macy 983eda14cbcSMatt Macy if (zio->io_type == ZIO_TYPE_READ) { 984eda14cbcSMatt Macy if (priority != ZIO_PRIORITY_SYNC_READ && 985eda14cbcSMatt Macy priority != ZIO_PRIORITY_ASYNC_READ && 986eda14cbcSMatt Macy priority != ZIO_PRIORITY_SCRUB) 987eda14cbcSMatt Macy priority = ZIO_PRIORITY_ASYNC_READ; 988eda14cbcSMatt Macy } else { 989eda14cbcSMatt Macy ASSERT(zio->io_type == ZIO_TYPE_WRITE); 990eda14cbcSMatt Macy if (priority != ZIO_PRIORITY_SYNC_WRITE && 991eda14cbcSMatt Macy priority != ZIO_PRIORITY_ASYNC_WRITE) 992eda14cbcSMatt Macy priority = ZIO_PRIORITY_ASYNC_WRITE; 993eda14cbcSMatt Macy } 994eda14cbcSMatt Macy 995eda14cbcSMatt Macy mutex_enter(&vq->vq_lock); 996eda14cbcSMatt Macy 997eda14cbcSMatt Macy /* 998eda14cbcSMatt Macy * If the zio is in none of the queues we can simply change 999eda14cbcSMatt Macy * the priority. If the zio is waiting to be submitted we must 1000eda14cbcSMatt Macy * remove it from the queue and re-insert it with the new priority. 1001eda14cbcSMatt Macy * Otherwise, the zio is currently active and we cannot change its 1002eda14cbcSMatt Macy * priority. 1003eda14cbcSMatt Macy */ 1004eda14cbcSMatt Macy tree = vdev_queue_class_tree(vq, zio->io_priority); 1005eda14cbcSMatt Macy if (avl_find(tree, zio, NULL) == zio) { 1006eda14cbcSMatt Macy avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio); 1007eda14cbcSMatt Macy zio->io_priority = priority; 1008eda14cbcSMatt Macy avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio); 1009eda14cbcSMatt Macy } else if (avl_find(&vq->vq_active_tree, zio, NULL) != zio) { 1010eda14cbcSMatt Macy zio->io_priority = priority; 1011eda14cbcSMatt Macy } 1012eda14cbcSMatt Macy 1013eda14cbcSMatt Macy mutex_exit(&vq->vq_lock); 1014eda14cbcSMatt Macy } 1015eda14cbcSMatt Macy 1016eda14cbcSMatt Macy /* 1017eda14cbcSMatt Macy * As these two methods are only used for load calculations we're not 1018eda14cbcSMatt Macy * concerned if we get an incorrect value on 32bit platforms due to lack of 1019eda14cbcSMatt Macy * vq_lock mutex use here, instead we prefer to keep it lock free for 1020eda14cbcSMatt Macy * performance. 1021eda14cbcSMatt Macy */ 1022eda14cbcSMatt Macy int 1023eda14cbcSMatt Macy vdev_queue_length(vdev_t *vd) 1024eda14cbcSMatt Macy { 1025eda14cbcSMatt Macy return (avl_numnodes(&vd->vdev_queue.vq_active_tree)); 1026eda14cbcSMatt Macy } 1027eda14cbcSMatt Macy 1028eda14cbcSMatt Macy uint64_t 1029eda14cbcSMatt Macy vdev_queue_last_offset(vdev_t *vd) 1030eda14cbcSMatt Macy { 1031eda14cbcSMatt Macy return (vd->vdev_queue.vq_last_offset); 1032eda14cbcSMatt Macy } 1033eda14cbcSMatt Macy 1034eda14cbcSMatt Macy /* BEGIN CSTYLED */ 1035eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregation_limit, INT, ZMOD_RW, 1036eda14cbcSMatt Macy "Max vdev I/O aggregation size"); 1037eda14cbcSMatt Macy 1038eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregation_limit_non_rotating, INT, ZMOD_RW, 1039eda14cbcSMatt Macy "Max vdev I/O aggregation size for non-rotating media"); 1040eda14cbcSMatt Macy 1041eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregate_trim, INT, ZMOD_RW, 1042eda14cbcSMatt Macy "Allow TRIM I/O to be aggregated"); 1043eda14cbcSMatt Macy 1044eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, read_gap_limit, INT, ZMOD_RW, 1045eda14cbcSMatt Macy "Aggregate read I/O over gap"); 1046eda14cbcSMatt Macy 1047eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, write_gap_limit, INT, ZMOD_RW, 1048eda14cbcSMatt Macy "Aggregate write I/O over gap"); 1049eda14cbcSMatt Macy 1050eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_active, INT, ZMOD_RW, 1051eda14cbcSMatt Macy "Maximum number of active I/Os per vdev"); 1052eda14cbcSMatt Macy 1053eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_active_max_dirty_percent, INT, ZMOD_RW, 1054eda14cbcSMatt Macy "Async write concurrency max threshold"); 1055eda14cbcSMatt Macy 1056eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_active_min_dirty_percent, INT, ZMOD_RW, 1057eda14cbcSMatt Macy "Async write concurrency min threshold"); 1058eda14cbcSMatt Macy 1059eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_read_max_active, INT, ZMOD_RW, 1060eda14cbcSMatt Macy "Max active async read I/Os per vdev"); 1061eda14cbcSMatt Macy 1062eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_read_min_active, INT, ZMOD_RW, 1063eda14cbcSMatt Macy "Min active async read I/Os per vdev"); 1064eda14cbcSMatt Macy 1065eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_max_active, INT, ZMOD_RW, 1066eda14cbcSMatt Macy "Max active async write I/Os per vdev"); 1067eda14cbcSMatt Macy 1068eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_min_active, INT, ZMOD_RW, 1069eda14cbcSMatt Macy "Min active async write I/Os per vdev"); 1070eda14cbcSMatt Macy 1071eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, initializing_max_active, INT, ZMOD_RW, 1072eda14cbcSMatt Macy "Max active initializing I/Os per vdev"); 1073eda14cbcSMatt Macy 1074eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, initializing_min_active, INT, ZMOD_RW, 1075eda14cbcSMatt Macy "Min active initializing I/Os per vdev"); 1076eda14cbcSMatt Macy 1077eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, removal_max_active, INT, ZMOD_RW, 1078eda14cbcSMatt Macy "Max active removal I/Os per vdev"); 1079eda14cbcSMatt Macy 1080eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, removal_min_active, INT, ZMOD_RW, 1081eda14cbcSMatt Macy "Min active removal I/Os per vdev"); 1082eda14cbcSMatt Macy 1083eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, scrub_max_active, INT, ZMOD_RW, 1084eda14cbcSMatt Macy "Max active scrub I/Os per vdev"); 1085eda14cbcSMatt Macy 1086eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, scrub_min_active, INT, ZMOD_RW, 1087eda14cbcSMatt Macy "Min active scrub I/Os per vdev"); 1088eda14cbcSMatt Macy 1089eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_read_max_active, INT, ZMOD_RW, 1090eda14cbcSMatt Macy "Max active sync read I/Os per vdev"); 1091eda14cbcSMatt Macy 1092eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_read_min_active, INT, ZMOD_RW, 1093eda14cbcSMatt Macy "Min active sync read I/Os per vdev"); 1094eda14cbcSMatt Macy 1095eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_write_max_active, INT, ZMOD_RW, 1096eda14cbcSMatt Macy "Max active sync write I/Os per vdev"); 1097eda14cbcSMatt Macy 1098eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_write_min_active, INT, ZMOD_RW, 1099eda14cbcSMatt Macy "Min active sync write I/Os per vdev"); 1100eda14cbcSMatt Macy 1101eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, trim_max_active, INT, ZMOD_RW, 1102eda14cbcSMatt Macy "Max active trim/discard I/Os per vdev"); 1103eda14cbcSMatt Macy 1104eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, trim_min_active, INT, ZMOD_RW, 1105eda14cbcSMatt Macy "Min active trim/discard I/Os per vdev"); 1106eda14cbcSMatt Macy 1107eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, rebuild_max_active, INT, ZMOD_RW, 1108eda14cbcSMatt Macy "Max active rebuild I/Os per vdev"); 1109eda14cbcSMatt Macy 1110eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, rebuild_min_active, INT, ZMOD_RW, 1111eda14cbcSMatt Macy "Min active rebuild I/Os per vdev"); 1112eda14cbcSMatt Macy 11137877fdebSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, nia_credit, INT, ZMOD_RW, 11147877fdebSMatt Macy "Number of non-interactive I/Os to allow in sequence"); 11157877fdebSMatt Macy 11167877fdebSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, nia_delay, INT, ZMOD_RW, 11177877fdebSMatt Macy "Number of non-interactive I/Os before _max_active"); 11187877fdebSMatt Macy 1119eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, queue_depth_pct, INT, ZMOD_RW, 1120eda14cbcSMatt Macy "Queue depth percentage for each top-level vdev"); 1121eda14cbcSMatt Macy /* END CSTYLED */ 1122