xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_mirror.c (revision 9e4c35f867aca020df8d01fb7371bf5ae1cc8a2d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
28  */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dsl_pool.h>
34 #include <sys/dsl_scan.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/zio.h>
37 #include <sys/abd.h>
38 #include <sys/fs/zfs.h>
39 
40 /*
41  * Vdev mirror kstats
42  */
43 static kstat_t *mirror_ksp = NULL;
44 
45 typedef struct mirror_stats {
46 	kstat_named_t vdev_mirror_stat_rotating_linear;
47 	kstat_named_t vdev_mirror_stat_rotating_offset;
48 	kstat_named_t vdev_mirror_stat_rotating_seek;
49 	kstat_named_t vdev_mirror_stat_non_rotating_linear;
50 	kstat_named_t vdev_mirror_stat_non_rotating_seek;
51 
52 	kstat_named_t vdev_mirror_stat_preferred_found;
53 	kstat_named_t vdev_mirror_stat_preferred_not_found;
54 } mirror_stats_t;
55 
56 static mirror_stats_t mirror_stats = {
57 	/* New I/O follows directly the last I/O */
58 	{ "rotating_linear",			KSTAT_DATA_UINT64 },
59 	/* New I/O is within zfs_vdev_mirror_rotating_seek_offset of the last */
60 	{ "rotating_offset",			KSTAT_DATA_UINT64 },
61 	/* New I/O requires random seek */
62 	{ "rotating_seek",			KSTAT_DATA_UINT64 },
63 	/* New I/O follows directly the last I/O  (nonrot) */
64 	{ "non_rotating_linear",		KSTAT_DATA_UINT64 },
65 	/* New I/O requires random seek (nonrot) */
66 	{ "non_rotating_seek",			KSTAT_DATA_UINT64 },
67 	/* Preferred child vdev found */
68 	{ "preferred_found",			KSTAT_DATA_UINT64 },
69 	/* Preferred child vdev not found or equal load  */
70 	{ "preferred_not_found",		KSTAT_DATA_UINT64 },
71 
72 };
73 
74 #define	MIRROR_STAT(stat)		(mirror_stats.stat.value.ui64)
75 #define	MIRROR_INCR(stat, val) 		atomic_add_64(&MIRROR_STAT(stat), val)
76 #define	MIRROR_BUMP(stat)		MIRROR_INCR(stat, 1)
77 
78 void
79 vdev_mirror_stat_init(void)
80 {
81 	mirror_ksp = kstat_create("zfs", 0, "vdev_mirror_stats",
82 	    "misc", KSTAT_TYPE_NAMED,
83 	    sizeof (mirror_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
84 	if (mirror_ksp != NULL) {
85 		mirror_ksp->ks_data = &mirror_stats;
86 		kstat_install(mirror_ksp);
87 	}
88 }
89 
90 void
91 vdev_mirror_stat_fini(void)
92 {
93 	if (mirror_ksp != NULL) {
94 		kstat_delete(mirror_ksp);
95 		mirror_ksp = NULL;
96 	}
97 }
98 
99 /*
100  * Virtual device vector for mirroring.
101  */
102 
103 typedef struct mirror_child {
104 	vdev_t		*mc_vd;
105 	uint64_t	mc_offset;
106 	int		mc_error;
107 	int		mc_load;
108 	uint8_t		mc_tried;
109 	uint8_t		mc_skipped;
110 	uint8_t		mc_speculative;
111 } mirror_child_t;
112 
113 typedef struct mirror_map {
114 	int		*mm_preferred;
115 	int		mm_preferred_cnt;
116 	int		mm_children;
117 	boolean_t	mm_resilvering;
118 	boolean_t	mm_root;
119 	mirror_child_t	mm_child[];
120 } mirror_map_t;
121 
122 static int vdev_mirror_shift = 21;
123 
124 /*
125  * The load configuration settings below are tuned by default for
126  * the case where all devices are of the same rotational type.
127  *
128  * If there is a mixture of rotating and non-rotating media, setting
129  * zfs_vdev_mirror_non_rotating_seek_inc to 0 may well provide better results
130  * as it will direct more reads to the non-rotating vdevs which are more likely
131  * to have a higher performance.
132  */
133 
134 /* Rotating media load calculation configuration. */
135 static int zfs_vdev_mirror_rotating_inc = 0;
136 static int zfs_vdev_mirror_rotating_seek_inc = 5;
137 static int zfs_vdev_mirror_rotating_seek_offset = 1 * 1024 * 1024;
138 
139 /* Non-rotating media load calculation configuration. */
140 static int zfs_vdev_mirror_non_rotating_inc = 0;
141 static int zfs_vdev_mirror_non_rotating_seek_inc = 1;
142 
143 static inline size_t
144 vdev_mirror_map_size(int children)
145 {
146 	return (offsetof(mirror_map_t, mm_child[children]) +
147 	    sizeof (int) * children);
148 }
149 
150 static inline mirror_map_t *
151 vdev_mirror_map_alloc(int children, boolean_t resilvering, boolean_t root)
152 {
153 	mirror_map_t *mm;
154 
155 	mm = kmem_zalloc(vdev_mirror_map_size(children), KM_SLEEP);
156 	mm->mm_children = children;
157 	mm->mm_resilvering = resilvering;
158 	mm->mm_root = root;
159 	mm->mm_preferred = (int *)((uintptr_t)mm +
160 	    offsetof(mirror_map_t, mm_child[children]));
161 
162 	return (mm);
163 }
164 
165 static void
166 vdev_mirror_map_free(zio_t *zio)
167 {
168 	mirror_map_t *mm = zio->io_vsd;
169 
170 	kmem_free(mm, vdev_mirror_map_size(mm->mm_children));
171 }
172 
173 static const zio_vsd_ops_t vdev_mirror_vsd_ops = {
174 	.vsd_free = vdev_mirror_map_free,
175 	.vsd_cksum_report = zio_vsd_default_cksum_report
176 };
177 
178 static int
179 vdev_mirror_load(mirror_map_t *mm, vdev_t *vd, uint64_t zio_offset)
180 {
181 	uint64_t last_offset;
182 	int64_t offset_diff;
183 	int load;
184 
185 	/* All DVAs have equal weight at the root. */
186 	if (mm->mm_root)
187 		return (INT_MAX);
188 
189 	/*
190 	 * We don't return INT_MAX if the device is resilvering i.e.
191 	 * vdev_resilver_txg != 0 as when tested performance was slightly
192 	 * worse overall when resilvering with compared to without.
193 	 */
194 
195 	/* Fix zio_offset for leaf vdevs */
196 	if (vd->vdev_ops->vdev_op_leaf)
197 		zio_offset += VDEV_LABEL_START_SIZE;
198 
199 	/* Standard load based on pending queue length. */
200 	load = vdev_queue_length(vd);
201 	last_offset = vdev_queue_last_offset(vd);
202 
203 	if (vd->vdev_nonrot) {
204 		/* Non-rotating media. */
205 		if (last_offset == zio_offset) {
206 			MIRROR_BUMP(vdev_mirror_stat_non_rotating_linear);
207 			return (load + zfs_vdev_mirror_non_rotating_inc);
208 		}
209 
210 		/*
211 		 * Apply a seek penalty even for non-rotating devices as
212 		 * sequential I/O's can be aggregated into fewer operations on
213 		 * the device, thus avoiding unnecessary per-command overhead
214 		 * and boosting performance.
215 		 */
216 		MIRROR_BUMP(vdev_mirror_stat_non_rotating_seek);
217 		return (load + zfs_vdev_mirror_non_rotating_seek_inc);
218 	}
219 
220 	/* Rotating media I/O's which directly follow the last I/O. */
221 	if (last_offset == zio_offset) {
222 		MIRROR_BUMP(vdev_mirror_stat_rotating_linear);
223 		return (load + zfs_vdev_mirror_rotating_inc);
224 	}
225 
226 	/*
227 	 * Apply half the seek increment to I/O's within seek offset
228 	 * of the last I/O issued to this vdev as they should incur less
229 	 * of a seek increment.
230 	 */
231 	offset_diff = (int64_t)(last_offset - zio_offset);
232 	if (ABS(offset_diff) < zfs_vdev_mirror_rotating_seek_offset) {
233 		MIRROR_BUMP(vdev_mirror_stat_rotating_offset);
234 		return (load + (zfs_vdev_mirror_rotating_seek_inc / 2));
235 	}
236 
237 	/* Apply the full seek increment to all other I/O's. */
238 	MIRROR_BUMP(vdev_mirror_stat_rotating_seek);
239 	return (load + zfs_vdev_mirror_rotating_seek_inc);
240 }
241 
242 /*
243  * Avoid inlining the function to keep vdev_mirror_io_start(), which
244  * is this functions only caller, as small as possible on the stack.
245  */
246 noinline static mirror_map_t *
247 vdev_mirror_map_init(zio_t *zio)
248 {
249 	mirror_map_t *mm = NULL;
250 	mirror_child_t *mc;
251 	vdev_t *vd = zio->io_vd;
252 	int c;
253 
254 	if (vd == NULL) {
255 		dva_t *dva = zio->io_bp->blk_dva;
256 		spa_t *spa = zio->io_spa;
257 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
258 		dva_t dva_copy[SPA_DVAS_PER_BP];
259 
260 		/*
261 		 * The sequential scrub code sorts and issues all DVAs
262 		 * of a bp separately. Each of these IOs includes all
263 		 * original DVA copies so that repairs can be performed
264 		 * in the event of an error, but we only actually want
265 		 * to check the first DVA since the others will be
266 		 * checked by their respective sorted IOs. Only if we
267 		 * hit an error will we try all DVAs upon retrying.
268 		 *
269 		 * Note: This check is safe even if the user switches
270 		 * from a legacy scrub to a sequential one in the middle
271 		 * of processing, since scn_is_sorted isn't updated until
272 		 * all outstanding IOs from the previous scrub pass
273 		 * complete.
274 		 */
275 		if ((zio->io_flags & ZIO_FLAG_SCRUB) &&
276 		    !(zio->io_flags & ZIO_FLAG_IO_RETRY) &&
277 		    dsl_scan_scrubbing(spa->spa_dsl_pool) &&
278 		    scn->scn_is_sorted) {
279 			c = 1;
280 		} else {
281 			c = BP_GET_NDVAS(zio->io_bp);
282 		}
283 
284 		/*
285 		 * If the pool cannot be written to, then infer that some
286 		 * DVAs might be invalid or point to vdevs that do not exist.
287 		 * We skip them.
288 		 */
289 		if (!spa_writeable(spa)) {
290 			ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
291 			int j = 0;
292 			for (int i = 0; i < c; i++) {
293 				if (zfs_dva_valid(spa, &dva[i], zio->io_bp))
294 					dva_copy[j++] = dva[i];
295 			}
296 			if (j == 0) {
297 				zio->io_vsd = NULL;
298 				zio->io_error = ENXIO;
299 				return (NULL);
300 			}
301 			if (j < c) {
302 				dva = dva_copy;
303 				c = j;
304 			}
305 		}
306 
307 		mm = vdev_mirror_map_alloc(c, B_FALSE, B_TRUE);
308 		for (c = 0; c < mm->mm_children; c++) {
309 			mc = &mm->mm_child[c];
310 
311 			mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c]));
312 			mc->mc_offset = DVA_GET_OFFSET(&dva[c]);
313 			if (mc->mc_vd == NULL) {
314 				kmem_free(mm, vdev_mirror_map_size(
315 				    mm->mm_children));
316 				zio->io_vsd = NULL;
317 				zio->io_error = ENXIO;
318 				return (NULL);
319 			}
320 		}
321 	} else {
322 		/*
323 		 * If we are resilvering, then we should handle scrub reads
324 		 * differently; we shouldn't issue them to the resilvering
325 		 * device because it might not have those blocks.
326 		 *
327 		 * We are resilvering iff:
328 		 * 1) We are a replacing vdev (ie our name is "replacing-1" or
329 		 *    "spare-1" or something like that), and
330 		 * 2) The pool is currently being resilvered.
331 		 *
332 		 * We cannot simply check vd->vdev_resilver_txg, because it's
333 		 * not set in this path.
334 		 *
335 		 * Nor can we just check our vdev_ops; there are cases (such as
336 		 * when a user types "zpool replace pool odev spare_dev" and
337 		 * spare_dev is in the spare list, or when a spare device is
338 		 * automatically used to replace a DEGRADED device) when
339 		 * resilvering is complete but both the original vdev and the
340 		 * spare vdev remain in the pool.  That behavior is intentional.
341 		 * It helps implement the policy that a spare should be
342 		 * automatically removed from the pool after the user replaces
343 		 * the device that originally failed.
344 		 *
345 		 * If a spa load is in progress, then spa_dsl_pool may be
346 		 * uninitialized.  But we shouldn't be resilvering during a spa
347 		 * load anyway.
348 		 */
349 		boolean_t replacing = (vd->vdev_ops == &vdev_replacing_ops ||
350 		    vd->vdev_ops == &vdev_spare_ops) &&
351 		    spa_load_state(vd->vdev_spa) == SPA_LOAD_NONE &&
352 		    dsl_scan_resilvering(vd->vdev_spa->spa_dsl_pool);
353 		mm = vdev_mirror_map_alloc(vd->vdev_children, replacing,
354 		    B_FALSE);
355 		for (c = 0; c < mm->mm_children; c++) {
356 			mc = &mm->mm_child[c];
357 			mc->mc_vd = vd->vdev_child[c];
358 			mc->mc_offset = zio->io_offset;
359 		}
360 	}
361 
362 	zio->io_vsd = mm;
363 	zio->io_vsd_ops = &vdev_mirror_vsd_ops;
364 	return (mm);
365 }
366 
367 static int
368 vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
369     uint64_t *logical_ashift, uint64_t *physical_ashift)
370 {
371 	int numerrors = 0;
372 	int lasterror = 0;
373 
374 	if (vd->vdev_children == 0) {
375 		vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
376 		return (SET_ERROR(EINVAL));
377 	}
378 
379 	vdev_open_children(vd);
380 
381 	for (int c = 0; c < vd->vdev_children; c++) {
382 		vdev_t *cvd = vd->vdev_child[c];
383 
384 		if (cvd->vdev_open_error) {
385 			lasterror = cvd->vdev_open_error;
386 			numerrors++;
387 			continue;
388 		}
389 
390 		*asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
391 		*max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
392 		*logical_ashift = MAX(*logical_ashift, cvd->vdev_ashift);
393 		*physical_ashift = MAX(*physical_ashift,
394 		    vd->vdev_physical_ashift);
395 	}
396 
397 	if (numerrors == vd->vdev_children) {
398 		if (vdev_children_are_offline(vd))
399 			vd->vdev_stat.vs_aux = VDEV_AUX_CHILDREN_OFFLINE;
400 		else
401 			vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
402 		return (lasterror);
403 	}
404 
405 	return (0);
406 }
407 
408 static void
409 vdev_mirror_close(vdev_t *vd)
410 {
411 	for (int c = 0; c < vd->vdev_children; c++)
412 		vdev_close(vd->vdev_child[c]);
413 }
414 
415 static void
416 vdev_mirror_child_done(zio_t *zio)
417 {
418 	mirror_child_t *mc = zio->io_private;
419 
420 	mc->mc_error = zio->io_error;
421 	mc->mc_tried = 1;
422 	mc->mc_skipped = 0;
423 }
424 
425 static void
426 vdev_mirror_scrub_done(zio_t *zio)
427 {
428 	mirror_child_t *mc = zio->io_private;
429 
430 	if (zio->io_error == 0) {
431 		zio_t *pio;
432 		zio_link_t *zl = NULL;
433 
434 		mutex_enter(&zio->io_lock);
435 		while ((pio = zio_walk_parents(zio, &zl)) != NULL) {
436 			mutex_enter(&pio->io_lock);
437 			ASSERT3U(zio->io_size, >=, pio->io_size);
438 			abd_copy(pio->io_abd, zio->io_abd, pio->io_size);
439 			mutex_exit(&pio->io_lock);
440 		}
441 		mutex_exit(&zio->io_lock);
442 	}
443 
444 	abd_free(zio->io_abd);
445 
446 	mc->mc_error = zio->io_error;
447 	mc->mc_tried = 1;
448 	mc->mc_skipped = 0;
449 }
450 
451 /*
452  * Check the other, lower-index DVAs to see if they're on the same
453  * vdev as the child we picked.  If they are, use them since they
454  * are likely to have been allocated from the primary metaslab in
455  * use at the time, and hence are more likely to have locality with
456  * single-copy data.
457  */
458 static int
459 vdev_mirror_dva_select(zio_t *zio, int p)
460 {
461 	dva_t *dva = zio->io_bp->blk_dva;
462 	mirror_map_t *mm = zio->io_vsd;
463 	int preferred;
464 	int c;
465 
466 	preferred = mm->mm_preferred[p];
467 	for (p--; p >= 0; p--) {
468 		c = mm->mm_preferred[p];
469 		if (DVA_GET_VDEV(&dva[c]) == DVA_GET_VDEV(&dva[preferred]))
470 			preferred = c;
471 	}
472 	return (preferred);
473 }
474 
475 static int
476 vdev_mirror_preferred_child_randomize(zio_t *zio)
477 {
478 	mirror_map_t *mm = zio->io_vsd;
479 	int p;
480 
481 	if (mm->mm_root) {
482 		p = spa_get_random(mm->mm_preferred_cnt);
483 		return (vdev_mirror_dva_select(zio, p));
484 	}
485 
486 	/*
487 	 * To ensure we don't always favour the first matching vdev,
488 	 * which could lead to wear leveling issues on SSD's, we
489 	 * use the I/O offset as a pseudo random seed into the vdevs
490 	 * which have the lowest load.
491 	 */
492 	p = (zio->io_offset >> vdev_mirror_shift) % mm->mm_preferred_cnt;
493 	return (mm->mm_preferred[p]);
494 }
495 
496 /*
497  * Try to find a vdev whose DTL doesn't contain the block we want to read
498  * preferring vdevs based on determined load.
499  *
500  * Try to find a child whose DTL doesn't contain the block we want to read.
501  * If we can't, try the read on any vdev we haven't already tried.
502  */
503 static int
504 vdev_mirror_child_select(zio_t *zio)
505 {
506 	mirror_map_t *mm = zio->io_vsd;
507 	uint64_t txg = zio->io_txg;
508 	int c, lowest_load;
509 
510 	ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg);
511 
512 	lowest_load = INT_MAX;
513 	mm->mm_preferred_cnt = 0;
514 	for (c = 0; c < mm->mm_children; c++) {
515 		mirror_child_t *mc;
516 
517 		mc = &mm->mm_child[c];
518 		if (mc->mc_tried || mc->mc_skipped)
519 			continue;
520 
521 		if (mc->mc_vd == NULL || !vdev_readable(mc->mc_vd)) {
522 			mc->mc_error = SET_ERROR(ENXIO);
523 			mc->mc_tried = 1;	/* don't even try */
524 			mc->mc_skipped = 1;
525 			continue;
526 		}
527 
528 		if (vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1)) {
529 			mc->mc_error = SET_ERROR(ESTALE);
530 			mc->mc_skipped = 1;
531 			mc->mc_speculative = 1;
532 			continue;
533 		}
534 
535 		mc->mc_load = vdev_mirror_load(mm, mc->mc_vd, mc->mc_offset);
536 		if (mc->mc_load > lowest_load)
537 			continue;
538 
539 		if (mc->mc_load < lowest_load) {
540 			lowest_load = mc->mc_load;
541 			mm->mm_preferred_cnt = 0;
542 		}
543 		mm->mm_preferred[mm->mm_preferred_cnt] = c;
544 		mm->mm_preferred_cnt++;
545 	}
546 
547 	if (mm->mm_preferred_cnt == 1) {
548 		MIRROR_BUMP(vdev_mirror_stat_preferred_found);
549 		return (mm->mm_preferred[0]);
550 	}
551 
552 	if (mm->mm_preferred_cnt > 1) {
553 		MIRROR_BUMP(vdev_mirror_stat_preferred_not_found);
554 		return (vdev_mirror_preferred_child_randomize(zio));
555 	}
556 
557 	/*
558 	 * Every device is either missing or has this txg in its DTL.
559 	 * Look for any child we haven't already tried before giving up.
560 	 */
561 	for (c = 0; c < mm->mm_children; c++) {
562 		if (!mm->mm_child[c].mc_tried)
563 			return (c);
564 	}
565 
566 	/*
567 	 * Every child failed.  There's no place left to look.
568 	 */
569 	return (-1);
570 }
571 
572 static void
573 vdev_mirror_io_start(zio_t *zio)
574 {
575 	mirror_map_t *mm;
576 	mirror_child_t *mc;
577 	int c, children;
578 
579 	mm = vdev_mirror_map_init(zio);
580 
581 	if (mm == NULL) {
582 		ASSERT(!spa_trust_config(zio->io_spa));
583 		ASSERT(zio->io_type == ZIO_TYPE_READ);
584 		zio_execute(zio);
585 		return;
586 	}
587 
588 	if (zio->io_type == ZIO_TYPE_READ) {
589 		if (zio->io_bp != NULL &&
590 		    (zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_resilvering) {
591 			/*
592 			 * For scrubbing reads (if we can verify the
593 			 * checksum here, as indicated by io_bp being
594 			 * non-NULL) we need to allocate a read buffer for
595 			 * each child and issue reads to all children.  If
596 			 * any child succeeds, it will copy its data into
597 			 * zio->io_data in vdev_mirror_scrub_done.
598 			 */
599 			for (c = 0; c < mm->mm_children; c++) {
600 				mc = &mm->mm_child[c];
601 				zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
602 				    mc->mc_vd, mc->mc_offset,
603 				    abd_alloc_sametype(zio->io_abd,
604 				    zio->io_size), zio->io_size,
605 				    zio->io_type, zio->io_priority, 0,
606 				    vdev_mirror_scrub_done, mc));
607 			}
608 			zio_execute(zio);
609 			return;
610 		}
611 		/*
612 		 * For normal reads just pick one child.
613 		 */
614 		c = vdev_mirror_child_select(zio);
615 		children = (c >= 0);
616 	} else {
617 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
618 
619 		/*
620 		 * Writes go to all children.
621 		 */
622 		c = 0;
623 		children = mm->mm_children;
624 	}
625 
626 	while (children--) {
627 		mc = &mm->mm_child[c];
628 		zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
629 		    mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size,
630 		    zio->io_type, zio->io_priority, 0,
631 		    vdev_mirror_child_done, mc));
632 		c++;
633 	}
634 
635 	zio_execute(zio);
636 }
637 
638 static int
639 vdev_mirror_worst_error(mirror_map_t *mm)
640 {
641 	int error[2] = { 0, 0 };
642 
643 	for (int c = 0; c < mm->mm_children; c++) {
644 		mirror_child_t *mc = &mm->mm_child[c];
645 		int s = mc->mc_speculative;
646 		error[s] = zio_worst_error(error[s], mc->mc_error);
647 	}
648 
649 	return (error[0] ? error[0] : error[1]);
650 }
651 
652 static void
653 vdev_mirror_io_done(zio_t *zio)
654 {
655 	mirror_map_t *mm = zio->io_vsd;
656 	mirror_child_t *mc;
657 	int c;
658 	int good_copies = 0;
659 	int unexpected_errors = 0;
660 
661 	if (mm == NULL)
662 		return;
663 
664 	for (c = 0; c < mm->mm_children; c++) {
665 		mc = &mm->mm_child[c];
666 
667 		if (mc->mc_error) {
668 			if (!mc->mc_skipped)
669 				unexpected_errors++;
670 		} else if (mc->mc_tried) {
671 			good_copies++;
672 		}
673 	}
674 
675 	if (zio->io_type == ZIO_TYPE_WRITE) {
676 		/*
677 		 * XXX -- for now, treat partial writes as success.
678 		 *
679 		 * Now that we support write reallocation, it would be better
680 		 * to treat partial failure as real failure unless there are
681 		 * no non-degraded top-level vdevs left, and not update DTLs
682 		 * if we intend to reallocate.
683 		 */
684 		/* XXPOLICY */
685 		if (good_copies != mm->mm_children) {
686 			/*
687 			 * Always require at least one good copy.
688 			 *
689 			 * For ditto blocks (io_vd == NULL), require
690 			 * all copies to be good.
691 			 *
692 			 * XXX -- for replacing vdevs, there's no great answer.
693 			 * If the old device is really dead, we may not even
694 			 * be able to access it -- so we only want to
695 			 * require good writes to the new device.  But if
696 			 * the new device turns out to be flaky, we want
697 			 * to be able to detach it -- which requires all
698 			 * writes to the old device to have succeeded.
699 			 */
700 			if (good_copies == 0 || zio->io_vd == NULL)
701 				zio->io_error = vdev_mirror_worst_error(mm);
702 		}
703 		return;
704 	}
705 
706 	ASSERT(zio->io_type == ZIO_TYPE_READ);
707 
708 	/*
709 	 * If we don't have a good copy yet, keep trying other children.
710 	 */
711 	/* XXPOLICY */
712 	if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) {
713 		ASSERT(c >= 0 && c < mm->mm_children);
714 		mc = &mm->mm_child[c];
715 		zio_vdev_io_redone(zio);
716 		zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
717 		    mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size,
718 		    ZIO_TYPE_READ, zio->io_priority, 0,
719 		    vdev_mirror_child_done, mc));
720 		return;
721 	}
722 
723 	/* XXPOLICY */
724 	if (good_copies == 0) {
725 		zio->io_error = vdev_mirror_worst_error(mm);
726 		ASSERT(zio->io_error != 0);
727 	}
728 
729 	if (good_copies && spa_writeable(zio->io_spa) &&
730 	    (unexpected_errors ||
731 	    (zio->io_flags & ZIO_FLAG_RESILVER) ||
732 	    ((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_resilvering))) {
733 		/*
734 		 * Use the good data we have in hand to repair damaged children.
735 		 */
736 		for (c = 0; c < mm->mm_children; c++) {
737 			/*
738 			 * Don't rewrite known good children.
739 			 * Not only is it unnecessary, it could
740 			 * actually be harmful: if the system lost
741 			 * power while rewriting the only good copy,
742 			 * there would be no good copies left!
743 			 */
744 			mc = &mm->mm_child[c];
745 
746 			if (mc->mc_error == 0) {
747 				if (mc->mc_tried)
748 					continue;
749 				/*
750 				 * We didn't try this child.  We need to
751 				 * repair it if:
752 				 * 1. it's a scrub (in which case we have
753 				 * tried everything that was healthy)
754 				 *  - or -
755 				 * 2. it's an indirect vdev (in which case
756 				 * it could point to any other vdev, which
757 				 * might have a bad DTL)
758 				 *  - or -
759 				 * 3. the DTL indicates that this data is
760 				 * missing from this vdev
761 				 */
762 				if (!(zio->io_flags & ZIO_FLAG_SCRUB) &&
763 				    mc->mc_vd->vdev_ops != &vdev_indirect_ops &&
764 				    !vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL,
765 				    zio->io_txg, 1))
766 					continue;
767 				mc->mc_error = SET_ERROR(ESTALE);
768 			}
769 
770 			zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
771 			    mc->mc_vd, mc->mc_offset,
772 			    zio->io_abd, zio->io_size, ZIO_TYPE_WRITE,
773 			    zio->io_priority == ZIO_PRIORITY_REBUILD ?
774 			    ZIO_PRIORITY_REBUILD : ZIO_PRIORITY_ASYNC_WRITE,
775 			    ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
776 			    ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
777 		}
778 	}
779 }
780 
781 static void
782 vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded)
783 {
784 	if (faulted == vd->vdev_children) {
785 		if (vdev_children_are_offline(vd)) {
786 			vdev_set_state(vd, B_FALSE, VDEV_STATE_OFFLINE,
787 			    VDEV_AUX_CHILDREN_OFFLINE);
788 		} else {
789 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
790 			    VDEV_AUX_NO_REPLICAS);
791 		}
792 	} else if (degraded + faulted != 0) {
793 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
794 	} else {
795 		vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
796 	}
797 }
798 
799 vdev_ops_t vdev_mirror_ops = {
800 	.vdev_op_open = vdev_mirror_open,
801 	.vdev_op_close = vdev_mirror_close,
802 	.vdev_op_asize = vdev_default_asize,
803 	.vdev_op_io_start = vdev_mirror_io_start,
804 	.vdev_op_io_done = vdev_mirror_io_done,
805 	.vdev_op_state_change = vdev_mirror_state_change,
806 	.vdev_op_need_resilver = NULL,
807 	.vdev_op_hold = NULL,
808 	.vdev_op_rele = NULL,
809 	.vdev_op_remap = NULL,
810 	.vdev_op_xlate = vdev_default_xlate,
811 	.vdev_op_type = VDEV_TYPE_MIRROR,	/* name of this vdev type */
812 	.vdev_op_leaf = B_FALSE			/* not a leaf vdev */
813 };
814 
815 vdev_ops_t vdev_replacing_ops = {
816 	.vdev_op_open = vdev_mirror_open,
817 	.vdev_op_close = vdev_mirror_close,
818 	.vdev_op_asize = vdev_default_asize,
819 	.vdev_op_io_start = vdev_mirror_io_start,
820 	.vdev_op_io_done = vdev_mirror_io_done,
821 	.vdev_op_state_change = vdev_mirror_state_change,
822 	.vdev_op_need_resilver = NULL,
823 	.vdev_op_hold = NULL,
824 	.vdev_op_rele = NULL,
825 	.vdev_op_remap = NULL,
826 	.vdev_op_xlate = vdev_default_xlate,
827 	.vdev_op_type = VDEV_TYPE_REPLACING,	/* name of this vdev type */
828 	.vdev_op_leaf = B_FALSE			/* not a leaf vdev */
829 };
830 
831 vdev_ops_t vdev_spare_ops = {
832 	.vdev_op_open = vdev_mirror_open,
833 	.vdev_op_close = vdev_mirror_close,
834 	.vdev_op_asize = vdev_default_asize,
835 	.vdev_op_io_start = vdev_mirror_io_start,
836 	.vdev_op_io_done = vdev_mirror_io_done,
837 	.vdev_op_state_change = vdev_mirror_state_change,
838 	.vdev_op_need_resilver = NULL,
839 	.vdev_op_hold = NULL,
840 	.vdev_op_rele = NULL,
841 	.vdev_op_remap = NULL,
842 	.vdev_op_xlate = vdev_default_xlate,
843 	.vdev_op_type = VDEV_TYPE_SPARE,	/* name of this vdev type */
844 	.vdev_op_leaf = B_FALSE			/* not a leaf vdev */
845 };
846 
847 /* BEGIN CSTYLED */
848 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_inc, INT, ZMOD_RW,
849 	"Rotating media load increment for non-seeking I/O's");
850 
851 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_seek_inc, INT, ZMOD_RW,
852 	"Rotating media load increment for seeking I/O's");
853 
854 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_seek_offset, INT, ZMOD_RW,
855 	"Offset in bytes from the last I/O which triggers "
856 	"a reduced rotating media seek increment");
857 
858 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, non_rotating_inc, INT, ZMOD_RW,
859 	"Non-rotating media load increment for non-seeking I/O's");
860 
861 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, non_rotating_seek_inc, INT, ZMOD_RW,
862 	"Non-rotating media load increment for seeking I/O's");
863 /* END CSTYLED */
864