xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_mirror.c (revision b1fd95c9e24791d44593e611406b41e57826a5b8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
28  */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dsl_pool.h>
34 #include <sys/dsl_scan.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/vdev_draid.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/abd.h>
40 #include <sys/fs/zfs.h>
41 
42 /*
43  * Vdev mirror kstats
44  */
45 static kstat_t *mirror_ksp = NULL;
46 
47 typedef struct mirror_stats {
48 	kstat_named_t vdev_mirror_stat_rotating_linear;
49 	kstat_named_t vdev_mirror_stat_rotating_offset;
50 	kstat_named_t vdev_mirror_stat_rotating_seek;
51 	kstat_named_t vdev_mirror_stat_non_rotating_linear;
52 	kstat_named_t vdev_mirror_stat_non_rotating_seek;
53 
54 	kstat_named_t vdev_mirror_stat_preferred_found;
55 	kstat_named_t vdev_mirror_stat_preferred_not_found;
56 } mirror_stats_t;
57 
58 static mirror_stats_t mirror_stats = {
59 	/* New I/O follows directly the last I/O */
60 	{ "rotating_linear",			KSTAT_DATA_UINT64 },
61 	/* New I/O is within zfs_vdev_mirror_rotating_seek_offset of the last */
62 	{ "rotating_offset",			KSTAT_DATA_UINT64 },
63 	/* New I/O requires random seek */
64 	{ "rotating_seek",			KSTAT_DATA_UINT64 },
65 	/* New I/O follows directly the last I/O  (nonrot) */
66 	{ "non_rotating_linear",		KSTAT_DATA_UINT64 },
67 	/* New I/O requires random seek (nonrot) */
68 	{ "non_rotating_seek",			KSTAT_DATA_UINT64 },
69 	/* Preferred child vdev found */
70 	{ "preferred_found",			KSTAT_DATA_UINT64 },
71 	/* Preferred child vdev not found or equal load  */
72 	{ "preferred_not_found",		KSTAT_DATA_UINT64 },
73 
74 };
75 
76 #define	MIRROR_STAT(stat)		(mirror_stats.stat.value.ui64)
77 #define	MIRROR_INCR(stat, val) 		atomic_add_64(&MIRROR_STAT(stat), val)
78 #define	MIRROR_BUMP(stat)		MIRROR_INCR(stat, 1)
79 
80 void
81 vdev_mirror_stat_init(void)
82 {
83 	mirror_ksp = kstat_create("zfs", 0, "vdev_mirror_stats",
84 	    "misc", KSTAT_TYPE_NAMED,
85 	    sizeof (mirror_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
86 	if (mirror_ksp != NULL) {
87 		mirror_ksp->ks_data = &mirror_stats;
88 		kstat_install(mirror_ksp);
89 	}
90 }
91 
92 void
93 vdev_mirror_stat_fini(void)
94 {
95 	if (mirror_ksp != NULL) {
96 		kstat_delete(mirror_ksp);
97 		mirror_ksp = NULL;
98 	}
99 }
100 
101 /*
102  * Virtual device vector for mirroring.
103  */
104 typedef struct mirror_child {
105 	vdev_t		*mc_vd;
106 	abd_t		*mc_abd;
107 	uint64_t	mc_offset;
108 	int		mc_error;
109 	int		mc_load;
110 	uint8_t		mc_tried;
111 	uint8_t		mc_skipped;
112 	uint8_t		mc_speculative;
113 	uint8_t		mc_rebuilding;
114 } mirror_child_t;
115 
116 typedef struct mirror_map {
117 	int		*mm_preferred;
118 	int		mm_preferred_cnt;
119 	int		mm_children;
120 	boolean_t	mm_resilvering;
121 	boolean_t	mm_rebuilding;
122 	boolean_t	mm_root;
123 	mirror_child_t	mm_child[];
124 } mirror_map_t;
125 
126 static const int vdev_mirror_shift = 21;
127 
128 /*
129  * The load configuration settings below are tuned by default for
130  * the case where all devices are of the same rotational type.
131  *
132  * If there is a mixture of rotating and non-rotating media, setting
133  * zfs_vdev_mirror_non_rotating_seek_inc to 0 may well provide better results
134  * as it will direct more reads to the non-rotating vdevs which are more likely
135  * to have a higher performance.
136  */
137 
138 /* Rotating media load calculation configuration. */
139 static int zfs_vdev_mirror_rotating_inc = 0;
140 static int zfs_vdev_mirror_rotating_seek_inc = 5;
141 static int zfs_vdev_mirror_rotating_seek_offset = 1 * 1024 * 1024;
142 
143 /* Non-rotating media load calculation configuration. */
144 static int zfs_vdev_mirror_non_rotating_inc = 0;
145 static int zfs_vdev_mirror_non_rotating_seek_inc = 1;
146 
147 static inline size_t
148 vdev_mirror_map_size(int children)
149 {
150 	return (offsetof(mirror_map_t, mm_child[children]) +
151 	    sizeof (int) * children);
152 }
153 
154 static inline mirror_map_t *
155 vdev_mirror_map_alloc(int children, boolean_t resilvering, boolean_t root)
156 {
157 	mirror_map_t *mm;
158 
159 	mm = kmem_zalloc(vdev_mirror_map_size(children), KM_SLEEP);
160 	mm->mm_children = children;
161 	mm->mm_resilvering = resilvering;
162 	mm->mm_root = root;
163 	mm->mm_preferred = (int *)((uintptr_t)mm +
164 	    offsetof(mirror_map_t, mm_child[children]));
165 
166 	return (mm);
167 }
168 
169 static void
170 vdev_mirror_map_free(zio_t *zio)
171 {
172 	mirror_map_t *mm = zio->io_vsd;
173 
174 	kmem_free(mm, vdev_mirror_map_size(mm->mm_children));
175 }
176 
177 static const zio_vsd_ops_t vdev_mirror_vsd_ops = {
178 	.vsd_free = vdev_mirror_map_free,
179 };
180 
181 static int
182 vdev_mirror_load(mirror_map_t *mm, vdev_t *vd, uint64_t zio_offset)
183 {
184 	uint64_t last_offset;
185 	int64_t offset_diff;
186 	int load;
187 
188 	/* All DVAs have equal weight at the root. */
189 	if (mm->mm_root)
190 		return (INT_MAX);
191 
192 	/*
193 	 * We don't return INT_MAX if the device is resilvering i.e.
194 	 * vdev_resilver_txg != 0 as when tested performance was slightly
195 	 * worse overall when resilvering with compared to without.
196 	 */
197 
198 	/* Fix zio_offset for leaf vdevs */
199 	if (vd->vdev_ops->vdev_op_leaf)
200 		zio_offset += VDEV_LABEL_START_SIZE;
201 
202 	/* Standard load based on pending queue length. */
203 	load = vdev_queue_length(vd);
204 	last_offset = vdev_queue_last_offset(vd);
205 
206 	if (vd->vdev_nonrot) {
207 		/* Non-rotating media. */
208 		if (last_offset == zio_offset) {
209 			MIRROR_BUMP(vdev_mirror_stat_non_rotating_linear);
210 			return (load + zfs_vdev_mirror_non_rotating_inc);
211 		}
212 
213 		/*
214 		 * Apply a seek penalty even for non-rotating devices as
215 		 * sequential I/O's can be aggregated into fewer operations on
216 		 * the device, thus avoiding unnecessary per-command overhead
217 		 * and boosting performance.
218 		 */
219 		MIRROR_BUMP(vdev_mirror_stat_non_rotating_seek);
220 		return (load + zfs_vdev_mirror_non_rotating_seek_inc);
221 	}
222 
223 	/* Rotating media I/O's which directly follow the last I/O. */
224 	if (last_offset == zio_offset) {
225 		MIRROR_BUMP(vdev_mirror_stat_rotating_linear);
226 		return (load + zfs_vdev_mirror_rotating_inc);
227 	}
228 
229 	/*
230 	 * Apply half the seek increment to I/O's within seek offset
231 	 * of the last I/O issued to this vdev as they should incur less
232 	 * of a seek increment.
233 	 */
234 	offset_diff = (int64_t)(last_offset - zio_offset);
235 	if (ABS(offset_diff) < zfs_vdev_mirror_rotating_seek_offset) {
236 		MIRROR_BUMP(vdev_mirror_stat_rotating_offset);
237 		return (load + (zfs_vdev_mirror_rotating_seek_inc / 2));
238 	}
239 
240 	/* Apply the full seek increment to all other I/O's. */
241 	MIRROR_BUMP(vdev_mirror_stat_rotating_seek);
242 	return (load + zfs_vdev_mirror_rotating_seek_inc);
243 }
244 
245 static boolean_t
246 vdev_mirror_rebuilding(vdev_t *vd)
247 {
248 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_rebuild_txg)
249 		return (B_TRUE);
250 
251 	for (int i = 0; i < vd->vdev_children; i++) {
252 		if (vdev_mirror_rebuilding(vd->vdev_child[i])) {
253 			return (B_TRUE);
254 		}
255 	}
256 
257 	return (B_FALSE);
258 }
259 
260 /*
261  * Avoid inlining the function to keep vdev_mirror_io_start(), which
262  * is this functions only caller, as small as possible on the stack.
263  */
264 noinline static mirror_map_t *
265 vdev_mirror_map_init(zio_t *zio)
266 {
267 	mirror_map_t *mm = NULL;
268 	mirror_child_t *mc;
269 	vdev_t *vd = zio->io_vd;
270 	int c;
271 
272 	if (vd == NULL) {
273 		dva_t *dva = zio->io_bp->blk_dva;
274 		spa_t *spa = zio->io_spa;
275 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
276 		dva_t dva_copy[SPA_DVAS_PER_BP];
277 
278 		/*
279 		 * The sequential scrub code sorts and issues all DVAs
280 		 * of a bp separately. Each of these IOs includes all
281 		 * original DVA copies so that repairs can be performed
282 		 * in the event of an error, but we only actually want
283 		 * to check the first DVA since the others will be
284 		 * checked by their respective sorted IOs. Only if we
285 		 * hit an error will we try all DVAs upon retrying.
286 		 *
287 		 * Note: This check is safe even if the user switches
288 		 * from a legacy scrub to a sequential one in the middle
289 		 * of processing, since scn_is_sorted isn't updated until
290 		 * all outstanding IOs from the previous scrub pass
291 		 * complete.
292 		 */
293 		if ((zio->io_flags & ZIO_FLAG_SCRUB) &&
294 		    !(zio->io_flags & ZIO_FLAG_IO_RETRY) &&
295 		    dsl_scan_scrubbing(spa->spa_dsl_pool) &&
296 		    scn->scn_is_sorted) {
297 			c = 1;
298 		} else {
299 			c = BP_GET_NDVAS(zio->io_bp);
300 		}
301 
302 		/*
303 		 * If the pool cannot be written to, then infer that some
304 		 * DVAs might be invalid or point to vdevs that do not exist.
305 		 * We skip them.
306 		 */
307 		if (!spa_writeable(spa)) {
308 			ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
309 			int j = 0;
310 			for (int i = 0; i < c; i++) {
311 				if (zfs_dva_valid(spa, &dva[i], zio->io_bp))
312 					dva_copy[j++] = dva[i];
313 			}
314 			if (j == 0) {
315 				zio->io_vsd = NULL;
316 				zio->io_error = ENXIO;
317 				return (NULL);
318 			}
319 			if (j < c) {
320 				dva = dva_copy;
321 				c = j;
322 			}
323 		}
324 
325 		mm = vdev_mirror_map_alloc(c, B_FALSE, B_TRUE);
326 		for (c = 0; c < mm->mm_children; c++) {
327 			mc = &mm->mm_child[c];
328 
329 			mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c]));
330 			mc->mc_offset = DVA_GET_OFFSET(&dva[c]);
331 			if (mc->mc_vd == NULL) {
332 				kmem_free(mm, vdev_mirror_map_size(
333 				    mm->mm_children));
334 				zio->io_vsd = NULL;
335 				zio->io_error = ENXIO;
336 				return (NULL);
337 			}
338 		}
339 	} else {
340 		/*
341 		 * If we are resilvering, then we should handle scrub reads
342 		 * differently; we shouldn't issue them to the resilvering
343 		 * device because it might not have those blocks.
344 		 *
345 		 * We are resilvering iff:
346 		 * 1) We are a replacing vdev (ie our name is "replacing-1" or
347 		 *    "spare-1" or something like that), and
348 		 * 2) The pool is currently being resilvered.
349 		 *
350 		 * We cannot simply check vd->vdev_resilver_txg, because it's
351 		 * not set in this path.
352 		 *
353 		 * Nor can we just check our vdev_ops; there are cases (such as
354 		 * when a user types "zpool replace pool odev spare_dev" and
355 		 * spare_dev is in the spare list, or when a spare device is
356 		 * automatically used to replace a DEGRADED device) when
357 		 * resilvering is complete but both the original vdev and the
358 		 * spare vdev remain in the pool.  That behavior is intentional.
359 		 * It helps implement the policy that a spare should be
360 		 * automatically removed from the pool after the user replaces
361 		 * the device that originally failed.
362 		 *
363 		 * If a spa load is in progress, then spa_dsl_pool may be
364 		 * uninitialized.  But we shouldn't be resilvering during a spa
365 		 * load anyway.
366 		 */
367 		boolean_t replacing = (vd->vdev_ops == &vdev_replacing_ops ||
368 		    vd->vdev_ops == &vdev_spare_ops) &&
369 		    spa_load_state(vd->vdev_spa) == SPA_LOAD_NONE &&
370 		    dsl_scan_resilvering(vd->vdev_spa->spa_dsl_pool);
371 		mm = vdev_mirror_map_alloc(vd->vdev_children, replacing,
372 		    B_FALSE);
373 		for (c = 0; c < mm->mm_children; c++) {
374 			mc = &mm->mm_child[c];
375 			mc->mc_vd = vd->vdev_child[c];
376 			mc->mc_offset = zio->io_offset;
377 
378 			if (vdev_mirror_rebuilding(mc->mc_vd))
379 				mm->mm_rebuilding = mc->mc_rebuilding = B_TRUE;
380 		}
381 	}
382 
383 	return (mm);
384 }
385 
386 static int
387 vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
388     uint64_t *logical_ashift, uint64_t *physical_ashift)
389 {
390 	int numerrors = 0;
391 	int lasterror = 0;
392 
393 	if (vd->vdev_children == 0) {
394 		vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
395 		return (SET_ERROR(EINVAL));
396 	}
397 
398 	vdev_open_children(vd);
399 
400 	for (int c = 0; c < vd->vdev_children; c++) {
401 		vdev_t *cvd = vd->vdev_child[c];
402 
403 		if (cvd->vdev_open_error) {
404 			lasterror = cvd->vdev_open_error;
405 			numerrors++;
406 			continue;
407 		}
408 
409 		*asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
410 		*max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
411 		*logical_ashift = MAX(*logical_ashift, cvd->vdev_ashift);
412 	}
413 	for (int c = 0; c < vd->vdev_children; c++) {
414 		vdev_t *cvd = vd->vdev_child[c];
415 
416 		if (cvd->vdev_open_error)
417 			continue;
418 		*physical_ashift = vdev_best_ashift(*logical_ashift,
419 		    *physical_ashift, cvd->vdev_physical_ashift);
420 	}
421 
422 	if (numerrors == vd->vdev_children) {
423 		if (vdev_children_are_offline(vd))
424 			vd->vdev_stat.vs_aux = VDEV_AUX_CHILDREN_OFFLINE;
425 		else
426 			vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
427 		return (lasterror);
428 	}
429 
430 	return (0);
431 }
432 
433 static void
434 vdev_mirror_close(vdev_t *vd)
435 {
436 	for (int c = 0; c < vd->vdev_children; c++)
437 		vdev_close(vd->vdev_child[c]);
438 }
439 
440 static void
441 vdev_mirror_child_done(zio_t *zio)
442 {
443 	mirror_child_t *mc = zio->io_private;
444 
445 	mc->mc_error = zio->io_error;
446 	mc->mc_tried = 1;
447 	mc->mc_skipped = 0;
448 }
449 
450 /*
451  * Check the other, lower-index DVAs to see if they're on the same
452  * vdev as the child we picked.  If they are, use them since they
453  * are likely to have been allocated from the primary metaslab in
454  * use at the time, and hence are more likely to have locality with
455  * single-copy data.
456  */
457 static int
458 vdev_mirror_dva_select(zio_t *zio, int p)
459 {
460 	dva_t *dva = zio->io_bp->blk_dva;
461 	mirror_map_t *mm = zio->io_vsd;
462 	int preferred;
463 	int c;
464 
465 	preferred = mm->mm_preferred[p];
466 	for (p--; p >= 0; p--) {
467 		c = mm->mm_preferred[p];
468 		if (DVA_GET_VDEV(&dva[c]) == DVA_GET_VDEV(&dva[preferred]))
469 			preferred = c;
470 	}
471 	return (preferred);
472 }
473 
474 static int
475 vdev_mirror_preferred_child_randomize(zio_t *zio)
476 {
477 	mirror_map_t *mm = zio->io_vsd;
478 	int p;
479 
480 	if (mm->mm_root) {
481 		p = random_in_range(mm->mm_preferred_cnt);
482 		return (vdev_mirror_dva_select(zio, p));
483 	}
484 
485 	/*
486 	 * To ensure we don't always favour the first matching vdev,
487 	 * which could lead to wear leveling issues on SSD's, we
488 	 * use the I/O offset as a pseudo random seed into the vdevs
489 	 * which have the lowest load.
490 	 */
491 	p = (zio->io_offset >> vdev_mirror_shift) % mm->mm_preferred_cnt;
492 	return (mm->mm_preferred[p]);
493 }
494 
495 static boolean_t
496 vdev_mirror_child_readable(mirror_child_t *mc)
497 {
498 	vdev_t *vd = mc->mc_vd;
499 
500 	if (vd->vdev_top != NULL && vd->vdev_top->vdev_ops == &vdev_draid_ops)
501 		return (vdev_draid_readable(vd, mc->mc_offset));
502 	else
503 		return (vdev_readable(vd));
504 }
505 
506 static boolean_t
507 vdev_mirror_child_missing(mirror_child_t *mc, uint64_t txg, uint64_t size)
508 {
509 	vdev_t *vd = mc->mc_vd;
510 
511 	if (vd->vdev_top != NULL && vd->vdev_top->vdev_ops == &vdev_draid_ops)
512 		return (vdev_draid_missing(vd, mc->mc_offset, txg, size));
513 	else
514 		return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
515 }
516 
517 /*
518  * Try to find a vdev whose DTL doesn't contain the block we want to read
519  * preferring vdevs based on determined load. If we can't, try the read on
520  * any vdev we haven't already tried.
521  *
522  * Distributed spares are an exception to the above load rule. They are
523  * always preferred in order to detect gaps in the distributed spare which
524  * are created when another disk in the dRAID fails. In order to restore
525  * redundancy those gaps must be read to trigger the required repair IO.
526  */
527 static int
528 vdev_mirror_child_select(zio_t *zio)
529 {
530 	mirror_map_t *mm = zio->io_vsd;
531 	uint64_t txg = zio->io_txg;
532 	int c, lowest_load;
533 
534 	ASSERT(zio->io_bp == NULL || BP_GET_BIRTH(zio->io_bp) == txg);
535 
536 	lowest_load = INT_MAX;
537 	mm->mm_preferred_cnt = 0;
538 	for (c = 0; c < mm->mm_children; c++) {
539 		mirror_child_t *mc;
540 
541 		mc = &mm->mm_child[c];
542 		if (mc->mc_tried || mc->mc_skipped)
543 			continue;
544 
545 		if (mc->mc_vd == NULL ||
546 		    !vdev_mirror_child_readable(mc)) {
547 			mc->mc_error = SET_ERROR(ENXIO);
548 			mc->mc_tried = 1;	/* don't even try */
549 			mc->mc_skipped = 1;
550 			continue;
551 		}
552 
553 		if (vdev_mirror_child_missing(mc, txg, 1)) {
554 			mc->mc_error = SET_ERROR(ESTALE);
555 			mc->mc_skipped = 1;
556 			mc->mc_speculative = 1;
557 			continue;
558 		}
559 
560 		if (mc->mc_vd->vdev_ops == &vdev_draid_spare_ops) {
561 			mm->mm_preferred[0] = c;
562 			mm->mm_preferred_cnt = 1;
563 			break;
564 		}
565 
566 		mc->mc_load = vdev_mirror_load(mm, mc->mc_vd, mc->mc_offset);
567 		if (mc->mc_load > lowest_load)
568 			continue;
569 
570 		if (mc->mc_load < lowest_load) {
571 			lowest_load = mc->mc_load;
572 			mm->mm_preferred_cnt = 0;
573 		}
574 		mm->mm_preferred[mm->mm_preferred_cnt] = c;
575 		mm->mm_preferred_cnt++;
576 	}
577 
578 	if (mm->mm_preferred_cnt == 1) {
579 		MIRROR_BUMP(vdev_mirror_stat_preferred_found);
580 		return (mm->mm_preferred[0]);
581 	}
582 
583 	if (mm->mm_preferred_cnt > 1) {
584 		MIRROR_BUMP(vdev_mirror_stat_preferred_not_found);
585 		return (vdev_mirror_preferred_child_randomize(zio));
586 	}
587 
588 	/*
589 	 * Every device is either missing or has this txg in its DTL.
590 	 * Look for any child we haven't already tried before giving up.
591 	 */
592 	for (c = 0; c < mm->mm_children; c++) {
593 		if (!mm->mm_child[c].mc_tried)
594 			return (c);
595 	}
596 
597 	/*
598 	 * Every child failed.  There's no place left to look.
599 	 */
600 	return (-1);
601 }
602 
603 static void
604 vdev_mirror_io_start(zio_t *zio)
605 {
606 	mirror_map_t *mm;
607 	mirror_child_t *mc;
608 	int c, children;
609 
610 	mm = vdev_mirror_map_init(zio);
611 	zio->io_vsd = mm;
612 	zio->io_vsd_ops = &vdev_mirror_vsd_ops;
613 
614 	if (mm == NULL) {
615 		ASSERT(!spa_trust_config(zio->io_spa));
616 		ASSERT(zio->io_type == ZIO_TYPE_READ);
617 		zio_execute(zio);
618 		return;
619 	}
620 
621 	if (zio->io_type == ZIO_TYPE_READ) {
622 		if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_resilvering) {
623 			/*
624 			 * For scrubbing reads we need to issue reads to all
625 			 * children.  One child can reuse parent buffer, but
626 			 * for others we have to allocate separate ones to
627 			 * verify checksums if io_bp is non-NULL, or compare
628 			 * them in vdev_mirror_io_done() otherwise.
629 			 */
630 			boolean_t first = B_TRUE;
631 			for (c = 0; c < mm->mm_children; c++) {
632 				mc = &mm->mm_child[c];
633 
634 				/* Don't issue ZIOs to offline children */
635 				if (!vdev_mirror_child_readable(mc)) {
636 					mc->mc_error = SET_ERROR(ENXIO);
637 					mc->mc_tried = 1;
638 					mc->mc_skipped = 1;
639 					continue;
640 				}
641 
642 				mc->mc_abd = first ? zio->io_abd :
643 				    abd_alloc_sametype(zio->io_abd,
644 				    zio->io_size);
645 				zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
646 				    mc->mc_vd, mc->mc_offset, mc->mc_abd,
647 				    zio->io_size, zio->io_type,
648 				    zio->io_priority, 0,
649 				    vdev_mirror_child_done, mc));
650 				first = B_FALSE;
651 			}
652 			zio_execute(zio);
653 			return;
654 		}
655 		/*
656 		 * For normal reads just pick one child.
657 		 */
658 		c = vdev_mirror_child_select(zio);
659 		children = (c >= 0);
660 	} else {
661 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
662 
663 		/*
664 		 * Writes go to all children.
665 		 */
666 		c = 0;
667 		children = mm->mm_children;
668 	}
669 
670 	while (children--) {
671 		mc = &mm->mm_child[c];
672 		c++;
673 
674 		/*
675 		 * When sequentially resilvering only issue write repair
676 		 * IOs to the vdev which is being rebuilt since performance
677 		 * is limited by the slowest child.  This is an issue for
678 		 * faster replacement devices such as distributed spares.
679 		 */
680 		if ((zio->io_priority == ZIO_PRIORITY_REBUILD) &&
681 		    (zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
682 		    !(zio->io_flags & ZIO_FLAG_SCRUB) &&
683 		    mm->mm_rebuilding && !mc->mc_rebuilding) {
684 			continue;
685 		}
686 
687 		zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
688 		    mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size,
689 		    zio->io_type, zio->io_priority, 0,
690 		    vdev_mirror_child_done, mc));
691 	}
692 
693 	zio_execute(zio);
694 }
695 
696 static int
697 vdev_mirror_worst_error(mirror_map_t *mm)
698 {
699 	int error[2] = { 0, 0 };
700 
701 	for (int c = 0; c < mm->mm_children; c++) {
702 		mirror_child_t *mc = &mm->mm_child[c];
703 		int s = mc->mc_speculative;
704 		error[s] = zio_worst_error(error[s], mc->mc_error);
705 	}
706 
707 	return (error[0] ? error[0] : error[1]);
708 }
709 
710 static void
711 vdev_mirror_io_done(zio_t *zio)
712 {
713 	mirror_map_t *mm = zio->io_vsd;
714 	mirror_child_t *mc;
715 	int c;
716 	int good_copies = 0;
717 	int unexpected_errors = 0;
718 	int last_good_copy = -1;
719 
720 	if (mm == NULL)
721 		return;
722 
723 	for (c = 0; c < mm->mm_children; c++) {
724 		mc = &mm->mm_child[c];
725 
726 		if (mc->mc_error) {
727 			if (!mc->mc_skipped)
728 				unexpected_errors++;
729 		} else if (mc->mc_tried) {
730 			last_good_copy = c;
731 			good_copies++;
732 		}
733 	}
734 
735 	if (zio->io_type == ZIO_TYPE_WRITE) {
736 		/*
737 		 * XXX -- for now, treat partial writes as success.
738 		 *
739 		 * Now that we support write reallocation, it would be better
740 		 * to treat partial failure as real failure unless there are
741 		 * no non-degraded top-level vdevs left, and not update DTLs
742 		 * if we intend to reallocate.
743 		 */
744 		if (good_copies != mm->mm_children) {
745 			/*
746 			 * Always require at least one good copy.
747 			 *
748 			 * For ditto blocks (io_vd == NULL), require
749 			 * all copies to be good.
750 			 *
751 			 * XXX -- for replacing vdevs, there's no great answer.
752 			 * If the old device is really dead, we may not even
753 			 * be able to access it -- so we only want to
754 			 * require good writes to the new device.  But if
755 			 * the new device turns out to be flaky, we want
756 			 * to be able to detach it -- which requires all
757 			 * writes to the old device to have succeeded.
758 			 */
759 			if (good_copies == 0 || zio->io_vd == NULL)
760 				zio->io_error = vdev_mirror_worst_error(mm);
761 		}
762 		return;
763 	}
764 
765 	ASSERT(zio->io_type == ZIO_TYPE_READ);
766 
767 	/*
768 	 * If we don't have a good copy yet, keep trying other children.
769 	 */
770 	if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) {
771 		ASSERT(c >= 0 && c < mm->mm_children);
772 		mc = &mm->mm_child[c];
773 		zio_vdev_io_redone(zio);
774 		zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
775 		    mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size,
776 		    ZIO_TYPE_READ, zio->io_priority, 0,
777 		    vdev_mirror_child_done, mc));
778 		return;
779 	}
780 
781 	if (zio->io_flags & ZIO_FLAG_SCRUB && !mm->mm_resilvering) {
782 		abd_t *best_abd = NULL;
783 		if (last_good_copy >= 0)
784 			best_abd = mm->mm_child[last_good_copy].mc_abd;
785 
786 		/*
787 		 * If we're scrubbing but don't have a BP available (because
788 		 * this vdev is under a raidz or draid vdev) then the best we
789 		 * can do is compare all of the copies read.  If they're not
790 		 * identical then return a checksum error and the most likely
791 		 * correct data.  The raidz code will issue a repair I/O if
792 		 * possible.
793 		 */
794 		if (zio->io_bp == NULL) {
795 			ASSERT(zio->io_vd->vdev_ops == &vdev_replacing_ops ||
796 			    zio->io_vd->vdev_ops == &vdev_spare_ops);
797 
798 			abd_t *pref_abd = NULL;
799 			for (c = 0; c < last_good_copy; c++) {
800 				mc = &mm->mm_child[c];
801 				if (mc->mc_error || !mc->mc_tried)
802 					continue;
803 
804 				if (abd_cmp(mc->mc_abd, best_abd) != 0)
805 					zio->io_error = SET_ERROR(ECKSUM);
806 
807 				/*
808 				 * The distributed spare is always prefered
809 				 * by vdev_mirror_child_select() so it's
810 				 * considered to be the best candidate.
811 				 */
812 				if (pref_abd == NULL &&
813 				    mc->mc_vd->vdev_ops ==
814 				    &vdev_draid_spare_ops)
815 					pref_abd = mc->mc_abd;
816 
817 				/*
818 				 * In the absence of a preferred copy, use
819 				 * the parent pointer to avoid a memory copy.
820 				 */
821 				if (mc->mc_abd == zio->io_abd)
822 					best_abd = mc->mc_abd;
823 			}
824 			if (pref_abd)
825 				best_abd = pref_abd;
826 		} else {
827 
828 			/*
829 			 * If we have a BP available, then checksums are
830 			 * already verified and we just need a buffer
831 			 * with valid data, preferring parent one to
832 			 * avoid a memory copy.
833 			 */
834 			for (c = 0; c < last_good_copy; c++) {
835 				mc = &mm->mm_child[c];
836 				if (mc->mc_error || !mc->mc_tried)
837 					continue;
838 				if (mc->mc_abd == zio->io_abd) {
839 					best_abd = mc->mc_abd;
840 					break;
841 				}
842 			}
843 		}
844 
845 		if (best_abd && best_abd != zio->io_abd)
846 			abd_copy(zio->io_abd, best_abd, zio->io_size);
847 		for (c = 0; c < mm->mm_children; c++) {
848 			mc = &mm->mm_child[c];
849 			if (mc->mc_abd != zio->io_abd)
850 				abd_free(mc->mc_abd);
851 			mc->mc_abd = NULL;
852 		}
853 	}
854 
855 	if (good_copies == 0) {
856 		zio->io_error = vdev_mirror_worst_error(mm);
857 		ASSERT(zio->io_error != 0);
858 	}
859 
860 	if (good_copies && spa_writeable(zio->io_spa) &&
861 	    (unexpected_errors ||
862 	    (zio->io_flags & ZIO_FLAG_RESILVER) ||
863 	    ((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_resilvering))) {
864 		/*
865 		 * Use the good data we have in hand to repair damaged children.
866 		 */
867 		for (c = 0; c < mm->mm_children; c++) {
868 			/*
869 			 * Don't rewrite known good children.
870 			 * Not only is it unnecessary, it could
871 			 * actually be harmful: if the system lost
872 			 * power while rewriting the only good copy,
873 			 * there would be no good copies left!
874 			 */
875 			mc = &mm->mm_child[c];
876 
877 			if (mc->mc_error == 0) {
878 				vdev_ops_t *ops = mc->mc_vd->vdev_ops;
879 
880 				if (mc->mc_tried)
881 					continue;
882 				/*
883 				 * We didn't try this child.  We need to
884 				 * repair it if:
885 				 * 1. it's a scrub (in which case we have
886 				 * tried everything that was healthy)
887 				 *  - or -
888 				 * 2. it's an indirect or distributed spare
889 				 * vdev (in which case it could point to any
890 				 * other vdev, which might have a bad DTL)
891 				 *  - or -
892 				 * 3. the DTL indicates that this data is
893 				 * missing from this vdev
894 				 */
895 				if (!(zio->io_flags & ZIO_FLAG_SCRUB) &&
896 				    ops != &vdev_indirect_ops &&
897 				    ops != &vdev_draid_spare_ops &&
898 				    !vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL,
899 				    zio->io_txg, 1))
900 					continue;
901 				mc->mc_error = SET_ERROR(ESTALE);
902 			}
903 
904 			zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
905 			    mc->mc_vd, mc->mc_offset,
906 			    zio->io_abd, zio->io_size, ZIO_TYPE_WRITE,
907 			    zio->io_priority == ZIO_PRIORITY_REBUILD ?
908 			    ZIO_PRIORITY_REBUILD : ZIO_PRIORITY_ASYNC_WRITE,
909 			    ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
910 			    ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
911 		}
912 	}
913 }
914 
915 static void
916 vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded)
917 {
918 	if (faulted == vd->vdev_children) {
919 		if (vdev_children_are_offline(vd)) {
920 			vdev_set_state(vd, B_FALSE, VDEV_STATE_OFFLINE,
921 			    VDEV_AUX_CHILDREN_OFFLINE);
922 		} else {
923 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
924 			    VDEV_AUX_NO_REPLICAS);
925 		}
926 	} else if (degraded + faulted != 0) {
927 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
928 	} else {
929 		vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
930 	}
931 }
932 
933 /*
934  * Return the maximum asize for a rebuild zio in the provided range.
935  */
936 static uint64_t
937 vdev_mirror_rebuild_asize(vdev_t *vd, uint64_t start, uint64_t asize,
938     uint64_t max_segment)
939 {
940 	(void) start;
941 
942 	uint64_t psize = MIN(P2ROUNDUP(max_segment, 1 << vd->vdev_ashift),
943 	    SPA_MAXBLOCKSIZE);
944 
945 	return (MIN(asize, vdev_psize_to_asize(vd, psize)));
946 }
947 
948 vdev_ops_t vdev_mirror_ops = {
949 	.vdev_op_init = NULL,
950 	.vdev_op_fini = NULL,
951 	.vdev_op_open = vdev_mirror_open,
952 	.vdev_op_close = vdev_mirror_close,
953 	.vdev_op_asize = vdev_default_asize,
954 	.vdev_op_min_asize = vdev_default_min_asize,
955 	.vdev_op_min_alloc = NULL,
956 	.vdev_op_io_start = vdev_mirror_io_start,
957 	.vdev_op_io_done = vdev_mirror_io_done,
958 	.vdev_op_state_change = vdev_mirror_state_change,
959 	.vdev_op_need_resilver = vdev_default_need_resilver,
960 	.vdev_op_hold = NULL,
961 	.vdev_op_rele = NULL,
962 	.vdev_op_remap = NULL,
963 	.vdev_op_xlate = vdev_default_xlate,
964 	.vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
965 	.vdev_op_metaslab_init = NULL,
966 	.vdev_op_config_generate = NULL,
967 	.vdev_op_nparity = NULL,
968 	.vdev_op_ndisks = NULL,
969 	.vdev_op_type = VDEV_TYPE_MIRROR,	/* name of this vdev type */
970 	.vdev_op_leaf = B_FALSE			/* not a leaf vdev */
971 };
972 
973 vdev_ops_t vdev_replacing_ops = {
974 	.vdev_op_init = NULL,
975 	.vdev_op_fini = NULL,
976 	.vdev_op_open = vdev_mirror_open,
977 	.vdev_op_close = vdev_mirror_close,
978 	.vdev_op_asize = vdev_default_asize,
979 	.vdev_op_min_asize = vdev_default_min_asize,
980 	.vdev_op_min_alloc = NULL,
981 	.vdev_op_io_start = vdev_mirror_io_start,
982 	.vdev_op_io_done = vdev_mirror_io_done,
983 	.vdev_op_state_change = vdev_mirror_state_change,
984 	.vdev_op_need_resilver = vdev_default_need_resilver,
985 	.vdev_op_hold = NULL,
986 	.vdev_op_rele = NULL,
987 	.vdev_op_remap = NULL,
988 	.vdev_op_xlate = vdev_default_xlate,
989 	.vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
990 	.vdev_op_metaslab_init = NULL,
991 	.vdev_op_config_generate = NULL,
992 	.vdev_op_nparity = NULL,
993 	.vdev_op_ndisks = NULL,
994 	.vdev_op_type = VDEV_TYPE_REPLACING,	/* name of this vdev type */
995 	.vdev_op_leaf = B_FALSE			/* not a leaf vdev */
996 };
997 
998 vdev_ops_t vdev_spare_ops = {
999 	.vdev_op_init = NULL,
1000 	.vdev_op_fini = NULL,
1001 	.vdev_op_open = vdev_mirror_open,
1002 	.vdev_op_close = vdev_mirror_close,
1003 	.vdev_op_asize = vdev_default_asize,
1004 	.vdev_op_min_asize = vdev_default_min_asize,
1005 	.vdev_op_min_alloc = NULL,
1006 	.vdev_op_io_start = vdev_mirror_io_start,
1007 	.vdev_op_io_done = vdev_mirror_io_done,
1008 	.vdev_op_state_change = vdev_mirror_state_change,
1009 	.vdev_op_need_resilver = vdev_default_need_resilver,
1010 	.vdev_op_hold = NULL,
1011 	.vdev_op_rele = NULL,
1012 	.vdev_op_remap = NULL,
1013 	.vdev_op_xlate = vdev_default_xlate,
1014 	.vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
1015 	.vdev_op_metaslab_init = NULL,
1016 	.vdev_op_config_generate = NULL,
1017 	.vdev_op_nparity = NULL,
1018 	.vdev_op_ndisks = NULL,
1019 	.vdev_op_type = VDEV_TYPE_SPARE,	/* name of this vdev type */
1020 	.vdev_op_leaf = B_FALSE			/* not a leaf vdev */
1021 };
1022 
1023 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_inc, INT, ZMOD_RW,
1024 	"Rotating media load increment for non-seeking I/Os");
1025 
1026 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_seek_inc, INT,
1027 	ZMOD_RW, "Rotating media load increment for seeking I/Os");
1028 
1029 /* BEGIN CSTYLED */
1030 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_seek_offset, INT,
1031 	ZMOD_RW,
1032 	"Offset in bytes from the last I/O which triggers "
1033 	"a reduced rotating media seek increment");
1034 /* END CSTYLED */
1035 
1036 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, non_rotating_inc, INT,
1037 	ZMOD_RW, "Non-rotating media load increment for non-seeking I/Os");
1038 
1039 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, non_rotating_seek_inc, INT,
1040 	ZMOD_RW, "Non-rotating media load increment for seeking I/Os");
1041