1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2017, Intel Corporation. 26 */ 27 28 /* 29 * Virtual Device Labels 30 * --------------------- 31 * 32 * The vdev label serves several distinct purposes: 33 * 34 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 35 * identity within the pool. 36 * 37 * 2. Verify that all the devices given in a configuration are present 38 * within the pool. 39 * 40 * 3. Determine the uberblock for the pool. 41 * 42 * 4. In case of an import operation, determine the configuration of the 43 * toplevel vdev of which it is a part. 44 * 45 * 5. If an import operation cannot find all the devices in the pool, 46 * provide enough information to the administrator to determine which 47 * devices are missing. 48 * 49 * It is important to note that while the kernel is responsible for writing the 50 * label, it only consumes the information in the first three cases. The 51 * latter information is only consumed in userland when determining the 52 * configuration to import a pool. 53 * 54 * 55 * Label Organization 56 * ------------------ 57 * 58 * Before describing the contents of the label, it's important to understand how 59 * the labels are written and updated with respect to the uberblock. 60 * 61 * When the pool configuration is altered, either because it was newly created 62 * or a device was added, we want to update all the labels such that we can deal 63 * with fatal failure at any point. To this end, each disk has two labels which 64 * are updated before and after the uberblock is synced. Assuming we have 65 * labels and an uberblock with the following transaction groups: 66 * 67 * L1 UB L2 68 * +------+ +------+ +------+ 69 * | | | | | | 70 * | t10 | | t10 | | t10 | 71 * | | | | | | 72 * +------+ +------+ +------+ 73 * 74 * In this stable state, the labels and the uberblock were all updated within 75 * the same transaction group (10). Each label is mirrored and checksummed, so 76 * that we can detect when we fail partway through writing the label. 77 * 78 * In order to identify which labels are valid, the labels are written in the 79 * following manner: 80 * 81 * 1. For each vdev, update 'L1' to the new label 82 * 2. Update the uberblock 83 * 3. For each vdev, update 'L2' to the new label 84 * 85 * Given arbitrary failure, we can determine the correct label to use based on 86 * the transaction group. If we fail after updating L1 but before updating the 87 * UB, we will notice that L1's transaction group is greater than the uberblock, 88 * so L2 must be valid. If we fail after writing the uberblock but before 89 * writing L2, we will notice that L2's transaction group is less than L1, and 90 * therefore L1 is valid. 91 * 92 * Another added complexity is that not every label is updated when the config 93 * is synced. If we add a single device, we do not want to have to re-write 94 * every label for every device in the pool. This means that both L1 and L2 may 95 * be older than the pool uberblock, because the necessary information is stored 96 * on another vdev. 97 * 98 * 99 * On-disk Format 100 * -------------- 101 * 102 * The vdev label consists of two distinct parts, and is wrapped within the 103 * vdev_label_t structure. The label includes 8k of padding to permit legacy 104 * VTOC disk labels, but is otherwise ignored. 105 * 106 * The first half of the label is a packed nvlist which contains pool wide 107 * properties, per-vdev properties, and configuration information. It is 108 * described in more detail below. 109 * 110 * The latter half of the label consists of a redundant array of uberblocks. 111 * These uberblocks are updated whenever a transaction group is committed, 112 * or when the configuration is updated. When a pool is loaded, we scan each 113 * vdev for the 'best' uberblock. 114 * 115 * 116 * Configuration Information 117 * ------------------------- 118 * 119 * The nvlist describing the pool and vdev contains the following elements: 120 * 121 * version ZFS on-disk version 122 * name Pool name 123 * state Pool state 124 * txg Transaction group in which this label was written 125 * pool_guid Unique identifier for this pool 126 * vdev_tree An nvlist describing vdev tree. 127 * features_for_read 128 * An nvlist of the features necessary for reading the MOS. 129 * 130 * Each leaf device label also contains the following: 131 * 132 * top_guid Unique ID for top-level vdev in which this is contained 133 * guid Unique ID for the leaf vdev 134 * 135 * The 'vs' configuration follows the format described in 'spa_config.c'. 136 */ 137 138 #include <sys/zfs_context.h> 139 #include <sys/spa.h> 140 #include <sys/spa_impl.h> 141 #include <sys/dmu.h> 142 #include <sys/zap.h> 143 #include <sys/vdev.h> 144 #include <sys/vdev_impl.h> 145 #include <sys/vdev_draid.h> 146 #include <sys/uberblock_impl.h> 147 #include <sys/metaslab.h> 148 #include <sys/metaslab_impl.h> 149 #include <sys/zio.h> 150 #include <sys/dsl_scan.h> 151 #include <sys/abd.h> 152 #include <sys/fs/zfs.h> 153 #include <sys/byteorder.h> 154 #include <sys/zfs_bootenv.h> 155 156 /* 157 * Basic routines to read and write from a vdev label. 158 * Used throughout the rest of this file. 159 */ 160 uint64_t 161 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 162 { 163 ASSERT(offset < sizeof (vdev_label_t)); 164 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 165 166 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 167 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 168 } 169 170 /* 171 * Returns back the vdev label associated with the passed in offset. 172 */ 173 int 174 vdev_label_number(uint64_t psize, uint64_t offset) 175 { 176 int l; 177 178 if (offset >= psize - VDEV_LABEL_END_SIZE) { 179 offset -= psize - VDEV_LABEL_END_SIZE; 180 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 181 } 182 l = offset / sizeof (vdev_label_t); 183 return (l < VDEV_LABELS ? l : -1); 184 } 185 186 static void 187 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 188 uint64_t size, zio_done_func_t *done, void *private, int flags) 189 { 190 ASSERT( 191 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE || 192 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE); 193 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 194 195 zio_nowait(zio_read_phys(zio, vd, 196 vdev_label_offset(vd->vdev_psize, l, offset), 197 size, buf, ZIO_CHECKSUM_LABEL, done, private, 198 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 199 } 200 201 void 202 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 203 uint64_t size, zio_done_func_t *done, void *private, int flags) 204 { 205 ASSERT( 206 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE || 207 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE); 208 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 209 210 zio_nowait(zio_write_phys(zio, vd, 211 vdev_label_offset(vd->vdev_psize, l, offset), 212 size, buf, ZIO_CHECKSUM_LABEL, done, private, 213 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 214 } 215 216 /* 217 * Generate the nvlist representing this vdev's stats 218 */ 219 void 220 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv) 221 { 222 nvlist_t *nvx; 223 vdev_stat_t *vs; 224 vdev_stat_ex_t *vsx; 225 226 vs = kmem_alloc(sizeof (*vs), KM_SLEEP); 227 vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP); 228 229 vdev_get_stats_ex(vd, vs, vsx); 230 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, 231 (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t)); 232 233 /* 234 * Add extended stats into a special extended stats nvlist. This keeps 235 * all the extended stats nicely grouped together. The extended stats 236 * nvlist is then added to the main nvlist. 237 */ 238 nvx = fnvlist_alloc(); 239 240 /* ZIOs in flight to disk */ 241 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE, 242 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]); 243 244 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE, 245 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]); 246 247 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE, 248 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]); 249 250 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE, 251 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]); 252 253 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE, 254 vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]); 255 256 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE, 257 vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]); 258 259 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_REBUILD_ACTIVE_QUEUE, 260 vsx->vsx_active_queue[ZIO_PRIORITY_REBUILD]); 261 262 /* ZIOs pending */ 263 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE, 264 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]); 265 266 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE, 267 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]); 268 269 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE, 270 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]); 271 272 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE, 273 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]); 274 275 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE, 276 vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]); 277 278 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE, 279 vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]); 280 281 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_REBUILD_PEND_QUEUE, 282 vsx->vsx_pend_queue[ZIO_PRIORITY_REBUILD]); 283 284 /* Histograms */ 285 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO, 286 vsx->vsx_total_histo[ZIO_TYPE_READ], 287 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ])); 288 289 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO, 290 vsx->vsx_total_histo[ZIO_TYPE_WRITE], 291 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE])); 292 293 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO, 294 vsx->vsx_disk_histo[ZIO_TYPE_READ], 295 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ])); 296 297 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO, 298 vsx->vsx_disk_histo[ZIO_TYPE_WRITE], 299 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE])); 300 301 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO, 302 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ], 303 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ])); 304 305 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO, 306 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE], 307 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE])); 308 309 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO, 310 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ], 311 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ])); 312 313 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO, 314 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE], 315 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE])); 316 317 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO, 318 vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB], 319 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB])); 320 321 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO, 322 vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM], 323 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM])); 324 325 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_REBUILD_LAT_HISTO, 326 vsx->vsx_queue_histo[ZIO_PRIORITY_REBUILD], 327 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_REBUILD])); 328 329 /* Request sizes */ 330 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO, 331 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ], 332 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ])); 333 334 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO, 335 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE], 336 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE])); 337 338 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO, 339 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ], 340 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ])); 341 342 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO, 343 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE], 344 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE])); 345 346 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO, 347 vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB], 348 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB])); 349 350 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO, 351 vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM], 352 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM])); 353 354 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_REBUILD_HISTO, 355 vsx->vsx_ind_histo[ZIO_PRIORITY_REBUILD], 356 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_REBUILD])); 357 358 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO, 359 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ], 360 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ])); 361 362 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO, 363 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE], 364 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE])); 365 366 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO, 367 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ], 368 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ])); 369 370 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO, 371 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE], 372 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE])); 373 374 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO, 375 vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB], 376 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB])); 377 378 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO, 379 vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM], 380 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM])); 381 382 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_REBUILD_HISTO, 383 vsx->vsx_agg_histo[ZIO_PRIORITY_REBUILD], 384 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_REBUILD])); 385 386 /* IO delays */ 387 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios); 388 389 /* Add extended stats nvlist to main nvlist */ 390 fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx); 391 392 fnvlist_free(nvx); 393 kmem_free(vs, sizeof (*vs)); 394 kmem_free(vsx, sizeof (*vsx)); 395 } 396 397 static void 398 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl) 399 { 400 spa_t *spa = vd->vdev_spa; 401 402 if (vd != spa->spa_root_vdev) 403 return; 404 405 /* provide either current or previous scan information */ 406 pool_scan_stat_t ps; 407 if (spa_scan_get_stats(spa, &ps) == 0) { 408 fnvlist_add_uint64_array(nvl, 409 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps, 410 sizeof (pool_scan_stat_t) / sizeof (uint64_t)); 411 } 412 413 pool_removal_stat_t prs; 414 if (spa_removal_get_stats(spa, &prs) == 0) { 415 fnvlist_add_uint64_array(nvl, 416 ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs, 417 sizeof (prs) / sizeof (uint64_t)); 418 } 419 420 pool_checkpoint_stat_t pcs; 421 if (spa_checkpoint_get_stats(spa, &pcs) == 0) { 422 fnvlist_add_uint64_array(nvl, 423 ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs, 424 sizeof (pcs) / sizeof (uint64_t)); 425 } 426 } 427 428 static void 429 top_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl) 430 { 431 if (vd == vd->vdev_top) { 432 vdev_rebuild_stat_t vrs; 433 if (vdev_rebuild_get_stats(vd, &vrs) == 0) { 434 fnvlist_add_uint64_array(nvl, 435 ZPOOL_CONFIG_REBUILD_STATS, (uint64_t *)&vrs, 436 sizeof (vrs) / sizeof (uint64_t)); 437 } 438 } 439 } 440 441 /* 442 * Generate the nvlist representing this vdev's config. 443 */ 444 nvlist_t * 445 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 446 vdev_config_flag_t flags) 447 { 448 nvlist_t *nv = NULL; 449 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 450 451 nv = fnvlist_alloc(); 452 453 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type); 454 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE))) 455 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id); 456 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid); 457 458 if (vd->vdev_path != NULL) 459 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path); 460 461 if (vd->vdev_devid != NULL) 462 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid); 463 464 if (vd->vdev_physpath != NULL) 465 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 466 vd->vdev_physpath); 467 468 if (vd->vdev_enc_sysfs_path != NULL) 469 fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 470 vd->vdev_enc_sysfs_path); 471 472 if (vd->vdev_fru != NULL) 473 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru); 474 475 if (vd->vdev_ops->vdev_op_config_generate != NULL) 476 vd->vdev_ops->vdev_op_config_generate(vd, nv); 477 478 if (vd->vdev_wholedisk != -1ULL) { 479 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 480 vd->vdev_wholedisk); 481 } 482 483 if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING)) 484 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1); 485 486 if (vd->vdev_isspare) 487 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1); 488 489 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) && 490 vd == vd->vdev_top) { 491 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 492 vd->vdev_ms_array); 493 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 494 vd->vdev_ms_shift); 495 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 496 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 497 vd->vdev_asize); 498 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog); 499 if (vd->vdev_noalloc) { 500 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NONALLOCATING, 501 vd->vdev_noalloc); 502 } 503 504 /* 505 * Slog devices are removed synchronously so don't 506 * persist the vdev_removing flag to the label. 507 */ 508 if (vd->vdev_removing && !vd->vdev_islog) { 509 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING, 510 vd->vdev_removing); 511 } 512 513 /* zpool command expects alloc class data */ 514 if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) { 515 const char *bias = NULL; 516 517 switch (vd->vdev_alloc_bias) { 518 case VDEV_BIAS_LOG: 519 bias = VDEV_ALLOC_BIAS_LOG; 520 break; 521 case VDEV_BIAS_SPECIAL: 522 bias = VDEV_ALLOC_BIAS_SPECIAL; 523 break; 524 case VDEV_BIAS_DEDUP: 525 bias = VDEV_ALLOC_BIAS_DEDUP; 526 break; 527 default: 528 ASSERT3U(vd->vdev_alloc_bias, ==, 529 VDEV_BIAS_NONE); 530 } 531 fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 532 bias); 533 } 534 } 535 536 if (vd->vdev_dtl_sm != NULL) { 537 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 538 space_map_object(vd->vdev_dtl_sm)); 539 } 540 541 if (vic->vic_mapping_object != 0) { 542 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 543 vic->vic_mapping_object); 544 } 545 546 if (vic->vic_births_object != 0) { 547 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 548 vic->vic_births_object); 549 } 550 551 if (vic->vic_prev_indirect_vdev != UINT64_MAX) { 552 fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 553 vic->vic_prev_indirect_vdev); 554 } 555 556 if (vd->vdev_crtxg) 557 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg); 558 559 if (vd->vdev_expansion_time) 560 fnvlist_add_uint64(nv, ZPOOL_CONFIG_EXPANSION_TIME, 561 vd->vdev_expansion_time); 562 563 if (flags & VDEV_CONFIG_MOS) { 564 if (vd->vdev_leaf_zap != 0) { 565 ASSERT(vd->vdev_ops->vdev_op_leaf); 566 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP, 567 vd->vdev_leaf_zap); 568 } 569 570 if (vd->vdev_top_zap != 0) { 571 ASSERT(vd == vd->vdev_top); 572 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 573 vd->vdev_top_zap); 574 } 575 576 if (vd->vdev_resilver_deferred) { 577 ASSERT(vd->vdev_ops->vdev_op_leaf); 578 ASSERT(spa->spa_resilver_deferred); 579 fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER); 580 } 581 } 582 583 if (getstats) { 584 vdev_config_generate_stats(vd, nv); 585 586 root_vdev_actions_getprogress(vd, nv); 587 top_vdev_actions_getprogress(vd, nv); 588 589 /* 590 * Note: this can be called from open context 591 * (spa_get_stats()), so we need the rwlock to prevent 592 * the mapping from being changed by condensing. 593 */ 594 rw_enter(&vd->vdev_indirect_rwlock, RW_READER); 595 if (vd->vdev_indirect_mapping != NULL) { 596 ASSERT(vd->vdev_indirect_births != NULL); 597 vdev_indirect_mapping_t *vim = 598 vd->vdev_indirect_mapping; 599 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, 600 vdev_indirect_mapping_size(vim)); 601 } 602 rw_exit(&vd->vdev_indirect_rwlock); 603 if (vd->vdev_mg != NULL && 604 vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) { 605 /* 606 * Compute approximately how much memory would be used 607 * for the indirect mapping if this device were to 608 * be removed. 609 * 610 * Note: If the frag metric is invalid, then not 611 * enough metaslabs have been converted to have 612 * histograms. 613 */ 614 uint64_t seg_count = 0; 615 uint64_t to_alloc = vd->vdev_stat.vs_alloc; 616 617 /* 618 * There are the same number of allocated segments 619 * as free segments, so we will have at least one 620 * entry per free segment. However, small free 621 * segments (smaller than vdev_removal_max_span) 622 * will be combined with adjacent allocated segments 623 * as a single mapping. 624 */ 625 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 626 if (i + 1 < highbit64(vdev_removal_max_span) 627 - 1) { 628 to_alloc += 629 vd->vdev_mg->mg_histogram[i] << 630 (i + 1); 631 } else { 632 seg_count += 633 vd->vdev_mg->mg_histogram[i]; 634 } 635 } 636 637 /* 638 * The maximum length of a mapping is 639 * zfs_remove_max_segment, so we need at least one entry 640 * per zfs_remove_max_segment of allocated data. 641 */ 642 seg_count += to_alloc / spa_remove_max_segment(spa); 643 644 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, 645 seg_count * 646 sizeof (vdev_indirect_mapping_entry_phys_t)); 647 } 648 } 649 650 if (!vd->vdev_ops->vdev_op_leaf) { 651 nvlist_t **child; 652 uint64_t c; 653 654 ASSERT(!vd->vdev_ishole); 655 656 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 657 KM_SLEEP); 658 659 for (c = 0; c < vd->vdev_children; c++) { 660 child[c] = vdev_config_generate(spa, vd->vdev_child[c], 661 getstats, flags); 662 } 663 664 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 665 (const nvlist_t * const *)child, vd->vdev_children); 666 667 for (c = 0; c < vd->vdev_children; c++) 668 nvlist_free(child[c]); 669 670 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 671 672 } else { 673 const char *aux = NULL; 674 675 if (vd->vdev_offline && !vd->vdev_tmpoffline) 676 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE); 677 if (vd->vdev_resilver_txg != 0) 678 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 679 vd->vdev_resilver_txg); 680 if (vd->vdev_rebuild_txg != 0) 681 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 682 vd->vdev_rebuild_txg); 683 if (vd->vdev_faulted) 684 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE); 685 if (vd->vdev_degraded) 686 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE); 687 if (vd->vdev_removed) 688 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE); 689 if (vd->vdev_unspare) 690 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE); 691 if (vd->vdev_ishole) 692 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE); 693 694 /* Set the reason why we're FAULTED/DEGRADED. */ 695 switch (vd->vdev_stat.vs_aux) { 696 case VDEV_AUX_ERR_EXCEEDED: 697 aux = "err_exceeded"; 698 break; 699 700 case VDEV_AUX_EXTERNAL: 701 aux = "external"; 702 break; 703 } 704 705 if (aux != NULL && !vd->vdev_tmpoffline) { 706 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux); 707 } else { 708 /* 709 * We're healthy - clear any previous AUX_STATE values. 710 */ 711 if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE)) 712 nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE); 713 } 714 715 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { 716 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, 717 vd->vdev_orig_guid); 718 } 719 } 720 721 return (nv); 722 } 723 724 /* 725 * Generate a view of the top-level vdevs. If we currently have holes 726 * in the namespace, then generate an array which contains a list of holey 727 * vdevs. Additionally, add the number of top-level children that currently 728 * exist. 729 */ 730 void 731 vdev_top_config_generate(spa_t *spa, nvlist_t *config) 732 { 733 vdev_t *rvd = spa->spa_root_vdev; 734 uint64_t *array; 735 uint_t c, idx; 736 737 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP); 738 739 for (c = 0, idx = 0; c < rvd->vdev_children; c++) { 740 vdev_t *tvd = rvd->vdev_child[c]; 741 742 if (tvd->vdev_ishole) { 743 array[idx++] = c; 744 } 745 } 746 747 if (idx) { 748 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, 749 array, idx) == 0); 750 } 751 752 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 753 rvd->vdev_children) == 0); 754 755 kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); 756 } 757 758 /* 759 * Returns the configuration from the label of the given vdev. For vdevs 760 * which don't have a txg value stored on their label (i.e. spares/cache) 761 * or have not been completely initialized (txg = 0) just return 762 * the configuration from the first valid label we find. Otherwise, 763 * find the most up-to-date label that does not exceed the specified 764 * 'txg' value. 765 */ 766 nvlist_t * 767 vdev_label_read_config(vdev_t *vd, uint64_t txg) 768 { 769 spa_t *spa = vd->vdev_spa; 770 nvlist_t *config = NULL; 771 vdev_phys_t *vp[VDEV_LABELS]; 772 abd_t *vp_abd[VDEV_LABELS]; 773 zio_t *zio[VDEV_LABELS]; 774 uint64_t best_txg = 0; 775 uint64_t label_txg = 0; 776 int error = 0; 777 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 778 ZIO_FLAG_SPECULATIVE; 779 780 ASSERT(vd->vdev_validate_thread == curthread || 781 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 782 783 if (!vdev_readable(vd)) 784 return (NULL); 785 786 /* 787 * The label for a dRAID distributed spare is not stored on disk. 788 * Instead it is generated when needed which allows us to bypass 789 * the pipeline when reading the config from the label. 790 */ 791 if (vd->vdev_ops == &vdev_draid_spare_ops) 792 return (vdev_draid_read_config_spare(vd)); 793 794 for (int l = 0; l < VDEV_LABELS; l++) { 795 vp_abd[l] = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 796 vp[l] = abd_to_buf(vp_abd[l]); 797 } 798 799 retry: 800 for (int l = 0; l < VDEV_LABELS; l++) { 801 zio[l] = zio_root(spa, NULL, NULL, flags); 802 803 vdev_label_read(zio[l], vd, l, vp_abd[l], 804 offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t), 805 NULL, NULL, flags); 806 } 807 for (int l = 0; l < VDEV_LABELS; l++) { 808 nvlist_t *label = NULL; 809 810 if (zio_wait(zio[l]) == 0 && 811 nvlist_unpack(vp[l]->vp_nvlist, sizeof (vp[l]->vp_nvlist), 812 &label, 0) == 0) { 813 /* 814 * Auxiliary vdevs won't have txg values in their 815 * labels and newly added vdevs may not have been 816 * completely initialized so just return the 817 * configuration from the first valid label we 818 * encounter. 819 */ 820 error = nvlist_lookup_uint64(label, 821 ZPOOL_CONFIG_POOL_TXG, &label_txg); 822 if ((error || label_txg == 0) && !config) { 823 config = label; 824 for (l++; l < VDEV_LABELS; l++) 825 zio_wait(zio[l]); 826 break; 827 } else if (label_txg <= txg && label_txg > best_txg) { 828 best_txg = label_txg; 829 nvlist_free(config); 830 config = fnvlist_dup(label); 831 } 832 } 833 834 if (label != NULL) { 835 nvlist_free(label); 836 label = NULL; 837 } 838 } 839 840 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { 841 flags |= ZIO_FLAG_TRYHARD; 842 goto retry; 843 } 844 845 /* 846 * We found a valid label but it didn't pass txg restrictions. 847 */ 848 if (config == NULL && label_txg != 0) { 849 vdev_dbgmsg(vd, "label discarded as txg is too large " 850 "(%llu > %llu)", (u_longlong_t)label_txg, 851 (u_longlong_t)txg); 852 } 853 854 for (int l = 0; l < VDEV_LABELS; l++) { 855 abd_free(vp_abd[l]); 856 } 857 858 return (config); 859 } 860 861 /* 862 * Determine if a device is in use. The 'spare_guid' parameter will be filled 863 * in with the device guid if this spare is active elsewhere on the system. 864 */ 865 static boolean_t 866 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 867 uint64_t *spare_guid, uint64_t *l2cache_guid) 868 { 869 spa_t *spa = vd->vdev_spa; 870 uint64_t state, pool_guid, device_guid, txg, spare_pool; 871 uint64_t vdtxg = 0; 872 nvlist_t *label; 873 874 if (spare_guid) 875 *spare_guid = 0ULL; 876 if (l2cache_guid) 877 *l2cache_guid = 0ULL; 878 879 /* 880 * Read the label, if any, and perform some basic sanity checks. 881 */ 882 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) 883 return (B_FALSE); 884 885 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 886 &vdtxg); 887 888 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 889 &state) != 0 || 890 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 891 &device_guid) != 0) { 892 nvlist_free(label); 893 return (B_FALSE); 894 } 895 896 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 897 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 898 &pool_guid) != 0 || 899 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 900 &txg) != 0)) { 901 nvlist_free(label); 902 return (B_FALSE); 903 } 904 905 nvlist_free(label); 906 907 /* 908 * Check to see if this device indeed belongs to the pool it claims to 909 * be a part of. The only way this is allowed is if the device is a hot 910 * spare (which we check for later on). 911 */ 912 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 913 !spa_guid_exists(pool_guid, device_guid) && 914 !spa_spare_exists(device_guid, NULL, NULL) && 915 !spa_l2cache_exists(device_guid, NULL)) 916 return (B_FALSE); 917 918 /* 919 * If the transaction group is zero, then this an initialized (but 920 * unused) label. This is only an error if the create transaction 921 * on-disk is the same as the one we're using now, in which case the 922 * user has attempted to add the same vdev multiple times in the same 923 * transaction. 924 */ 925 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 926 txg == 0 && vdtxg == crtxg) 927 return (B_TRUE); 928 929 /* 930 * Check to see if this is a spare device. We do an explicit check for 931 * spa_has_spare() here because it may be on our pending list of spares 932 * to add. 933 */ 934 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 935 spa_has_spare(spa, device_guid)) { 936 if (spare_guid) 937 *spare_guid = device_guid; 938 939 switch (reason) { 940 case VDEV_LABEL_CREATE: 941 return (B_TRUE); 942 943 case VDEV_LABEL_REPLACE: 944 return (!spa_has_spare(spa, device_guid) || 945 spare_pool != 0ULL); 946 947 case VDEV_LABEL_SPARE: 948 return (spa_has_spare(spa, device_guid)); 949 default: 950 break; 951 } 952 } 953 954 /* 955 * Check to see if this is an l2cache device. 956 */ 957 if (spa_l2cache_exists(device_guid, NULL) || 958 spa_has_l2cache(spa, device_guid)) { 959 if (l2cache_guid) 960 *l2cache_guid = device_guid; 961 962 switch (reason) { 963 case VDEV_LABEL_CREATE: 964 return (B_TRUE); 965 966 case VDEV_LABEL_REPLACE: 967 return (!spa_has_l2cache(spa, device_guid)); 968 969 case VDEV_LABEL_L2CACHE: 970 return (spa_has_l2cache(spa, device_guid)); 971 default: 972 break; 973 } 974 } 975 976 /* 977 * We can't rely on a pool's state if it's been imported 978 * read-only. Instead we look to see if the pools is marked 979 * read-only in the namespace and set the state to active. 980 */ 981 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 982 (spa = spa_by_guid(pool_guid, device_guid)) != NULL && 983 spa_mode(spa) == SPA_MODE_READ) 984 state = POOL_STATE_ACTIVE; 985 986 /* 987 * If the device is marked ACTIVE, then this device is in use by another 988 * pool on the system. 989 */ 990 return (state == POOL_STATE_ACTIVE); 991 } 992 993 /* 994 * Initialize a vdev label. We check to make sure each leaf device is not in 995 * use, and writable. We put down an initial label which we will later 996 * overwrite with a complete label. Note that it's important to do this 997 * sequentially, not in parallel, so that we catch cases of multiple use of the 998 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 999 * itself. 1000 */ 1001 int 1002 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 1003 { 1004 spa_t *spa = vd->vdev_spa; 1005 nvlist_t *label; 1006 vdev_phys_t *vp; 1007 abd_t *vp_abd; 1008 abd_t *bootenv; 1009 uberblock_t *ub; 1010 abd_t *ub_abd; 1011 zio_t *zio; 1012 char *buf; 1013 size_t buflen; 1014 int error; 1015 uint64_t spare_guid = 0, l2cache_guid = 0; 1016 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1017 1018 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1019 1020 for (int c = 0; c < vd->vdev_children; c++) 1021 if ((error = vdev_label_init(vd->vdev_child[c], 1022 crtxg, reason)) != 0) 1023 return (error); 1024 1025 /* Track the creation time for this vdev */ 1026 vd->vdev_crtxg = crtxg; 1027 1028 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa)) 1029 return (0); 1030 1031 /* 1032 * Dead vdevs cannot be initialized. 1033 */ 1034 if (vdev_is_dead(vd)) 1035 return (SET_ERROR(EIO)); 1036 1037 /* 1038 * Determine if the vdev is in use. 1039 */ 1040 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && 1041 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 1042 return (SET_ERROR(EBUSY)); 1043 1044 /* 1045 * If this is a request to add or replace a spare or l2cache device 1046 * that is in use elsewhere on the system, then we must update the 1047 * guid (which was initialized to a random value) to reflect the 1048 * actual GUID (which is shared between multiple pools). 1049 */ 1050 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 1051 spare_guid != 0ULL) { 1052 uint64_t guid_delta = spare_guid - vd->vdev_guid; 1053 1054 vd->vdev_guid += guid_delta; 1055 1056 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1057 pvd->vdev_guid_sum += guid_delta; 1058 1059 /* 1060 * If this is a replacement, then we want to fallthrough to the 1061 * rest of the code. If we're adding a spare, then it's already 1062 * labeled appropriately and we can just return. 1063 */ 1064 if (reason == VDEV_LABEL_SPARE) 1065 return (0); 1066 ASSERT(reason == VDEV_LABEL_REPLACE || 1067 reason == VDEV_LABEL_SPLIT); 1068 } 1069 1070 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 1071 l2cache_guid != 0ULL) { 1072 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 1073 1074 vd->vdev_guid += guid_delta; 1075 1076 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1077 pvd->vdev_guid_sum += guid_delta; 1078 1079 /* 1080 * If this is a replacement, then we want to fallthrough to the 1081 * rest of the code. If we're adding an l2cache, then it's 1082 * already labeled appropriately and we can just return. 1083 */ 1084 if (reason == VDEV_LABEL_L2CACHE) 1085 return (0); 1086 ASSERT(reason == VDEV_LABEL_REPLACE); 1087 } 1088 1089 /* 1090 * Initialize its label. 1091 */ 1092 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 1093 abd_zero(vp_abd, sizeof (vdev_phys_t)); 1094 vp = abd_to_buf(vp_abd); 1095 1096 /* 1097 * Generate a label describing the pool and our top-level vdev. 1098 * We mark it as being from txg 0 to indicate that it's not 1099 * really part of an active pool just yet. The labels will 1100 * be written again with a meaningful txg by spa_sync(). 1101 */ 1102 if (reason == VDEV_LABEL_SPARE || 1103 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 1104 /* 1105 * For inactive hot spares, we generate a special label that 1106 * identifies as a mutually shared hot spare. We write the 1107 * label if we are adding a hot spare, or if we are removing an 1108 * active hot spare (in which case we want to revert the 1109 * labels). 1110 */ 1111 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1112 1113 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 1114 spa_version(spa)) == 0); 1115 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1116 POOL_STATE_SPARE) == 0); 1117 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 1118 vd->vdev_guid) == 0); 1119 } else if (reason == VDEV_LABEL_L2CACHE || 1120 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { 1121 /* 1122 * For level 2 ARC devices, add a special label. 1123 */ 1124 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1125 1126 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 1127 spa_version(spa)) == 0); 1128 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1129 POOL_STATE_L2CACHE) == 0); 1130 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 1131 vd->vdev_guid) == 0); 1132 } else { 1133 uint64_t txg = 0ULL; 1134 1135 if (reason == VDEV_LABEL_SPLIT) 1136 txg = spa->spa_uberblock.ub_txg; 1137 label = spa_config_generate(spa, vd, txg, B_FALSE); 1138 1139 /* 1140 * Add our creation time. This allows us to detect multiple 1141 * vdev uses as described above, and automatically expires if we 1142 * fail. 1143 */ 1144 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 1145 crtxg) == 0); 1146 } 1147 1148 buf = vp->vp_nvlist; 1149 buflen = sizeof (vp->vp_nvlist); 1150 1151 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 1152 if (error != 0) { 1153 nvlist_free(label); 1154 abd_free(vp_abd); 1155 /* EFAULT means nvlist_pack ran out of room */ 1156 return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL)); 1157 } 1158 1159 /* 1160 * Initialize uberblock template. 1161 */ 1162 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE); 1163 abd_zero(ub_abd, VDEV_UBERBLOCK_RING); 1164 abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t)); 1165 ub = abd_to_buf(ub_abd); 1166 ub->ub_txg = 0; 1167 1168 /* Initialize the 2nd padding area. */ 1169 bootenv = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); 1170 abd_zero(bootenv, VDEV_PAD_SIZE); 1171 1172 /* 1173 * Write everything in parallel. 1174 */ 1175 retry: 1176 zio = zio_root(spa, NULL, NULL, flags); 1177 1178 for (int l = 0; l < VDEV_LABELS; l++) { 1179 1180 vdev_label_write(zio, vd, l, vp_abd, 1181 offsetof(vdev_label_t, vl_vdev_phys), 1182 sizeof (vdev_phys_t), NULL, NULL, flags); 1183 1184 /* 1185 * Skip the 1st padding area. 1186 * Zero out the 2nd padding area where it might have 1187 * left over data from previous filesystem format. 1188 */ 1189 vdev_label_write(zio, vd, l, bootenv, 1190 offsetof(vdev_label_t, vl_be), 1191 VDEV_PAD_SIZE, NULL, NULL, flags); 1192 1193 vdev_label_write(zio, vd, l, ub_abd, 1194 offsetof(vdev_label_t, vl_uberblock), 1195 VDEV_UBERBLOCK_RING, NULL, NULL, flags); 1196 } 1197 1198 error = zio_wait(zio); 1199 1200 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 1201 flags |= ZIO_FLAG_TRYHARD; 1202 goto retry; 1203 } 1204 1205 nvlist_free(label); 1206 abd_free(bootenv); 1207 abd_free(ub_abd); 1208 abd_free(vp_abd); 1209 1210 /* 1211 * If this vdev hasn't been previously identified as a spare, then we 1212 * mark it as such only if a) we are labeling it as a spare, or b) it 1213 * exists as a spare elsewhere in the system. Do the same for 1214 * level 2 ARC devices. 1215 */ 1216 if (error == 0 && !vd->vdev_isspare && 1217 (reason == VDEV_LABEL_SPARE || 1218 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 1219 spa_spare_add(vd); 1220 1221 if (error == 0 && !vd->vdev_isl2cache && 1222 (reason == VDEV_LABEL_L2CACHE || 1223 spa_l2cache_exists(vd->vdev_guid, NULL))) 1224 spa_l2cache_add(vd); 1225 1226 return (error); 1227 } 1228 1229 /* 1230 * Done callback for vdev_label_read_bootenv_impl. If this is the first 1231 * callback to finish, store our abd in the callback pointer. Otherwise, we 1232 * just free our abd and return. 1233 */ 1234 static void 1235 vdev_label_read_bootenv_done(zio_t *zio) 1236 { 1237 zio_t *rio = zio->io_private; 1238 abd_t **cbp = rio->io_private; 1239 1240 ASSERT3U(zio->io_size, ==, VDEV_PAD_SIZE); 1241 1242 if (zio->io_error == 0) { 1243 mutex_enter(&rio->io_lock); 1244 if (*cbp == NULL) { 1245 /* Will free this buffer in vdev_label_read_bootenv. */ 1246 *cbp = zio->io_abd; 1247 } else { 1248 abd_free(zio->io_abd); 1249 } 1250 mutex_exit(&rio->io_lock); 1251 } else { 1252 abd_free(zio->io_abd); 1253 } 1254 } 1255 1256 static void 1257 vdev_label_read_bootenv_impl(zio_t *zio, vdev_t *vd, int flags) 1258 { 1259 for (int c = 0; c < vd->vdev_children; c++) 1260 vdev_label_read_bootenv_impl(zio, vd->vdev_child[c], flags); 1261 1262 /* 1263 * We just use the first label that has a correct checksum; the 1264 * bootloader should have rewritten them all to be the same on boot, 1265 * and any changes we made since boot have been the same across all 1266 * labels. 1267 */ 1268 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1269 for (int l = 0; l < VDEV_LABELS; l++) { 1270 vdev_label_read(zio, vd, l, 1271 abd_alloc_linear(VDEV_PAD_SIZE, B_FALSE), 1272 offsetof(vdev_label_t, vl_be), VDEV_PAD_SIZE, 1273 vdev_label_read_bootenv_done, zio, flags); 1274 } 1275 } 1276 } 1277 1278 int 1279 vdev_label_read_bootenv(vdev_t *rvd, nvlist_t *bootenv) 1280 { 1281 nvlist_t *config; 1282 spa_t *spa = rvd->vdev_spa; 1283 abd_t *abd = NULL; 1284 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1285 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 1286 1287 ASSERT(bootenv); 1288 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1289 1290 zio_t *zio = zio_root(spa, NULL, &abd, flags); 1291 vdev_label_read_bootenv_impl(zio, rvd, flags); 1292 int err = zio_wait(zio); 1293 1294 if (abd != NULL) { 1295 char *buf; 1296 vdev_boot_envblock_t *vbe = abd_to_buf(abd); 1297 1298 vbe->vbe_version = ntohll(vbe->vbe_version); 1299 switch (vbe->vbe_version) { 1300 case VB_RAW: 1301 /* 1302 * if we have textual data in vbe_bootenv, create nvlist 1303 * with key "envmap". 1304 */ 1305 fnvlist_add_uint64(bootenv, BOOTENV_VERSION, VB_RAW); 1306 vbe->vbe_bootenv[sizeof (vbe->vbe_bootenv) - 1] = '\0'; 1307 fnvlist_add_string(bootenv, GRUB_ENVMAP, 1308 vbe->vbe_bootenv); 1309 break; 1310 1311 case VB_NVLIST: 1312 err = nvlist_unpack(vbe->vbe_bootenv, 1313 sizeof (vbe->vbe_bootenv), &config, 0); 1314 if (err == 0) { 1315 fnvlist_merge(bootenv, config); 1316 nvlist_free(config); 1317 break; 1318 } 1319 zfs_fallthrough; 1320 default: 1321 /* Check for FreeBSD zfs bootonce command string */ 1322 buf = abd_to_buf(abd); 1323 if (*buf == '\0') { 1324 fnvlist_add_uint64(bootenv, BOOTENV_VERSION, 1325 VB_NVLIST); 1326 break; 1327 } 1328 fnvlist_add_string(bootenv, FREEBSD_BOOTONCE, buf); 1329 } 1330 1331 /* 1332 * abd was allocated in vdev_label_read_bootenv_impl() 1333 */ 1334 abd_free(abd); 1335 /* 1336 * If we managed to read any successfully, 1337 * return success. 1338 */ 1339 return (0); 1340 } 1341 return (err); 1342 } 1343 1344 int 1345 vdev_label_write_bootenv(vdev_t *vd, nvlist_t *env) 1346 { 1347 zio_t *zio; 1348 spa_t *spa = vd->vdev_spa; 1349 vdev_boot_envblock_t *bootenv; 1350 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1351 int error; 1352 size_t nvsize; 1353 char *nvbuf; 1354 const char *tmp; 1355 1356 error = nvlist_size(env, &nvsize, NV_ENCODE_XDR); 1357 if (error != 0) 1358 return (SET_ERROR(error)); 1359 1360 if (nvsize >= sizeof (bootenv->vbe_bootenv)) { 1361 return (SET_ERROR(E2BIG)); 1362 } 1363 1364 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1365 1366 error = ENXIO; 1367 for (int c = 0; c < vd->vdev_children; c++) { 1368 int child_err; 1369 1370 child_err = vdev_label_write_bootenv(vd->vdev_child[c], env); 1371 /* 1372 * As long as any of the disks managed to write all of their 1373 * labels successfully, return success. 1374 */ 1375 if (child_err == 0) 1376 error = child_err; 1377 } 1378 1379 if (!vd->vdev_ops->vdev_op_leaf || vdev_is_dead(vd) || 1380 !vdev_writeable(vd)) { 1381 return (error); 1382 } 1383 ASSERT3U(sizeof (*bootenv), ==, VDEV_PAD_SIZE); 1384 abd_t *abd = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); 1385 abd_zero(abd, VDEV_PAD_SIZE); 1386 1387 bootenv = abd_borrow_buf_copy(abd, VDEV_PAD_SIZE); 1388 nvbuf = bootenv->vbe_bootenv; 1389 nvsize = sizeof (bootenv->vbe_bootenv); 1390 1391 bootenv->vbe_version = fnvlist_lookup_uint64(env, BOOTENV_VERSION); 1392 switch (bootenv->vbe_version) { 1393 case VB_RAW: 1394 if (nvlist_lookup_string(env, GRUB_ENVMAP, &tmp) == 0) { 1395 (void) strlcpy(bootenv->vbe_bootenv, tmp, nvsize); 1396 } 1397 error = 0; 1398 break; 1399 1400 case VB_NVLIST: 1401 error = nvlist_pack(env, &nvbuf, &nvsize, NV_ENCODE_XDR, 1402 KM_SLEEP); 1403 break; 1404 1405 default: 1406 error = EINVAL; 1407 break; 1408 } 1409 1410 if (error == 0) { 1411 bootenv->vbe_version = htonll(bootenv->vbe_version); 1412 abd_return_buf_copy(abd, bootenv, VDEV_PAD_SIZE); 1413 } else { 1414 abd_free(abd); 1415 return (SET_ERROR(error)); 1416 } 1417 1418 retry: 1419 zio = zio_root(spa, NULL, NULL, flags); 1420 for (int l = 0; l < VDEV_LABELS; l++) { 1421 vdev_label_write(zio, vd, l, abd, 1422 offsetof(vdev_label_t, vl_be), 1423 VDEV_PAD_SIZE, NULL, NULL, flags); 1424 } 1425 1426 error = zio_wait(zio); 1427 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 1428 flags |= ZIO_FLAG_TRYHARD; 1429 goto retry; 1430 } 1431 1432 abd_free(abd); 1433 return (error); 1434 } 1435 1436 /* 1437 * ========================================================================== 1438 * uberblock load/sync 1439 * ========================================================================== 1440 */ 1441 1442 /* 1443 * Consider the following situation: txg is safely synced to disk. We've 1444 * written the first uberblock for txg + 1, and then we lose power. When we 1445 * come back up, we fail to see the uberblock for txg + 1 because, say, 1446 * it was on a mirrored device and the replica to which we wrote txg + 1 1447 * is now offline. If we then make some changes and sync txg + 1, and then 1448 * the missing replica comes back, then for a few seconds we'll have two 1449 * conflicting uberblocks on disk with the same txg. The solution is simple: 1450 * among uberblocks with equal txg, choose the one with the latest timestamp. 1451 */ 1452 static int 1453 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2) 1454 { 1455 int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg); 1456 1457 if (likely(cmp)) 1458 return (cmp); 1459 1460 cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp); 1461 if (likely(cmp)) 1462 return (cmp); 1463 1464 /* 1465 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware 1466 * ZFS, e.g. OpenZFS >= 0.7. 1467 * 1468 * If one ub has MMP and the other does not, they were written by 1469 * different hosts, which matters for MMP. So we treat no MMP/no SEQ as 1470 * a 0 value. 1471 * 1472 * Since timestamp and txg are the same if we get this far, either is 1473 * acceptable for importing the pool. 1474 */ 1475 unsigned int seq1 = 0; 1476 unsigned int seq2 = 0; 1477 1478 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1)) 1479 seq1 = MMP_SEQ(ub1); 1480 1481 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2)) 1482 seq2 = MMP_SEQ(ub2); 1483 1484 return (TREE_CMP(seq1, seq2)); 1485 } 1486 1487 struct ubl_cbdata { 1488 uberblock_t *ubl_ubbest; /* Best uberblock */ 1489 vdev_t *ubl_vd; /* vdev associated with the above */ 1490 }; 1491 1492 static void 1493 vdev_uberblock_load_done(zio_t *zio) 1494 { 1495 vdev_t *vd = zio->io_vd; 1496 spa_t *spa = zio->io_spa; 1497 zio_t *rio = zio->io_private; 1498 uberblock_t *ub = abd_to_buf(zio->io_abd); 1499 struct ubl_cbdata *cbp = rio->io_private; 1500 1501 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd)); 1502 1503 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 1504 mutex_enter(&rio->io_lock); 1505 if (ub->ub_txg <= spa->spa_load_max_txg && 1506 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) { 1507 /* 1508 * Keep track of the vdev in which this uberblock 1509 * was found. We will use this information later 1510 * to obtain the config nvlist associated with 1511 * this uberblock. 1512 */ 1513 *cbp->ubl_ubbest = *ub; 1514 cbp->ubl_vd = vd; 1515 } 1516 mutex_exit(&rio->io_lock); 1517 } 1518 1519 abd_free(zio->io_abd); 1520 } 1521 1522 static void 1523 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags, 1524 struct ubl_cbdata *cbp) 1525 { 1526 for (int c = 0; c < vd->vdev_children; c++) 1527 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp); 1528 1529 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd) && 1530 vd->vdev_ops != &vdev_draid_spare_ops) { 1531 for (int l = 0; l < VDEV_LABELS; l++) { 1532 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1533 vdev_label_read(zio, vd, l, 1534 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), 1535 B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n), 1536 VDEV_UBERBLOCK_SIZE(vd), 1537 vdev_uberblock_load_done, zio, flags); 1538 } 1539 } 1540 } 1541 } 1542 1543 /* 1544 * Reads the 'best' uberblock from disk along with its associated 1545 * configuration. First, we read the uberblock array of each label of each 1546 * vdev, keeping track of the uberblock with the highest txg in each array. 1547 * Then, we read the configuration from the same vdev as the best uberblock. 1548 */ 1549 void 1550 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config) 1551 { 1552 zio_t *zio; 1553 spa_t *spa = rvd->vdev_spa; 1554 struct ubl_cbdata cb; 1555 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1556 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 1557 1558 ASSERT(ub); 1559 ASSERT(config); 1560 1561 memset(ub, 0, sizeof (uberblock_t)); 1562 *config = NULL; 1563 1564 cb.ubl_ubbest = ub; 1565 cb.ubl_vd = NULL; 1566 1567 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1568 zio = zio_root(spa, NULL, &cb, flags); 1569 vdev_uberblock_load_impl(zio, rvd, flags, &cb); 1570 (void) zio_wait(zio); 1571 1572 /* 1573 * It's possible that the best uberblock was discovered on a label 1574 * that has a configuration which was written in a future txg. 1575 * Search all labels on this vdev to find the configuration that 1576 * matches the txg for our uberblock. 1577 */ 1578 if (cb.ubl_vd != NULL) { 1579 vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. " 1580 "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg); 1581 1582 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg); 1583 if (*config == NULL && spa->spa_extreme_rewind) { 1584 vdev_dbgmsg(cb.ubl_vd, "failed to read label config. " 1585 "Trying again without txg restrictions."); 1586 *config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX); 1587 } 1588 if (*config == NULL) { 1589 vdev_dbgmsg(cb.ubl_vd, "failed to read label config"); 1590 } 1591 } 1592 spa_config_exit(spa, SCL_ALL, FTAG); 1593 } 1594 1595 /* 1596 * For use when a leaf vdev is expanded. 1597 * The location of labels 2 and 3 changed, and at the new location the 1598 * uberblock rings are either empty or contain garbage. The sync will write 1599 * new configs there because the vdev is dirty, but expansion also needs the 1600 * uberblock rings copied. Read them from label 0 which did not move. 1601 * 1602 * Since the point is to populate labels {2,3} with valid uberblocks, 1603 * we zero uberblocks we fail to read or which are not valid. 1604 */ 1605 1606 static void 1607 vdev_copy_uberblocks(vdev_t *vd) 1608 { 1609 abd_t *ub_abd; 1610 zio_t *write_zio; 1611 int locks = (SCL_L2ARC | SCL_ZIO); 1612 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1613 ZIO_FLAG_SPECULATIVE; 1614 1615 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) == 1616 SCL_STATE); 1617 ASSERT(vd->vdev_ops->vdev_op_leaf); 1618 1619 /* 1620 * No uberblocks are stored on distributed spares, they may be 1621 * safely skipped when expanding a leaf vdev. 1622 */ 1623 if (vd->vdev_ops == &vdev_draid_spare_ops) 1624 return; 1625 1626 spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER); 1627 1628 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE); 1629 1630 write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags); 1631 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1632 const int src_label = 0; 1633 zio_t *zio; 1634 1635 zio = zio_root(vd->vdev_spa, NULL, NULL, flags); 1636 vdev_label_read(zio, vd, src_label, ub_abd, 1637 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1638 NULL, NULL, flags); 1639 1640 if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd))) 1641 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd)); 1642 1643 for (int l = 2; l < VDEV_LABELS; l++) 1644 vdev_label_write(write_zio, vd, l, ub_abd, 1645 VDEV_UBERBLOCK_OFFSET(vd, n), 1646 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL, 1647 flags | ZIO_FLAG_DONT_PROPAGATE); 1648 } 1649 (void) zio_wait(write_zio); 1650 1651 spa_config_exit(vd->vdev_spa, locks, FTAG); 1652 1653 abd_free(ub_abd); 1654 } 1655 1656 /* 1657 * On success, increment root zio's count of good writes. 1658 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 1659 */ 1660 static void 1661 vdev_uberblock_sync_done(zio_t *zio) 1662 { 1663 uint64_t *good_writes = zio->io_private; 1664 1665 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 1666 atomic_inc_64(good_writes); 1667 } 1668 1669 /* 1670 * Write the uberblock to all labels of all leaves of the specified vdev. 1671 */ 1672 static void 1673 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes, 1674 uberblock_t *ub, vdev_t *vd, int flags) 1675 { 1676 for (uint64_t c = 0; c < vd->vdev_children; c++) { 1677 vdev_uberblock_sync(zio, good_writes, 1678 ub, vd->vdev_child[c], flags); 1679 } 1680 1681 if (!vd->vdev_ops->vdev_op_leaf) 1682 return; 1683 1684 if (!vdev_writeable(vd)) 1685 return; 1686 1687 /* 1688 * There's no need to write uberblocks to a distributed spare, they 1689 * are already stored on all the leaves of the parent dRAID. For 1690 * this same reason vdev_uberblock_load_impl() skips distributed 1691 * spares when reading uberblocks. 1692 */ 1693 if (vd->vdev_ops == &vdev_draid_spare_ops) 1694 return; 1695 1696 /* If the vdev was expanded, need to copy uberblock rings. */ 1697 if (vd->vdev_state == VDEV_STATE_HEALTHY && 1698 vd->vdev_copy_uberblocks == B_TRUE) { 1699 vdev_copy_uberblocks(vd); 1700 vd->vdev_copy_uberblocks = B_FALSE; 1701 } 1702 1703 int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0; 1704 int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m); 1705 1706 /* Copy the uberblock_t into the ABD */ 1707 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE); 1708 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd)); 1709 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t)); 1710 1711 for (int l = 0; l < VDEV_LABELS; l++) 1712 vdev_label_write(zio, vd, l, ub_abd, 1713 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1714 vdev_uberblock_sync_done, good_writes, 1715 flags | ZIO_FLAG_DONT_PROPAGATE); 1716 1717 abd_free(ub_abd); 1718 } 1719 1720 /* Sync the uberblocks to all vdevs in svd[] */ 1721 static int 1722 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 1723 { 1724 spa_t *spa = svd[0]->vdev_spa; 1725 zio_t *zio; 1726 uint64_t good_writes = 0; 1727 1728 zio = zio_root(spa, NULL, NULL, flags); 1729 1730 for (int v = 0; v < svdcount; v++) 1731 vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags); 1732 1733 (void) zio_wait(zio); 1734 1735 /* 1736 * Flush the uberblocks to disk. This ensures that the odd labels 1737 * are no longer needed (because the new uberblocks and the even 1738 * labels are safely on disk), so it is safe to overwrite them. 1739 */ 1740 zio = zio_root(spa, NULL, NULL, flags); 1741 1742 for (int v = 0; v < svdcount; v++) { 1743 if (vdev_writeable(svd[v])) { 1744 zio_flush(zio, svd[v]); 1745 } 1746 } 1747 1748 (void) zio_wait(zio); 1749 1750 return (good_writes >= 1 ? 0 : EIO); 1751 } 1752 1753 /* 1754 * On success, increment the count of good writes for our top-level vdev. 1755 */ 1756 static void 1757 vdev_label_sync_done(zio_t *zio) 1758 { 1759 uint64_t *good_writes = zio->io_private; 1760 1761 if (zio->io_error == 0) 1762 atomic_inc_64(good_writes); 1763 } 1764 1765 /* 1766 * If there weren't enough good writes, indicate failure to the parent. 1767 */ 1768 static void 1769 vdev_label_sync_top_done(zio_t *zio) 1770 { 1771 uint64_t *good_writes = zio->io_private; 1772 1773 if (*good_writes == 0) 1774 zio->io_error = SET_ERROR(EIO); 1775 1776 kmem_free(good_writes, sizeof (uint64_t)); 1777 } 1778 1779 /* 1780 * We ignore errors for log and cache devices, simply free the private data. 1781 */ 1782 static void 1783 vdev_label_sync_ignore_done(zio_t *zio) 1784 { 1785 kmem_free(zio->io_private, sizeof (uint64_t)); 1786 } 1787 1788 /* 1789 * Write all even or odd labels to all leaves of the specified vdev. 1790 */ 1791 static void 1792 vdev_label_sync(zio_t *zio, uint64_t *good_writes, 1793 vdev_t *vd, int l, uint64_t txg, int flags) 1794 { 1795 nvlist_t *label; 1796 vdev_phys_t *vp; 1797 abd_t *vp_abd; 1798 char *buf; 1799 size_t buflen; 1800 1801 for (int c = 0; c < vd->vdev_children; c++) { 1802 vdev_label_sync(zio, good_writes, 1803 vd->vdev_child[c], l, txg, flags); 1804 } 1805 1806 if (!vd->vdev_ops->vdev_op_leaf) 1807 return; 1808 1809 if (!vdev_writeable(vd)) 1810 return; 1811 1812 /* 1813 * The top-level config never needs to be written to a distributed 1814 * spare. When read vdev_dspare_label_read_config() will generate 1815 * the config for the vdev_label_read_config(). 1816 */ 1817 if (vd->vdev_ops == &vdev_draid_spare_ops) 1818 return; 1819 1820 /* 1821 * Generate a label describing the top-level config to which we belong. 1822 */ 1823 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 1824 1825 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 1826 abd_zero(vp_abd, sizeof (vdev_phys_t)); 1827 vp = abd_to_buf(vp_abd); 1828 1829 buf = vp->vp_nvlist; 1830 buflen = sizeof (vp->vp_nvlist); 1831 1832 if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) { 1833 for (; l < VDEV_LABELS; l += 2) { 1834 vdev_label_write(zio, vd, l, vp_abd, 1835 offsetof(vdev_label_t, vl_vdev_phys), 1836 sizeof (vdev_phys_t), 1837 vdev_label_sync_done, good_writes, 1838 flags | ZIO_FLAG_DONT_PROPAGATE); 1839 } 1840 } 1841 1842 abd_free(vp_abd); 1843 nvlist_free(label); 1844 } 1845 1846 static int 1847 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 1848 { 1849 list_t *dl = &spa->spa_config_dirty_list; 1850 vdev_t *vd; 1851 zio_t *zio; 1852 int error; 1853 1854 /* 1855 * Write the new labels to disk. 1856 */ 1857 zio = zio_root(spa, NULL, NULL, flags); 1858 1859 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 1860 uint64_t *good_writes; 1861 1862 ASSERT(!vd->vdev_ishole); 1863 1864 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 1865 zio_t *vio = zio_null(zio, spa, NULL, 1866 (vd->vdev_islog || vd->vdev_aux != NULL) ? 1867 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 1868 good_writes, flags); 1869 vdev_label_sync(vio, good_writes, vd, l, txg, flags); 1870 zio_nowait(vio); 1871 } 1872 1873 error = zio_wait(zio); 1874 1875 /* 1876 * Flush the new labels to disk. 1877 */ 1878 zio = zio_root(spa, NULL, NULL, flags); 1879 1880 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 1881 zio_flush(zio, vd); 1882 1883 (void) zio_wait(zio); 1884 1885 return (error); 1886 } 1887 1888 /* 1889 * Sync the uberblock and any changes to the vdev configuration. 1890 * 1891 * The order of operations is carefully crafted to ensure that 1892 * if the system panics or loses power at any time, the state on disk 1893 * is still transactionally consistent. The in-line comments below 1894 * describe the failure semantics at each stage. 1895 * 1896 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 1897 * at any time, you can just call it again, and it will resume its work. 1898 */ 1899 int 1900 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg) 1901 { 1902 spa_t *spa = svd[0]->vdev_spa; 1903 uberblock_t *ub = &spa->spa_uberblock; 1904 int error = 0; 1905 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1906 1907 ASSERT(svdcount != 0); 1908 retry: 1909 /* 1910 * Normally, we don't want to try too hard to write every label and 1911 * uberblock. If there is a flaky disk, we don't want the rest of the 1912 * sync process to block while we retry. But if we can't write a 1913 * single label out, we should retry with ZIO_FLAG_TRYHARD before 1914 * bailing out and declaring the pool faulted. 1915 */ 1916 if (error != 0) { 1917 if ((flags & ZIO_FLAG_TRYHARD) != 0) 1918 return (error); 1919 flags |= ZIO_FLAG_TRYHARD; 1920 } 1921 1922 ASSERT(ub->ub_txg <= txg); 1923 1924 /* 1925 * If this isn't a resync due to I/O errors, 1926 * and nothing changed in this transaction group, 1927 * and the vdev configuration hasn't changed, 1928 * then there's nothing to do. 1929 */ 1930 if (ub->ub_txg < txg) { 1931 boolean_t changed = uberblock_update(ub, spa->spa_root_vdev, 1932 txg, spa->spa_mmp.mmp_delay); 1933 1934 if (!changed && list_is_empty(&spa->spa_config_dirty_list)) 1935 return (0); 1936 } 1937 1938 if (txg > spa_freeze_txg(spa)) 1939 return (0); 1940 1941 ASSERT(txg <= spa->spa_final_txg); 1942 1943 /* 1944 * Flush the write cache of every disk that's been written to 1945 * in this transaction group. This ensures that all blocks 1946 * written in this txg will be committed to stable storage 1947 * before any uberblock that references them. 1948 */ 1949 zio_t *zio = zio_root(spa, NULL, NULL, flags); 1950 1951 for (vdev_t *vd = 1952 txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL; 1953 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 1954 zio_flush(zio, vd); 1955 1956 (void) zio_wait(zio); 1957 1958 /* 1959 * Sync out the even labels (L0, L2) for every dirty vdev. If the 1960 * system dies in the middle of this process, that's OK: all of the 1961 * even labels that made it to disk will be newer than any uberblock, 1962 * and will therefore be considered invalid. The odd labels (L1, L3), 1963 * which have not yet been touched, will still be valid. We flush 1964 * the new labels to disk to ensure that all even-label updates 1965 * are committed to stable storage before the uberblock update. 1966 */ 1967 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) { 1968 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 1969 zfs_dbgmsg("vdev_label_sync_list() returned error %d " 1970 "for pool '%s' when syncing out the even labels " 1971 "of dirty vdevs", error, spa_name(spa)); 1972 } 1973 goto retry; 1974 } 1975 1976 /* 1977 * Sync the uberblocks to all vdevs in svd[]. 1978 * If the system dies in the middle of this step, there are two cases 1979 * to consider, and the on-disk state is consistent either way: 1980 * 1981 * (1) If none of the new uberblocks made it to disk, then the 1982 * previous uberblock will be the newest, and the odd labels 1983 * (which had not yet been touched) will be valid with respect 1984 * to that uberblock. 1985 * 1986 * (2) If one or more new uberblocks made it to disk, then they 1987 * will be the newest, and the even labels (which had all 1988 * been successfully committed) will be valid with respect 1989 * to the new uberblocks. 1990 */ 1991 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) { 1992 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 1993 zfs_dbgmsg("vdev_uberblock_sync_list() returned error " 1994 "%d for pool '%s'", error, spa_name(spa)); 1995 } 1996 goto retry; 1997 } 1998 1999 if (spa_multihost(spa)) 2000 mmp_update_uberblock(spa, ub); 2001 2002 /* 2003 * Sync out odd labels for every dirty vdev. If the system dies 2004 * in the middle of this process, the even labels and the new 2005 * uberblocks will suffice to open the pool. The next time 2006 * the pool is opened, the first thing we'll do -- before any 2007 * user data is modified -- is mark every vdev dirty so that 2008 * all labels will be brought up to date. We flush the new labels 2009 * to disk to ensure that all odd-label updates are committed to 2010 * stable storage before the next transaction group begins. 2011 */ 2012 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) { 2013 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 2014 zfs_dbgmsg("vdev_label_sync_list() returned error %d " 2015 "for pool '%s' when syncing out the odd labels of " 2016 "dirty vdevs", error, spa_name(spa)); 2017 } 2018 goto retry; 2019 } 2020 2021 return (0); 2022 } 2023