1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2012, 2015 by Delphix. All rights reserved. 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/spa.h> 32 #include <sys/spa_impl.h> 33 #include <sys/dsl_pool.h> 34 #include <sys/dsl_scan.h> 35 #include <sys/vdev_impl.h> 36 #include <sys/vdev_draid.h> 37 #include <sys/zio.h> 38 #include <sys/abd.h> 39 #include <sys/fs/zfs.h> 40 41 /* 42 * Vdev mirror kstats 43 */ 44 static kstat_t *mirror_ksp = NULL; 45 46 typedef struct mirror_stats { 47 kstat_named_t vdev_mirror_stat_rotating_linear; 48 kstat_named_t vdev_mirror_stat_rotating_offset; 49 kstat_named_t vdev_mirror_stat_rotating_seek; 50 kstat_named_t vdev_mirror_stat_non_rotating_linear; 51 kstat_named_t vdev_mirror_stat_non_rotating_seek; 52 53 kstat_named_t vdev_mirror_stat_preferred_found; 54 kstat_named_t vdev_mirror_stat_preferred_not_found; 55 } mirror_stats_t; 56 57 static mirror_stats_t mirror_stats = { 58 /* New I/O follows directly the last I/O */ 59 { "rotating_linear", KSTAT_DATA_UINT64 }, 60 /* New I/O is within zfs_vdev_mirror_rotating_seek_offset of the last */ 61 { "rotating_offset", KSTAT_DATA_UINT64 }, 62 /* New I/O requires random seek */ 63 { "rotating_seek", KSTAT_DATA_UINT64 }, 64 /* New I/O follows directly the last I/O (nonrot) */ 65 { "non_rotating_linear", KSTAT_DATA_UINT64 }, 66 /* New I/O requires random seek (nonrot) */ 67 { "non_rotating_seek", KSTAT_DATA_UINT64 }, 68 /* Preferred child vdev found */ 69 { "preferred_found", KSTAT_DATA_UINT64 }, 70 /* Preferred child vdev not found or equal load */ 71 { "preferred_not_found", KSTAT_DATA_UINT64 }, 72 73 }; 74 75 #define MIRROR_STAT(stat) (mirror_stats.stat.value.ui64) 76 #define MIRROR_INCR(stat, val) atomic_add_64(&MIRROR_STAT(stat), val) 77 #define MIRROR_BUMP(stat) MIRROR_INCR(stat, 1) 78 79 void 80 vdev_mirror_stat_init(void) 81 { 82 mirror_ksp = kstat_create("zfs", 0, "vdev_mirror_stats", 83 "misc", KSTAT_TYPE_NAMED, 84 sizeof (mirror_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 85 if (mirror_ksp != NULL) { 86 mirror_ksp->ks_data = &mirror_stats; 87 kstat_install(mirror_ksp); 88 } 89 } 90 91 void 92 vdev_mirror_stat_fini(void) 93 { 94 if (mirror_ksp != NULL) { 95 kstat_delete(mirror_ksp); 96 mirror_ksp = NULL; 97 } 98 } 99 100 /* 101 * Virtual device vector for mirroring. 102 */ 103 typedef struct mirror_child { 104 vdev_t *mc_vd; 105 uint64_t mc_offset; 106 int mc_error; 107 int mc_load; 108 uint8_t mc_tried; 109 uint8_t mc_skipped; 110 uint8_t mc_speculative; 111 uint8_t mc_rebuilding; 112 } mirror_child_t; 113 114 typedef struct mirror_map { 115 int *mm_preferred; 116 int mm_preferred_cnt; 117 int mm_children; 118 boolean_t mm_resilvering; 119 boolean_t mm_rebuilding; 120 boolean_t mm_root; 121 mirror_child_t mm_child[]; 122 } mirror_map_t; 123 124 static int vdev_mirror_shift = 21; 125 126 /* 127 * The load configuration settings below are tuned by default for 128 * the case where all devices are of the same rotational type. 129 * 130 * If there is a mixture of rotating and non-rotating media, setting 131 * zfs_vdev_mirror_non_rotating_seek_inc to 0 may well provide better results 132 * as it will direct more reads to the non-rotating vdevs which are more likely 133 * to have a higher performance. 134 */ 135 136 /* Rotating media load calculation configuration. */ 137 static int zfs_vdev_mirror_rotating_inc = 0; 138 static int zfs_vdev_mirror_rotating_seek_inc = 5; 139 static int zfs_vdev_mirror_rotating_seek_offset = 1 * 1024 * 1024; 140 141 /* Non-rotating media load calculation configuration. */ 142 static int zfs_vdev_mirror_non_rotating_inc = 0; 143 static int zfs_vdev_mirror_non_rotating_seek_inc = 1; 144 145 static inline size_t 146 vdev_mirror_map_size(int children) 147 { 148 return (offsetof(mirror_map_t, mm_child[children]) + 149 sizeof (int) * children); 150 } 151 152 static inline mirror_map_t * 153 vdev_mirror_map_alloc(int children, boolean_t resilvering, boolean_t root) 154 { 155 mirror_map_t *mm; 156 157 mm = kmem_zalloc(vdev_mirror_map_size(children), KM_SLEEP); 158 mm->mm_children = children; 159 mm->mm_resilvering = resilvering; 160 mm->mm_root = root; 161 mm->mm_preferred = (int *)((uintptr_t)mm + 162 offsetof(mirror_map_t, mm_child[children])); 163 164 return (mm); 165 } 166 167 static void 168 vdev_mirror_map_free(zio_t *zio) 169 { 170 mirror_map_t *mm = zio->io_vsd; 171 172 kmem_free(mm, vdev_mirror_map_size(mm->mm_children)); 173 } 174 175 static const zio_vsd_ops_t vdev_mirror_vsd_ops = { 176 .vsd_free = vdev_mirror_map_free, 177 .vsd_cksum_report = zio_vsd_default_cksum_report 178 }; 179 180 static int 181 vdev_mirror_load(mirror_map_t *mm, vdev_t *vd, uint64_t zio_offset) 182 { 183 uint64_t last_offset; 184 int64_t offset_diff; 185 int load; 186 187 /* All DVAs have equal weight at the root. */ 188 if (mm->mm_root) 189 return (INT_MAX); 190 191 /* 192 * We don't return INT_MAX if the device is resilvering i.e. 193 * vdev_resilver_txg != 0 as when tested performance was slightly 194 * worse overall when resilvering with compared to without. 195 */ 196 197 /* Fix zio_offset for leaf vdevs */ 198 if (vd->vdev_ops->vdev_op_leaf) 199 zio_offset += VDEV_LABEL_START_SIZE; 200 201 /* Standard load based on pending queue length. */ 202 load = vdev_queue_length(vd); 203 last_offset = vdev_queue_last_offset(vd); 204 205 if (vd->vdev_nonrot) { 206 /* Non-rotating media. */ 207 if (last_offset == zio_offset) { 208 MIRROR_BUMP(vdev_mirror_stat_non_rotating_linear); 209 return (load + zfs_vdev_mirror_non_rotating_inc); 210 } 211 212 /* 213 * Apply a seek penalty even for non-rotating devices as 214 * sequential I/O's can be aggregated into fewer operations on 215 * the device, thus avoiding unnecessary per-command overhead 216 * and boosting performance. 217 */ 218 MIRROR_BUMP(vdev_mirror_stat_non_rotating_seek); 219 return (load + zfs_vdev_mirror_non_rotating_seek_inc); 220 } 221 222 /* Rotating media I/O's which directly follow the last I/O. */ 223 if (last_offset == zio_offset) { 224 MIRROR_BUMP(vdev_mirror_stat_rotating_linear); 225 return (load + zfs_vdev_mirror_rotating_inc); 226 } 227 228 /* 229 * Apply half the seek increment to I/O's within seek offset 230 * of the last I/O issued to this vdev as they should incur less 231 * of a seek increment. 232 */ 233 offset_diff = (int64_t)(last_offset - zio_offset); 234 if (ABS(offset_diff) < zfs_vdev_mirror_rotating_seek_offset) { 235 MIRROR_BUMP(vdev_mirror_stat_rotating_offset); 236 return (load + (zfs_vdev_mirror_rotating_seek_inc / 2)); 237 } 238 239 /* Apply the full seek increment to all other I/O's. */ 240 MIRROR_BUMP(vdev_mirror_stat_rotating_seek); 241 return (load + zfs_vdev_mirror_rotating_seek_inc); 242 } 243 244 static boolean_t 245 vdev_mirror_rebuilding(vdev_t *vd) 246 { 247 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_rebuild_txg) 248 return (B_TRUE); 249 250 for (int i = 0; i < vd->vdev_children; i++) { 251 if (vdev_mirror_rebuilding(vd->vdev_child[i])) { 252 return (B_TRUE); 253 } 254 } 255 256 return (B_FALSE); 257 } 258 259 /* 260 * Avoid inlining the function to keep vdev_mirror_io_start(), which 261 * is this functions only caller, as small as possible on the stack. 262 */ 263 noinline static mirror_map_t * 264 vdev_mirror_map_init(zio_t *zio) 265 { 266 mirror_map_t *mm = NULL; 267 mirror_child_t *mc; 268 vdev_t *vd = zio->io_vd; 269 int c; 270 271 if (vd == NULL) { 272 dva_t *dva = zio->io_bp->blk_dva; 273 spa_t *spa = zio->io_spa; 274 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 275 dva_t dva_copy[SPA_DVAS_PER_BP]; 276 277 /* 278 * The sequential scrub code sorts and issues all DVAs 279 * of a bp separately. Each of these IOs includes all 280 * original DVA copies so that repairs can be performed 281 * in the event of an error, but we only actually want 282 * to check the first DVA since the others will be 283 * checked by their respective sorted IOs. Only if we 284 * hit an error will we try all DVAs upon retrying. 285 * 286 * Note: This check is safe even if the user switches 287 * from a legacy scrub to a sequential one in the middle 288 * of processing, since scn_is_sorted isn't updated until 289 * all outstanding IOs from the previous scrub pass 290 * complete. 291 */ 292 if ((zio->io_flags & ZIO_FLAG_SCRUB) && 293 !(zio->io_flags & ZIO_FLAG_IO_RETRY) && 294 dsl_scan_scrubbing(spa->spa_dsl_pool) && 295 scn->scn_is_sorted) { 296 c = 1; 297 } else { 298 c = BP_GET_NDVAS(zio->io_bp); 299 } 300 301 /* 302 * If the pool cannot be written to, then infer that some 303 * DVAs might be invalid or point to vdevs that do not exist. 304 * We skip them. 305 */ 306 if (!spa_writeable(spa)) { 307 ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ); 308 int j = 0; 309 for (int i = 0; i < c; i++) { 310 if (zfs_dva_valid(spa, &dva[i], zio->io_bp)) 311 dva_copy[j++] = dva[i]; 312 } 313 if (j == 0) { 314 zio->io_vsd = NULL; 315 zio->io_error = ENXIO; 316 return (NULL); 317 } 318 if (j < c) { 319 dva = dva_copy; 320 c = j; 321 } 322 } 323 324 mm = vdev_mirror_map_alloc(c, B_FALSE, B_TRUE); 325 for (c = 0; c < mm->mm_children; c++) { 326 mc = &mm->mm_child[c]; 327 328 mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c])); 329 mc->mc_offset = DVA_GET_OFFSET(&dva[c]); 330 if (mc->mc_vd == NULL) { 331 kmem_free(mm, vdev_mirror_map_size( 332 mm->mm_children)); 333 zio->io_vsd = NULL; 334 zio->io_error = ENXIO; 335 return (NULL); 336 } 337 } 338 } else { 339 /* 340 * If we are resilvering, then we should handle scrub reads 341 * differently; we shouldn't issue them to the resilvering 342 * device because it might not have those blocks. 343 * 344 * We are resilvering iff: 345 * 1) We are a replacing vdev (ie our name is "replacing-1" or 346 * "spare-1" or something like that), and 347 * 2) The pool is currently being resilvered. 348 * 349 * We cannot simply check vd->vdev_resilver_txg, because it's 350 * not set in this path. 351 * 352 * Nor can we just check our vdev_ops; there are cases (such as 353 * when a user types "zpool replace pool odev spare_dev" and 354 * spare_dev is in the spare list, or when a spare device is 355 * automatically used to replace a DEGRADED device) when 356 * resilvering is complete but both the original vdev and the 357 * spare vdev remain in the pool. That behavior is intentional. 358 * It helps implement the policy that a spare should be 359 * automatically removed from the pool after the user replaces 360 * the device that originally failed. 361 * 362 * If a spa load is in progress, then spa_dsl_pool may be 363 * uninitialized. But we shouldn't be resilvering during a spa 364 * load anyway. 365 */ 366 boolean_t replacing = (vd->vdev_ops == &vdev_replacing_ops || 367 vd->vdev_ops == &vdev_spare_ops) && 368 spa_load_state(vd->vdev_spa) == SPA_LOAD_NONE && 369 dsl_scan_resilvering(vd->vdev_spa->spa_dsl_pool); 370 mm = vdev_mirror_map_alloc(vd->vdev_children, replacing, 371 B_FALSE); 372 for (c = 0; c < mm->mm_children; c++) { 373 mc = &mm->mm_child[c]; 374 mc->mc_vd = vd->vdev_child[c]; 375 mc->mc_offset = zio->io_offset; 376 377 if (vdev_mirror_rebuilding(mc->mc_vd)) 378 mm->mm_rebuilding = mc->mc_rebuilding = B_TRUE; 379 } 380 } 381 382 zio->io_vsd = mm; 383 zio->io_vsd_ops = &vdev_mirror_vsd_ops; 384 return (mm); 385 } 386 387 static int 388 vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize, 389 uint64_t *logical_ashift, uint64_t *physical_ashift) 390 { 391 int numerrors = 0; 392 int lasterror = 0; 393 394 if (vd->vdev_children == 0) { 395 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 396 return (SET_ERROR(EINVAL)); 397 } 398 399 vdev_open_children(vd); 400 401 for (int c = 0; c < vd->vdev_children; c++) { 402 vdev_t *cvd = vd->vdev_child[c]; 403 404 if (cvd->vdev_open_error) { 405 lasterror = cvd->vdev_open_error; 406 numerrors++; 407 continue; 408 } 409 410 *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1; 411 *max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1; 412 *logical_ashift = MAX(*logical_ashift, cvd->vdev_ashift); 413 *physical_ashift = MAX(*physical_ashift, 414 cvd->vdev_physical_ashift); 415 } 416 417 if (numerrors == vd->vdev_children) { 418 if (vdev_children_are_offline(vd)) 419 vd->vdev_stat.vs_aux = VDEV_AUX_CHILDREN_OFFLINE; 420 else 421 vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS; 422 return (lasterror); 423 } 424 425 return (0); 426 } 427 428 static void 429 vdev_mirror_close(vdev_t *vd) 430 { 431 for (int c = 0; c < vd->vdev_children; c++) 432 vdev_close(vd->vdev_child[c]); 433 } 434 435 static void 436 vdev_mirror_child_done(zio_t *zio) 437 { 438 mirror_child_t *mc = zio->io_private; 439 440 mc->mc_error = zio->io_error; 441 mc->mc_tried = 1; 442 mc->mc_skipped = 0; 443 } 444 445 static void 446 vdev_mirror_scrub_done(zio_t *zio) 447 { 448 mirror_child_t *mc = zio->io_private; 449 450 if (zio->io_error == 0) { 451 zio_t *pio; 452 zio_link_t *zl = NULL; 453 454 mutex_enter(&zio->io_lock); 455 while ((pio = zio_walk_parents(zio, &zl)) != NULL) { 456 mutex_enter(&pio->io_lock); 457 ASSERT3U(zio->io_size, >=, pio->io_size); 458 abd_copy(pio->io_abd, zio->io_abd, pio->io_size); 459 mutex_exit(&pio->io_lock); 460 } 461 mutex_exit(&zio->io_lock); 462 } 463 464 abd_free(zio->io_abd); 465 466 mc->mc_error = zio->io_error; 467 mc->mc_tried = 1; 468 mc->mc_skipped = 0; 469 } 470 471 /* 472 * Check the other, lower-index DVAs to see if they're on the same 473 * vdev as the child we picked. If they are, use them since they 474 * are likely to have been allocated from the primary metaslab in 475 * use at the time, and hence are more likely to have locality with 476 * single-copy data. 477 */ 478 static int 479 vdev_mirror_dva_select(zio_t *zio, int p) 480 { 481 dva_t *dva = zio->io_bp->blk_dva; 482 mirror_map_t *mm = zio->io_vsd; 483 int preferred; 484 int c; 485 486 preferred = mm->mm_preferred[p]; 487 for (p--; p >= 0; p--) { 488 c = mm->mm_preferred[p]; 489 if (DVA_GET_VDEV(&dva[c]) == DVA_GET_VDEV(&dva[preferred])) 490 preferred = c; 491 } 492 return (preferred); 493 } 494 495 static int 496 vdev_mirror_preferred_child_randomize(zio_t *zio) 497 { 498 mirror_map_t *mm = zio->io_vsd; 499 int p; 500 501 if (mm->mm_root) { 502 p = spa_get_random(mm->mm_preferred_cnt); 503 return (vdev_mirror_dva_select(zio, p)); 504 } 505 506 /* 507 * To ensure we don't always favour the first matching vdev, 508 * which could lead to wear leveling issues on SSD's, we 509 * use the I/O offset as a pseudo random seed into the vdevs 510 * which have the lowest load. 511 */ 512 p = (zio->io_offset >> vdev_mirror_shift) % mm->mm_preferred_cnt; 513 return (mm->mm_preferred[p]); 514 } 515 516 static boolean_t 517 vdev_mirror_child_readable(mirror_child_t *mc) 518 { 519 vdev_t *vd = mc->mc_vd; 520 521 if (vd->vdev_top != NULL && vd->vdev_top->vdev_ops == &vdev_draid_ops) 522 return (vdev_draid_readable(vd, mc->mc_offset)); 523 else 524 return (vdev_readable(vd)); 525 } 526 527 static boolean_t 528 vdev_mirror_child_missing(mirror_child_t *mc, uint64_t txg, uint64_t size) 529 { 530 vdev_t *vd = mc->mc_vd; 531 532 if (vd->vdev_top != NULL && vd->vdev_top->vdev_ops == &vdev_draid_ops) 533 return (vdev_draid_missing(vd, mc->mc_offset, txg, size)); 534 else 535 return (vdev_dtl_contains(vd, DTL_MISSING, txg, size)); 536 } 537 538 /* 539 * Try to find a vdev whose DTL doesn't contain the block we want to read 540 * preferring vdevs based on determined load. If we can't, try the read on 541 * any vdev we haven't already tried. 542 * 543 * Distributed spares are an exception to the above load rule. They are 544 * always preferred in order to detect gaps in the distributed spare which 545 * are created when another disk in the dRAID fails. In order to restore 546 * redundancy those gaps must be read to trigger the required repair IO. 547 */ 548 static int 549 vdev_mirror_child_select(zio_t *zio) 550 { 551 mirror_map_t *mm = zio->io_vsd; 552 uint64_t txg = zio->io_txg; 553 int c, lowest_load; 554 555 ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg); 556 557 lowest_load = INT_MAX; 558 mm->mm_preferred_cnt = 0; 559 for (c = 0; c < mm->mm_children; c++) { 560 mirror_child_t *mc; 561 562 mc = &mm->mm_child[c]; 563 if (mc->mc_tried || mc->mc_skipped) 564 continue; 565 566 if (mc->mc_vd == NULL || 567 !vdev_mirror_child_readable(mc)) { 568 mc->mc_error = SET_ERROR(ENXIO); 569 mc->mc_tried = 1; /* don't even try */ 570 mc->mc_skipped = 1; 571 continue; 572 } 573 574 if (vdev_mirror_child_missing(mc, txg, 1)) { 575 mc->mc_error = SET_ERROR(ESTALE); 576 mc->mc_skipped = 1; 577 mc->mc_speculative = 1; 578 continue; 579 } 580 581 if (mc->mc_vd->vdev_ops == &vdev_draid_spare_ops) { 582 mm->mm_preferred[0] = c; 583 mm->mm_preferred_cnt = 1; 584 break; 585 } 586 587 mc->mc_load = vdev_mirror_load(mm, mc->mc_vd, mc->mc_offset); 588 if (mc->mc_load > lowest_load) 589 continue; 590 591 if (mc->mc_load < lowest_load) { 592 lowest_load = mc->mc_load; 593 mm->mm_preferred_cnt = 0; 594 } 595 mm->mm_preferred[mm->mm_preferred_cnt] = c; 596 mm->mm_preferred_cnt++; 597 } 598 599 if (mm->mm_preferred_cnt == 1) { 600 MIRROR_BUMP(vdev_mirror_stat_preferred_found); 601 return (mm->mm_preferred[0]); 602 } 603 604 if (mm->mm_preferred_cnt > 1) { 605 MIRROR_BUMP(vdev_mirror_stat_preferred_not_found); 606 return (vdev_mirror_preferred_child_randomize(zio)); 607 } 608 609 /* 610 * Every device is either missing or has this txg in its DTL. 611 * Look for any child we haven't already tried before giving up. 612 */ 613 for (c = 0; c < mm->mm_children; c++) { 614 if (!mm->mm_child[c].mc_tried) 615 return (c); 616 } 617 618 /* 619 * Every child failed. There's no place left to look. 620 */ 621 return (-1); 622 } 623 624 static void 625 vdev_mirror_io_start(zio_t *zio) 626 { 627 mirror_map_t *mm; 628 mirror_child_t *mc; 629 int c, children; 630 631 mm = vdev_mirror_map_init(zio); 632 633 if (mm == NULL) { 634 ASSERT(!spa_trust_config(zio->io_spa)); 635 ASSERT(zio->io_type == ZIO_TYPE_READ); 636 zio_execute(zio); 637 return; 638 } 639 640 if (zio->io_type == ZIO_TYPE_READ) { 641 if (zio->io_bp != NULL && 642 (zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_resilvering) { 643 /* 644 * For scrubbing reads (if we can verify the 645 * checksum here, as indicated by io_bp being 646 * non-NULL) we need to allocate a read buffer for 647 * each child and issue reads to all children. If 648 * any child succeeds, it will copy its data into 649 * zio->io_data in vdev_mirror_scrub_done. 650 */ 651 for (c = 0; c < mm->mm_children; c++) { 652 mc = &mm->mm_child[c]; 653 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 654 mc->mc_vd, mc->mc_offset, 655 abd_alloc_sametype(zio->io_abd, 656 zio->io_size), zio->io_size, 657 zio->io_type, zio->io_priority, 0, 658 vdev_mirror_scrub_done, mc)); 659 } 660 zio_execute(zio); 661 return; 662 } 663 /* 664 * For normal reads just pick one child. 665 */ 666 c = vdev_mirror_child_select(zio); 667 children = (c >= 0); 668 } else { 669 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 670 671 /* 672 * Writes go to all children. 673 */ 674 c = 0; 675 children = mm->mm_children; 676 } 677 678 while (children--) { 679 mc = &mm->mm_child[c]; 680 c++; 681 682 /* 683 * When sequentially resilvering only issue write repair 684 * IOs to the vdev which is being rebuilt since performance 685 * is limited by the slowest child. This is an issue for 686 * faster replacement devices such as distributed spares. 687 */ 688 if ((zio->io_priority == ZIO_PRIORITY_REBUILD) && 689 (zio->io_flags & ZIO_FLAG_IO_REPAIR) && 690 !(zio->io_flags & ZIO_FLAG_SCRUB) && 691 mm->mm_rebuilding && !mc->mc_rebuilding) { 692 continue; 693 } 694 695 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 696 mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size, 697 zio->io_type, zio->io_priority, 0, 698 vdev_mirror_child_done, mc)); 699 } 700 701 zio_execute(zio); 702 } 703 704 static int 705 vdev_mirror_worst_error(mirror_map_t *mm) 706 { 707 int error[2] = { 0, 0 }; 708 709 for (int c = 0; c < mm->mm_children; c++) { 710 mirror_child_t *mc = &mm->mm_child[c]; 711 int s = mc->mc_speculative; 712 error[s] = zio_worst_error(error[s], mc->mc_error); 713 } 714 715 return (error[0] ? error[0] : error[1]); 716 } 717 718 static void 719 vdev_mirror_io_done(zio_t *zio) 720 { 721 mirror_map_t *mm = zio->io_vsd; 722 mirror_child_t *mc; 723 int c; 724 int good_copies = 0; 725 int unexpected_errors = 0; 726 727 if (mm == NULL) 728 return; 729 730 for (c = 0; c < mm->mm_children; c++) { 731 mc = &mm->mm_child[c]; 732 733 if (mc->mc_error) { 734 if (!mc->mc_skipped) 735 unexpected_errors++; 736 } else if (mc->mc_tried) { 737 good_copies++; 738 } 739 } 740 741 if (zio->io_type == ZIO_TYPE_WRITE) { 742 /* 743 * XXX -- for now, treat partial writes as success. 744 * 745 * Now that we support write reallocation, it would be better 746 * to treat partial failure as real failure unless there are 747 * no non-degraded top-level vdevs left, and not update DTLs 748 * if we intend to reallocate. 749 */ 750 /* XXPOLICY */ 751 if (good_copies != mm->mm_children) { 752 /* 753 * Always require at least one good copy. 754 * 755 * For ditto blocks (io_vd == NULL), require 756 * all copies to be good. 757 * 758 * XXX -- for replacing vdevs, there's no great answer. 759 * If the old device is really dead, we may not even 760 * be able to access it -- so we only want to 761 * require good writes to the new device. But if 762 * the new device turns out to be flaky, we want 763 * to be able to detach it -- which requires all 764 * writes to the old device to have succeeded. 765 */ 766 if (good_copies == 0 || zio->io_vd == NULL) 767 zio->io_error = vdev_mirror_worst_error(mm); 768 } 769 return; 770 } 771 772 ASSERT(zio->io_type == ZIO_TYPE_READ); 773 774 /* 775 * If we don't have a good copy yet, keep trying other children. 776 */ 777 /* XXPOLICY */ 778 if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) { 779 ASSERT(c >= 0 && c < mm->mm_children); 780 mc = &mm->mm_child[c]; 781 zio_vdev_io_redone(zio); 782 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 783 mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size, 784 ZIO_TYPE_READ, zio->io_priority, 0, 785 vdev_mirror_child_done, mc)); 786 return; 787 } 788 789 /* XXPOLICY */ 790 if (good_copies == 0) { 791 zio->io_error = vdev_mirror_worst_error(mm); 792 ASSERT(zio->io_error != 0); 793 } 794 795 if (good_copies && spa_writeable(zio->io_spa) && 796 (unexpected_errors || 797 (zio->io_flags & ZIO_FLAG_RESILVER) || 798 ((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_resilvering))) { 799 /* 800 * Use the good data we have in hand to repair damaged children. 801 */ 802 for (c = 0; c < mm->mm_children; c++) { 803 /* 804 * Don't rewrite known good children. 805 * Not only is it unnecessary, it could 806 * actually be harmful: if the system lost 807 * power while rewriting the only good copy, 808 * there would be no good copies left! 809 */ 810 mc = &mm->mm_child[c]; 811 812 if (mc->mc_error == 0) { 813 vdev_ops_t *ops = mc->mc_vd->vdev_ops; 814 815 if (mc->mc_tried) 816 continue; 817 /* 818 * We didn't try this child. We need to 819 * repair it if: 820 * 1. it's a scrub (in which case we have 821 * tried everything that was healthy) 822 * - or - 823 * 2. it's an indirect or distributed spare 824 * vdev (in which case it could point to any 825 * other vdev, which might have a bad DTL) 826 * - or - 827 * 3. the DTL indicates that this data is 828 * missing from this vdev 829 */ 830 if (!(zio->io_flags & ZIO_FLAG_SCRUB) && 831 ops != &vdev_indirect_ops && 832 ops != &vdev_draid_spare_ops && 833 !vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL, 834 zio->io_txg, 1)) 835 continue; 836 mc->mc_error = SET_ERROR(ESTALE); 837 } 838 839 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 840 mc->mc_vd, mc->mc_offset, 841 zio->io_abd, zio->io_size, ZIO_TYPE_WRITE, 842 zio->io_priority == ZIO_PRIORITY_REBUILD ? 843 ZIO_PRIORITY_REBUILD : ZIO_PRIORITY_ASYNC_WRITE, 844 ZIO_FLAG_IO_REPAIR | (unexpected_errors ? 845 ZIO_FLAG_SELF_HEAL : 0), NULL, NULL)); 846 } 847 } 848 } 849 850 static void 851 vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded) 852 { 853 if (faulted == vd->vdev_children) { 854 if (vdev_children_are_offline(vd)) { 855 vdev_set_state(vd, B_FALSE, VDEV_STATE_OFFLINE, 856 VDEV_AUX_CHILDREN_OFFLINE); 857 } else { 858 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 859 VDEV_AUX_NO_REPLICAS); 860 } 861 } else if (degraded + faulted != 0) { 862 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE); 863 } else { 864 vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE); 865 } 866 } 867 868 /* 869 * Return the maximum asize for a rebuild zio in the provided range. 870 */ 871 static uint64_t 872 vdev_mirror_rebuild_asize(vdev_t *vd, uint64_t start, uint64_t asize, 873 uint64_t max_segment) 874 { 875 uint64_t psize = MIN(P2ROUNDUP(max_segment, 1 << vd->vdev_ashift), 876 SPA_MAXBLOCKSIZE); 877 878 return (MIN(asize, vdev_psize_to_asize(vd, psize))); 879 } 880 881 vdev_ops_t vdev_mirror_ops = { 882 .vdev_op_init = NULL, 883 .vdev_op_fini = NULL, 884 .vdev_op_open = vdev_mirror_open, 885 .vdev_op_close = vdev_mirror_close, 886 .vdev_op_asize = vdev_default_asize, 887 .vdev_op_min_asize = vdev_default_min_asize, 888 .vdev_op_min_alloc = NULL, 889 .vdev_op_io_start = vdev_mirror_io_start, 890 .vdev_op_io_done = vdev_mirror_io_done, 891 .vdev_op_state_change = vdev_mirror_state_change, 892 .vdev_op_need_resilver = vdev_default_need_resilver, 893 .vdev_op_hold = NULL, 894 .vdev_op_rele = NULL, 895 .vdev_op_remap = NULL, 896 .vdev_op_xlate = vdev_default_xlate, 897 .vdev_op_rebuild_asize = vdev_mirror_rebuild_asize, 898 .vdev_op_metaslab_init = NULL, 899 .vdev_op_config_generate = NULL, 900 .vdev_op_nparity = NULL, 901 .vdev_op_ndisks = NULL, 902 .vdev_op_type = VDEV_TYPE_MIRROR, /* name of this vdev type */ 903 .vdev_op_leaf = B_FALSE /* not a leaf vdev */ 904 }; 905 906 vdev_ops_t vdev_replacing_ops = { 907 .vdev_op_init = NULL, 908 .vdev_op_fini = NULL, 909 .vdev_op_open = vdev_mirror_open, 910 .vdev_op_close = vdev_mirror_close, 911 .vdev_op_asize = vdev_default_asize, 912 .vdev_op_min_asize = vdev_default_min_asize, 913 .vdev_op_min_alloc = NULL, 914 .vdev_op_io_start = vdev_mirror_io_start, 915 .vdev_op_io_done = vdev_mirror_io_done, 916 .vdev_op_state_change = vdev_mirror_state_change, 917 .vdev_op_need_resilver = vdev_default_need_resilver, 918 .vdev_op_hold = NULL, 919 .vdev_op_rele = NULL, 920 .vdev_op_remap = NULL, 921 .vdev_op_xlate = vdev_default_xlate, 922 .vdev_op_rebuild_asize = vdev_mirror_rebuild_asize, 923 .vdev_op_metaslab_init = NULL, 924 .vdev_op_config_generate = NULL, 925 .vdev_op_nparity = NULL, 926 .vdev_op_ndisks = NULL, 927 .vdev_op_type = VDEV_TYPE_REPLACING, /* name of this vdev type */ 928 .vdev_op_leaf = B_FALSE /* not a leaf vdev */ 929 }; 930 931 vdev_ops_t vdev_spare_ops = { 932 .vdev_op_init = NULL, 933 .vdev_op_fini = NULL, 934 .vdev_op_open = vdev_mirror_open, 935 .vdev_op_close = vdev_mirror_close, 936 .vdev_op_asize = vdev_default_asize, 937 .vdev_op_min_asize = vdev_default_min_asize, 938 .vdev_op_min_alloc = NULL, 939 .vdev_op_io_start = vdev_mirror_io_start, 940 .vdev_op_io_done = vdev_mirror_io_done, 941 .vdev_op_state_change = vdev_mirror_state_change, 942 .vdev_op_need_resilver = vdev_default_need_resilver, 943 .vdev_op_hold = NULL, 944 .vdev_op_rele = NULL, 945 .vdev_op_remap = NULL, 946 .vdev_op_xlate = vdev_default_xlate, 947 .vdev_op_rebuild_asize = vdev_mirror_rebuild_asize, 948 .vdev_op_metaslab_init = NULL, 949 .vdev_op_config_generate = NULL, 950 .vdev_op_nparity = NULL, 951 .vdev_op_ndisks = NULL, 952 .vdev_op_type = VDEV_TYPE_SPARE, /* name of this vdev type */ 953 .vdev_op_leaf = B_FALSE /* not a leaf vdev */ 954 }; 955 956 /* BEGIN CSTYLED */ 957 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_inc, INT, ZMOD_RW, 958 "Rotating media load increment for non-seeking I/O's"); 959 960 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_seek_inc, INT, ZMOD_RW, 961 "Rotating media load increment for seeking I/O's"); 962 963 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_seek_offset, INT, ZMOD_RW, 964 "Offset in bytes from the last I/O which triggers " 965 "a reduced rotating media seek increment"); 966 967 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, non_rotating_inc, INT, ZMOD_RW, 968 "Non-rotating media load increment for non-seeking I/O's"); 969 970 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, non_rotating_seek_inc, INT, ZMOD_RW, 971 "Non-rotating media load increment for seeking I/O's"); 972 /* END CSTYLED */ 973