1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 26 * Copyright (c) 2017, Intel Corporation. 27 */ 28 29 /* 30 * Virtual Device Labels 31 * --------------------- 32 * 33 * The vdev label serves several distinct purposes: 34 * 35 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 36 * identity within the pool. 37 * 38 * 2. Verify that all the devices given in a configuration are present 39 * within the pool. 40 * 41 * 3. Determine the uberblock for the pool. 42 * 43 * 4. In case of an import operation, determine the configuration of the 44 * toplevel vdev of which it is a part. 45 * 46 * 5. If an import operation cannot find all the devices in the pool, 47 * provide enough information to the administrator to determine which 48 * devices are missing. 49 * 50 * It is important to note that while the kernel is responsible for writing the 51 * label, it only consumes the information in the first three cases. The 52 * latter information is only consumed in userland when determining the 53 * configuration to import a pool. 54 * 55 * 56 * Label Organization 57 * ------------------ 58 * 59 * Before describing the contents of the label, it's important to understand how 60 * the labels are written and updated with respect to the uberblock. 61 * 62 * When the pool configuration is altered, either because it was newly created 63 * or a device was added, we want to update all the labels such that we can deal 64 * with fatal failure at any point. To this end, each disk has two labels which 65 * are updated before and after the uberblock is synced. Assuming we have 66 * labels and an uberblock with the following transaction groups: 67 * 68 * L1 UB L2 69 * +------+ +------+ +------+ 70 * | | | | | | 71 * | t10 | | t10 | | t10 | 72 * | | | | | | 73 * +------+ +------+ +------+ 74 * 75 * In this stable state, the labels and the uberblock were all updated within 76 * the same transaction group (10). Each label is mirrored and checksummed, so 77 * that we can detect when we fail partway through writing the label. 78 * 79 * In order to identify which labels are valid, the labels are written in the 80 * following manner: 81 * 82 * 1. For each vdev, update 'L1' to the new label 83 * 2. Update the uberblock 84 * 3. For each vdev, update 'L2' to the new label 85 * 86 * Given arbitrary failure, we can determine the correct label to use based on 87 * the transaction group. If we fail after updating L1 but before updating the 88 * UB, we will notice that L1's transaction group is greater than the uberblock, 89 * so L2 must be valid. If we fail after writing the uberblock but before 90 * writing L2, we will notice that L2's transaction group is less than L1, and 91 * therefore L1 is valid. 92 * 93 * Another added complexity is that not every label is updated when the config 94 * is synced. If we add a single device, we do not want to have to re-write 95 * every label for every device in the pool. This means that both L1 and L2 may 96 * be older than the pool uberblock, because the necessary information is stored 97 * on another vdev. 98 * 99 * 100 * On-disk Format 101 * -------------- 102 * 103 * The vdev label consists of two distinct parts, and is wrapped within the 104 * vdev_label_t structure. The label includes 8k of padding to permit legacy 105 * VTOC disk labels, but is otherwise ignored. 106 * 107 * The first half of the label is a packed nvlist which contains pool wide 108 * properties, per-vdev properties, and configuration information. It is 109 * described in more detail below. 110 * 111 * The latter half of the label consists of a redundant array of uberblocks. 112 * These uberblocks are updated whenever a transaction group is committed, 113 * or when the configuration is updated. When a pool is loaded, we scan each 114 * vdev for the 'best' uberblock. 115 * 116 * 117 * Configuration Information 118 * ------------------------- 119 * 120 * The nvlist describing the pool and vdev contains the following elements: 121 * 122 * version ZFS on-disk version 123 * name Pool name 124 * state Pool state 125 * txg Transaction group in which this label was written 126 * pool_guid Unique identifier for this pool 127 * vdev_tree An nvlist describing vdev tree. 128 * features_for_read 129 * An nvlist of the features necessary for reading the MOS. 130 * 131 * Each leaf device label also contains the following: 132 * 133 * top_guid Unique ID for top-level vdev in which this is contained 134 * guid Unique ID for the leaf vdev 135 * 136 * The 'vs' configuration follows the format described in 'spa_config.c'. 137 */ 138 139 #include <sys/zfs_context.h> 140 #include <sys/spa.h> 141 #include <sys/spa_impl.h> 142 #include <sys/dmu.h> 143 #include <sys/zap.h> 144 #include <sys/vdev.h> 145 #include <sys/vdev_impl.h> 146 #include <sys/vdev_raidz.h> 147 #include <sys/vdev_draid.h> 148 #include <sys/uberblock_impl.h> 149 #include <sys/metaslab.h> 150 #include <sys/metaslab_impl.h> 151 #include <sys/zio.h> 152 #include <sys/dsl_scan.h> 153 #include <sys/abd.h> 154 #include <sys/fs/zfs.h> 155 #include <sys/byteorder.h> 156 #include <sys/zfs_bootenv.h> 157 158 /* 159 * Basic routines to read and write from a vdev label. 160 * Used throughout the rest of this file. 161 */ 162 uint64_t 163 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 164 { 165 ASSERT(offset < sizeof (vdev_label_t)); 166 ASSERT0(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t)); 167 168 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 169 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 170 } 171 172 /* 173 * Returns back the vdev label associated with the passed in offset. 174 */ 175 int 176 vdev_label_number(uint64_t psize, uint64_t offset) 177 { 178 int l; 179 180 if (offset >= psize - VDEV_LABEL_END_SIZE) { 181 offset -= psize - VDEV_LABEL_END_SIZE; 182 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 183 } 184 l = offset / sizeof (vdev_label_t); 185 return (l < VDEV_LABELS ? l : -1); 186 } 187 188 static void 189 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 190 uint64_t size, zio_done_func_t *done, void *private, int flags) 191 { 192 ASSERT( 193 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE || 194 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE); 195 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 196 197 zio_nowait(zio_read_phys(zio, vd, 198 vdev_label_offset(vd->vdev_psize, l, offset), 199 size, buf, ZIO_CHECKSUM_LABEL, done, private, 200 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 201 } 202 203 void 204 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 205 uint64_t size, zio_done_func_t *done, void *private, int flags) 206 { 207 ASSERT( 208 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE || 209 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE); 210 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 211 212 zio_nowait(zio_write_phys(zio, vd, 213 vdev_label_offset(vd->vdev_psize, l, offset), 214 size, buf, ZIO_CHECKSUM_LABEL, done, private, 215 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 216 } 217 218 /* 219 * Generate the nvlist representing this vdev's stats 220 */ 221 void 222 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv) 223 { 224 nvlist_t *nvx; 225 vdev_stat_t *vs; 226 vdev_stat_ex_t *vsx; 227 228 vs = kmem_alloc(sizeof (*vs), KM_SLEEP); 229 vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP); 230 231 vdev_get_stats_ex(vd, vs, vsx); 232 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, 233 (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t)); 234 235 /* 236 * Add extended stats into a special extended stats nvlist. This keeps 237 * all the extended stats nicely grouped together. The extended stats 238 * nvlist is then added to the main nvlist. 239 */ 240 nvx = fnvlist_alloc(); 241 242 /* ZIOs in flight to disk */ 243 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE, 244 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]); 245 246 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE, 247 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]); 248 249 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE, 250 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]); 251 252 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE, 253 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]); 254 255 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE, 256 vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]); 257 258 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE, 259 vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]); 260 261 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_REBUILD_ACTIVE_QUEUE, 262 vsx->vsx_active_queue[ZIO_PRIORITY_REBUILD]); 263 264 /* ZIOs pending */ 265 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE, 266 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]); 267 268 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE, 269 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]); 270 271 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE, 272 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]); 273 274 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE, 275 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]); 276 277 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE, 278 vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]); 279 280 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE, 281 vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]); 282 283 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_REBUILD_PEND_QUEUE, 284 vsx->vsx_pend_queue[ZIO_PRIORITY_REBUILD]); 285 286 /* Histograms */ 287 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO, 288 vsx->vsx_total_histo[ZIO_TYPE_READ], 289 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ])); 290 291 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO, 292 vsx->vsx_total_histo[ZIO_TYPE_WRITE], 293 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE])); 294 295 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO, 296 vsx->vsx_disk_histo[ZIO_TYPE_READ], 297 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ])); 298 299 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO, 300 vsx->vsx_disk_histo[ZIO_TYPE_WRITE], 301 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE])); 302 303 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO, 304 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ], 305 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ])); 306 307 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO, 308 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE], 309 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE])); 310 311 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO, 312 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ], 313 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ])); 314 315 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO, 316 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE], 317 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE])); 318 319 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO, 320 vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB], 321 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB])); 322 323 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO, 324 vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM], 325 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM])); 326 327 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_REBUILD_LAT_HISTO, 328 vsx->vsx_queue_histo[ZIO_PRIORITY_REBUILD], 329 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_REBUILD])); 330 331 /* Request sizes */ 332 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO, 333 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ], 334 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ])); 335 336 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO, 337 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE], 338 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE])); 339 340 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO, 341 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ], 342 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ])); 343 344 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO, 345 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE], 346 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE])); 347 348 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO, 349 vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB], 350 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB])); 351 352 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO, 353 vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM], 354 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM])); 355 356 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_REBUILD_HISTO, 357 vsx->vsx_ind_histo[ZIO_PRIORITY_REBUILD], 358 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_REBUILD])); 359 360 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO, 361 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ], 362 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ])); 363 364 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO, 365 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE], 366 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE])); 367 368 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO, 369 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ], 370 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ])); 371 372 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO, 373 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE], 374 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE])); 375 376 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO, 377 vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB], 378 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB])); 379 380 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO, 381 vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM], 382 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM])); 383 384 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_REBUILD_HISTO, 385 vsx->vsx_agg_histo[ZIO_PRIORITY_REBUILD], 386 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_REBUILD])); 387 388 /* IO delays */ 389 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios); 390 391 /* Direct I/O write verify errors */ 392 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_DIO_VERIFY_ERRORS, 393 vs->vs_dio_verify_errors); 394 395 /* Add extended stats nvlist to main nvlist */ 396 fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx); 397 398 fnvlist_free(nvx); 399 kmem_free(vs, sizeof (*vs)); 400 kmem_free(vsx, sizeof (*vsx)); 401 } 402 403 static void 404 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl) 405 { 406 spa_t *spa = vd->vdev_spa; 407 408 if (vd != spa->spa_root_vdev) 409 return; 410 411 /* provide either current or previous scan information */ 412 pool_scan_stat_t ps; 413 if (spa_scan_get_stats(spa, &ps) == 0) { 414 fnvlist_add_uint64_array(nvl, 415 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps, 416 sizeof (pool_scan_stat_t) / sizeof (uint64_t)); 417 } 418 419 pool_removal_stat_t prs; 420 if (spa_removal_get_stats(spa, &prs) == 0) { 421 fnvlist_add_uint64_array(nvl, 422 ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs, 423 sizeof (prs) / sizeof (uint64_t)); 424 } 425 426 pool_checkpoint_stat_t pcs; 427 if (spa_checkpoint_get_stats(spa, &pcs) == 0) { 428 fnvlist_add_uint64_array(nvl, 429 ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs, 430 sizeof (pcs) / sizeof (uint64_t)); 431 } 432 433 pool_raidz_expand_stat_t pres; 434 if (spa_raidz_expand_get_stats(spa, &pres) == 0) { 435 fnvlist_add_uint64_array(nvl, 436 ZPOOL_CONFIG_RAIDZ_EXPAND_STATS, (uint64_t *)&pres, 437 sizeof (pres) / sizeof (uint64_t)); 438 } 439 } 440 441 static void 442 top_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl) 443 { 444 if (vd == vd->vdev_top) { 445 vdev_rebuild_stat_t vrs; 446 if (vdev_rebuild_get_stats(vd, &vrs) == 0) { 447 fnvlist_add_uint64_array(nvl, 448 ZPOOL_CONFIG_REBUILD_STATS, (uint64_t *)&vrs, 449 sizeof (vrs) / sizeof (uint64_t)); 450 } 451 } 452 } 453 454 /* 455 * Generate the nvlist representing this vdev's config. 456 */ 457 nvlist_t * 458 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 459 vdev_config_flag_t flags) 460 { 461 nvlist_t *nv = NULL; 462 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 463 464 nv = fnvlist_alloc(); 465 466 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type); 467 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE))) 468 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id); 469 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid); 470 471 if (vd->vdev_path != NULL) 472 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path); 473 474 if (vd->vdev_devid != NULL) 475 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid); 476 477 if (vd->vdev_physpath != NULL) 478 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 479 vd->vdev_physpath); 480 481 if (vd->vdev_enc_sysfs_path != NULL) 482 fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 483 vd->vdev_enc_sysfs_path); 484 485 if (vd->vdev_fru != NULL) 486 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru); 487 488 if (vd->vdev_ops->vdev_op_config_generate != NULL) 489 vd->vdev_ops->vdev_op_config_generate(vd, nv); 490 491 if (vd->vdev_wholedisk != -1ULL) { 492 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 493 vd->vdev_wholedisk); 494 } 495 496 if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING)) 497 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1); 498 499 if (vd->vdev_isspare) 500 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1); 501 502 if (flags & VDEV_CONFIG_L2CACHE) 503 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 504 505 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) && 506 vd == vd->vdev_top) { 507 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 508 vd->vdev_ms_array); 509 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 510 vd->vdev_ms_shift); 511 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 512 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 513 vd->vdev_asize); 514 fnvlist_add_uint64(nv, ZPOOL_CONFIG_MIN_ALLOC, 515 vdev_get_min_alloc(vd)); 516 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog); 517 if (vd->vdev_noalloc) { 518 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NONALLOCATING, 519 vd->vdev_noalloc); 520 } 521 522 /* 523 * Slog devices are removed synchronously so don't 524 * persist the vdev_removing flag to the label. 525 */ 526 if (vd->vdev_removing && !vd->vdev_islog) { 527 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING, 528 vd->vdev_removing); 529 } 530 531 /* zpool command expects alloc class data */ 532 if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) { 533 const char *bias = NULL; 534 535 switch (vd->vdev_alloc_bias) { 536 case VDEV_BIAS_LOG: 537 bias = VDEV_ALLOC_BIAS_LOG; 538 break; 539 case VDEV_BIAS_SPECIAL: 540 bias = VDEV_ALLOC_BIAS_SPECIAL; 541 break; 542 case VDEV_BIAS_DEDUP: 543 bias = VDEV_ALLOC_BIAS_DEDUP; 544 break; 545 default: 546 ASSERT3U(vd->vdev_alloc_bias, ==, 547 VDEV_BIAS_NONE); 548 } 549 fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 550 bias); 551 } 552 } 553 554 if (vd->vdev_dtl_sm != NULL) { 555 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 556 space_map_object(vd->vdev_dtl_sm)); 557 } 558 559 if (vic->vic_mapping_object != 0) { 560 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 561 vic->vic_mapping_object); 562 } 563 564 if (vic->vic_births_object != 0) { 565 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 566 vic->vic_births_object); 567 } 568 569 if (vic->vic_prev_indirect_vdev != UINT64_MAX) { 570 fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 571 vic->vic_prev_indirect_vdev); 572 } 573 574 if (vd->vdev_crtxg) 575 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg); 576 577 if (vd->vdev_expansion_time) 578 fnvlist_add_uint64(nv, ZPOOL_CONFIG_EXPANSION_TIME, 579 vd->vdev_expansion_time); 580 581 if (flags & VDEV_CONFIG_MOS) { 582 if (vd->vdev_leaf_zap != 0) { 583 ASSERT(vd->vdev_ops->vdev_op_leaf); 584 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP, 585 vd->vdev_leaf_zap); 586 } 587 588 if (vd->vdev_top_zap != 0) { 589 ASSERT(vd == vd->vdev_top); 590 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 591 vd->vdev_top_zap); 592 } 593 594 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap != 0 && 595 spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) { 596 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP, 597 vd->vdev_root_zap); 598 } 599 600 if (vd->vdev_resilver_deferred) { 601 ASSERT(vd->vdev_ops->vdev_op_leaf); 602 ASSERT(spa->spa_resilver_deferred); 603 fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER); 604 } 605 } 606 607 if (getstats) { 608 vdev_config_generate_stats(vd, nv); 609 610 root_vdev_actions_getprogress(vd, nv); 611 top_vdev_actions_getprogress(vd, nv); 612 613 /* 614 * Note: this can be called from open context 615 * (spa_get_stats()), so we need the rwlock to prevent 616 * the mapping from being changed by condensing. 617 */ 618 rw_enter(&vd->vdev_indirect_rwlock, RW_READER); 619 if (vd->vdev_indirect_mapping != NULL) { 620 ASSERT(vd->vdev_indirect_births != NULL); 621 vdev_indirect_mapping_t *vim = 622 vd->vdev_indirect_mapping; 623 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, 624 vdev_indirect_mapping_size(vim)); 625 } 626 rw_exit(&vd->vdev_indirect_rwlock); 627 if (vd->vdev_mg != NULL && 628 vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) { 629 /* 630 * Compute approximately how much memory would be used 631 * for the indirect mapping if this device were to 632 * be removed. 633 * 634 * Note: If the frag metric is invalid, then not 635 * enough metaslabs have been converted to have 636 * histograms. 637 */ 638 uint64_t seg_count = 0; 639 uint64_t to_alloc = vd->vdev_stat.vs_alloc; 640 641 /* 642 * There are the same number of allocated segments 643 * as free segments, so we will have at least one 644 * entry per free segment. However, small free 645 * segments (smaller than vdev_removal_max_span) 646 * will be combined with adjacent allocated segments 647 * as a single mapping. 648 */ 649 for (int i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; 650 i++) { 651 if (i + 1 < highbit64(vdev_removal_max_span) 652 - 1) { 653 to_alloc += 654 vd->vdev_mg->mg_histogram[i] << 655 (i + 1); 656 } else { 657 seg_count += 658 vd->vdev_mg->mg_histogram[i]; 659 } 660 } 661 662 /* 663 * The maximum length of a mapping is 664 * zfs_remove_max_segment, so we need at least one entry 665 * per zfs_remove_max_segment of allocated data. 666 */ 667 seg_count += to_alloc / spa_remove_max_segment(spa); 668 669 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, 670 seg_count * 671 sizeof (vdev_indirect_mapping_entry_phys_t)); 672 } 673 } 674 675 if (!vd->vdev_ops->vdev_op_leaf) { 676 nvlist_t **child; 677 uint64_t c; 678 679 ASSERT(!vd->vdev_ishole); 680 681 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 682 KM_SLEEP); 683 684 for (c = 0; c < vd->vdev_children; c++) { 685 child[c] = vdev_config_generate(spa, vd->vdev_child[c], 686 getstats, flags); 687 } 688 689 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 690 (const nvlist_t * const *)child, vd->vdev_children); 691 692 for (c = 0; c < vd->vdev_children; c++) 693 nvlist_free(child[c]); 694 695 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 696 697 } else { 698 const char *aux = NULL; 699 700 if (vd->vdev_offline && !vd->vdev_tmpoffline) 701 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE); 702 if (vd->vdev_resilver_txg != 0) 703 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 704 vd->vdev_resilver_txg); 705 if (vd->vdev_rebuild_txg != 0) 706 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 707 vd->vdev_rebuild_txg); 708 if (vd->vdev_faulted) 709 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE); 710 if (vd->vdev_degraded) 711 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE); 712 if (vd->vdev_removed) 713 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE); 714 if (vd->vdev_unspare) 715 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE); 716 if (vd->vdev_ishole) 717 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE); 718 719 /* Set the reason why we're FAULTED/DEGRADED. */ 720 switch (vd->vdev_stat.vs_aux) { 721 case VDEV_AUX_ERR_EXCEEDED: 722 aux = "err_exceeded"; 723 break; 724 725 case VDEV_AUX_EXTERNAL: 726 aux = "external"; 727 break; 728 } 729 730 if (aux != NULL && !vd->vdev_tmpoffline) { 731 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux); 732 } else { 733 /* 734 * We're healthy - clear any previous AUX_STATE values. 735 */ 736 if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE)) 737 nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE); 738 } 739 740 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { 741 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, 742 vd->vdev_orig_guid); 743 } 744 } 745 746 return (nv); 747 } 748 749 /* 750 * Generate a view of the top-level vdevs. If we currently have holes 751 * in the namespace, then generate an array which contains a list of holey 752 * vdevs. Additionally, add the number of top-level children that currently 753 * exist. 754 */ 755 void 756 vdev_top_config_generate(spa_t *spa, nvlist_t *config) 757 { 758 vdev_t *rvd = spa->spa_root_vdev; 759 uint64_t *array; 760 uint_t c, idx; 761 762 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP); 763 764 for (c = 0, idx = 0; c < rvd->vdev_children; c++) { 765 vdev_t *tvd = rvd->vdev_child[c]; 766 767 if (tvd->vdev_ishole) { 768 array[idx++] = c; 769 } 770 } 771 772 if (idx) { 773 VERIFY0(nvlist_add_uint64_array(config, 774 ZPOOL_CONFIG_HOLE_ARRAY, array, idx)); 775 } 776 777 VERIFY0(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 778 rvd->vdev_children)); 779 780 kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); 781 } 782 783 /* 784 * Returns the configuration from the label of the given vdev. For vdevs 785 * which don't have a txg value stored on their label (i.e. spares/cache) 786 * or have not been completely initialized (txg = 0) just return 787 * the configuration from the first valid label we find. Otherwise, 788 * find the most up-to-date label that does not exceed the specified 789 * 'txg' value. 790 */ 791 nvlist_t * 792 vdev_label_read_config(vdev_t *vd, uint64_t txg) 793 { 794 spa_t *spa = vd->vdev_spa; 795 nvlist_t *config = NULL; 796 vdev_phys_t *vp[VDEV_LABELS]; 797 abd_t *vp_abd[VDEV_LABELS]; 798 zio_t *zio[VDEV_LABELS]; 799 uint64_t best_txg = 0; 800 uint64_t label_txg = 0; 801 int error = 0; 802 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 803 ZIO_FLAG_SPECULATIVE; 804 805 ASSERT(vd->vdev_validate_thread == curthread || 806 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 807 808 if (!vdev_readable(vd)) 809 return (NULL); 810 811 /* 812 * The label for a dRAID distributed spare is not stored on disk. 813 * Instead it is generated when needed which allows us to bypass 814 * the pipeline when reading the config from the label. 815 */ 816 if (vd->vdev_ops == &vdev_draid_spare_ops) 817 return (vdev_draid_read_config_spare(vd)); 818 819 for (int l = 0; l < VDEV_LABELS; l++) { 820 vp_abd[l] = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 821 vp[l] = abd_to_buf(vp_abd[l]); 822 } 823 824 retry: 825 for (int l = 0; l < VDEV_LABELS; l++) { 826 zio[l] = zio_root(spa, NULL, NULL, flags); 827 828 vdev_label_read(zio[l], vd, l, vp_abd[l], 829 offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t), 830 NULL, NULL, flags); 831 } 832 for (int l = 0; l < VDEV_LABELS; l++) { 833 nvlist_t *label = NULL; 834 835 if (zio_wait(zio[l]) == 0 && 836 nvlist_unpack(vp[l]->vp_nvlist, sizeof (vp[l]->vp_nvlist), 837 &label, 0) == 0) { 838 /* 839 * Auxiliary vdevs won't have txg values in their 840 * labels and newly added vdevs may not have been 841 * completely initialized so just return the 842 * configuration from the first valid label we 843 * encounter. 844 */ 845 error = nvlist_lookup_uint64(label, 846 ZPOOL_CONFIG_POOL_TXG, &label_txg); 847 if ((error || label_txg == 0) && !config) { 848 config = label; 849 for (l++; l < VDEV_LABELS; l++) 850 zio_wait(zio[l]); 851 break; 852 } else if (label_txg <= txg && label_txg > best_txg) { 853 best_txg = label_txg; 854 nvlist_free(config); 855 config = fnvlist_dup(label); 856 } 857 } 858 859 if (label != NULL) { 860 nvlist_free(label); 861 label = NULL; 862 } 863 } 864 865 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { 866 flags |= ZIO_FLAG_TRYHARD; 867 goto retry; 868 } 869 870 /* 871 * We found a valid label but it didn't pass txg restrictions. 872 */ 873 if (config == NULL && label_txg != 0) { 874 vdev_dbgmsg(vd, "label discarded as txg is too large " 875 "(%llu > %llu)", (u_longlong_t)label_txg, 876 (u_longlong_t)txg); 877 } 878 879 for (int l = 0; l < VDEV_LABELS; l++) { 880 abd_free(vp_abd[l]); 881 } 882 883 return (config); 884 } 885 886 /* 887 * Determine if a device is in use. The 'spare_guid' parameter will be filled 888 * in with the device guid if this spare is active elsewhere on the system. 889 */ 890 static boolean_t 891 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 892 uint64_t *spare_guid, uint64_t *l2cache_guid) 893 { 894 spa_t *spa = vd->vdev_spa; 895 uint64_t state, pool_guid, device_guid, txg, spare_pool; 896 uint64_t vdtxg = 0; 897 nvlist_t *label; 898 899 if (spare_guid) 900 *spare_guid = 0ULL; 901 if (l2cache_guid) 902 *l2cache_guid = 0ULL; 903 904 /* 905 * Read the label, if any, and perform some basic sanity checks. 906 */ 907 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) 908 return (B_FALSE); 909 910 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 911 &vdtxg); 912 913 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 914 &state) != 0 || 915 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 916 &device_guid) != 0) { 917 nvlist_free(label); 918 return (B_FALSE); 919 } 920 921 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 922 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 923 &pool_guid) != 0 || 924 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 925 &txg) != 0)) { 926 nvlist_free(label); 927 return (B_FALSE); 928 } 929 930 nvlist_free(label); 931 932 /* 933 * Check to see if this device indeed belongs to the pool it claims to 934 * be a part of. The only way this is allowed is if the device is a hot 935 * spare (which we check for later on). 936 */ 937 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 938 !spa_guid_exists(pool_guid, device_guid) && 939 !spa_spare_exists(device_guid, NULL, NULL) && 940 !spa_l2cache_exists(device_guid, NULL)) 941 return (B_FALSE); 942 943 /* 944 * If the transaction group is zero, then this an initialized (but 945 * unused) label. This is only an error if the create transaction 946 * on-disk is the same as the one we're using now, in which case the 947 * user has attempted to add the same vdev multiple times in the same 948 * transaction. 949 */ 950 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 951 txg == 0 && vdtxg == crtxg) 952 return (B_TRUE); 953 954 /* 955 * Check to see if this is a spare device. We do an explicit check for 956 * spa_has_spare() here because it may be on our pending list of spares 957 * to add. 958 */ 959 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 960 spa_has_spare(spa, device_guid)) { 961 if (spare_guid) 962 *spare_guid = device_guid; 963 964 switch (reason) { 965 case VDEV_LABEL_CREATE: 966 return (B_TRUE); 967 968 case VDEV_LABEL_REPLACE: 969 return (!spa_has_spare(spa, device_guid) || 970 spare_pool != 0ULL); 971 972 case VDEV_LABEL_SPARE: 973 return (spa_has_spare(spa, device_guid)); 974 default: 975 break; 976 } 977 } 978 979 /* 980 * Check to see if this is an l2cache device. 981 */ 982 if (spa_l2cache_exists(device_guid, NULL) || 983 spa_has_l2cache(spa, device_guid)) { 984 if (l2cache_guid) 985 *l2cache_guid = device_guid; 986 987 switch (reason) { 988 case VDEV_LABEL_CREATE: 989 return (B_TRUE); 990 991 case VDEV_LABEL_REPLACE: 992 return (!spa_has_l2cache(spa, device_guid)); 993 994 case VDEV_LABEL_L2CACHE: 995 return (spa_has_l2cache(spa, device_guid)); 996 default: 997 break; 998 } 999 } 1000 1001 /* 1002 * We can't rely on a pool's state if it's been imported 1003 * read-only. Instead we look to see if the pools is marked 1004 * read-only in the namespace and set the state to active. 1005 */ 1006 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 1007 (spa = spa_by_guid(pool_guid, device_guid)) != NULL && 1008 spa_mode(spa) == SPA_MODE_READ) 1009 state = POOL_STATE_ACTIVE; 1010 1011 /* 1012 * If the device is marked ACTIVE, then this device is in use by another 1013 * pool on the system. 1014 */ 1015 return (state == POOL_STATE_ACTIVE); 1016 } 1017 1018 static nvlist_t * 1019 vdev_aux_label_generate(vdev_t *vd, boolean_t reason_spare) 1020 { 1021 /* 1022 * For inactive hot spares and level 2 ARC devices, we generate 1023 * a special label that identifies as a mutually shared hot 1024 * spare or l2cache device. We write the label in case of 1025 * addition or removal of hot spare or l2cache vdev (in which 1026 * case we want to revert the labels). 1027 */ 1028 nvlist_t *label = fnvlist_alloc(); 1029 fnvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 1030 spa_version(vd->vdev_spa)); 1031 fnvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, reason_spare ? 1032 POOL_STATE_SPARE : POOL_STATE_L2CACHE); 1033 fnvlist_add_uint64(label, ZPOOL_CONFIG_GUID, vd->vdev_guid); 1034 1035 /* 1036 * This is merely to facilitate reporting the ashift of the 1037 * cache device through zdb. The actual retrieval of the 1038 * ashift (in vdev_alloc()) uses the nvlist 1039 * spa->spa_l2cache->sav_config (populated in 1040 * spa_ld_open_aux_vdevs()). 1041 */ 1042 if (!reason_spare) 1043 fnvlist_add_uint64(label, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 1044 1045 /* 1046 * Add path information to help find it during pool import 1047 */ 1048 if (vd->vdev_path != NULL) 1049 fnvlist_add_string(label, ZPOOL_CONFIG_PATH, vd->vdev_path); 1050 if (vd->vdev_devid != NULL) 1051 fnvlist_add_string(label, ZPOOL_CONFIG_DEVID, vd->vdev_devid); 1052 if (vd->vdev_physpath != NULL) { 1053 fnvlist_add_string(label, ZPOOL_CONFIG_PHYS_PATH, 1054 vd->vdev_physpath); 1055 } 1056 return (label); 1057 } 1058 1059 /* 1060 * Initialize a vdev label. We check to make sure each leaf device is not in 1061 * use, and writable. We put down an initial label which we will later 1062 * overwrite with a complete label. Note that it's important to do this 1063 * sequentially, not in parallel, so that we catch cases of multiple use of the 1064 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 1065 * itself. 1066 */ 1067 int 1068 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 1069 { 1070 spa_t *spa = vd->vdev_spa; 1071 nvlist_t *label; 1072 vdev_phys_t *vp; 1073 abd_t *vp_abd; 1074 abd_t *bootenv; 1075 uberblock_t *ub; 1076 abd_t *ub_abd; 1077 zio_t *zio; 1078 char *buf; 1079 size_t buflen; 1080 int error; 1081 uint64_t spare_guid = 0, l2cache_guid = 0; 1082 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1083 boolean_t reason_spare = (reason == VDEV_LABEL_SPARE || (reason == 1084 VDEV_LABEL_REMOVE && vd->vdev_isspare)); 1085 boolean_t reason_l2cache = (reason == VDEV_LABEL_L2CACHE || (reason == 1086 VDEV_LABEL_REMOVE && vd->vdev_isl2cache)); 1087 1088 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1089 1090 for (int c = 0; c < vd->vdev_children; c++) 1091 if ((error = vdev_label_init(vd->vdev_child[c], 1092 crtxg, reason)) != 0) 1093 return (error); 1094 1095 /* Track the creation time for this vdev */ 1096 vd->vdev_crtxg = crtxg; 1097 1098 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa)) 1099 return (0); 1100 1101 /* 1102 * Dead vdevs cannot be initialized. 1103 */ 1104 if (vdev_is_dead(vd)) 1105 return (SET_ERROR(EIO)); 1106 1107 /* 1108 * Determine if the vdev is in use. 1109 */ 1110 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && 1111 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 1112 return (SET_ERROR(EBUSY)); 1113 1114 /* 1115 * If this is a request to add or replace a spare or l2cache device 1116 * that is in use elsewhere on the system, then we must update the 1117 * guid (which was initialized to a random value) to reflect the 1118 * actual GUID (which is shared between multiple pools). 1119 */ 1120 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 1121 spare_guid != 0ULL) { 1122 uint64_t guid_delta = spare_guid - vd->vdev_guid; 1123 1124 vd->vdev_guid += guid_delta; 1125 1126 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1127 pvd->vdev_guid_sum += guid_delta; 1128 1129 /* 1130 * If this is a replacement, then we want to fallthrough to the 1131 * rest of the code. If we're adding a spare, then it's already 1132 * labeled appropriately and we can just return. 1133 */ 1134 if (reason == VDEV_LABEL_SPARE) 1135 return (0); 1136 ASSERT(reason == VDEV_LABEL_REPLACE || 1137 reason == VDEV_LABEL_SPLIT); 1138 } 1139 1140 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 1141 l2cache_guid != 0ULL) { 1142 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 1143 1144 vd->vdev_guid += guid_delta; 1145 1146 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1147 pvd->vdev_guid_sum += guid_delta; 1148 1149 /* 1150 * If this is a replacement, then we want to fallthrough to the 1151 * rest of the code. If we're adding an l2cache, then it's 1152 * already labeled appropriately and we can just return. 1153 */ 1154 if (reason == VDEV_LABEL_L2CACHE) 1155 return (0); 1156 ASSERT(reason == VDEV_LABEL_REPLACE); 1157 } 1158 1159 /* 1160 * Initialize its label. 1161 */ 1162 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 1163 abd_zero(vp_abd, sizeof (vdev_phys_t)); 1164 vp = abd_to_buf(vp_abd); 1165 1166 /* 1167 * Generate a label describing the pool and our top-level vdev. 1168 * We mark it as being from txg 0 to indicate that it's not 1169 * really part of an active pool just yet. The labels will 1170 * be written again with a meaningful txg by spa_sync(). 1171 */ 1172 if (reason_spare || reason_l2cache) { 1173 label = vdev_aux_label_generate(vd, reason_spare); 1174 1175 /* 1176 * When spare or l2cache (aux) vdev is added during pool 1177 * creation, spa->spa_uberblock is not written until this 1178 * point. Write it on next config sync. 1179 */ 1180 if (uberblock_verify(&spa->spa_uberblock)) 1181 spa->spa_aux_sync_uber = B_TRUE; 1182 } else { 1183 uint64_t txg = 0ULL; 1184 1185 if (reason == VDEV_LABEL_SPLIT) 1186 txg = spa->spa_uberblock.ub_txg; 1187 label = spa_config_generate(spa, vd, txg, B_FALSE); 1188 1189 /* 1190 * Add our creation time. This allows us to detect multiple 1191 * vdev uses as described above, and automatically expires if we 1192 * fail. 1193 */ 1194 VERIFY0(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 1195 crtxg)); 1196 } 1197 1198 buf = vp->vp_nvlist; 1199 buflen = sizeof (vp->vp_nvlist); 1200 1201 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 1202 if (error != 0) { 1203 nvlist_free(label); 1204 abd_free(vp_abd); 1205 /* EFAULT means nvlist_pack ran out of room */ 1206 return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL)); 1207 } 1208 1209 /* 1210 * Initialize uberblock template. 1211 */ 1212 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE); 1213 abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t)); 1214 abd_zero_off(ub_abd, sizeof (uberblock_t), 1215 VDEV_UBERBLOCK_RING - sizeof (uberblock_t)); 1216 ub = abd_to_buf(ub_abd); 1217 ub->ub_txg = 0; 1218 1219 /* Initialize the 2nd padding area. */ 1220 bootenv = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); 1221 abd_zero(bootenv, VDEV_PAD_SIZE); 1222 1223 /* 1224 * Write everything in parallel. 1225 */ 1226 retry: 1227 zio = zio_root(spa, NULL, NULL, flags); 1228 1229 for (int l = 0; l < VDEV_LABELS; l++) { 1230 1231 vdev_label_write(zio, vd, l, vp_abd, 1232 offsetof(vdev_label_t, vl_vdev_phys), 1233 sizeof (vdev_phys_t), NULL, NULL, flags); 1234 1235 /* 1236 * Skip the 1st padding area. 1237 * Zero out the 2nd padding area where it might have 1238 * left over data from previous filesystem format. 1239 */ 1240 vdev_label_write(zio, vd, l, bootenv, 1241 offsetof(vdev_label_t, vl_be), 1242 VDEV_PAD_SIZE, NULL, NULL, flags); 1243 1244 vdev_label_write(zio, vd, l, ub_abd, 1245 offsetof(vdev_label_t, vl_uberblock), 1246 VDEV_UBERBLOCK_RING, NULL, NULL, flags); 1247 } 1248 1249 error = zio_wait(zio); 1250 1251 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 1252 flags |= ZIO_FLAG_TRYHARD; 1253 goto retry; 1254 } 1255 1256 nvlist_free(label); 1257 abd_free(bootenv); 1258 abd_free(ub_abd); 1259 abd_free(vp_abd); 1260 1261 /* 1262 * If this vdev hasn't been previously identified as a spare, then we 1263 * mark it as such only if a) we are labeling it as a spare, or b) it 1264 * exists as a spare elsewhere in the system. Do the same for 1265 * level 2 ARC devices. 1266 */ 1267 if (error == 0 && !vd->vdev_isspare && 1268 (reason == VDEV_LABEL_SPARE || 1269 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 1270 spa_spare_add(vd); 1271 1272 if (error == 0 && !vd->vdev_isl2cache && 1273 (reason == VDEV_LABEL_L2CACHE || 1274 spa_l2cache_exists(vd->vdev_guid, NULL))) 1275 spa_l2cache_add(vd); 1276 1277 return (error); 1278 } 1279 1280 /* 1281 * Done callback for vdev_label_read_bootenv_impl. If this is the first 1282 * callback to finish, store our abd in the callback pointer. Otherwise, we 1283 * just free our abd and return. 1284 */ 1285 static void 1286 vdev_label_read_bootenv_done(zio_t *zio) 1287 { 1288 zio_t *rio = zio->io_private; 1289 abd_t **cbp = rio->io_private; 1290 1291 ASSERT3U(zio->io_size, ==, VDEV_PAD_SIZE); 1292 1293 if (zio->io_error == 0) { 1294 mutex_enter(&rio->io_lock); 1295 if (*cbp == NULL) { 1296 /* Will free this buffer in vdev_label_read_bootenv. */ 1297 *cbp = zio->io_abd; 1298 } else { 1299 abd_free(zio->io_abd); 1300 } 1301 mutex_exit(&rio->io_lock); 1302 } else { 1303 abd_free(zio->io_abd); 1304 } 1305 } 1306 1307 static void 1308 vdev_label_read_bootenv_impl(zio_t *zio, vdev_t *vd, int flags) 1309 { 1310 for (int c = 0; c < vd->vdev_children; c++) 1311 vdev_label_read_bootenv_impl(zio, vd->vdev_child[c], flags); 1312 1313 /* 1314 * We just use the first label that has a correct checksum; the 1315 * bootloader should have rewritten them all to be the same on boot, 1316 * and any changes we made since boot have been the same across all 1317 * labels. 1318 */ 1319 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1320 for (int l = 0; l < VDEV_LABELS; l++) { 1321 vdev_label_read(zio, vd, l, 1322 abd_alloc_linear(VDEV_PAD_SIZE, B_FALSE), 1323 offsetof(vdev_label_t, vl_be), VDEV_PAD_SIZE, 1324 vdev_label_read_bootenv_done, zio, flags); 1325 } 1326 } 1327 } 1328 1329 int 1330 vdev_label_read_bootenv(vdev_t *rvd, nvlist_t *bootenv) 1331 { 1332 nvlist_t *config; 1333 spa_t *spa = rvd->vdev_spa; 1334 abd_t *abd = NULL; 1335 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1336 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 1337 1338 ASSERT(bootenv); 1339 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1340 1341 zio_t *zio = zio_root(spa, NULL, &abd, flags); 1342 vdev_label_read_bootenv_impl(zio, rvd, flags); 1343 int err = zio_wait(zio); 1344 1345 if (abd != NULL) { 1346 char *buf; 1347 vdev_boot_envblock_t *vbe = abd_to_buf(abd); 1348 1349 vbe->vbe_version = ntohll(vbe->vbe_version); 1350 switch (vbe->vbe_version) { 1351 case VB_RAW: 1352 /* 1353 * if we have textual data in vbe_bootenv, create nvlist 1354 * with key "envmap". 1355 */ 1356 fnvlist_add_uint64(bootenv, BOOTENV_VERSION, VB_RAW); 1357 vbe->vbe_bootenv[sizeof (vbe->vbe_bootenv) - 1] = '\0'; 1358 fnvlist_add_string(bootenv, GRUB_ENVMAP, 1359 vbe->vbe_bootenv); 1360 break; 1361 1362 case VB_NVLIST: 1363 err = nvlist_unpack(vbe->vbe_bootenv, 1364 sizeof (vbe->vbe_bootenv), &config, 0); 1365 if (err == 0) { 1366 fnvlist_merge(bootenv, config); 1367 nvlist_free(config); 1368 break; 1369 } 1370 zfs_fallthrough; 1371 default: 1372 /* Check for FreeBSD zfs bootonce command string */ 1373 buf = abd_to_buf(abd); 1374 if (*buf == '\0') { 1375 fnvlist_add_uint64(bootenv, BOOTENV_VERSION, 1376 VB_NVLIST); 1377 break; 1378 } 1379 fnvlist_add_string(bootenv, FREEBSD_BOOTONCE, buf); 1380 } 1381 1382 /* 1383 * abd was allocated in vdev_label_read_bootenv_impl() 1384 */ 1385 abd_free(abd); 1386 /* 1387 * If we managed to read any successfully, 1388 * return success. 1389 */ 1390 return (0); 1391 } 1392 return (err); 1393 } 1394 1395 int 1396 vdev_label_write_bootenv(vdev_t *vd, nvlist_t *env) 1397 { 1398 zio_t *zio; 1399 spa_t *spa = vd->vdev_spa; 1400 vdev_boot_envblock_t *bootenv; 1401 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1402 int error; 1403 size_t nvsize; 1404 char *nvbuf; 1405 const char *tmp; 1406 1407 error = nvlist_size(env, &nvsize, NV_ENCODE_XDR); 1408 if (error != 0) 1409 return (SET_ERROR(error)); 1410 1411 if (nvsize >= sizeof (bootenv->vbe_bootenv)) { 1412 return (SET_ERROR(E2BIG)); 1413 } 1414 1415 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1416 1417 error = ENXIO; 1418 for (int c = 0; c < vd->vdev_children; c++) { 1419 int child_err; 1420 1421 child_err = vdev_label_write_bootenv(vd->vdev_child[c], env); 1422 /* 1423 * As long as any of the disks managed to write all of their 1424 * labels successfully, return success. 1425 */ 1426 if (child_err == 0) 1427 error = child_err; 1428 } 1429 1430 if (!vd->vdev_ops->vdev_op_leaf || vdev_is_dead(vd) || 1431 !vdev_writeable(vd)) { 1432 return (error); 1433 } 1434 ASSERT3U(sizeof (*bootenv), ==, VDEV_PAD_SIZE); 1435 abd_t *abd = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); 1436 abd_zero(abd, VDEV_PAD_SIZE); 1437 1438 bootenv = abd_borrow_buf_copy(abd, VDEV_PAD_SIZE); 1439 nvbuf = bootenv->vbe_bootenv; 1440 nvsize = sizeof (bootenv->vbe_bootenv); 1441 1442 bootenv->vbe_version = fnvlist_lookup_uint64(env, BOOTENV_VERSION); 1443 switch (bootenv->vbe_version) { 1444 case VB_RAW: 1445 if (nvlist_lookup_string(env, GRUB_ENVMAP, &tmp) == 0) { 1446 (void) strlcpy(bootenv->vbe_bootenv, tmp, nvsize); 1447 } 1448 error = 0; 1449 break; 1450 1451 case VB_NVLIST: 1452 error = nvlist_pack(env, &nvbuf, &nvsize, NV_ENCODE_XDR, 1453 KM_SLEEP); 1454 break; 1455 1456 default: 1457 error = EINVAL; 1458 break; 1459 } 1460 1461 if (error == 0) { 1462 bootenv->vbe_version = htonll(bootenv->vbe_version); 1463 abd_return_buf_copy(abd, bootenv, VDEV_PAD_SIZE); 1464 } else { 1465 abd_free(abd); 1466 return (SET_ERROR(error)); 1467 } 1468 1469 retry: 1470 zio = zio_root(spa, NULL, NULL, flags); 1471 for (int l = 0; l < VDEV_LABELS; l++) { 1472 vdev_label_write(zio, vd, l, abd, 1473 offsetof(vdev_label_t, vl_be), 1474 VDEV_PAD_SIZE, NULL, NULL, flags); 1475 } 1476 1477 error = zio_wait(zio); 1478 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 1479 flags |= ZIO_FLAG_TRYHARD; 1480 goto retry; 1481 } 1482 1483 abd_free(abd); 1484 return (error); 1485 } 1486 1487 /* 1488 * ========================================================================== 1489 * uberblock load/sync 1490 * ========================================================================== 1491 */ 1492 1493 /* 1494 * Consider the following situation: txg is safely synced to disk. We've 1495 * written the first uberblock for txg + 1, and then we lose power. When we 1496 * come back up, we fail to see the uberblock for txg + 1 because, say, 1497 * it was on a mirrored device and the replica to which we wrote txg + 1 1498 * is now offline. If we then make some changes and sync txg + 1, and then 1499 * the missing replica comes back, then for a few seconds we'll have two 1500 * conflicting uberblocks on disk with the same txg. The solution is simple: 1501 * among uberblocks with equal txg, choose the one with the latest timestamp. 1502 */ 1503 static int 1504 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2) 1505 { 1506 int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg); 1507 1508 if (likely(cmp)) 1509 return (cmp); 1510 1511 cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp); 1512 if (likely(cmp)) 1513 return (cmp); 1514 1515 /* 1516 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware 1517 * ZFS, e.g. OpenZFS >= 0.7. 1518 * 1519 * If one ub has MMP and the other does not, they were written by 1520 * different hosts, which matters for MMP. So we treat no MMP/no SEQ as 1521 * a 0 value. 1522 * 1523 * Since timestamp and txg are the same if we get this far, either is 1524 * acceptable for importing the pool. 1525 */ 1526 unsigned int seq1 = 0; 1527 unsigned int seq2 = 0; 1528 1529 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1)) 1530 seq1 = MMP_SEQ(ub1); 1531 1532 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2)) 1533 seq2 = MMP_SEQ(ub2); 1534 1535 return (TREE_CMP(seq1, seq2)); 1536 } 1537 1538 struct ubl_cbdata { 1539 uberblock_t ubl_latest; /* Most recent uberblock */ 1540 uberblock_t *ubl_ubbest; /* Best uberblock (w/r/t max_txg) */ 1541 vdev_t *ubl_vd; /* vdev associated with the above */ 1542 }; 1543 1544 static void 1545 vdev_uberblock_load_done(zio_t *zio) 1546 { 1547 vdev_t *vd = zio->io_vd; 1548 spa_t *spa = zio->io_spa; 1549 zio_t *rio = zio->io_private; 1550 uberblock_t *ub = abd_to_buf(zio->io_abd); 1551 struct ubl_cbdata *cbp = rio->io_private; 1552 1553 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd)); 1554 1555 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 1556 mutex_enter(&rio->io_lock); 1557 if (vdev_uberblock_compare(ub, &cbp->ubl_latest) > 0) { 1558 cbp->ubl_latest = *ub; 1559 } 1560 if (ub->ub_txg <= spa->spa_load_max_txg && 1561 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) { 1562 /* 1563 * Keep track of the vdev in which this uberblock 1564 * was found. We will use this information later 1565 * to obtain the config nvlist associated with 1566 * this uberblock. 1567 */ 1568 *cbp->ubl_ubbest = *ub; 1569 cbp->ubl_vd = vd; 1570 } 1571 mutex_exit(&rio->io_lock); 1572 } 1573 1574 abd_free(zio->io_abd); 1575 } 1576 1577 static void 1578 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags, 1579 struct ubl_cbdata *cbp) 1580 { 1581 for (int c = 0; c < vd->vdev_children; c++) 1582 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp); 1583 1584 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd) && 1585 vd->vdev_ops != &vdev_draid_spare_ops) { 1586 for (int l = 0; l < VDEV_LABELS; l++) { 1587 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1588 vdev_label_read(zio, vd, l, 1589 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), 1590 B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n), 1591 VDEV_UBERBLOCK_SIZE(vd), 1592 vdev_uberblock_load_done, zio, flags); 1593 } 1594 } 1595 } 1596 } 1597 1598 /* 1599 * Reads the 'best' uberblock from disk along with its associated 1600 * configuration. First, we read the uberblock array of each label of each 1601 * vdev, keeping track of the uberblock with the highest txg in each array. 1602 * Then, we read the configuration from the same vdev as the best uberblock. 1603 */ 1604 void 1605 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config) 1606 { 1607 zio_t *zio; 1608 spa_t *spa = rvd->vdev_spa; 1609 struct ubl_cbdata cb; 1610 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1611 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 1612 1613 ASSERT(ub); 1614 ASSERT(config); 1615 1616 memset(ub, 0, sizeof (uberblock_t)); 1617 memset(&cb, 0, sizeof (cb)); 1618 *config = NULL; 1619 1620 cb.ubl_ubbest = ub; 1621 1622 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1623 zio = zio_root(spa, NULL, &cb, flags); 1624 vdev_uberblock_load_impl(zio, rvd, flags, &cb); 1625 (void) zio_wait(zio); 1626 1627 /* 1628 * It's possible that the best uberblock was discovered on a label 1629 * that has a configuration which was written in a future txg. 1630 * Search all labels on this vdev to find the configuration that 1631 * matches the txg for our uberblock. 1632 */ 1633 if (cb.ubl_vd != NULL) { 1634 vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. " 1635 "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg); 1636 1637 if (ub->ub_raidz_reflow_info != 1638 cb.ubl_latest.ub_raidz_reflow_info) { 1639 vdev_dbgmsg(cb.ubl_vd, 1640 "spa=%s best uberblock (txg=%llu info=0x%llx) " 1641 "has different raidz_reflow_info than latest " 1642 "uberblock (txg=%llu info=0x%llx)", 1643 spa->spa_name, 1644 (u_longlong_t)ub->ub_txg, 1645 (u_longlong_t)ub->ub_raidz_reflow_info, 1646 (u_longlong_t)cb.ubl_latest.ub_txg, 1647 (u_longlong_t)cb.ubl_latest.ub_raidz_reflow_info); 1648 memset(ub, 0, sizeof (uberblock_t)); 1649 spa_config_exit(spa, SCL_ALL, FTAG); 1650 return; 1651 } 1652 1653 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg); 1654 if (*config == NULL && spa->spa_extreme_rewind) { 1655 vdev_dbgmsg(cb.ubl_vd, "failed to read label config. " 1656 "Trying again without txg restrictions."); 1657 *config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX); 1658 } 1659 if (*config == NULL) { 1660 vdev_dbgmsg(cb.ubl_vd, "failed to read label config"); 1661 } 1662 } 1663 spa_config_exit(spa, SCL_ALL, FTAG); 1664 } 1665 1666 /* 1667 * For use when a leaf vdev is expanded. 1668 * The location of labels 2 and 3 changed, and at the new location the 1669 * uberblock rings are either empty or contain garbage. The sync will write 1670 * new configs there because the vdev is dirty, but expansion also needs the 1671 * uberblock rings copied. Read them from label 0 which did not move. 1672 * 1673 * Since the point is to populate labels {2,3} with valid uberblocks, 1674 * we zero uberblocks we fail to read or which are not valid. 1675 */ 1676 1677 static void 1678 vdev_copy_uberblocks(vdev_t *vd) 1679 { 1680 abd_t *ub_abd; 1681 zio_t *write_zio; 1682 int locks = (SCL_L2ARC | SCL_ZIO); 1683 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1684 ZIO_FLAG_SPECULATIVE; 1685 1686 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) == 1687 SCL_STATE); 1688 ASSERT(vd->vdev_ops->vdev_op_leaf); 1689 1690 /* 1691 * No uberblocks are stored on distributed spares, they may be 1692 * safely skipped when expanding a leaf vdev. 1693 */ 1694 if (vd->vdev_ops == &vdev_draid_spare_ops) 1695 return; 1696 1697 spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER); 1698 1699 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE); 1700 1701 write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags); 1702 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1703 const int src_label = 0; 1704 zio_t *zio; 1705 1706 zio = zio_root(vd->vdev_spa, NULL, NULL, flags); 1707 vdev_label_read(zio, vd, src_label, ub_abd, 1708 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1709 NULL, NULL, flags); 1710 1711 if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd))) 1712 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd)); 1713 1714 for (int l = 2; l < VDEV_LABELS; l++) 1715 vdev_label_write(write_zio, vd, l, ub_abd, 1716 VDEV_UBERBLOCK_OFFSET(vd, n), 1717 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL, 1718 flags | ZIO_FLAG_DONT_PROPAGATE); 1719 } 1720 (void) zio_wait(write_zio); 1721 1722 spa_config_exit(vd->vdev_spa, locks, FTAG); 1723 1724 abd_free(ub_abd); 1725 } 1726 1727 /* 1728 * On success, increment root zio's count of good writes. 1729 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 1730 */ 1731 static void 1732 vdev_uberblock_sync_done(zio_t *zio) 1733 { 1734 uint64_t *good_writes = zio->io_private; 1735 1736 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 1737 atomic_inc_64(good_writes); 1738 } 1739 1740 /* 1741 * Write the uberblock to all labels of all leaves of the specified vdev. 1742 */ 1743 static void 1744 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes, 1745 uberblock_t *ub, vdev_t *vd, int flags) 1746 { 1747 for (uint64_t c = 0; c < vd->vdev_children; c++) { 1748 vdev_uberblock_sync(zio, good_writes, 1749 ub, vd->vdev_child[c], flags); 1750 } 1751 1752 if (!vd->vdev_ops->vdev_op_leaf) 1753 return; 1754 1755 if (!vdev_writeable(vd)) 1756 return; 1757 1758 /* 1759 * There's no need to write uberblocks to a distributed spare, they 1760 * are already stored on all the leaves of the parent dRAID. For 1761 * this same reason vdev_uberblock_load_impl() skips distributed 1762 * spares when reading uberblocks. 1763 */ 1764 if (vd->vdev_ops == &vdev_draid_spare_ops) 1765 return; 1766 1767 /* If the vdev was expanded, need to copy uberblock rings. */ 1768 if (vd->vdev_state == VDEV_STATE_HEALTHY && 1769 vd->vdev_copy_uberblocks == B_TRUE) { 1770 vdev_copy_uberblocks(vd); 1771 vd->vdev_copy_uberblocks = B_FALSE; 1772 } 1773 1774 /* 1775 * We chose a slot based on the txg. If this uberblock has a special 1776 * RAIDZ expansion state, then it is essentially an update of the 1777 * current uberblock (it has the same txg). However, the current 1778 * state is committed, so we want to write it to a different slot. If 1779 * we overwrote the same slot, and we lose power during the uberblock 1780 * write, and the disk does not do single-sector overwrites 1781 * atomically (even though it is required to - i.e. we should see 1782 * either the old or the new uberblock), then we could lose this 1783 * txg's uberblock. Rewinding to the previous txg's uberblock may not 1784 * be possible because RAIDZ expansion may have already overwritten 1785 * some of the data, so we need the progress indicator in the 1786 * uberblock. 1787 */ 1788 int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0; 1789 int n = (ub->ub_txg - (RRSS_GET_STATE(ub) == RRSS_SCRATCH_VALID)) % 1790 (VDEV_UBERBLOCK_COUNT(vd) - m); 1791 1792 /* Copy the uberblock_t into the ABD */ 1793 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE); 1794 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t)); 1795 abd_zero_off(ub_abd, sizeof (uberblock_t), 1796 VDEV_UBERBLOCK_SIZE(vd) - sizeof (uberblock_t)); 1797 1798 for (int l = 0; l < VDEV_LABELS; l++) 1799 vdev_label_write(zio, vd, l, ub_abd, 1800 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1801 vdev_uberblock_sync_done, good_writes, 1802 flags | ZIO_FLAG_DONT_PROPAGATE); 1803 1804 abd_free(ub_abd); 1805 } 1806 1807 /* Sync the uberblocks to all vdevs in svd[] */ 1808 int 1809 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 1810 { 1811 spa_t *spa = svd[0]->vdev_spa; 1812 zio_t *zio; 1813 uint64_t good_writes = 0; 1814 1815 zio = zio_root(spa, NULL, NULL, flags); 1816 1817 for (int v = 0; v < svdcount; v++) 1818 vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags); 1819 1820 if (spa->spa_aux_sync_uber) { 1821 for (int v = 0; v < spa->spa_spares.sav_count; v++) { 1822 vdev_uberblock_sync(zio, &good_writes, ub, 1823 spa->spa_spares.sav_vdevs[v], flags); 1824 } 1825 for (int v = 0; v < spa->spa_l2cache.sav_count; v++) { 1826 vdev_uberblock_sync(zio, &good_writes, ub, 1827 spa->spa_l2cache.sav_vdevs[v], flags); 1828 } 1829 } 1830 (void) zio_wait(zio); 1831 1832 /* 1833 * Flush the uberblocks to disk. This ensures that the odd labels 1834 * are no longer needed (because the new uberblocks and the even 1835 * labels are safely on disk), so it is safe to overwrite them. 1836 */ 1837 zio = zio_root(spa, NULL, NULL, flags); 1838 1839 for (int v = 0; v < svdcount; v++) { 1840 if (vdev_writeable(svd[v])) { 1841 zio_flush(zio, svd[v]); 1842 } 1843 } 1844 if (spa->spa_aux_sync_uber) { 1845 spa->spa_aux_sync_uber = B_FALSE; 1846 for (int v = 0; v < spa->spa_spares.sav_count; v++) { 1847 if (vdev_writeable(spa->spa_spares.sav_vdevs[v])) { 1848 zio_flush(zio, spa->spa_spares.sav_vdevs[v]); 1849 } 1850 } 1851 for (int v = 0; v < spa->spa_l2cache.sav_count; v++) { 1852 if (vdev_writeable(spa->spa_l2cache.sav_vdevs[v])) { 1853 zio_flush(zio, spa->spa_l2cache.sav_vdevs[v]); 1854 } 1855 } 1856 } 1857 1858 (void) zio_wait(zio); 1859 1860 return (good_writes >= 1 ? 0 : EIO); 1861 } 1862 1863 /* 1864 * On success, increment the count of good writes for our top-level vdev. 1865 */ 1866 static void 1867 vdev_label_sync_done(zio_t *zio) 1868 { 1869 uint64_t *good_writes = zio->io_private; 1870 1871 if (zio->io_error == 0) 1872 atomic_inc_64(good_writes); 1873 } 1874 1875 /* 1876 * If there weren't enough good writes, indicate failure to the parent. 1877 */ 1878 static void 1879 vdev_label_sync_top_done(zio_t *zio) 1880 { 1881 uint64_t *good_writes = zio->io_private; 1882 1883 if (*good_writes == 0) 1884 zio->io_error = SET_ERROR(EIO); 1885 1886 kmem_free(good_writes, sizeof (uint64_t)); 1887 } 1888 1889 /* 1890 * We ignore errors for log and cache devices, simply free the private data. 1891 */ 1892 static void 1893 vdev_label_sync_ignore_done(zio_t *zio) 1894 { 1895 kmem_free(zio->io_private, sizeof (uint64_t)); 1896 } 1897 1898 /* 1899 * Write all even or odd labels to all leaves of the specified vdev. 1900 */ 1901 static void 1902 vdev_label_sync(zio_t *zio, uint64_t *good_writes, 1903 vdev_t *vd, int l, uint64_t txg, int flags) 1904 { 1905 nvlist_t *label; 1906 vdev_phys_t *vp; 1907 abd_t *vp_abd; 1908 char *buf; 1909 size_t buflen; 1910 vdev_t *pvd = vd->vdev_parent; 1911 boolean_t spare_in_use = B_FALSE; 1912 1913 for (int c = 0; c < vd->vdev_children; c++) { 1914 vdev_label_sync(zio, good_writes, 1915 vd->vdev_child[c], l, txg, flags); 1916 } 1917 1918 if (!vd->vdev_ops->vdev_op_leaf) 1919 return; 1920 1921 if (!vdev_writeable(vd)) 1922 return; 1923 1924 /* 1925 * The top-level config never needs to be written to a distributed 1926 * spare. When read vdev_dspare_label_read_config() will generate 1927 * the config for the vdev_label_read_config(). 1928 */ 1929 if (vd->vdev_ops == &vdev_draid_spare_ops) 1930 return; 1931 1932 if (pvd && pvd->vdev_ops == &vdev_spare_ops) 1933 spare_in_use = B_TRUE; 1934 1935 /* 1936 * Generate a label describing the top-level config to which we belong. 1937 */ 1938 if ((vd->vdev_isspare && !spare_in_use) || vd->vdev_isl2cache) { 1939 label = vdev_aux_label_generate(vd, vd->vdev_isspare); 1940 } else { 1941 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 1942 } 1943 1944 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 1945 abd_zero(vp_abd, sizeof (vdev_phys_t)); 1946 vp = abd_to_buf(vp_abd); 1947 1948 buf = vp->vp_nvlist; 1949 buflen = sizeof (vp->vp_nvlist); 1950 1951 if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) { 1952 for (; l < VDEV_LABELS; l += 2) { 1953 vdev_label_write(zio, vd, l, vp_abd, 1954 offsetof(vdev_label_t, vl_vdev_phys), 1955 sizeof (vdev_phys_t), 1956 vdev_label_sync_done, good_writes, 1957 flags | ZIO_FLAG_DONT_PROPAGATE); 1958 } 1959 } 1960 1961 abd_free(vp_abd); 1962 nvlist_free(label); 1963 } 1964 1965 static int 1966 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 1967 { 1968 list_t *dl = &spa->spa_config_dirty_list; 1969 vdev_t *vd; 1970 zio_t *zio; 1971 int error; 1972 1973 /* 1974 * Write the new labels to disk. 1975 */ 1976 zio = zio_root(spa, NULL, NULL, flags); 1977 1978 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 1979 uint64_t *good_writes; 1980 1981 ASSERT(!vd->vdev_ishole); 1982 1983 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 1984 zio_t *vio = zio_null(zio, spa, NULL, 1985 (vd->vdev_islog || vd->vdev_aux != NULL) ? 1986 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 1987 good_writes, flags); 1988 vdev_label_sync(vio, good_writes, vd, l, txg, flags); 1989 zio_nowait(vio); 1990 } 1991 1992 /* 1993 * AUX path may have changed during import 1994 */ 1995 spa_aux_vdev_t *sav[2] = {&spa->spa_spares, &spa->spa_l2cache}; 1996 for (int i = 0; i < 2; i++) { 1997 for (int v = 0; v < sav[i]->sav_count; v++) { 1998 uint64_t *good_writes; 1999 if (!sav[i]->sav_label_sync) 2000 continue; 2001 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 2002 zio_t *vio = zio_null(zio, spa, NULL, 2003 vdev_label_sync_ignore_done, good_writes, flags); 2004 vdev_label_sync(vio, good_writes, sav[i]->sav_vdevs[v], 2005 l, txg, flags); 2006 zio_nowait(vio); 2007 } 2008 } 2009 2010 error = zio_wait(zio); 2011 2012 /* 2013 * Flush the new labels to disk. 2014 */ 2015 zio = zio_root(spa, NULL, NULL, flags); 2016 2017 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 2018 zio_flush(zio, vd); 2019 2020 for (int i = 0; i < 2; i++) { 2021 if (!sav[i]->sav_label_sync) 2022 continue; 2023 for (int v = 0; v < sav[i]->sav_count; v++) 2024 zio_flush(zio, sav[i]->sav_vdevs[v]); 2025 if (l == 1) 2026 sav[i]->sav_label_sync = B_FALSE; 2027 } 2028 2029 (void) zio_wait(zio); 2030 2031 return (error); 2032 } 2033 2034 /* 2035 * Sync the uberblock and any changes to the vdev configuration. 2036 * 2037 * The order of operations is carefully crafted to ensure that 2038 * if the system panics or loses power at any time, the state on disk 2039 * is still transactionally consistent. The in-line comments below 2040 * describe the failure semantics at each stage. 2041 * 2042 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 2043 * at any time, you can just call it again, and it will resume its work. 2044 */ 2045 int 2046 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg) 2047 { 2048 spa_t *spa = svd[0]->vdev_spa; 2049 uberblock_t *ub = &spa->spa_uberblock; 2050 int error = 0; 2051 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 2052 2053 ASSERT(svdcount != 0); 2054 retry: 2055 /* 2056 * Normally, we don't want to try too hard to write every label and 2057 * uberblock. If there is a flaky disk, we don't want the rest of the 2058 * sync process to block while we retry. But if we can't write a 2059 * single label out, we should retry with ZIO_FLAG_TRYHARD before 2060 * bailing out and declaring the pool faulted. 2061 */ 2062 if (error != 0) { 2063 if ((flags & ZIO_FLAG_TRYHARD) != 0) 2064 return (error); 2065 flags |= ZIO_FLAG_TRYHARD; 2066 } 2067 2068 ASSERT(ub->ub_txg <= txg); 2069 2070 /* 2071 * If this isn't a resync due to I/O errors, 2072 * and nothing changed in this transaction group, 2073 * and multihost protection isn't enabled, 2074 * and the vdev configuration hasn't changed, 2075 * then there's nothing to do. 2076 */ 2077 if (ub->ub_txg < txg) { 2078 boolean_t changed = uberblock_update(ub, spa->spa_root_vdev, 2079 txg, spa->spa_mmp.mmp_delay); 2080 2081 if (!changed && list_is_empty(&spa->spa_config_dirty_list) && 2082 !spa_multihost(spa)) 2083 return (0); 2084 } 2085 2086 if (txg > spa_freeze_txg(spa)) 2087 return (0); 2088 2089 ASSERT(txg <= spa->spa_final_txg); 2090 2091 /* 2092 * Flush the write cache of every disk that's been written to 2093 * in this transaction group. This ensures that all blocks 2094 * written in this txg will be committed to stable storage 2095 * before any uberblock that references them. 2096 */ 2097 zio_t *zio = zio_root(spa, NULL, NULL, flags); 2098 2099 for (vdev_t *vd = 2100 txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL; 2101 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 2102 zio_flush(zio, vd); 2103 2104 (void) zio_wait(zio); 2105 2106 /* 2107 * Sync out the even labels (L0, L2) for every dirty vdev. If the 2108 * system dies in the middle of this process, that's OK: all of the 2109 * even labels that made it to disk will be newer than any uberblock, 2110 * and will therefore be considered invalid. The odd labels (L1, L3), 2111 * which have not yet been touched, will still be valid. We flush 2112 * the new labels to disk to ensure that all even-label updates 2113 * are committed to stable storage before the uberblock update. 2114 */ 2115 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) { 2116 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 2117 zfs_dbgmsg("vdev_label_sync_list() returned error %d " 2118 "for pool '%s' when syncing out the even labels " 2119 "of dirty vdevs", error, spa_name(spa)); 2120 } 2121 goto retry; 2122 } 2123 2124 /* 2125 * Sync the uberblocks to all vdevs in svd[]. 2126 * If the system dies in the middle of this step, there are two cases 2127 * to consider, and the on-disk state is consistent either way: 2128 * 2129 * (1) If none of the new uberblocks made it to disk, then the 2130 * previous uberblock will be the newest, and the odd labels 2131 * (which had not yet been touched) will be valid with respect 2132 * to that uberblock. 2133 * 2134 * (2) If one or more new uberblocks made it to disk, then they 2135 * will be the newest, and the even labels (which had all 2136 * been successfully committed) will be valid with respect 2137 * to the new uberblocks. 2138 */ 2139 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) { 2140 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 2141 zfs_dbgmsg("vdev_uberblock_sync_list() returned error " 2142 "%d for pool '%s'", error, spa_name(spa)); 2143 } 2144 goto retry; 2145 } 2146 2147 if (spa_multihost(spa)) 2148 mmp_update_uberblock(spa, ub); 2149 2150 /* 2151 * Sync out odd labels for every dirty vdev. If the system dies 2152 * in the middle of this process, the even labels and the new 2153 * uberblocks will suffice to open the pool. The next time 2154 * the pool is opened, the first thing we'll do -- before any 2155 * user data is modified -- is mark every vdev dirty so that 2156 * all labels will be brought up to date. We flush the new labels 2157 * to disk to ensure that all odd-label updates are committed to 2158 * stable storage before the next transaction group begins. 2159 */ 2160 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) { 2161 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 2162 zfs_dbgmsg("vdev_label_sync_list() returned error %d " 2163 "for pool '%s' when syncing out the odd labels of " 2164 "dirty vdevs", error, spa_name(spa)); 2165 } 2166 goto retry; 2167 } 2168 2169 return (0); 2170 } 2171