xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_mirror.c (revision ba27dd8be821792e15bdabfac69fd6cab0cf9dd3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
28  */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dsl_pool.h>
34 #include <sys/dsl_scan.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/vdev_draid.h>
37 #include <sys/zio.h>
38 #include <sys/abd.h>
39 #include <sys/fs/zfs.h>
40 
41 /*
42  * Vdev mirror kstats
43  */
44 static kstat_t *mirror_ksp = NULL;
45 
46 typedef struct mirror_stats {
47 	kstat_named_t vdev_mirror_stat_rotating_linear;
48 	kstat_named_t vdev_mirror_stat_rotating_offset;
49 	kstat_named_t vdev_mirror_stat_rotating_seek;
50 	kstat_named_t vdev_mirror_stat_non_rotating_linear;
51 	kstat_named_t vdev_mirror_stat_non_rotating_seek;
52 
53 	kstat_named_t vdev_mirror_stat_preferred_found;
54 	kstat_named_t vdev_mirror_stat_preferred_not_found;
55 } mirror_stats_t;
56 
57 static mirror_stats_t mirror_stats = {
58 	/* New I/O follows directly the last I/O */
59 	{ "rotating_linear",			KSTAT_DATA_UINT64 },
60 	/* New I/O is within zfs_vdev_mirror_rotating_seek_offset of the last */
61 	{ "rotating_offset",			KSTAT_DATA_UINT64 },
62 	/* New I/O requires random seek */
63 	{ "rotating_seek",			KSTAT_DATA_UINT64 },
64 	/* New I/O follows directly the last I/O  (nonrot) */
65 	{ "non_rotating_linear",		KSTAT_DATA_UINT64 },
66 	/* New I/O requires random seek (nonrot) */
67 	{ "non_rotating_seek",			KSTAT_DATA_UINT64 },
68 	/* Preferred child vdev found */
69 	{ "preferred_found",			KSTAT_DATA_UINT64 },
70 	/* Preferred child vdev not found or equal load  */
71 	{ "preferred_not_found",		KSTAT_DATA_UINT64 },
72 
73 };
74 
75 #define	MIRROR_STAT(stat)		(mirror_stats.stat.value.ui64)
76 #define	MIRROR_INCR(stat, val) 		atomic_add_64(&MIRROR_STAT(stat), val)
77 #define	MIRROR_BUMP(stat)		MIRROR_INCR(stat, 1)
78 
79 void
80 vdev_mirror_stat_init(void)
81 {
82 	mirror_ksp = kstat_create("zfs", 0, "vdev_mirror_stats",
83 	    "misc", KSTAT_TYPE_NAMED,
84 	    sizeof (mirror_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
85 	if (mirror_ksp != NULL) {
86 		mirror_ksp->ks_data = &mirror_stats;
87 		kstat_install(mirror_ksp);
88 	}
89 }
90 
91 void
92 vdev_mirror_stat_fini(void)
93 {
94 	if (mirror_ksp != NULL) {
95 		kstat_delete(mirror_ksp);
96 		mirror_ksp = NULL;
97 	}
98 }
99 
100 /*
101  * Virtual device vector for mirroring.
102  */
103 typedef struct mirror_child {
104 	vdev_t		*mc_vd;
105 	uint64_t	mc_offset;
106 	int		mc_error;
107 	int		mc_load;
108 	uint8_t		mc_tried;
109 	uint8_t		mc_skipped;
110 	uint8_t		mc_speculative;
111 	uint8_t		mc_rebuilding;
112 } mirror_child_t;
113 
114 typedef struct mirror_map {
115 	int		*mm_preferred;
116 	int		mm_preferred_cnt;
117 	int		mm_children;
118 	boolean_t	mm_resilvering;
119 	boolean_t	mm_rebuilding;
120 	boolean_t	mm_root;
121 	mirror_child_t	mm_child[];
122 } mirror_map_t;
123 
124 static int vdev_mirror_shift = 21;
125 
126 /*
127  * The load configuration settings below are tuned by default for
128  * the case where all devices are of the same rotational type.
129  *
130  * If there is a mixture of rotating and non-rotating media, setting
131  * zfs_vdev_mirror_non_rotating_seek_inc to 0 may well provide better results
132  * as it will direct more reads to the non-rotating vdevs which are more likely
133  * to have a higher performance.
134  */
135 
136 /* Rotating media load calculation configuration. */
137 static int zfs_vdev_mirror_rotating_inc = 0;
138 static int zfs_vdev_mirror_rotating_seek_inc = 5;
139 static int zfs_vdev_mirror_rotating_seek_offset = 1 * 1024 * 1024;
140 
141 /* Non-rotating media load calculation configuration. */
142 static int zfs_vdev_mirror_non_rotating_inc = 0;
143 static int zfs_vdev_mirror_non_rotating_seek_inc = 1;
144 
145 static inline size_t
146 vdev_mirror_map_size(int children)
147 {
148 	return (offsetof(mirror_map_t, mm_child[children]) +
149 	    sizeof (int) * children);
150 }
151 
152 static inline mirror_map_t *
153 vdev_mirror_map_alloc(int children, boolean_t resilvering, boolean_t root)
154 {
155 	mirror_map_t *mm;
156 
157 	mm = kmem_zalloc(vdev_mirror_map_size(children), KM_SLEEP);
158 	mm->mm_children = children;
159 	mm->mm_resilvering = resilvering;
160 	mm->mm_root = root;
161 	mm->mm_preferred = (int *)((uintptr_t)mm +
162 	    offsetof(mirror_map_t, mm_child[children]));
163 
164 	return (mm);
165 }
166 
167 static void
168 vdev_mirror_map_free(zio_t *zio)
169 {
170 	mirror_map_t *mm = zio->io_vsd;
171 
172 	kmem_free(mm, vdev_mirror_map_size(mm->mm_children));
173 }
174 
175 static const zio_vsd_ops_t vdev_mirror_vsd_ops = {
176 	.vsd_free = vdev_mirror_map_free,
177 	.vsd_cksum_report = zio_vsd_default_cksum_report
178 };
179 
180 static int
181 vdev_mirror_load(mirror_map_t *mm, vdev_t *vd, uint64_t zio_offset)
182 {
183 	uint64_t last_offset;
184 	int64_t offset_diff;
185 	int load;
186 
187 	/* All DVAs have equal weight at the root. */
188 	if (mm->mm_root)
189 		return (INT_MAX);
190 
191 	/*
192 	 * We don't return INT_MAX if the device is resilvering i.e.
193 	 * vdev_resilver_txg != 0 as when tested performance was slightly
194 	 * worse overall when resilvering with compared to without.
195 	 */
196 
197 	/* Fix zio_offset for leaf vdevs */
198 	if (vd->vdev_ops->vdev_op_leaf)
199 		zio_offset += VDEV_LABEL_START_SIZE;
200 
201 	/* Standard load based on pending queue length. */
202 	load = vdev_queue_length(vd);
203 	last_offset = vdev_queue_last_offset(vd);
204 
205 	if (vd->vdev_nonrot) {
206 		/* Non-rotating media. */
207 		if (last_offset == zio_offset) {
208 			MIRROR_BUMP(vdev_mirror_stat_non_rotating_linear);
209 			return (load + zfs_vdev_mirror_non_rotating_inc);
210 		}
211 
212 		/*
213 		 * Apply a seek penalty even for non-rotating devices as
214 		 * sequential I/O's can be aggregated into fewer operations on
215 		 * the device, thus avoiding unnecessary per-command overhead
216 		 * and boosting performance.
217 		 */
218 		MIRROR_BUMP(vdev_mirror_stat_non_rotating_seek);
219 		return (load + zfs_vdev_mirror_non_rotating_seek_inc);
220 	}
221 
222 	/* Rotating media I/O's which directly follow the last I/O. */
223 	if (last_offset == zio_offset) {
224 		MIRROR_BUMP(vdev_mirror_stat_rotating_linear);
225 		return (load + zfs_vdev_mirror_rotating_inc);
226 	}
227 
228 	/*
229 	 * Apply half the seek increment to I/O's within seek offset
230 	 * of the last I/O issued to this vdev as they should incur less
231 	 * of a seek increment.
232 	 */
233 	offset_diff = (int64_t)(last_offset - zio_offset);
234 	if (ABS(offset_diff) < zfs_vdev_mirror_rotating_seek_offset) {
235 		MIRROR_BUMP(vdev_mirror_stat_rotating_offset);
236 		return (load + (zfs_vdev_mirror_rotating_seek_inc / 2));
237 	}
238 
239 	/* Apply the full seek increment to all other I/O's. */
240 	MIRROR_BUMP(vdev_mirror_stat_rotating_seek);
241 	return (load + zfs_vdev_mirror_rotating_seek_inc);
242 }
243 
244 static boolean_t
245 vdev_mirror_rebuilding(vdev_t *vd)
246 {
247 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_rebuild_txg)
248 		return (B_TRUE);
249 
250 	for (int i = 0; i < vd->vdev_children; i++) {
251 		if (vdev_mirror_rebuilding(vd->vdev_child[i])) {
252 			return (B_TRUE);
253 		}
254 	}
255 
256 	return (B_FALSE);
257 }
258 
259 /*
260  * Avoid inlining the function to keep vdev_mirror_io_start(), which
261  * is this functions only caller, as small as possible on the stack.
262  */
263 noinline static mirror_map_t *
264 vdev_mirror_map_init(zio_t *zio)
265 {
266 	mirror_map_t *mm = NULL;
267 	mirror_child_t *mc;
268 	vdev_t *vd = zio->io_vd;
269 	int c;
270 
271 	if (vd == NULL) {
272 		dva_t *dva = zio->io_bp->blk_dva;
273 		spa_t *spa = zio->io_spa;
274 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
275 		dva_t dva_copy[SPA_DVAS_PER_BP];
276 
277 		/*
278 		 * The sequential scrub code sorts and issues all DVAs
279 		 * of a bp separately. Each of these IOs includes all
280 		 * original DVA copies so that repairs can be performed
281 		 * in the event of an error, but we only actually want
282 		 * to check the first DVA since the others will be
283 		 * checked by their respective sorted IOs. Only if we
284 		 * hit an error will we try all DVAs upon retrying.
285 		 *
286 		 * Note: This check is safe even if the user switches
287 		 * from a legacy scrub to a sequential one in the middle
288 		 * of processing, since scn_is_sorted isn't updated until
289 		 * all outstanding IOs from the previous scrub pass
290 		 * complete.
291 		 */
292 		if ((zio->io_flags & ZIO_FLAG_SCRUB) &&
293 		    !(zio->io_flags & ZIO_FLAG_IO_RETRY) &&
294 		    dsl_scan_scrubbing(spa->spa_dsl_pool) &&
295 		    scn->scn_is_sorted) {
296 			c = 1;
297 		} else {
298 			c = BP_GET_NDVAS(zio->io_bp);
299 		}
300 
301 		/*
302 		 * If the pool cannot be written to, then infer that some
303 		 * DVAs might be invalid or point to vdevs that do not exist.
304 		 * We skip them.
305 		 */
306 		if (!spa_writeable(spa)) {
307 			ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
308 			int j = 0;
309 			for (int i = 0; i < c; i++) {
310 				if (zfs_dva_valid(spa, &dva[i], zio->io_bp))
311 					dva_copy[j++] = dva[i];
312 			}
313 			if (j == 0) {
314 				zio->io_vsd = NULL;
315 				zio->io_error = ENXIO;
316 				return (NULL);
317 			}
318 			if (j < c) {
319 				dva = dva_copy;
320 				c = j;
321 			}
322 		}
323 
324 		mm = vdev_mirror_map_alloc(c, B_FALSE, B_TRUE);
325 		for (c = 0; c < mm->mm_children; c++) {
326 			mc = &mm->mm_child[c];
327 
328 			mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c]));
329 			mc->mc_offset = DVA_GET_OFFSET(&dva[c]);
330 			if (mc->mc_vd == NULL) {
331 				kmem_free(mm, vdev_mirror_map_size(
332 				    mm->mm_children));
333 				zio->io_vsd = NULL;
334 				zio->io_error = ENXIO;
335 				return (NULL);
336 			}
337 		}
338 	} else {
339 		/*
340 		 * If we are resilvering, then we should handle scrub reads
341 		 * differently; we shouldn't issue them to the resilvering
342 		 * device because it might not have those blocks.
343 		 *
344 		 * We are resilvering iff:
345 		 * 1) We are a replacing vdev (ie our name is "replacing-1" or
346 		 *    "spare-1" or something like that), and
347 		 * 2) The pool is currently being resilvered.
348 		 *
349 		 * We cannot simply check vd->vdev_resilver_txg, because it's
350 		 * not set in this path.
351 		 *
352 		 * Nor can we just check our vdev_ops; there are cases (such as
353 		 * when a user types "zpool replace pool odev spare_dev" and
354 		 * spare_dev is in the spare list, or when a spare device is
355 		 * automatically used to replace a DEGRADED device) when
356 		 * resilvering is complete but both the original vdev and the
357 		 * spare vdev remain in the pool.  That behavior is intentional.
358 		 * It helps implement the policy that a spare should be
359 		 * automatically removed from the pool after the user replaces
360 		 * the device that originally failed.
361 		 *
362 		 * If a spa load is in progress, then spa_dsl_pool may be
363 		 * uninitialized.  But we shouldn't be resilvering during a spa
364 		 * load anyway.
365 		 */
366 		boolean_t replacing = (vd->vdev_ops == &vdev_replacing_ops ||
367 		    vd->vdev_ops == &vdev_spare_ops) &&
368 		    spa_load_state(vd->vdev_spa) == SPA_LOAD_NONE &&
369 		    dsl_scan_resilvering(vd->vdev_spa->spa_dsl_pool);
370 		mm = vdev_mirror_map_alloc(vd->vdev_children, replacing,
371 		    B_FALSE);
372 		for (c = 0; c < mm->mm_children; c++) {
373 			mc = &mm->mm_child[c];
374 			mc->mc_vd = vd->vdev_child[c];
375 			mc->mc_offset = zio->io_offset;
376 
377 			if (vdev_mirror_rebuilding(mc->mc_vd))
378 				mm->mm_rebuilding = mc->mc_rebuilding = B_TRUE;
379 		}
380 	}
381 
382 	zio->io_vsd = mm;
383 	zio->io_vsd_ops = &vdev_mirror_vsd_ops;
384 	return (mm);
385 }
386 
387 static int
388 vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
389     uint64_t *logical_ashift, uint64_t *physical_ashift)
390 {
391 	int numerrors = 0;
392 	int lasterror = 0;
393 
394 	if (vd->vdev_children == 0) {
395 		vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
396 		return (SET_ERROR(EINVAL));
397 	}
398 
399 	vdev_open_children(vd);
400 
401 	for (int c = 0; c < vd->vdev_children; c++) {
402 		vdev_t *cvd = vd->vdev_child[c];
403 
404 		if (cvd->vdev_open_error) {
405 			lasterror = cvd->vdev_open_error;
406 			numerrors++;
407 			continue;
408 		}
409 
410 		*asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
411 		*max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
412 		*logical_ashift = MAX(*logical_ashift, cvd->vdev_ashift);
413 		*physical_ashift = MAX(*physical_ashift,
414 		    cvd->vdev_physical_ashift);
415 	}
416 
417 	if (numerrors == vd->vdev_children) {
418 		if (vdev_children_are_offline(vd))
419 			vd->vdev_stat.vs_aux = VDEV_AUX_CHILDREN_OFFLINE;
420 		else
421 			vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
422 		return (lasterror);
423 	}
424 
425 	return (0);
426 }
427 
428 static void
429 vdev_mirror_close(vdev_t *vd)
430 {
431 	for (int c = 0; c < vd->vdev_children; c++)
432 		vdev_close(vd->vdev_child[c]);
433 }
434 
435 static void
436 vdev_mirror_child_done(zio_t *zio)
437 {
438 	mirror_child_t *mc = zio->io_private;
439 
440 	mc->mc_error = zio->io_error;
441 	mc->mc_tried = 1;
442 	mc->mc_skipped = 0;
443 }
444 
445 static void
446 vdev_mirror_scrub_done(zio_t *zio)
447 {
448 	mirror_child_t *mc = zio->io_private;
449 
450 	if (zio->io_error == 0) {
451 		zio_t *pio;
452 		zio_link_t *zl = NULL;
453 
454 		mutex_enter(&zio->io_lock);
455 		while ((pio = zio_walk_parents(zio, &zl)) != NULL) {
456 			mutex_enter(&pio->io_lock);
457 			ASSERT3U(zio->io_size, >=, pio->io_size);
458 			abd_copy(pio->io_abd, zio->io_abd, pio->io_size);
459 			mutex_exit(&pio->io_lock);
460 		}
461 		mutex_exit(&zio->io_lock);
462 	}
463 
464 	abd_free(zio->io_abd);
465 
466 	mc->mc_error = zio->io_error;
467 	mc->mc_tried = 1;
468 	mc->mc_skipped = 0;
469 }
470 
471 /*
472  * Check the other, lower-index DVAs to see if they're on the same
473  * vdev as the child we picked.  If they are, use them since they
474  * are likely to have been allocated from the primary metaslab in
475  * use at the time, and hence are more likely to have locality with
476  * single-copy data.
477  */
478 static int
479 vdev_mirror_dva_select(zio_t *zio, int p)
480 {
481 	dva_t *dva = zio->io_bp->blk_dva;
482 	mirror_map_t *mm = zio->io_vsd;
483 	int preferred;
484 	int c;
485 
486 	preferred = mm->mm_preferred[p];
487 	for (p--; p >= 0; p--) {
488 		c = mm->mm_preferred[p];
489 		if (DVA_GET_VDEV(&dva[c]) == DVA_GET_VDEV(&dva[preferred]))
490 			preferred = c;
491 	}
492 	return (preferred);
493 }
494 
495 static int
496 vdev_mirror_preferred_child_randomize(zio_t *zio)
497 {
498 	mirror_map_t *mm = zio->io_vsd;
499 	int p;
500 
501 	if (mm->mm_root) {
502 		p = spa_get_random(mm->mm_preferred_cnt);
503 		return (vdev_mirror_dva_select(zio, p));
504 	}
505 
506 	/*
507 	 * To ensure we don't always favour the first matching vdev,
508 	 * which could lead to wear leveling issues on SSD's, we
509 	 * use the I/O offset as a pseudo random seed into the vdevs
510 	 * which have the lowest load.
511 	 */
512 	p = (zio->io_offset >> vdev_mirror_shift) % mm->mm_preferred_cnt;
513 	return (mm->mm_preferred[p]);
514 }
515 
516 static boolean_t
517 vdev_mirror_child_readable(mirror_child_t *mc)
518 {
519 	vdev_t *vd = mc->mc_vd;
520 
521 	if (vd->vdev_top != NULL && vd->vdev_top->vdev_ops == &vdev_draid_ops)
522 		return (vdev_draid_readable(vd, mc->mc_offset));
523 	else
524 		return (vdev_readable(vd));
525 }
526 
527 static boolean_t
528 vdev_mirror_child_missing(mirror_child_t *mc, uint64_t txg, uint64_t size)
529 {
530 	vdev_t *vd = mc->mc_vd;
531 
532 	if (vd->vdev_top != NULL && vd->vdev_top->vdev_ops == &vdev_draid_ops)
533 		return (vdev_draid_missing(vd, mc->mc_offset, txg, size));
534 	else
535 		return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
536 }
537 
538 /*
539  * Try to find a vdev whose DTL doesn't contain the block we want to read
540  * preferring vdevs based on determined load. If we can't, try the read on
541  * any vdev we haven't already tried.
542  *
543  * Distributed spares are an exception to the above load rule. They are
544  * always preferred in order to detect gaps in the distributed spare which
545  * are created when another disk in the dRAID fails. In order to restore
546  * redundancy those gaps must be read to trigger the required repair IO.
547  */
548 static int
549 vdev_mirror_child_select(zio_t *zio)
550 {
551 	mirror_map_t *mm = zio->io_vsd;
552 	uint64_t txg = zio->io_txg;
553 	int c, lowest_load;
554 
555 	ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg);
556 
557 	lowest_load = INT_MAX;
558 	mm->mm_preferred_cnt = 0;
559 	for (c = 0; c < mm->mm_children; c++) {
560 		mirror_child_t *mc;
561 
562 		mc = &mm->mm_child[c];
563 		if (mc->mc_tried || mc->mc_skipped)
564 			continue;
565 
566 		if (mc->mc_vd == NULL ||
567 		    !vdev_mirror_child_readable(mc)) {
568 			mc->mc_error = SET_ERROR(ENXIO);
569 			mc->mc_tried = 1;	/* don't even try */
570 			mc->mc_skipped = 1;
571 			continue;
572 		}
573 
574 		if (vdev_mirror_child_missing(mc, txg, 1)) {
575 			mc->mc_error = SET_ERROR(ESTALE);
576 			mc->mc_skipped = 1;
577 			mc->mc_speculative = 1;
578 			continue;
579 		}
580 
581 		if (mc->mc_vd->vdev_ops == &vdev_draid_spare_ops) {
582 			mm->mm_preferred[0] = c;
583 			mm->mm_preferred_cnt = 1;
584 			break;
585 		}
586 
587 		mc->mc_load = vdev_mirror_load(mm, mc->mc_vd, mc->mc_offset);
588 		if (mc->mc_load > lowest_load)
589 			continue;
590 
591 		if (mc->mc_load < lowest_load) {
592 			lowest_load = mc->mc_load;
593 			mm->mm_preferred_cnt = 0;
594 		}
595 		mm->mm_preferred[mm->mm_preferred_cnt] = c;
596 		mm->mm_preferred_cnt++;
597 	}
598 
599 	if (mm->mm_preferred_cnt == 1) {
600 		MIRROR_BUMP(vdev_mirror_stat_preferred_found);
601 		return (mm->mm_preferred[0]);
602 	}
603 
604 	if (mm->mm_preferred_cnt > 1) {
605 		MIRROR_BUMP(vdev_mirror_stat_preferred_not_found);
606 		return (vdev_mirror_preferred_child_randomize(zio));
607 	}
608 
609 	/*
610 	 * Every device is either missing or has this txg in its DTL.
611 	 * Look for any child we haven't already tried before giving up.
612 	 */
613 	for (c = 0; c < mm->mm_children; c++) {
614 		if (!mm->mm_child[c].mc_tried)
615 			return (c);
616 	}
617 
618 	/*
619 	 * Every child failed.  There's no place left to look.
620 	 */
621 	return (-1);
622 }
623 
624 static void
625 vdev_mirror_io_start(zio_t *zio)
626 {
627 	mirror_map_t *mm;
628 	mirror_child_t *mc;
629 	int c, children;
630 
631 	mm = vdev_mirror_map_init(zio);
632 
633 	if (mm == NULL) {
634 		ASSERT(!spa_trust_config(zio->io_spa));
635 		ASSERT(zio->io_type == ZIO_TYPE_READ);
636 		zio_execute(zio);
637 		return;
638 	}
639 
640 	if (zio->io_type == ZIO_TYPE_READ) {
641 		if (zio->io_bp != NULL &&
642 		    (zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_resilvering) {
643 			/*
644 			 * For scrubbing reads (if we can verify the
645 			 * checksum here, as indicated by io_bp being
646 			 * non-NULL) we need to allocate a read buffer for
647 			 * each child and issue reads to all children.  If
648 			 * any child succeeds, it will copy its data into
649 			 * zio->io_data in vdev_mirror_scrub_done.
650 			 */
651 			for (c = 0; c < mm->mm_children; c++) {
652 				mc = &mm->mm_child[c];
653 				zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
654 				    mc->mc_vd, mc->mc_offset,
655 				    abd_alloc_sametype(zio->io_abd,
656 				    zio->io_size), zio->io_size,
657 				    zio->io_type, zio->io_priority, 0,
658 				    vdev_mirror_scrub_done, mc));
659 			}
660 			zio_execute(zio);
661 			return;
662 		}
663 		/*
664 		 * For normal reads just pick one child.
665 		 */
666 		c = vdev_mirror_child_select(zio);
667 		children = (c >= 0);
668 	} else {
669 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
670 
671 		/*
672 		 * Writes go to all children.
673 		 */
674 		c = 0;
675 		children = mm->mm_children;
676 	}
677 
678 	while (children--) {
679 		mc = &mm->mm_child[c];
680 		c++;
681 
682 		/*
683 		 * When sequentially resilvering only issue write repair
684 		 * IOs to the vdev which is being rebuilt since performance
685 		 * is limited by the slowest child.  This is an issue for
686 		 * faster replacement devices such as distributed spares.
687 		 */
688 		if ((zio->io_priority == ZIO_PRIORITY_REBUILD) &&
689 		    (zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
690 		    !(zio->io_flags & ZIO_FLAG_SCRUB) &&
691 		    mm->mm_rebuilding && !mc->mc_rebuilding) {
692 			continue;
693 		}
694 
695 		zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
696 		    mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size,
697 		    zio->io_type, zio->io_priority, 0,
698 		    vdev_mirror_child_done, mc));
699 	}
700 
701 	zio_execute(zio);
702 }
703 
704 static int
705 vdev_mirror_worst_error(mirror_map_t *mm)
706 {
707 	int error[2] = { 0, 0 };
708 
709 	for (int c = 0; c < mm->mm_children; c++) {
710 		mirror_child_t *mc = &mm->mm_child[c];
711 		int s = mc->mc_speculative;
712 		error[s] = zio_worst_error(error[s], mc->mc_error);
713 	}
714 
715 	return (error[0] ? error[0] : error[1]);
716 }
717 
718 static void
719 vdev_mirror_io_done(zio_t *zio)
720 {
721 	mirror_map_t *mm = zio->io_vsd;
722 	mirror_child_t *mc;
723 	int c;
724 	int good_copies = 0;
725 	int unexpected_errors = 0;
726 
727 	if (mm == NULL)
728 		return;
729 
730 	for (c = 0; c < mm->mm_children; c++) {
731 		mc = &mm->mm_child[c];
732 
733 		if (mc->mc_error) {
734 			if (!mc->mc_skipped)
735 				unexpected_errors++;
736 		} else if (mc->mc_tried) {
737 			good_copies++;
738 		}
739 	}
740 
741 	if (zio->io_type == ZIO_TYPE_WRITE) {
742 		/*
743 		 * XXX -- for now, treat partial writes as success.
744 		 *
745 		 * Now that we support write reallocation, it would be better
746 		 * to treat partial failure as real failure unless there are
747 		 * no non-degraded top-level vdevs left, and not update DTLs
748 		 * if we intend to reallocate.
749 		 */
750 		/* XXPOLICY */
751 		if (good_copies != mm->mm_children) {
752 			/*
753 			 * Always require at least one good copy.
754 			 *
755 			 * For ditto blocks (io_vd == NULL), require
756 			 * all copies to be good.
757 			 *
758 			 * XXX -- for replacing vdevs, there's no great answer.
759 			 * If the old device is really dead, we may not even
760 			 * be able to access it -- so we only want to
761 			 * require good writes to the new device.  But if
762 			 * the new device turns out to be flaky, we want
763 			 * to be able to detach it -- which requires all
764 			 * writes to the old device to have succeeded.
765 			 */
766 			if (good_copies == 0 || zio->io_vd == NULL)
767 				zio->io_error = vdev_mirror_worst_error(mm);
768 		}
769 		return;
770 	}
771 
772 	ASSERT(zio->io_type == ZIO_TYPE_READ);
773 
774 	/*
775 	 * If we don't have a good copy yet, keep trying other children.
776 	 */
777 	/* XXPOLICY */
778 	if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) {
779 		ASSERT(c >= 0 && c < mm->mm_children);
780 		mc = &mm->mm_child[c];
781 		zio_vdev_io_redone(zio);
782 		zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
783 		    mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size,
784 		    ZIO_TYPE_READ, zio->io_priority, 0,
785 		    vdev_mirror_child_done, mc));
786 		return;
787 	}
788 
789 	/* XXPOLICY */
790 	if (good_copies == 0) {
791 		zio->io_error = vdev_mirror_worst_error(mm);
792 		ASSERT(zio->io_error != 0);
793 	}
794 
795 	if (good_copies && spa_writeable(zio->io_spa) &&
796 	    (unexpected_errors ||
797 	    (zio->io_flags & ZIO_FLAG_RESILVER) ||
798 	    ((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_resilvering))) {
799 		/*
800 		 * Use the good data we have in hand to repair damaged children.
801 		 */
802 		for (c = 0; c < mm->mm_children; c++) {
803 			/*
804 			 * Don't rewrite known good children.
805 			 * Not only is it unnecessary, it could
806 			 * actually be harmful: if the system lost
807 			 * power while rewriting the only good copy,
808 			 * there would be no good copies left!
809 			 */
810 			mc = &mm->mm_child[c];
811 
812 			if (mc->mc_error == 0) {
813 				vdev_ops_t *ops = mc->mc_vd->vdev_ops;
814 
815 				if (mc->mc_tried)
816 					continue;
817 				/*
818 				 * We didn't try this child.  We need to
819 				 * repair it if:
820 				 * 1. it's a scrub (in which case we have
821 				 * tried everything that was healthy)
822 				 *  - or -
823 				 * 2. it's an indirect or distributed spare
824 				 * vdev (in which case it could point to any
825 				 * other vdev, which might have a bad DTL)
826 				 *  - or -
827 				 * 3. the DTL indicates that this data is
828 				 * missing from this vdev
829 				 */
830 				if (!(zio->io_flags & ZIO_FLAG_SCRUB) &&
831 				    ops != &vdev_indirect_ops &&
832 				    ops != &vdev_draid_spare_ops &&
833 				    !vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL,
834 				    zio->io_txg, 1))
835 					continue;
836 				mc->mc_error = SET_ERROR(ESTALE);
837 			}
838 
839 			zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
840 			    mc->mc_vd, mc->mc_offset,
841 			    zio->io_abd, zio->io_size, ZIO_TYPE_WRITE,
842 			    zio->io_priority == ZIO_PRIORITY_REBUILD ?
843 			    ZIO_PRIORITY_REBUILD : ZIO_PRIORITY_ASYNC_WRITE,
844 			    ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
845 			    ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
846 		}
847 	}
848 }
849 
850 static void
851 vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded)
852 {
853 	if (faulted == vd->vdev_children) {
854 		if (vdev_children_are_offline(vd)) {
855 			vdev_set_state(vd, B_FALSE, VDEV_STATE_OFFLINE,
856 			    VDEV_AUX_CHILDREN_OFFLINE);
857 		} else {
858 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
859 			    VDEV_AUX_NO_REPLICAS);
860 		}
861 	} else if (degraded + faulted != 0) {
862 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
863 	} else {
864 		vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
865 	}
866 }
867 
868 /*
869  * Return the maximum asize for a rebuild zio in the provided range.
870  */
871 static uint64_t
872 vdev_mirror_rebuild_asize(vdev_t *vd, uint64_t start, uint64_t asize,
873     uint64_t max_segment)
874 {
875 	uint64_t psize = MIN(P2ROUNDUP(max_segment, 1 << vd->vdev_ashift),
876 	    SPA_MAXBLOCKSIZE);
877 
878 	return (MIN(asize, vdev_psize_to_asize(vd, psize)));
879 }
880 
881 vdev_ops_t vdev_mirror_ops = {
882 	.vdev_op_init = NULL,
883 	.vdev_op_fini = NULL,
884 	.vdev_op_open = vdev_mirror_open,
885 	.vdev_op_close = vdev_mirror_close,
886 	.vdev_op_asize = vdev_default_asize,
887 	.vdev_op_min_asize = vdev_default_min_asize,
888 	.vdev_op_min_alloc = NULL,
889 	.vdev_op_io_start = vdev_mirror_io_start,
890 	.vdev_op_io_done = vdev_mirror_io_done,
891 	.vdev_op_state_change = vdev_mirror_state_change,
892 	.vdev_op_need_resilver = vdev_default_need_resilver,
893 	.vdev_op_hold = NULL,
894 	.vdev_op_rele = NULL,
895 	.vdev_op_remap = NULL,
896 	.vdev_op_xlate = vdev_default_xlate,
897 	.vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
898 	.vdev_op_metaslab_init = NULL,
899 	.vdev_op_config_generate = NULL,
900 	.vdev_op_nparity = NULL,
901 	.vdev_op_ndisks = NULL,
902 	.vdev_op_type = VDEV_TYPE_MIRROR,	/* name of this vdev type */
903 	.vdev_op_leaf = B_FALSE			/* not a leaf vdev */
904 };
905 
906 vdev_ops_t vdev_replacing_ops = {
907 	.vdev_op_init = NULL,
908 	.vdev_op_fini = NULL,
909 	.vdev_op_open = vdev_mirror_open,
910 	.vdev_op_close = vdev_mirror_close,
911 	.vdev_op_asize = vdev_default_asize,
912 	.vdev_op_min_asize = vdev_default_min_asize,
913 	.vdev_op_min_alloc = NULL,
914 	.vdev_op_io_start = vdev_mirror_io_start,
915 	.vdev_op_io_done = vdev_mirror_io_done,
916 	.vdev_op_state_change = vdev_mirror_state_change,
917 	.vdev_op_need_resilver = vdev_default_need_resilver,
918 	.vdev_op_hold = NULL,
919 	.vdev_op_rele = NULL,
920 	.vdev_op_remap = NULL,
921 	.vdev_op_xlate = vdev_default_xlate,
922 	.vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
923 	.vdev_op_metaslab_init = NULL,
924 	.vdev_op_config_generate = NULL,
925 	.vdev_op_nparity = NULL,
926 	.vdev_op_ndisks = NULL,
927 	.vdev_op_type = VDEV_TYPE_REPLACING,	/* name of this vdev type */
928 	.vdev_op_leaf = B_FALSE			/* not a leaf vdev */
929 };
930 
931 vdev_ops_t vdev_spare_ops = {
932 	.vdev_op_init = NULL,
933 	.vdev_op_fini = NULL,
934 	.vdev_op_open = vdev_mirror_open,
935 	.vdev_op_close = vdev_mirror_close,
936 	.vdev_op_asize = vdev_default_asize,
937 	.vdev_op_min_asize = vdev_default_min_asize,
938 	.vdev_op_min_alloc = NULL,
939 	.vdev_op_io_start = vdev_mirror_io_start,
940 	.vdev_op_io_done = vdev_mirror_io_done,
941 	.vdev_op_state_change = vdev_mirror_state_change,
942 	.vdev_op_need_resilver = vdev_default_need_resilver,
943 	.vdev_op_hold = NULL,
944 	.vdev_op_rele = NULL,
945 	.vdev_op_remap = NULL,
946 	.vdev_op_xlate = vdev_default_xlate,
947 	.vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
948 	.vdev_op_metaslab_init = NULL,
949 	.vdev_op_config_generate = NULL,
950 	.vdev_op_nparity = NULL,
951 	.vdev_op_ndisks = NULL,
952 	.vdev_op_type = VDEV_TYPE_SPARE,	/* name of this vdev type */
953 	.vdev_op_leaf = B_FALSE			/* not a leaf vdev */
954 };
955 
956 /* BEGIN CSTYLED */
957 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_inc, INT, ZMOD_RW,
958 	"Rotating media load increment for non-seeking I/O's");
959 
960 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_seek_inc, INT, ZMOD_RW,
961 	"Rotating media load increment for seeking I/O's");
962 
963 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_seek_offset, INT, ZMOD_RW,
964 	"Offset in bytes from the last I/O which triggers "
965 	"a reduced rotating media seek increment");
966 
967 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, non_rotating_inc, INT, ZMOD_RW,
968 	"Non-rotating media load increment for non-seeking I/O's");
969 
970 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, non_rotating_seek_inc, INT, ZMOD_RW,
971 	"Non-rotating media load increment for seeking I/O's");
972 /* END CSTYLED */
973