1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2012, 2015 by Delphix. All rights reserved. 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/spa.h> 32 #include <sys/spa_impl.h> 33 #include <sys/dsl_pool.h> 34 #include <sys/dsl_scan.h> 35 #include <sys/vdev_impl.h> 36 #include <sys/zio.h> 37 #include <sys/abd.h> 38 #include <sys/fs/zfs.h> 39 40 /* 41 * Vdev mirror kstats 42 */ 43 static kstat_t *mirror_ksp = NULL; 44 45 typedef struct mirror_stats { 46 kstat_named_t vdev_mirror_stat_rotating_linear; 47 kstat_named_t vdev_mirror_stat_rotating_offset; 48 kstat_named_t vdev_mirror_stat_rotating_seek; 49 kstat_named_t vdev_mirror_stat_non_rotating_linear; 50 kstat_named_t vdev_mirror_stat_non_rotating_seek; 51 52 kstat_named_t vdev_mirror_stat_preferred_found; 53 kstat_named_t vdev_mirror_stat_preferred_not_found; 54 } mirror_stats_t; 55 56 static mirror_stats_t mirror_stats = { 57 /* New I/O follows directly the last I/O */ 58 { "rotating_linear", KSTAT_DATA_UINT64 }, 59 /* New I/O is within zfs_vdev_mirror_rotating_seek_offset of the last */ 60 { "rotating_offset", KSTAT_DATA_UINT64 }, 61 /* New I/O requires random seek */ 62 { "rotating_seek", KSTAT_DATA_UINT64 }, 63 /* New I/O follows directly the last I/O (nonrot) */ 64 { "non_rotating_linear", KSTAT_DATA_UINT64 }, 65 /* New I/O requires random seek (nonrot) */ 66 { "non_rotating_seek", KSTAT_DATA_UINT64 }, 67 /* Preferred child vdev found */ 68 { "preferred_found", KSTAT_DATA_UINT64 }, 69 /* Preferred child vdev not found or equal load */ 70 { "preferred_not_found", KSTAT_DATA_UINT64 }, 71 72 }; 73 74 #define MIRROR_STAT(stat) (mirror_stats.stat.value.ui64) 75 #define MIRROR_INCR(stat, val) atomic_add_64(&MIRROR_STAT(stat), val) 76 #define MIRROR_BUMP(stat) MIRROR_INCR(stat, 1) 77 78 void 79 vdev_mirror_stat_init(void) 80 { 81 mirror_ksp = kstat_create("zfs", 0, "vdev_mirror_stats", 82 "misc", KSTAT_TYPE_NAMED, 83 sizeof (mirror_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 84 if (mirror_ksp != NULL) { 85 mirror_ksp->ks_data = &mirror_stats; 86 kstat_install(mirror_ksp); 87 } 88 } 89 90 void 91 vdev_mirror_stat_fini(void) 92 { 93 if (mirror_ksp != NULL) { 94 kstat_delete(mirror_ksp); 95 mirror_ksp = NULL; 96 } 97 } 98 99 /* 100 * Virtual device vector for mirroring. 101 */ 102 103 typedef struct mirror_child { 104 vdev_t *mc_vd; 105 uint64_t mc_offset; 106 int mc_error; 107 int mc_load; 108 uint8_t mc_tried; 109 uint8_t mc_skipped; 110 uint8_t mc_speculative; 111 } mirror_child_t; 112 113 typedef struct mirror_map { 114 int *mm_preferred; 115 int mm_preferred_cnt; 116 int mm_children; 117 boolean_t mm_resilvering; 118 boolean_t mm_root; 119 mirror_child_t mm_child[]; 120 } mirror_map_t; 121 122 static int vdev_mirror_shift = 21; 123 124 /* 125 * The load configuration settings below are tuned by default for 126 * the case where all devices are of the same rotational type. 127 * 128 * If there is a mixture of rotating and non-rotating media, setting 129 * zfs_vdev_mirror_non_rotating_seek_inc to 0 may well provide better results 130 * as it will direct more reads to the non-rotating vdevs which are more likely 131 * to have a higher performance. 132 */ 133 134 /* Rotating media load calculation configuration. */ 135 static int zfs_vdev_mirror_rotating_inc = 0; 136 static int zfs_vdev_mirror_rotating_seek_inc = 5; 137 static int zfs_vdev_mirror_rotating_seek_offset = 1 * 1024 * 1024; 138 139 /* Non-rotating media load calculation configuration. */ 140 static int zfs_vdev_mirror_non_rotating_inc = 0; 141 static int zfs_vdev_mirror_non_rotating_seek_inc = 1; 142 143 static inline size_t 144 vdev_mirror_map_size(int children) 145 { 146 return (offsetof(mirror_map_t, mm_child[children]) + 147 sizeof (int) * children); 148 } 149 150 static inline mirror_map_t * 151 vdev_mirror_map_alloc(int children, boolean_t resilvering, boolean_t root) 152 { 153 mirror_map_t *mm; 154 155 mm = kmem_zalloc(vdev_mirror_map_size(children), KM_SLEEP); 156 mm->mm_children = children; 157 mm->mm_resilvering = resilvering; 158 mm->mm_root = root; 159 mm->mm_preferred = (int *)((uintptr_t)mm + 160 offsetof(mirror_map_t, mm_child[children])); 161 162 return (mm); 163 } 164 165 static void 166 vdev_mirror_map_free(zio_t *zio) 167 { 168 mirror_map_t *mm = zio->io_vsd; 169 170 kmem_free(mm, vdev_mirror_map_size(mm->mm_children)); 171 } 172 173 static const zio_vsd_ops_t vdev_mirror_vsd_ops = { 174 .vsd_free = vdev_mirror_map_free, 175 .vsd_cksum_report = zio_vsd_default_cksum_report 176 }; 177 178 static int 179 vdev_mirror_load(mirror_map_t *mm, vdev_t *vd, uint64_t zio_offset) 180 { 181 uint64_t last_offset; 182 int64_t offset_diff; 183 int load; 184 185 /* All DVAs have equal weight at the root. */ 186 if (mm->mm_root) 187 return (INT_MAX); 188 189 /* 190 * We don't return INT_MAX if the device is resilvering i.e. 191 * vdev_resilver_txg != 0 as when tested performance was slightly 192 * worse overall when resilvering with compared to without. 193 */ 194 195 /* Fix zio_offset for leaf vdevs */ 196 if (vd->vdev_ops->vdev_op_leaf) 197 zio_offset += VDEV_LABEL_START_SIZE; 198 199 /* Standard load based on pending queue length. */ 200 load = vdev_queue_length(vd); 201 last_offset = vdev_queue_last_offset(vd); 202 203 if (vd->vdev_nonrot) { 204 /* Non-rotating media. */ 205 if (last_offset == zio_offset) { 206 MIRROR_BUMP(vdev_mirror_stat_non_rotating_linear); 207 return (load + zfs_vdev_mirror_non_rotating_inc); 208 } 209 210 /* 211 * Apply a seek penalty even for non-rotating devices as 212 * sequential I/O's can be aggregated into fewer operations on 213 * the device, thus avoiding unnecessary per-command overhead 214 * and boosting performance. 215 */ 216 MIRROR_BUMP(vdev_mirror_stat_non_rotating_seek); 217 return (load + zfs_vdev_mirror_non_rotating_seek_inc); 218 } 219 220 /* Rotating media I/O's which directly follow the last I/O. */ 221 if (last_offset == zio_offset) { 222 MIRROR_BUMP(vdev_mirror_stat_rotating_linear); 223 return (load + zfs_vdev_mirror_rotating_inc); 224 } 225 226 /* 227 * Apply half the seek increment to I/O's within seek offset 228 * of the last I/O issued to this vdev as they should incur less 229 * of a seek increment. 230 */ 231 offset_diff = (int64_t)(last_offset - zio_offset); 232 if (ABS(offset_diff) < zfs_vdev_mirror_rotating_seek_offset) { 233 MIRROR_BUMP(vdev_mirror_stat_rotating_offset); 234 return (load + (zfs_vdev_mirror_rotating_seek_inc / 2)); 235 } 236 237 /* Apply the full seek increment to all other I/O's. */ 238 MIRROR_BUMP(vdev_mirror_stat_rotating_seek); 239 return (load + zfs_vdev_mirror_rotating_seek_inc); 240 } 241 242 /* 243 * Avoid inlining the function to keep vdev_mirror_io_start(), which 244 * is this functions only caller, as small as possible on the stack. 245 */ 246 noinline static mirror_map_t * 247 vdev_mirror_map_init(zio_t *zio) 248 { 249 mirror_map_t *mm = NULL; 250 mirror_child_t *mc; 251 vdev_t *vd = zio->io_vd; 252 int c; 253 254 if (vd == NULL) { 255 dva_t *dva = zio->io_bp->blk_dva; 256 spa_t *spa = zio->io_spa; 257 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 258 dva_t dva_copy[SPA_DVAS_PER_BP]; 259 260 /* 261 * The sequential scrub code sorts and issues all DVAs 262 * of a bp separately. Each of these IOs includes all 263 * original DVA copies so that repairs can be performed 264 * in the event of an error, but we only actually want 265 * to check the first DVA since the others will be 266 * checked by their respective sorted IOs. Only if we 267 * hit an error will we try all DVAs upon retrying. 268 * 269 * Note: This check is safe even if the user switches 270 * from a legacy scrub to a sequential one in the middle 271 * of processing, since scn_is_sorted isn't updated until 272 * all outstanding IOs from the previous scrub pass 273 * complete. 274 */ 275 if ((zio->io_flags & ZIO_FLAG_SCRUB) && 276 !(zio->io_flags & ZIO_FLAG_IO_RETRY) && 277 dsl_scan_scrubbing(spa->spa_dsl_pool) && 278 scn->scn_is_sorted) { 279 c = 1; 280 } else { 281 c = BP_GET_NDVAS(zio->io_bp); 282 } 283 284 /* 285 * If the pool cannot be written to, then infer that some 286 * DVAs might be invalid or point to vdevs that do not exist. 287 * We skip them. 288 */ 289 if (!spa_writeable(spa)) { 290 ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ); 291 int j = 0; 292 for (int i = 0; i < c; i++) { 293 if (zfs_dva_valid(spa, &dva[i], zio->io_bp)) 294 dva_copy[j++] = dva[i]; 295 } 296 if (j == 0) { 297 zio->io_vsd = NULL; 298 zio->io_error = ENXIO; 299 return (NULL); 300 } 301 if (j < c) { 302 dva = dva_copy; 303 c = j; 304 } 305 } 306 307 mm = vdev_mirror_map_alloc(c, B_FALSE, B_TRUE); 308 for (c = 0; c < mm->mm_children; c++) { 309 mc = &mm->mm_child[c]; 310 311 mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c])); 312 mc->mc_offset = DVA_GET_OFFSET(&dva[c]); 313 if (mc->mc_vd == NULL) { 314 kmem_free(mm, vdev_mirror_map_size( 315 mm->mm_children)); 316 zio->io_vsd = NULL; 317 zio->io_error = ENXIO; 318 return (NULL); 319 } 320 } 321 } else { 322 /* 323 * If we are resilvering, then we should handle scrub reads 324 * differently; we shouldn't issue them to the resilvering 325 * device because it might not have those blocks. 326 * 327 * We are resilvering iff: 328 * 1) We are a replacing vdev (ie our name is "replacing-1" or 329 * "spare-1" or something like that), and 330 * 2) The pool is currently being resilvered. 331 * 332 * We cannot simply check vd->vdev_resilver_txg, because it's 333 * not set in this path. 334 * 335 * Nor can we just check our vdev_ops; there are cases (such as 336 * when a user types "zpool replace pool odev spare_dev" and 337 * spare_dev is in the spare list, or when a spare device is 338 * automatically used to replace a DEGRADED device) when 339 * resilvering is complete but both the original vdev and the 340 * spare vdev remain in the pool. That behavior is intentional. 341 * It helps implement the policy that a spare should be 342 * automatically removed from the pool after the user replaces 343 * the device that originally failed. 344 * 345 * If a spa load is in progress, then spa_dsl_pool may be 346 * uninitialized. But we shouldn't be resilvering during a spa 347 * load anyway. 348 */ 349 boolean_t replacing = (vd->vdev_ops == &vdev_replacing_ops || 350 vd->vdev_ops == &vdev_spare_ops) && 351 spa_load_state(vd->vdev_spa) == SPA_LOAD_NONE && 352 dsl_scan_resilvering(vd->vdev_spa->spa_dsl_pool); 353 mm = vdev_mirror_map_alloc(vd->vdev_children, replacing, 354 B_FALSE); 355 for (c = 0; c < mm->mm_children; c++) { 356 mc = &mm->mm_child[c]; 357 mc->mc_vd = vd->vdev_child[c]; 358 mc->mc_offset = zio->io_offset; 359 } 360 } 361 362 zio->io_vsd = mm; 363 zio->io_vsd_ops = &vdev_mirror_vsd_ops; 364 return (mm); 365 } 366 367 static int 368 vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize, 369 uint64_t *logical_ashift, uint64_t *physical_ashift) 370 { 371 int numerrors = 0; 372 int lasterror = 0; 373 374 if (vd->vdev_children == 0) { 375 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 376 return (SET_ERROR(EINVAL)); 377 } 378 379 vdev_open_children(vd); 380 381 for (int c = 0; c < vd->vdev_children; c++) { 382 vdev_t *cvd = vd->vdev_child[c]; 383 384 if (cvd->vdev_open_error) { 385 lasterror = cvd->vdev_open_error; 386 numerrors++; 387 continue; 388 } 389 390 *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1; 391 *max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1; 392 *logical_ashift = MAX(*logical_ashift, cvd->vdev_ashift); 393 *physical_ashift = MAX(*physical_ashift, 394 vd->vdev_physical_ashift); 395 } 396 397 if (numerrors == vd->vdev_children) { 398 if (vdev_children_are_offline(vd)) 399 vd->vdev_stat.vs_aux = VDEV_AUX_CHILDREN_OFFLINE; 400 else 401 vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS; 402 return (lasterror); 403 } 404 405 return (0); 406 } 407 408 static void 409 vdev_mirror_close(vdev_t *vd) 410 { 411 for (int c = 0; c < vd->vdev_children; c++) 412 vdev_close(vd->vdev_child[c]); 413 } 414 415 static void 416 vdev_mirror_child_done(zio_t *zio) 417 { 418 mirror_child_t *mc = zio->io_private; 419 420 mc->mc_error = zio->io_error; 421 mc->mc_tried = 1; 422 mc->mc_skipped = 0; 423 } 424 425 static void 426 vdev_mirror_scrub_done(zio_t *zio) 427 { 428 mirror_child_t *mc = zio->io_private; 429 430 if (zio->io_error == 0) { 431 zio_t *pio; 432 zio_link_t *zl = NULL; 433 434 mutex_enter(&zio->io_lock); 435 while ((pio = zio_walk_parents(zio, &zl)) != NULL) { 436 mutex_enter(&pio->io_lock); 437 ASSERT3U(zio->io_size, >=, pio->io_size); 438 abd_copy(pio->io_abd, zio->io_abd, pio->io_size); 439 mutex_exit(&pio->io_lock); 440 } 441 mutex_exit(&zio->io_lock); 442 } 443 444 abd_free(zio->io_abd); 445 446 mc->mc_error = zio->io_error; 447 mc->mc_tried = 1; 448 mc->mc_skipped = 0; 449 } 450 451 /* 452 * Check the other, lower-index DVAs to see if they're on the same 453 * vdev as the child we picked. If they are, use them since they 454 * are likely to have been allocated from the primary metaslab in 455 * use at the time, and hence are more likely to have locality with 456 * single-copy data. 457 */ 458 static int 459 vdev_mirror_dva_select(zio_t *zio, int p) 460 { 461 dva_t *dva = zio->io_bp->blk_dva; 462 mirror_map_t *mm = zio->io_vsd; 463 int preferred; 464 int c; 465 466 preferred = mm->mm_preferred[p]; 467 for (p--; p >= 0; p--) { 468 c = mm->mm_preferred[p]; 469 if (DVA_GET_VDEV(&dva[c]) == DVA_GET_VDEV(&dva[preferred])) 470 preferred = c; 471 } 472 return (preferred); 473 } 474 475 static int 476 vdev_mirror_preferred_child_randomize(zio_t *zio) 477 { 478 mirror_map_t *mm = zio->io_vsd; 479 int p; 480 481 if (mm->mm_root) { 482 p = spa_get_random(mm->mm_preferred_cnt); 483 return (vdev_mirror_dva_select(zio, p)); 484 } 485 486 /* 487 * To ensure we don't always favour the first matching vdev, 488 * which could lead to wear leveling issues on SSD's, we 489 * use the I/O offset as a pseudo random seed into the vdevs 490 * which have the lowest load. 491 */ 492 p = (zio->io_offset >> vdev_mirror_shift) % mm->mm_preferred_cnt; 493 return (mm->mm_preferred[p]); 494 } 495 496 /* 497 * Try to find a vdev whose DTL doesn't contain the block we want to read 498 * preferring vdevs based on determined load. 499 * 500 * Try to find a child whose DTL doesn't contain the block we want to read. 501 * If we can't, try the read on any vdev we haven't already tried. 502 */ 503 static int 504 vdev_mirror_child_select(zio_t *zio) 505 { 506 mirror_map_t *mm = zio->io_vsd; 507 uint64_t txg = zio->io_txg; 508 int c, lowest_load; 509 510 ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg); 511 512 lowest_load = INT_MAX; 513 mm->mm_preferred_cnt = 0; 514 for (c = 0; c < mm->mm_children; c++) { 515 mirror_child_t *mc; 516 517 mc = &mm->mm_child[c]; 518 if (mc->mc_tried || mc->mc_skipped) 519 continue; 520 521 if (mc->mc_vd == NULL || !vdev_readable(mc->mc_vd)) { 522 mc->mc_error = SET_ERROR(ENXIO); 523 mc->mc_tried = 1; /* don't even try */ 524 mc->mc_skipped = 1; 525 continue; 526 } 527 528 if (vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1)) { 529 mc->mc_error = SET_ERROR(ESTALE); 530 mc->mc_skipped = 1; 531 mc->mc_speculative = 1; 532 continue; 533 } 534 535 mc->mc_load = vdev_mirror_load(mm, mc->mc_vd, mc->mc_offset); 536 if (mc->mc_load > lowest_load) 537 continue; 538 539 if (mc->mc_load < lowest_load) { 540 lowest_load = mc->mc_load; 541 mm->mm_preferred_cnt = 0; 542 } 543 mm->mm_preferred[mm->mm_preferred_cnt] = c; 544 mm->mm_preferred_cnt++; 545 } 546 547 if (mm->mm_preferred_cnt == 1) { 548 MIRROR_BUMP(vdev_mirror_stat_preferred_found); 549 return (mm->mm_preferred[0]); 550 } 551 552 if (mm->mm_preferred_cnt > 1) { 553 MIRROR_BUMP(vdev_mirror_stat_preferred_not_found); 554 return (vdev_mirror_preferred_child_randomize(zio)); 555 } 556 557 /* 558 * Every device is either missing or has this txg in its DTL. 559 * Look for any child we haven't already tried before giving up. 560 */ 561 for (c = 0; c < mm->mm_children; c++) { 562 if (!mm->mm_child[c].mc_tried) 563 return (c); 564 } 565 566 /* 567 * Every child failed. There's no place left to look. 568 */ 569 return (-1); 570 } 571 572 static void 573 vdev_mirror_io_start(zio_t *zio) 574 { 575 mirror_map_t *mm; 576 mirror_child_t *mc; 577 int c, children; 578 579 mm = vdev_mirror_map_init(zio); 580 581 if (mm == NULL) { 582 ASSERT(!spa_trust_config(zio->io_spa)); 583 ASSERT(zio->io_type == ZIO_TYPE_READ); 584 zio_execute(zio); 585 return; 586 } 587 588 if (zio->io_type == ZIO_TYPE_READ) { 589 if (zio->io_bp != NULL && 590 (zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_resilvering) { 591 /* 592 * For scrubbing reads (if we can verify the 593 * checksum here, as indicated by io_bp being 594 * non-NULL) we need to allocate a read buffer for 595 * each child and issue reads to all children. If 596 * any child succeeds, it will copy its data into 597 * zio->io_data in vdev_mirror_scrub_done. 598 */ 599 for (c = 0; c < mm->mm_children; c++) { 600 mc = &mm->mm_child[c]; 601 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 602 mc->mc_vd, mc->mc_offset, 603 abd_alloc_sametype(zio->io_abd, 604 zio->io_size), zio->io_size, 605 zio->io_type, zio->io_priority, 0, 606 vdev_mirror_scrub_done, mc)); 607 } 608 zio_execute(zio); 609 return; 610 } 611 /* 612 * For normal reads just pick one child. 613 */ 614 c = vdev_mirror_child_select(zio); 615 children = (c >= 0); 616 } else { 617 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 618 619 /* 620 * Writes go to all children. 621 */ 622 c = 0; 623 children = mm->mm_children; 624 } 625 626 while (children--) { 627 mc = &mm->mm_child[c]; 628 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 629 mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size, 630 zio->io_type, zio->io_priority, 0, 631 vdev_mirror_child_done, mc)); 632 c++; 633 } 634 635 zio_execute(zio); 636 } 637 638 static int 639 vdev_mirror_worst_error(mirror_map_t *mm) 640 { 641 int error[2] = { 0, 0 }; 642 643 for (int c = 0; c < mm->mm_children; c++) { 644 mirror_child_t *mc = &mm->mm_child[c]; 645 int s = mc->mc_speculative; 646 error[s] = zio_worst_error(error[s], mc->mc_error); 647 } 648 649 return (error[0] ? error[0] : error[1]); 650 } 651 652 static void 653 vdev_mirror_io_done(zio_t *zio) 654 { 655 mirror_map_t *mm = zio->io_vsd; 656 mirror_child_t *mc; 657 int c; 658 int good_copies = 0; 659 int unexpected_errors = 0; 660 661 if (mm == NULL) 662 return; 663 664 for (c = 0; c < mm->mm_children; c++) { 665 mc = &mm->mm_child[c]; 666 667 if (mc->mc_error) { 668 if (!mc->mc_skipped) 669 unexpected_errors++; 670 } else if (mc->mc_tried) { 671 good_copies++; 672 } 673 } 674 675 if (zio->io_type == ZIO_TYPE_WRITE) { 676 /* 677 * XXX -- for now, treat partial writes as success. 678 * 679 * Now that we support write reallocation, it would be better 680 * to treat partial failure as real failure unless there are 681 * no non-degraded top-level vdevs left, and not update DTLs 682 * if we intend to reallocate. 683 */ 684 /* XXPOLICY */ 685 if (good_copies != mm->mm_children) { 686 /* 687 * Always require at least one good copy. 688 * 689 * For ditto blocks (io_vd == NULL), require 690 * all copies to be good. 691 * 692 * XXX -- for replacing vdevs, there's no great answer. 693 * If the old device is really dead, we may not even 694 * be able to access it -- so we only want to 695 * require good writes to the new device. But if 696 * the new device turns out to be flaky, we want 697 * to be able to detach it -- which requires all 698 * writes to the old device to have succeeded. 699 */ 700 if (good_copies == 0 || zio->io_vd == NULL) 701 zio->io_error = vdev_mirror_worst_error(mm); 702 } 703 return; 704 } 705 706 ASSERT(zio->io_type == ZIO_TYPE_READ); 707 708 /* 709 * If we don't have a good copy yet, keep trying other children. 710 */ 711 /* XXPOLICY */ 712 if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) { 713 ASSERT(c >= 0 && c < mm->mm_children); 714 mc = &mm->mm_child[c]; 715 zio_vdev_io_redone(zio); 716 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 717 mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size, 718 ZIO_TYPE_READ, zio->io_priority, 0, 719 vdev_mirror_child_done, mc)); 720 return; 721 } 722 723 /* XXPOLICY */ 724 if (good_copies == 0) { 725 zio->io_error = vdev_mirror_worst_error(mm); 726 ASSERT(zio->io_error != 0); 727 } 728 729 if (good_copies && spa_writeable(zio->io_spa) && 730 (unexpected_errors || 731 (zio->io_flags & ZIO_FLAG_RESILVER) || 732 ((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_resilvering))) { 733 /* 734 * Use the good data we have in hand to repair damaged children. 735 */ 736 for (c = 0; c < mm->mm_children; c++) { 737 /* 738 * Don't rewrite known good children. 739 * Not only is it unnecessary, it could 740 * actually be harmful: if the system lost 741 * power while rewriting the only good copy, 742 * there would be no good copies left! 743 */ 744 mc = &mm->mm_child[c]; 745 746 if (mc->mc_error == 0) { 747 if (mc->mc_tried) 748 continue; 749 /* 750 * We didn't try this child. We need to 751 * repair it if: 752 * 1. it's a scrub (in which case we have 753 * tried everything that was healthy) 754 * - or - 755 * 2. it's an indirect vdev (in which case 756 * it could point to any other vdev, which 757 * might have a bad DTL) 758 * - or - 759 * 3. the DTL indicates that this data is 760 * missing from this vdev 761 */ 762 if (!(zio->io_flags & ZIO_FLAG_SCRUB) && 763 mc->mc_vd->vdev_ops != &vdev_indirect_ops && 764 !vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL, 765 zio->io_txg, 1)) 766 continue; 767 mc->mc_error = SET_ERROR(ESTALE); 768 } 769 770 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 771 mc->mc_vd, mc->mc_offset, 772 zio->io_abd, zio->io_size, ZIO_TYPE_WRITE, 773 zio->io_priority == ZIO_PRIORITY_REBUILD ? 774 ZIO_PRIORITY_REBUILD : ZIO_PRIORITY_ASYNC_WRITE, 775 ZIO_FLAG_IO_REPAIR | (unexpected_errors ? 776 ZIO_FLAG_SELF_HEAL : 0), NULL, NULL)); 777 } 778 } 779 } 780 781 static void 782 vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded) 783 { 784 if (faulted == vd->vdev_children) { 785 if (vdev_children_are_offline(vd)) { 786 vdev_set_state(vd, B_FALSE, VDEV_STATE_OFFLINE, 787 VDEV_AUX_CHILDREN_OFFLINE); 788 } else { 789 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 790 VDEV_AUX_NO_REPLICAS); 791 } 792 } else if (degraded + faulted != 0) { 793 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE); 794 } else { 795 vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE); 796 } 797 } 798 799 vdev_ops_t vdev_mirror_ops = { 800 .vdev_op_open = vdev_mirror_open, 801 .vdev_op_close = vdev_mirror_close, 802 .vdev_op_asize = vdev_default_asize, 803 .vdev_op_io_start = vdev_mirror_io_start, 804 .vdev_op_io_done = vdev_mirror_io_done, 805 .vdev_op_state_change = vdev_mirror_state_change, 806 .vdev_op_need_resilver = NULL, 807 .vdev_op_hold = NULL, 808 .vdev_op_rele = NULL, 809 .vdev_op_remap = NULL, 810 .vdev_op_xlate = vdev_default_xlate, 811 .vdev_op_type = VDEV_TYPE_MIRROR, /* name of this vdev type */ 812 .vdev_op_leaf = B_FALSE /* not a leaf vdev */ 813 }; 814 815 vdev_ops_t vdev_replacing_ops = { 816 .vdev_op_open = vdev_mirror_open, 817 .vdev_op_close = vdev_mirror_close, 818 .vdev_op_asize = vdev_default_asize, 819 .vdev_op_io_start = vdev_mirror_io_start, 820 .vdev_op_io_done = vdev_mirror_io_done, 821 .vdev_op_state_change = vdev_mirror_state_change, 822 .vdev_op_need_resilver = NULL, 823 .vdev_op_hold = NULL, 824 .vdev_op_rele = NULL, 825 .vdev_op_remap = NULL, 826 .vdev_op_xlate = vdev_default_xlate, 827 .vdev_op_type = VDEV_TYPE_REPLACING, /* name of this vdev type */ 828 .vdev_op_leaf = B_FALSE /* not a leaf vdev */ 829 }; 830 831 vdev_ops_t vdev_spare_ops = { 832 .vdev_op_open = vdev_mirror_open, 833 .vdev_op_close = vdev_mirror_close, 834 .vdev_op_asize = vdev_default_asize, 835 .vdev_op_io_start = vdev_mirror_io_start, 836 .vdev_op_io_done = vdev_mirror_io_done, 837 .vdev_op_state_change = vdev_mirror_state_change, 838 .vdev_op_need_resilver = NULL, 839 .vdev_op_hold = NULL, 840 .vdev_op_rele = NULL, 841 .vdev_op_remap = NULL, 842 .vdev_op_xlate = vdev_default_xlate, 843 .vdev_op_type = VDEV_TYPE_SPARE, /* name of this vdev type */ 844 .vdev_op_leaf = B_FALSE /* not a leaf vdev */ 845 }; 846 847 /* BEGIN CSTYLED */ 848 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_inc, INT, ZMOD_RW, 849 "Rotating media load increment for non-seeking I/O's"); 850 851 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_seek_inc, INT, ZMOD_RW, 852 "Rotating media load increment for seeking I/O's"); 853 854 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, rotating_seek_offset, INT, ZMOD_RW, 855 "Offset in bytes from the last I/O which triggers " 856 "a reduced rotating media seek increment"); 857 858 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, non_rotating_inc, INT, ZMOD_RW, 859 "Non-rotating media load increment for non-seeking I/O's"); 860 861 ZFS_MODULE_PARAM(zfs_vdev_mirror, zfs_vdev_mirror_, non_rotating_seek_inc, INT, ZMOD_RW, 862 "Non-rotating media load increment for seeking I/O's"); 863 /* END CSTYLED */ 864