xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_label.c (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  */
27 
28 /*
29  * Virtual Device Labels
30  * ---------------------
31  *
32  * The vdev label serves several distinct purposes:
33  *
34  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
35  *	   identity within the pool.
36  *
37  *	2. Verify that all the devices given in a configuration are present
38  *         within the pool.
39  *
40  *	3. Determine the uberblock for the pool.
41  *
42  *	4. In case of an import operation, determine the configuration of the
43  *         toplevel vdev of which it is a part.
44  *
45  *	5. If an import operation cannot find all the devices in the pool,
46  *         provide enough information to the administrator to determine which
47  *         devices are missing.
48  *
49  * It is important to note that while the kernel is responsible for writing the
50  * label, it only consumes the information in the first three cases.  The
51  * latter information is only consumed in userland when determining the
52  * configuration to import a pool.
53  *
54  *
55  * Label Organization
56  * ------------------
57  *
58  * Before describing the contents of the label, it's important to understand how
59  * the labels are written and updated with respect to the uberblock.
60  *
61  * When the pool configuration is altered, either because it was newly created
62  * or a device was added, we want to update all the labels such that we can deal
63  * with fatal failure at any point.  To this end, each disk has two labels which
64  * are updated before and after the uberblock is synced.  Assuming we have
65  * labels and an uberblock with the following transaction groups:
66  *
67  *              L1          UB          L2
68  *           +------+    +------+    +------+
69  *           |      |    |      |    |      |
70  *           | t10  |    | t10  |    | t10  |
71  *           |      |    |      |    |      |
72  *           +------+    +------+    +------+
73  *
74  * In this stable state, the labels and the uberblock were all updated within
75  * the same transaction group (10).  Each label is mirrored and checksummed, so
76  * that we can detect when we fail partway through writing the label.
77  *
78  * In order to identify which labels are valid, the labels are written in the
79  * following manner:
80  *
81  *	1. For each vdev, update 'L1' to the new label
82  *	2. Update the uberblock
83  *	3. For each vdev, update 'L2' to the new label
84  *
85  * Given arbitrary failure, we can determine the correct label to use based on
86  * the transaction group.  If we fail after updating L1 but before updating the
87  * UB, we will notice that L1's transaction group is greater than the uberblock,
88  * so L2 must be valid.  If we fail after writing the uberblock but before
89  * writing L2, we will notice that L2's transaction group is less than L1, and
90  * therefore L1 is valid.
91  *
92  * Another added complexity is that not every label is updated when the config
93  * is synced.  If we add a single device, we do not want to have to re-write
94  * every label for every device in the pool.  This means that both L1 and L2 may
95  * be older than the pool uberblock, because the necessary information is stored
96  * on another vdev.
97  *
98  *
99  * On-disk Format
100  * --------------
101  *
102  * The vdev label consists of two distinct parts, and is wrapped within the
103  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
104  * VTOC disk labels, but is otherwise ignored.
105  *
106  * The first half of the label is a packed nvlist which contains pool wide
107  * properties, per-vdev properties, and configuration information.  It is
108  * described in more detail below.
109  *
110  * The latter half of the label consists of a redundant array of uberblocks.
111  * These uberblocks are updated whenever a transaction group is committed,
112  * or when the configuration is updated.  When a pool is loaded, we scan each
113  * vdev for the 'best' uberblock.
114  *
115  *
116  * Configuration Information
117  * -------------------------
118  *
119  * The nvlist describing the pool and vdev contains the following elements:
120  *
121  *	version		ZFS on-disk version
122  *	name		Pool name
123  *	state		Pool state
124  *	txg		Transaction group in which this label was written
125  *	pool_guid	Unique identifier for this pool
126  *	vdev_tree	An nvlist describing vdev tree.
127  *	features_for_read
128  *			An nvlist of the features necessary for reading the MOS.
129  *
130  * Each leaf device label also contains the following:
131  *
132  *	top_guid	Unique ID for top-level vdev in which this is contained
133  *	guid		Unique ID for the leaf vdev
134  *
135  * The 'vs' configuration follows the format described in 'spa_config.c'.
136  */
137 
138 #include <sys/zfs_context.h>
139 #include <sys/spa.h>
140 #include <sys/spa_impl.h>
141 #include <sys/dmu.h>
142 #include <sys/zap.h>
143 #include <sys/vdev.h>
144 #include <sys/vdev_impl.h>
145 #include <sys/uberblock_impl.h>
146 #include <sys/metaslab.h>
147 #include <sys/metaslab_impl.h>
148 #include <sys/zio.h>
149 #include <sys/dsl_scan.h>
150 #include <sys/abd.h>
151 #include <sys/fs/zfs.h>
152 #include <sys/byteorder.h>
153 #include <sys/zfs_bootenv.h>
154 
155 /*
156  * Basic routines to read and write from a vdev label.
157  * Used throughout the rest of this file.
158  */
159 uint64_t
160 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
161 {
162 	ASSERT(offset < sizeof (vdev_label_t));
163 	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
164 
165 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
166 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
167 }
168 
169 /*
170  * Returns back the vdev label associated with the passed in offset.
171  */
172 int
173 vdev_label_number(uint64_t psize, uint64_t offset)
174 {
175 	int l;
176 
177 	if (offset >= psize - VDEV_LABEL_END_SIZE) {
178 		offset -= psize - VDEV_LABEL_END_SIZE;
179 		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
180 	}
181 	l = offset / sizeof (vdev_label_t);
182 	return (l < VDEV_LABELS ? l : -1);
183 }
184 
185 static void
186 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
187     uint64_t size, zio_done_func_t *done, void *private, int flags)
188 {
189 	ASSERT(
190 	    spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
191 	    spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
192 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
193 
194 	zio_nowait(zio_read_phys(zio, vd,
195 	    vdev_label_offset(vd->vdev_psize, l, offset),
196 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
197 	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
198 }
199 
200 void
201 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
202     uint64_t size, zio_done_func_t *done, void *private, int flags)
203 {
204 	ASSERT(
205 	    spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
206 	    spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
207 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
208 
209 	zio_nowait(zio_write_phys(zio, vd,
210 	    vdev_label_offset(vd->vdev_psize, l, offset),
211 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
212 	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
213 }
214 
215 /*
216  * Generate the nvlist representing this vdev's stats
217  */
218 void
219 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv)
220 {
221 	nvlist_t *nvx;
222 	vdev_stat_t *vs;
223 	vdev_stat_ex_t *vsx;
224 
225 	vs = kmem_alloc(sizeof (*vs), KM_SLEEP);
226 	vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP);
227 
228 	vdev_get_stats_ex(vd, vs, vsx);
229 	fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
230 	    (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t));
231 
232 	/*
233 	 * Add extended stats into a special extended stats nvlist.  This keeps
234 	 * all the extended stats nicely grouped together.  The extended stats
235 	 * nvlist is then added to the main nvlist.
236 	 */
237 	nvx = fnvlist_alloc();
238 
239 	/* ZIOs in flight to disk */
240 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE,
241 	    vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]);
242 
243 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE,
244 	    vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]);
245 
246 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE,
247 	    vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]);
248 
249 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE,
250 	    vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]);
251 
252 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE,
253 	    vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]);
254 
255 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE,
256 	    vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]);
257 
258 	/* ZIOs pending */
259 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE,
260 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]);
261 
262 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE,
263 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]);
264 
265 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE,
266 	    vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]);
267 
268 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE,
269 	    vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]);
270 
271 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE,
272 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]);
273 
274 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE,
275 	    vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]);
276 
277 	/* Histograms */
278 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO,
279 	    vsx->vsx_total_histo[ZIO_TYPE_READ],
280 	    ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ]));
281 
282 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO,
283 	    vsx->vsx_total_histo[ZIO_TYPE_WRITE],
284 	    ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE]));
285 
286 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO,
287 	    vsx->vsx_disk_histo[ZIO_TYPE_READ],
288 	    ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ]));
289 
290 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO,
291 	    vsx->vsx_disk_histo[ZIO_TYPE_WRITE],
292 	    ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE]));
293 
294 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO,
295 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ],
296 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ]));
297 
298 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO,
299 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE],
300 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE]));
301 
302 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO,
303 	    vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ],
304 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ]));
305 
306 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO,
307 	    vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE],
308 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE]));
309 
310 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO,
311 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB],
312 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB]));
313 
314 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO,
315 	    vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM],
316 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM]));
317 
318 	/* Request sizes */
319 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO,
320 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ],
321 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ]));
322 
323 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO,
324 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE],
325 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE]));
326 
327 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO,
328 	    vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ],
329 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ]));
330 
331 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO,
332 	    vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE],
333 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE]));
334 
335 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO,
336 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB],
337 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB]));
338 
339 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO,
340 	    vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM],
341 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM]));
342 
343 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO,
344 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ],
345 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ]));
346 
347 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO,
348 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE],
349 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE]));
350 
351 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO,
352 	    vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ],
353 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ]));
354 
355 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO,
356 	    vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE],
357 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE]));
358 
359 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO,
360 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB],
361 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB]));
362 
363 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO,
364 	    vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM],
365 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM]));
366 
367 	/* IO delays */
368 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios);
369 
370 	/* Add extended stats nvlist to main nvlist */
371 	fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx);
372 
373 	fnvlist_free(nvx);
374 	kmem_free(vs, sizeof (*vs));
375 	kmem_free(vsx, sizeof (*vsx));
376 }
377 
378 static void
379 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
380 {
381 	spa_t *spa = vd->vdev_spa;
382 
383 	if (vd != spa->spa_root_vdev)
384 		return;
385 
386 	/* provide either current or previous scan information */
387 	pool_scan_stat_t ps;
388 	if (spa_scan_get_stats(spa, &ps) == 0) {
389 		fnvlist_add_uint64_array(nvl,
390 		    ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
391 		    sizeof (pool_scan_stat_t) / sizeof (uint64_t));
392 	}
393 
394 	pool_removal_stat_t prs;
395 	if (spa_removal_get_stats(spa, &prs) == 0) {
396 		fnvlist_add_uint64_array(nvl,
397 		    ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
398 		    sizeof (prs) / sizeof (uint64_t));
399 	}
400 
401 	pool_checkpoint_stat_t pcs;
402 	if (spa_checkpoint_get_stats(spa, &pcs) == 0) {
403 		fnvlist_add_uint64_array(nvl,
404 		    ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs,
405 		    sizeof (pcs) / sizeof (uint64_t));
406 	}
407 }
408 
409 static void
410 top_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
411 {
412 	if (vd == vd->vdev_top) {
413 		vdev_rebuild_stat_t vrs;
414 		if (vdev_rebuild_get_stats(vd, &vrs) == 0) {
415 			fnvlist_add_uint64_array(nvl,
416 			    ZPOOL_CONFIG_REBUILD_STATS, (uint64_t *)&vrs,
417 			    sizeof (vrs) / sizeof (uint64_t));
418 		}
419 	}
420 }
421 
422 /*
423  * Generate the nvlist representing this vdev's config.
424  */
425 nvlist_t *
426 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
427     vdev_config_flag_t flags)
428 {
429 	nvlist_t *nv = NULL;
430 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
431 
432 	nv = fnvlist_alloc();
433 
434 	fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
435 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
436 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
437 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
438 
439 	if (vd->vdev_path != NULL)
440 		fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
441 
442 	if (vd->vdev_devid != NULL)
443 		fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
444 
445 	if (vd->vdev_physpath != NULL)
446 		fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
447 		    vd->vdev_physpath);
448 
449 	if (vd->vdev_enc_sysfs_path != NULL)
450 		fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
451 		    vd->vdev_enc_sysfs_path);
452 
453 	if (vd->vdev_fru != NULL)
454 		fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
455 
456 	if (vd->vdev_nparity != 0) {
457 		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
458 		    VDEV_TYPE_RAIDZ) == 0);
459 
460 		/*
461 		 * Make sure someone hasn't managed to sneak a fancy new vdev
462 		 * into a crufty old storage pool.
463 		 */
464 		ASSERT(vd->vdev_nparity == 1 ||
465 		    (vd->vdev_nparity <= 2 &&
466 		    spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
467 		    (vd->vdev_nparity <= 3 &&
468 		    spa_version(spa) >= SPA_VERSION_RAIDZ3));
469 
470 		/*
471 		 * Note that we'll add the nparity tag even on storage pools
472 		 * that only support a single parity device -- older software
473 		 * will just ignore it.
474 		 */
475 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
476 	}
477 
478 	if (vd->vdev_wholedisk != -1ULL)
479 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
480 		    vd->vdev_wholedisk);
481 
482 	if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
483 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
484 
485 	if (vd->vdev_isspare)
486 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
487 
488 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
489 	    vd == vd->vdev_top) {
490 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
491 		    vd->vdev_ms_array);
492 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
493 		    vd->vdev_ms_shift);
494 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
495 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
496 		    vd->vdev_asize);
497 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
498 		if (vd->vdev_removing) {
499 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
500 			    vd->vdev_removing);
501 		}
502 
503 		/* zpool command expects alloc class data */
504 		if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) {
505 			const char *bias = NULL;
506 
507 			switch (vd->vdev_alloc_bias) {
508 			case VDEV_BIAS_LOG:
509 				bias = VDEV_ALLOC_BIAS_LOG;
510 				break;
511 			case VDEV_BIAS_SPECIAL:
512 				bias = VDEV_ALLOC_BIAS_SPECIAL;
513 				break;
514 			case VDEV_BIAS_DEDUP:
515 				bias = VDEV_ALLOC_BIAS_DEDUP;
516 				break;
517 			default:
518 				ASSERT3U(vd->vdev_alloc_bias, ==,
519 				    VDEV_BIAS_NONE);
520 			}
521 			fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
522 			    bias);
523 		}
524 	}
525 
526 	if (vd->vdev_dtl_sm != NULL) {
527 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
528 		    space_map_object(vd->vdev_dtl_sm));
529 	}
530 
531 	if (vic->vic_mapping_object != 0) {
532 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
533 		    vic->vic_mapping_object);
534 	}
535 
536 	if (vic->vic_births_object != 0) {
537 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
538 		    vic->vic_births_object);
539 	}
540 
541 	if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
542 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
543 		    vic->vic_prev_indirect_vdev);
544 	}
545 
546 	if (vd->vdev_crtxg)
547 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
548 
549 	if (vd->vdev_expansion_time)
550 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_EXPANSION_TIME,
551 		    vd->vdev_expansion_time);
552 
553 	if (flags & VDEV_CONFIG_MOS) {
554 		if (vd->vdev_leaf_zap != 0) {
555 			ASSERT(vd->vdev_ops->vdev_op_leaf);
556 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
557 			    vd->vdev_leaf_zap);
558 		}
559 
560 		if (vd->vdev_top_zap != 0) {
561 			ASSERT(vd == vd->vdev_top);
562 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
563 			    vd->vdev_top_zap);
564 		}
565 
566 		if (vd->vdev_resilver_deferred) {
567 			ASSERT(vd->vdev_ops->vdev_op_leaf);
568 			ASSERT(spa->spa_resilver_deferred);
569 			fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER);
570 		}
571 	}
572 
573 	if (getstats) {
574 		vdev_config_generate_stats(vd, nv);
575 
576 		root_vdev_actions_getprogress(vd, nv);
577 		top_vdev_actions_getprogress(vd, nv);
578 
579 		/*
580 		 * Note: this can be called from open context
581 		 * (spa_get_stats()), so we need the rwlock to prevent
582 		 * the mapping from being changed by condensing.
583 		 */
584 		rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
585 		if (vd->vdev_indirect_mapping != NULL) {
586 			ASSERT(vd->vdev_indirect_births != NULL);
587 			vdev_indirect_mapping_t *vim =
588 			    vd->vdev_indirect_mapping;
589 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
590 			    vdev_indirect_mapping_size(vim));
591 		}
592 		rw_exit(&vd->vdev_indirect_rwlock);
593 		if (vd->vdev_mg != NULL &&
594 		    vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
595 			/*
596 			 * Compute approximately how much memory would be used
597 			 * for the indirect mapping if this device were to
598 			 * be removed.
599 			 *
600 			 * Note: If the frag metric is invalid, then not
601 			 * enough metaslabs have been converted to have
602 			 * histograms.
603 			 */
604 			uint64_t seg_count = 0;
605 			uint64_t to_alloc = vd->vdev_stat.vs_alloc;
606 
607 			/*
608 			 * There are the same number of allocated segments
609 			 * as free segments, so we will have at least one
610 			 * entry per free segment.  However, small free
611 			 * segments (smaller than vdev_removal_max_span)
612 			 * will be combined with adjacent allocated segments
613 			 * as a single mapping.
614 			 */
615 			for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
616 				if (i + 1 < highbit64(vdev_removal_max_span)
617 				    - 1) {
618 					to_alloc +=
619 					    vd->vdev_mg->mg_histogram[i] <<
620 					    (i + 1);
621 				} else {
622 					seg_count +=
623 					    vd->vdev_mg->mg_histogram[i];
624 				}
625 			}
626 
627 			/*
628 			 * The maximum length of a mapping is
629 			 * zfs_remove_max_segment, so we need at least one entry
630 			 * per zfs_remove_max_segment of allocated data.
631 			 */
632 			seg_count += to_alloc / spa_remove_max_segment(spa);
633 
634 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
635 			    seg_count *
636 			    sizeof (vdev_indirect_mapping_entry_phys_t));
637 		}
638 	}
639 
640 	if (!vd->vdev_ops->vdev_op_leaf) {
641 		nvlist_t **child;
642 		int c, idx;
643 
644 		ASSERT(!vd->vdev_ishole);
645 
646 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
647 		    KM_SLEEP);
648 
649 		for (c = 0, idx = 0; c < vd->vdev_children; c++) {
650 			vdev_t *cvd = vd->vdev_child[c];
651 
652 			/*
653 			 * If we're generating an nvlist of removing
654 			 * vdevs then skip over any device which is
655 			 * not being removed.
656 			 */
657 			if ((flags & VDEV_CONFIG_REMOVING) &&
658 			    !cvd->vdev_removing)
659 				continue;
660 
661 			child[idx++] = vdev_config_generate(spa, cvd,
662 			    getstats, flags);
663 		}
664 
665 		if (idx) {
666 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
667 			    child, idx);
668 		}
669 
670 		for (c = 0; c < idx; c++)
671 			nvlist_free(child[c]);
672 
673 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
674 
675 	} else {
676 		const char *aux = NULL;
677 
678 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
679 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
680 		if (vd->vdev_resilver_txg != 0)
681 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
682 			    vd->vdev_resilver_txg);
683 		if (vd->vdev_rebuild_txg != 0)
684 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
685 			    vd->vdev_rebuild_txg);
686 		if (vd->vdev_faulted)
687 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
688 		if (vd->vdev_degraded)
689 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
690 		if (vd->vdev_removed)
691 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
692 		if (vd->vdev_unspare)
693 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
694 		if (vd->vdev_ishole)
695 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
696 
697 		/* Set the reason why we're FAULTED/DEGRADED. */
698 		switch (vd->vdev_stat.vs_aux) {
699 		case VDEV_AUX_ERR_EXCEEDED:
700 			aux = "err_exceeded";
701 			break;
702 
703 		case VDEV_AUX_EXTERNAL:
704 			aux = "external";
705 			break;
706 		}
707 
708 		if (aux != NULL && !vd->vdev_tmpoffline) {
709 			fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
710 		} else {
711 			/*
712 			 * We're healthy - clear any previous AUX_STATE values.
713 			 */
714 			if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE))
715 				nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE);
716 		}
717 
718 		if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
719 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
720 			    vd->vdev_orig_guid);
721 		}
722 	}
723 
724 	return (nv);
725 }
726 
727 /*
728  * Generate a view of the top-level vdevs.  If we currently have holes
729  * in the namespace, then generate an array which contains a list of holey
730  * vdevs.  Additionally, add the number of top-level children that currently
731  * exist.
732  */
733 void
734 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
735 {
736 	vdev_t *rvd = spa->spa_root_vdev;
737 	uint64_t *array;
738 	uint_t c, idx;
739 
740 	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
741 
742 	for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
743 		vdev_t *tvd = rvd->vdev_child[c];
744 
745 		if (tvd->vdev_ishole) {
746 			array[idx++] = c;
747 		}
748 	}
749 
750 	if (idx) {
751 		VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
752 		    array, idx) == 0);
753 	}
754 
755 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
756 	    rvd->vdev_children) == 0);
757 
758 	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
759 }
760 
761 /*
762  * Returns the configuration from the label of the given vdev. For vdevs
763  * which don't have a txg value stored on their label (i.e. spares/cache)
764  * or have not been completely initialized (txg = 0) just return
765  * the configuration from the first valid label we find. Otherwise,
766  * find the most up-to-date label that does not exceed the specified
767  * 'txg' value.
768  */
769 nvlist_t *
770 vdev_label_read_config(vdev_t *vd, uint64_t txg)
771 {
772 	spa_t *spa = vd->vdev_spa;
773 	nvlist_t *config = NULL;
774 	vdev_phys_t *vp;
775 	abd_t *vp_abd;
776 	zio_t *zio;
777 	uint64_t best_txg = 0;
778 	uint64_t label_txg = 0;
779 	int error = 0;
780 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
781 	    ZIO_FLAG_SPECULATIVE;
782 
783 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
784 
785 	if (!vdev_readable(vd))
786 		return (NULL);
787 
788 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
789 	vp = abd_to_buf(vp_abd);
790 
791 retry:
792 	for (int l = 0; l < VDEV_LABELS; l++) {
793 		nvlist_t *label = NULL;
794 
795 		zio = zio_root(spa, NULL, NULL, flags);
796 
797 		vdev_label_read(zio, vd, l, vp_abd,
798 		    offsetof(vdev_label_t, vl_vdev_phys),
799 		    sizeof (vdev_phys_t), NULL, NULL, flags);
800 
801 		if (zio_wait(zio) == 0 &&
802 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
803 		    &label, 0) == 0) {
804 			/*
805 			 * Auxiliary vdevs won't have txg values in their
806 			 * labels and newly added vdevs may not have been
807 			 * completely initialized so just return the
808 			 * configuration from the first valid label we
809 			 * encounter.
810 			 */
811 			error = nvlist_lookup_uint64(label,
812 			    ZPOOL_CONFIG_POOL_TXG, &label_txg);
813 			if ((error || label_txg == 0) && !config) {
814 				config = label;
815 				break;
816 			} else if (label_txg <= txg && label_txg > best_txg) {
817 				best_txg = label_txg;
818 				nvlist_free(config);
819 				config = fnvlist_dup(label);
820 			}
821 		}
822 
823 		if (label != NULL) {
824 			nvlist_free(label);
825 			label = NULL;
826 		}
827 	}
828 
829 	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
830 		flags |= ZIO_FLAG_TRYHARD;
831 		goto retry;
832 	}
833 
834 	/*
835 	 * We found a valid label but it didn't pass txg restrictions.
836 	 */
837 	if (config == NULL && label_txg != 0) {
838 		vdev_dbgmsg(vd, "label discarded as txg is too large "
839 		    "(%llu > %llu)", (u_longlong_t)label_txg,
840 		    (u_longlong_t)txg);
841 	}
842 
843 	abd_free(vp_abd);
844 
845 	return (config);
846 }
847 
848 /*
849  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
850  * in with the device guid if this spare is active elsewhere on the system.
851  */
852 static boolean_t
853 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
854     uint64_t *spare_guid, uint64_t *l2cache_guid)
855 {
856 	spa_t *spa = vd->vdev_spa;
857 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
858 	uint64_t vdtxg = 0;
859 	nvlist_t *label;
860 
861 	if (spare_guid)
862 		*spare_guid = 0ULL;
863 	if (l2cache_guid)
864 		*l2cache_guid = 0ULL;
865 
866 	/*
867 	 * Read the label, if any, and perform some basic sanity checks.
868 	 */
869 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
870 		return (B_FALSE);
871 
872 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
873 	    &vdtxg);
874 
875 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
876 	    &state) != 0 ||
877 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
878 	    &device_guid) != 0) {
879 		nvlist_free(label);
880 		return (B_FALSE);
881 	}
882 
883 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
884 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
885 	    &pool_guid) != 0 ||
886 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
887 	    &txg) != 0)) {
888 		nvlist_free(label);
889 		return (B_FALSE);
890 	}
891 
892 	nvlist_free(label);
893 
894 	/*
895 	 * Check to see if this device indeed belongs to the pool it claims to
896 	 * be a part of.  The only way this is allowed is if the device is a hot
897 	 * spare (which we check for later on).
898 	 */
899 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
900 	    !spa_guid_exists(pool_guid, device_guid) &&
901 	    !spa_spare_exists(device_guid, NULL, NULL) &&
902 	    !spa_l2cache_exists(device_guid, NULL))
903 		return (B_FALSE);
904 
905 	/*
906 	 * If the transaction group is zero, then this an initialized (but
907 	 * unused) label.  This is only an error if the create transaction
908 	 * on-disk is the same as the one we're using now, in which case the
909 	 * user has attempted to add the same vdev multiple times in the same
910 	 * transaction.
911 	 */
912 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
913 	    txg == 0 && vdtxg == crtxg)
914 		return (B_TRUE);
915 
916 	/*
917 	 * Check to see if this is a spare device.  We do an explicit check for
918 	 * spa_has_spare() here because it may be on our pending list of spares
919 	 * to add.  We also check if it is an l2cache device.
920 	 */
921 	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
922 	    spa_has_spare(spa, device_guid)) {
923 		if (spare_guid)
924 			*spare_guid = device_guid;
925 
926 		switch (reason) {
927 		case VDEV_LABEL_CREATE:
928 		case VDEV_LABEL_L2CACHE:
929 			return (B_TRUE);
930 
931 		case VDEV_LABEL_REPLACE:
932 			return (!spa_has_spare(spa, device_guid) ||
933 			    spare_pool != 0ULL);
934 
935 		case VDEV_LABEL_SPARE:
936 			return (spa_has_spare(spa, device_guid));
937 		default:
938 			break;
939 		}
940 	}
941 
942 	/*
943 	 * Check to see if this is an l2cache device.
944 	 */
945 	if (spa_l2cache_exists(device_guid, NULL))
946 		return (B_TRUE);
947 
948 	/*
949 	 * We can't rely on a pool's state if it's been imported
950 	 * read-only.  Instead we look to see if the pools is marked
951 	 * read-only in the namespace and set the state to active.
952 	 */
953 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
954 	    (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
955 	    spa_mode(spa) == SPA_MODE_READ)
956 		state = POOL_STATE_ACTIVE;
957 
958 	/*
959 	 * If the device is marked ACTIVE, then this device is in use by another
960 	 * pool on the system.
961 	 */
962 	return (state == POOL_STATE_ACTIVE);
963 }
964 
965 /*
966  * Initialize a vdev label.  We check to make sure each leaf device is not in
967  * use, and writable.  We put down an initial label which we will later
968  * overwrite with a complete label.  Note that it's important to do this
969  * sequentially, not in parallel, so that we catch cases of multiple use of the
970  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
971  * itself.
972  */
973 int
974 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
975 {
976 	spa_t *spa = vd->vdev_spa;
977 	nvlist_t *label;
978 	vdev_phys_t *vp;
979 	abd_t *vp_abd;
980 	abd_t *bootenv;
981 	uberblock_t *ub;
982 	abd_t *ub_abd;
983 	zio_t *zio;
984 	char *buf;
985 	size_t buflen;
986 	int error;
987 	uint64_t spare_guid = 0, l2cache_guid = 0;
988 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
989 
990 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
991 
992 	for (int c = 0; c < vd->vdev_children; c++)
993 		if ((error = vdev_label_init(vd->vdev_child[c],
994 		    crtxg, reason)) != 0)
995 			return (error);
996 
997 	/* Track the creation time for this vdev */
998 	vd->vdev_crtxg = crtxg;
999 
1000 	if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
1001 		return (0);
1002 
1003 	/*
1004 	 * Dead vdevs cannot be initialized.
1005 	 */
1006 	if (vdev_is_dead(vd))
1007 		return (SET_ERROR(EIO));
1008 
1009 	/*
1010 	 * Determine if the vdev is in use.
1011 	 */
1012 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
1013 	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
1014 		return (SET_ERROR(EBUSY));
1015 
1016 	/*
1017 	 * If this is a request to add or replace a spare or l2cache device
1018 	 * that is in use elsewhere on the system, then we must update the
1019 	 * guid (which was initialized to a random value) to reflect the
1020 	 * actual GUID (which is shared between multiple pools).
1021 	 */
1022 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
1023 	    spare_guid != 0ULL) {
1024 		uint64_t guid_delta = spare_guid - vd->vdev_guid;
1025 
1026 		vd->vdev_guid += guid_delta;
1027 
1028 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1029 			pvd->vdev_guid_sum += guid_delta;
1030 
1031 		/*
1032 		 * If this is a replacement, then we want to fallthrough to the
1033 		 * rest of the code.  If we're adding a spare, then it's already
1034 		 * labeled appropriately and we can just return.
1035 		 */
1036 		if (reason == VDEV_LABEL_SPARE)
1037 			return (0);
1038 		ASSERT(reason == VDEV_LABEL_REPLACE ||
1039 		    reason == VDEV_LABEL_SPLIT);
1040 	}
1041 
1042 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
1043 	    l2cache_guid != 0ULL) {
1044 		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
1045 
1046 		vd->vdev_guid += guid_delta;
1047 
1048 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1049 			pvd->vdev_guid_sum += guid_delta;
1050 
1051 		/*
1052 		 * If this is a replacement, then we want to fallthrough to the
1053 		 * rest of the code.  If we're adding an l2cache, then it's
1054 		 * already labeled appropriately and we can just return.
1055 		 */
1056 		if (reason == VDEV_LABEL_L2CACHE)
1057 			return (0);
1058 		ASSERT(reason == VDEV_LABEL_REPLACE);
1059 	}
1060 
1061 	/*
1062 	 * Initialize its label.
1063 	 */
1064 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1065 	abd_zero(vp_abd, sizeof (vdev_phys_t));
1066 	vp = abd_to_buf(vp_abd);
1067 
1068 	/*
1069 	 * Generate a label describing the pool and our top-level vdev.
1070 	 * We mark it as being from txg 0 to indicate that it's not
1071 	 * really part of an active pool just yet.  The labels will
1072 	 * be written again with a meaningful txg by spa_sync().
1073 	 */
1074 	if (reason == VDEV_LABEL_SPARE ||
1075 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
1076 		/*
1077 		 * For inactive hot spares, we generate a special label that
1078 		 * identifies as a mutually shared hot spare.  We write the
1079 		 * label if we are adding a hot spare, or if we are removing an
1080 		 * active hot spare (in which case we want to revert the
1081 		 * labels).
1082 		 */
1083 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1084 
1085 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1086 		    spa_version(spa)) == 0);
1087 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1088 		    POOL_STATE_SPARE) == 0);
1089 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1090 		    vd->vdev_guid) == 0);
1091 	} else if (reason == VDEV_LABEL_L2CACHE ||
1092 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
1093 		/*
1094 		 * For level 2 ARC devices, add a special label.
1095 		 */
1096 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1097 
1098 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1099 		    spa_version(spa)) == 0);
1100 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1101 		    POOL_STATE_L2CACHE) == 0);
1102 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1103 		    vd->vdev_guid) == 0);
1104 	} else {
1105 		uint64_t txg = 0ULL;
1106 
1107 		if (reason == VDEV_LABEL_SPLIT)
1108 			txg = spa->spa_uberblock.ub_txg;
1109 		label = spa_config_generate(spa, vd, txg, B_FALSE);
1110 
1111 		/*
1112 		 * Add our creation time.  This allows us to detect multiple
1113 		 * vdev uses as described above, and automatically expires if we
1114 		 * fail.
1115 		 */
1116 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
1117 		    crtxg) == 0);
1118 	}
1119 
1120 	buf = vp->vp_nvlist;
1121 	buflen = sizeof (vp->vp_nvlist);
1122 
1123 	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
1124 	if (error != 0) {
1125 		nvlist_free(label);
1126 		abd_free(vp_abd);
1127 		/* EFAULT means nvlist_pack ran out of room */
1128 		return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL));
1129 	}
1130 
1131 	/*
1132 	 * Initialize uberblock template.
1133 	 */
1134 	ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
1135 	abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
1136 	abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
1137 	ub = abd_to_buf(ub_abd);
1138 	ub->ub_txg = 0;
1139 
1140 	/* Initialize the 2nd padding area. */
1141 	bootenv = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1142 	abd_zero(bootenv, VDEV_PAD_SIZE);
1143 
1144 	/*
1145 	 * Write everything in parallel.
1146 	 */
1147 retry:
1148 	zio = zio_root(spa, NULL, NULL, flags);
1149 
1150 	for (int l = 0; l < VDEV_LABELS; l++) {
1151 
1152 		vdev_label_write(zio, vd, l, vp_abd,
1153 		    offsetof(vdev_label_t, vl_vdev_phys),
1154 		    sizeof (vdev_phys_t), NULL, NULL, flags);
1155 
1156 		/*
1157 		 * Skip the 1st padding area.
1158 		 * Zero out the 2nd padding area where it might have
1159 		 * left over data from previous filesystem format.
1160 		 */
1161 		vdev_label_write(zio, vd, l, bootenv,
1162 		    offsetof(vdev_label_t, vl_be),
1163 		    VDEV_PAD_SIZE, NULL, NULL, flags);
1164 
1165 		vdev_label_write(zio, vd, l, ub_abd,
1166 		    offsetof(vdev_label_t, vl_uberblock),
1167 		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
1168 	}
1169 
1170 	error = zio_wait(zio);
1171 
1172 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1173 		flags |= ZIO_FLAG_TRYHARD;
1174 		goto retry;
1175 	}
1176 
1177 	nvlist_free(label);
1178 	abd_free(bootenv);
1179 	abd_free(ub_abd);
1180 	abd_free(vp_abd);
1181 
1182 	/*
1183 	 * If this vdev hasn't been previously identified as a spare, then we
1184 	 * mark it as such only if a) we are labeling it as a spare, or b) it
1185 	 * exists as a spare elsewhere in the system.  Do the same for
1186 	 * level 2 ARC devices.
1187 	 */
1188 	if (error == 0 && !vd->vdev_isspare &&
1189 	    (reason == VDEV_LABEL_SPARE ||
1190 	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
1191 		spa_spare_add(vd);
1192 
1193 	if (error == 0 && !vd->vdev_isl2cache &&
1194 	    (reason == VDEV_LABEL_L2CACHE ||
1195 	    spa_l2cache_exists(vd->vdev_guid, NULL)))
1196 		spa_l2cache_add(vd);
1197 
1198 	return (error);
1199 }
1200 
1201 /*
1202  * Done callback for vdev_label_read_bootenv_impl. If this is the first
1203  * callback to finish, store our abd in the callback pointer. Otherwise, we
1204  * just free our abd and return.
1205  */
1206 static void
1207 vdev_label_read_bootenv_done(zio_t *zio)
1208 {
1209 	zio_t *rio = zio->io_private;
1210 	abd_t **cbp = rio->io_private;
1211 
1212 	ASSERT3U(zio->io_size, ==, VDEV_PAD_SIZE);
1213 
1214 	if (zio->io_error == 0) {
1215 		mutex_enter(&rio->io_lock);
1216 		if (*cbp == NULL) {
1217 			/* Will free this buffer in vdev_label_read_bootenv. */
1218 			*cbp = zio->io_abd;
1219 		} else {
1220 			abd_free(zio->io_abd);
1221 		}
1222 		mutex_exit(&rio->io_lock);
1223 	} else {
1224 		abd_free(zio->io_abd);
1225 	}
1226 }
1227 
1228 static void
1229 vdev_label_read_bootenv_impl(zio_t *zio, vdev_t *vd, int flags)
1230 {
1231 	for (int c = 0; c < vd->vdev_children; c++)
1232 		vdev_label_read_bootenv_impl(zio, vd->vdev_child[c], flags);
1233 
1234 	/*
1235 	 * We just use the first label that has a correct checksum; the
1236 	 * bootloader should have rewritten them all to be the same on boot,
1237 	 * and any changes we made since boot have been the same across all
1238 	 * labels.
1239 	 */
1240 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1241 		for (int l = 0; l < VDEV_LABELS; l++) {
1242 			vdev_label_read(zio, vd, l,
1243 			    abd_alloc_linear(VDEV_PAD_SIZE, B_FALSE),
1244 			    offsetof(vdev_label_t, vl_be), VDEV_PAD_SIZE,
1245 			    vdev_label_read_bootenv_done, zio, flags);
1246 		}
1247 	}
1248 }
1249 
1250 int
1251 vdev_label_read_bootenv(vdev_t *rvd, nvlist_t *bootenv)
1252 {
1253 	nvlist_t *config;
1254 	spa_t *spa = rvd->vdev_spa;
1255 	abd_t *abd = NULL;
1256 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1257 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1258 
1259 	ASSERT(bootenv);
1260 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1261 
1262 	zio_t *zio = zio_root(spa, NULL, &abd, flags);
1263 	vdev_label_read_bootenv_impl(zio, rvd, flags);
1264 	int err = zio_wait(zio);
1265 
1266 	if (abd != NULL) {
1267 		char *buf;
1268 		vdev_boot_envblock_t *vbe = abd_to_buf(abd);
1269 
1270 		vbe->vbe_version = ntohll(vbe->vbe_version);
1271 		switch (vbe->vbe_version) {
1272 		case VB_RAW:
1273 			/*
1274 			 * if we have textual data in vbe_bootenv, create nvlist
1275 			 * with key "envmap".
1276 			 */
1277 			fnvlist_add_uint64(bootenv, BOOTENV_VERSION, VB_RAW);
1278 			vbe->vbe_bootenv[sizeof (vbe->vbe_bootenv) - 1] = '\0';
1279 			fnvlist_add_string(bootenv, GRUB_ENVMAP,
1280 			    vbe->vbe_bootenv);
1281 			break;
1282 
1283 		case VB_NVLIST:
1284 			err = nvlist_unpack(vbe->vbe_bootenv,
1285 			    sizeof (vbe->vbe_bootenv), &config, 0);
1286 			if (err == 0) {
1287 				fnvlist_merge(bootenv, config);
1288 				nvlist_free(config);
1289 				break;
1290 			}
1291 			/* FALLTHROUGH */
1292 		default:
1293 			/* Check for FreeBSD zfs bootonce command string */
1294 			buf = abd_to_buf(abd);
1295 			if (*buf == '\0') {
1296 				fnvlist_add_uint64(bootenv, BOOTENV_VERSION,
1297 				    VB_NVLIST);
1298 				break;
1299 			}
1300 			fnvlist_add_string(bootenv, FREEBSD_BOOTONCE, buf);
1301 		}
1302 
1303 		/*
1304 		 * abd was allocated in vdev_label_read_bootenv_impl()
1305 		 */
1306 		abd_free(abd);
1307 		/*
1308 		 * If we managed to read any successfully,
1309 		 * return success.
1310 		 */
1311 		return (0);
1312 	}
1313 	return (err);
1314 }
1315 
1316 int
1317 vdev_label_write_bootenv(vdev_t *vd, nvlist_t *env)
1318 {
1319 	zio_t *zio;
1320 	spa_t *spa = vd->vdev_spa;
1321 	vdev_boot_envblock_t *bootenv;
1322 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1323 	int error;
1324 	size_t nvsize;
1325 	char *nvbuf;
1326 
1327 	error = nvlist_size(env, &nvsize, NV_ENCODE_XDR);
1328 	if (error != 0)
1329 		return (SET_ERROR(error));
1330 
1331 	if (nvsize >= sizeof (bootenv->vbe_bootenv)) {
1332 		return (SET_ERROR(E2BIG));
1333 	}
1334 
1335 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1336 
1337 	error = ENXIO;
1338 	for (int c = 0; c < vd->vdev_children; c++) {
1339 		int child_err;
1340 
1341 		child_err = vdev_label_write_bootenv(vd->vdev_child[c], env);
1342 		/*
1343 		 * As long as any of the disks managed to write all of their
1344 		 * labels successfully, return success.
1345 		 */
1346 		if (child_err == 0)
1347 			error = child_err;
1348 	}
1349 
1350 	if (!vd->vdev_ops->vdev_op_leaf || vdev_is_dead(vd) ||
1351 	    !vdev_writeable(vd)) {
1352 		return (error);
1353 	}
1354 	ASSERT3U(sizeof (*bootenv), ==, VDEV_PAD_SIZE);
1355 	abd_t *abd = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1356 	abd_zero(abd, VDEV_PAD_SIZE);
1357 
1358 	bootenv = abd_borrow_buf_copy(abd, VDEV_PAD_SIZE);
1359 	nvbuf = bootenv->vbe_bootenv;
1360 	nvsize = sizeof (bootenv->vbe_bootenv);
1361 
1362 	bootenv->vbe_version = fnvlist_lookup_uint64(env, BOOTENV_VERSION);
1363 	switch (bootenv->vbe_version) {
1364 	case VB_RAW:
1365 		if (nvlist_lookup_string(env, GRUB_ENVMAP, &nvbuf) == 0) {
1366 			(void) strlcpy(bootenv->vbe_bootenv, nvbuf, nvsize);
1367 		}
1368 		error = 0;
1369 		break;
1370 
1371 	case VB_NVLIST:
1372 		error = nvlist_pack(env, &nvbuf, &nvsize, NV_ENCODE_XDR,
1373 		    KM_SLEEP);
1374 		break;
1375 
1376 	default:
1377 		error = EINVAL;
1378 		break;
1379 	}
1380 
1381 	if (error == 0) {
1382 		bootenv->vbe_version = htonll(bootenv->vbe_version);
1383 		abd_return_buf_copy(abd, bootenv, VDEV_PAD_SIZE);
1384 	} else {
1385 		abd_free(abd);
1386 		return (SET_ERROR(error));
1387 	}
1388 
1389 retry:
1390 	zio = zio_root(spa, NULL, NULL, flags);
1391 	for (int l = 0; l < VDEV_LABELS; l++) {
1392 		vdev_label_write(zio, vd, l, abd,
1393 		    offsetof(vdev_label_t, vl_be),
1394 		    VDEV_PAD_SIZE, NULL, NULL, flags);
1395 	}
1396 
1397 	error = zio_wait(zio);
1398 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1399 		flags |= ZIO_FLAG_TRYHARD;
1400 		goto retry;
1401 	}
1402 
1403 	abd_free(abd);
1404 	return (error);
1405 }
1406 
1407 /*
1408  * ==========================================================================
1409  * uberblock load/sync
1410  * ==========================================================================
1411  */
1412 
1413 /*
1414  * Consider the following situation: txg is safely synced to disk.  We've
1415  * written the first uberblock for txg + 1, and then we lose power.  When we
1416  * come back up, we fail to see the uberblock for txg + 1 because, say,
1417  * it was on a mirrored device and the replica to which we wrote txg + 1
1418  * is now offline.  If we then make some changes and sync txg + 1, and then
1419  * the missing replica comes back, then for a few seconds we'll have two
1420  * conflicting uberblocks on disk with the same txg.  The solution is simple:
1421  * among uberblocks with equal txg, choose the one with the latest timestamp.
1422  */
1423 static int
1424 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1425 {
1426 	int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg);
1427 
1428 	if (likely(cmp))
1429 		return (cmp);
1430 
1431 	cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1432 	if (likely(cmp))
1433 		return (cmp);
1434 
1435 	/*
1436 	 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware
1437 	 * ZFS, e.g. OpenZFS >= 0.7.
1438 	 *
1439 	 * If one ub has MMP and the other does not, they were written by
1440 	 * different hosts, which matters for MMP.  So we treat no MMP/no SEQ as
1441 	 * a 0 value.
1442 	 *
1443 	 * Since timestamp and txg are the same if we get this far, either is
1444 	 * acceptable for importing the pool.
1445 	 */
1446 	unsigned int seq1 = 0;
1447 	unsigned int seq2 = 0;
1448 
1449 	if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1450 		seq1 = MMP_SEQ(ub1);
1451 
1452 	if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1453 		seq2 = MMP_SEQ(ub2);
1454 
1455 	return (TREE_CMP(seq1, seq2));
1456 }
1457 
1458 struct ubl_cbdata {
1459 	uberblock_t	*ubl_ubbest;	/* Best uberblock */
1460 	vdev_t		*ubl_vd;	/* vdev associated with the above */
1461 };
1462 
1463 static void
1464 vdev_uberblock_load_done(zio_t *zio)
1465 {
1466 	vdev_t *vd = zio->io_vd;
1467 	spa_t *spa = zio->io_spa;
1468 	zio_t *rio = zio->io_private;
1469 	uberblock_t *ub = abd_to_buf(zio->io_abd);
1470 	struct ubl_cbdata *cbp = rio->io_private;
1471 
1472 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
1473 
1474 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
1475 		mutex_enter(&rio->io_lock);
1476 		if (ub->ub_txg <= spa->spa_load_max_txg &&
1477 		    vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
1478 			/*
1479 			 * Keep track of the vdev in which this uberblock
1480 			 * was found. We will use this information later
1481 			 * to obtain the config nvlist associated with
1482 			 * this uberblock.
1483 			 */
1484 			*cbp->ubl_ubbest = *ub;
1485 			cbp->ubl_vd = vd;
1486 		}
1487 		mutex_exit(&rio->io_lock);
1488 	}
1489 
1490 	abd_free(zio->io_abd);
1491 }
1492 
1493 static void
1494 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
1495     struct ubl_cbdata *cbp)
1496 {
1497 	for (int c = 0; c < vd->vdev_children; c++)
1498 		vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
1499 
1500 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1501 		for (int l = 0; l < VDEV_LABELS; l++) {
1502 			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1503 				vdev_label_read(zio, vd, l,
1504 				    abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
1505 				    B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
1506 				    VDEV_UBERBLOCK_SIZE(vd),
1507 				    vdev_uberblock_load_done, zio, flags);
1508 			}
1509 		}
1510 	}
1511 }
1512 
1513 /*
1514  * Reads the 'best' uberblock from disk along with its associated
1515  * configuration. First, we read the uberblock array of each label of each
1516  * vdev, keeping track of the uberblock with the highest txg in each array.
1517  * Then, we read the configuration from the same vdev as the best uberblock.
1518  */
1519 void
1520 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
1521 {
1522 	zio_t *zio;
1523 	spa_t *spa = rvd->vdev_spa;
1524 	struct ubl_cbdata cb;
1525 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1526 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1527 
1528 	ASSERT(ub);
1529 	ASSERT(config);
1530 
1531 	bzero(ub, sizeof (uberblock_t));
1532 	*config = NULL;
1533 
1534 	cb.ubl_ubbest = ub;
1535 	cb.ubl_vd = NULL;
1536 
1537 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1538 	zio = zio_root(spa, NULL, &cb, flags);
1539 	vdev_uberblock_load_impl(zio, rvd, flags, &cb);
1540 	(void) zio_wait(zio);
1541 
1542 	/*
1543 	 * It's possible that the best uberblock was discovered on a label
1544 	 * that has a configuration which was written in a future txg.
1545 	 * Search all labels on this vdev to find the configuration that
1546 	 * matches the txg for our uberblock.
1547 	 */
1548 	if (cb.ubl_vd != NULL) {
1549 		vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. "
1550 		    "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg);
1551 
1552 		*config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
1553 		if (*config == NULL && spa->spa_extreme_rewind) {
1554 			vdev_dbgmsg(cb.ubl_vd, "failed to read label config. "
1555 			    "Trying again without txg restrictions.");
1556 			*config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX);
1557 		}
1558 		if (*config == NULL) {
1559 			vdev_dbgmsg(cb.ubl_vd, "failed to read label config");
1560 		}
1561 	}
1562 	spa_config_exit(spa, SCL_ALL, FTAG);
1563 }
1564 
1565 /*
1566  * For use when a leaf vdev is expanded.
1567  * The location of labels 2 and 3 changed, and at the new location the
1568  * uberblock rings are either empty or contain garbage.  The sync will write
1569  * new configs there because the vdev is dirty, but expansion also needs the
1570  * uberblock rings copied.  Read them from label 0 which did not move.
1571  *
1572  * Since the point is to populate labels {2,3} with valid uberblocks,
1573  * we zero uberblocks we fail to read or which are not valid.
1574  */
1575 
1576 static void
1577 vdev_copy_uberblocks(vdev_t *vd)
1578 {
1579 	abd_t *ub_abd;
1580 	zio_t *write_zio;
1581 	int locks = (SCL_L2ARC | SCL_ZIO);
1582 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1583 	    ZIO_FLAG_SPECULATIVE;
1584 
1585 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) ==
1586 	    SCL_STATE);
1587 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1588 
1589 	spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER);
1590 
1591 	ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1592 
1593 	write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1594 	for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1595 		const int src_label = 0;
1596 		zio_t *zio;
1597 
1598 		zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1599 		vdev_label_read(zio, vd, src_label, ub_abd,
1600 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1601 		    NULL, NULL, flags);
1602 
1603 		if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd)))
1604 			abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1605 
1606 		for (int l = 2; l < VDEV_LABELS; l++)
1607 			vdev_label_write(write_zio, vd, l, ub_abd,
1608 			    VDEV_UBERBLOCK_OFFSET(vd, n),
1609 			    VDEV_UBERBLOCK_SIZE(vd), NULL, NULL,
1610 			    flags | ZIO_FLAG_DONT_PROPAGATE);
1611 	}
1612 	(void) zio_wait(write_zio);
1613 
1614 	spa_config_exit(vd->vdev_spa, locks, FTAG);
1615 
1616 	abd_free(ub_abd);
1617 }
1618 
1619 /*
1620  * On success, increment root zio's count of good writes.
1621  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1622  */
1623 static void
1624 vdev_uberblock_sync_done(zio_t *zio)
1625 {
1626 	uint64_t *good_writes = zio->io_private;
1627 
1628 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
1629 		atomic_inc_64(good_writes);
1630 }
1631 
1632 /*
1633  * Write the uberblock to all labels of all leaves of the specified vdev.
1634  */
1635 static void
1636 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes,
1637     uberblock_t *ub, vdev_t *vd, int flags)
1638 {
1639 	for (uint64_t c = 0; c < vd->vdev_children; c++) {
1640 		vdev_uberblock_sync(zio, good_writes,
1641 		    ub, vd->vdev_child[c], flags);
1642 	}
1643 
1644 	if (!vd->vdev_ops->vdev_op_leaf)
1645 		return;
1646 
1647 	if (!vdev_writeable(vd))
1648 		return;
1649 
1650 	/* If the vdev was expanded, need to copy uberblock rings. */
1651 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1652 	    vd->vdev_copy_uberblocks == B_TRUE) {
1653 		vdev_copy_uberblocks(vd);
1654 		vd->vdev_copy_uberblocks = B_FALSE;
1655 	}
1656 
1657 	int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0;
1658 	int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m);
1659 
1660 	/* Copy the uberblock_t into the ABD */
1661 	abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1662 	abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1663 	abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
1664 
1665 	for (int l = 0; l < VDEV_LABELS; l++)
1666 		vdev_label_write(zio, vd, l, ub_abd,
1667 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1668 		    vdev_uberblock_sync_done, good_writes,
1669 		    flags | ZIO_FLAG_DONT_PROPAGATE);
1670 
1671 	abd_free(ub_abd);
1672 }
1673 
1674 /* Sync the uberblocks to all vdevs in svd[] */
1675 static int
1676 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1677 {
1678 	spa_t *spa = svd[0]->vdev_spa;
1679 	zio_t *zio;
1680 	uint64_t good_writes = 0;
1681 
1682 	zio = zio_root(spa, NULL, NULL, flags);
1683 
1684 	for (int v = 0; v < svdcount; v++)
1685 		vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags);
1686 
1687 	(void) zio_wait(zio);
1688 
1689 	/*
1690 	 * Flush the uberblocks to disk.  This ensures that the odd labels
1691 	 * are no longer needed (because the new uberblocks and the even
1692 	 * labels are safely on disk), so it is safe to overwrite them.
1693 	 */
1694 	zio = zio_root(spa, NULL, NULL, flags);
1695 
1696 	for (int v = 0; v < svdcount; v++) {
1697 		if (vdev_writeable(svd[v])) {
1698 			zio_flush(zio, svd[v]);
1699 		}
1700 	}
1701 
1702 	(void) zio_wait(zio);
1703 
1704 	return (good_writes >= 1 ? 0 : EIO);
1705 }
1706 
1707 /*
1708  * On success, increment the count of good writes for our top-level vdev.
1709  */
1710 static void
1711 vdev_label_sync_done(zio_t *zio)
1712 {
1713 	uint64_t *good_writes = zio->io_private;
1714 
1715 	if (zio->io_error == 0)
1716 		atomic_inc_64(good_writes);
1717 }
1718 
1719 /*
1720  * If there weren't enough good writes, indicate failure to the parent.
1721  */
1722 static void
1723 vdev_label_sync_top_done(zio_t *zio)
1724 {
1725 	uint64_t *good_writes = zio->io_private;
1726 
1727 	if (*good_writes == 0)
1728 		zio->io_error = SET_ERROR(EIO);
1729 
1730 	kmem_free(good_writes, sizeof (uint64_t));
1731 }
1732 
1733 /*
1734  * We ignore errors for log and cache devices, simply free the private data.
1735  */
1736 static void
1737 vdev_label_sync_ignore_done(zio_t *zio)
1738 {
1739 	kmem_free(zio->io_private, sizeof (uint64_t));
1740 }
1741 
1742 /*
1743  * Write all even or odd labels to all leaves of the specified vdev.
1744  */
1745 static void
1746 vdev_label_sync(zio_t *zio, uint64_t *good_writes,
1747     vdev_t *vd, int l, uint64_t txg, int flags)
1748 {
1749 	nvlist_t *label;
1750 	vdev_phys_t *vp;
1751 	abd_t *vp_abd;
1752 	char *buf;
1753 	size_t buflen;
1754 
1755 	for (int c = 0; c < vd->vdev_children; c++) {
1756 		vdev_label_sync(zio, good_writes,
1757 		    vd->vdev_child[c], l, txg, flags);
1758 	}
1759 
1760 	if (!vd->vdev_ops->vdev_op_leaf)
1761 		return;
1762 
1763 	if (!vdev_writeable(vd))
1764 		return;
1765 
1766 	/*
1767 	 * Generate a label describing the top-level config to which we belong.
1768 	 */
1769 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1770 
1771 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1772 	abd_zero(vp_abd, sizeof (vdev_phys_t));
1773 	vp = abd_to_buf(vp_abd);
1774 
1775 	buf = vp->vp_nvlist;
1776 	buflen = sizeof (vp->vp_nvlist);
1777 
1778 	if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) {
1779 		for (; l < VDEV_LABELS; l += 2) {
1780 			vdev_label_write(zio, vd, l, vp_abd,
1781 			    offsetof(vdev_label_t, vl_vdev_phys),
1782 			    sizeof (vdev_phys_t),
1783 			    vdev_label_sync_done, good_writes,
1784 			    flags | ZIO_FLAG_DONT_PROPAGATE);
1785 		}
1786 	}
1787 
1788 	abd_free(vp_abd);
1789 	nvlist_free(label);
1790 }
1791 
1792 static int
1793 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1794 {
1795 	list_t *dl = &spa->spa_config_dirty_list;
1796 	vdev_t *vd;
1797 	zio_t *zio;
1798 	int error;
1799 
1800 	/*
1801 	 * Write the new labels to disk.
1802 	 */
1803 	zio = zio_root(spa, NULL, NULL, flags);
1804 
1805 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1806 		uint64_t *good_writes;
1807 
1808 		ASSERT(!vd->vdev_ishole);
1809 
1810 		good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
1811 		zio_t *vio = zio_null(zio, spa, NULL,
1812 		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
1813 		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1814 		    good_writes, flags);
1815 		vdev_label_sync(vio, good_writes, vd, l, txg, flags);
1816 		zio_nowait(vio);
1817 	}
1818 
1819 	error = zio_wait(zio);
1820 
1821 	/*
1822 	 * Flush the new labels to disk.
1823 	 */
1824 	zio = zio_root(spa, NULL, NULL, flags);
1825 
1826 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1827 		zio_flush(zio, vd);
1828 
1829 	(void) zio_wait(zio);
1830 
1831 	return (error);
1832 }
1833 
1834 /*
1835  * Sync the uberblock and any changes to the vdev configuration.
1836  *
1837  * The order of operations is carefully crafted to ensure that
1838  * if the system panics or loses power at any time, the state on disk
1839  * is still transactionally consistent.  The in-line comments below
1840  * describe the failure semantics at each stage.
1841  *
1842  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1843  * at any time, you can just call it again, and it will resume its work.
1844  */
1845 int
1846 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
1847 {
1848 	spa_t *spa = svd[0]->vdev_spa;
1849 	uberblock_t *ub = &spa->spa_uberblock;
1850 	int error = 0;
1851 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1852 
1853 	ASSERT(svdcount != 0);
1854 retry:
1855 	/*
1856 	 * Normally, we don't want to try too hard to write every label and
1857 	 * uberblock.  If there is a flaky disk, we don't want the rest of the
1858 	 * sync process to block while we retry.  But if we can't write a
1859 	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1860 	 * bailing out and declaring the pool faulted.
1861 	 */
1862 	if (error != 0) {
1863 		if ((flags & ZIO_FLAG_TRYHARD) != 0)
1864 			return (error);
1865 		flags |= ZIO_FLAG_TRYHARD;
1866 	}
1867 
1868 	ASSERT(ub->ub_txg <= txg);
1869 
1870 	/*
1871 	 * If this isn't a resync due to I/O errors,
1872 	 * and nothing changed in this transaction group,
1873 	 * and the vdev configuration hasn't changed,
1874 	 * then there's nothing to do.
1875 	 */
1876 	if (ub->ub_txg < txg) {
1877 		boolean_t changed = uberblock_update(ub, spa->spa_root_vdev,
1878 		    txg, spa->spa_mmp.mmp_delay);
1879 
1880 		if (!changed && list_is_empty(&spa->spa_config_dirty_list))
1881 			return (0);
1882 	}
1883 
1884 	if (txg > spa_freeze_txg(spa))
1885 		return (0);
1886 
1887 	ASSERT(txg <= spa->spa_final_txg);
1888 
1889 	/*
1890 	 * Flush the write cache of every disk that's been written to
1891 	 * in this transaction group.  This ensures that all blocks
1892 	 * written in this txg will be committed to stable storage
1893 	 * before any uberblock that references them.
1894 	 */
1895 	zio_t *zio = zio_root(spa, NULL, NULL, flags);
1896 
1897 	for (vdev_t *vd =
1898 	    txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL;
1899 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1900 		zio_flush(zio, vd);
1901 
1902 	(void) zio_wait(zio);
1903 
1904 	/*
1905 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1906 	 * system dies in the middle of this process, that's OK: all of the
1907 	 * even labels that made it to disk will be newer than any uberblock,
1908 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1909 	 * which have not yet been touched, will still be valid.  We flush
1910 	 * the new labels to disk to ensure that all even-label updates
1911 	 * are committed to stable storage before the uberblock update.
1912 	 */
1913 	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) {
1914 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1915 			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1916 			    "for pool '%s' when syncing out the even labels "
1917 			    "of dirty vdevs", error, spa_name(spa));
1918 		}
1919 		goto retry;
1920 	}
1921 
1922 	/*
1923 	 * Sync the uberblocks to all vdevs in svd[].
1924 	 * If the system dies in the middle of this step, there are two cases
1925 	 * to consider, and the on-disk state is consistent either way:
1926 	 *
1927 	 * (1)	If none of the new uberblocks made it to disk, then the
1928 	 *	previous uberblock will be the newest, and the odd labels
1929 	 *	(which had not yet been touched) will be valid with respect
1930 	 *	to that uberblock.
1931 	 *
1932 	 * (2)	If one or more new uberblocks made it to disk, then they
1933 	 *	will be the newest, and the even labels (which had all
1934 	 *	been successfully committed) will be valid with respect
1935 	 *	to the new uberblocks.
1936 	 */
1937 	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) {
1938 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1939 			zfs_dbgmsg("vdev_uberblock_sync_list() returned error "
1940 			    "%d for pool '%s'", error, spa_name(spa));
1941 		}
1942 		goto retry;
1943 	}
1944 
1945 	if (spa_multihost(spa))
1946 		mmp_update_uberblock(spa, ub);
1947 
1948 	/*
1949 	 * Sync out odd labels for every dirty vdev.  If the system dies
1950 	 * in the middle of this process, the even labels and the new
1951 	 * uberblocks will suffice to open the pool.  The next time
1952 	 * the pool is opened, the first thing we'll do -- before any
1953 	 * user data is modified -- is mark every vdev dirty so that
1954 	 * all labels will be brought up to date.  We flush the new labels
1955 	 * to disk to ensure that all odd-label updates are committed to
1956 	 * stable storage before the next transaction group begins.
1957 	 */
1958 	if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) {
1959 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1960 			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1961 			    "for pool '%s' when syncing out the odd labels of "
1962 			    "dirty vdevs", error, spa_name(spa));
1963 		}
1964 		goto retry;
1965 	}
1966 
1967 	return (0);
1968 }
1969