1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 26 * Copyright (c) 2017, Intel Corporation. 27 */ 28 29 /* 30 * Virtual Device Labels 31 * --------------------- 32 * 33 * The vdev label serves several distinct purposes: 34 * 35 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 36 * identity within the pool. 37 * 38 * 2. Verify that all the devices given in a configuration are present 39 * within the pool. 40 * 41 * 3. Determine the uberblock for the pool. 42 * 43 * 4. In case of an import operation, determine the configuration of the 44 * toplevel vdev of which it is a part. 45 * 46 * 5. If an import operation cannot find all the devices in the pool, 47 * provide enough information to the administrator to determine which 48 * devices are missing. 49 * 50 * It is important to note that while the kernel is responsible for writing the 51 * label, it only consumes the information in the first three cases. The 52 * latter information is only consumed in userland when determining the 53 * configuration to import a pool. 54 * 55 * 56 * Label Organization 57 * ------------------ 58 * 59 * Before describing the contents of the label, it's important to understand how 60 * the labels are written and updated with respect to the uberblock. 61 * 62 * When the pool configuration is altered, either because it was newly created 63 * or a device was added, we want to update all the labels such that we can deal 64 * with fatal failure at any point. To this end, each disk has two labels which 65 * are updated before and after the uberblock is synced. Assuming we have 66 * labels and an uberblock with the following transaction groups: 67 * 68 * L1 UB L2 69 * +------+ +------+ +------+ 70 * | | | | | | 71 * | t10 | | t10 | | t10 | 72 * | | | | | | 73 * +------+ +------+ +------+ 74 * 75 * In this stable state, the labels and the uberblock were all updated within 76 * the same transaction group (10). Each label is mirrored and checksummed, so 77 * that we can detect when we fail partway through writing the label. 78 * 79 * In order to identify which labels are valid, the labels are written in the 80 * following manner: 81 * 82 * 1. For each vdev, update 'L1' to the new label 83 * 2. Update the uberblock 84 * 3. For each vdev, update 'L2' to the new label 85 * 86 * Given arbitrary failure, we can determine the correct label to use based on 87 * the transaction group. If we fail after updating L1 but before updating the 88 * UB, we will notice that L1's transaction group is greater than the uberblock, 89 * so L2 must be valid. If we fail after writing the uberblock but before 90 * writing L2, we will notice that L2's transaction group is less than L1, and 91 * therefore L1 is valid. 92 * 93 * Another added complexity is that not every label is updated when the config 94 * is synced. If we add a single device, we do not want to have to re-write 95 * every label for every device in the pool. This means that both L1 and L2 may 96 * be older than the pool uberblock, because the necessary information is stored 97 * on another vdev. 98 * 99 * 100 * On-disk Format 101 * -------------- 102 * 103 * The vdev label consists of two distinct parts, and is wrapped within the 104 * vdev_label_t structure. The label includes 8k of padding to permit legacy 105 * VTOC disk labels, but is otherwise ignored. 106 * 107 * The first half of the label is a packed nvlist which contains pool wide 108 * properties, per-vdev properties, and configuration information. It is 109 * described in more detail below. 110 * 111 * The latter half of the label consists of a redundant array of uberblocks. 112 * These uberblocks are updated whenever a transaction group is committed, 113 * or when the configuration is updated. When a pool is loaded, we scan each 114 * vdev for the 'best' uberblock. 115 * 116 * 117 * Configuration Information 118 * ------------------------- 119 * 120 * The nvlist describing the pool and vdev contains the following elements: 121 * 122 * version ZFS on-disk version 123 * name Pool name 124 * state Pool state 125 * txg Transaction group in which this label was written 126 * pool_guid Unique identifier for this pool 127 * vdev_tree An nvlist describing vdev tree. 128 * features_for_read 129 * An nvlist of the features necessary for reading the MOS. 130 * 131 * Each leaf device label also contains the following: 132 * 133 * top_guid Unique ID for top-level vdev in which this is contained 134 * guid Unique ID for the leaf vdev 135 * 136 * The 'vs' configuration follows the format described in 'spa_config.c'. 137 */ 138 139 #include <sys/zfs_context.h> 140 #include <sys/spa.h> 141 #include <sys/spa_impl.h> 142 #include <sys/dmu.h> 143 #include <sys/zap.h> 144 #include <sys/vdev.h> 145 #include <sys/vdev_impl.h> 146 #include <sys/vdev_raidz.h> 147 #include <sys/vdev_draid.h> 148 #include <sys/uberblock_impl.h> 149 #include <sys/metaslab.h> 150 #include <sys/metaslab_impl.h> 151 #include <sys/zio.h> 152 #include <sys/dsl_scan.h> 153 #include <sys/abd.h> 154 #include <sys/fs/zfs.h> 155 #include <sys/byteorder.h> 156 #include <sys/zfs_bootenv.h> 157 158 /* 159 * Basic routines to read and write from a vdev label. 160 * Used throughout the rest of this file. 161 */ 162 uint64_t 163 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 164 { 165 ASSERT(offset < sizeof (vdev_label_t)); 166 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 167 168 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 169 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 170 } 171 172 /* 173 * Returns back the vdev label associated with the passed in offset. 174 */ 175 int 176 vdev_label_number(uint64_t psize, uint64_t offset) 177 { 178 int l; 179 180 if (offset >= psize - VDEV_LABEL_END_SIZE) { 181 offset -= psize - VDEV_LABEL_END_SIZE; 182 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 183 } 184 l = offset / sizeof (vdev_label_t); 185 return (l < VDEV_LABELS ? l : -1); 186 } 187 188 static void 189 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 190 uint64_t size, zio_done_func_t *done, void *private, int flags) 191 { 192 ASSERT( 193 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE || 194 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE); 195 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 196 197 zio_nowait(zio_read_phys(zio, vd, 198 vdev_label_offset(vd->vdev_psize, l, offset), 199 size, buf, ZIO_CHECKSUM_LABEL, done, private, 200 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 201 } 202 203 void 204 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 205 uint64_t size, zio_done_func_t *done, void *private, int flags) 206 { 207 ASSERT( 208 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE || 209 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE); 210 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 211 212 zio_nowait(zio_write_phys(zio, vd, 213 vdev_label_offset(vd->vdev_psize, l, offset), 214 size, buf, ZIO_CHECKSUM_LABEL, done, private, 215 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 216 } 217 218 /* 219 * Generate the nvlist representing this vdev's stats 220 */ 221 void 222 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv) 223 { 224 nvlist_t *nvx; 225 vdev_stat_t *vs; 226 vdev_stat_ex_t *vsx; 227 228 vs = kmem_alloc(sizeof (*vs), KM_SLEEP); 229 vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP); 230 231 vdev_get_stats_ex(vd, vs, vsx); 232 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, 233 (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t)); 234 235 /* 236 * Add extended stats into a special extended stats nvlist. This keeps 237 * all the extended stats nicely grouped together. The extended stats 238 * nvlist is then added to the main nvlist. 239 */ 240 nvx = fnvlist_alloc(); 241 242 /* ZIOs in flight to disk */ 243 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE, 244 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]); 245 246 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE, 247 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]); 248 249 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE, 250 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]); 251 252 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE, 253 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]); 254 255 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE, 256 vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]); 257 258 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE, 259 vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]); 260 261 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_REBUILD_ACTIVE_QUEUE, 262 vsx->vsx_active_queue[ZIO_PRIORITY_REBUILD]); 263 264 /* ZIOs pending */ 265 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE, 266 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]); 267 268 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE, 269 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]); 270 271 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE, 272 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]); 273 274 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE, 275 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]); 276 277 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE, 278 vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]); 279 280 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE, 281 vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]); 282 283 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_REBUILD_PEND_QUEUE, 284 vsx->vsx_pend_queue[ZIO_PRIORITY_REBUILD]); 285 286 /* Histograms */ 287 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO, 288 vsx->vsx_total_histo[ZIO_TYPE_READ], 289 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ])); 290 291 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO, 292 vsx->vsx_total_histo[ZIO_TYPE_WRITE], 293 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE])); 294 295 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO, 296 vsx->vsx_disk_histo[ZIO_TYPE_READ], 297 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ])); 298 299 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO, 300 vsx->vsx_disk_histo[ZIO_TYPE_WRITE], 301 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE])); 302 303 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO, 304 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ], 305 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ])); 306 307 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO, 308 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE], 309 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE])); 310 311 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO, 312 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ], 313 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ])); 314 315 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO, 316 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE], 317 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE])); 318 319 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO, 320 vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB], 321 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB])); 322 323 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO, 324 vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM], 325 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM])); 326 327 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_REBUILD_LAT_HISTO, 328 vsx->vsx_queue_histo[ZIO_PRIORITY_REBUILD], 329 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_REBUILD])); 330 331 /* Request sizes */ 332 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO, 333 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ], 334 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ])); 335 336 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO, 337 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE], 338 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE])); 339 340 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO, 341 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ], 342 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ])); 343 344 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO, 345 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE], 346 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE])); 347 348 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO, 349 vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB], 350 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB])); 351 352 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO, 353 vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM], 354 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM])); 355 356 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_REBUILD_HISTO, 357 vsx->vsx_ind_histo[ZIO_PRIORITY_REBUILD], 358 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_REBUILD])); 359 360 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO, 361 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ], 362 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ])); 363 364 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO, 365 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE], 366 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE])); 367 368 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO, 369 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ], 370 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ])); 371 372 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO, 373 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE], 374 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE])); 375 376 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO, 377 vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB], 378 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB])); 379 380 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO, 381 vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM], 382 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM])); 383 384 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_REBUILD_HISTO, 385 vsx->vsx_agg_histo[ZIO_PRIORITY_REBUILD], 386 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_REBUILD])); 387 388 /* IO delays */ 389 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios); 390 391 /* Direct I/O write verify errors */ 392 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_DIO_VERIFY_ERRORS, 393 vs->vs_dio_verify_errors); 394 395 /* Add extended stats nvlist to main nvlist */ 396 fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx); 397 398 fnvlist_free(nvx); 399 kmem_free(vs, sizeof (*vs)); 400 kmem_free(vsx, sizeof (*vsx)); 401 } 402 403 static void 404 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl) 405 { 406 spa_t *spa = vd->vdev_spa; 407 408 if (vd != spa->spa_root_vdev) 409 return; 410 411 /* provide either current or previous scan information */ 412 pool_scan_stat_t ps; 413 if (spa_scan_get_stats(spa, &ps) == 0) { 414 fnvlist_add_uint64_array(nvl, 415 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps, 416 sizeof (pool_scan_stat_t) / sizeof (uint64_t)); 417 } 418 419 pool_removal_stat_t prs; 420 if (spa_removal_get_stats(spa, &prs) == 0) { 421 fnvlist_add_uint64_array(nvl, 422 ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs, 423 sizeof (prs) / sizeof (uint64_t)); 424 } 425 426 pool_checkpoint_stat_t pcs; 427 if (spa_checkpoint_get_stats(spa, &pcs) == 0) { 428 fnvlist_add_uint64_array(nvl, 429 ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs, 430 sizeof (pcs) / sizeof (uint64_t)); 431 } 432 433 pool_raidz_expand_stat_t pres; 434 if (spa_raidz_expand_get_stats(spa, &pres) == 0) { 435 fnvlist_add_uint64_array(nvl, 436 ZPOOL_CONFIG_RAIDZ_EXPAND_STATS, (uint64_t *)&pres, 437 sizeof (pres) / sizeof (uint64_t)); 438 } 439 } 440 441 static void 442 top_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl) 443 { 444 if (vd == vd->vdev_top) { 445 vdev_rebuild_stat_t vrs; 446 if (vdev_rebuild_get_stats(vd, &vrs) == 0) { 447 fnvlist_add_uint64_array(nvl, 448 ZPOOL_CONFIG_REBUILD_STATS, (uint64_t *)&vrs, 449 sizeof (vrs) / sizeof (uint64_t)); 450 } 451 } 452 } 453 454 /* 455 * Generate the nvlist representing this vdev's config. 456 */ 457 nvlist_t * 458 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 459 vdev_config_flag_t flags) 460 { 461 nvlist_t *nv = NULL; 462 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 463 464 nv = fnvlist_alloc(); 465 466 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type); 467 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE))) 468 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id); 469 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid); 470 471 if (vd->vdev_path != NULL) 472 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path); 473 474 if (vd->vdev_devid != NULL) 475 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid); 476 477 if (vd->vdev_physpath != NULL) 478 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 479 vd->vdev_physpath); 480 481 if (vd->vdev_enc_sysfs_path != NULL) 482 fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 483 vd->vdev_enc_sysfs_path); 484 485 if (vd->vdev_fru != NULL) 486 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru); 487 488 if (vd->vdev_ops->vdev_op_config_generate != NULL) 489 vd->vdev_ops->vdev_op_config_generate(vd, nv); 490 491 if (vd->vdev_wholedisk != -1ULL) { 492 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 493 vd->vdev_wholedisk); 494 } 495 496 if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING)) 497 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1); 498 499 if (vd->vdev_isspare) 500 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1); 501 502 if (flags & VDEV_CONFIG_L2CACHE) 503 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 504 505 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) && 506 vd == vd->vdev_top) { 507 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 508 vd->vdev_ms_array); 509 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 510 vd->vdev_ms_shift); 511 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 512 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 513 vd->vdev_asize); 514 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog); 515 if (vd->vdev_noalloc) { 516 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NONALLOCATING, 517 vd->vdev_noalloc); 518 } 519 520 /* 521 * Slog devices are removed synchronously so don't 522 * persist the vdev_removing flag to the label. 523 */ 524 if (vd->vdev_removing && !vd->vdev_islog) { 525 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING, 526 vd->vdev_removing); 527 } 528 529 /* zpool command expects alloc class data */ 530 if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) { 531 const char *bias = NULL; 532 533 switch (vd->vdev_alloc_bias) { 534 case VDEV_BIAS_LOG: 535 bias = VDEV_ALLOC_BIAS_LOG; 536 break; 537 case VDEV_BIAS_SPECIAL: 538 bias = VDEV_ALLOC_BIAS_SPECIAL; 539 break; 540 case VDEV_BIAS_DEDUP: 541 bias = VDEV_ALLOC_BIAS_DEDUP; 542 break; 543 default: 544 ASSERT3U(vd->vdev_alloc_bias, ==, 545 VDEV_BIAS_NONE); 546 } 547 fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 548 bias); 549 } 550 } 551 552 if (vd->vdev_dtl_sm != NULL) { 553 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 554 space_map_object(vd->vdev_dtl_sm)); 555 } 556 557 if (vic->vic_mapping_object != 0) { 558 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 559 vic->vic_mapping_object); 560 } 561 562 if (vic->vic_births_object != 0) { 563 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 564 vic->vic_births_object); 565 } 566 567 if (vic->vic_prev_indirect_vdev != UINT64_MAX) { 568 fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 569 vic->vic_prev_indirect_vdev); 570 } 571 572 if (vd->vdev_crtxg) 573 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg); 574 575 if (vd->vdev_expansion_time) 576 fnvlist_add_uint64(nv, ZPOOL_CONFIG_EXPANSION_TIME, 577 vd->vdev_expansion_time); 578 579 if (flags & VDEV_CONFIG_MOS) { 580 if (vd->vdev_leaf_zap != 0) { 581 ASSERT(vd->vdev_ops->vdev_op_leaf); 582 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP, 583 vd->vdev_leaf_zap); 584 } 585 586 if (vd->vdev_top_zap != 0) { 587 ASSERT(vd == vd->vdev_top); 588 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 589 vd->vdev_top_zap); 590 } 591 592 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap != 0 && 593 spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) { 594 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP, 595 vd->vdev_root_zap); 596 } 597 598 if (vd->vdev_resilver_deferred) { 599 ASSERT(vd->vdev_ops->vdev_op_leaf); 600 ASSERT(spa->spa_resilver_deferred); 601 fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER); 602 } 603 } 604 605 if (getstats) { 606 vdev_config_generate_stats(vd, nv); 607 608 root_vdev_actions_getprogress(vd, nv); 609 top_vdev_actions_getprogress(vd, nv); 610 611 /* 612 * Note: this can be called from open context 613 * (spa_get_stats()), so we need the rwlock to prevent 614 * the mapping from being changed by condensing. 615 */ 616 rw_enter(&vd->vdev_indirect_rwlock, RW_READER); 617 if (vd->vdev_indirect_mapping != NULL) { 618 ASSERT(vd->vdev_indirect_births != NULL); 619 vdev_indirect_mapping_t *vim = 620 vd->vdev_indirect_mapping; 621 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, 622 vdev_indirect_mapping_size(vim)); 623 } 624 rw_exit(&vd->vdev_indirect_rwlock); 625 if (vd->vdev_mg != NULL && 626 vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) { 627 /* 628 * Compute approximately how much memory would be used 629 * for the indirect mapping if this device were to 630 * be removed. 631 * 632 * Note: If the frag metric is invalid, then not 633 * enough metaslabs have been converted to have 634 * histograms. 635 */ 636 uint64_t seg_count = 0; 637 uint64_t to_alloc = vd->vdev_stat.vs_alloc; 638 639 /* 640 * There are the same number of allocated segments 641 * as free segments, so we will have at least one 642 * entry per free segment. However, small free 643 * segments (smaller than vdev_removal_max_span) 644 * will be combined with adjacent allocated segments 645 * as a single mapping. 646 */ 647 for (int i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; 648 i++) { 649 if (i + 1 < highbit64(vdev_removal_max_span) 650 - 1) { 651 to_alloc += 652 vd->vdev_mg->mg_histogram[i] << 653 (i + 1); 654 } else { 655 seg_count += 656 vd->vdev_mg->mg_histogram[i]; 657 } 658 } 659 660 /* 661 * The maximum length of a mapping is 662 * zfs_remove_max_segment, so we need at least one entry 663 * per zfs_remove_max_segment of allocated data. 664 */ 665 seg_count += to_alloc / spa_remove_max_segment(spa); 666 667 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, 668 seg_count * 669 sizeof (vdev_indirect_mapping_entry_phys_t)); 670 } 671 } 672 673 if (!vd->vdev_ops->vdev_op_leaf) { 674 nvlist_t **child; 675 uint64_t c; 676 677 ASSERT(!vd->vdev_ishole); 678 679 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 680 KM_SLEEP); 681 682 for (c = 0; c < vd->vdev_children; c++) { 683 child[c] = vdev_config_generate(spa, vd->vdev_child[c], 684 getstats, flags); 685 } 686 687 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 688 (const nvlist_t * const *)child, vd->vdev_children); 689 690 for (c = 0; c < vd->vdev_children; c++) 691 nvlist_free(child[c]); 692 693 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 694 695 } else { 696 const char *aux = NULL; 697 698 if (vd->vdev_offline && !vd->vdev_tmpoffline) 699 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE); 700 if (vd->vdev_resilver_txg != 0) 701 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 702 vd->vdev_resilver_txg); 703 if (vd->vdev_rebuild_txg != 0) 704 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 705 vd->vdev_rebuild_txg); 706 if (vd->vdev_faulted) 707 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE); 708 if (vd->vdev_degraded) 709 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE); 710 if (vd->vdev_removed) 711 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE); 712 if (vd->vdev_unspare) 713 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE); 714 if (vd->vdev_ishole) 715 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE); 716 717 /* Set the reason why we're FAULTED/DEGRADED. */ 718 switch (vd->vdev_stat.vs_aux) { 719 case VDEV_AUX_ERR_EXCEEDED: 720 aux = "err_exceeded"; 721 break; 722 723 case VDEV_AUX_EXTERNAL: 724 aux = "external"; 725 break; 726 } 727 728 if (aux != NULL && !vd->vdev_tmpoffline) { 729 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux); 730 } else { 731 /* 732 * We're healthy - clear any previous AUX_STATE values. 733 */ 734 if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE)) 735 nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE); 736 } 737 738 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { 739 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, 740 vd->vdev_orig_guid); 741 } 742 } 743 744 return (nv); 745 } 746 747 /* 748 * Generate a view of the top-level vdevs. If we currently have holes 749 * in the namespace, then generate an array which contains a list of holey 750 * vdevs. Additionally, add the number of top-level children that currently 751 * exist. 752 */ 753 void 754 vdev_top_config_generate(spa_t *spa, nvlist_t *config) 755 { 756 vdev_t *rvd = spa->spa_root_vdev; 757 uint64_t *array; 758 uint_t c, idx; 759 760 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP); 761 762 for (c = 0, idx = 0; c < rvd->vdev_children; c++) { 763 vdev_t *tvd = rvd->vdev_child[c]; 764 765 if (tvd->vdev_ishole) { 766 array[idx++] = c; 767 } 768 } 769 770 if (idx) { 771 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, 772 array, idx) == 0); 773 } 774 775 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 776 rvd->vdev_children) == 0); 777 778 kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); 779 } 780 781 /* 782 * Returns the configuration from the label of the given vdev. For vdevs 783 * which don't have a txg value stored on their label (i.e. spares/cache) 784 * or have not been completely initialized (txg = 0) just return 785 * the configuration from the first valid label we find. Otherwise, 786 * find the most up-to-date label that does not exceed the specified 787 * 'txg' value. 788 */ 789 nvlist_t * 790 vdev_label_read_config(vdev_t *vd, uint64_t txg) 791 { 792 spa_t *spa = vd->vdev_spa; 793 nvlist_t *config = NULL; 794 vdev_phys_t *vp[VDEV_LABELS]; 795 abd_t *vp_abd[VDEV_LABELS]; 796 zio_t *zio[VDEV_LABELS]; 797 uint64_t best_txg = 0; 798 uint64_t label_txg = 0; 799 int error = 0; 800 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 801 ZIO_FLAG_SPECULATIVE; 802 803 ASSERT(vd->vdev_validate_thread == curthread || 804 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 805 806 if (!vdev_readable(vd)) 807 return (NULL); 808 809 /* 810 * The label for a dRAID distributed spare is not stored on disk. 811 * Instead it is generated when needed which allows us to bypass 812 * the pipeline when reading the config from the label. 813 */ 814 if (vd->vdev_ops == &vdev_draid_spare_ops) 815 return (vdev_draid_read_config_spare(vd)); 816 817 for (int l = 0; l < VDEV_LABELS; l++) { 818 vp_abd[l] = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 819 vp[l] = abd_to_buf(vp_abd[l]); 820 } 821 822 retry: 823 for (int l = 0; l < VDEV_LABELS; l++) { 824 zio[l] = zio_root(spa, NULL, NULL, flags); 825 826 vdev_label_read(zio[l], vd, l, vp_abd[l], 827 offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t), 828 NULL, NULL, flags); 829 } 830 for (int l = 0; l < VDEV_LABELS; l++) { 831 nvlist_t *label = NULL; 832 833 if (zio_wait(zio[l]) == 0 && 834 nvlist_unpack(vp[l]->vp_nvlist, sizeof (vp[l]->vp_nvlist), 835 &label, 0) == 0) { 836 /* 837 * Auxiliary vdevs won't have txg values in their 838 * labels and newly added vdevs may not have been 839 * completely initialized so just return the 840 * configuration from the first valid label we 841 * encounter. 842 */ 843 error = nvlist_lookup_uint64(label, 844 ZPOOL_CONFIG_POOL_TXG, &label_txg); 845 if ((error || label_txg == 0) && !config) { 846 config = label; 847 for (l++; l < VDEV_LABELS; l++) 848 zio_wait(zio[l]); 849 break; 850 } else if (label_txg <= txg && label_txg > best_txg) { 851 best_txg = label_txg; 852 nvlist_free(config); 853 config = fnvlist_dup(label); 854 } 855 } 856 857 if (label != NULL) { 858 nvlist_free(label); 859 label = NULL; 860 } 861 } 862 863 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { 864 flags |= ZIO_FLAG_TRYHARD; 865 goto retry; 866 } 867 868 /* 869 * We found a valid label but it didn't pass txg restrictions. 870 */ 871 if (config == NULL && label_txg != 0) { 872 vdev_dbgmsg(vd, "label discarded as txg is too large " 873 "(%llu > %llu)", (u_longlong_t)label_txg, 874 (u_longlong_t)txg); 875 } 876 877 for (int l = 0; l < VDEV_LABELS; l++) { 878 abd_free(vp_abd[l]); 879 } 880 881 return (config); 882 } 883 884 /* 885 * Determine if a device is in use. The 'spare_guid' parameter will be filled 886 * in with the device guid if this spare is active elsewhere on the system. 887 */ 888 static boolean_t 889 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 890 uint64_t *spare_guid, uint64_t *l2cache_guid) 891 { 892 spa_t *spa = vd->vdev_spa; 893 uint64_t state, pool_guid, device_guid, txg, spare_pool; 894 uint64_t vdtxg = 0; 895 nvlist_t *label; 896 897 if (spare_guid) 898 *spare_guid = 0ULL; 899 if (l2cache_guid) 900 *l2cache_guid = 0ULL; 901 902 /* 903 * Read the label, if any, and perform some basic sanity checks. 904 */ 905 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) 906 return (B_FALSE); 907 908 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 909 &vdtxg); 910 911 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 912 &state) != 0 || 913 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 914 &device_guid) != 0) { 915 nvlist_free(label); 916 return (B_FALSE); 917 } 918 919 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 920 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 921 &pool_guid) != 0 || 922 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 923 &txg) != 0)) { 924 nvlist_free(label); 925 return (B_FALSE); 926 } 927 928 nvlist_free(label); 929 930 /* 931 * Check to see if this device indeed belongs to the pool it claims to 932 * be a part of. The only way this is allowed is if the device is a hot 933 * spare (which we check for later on). 934 */ 935 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 936 !spa_guid_exists(pool_guid, device_guid) && 937 !spa_spare_exists(device_guid, NULL, NULL) && 938 !spa_l2cache_exists(device_guid, NULL)) 939 return (B_FALSE); 940 941 /* 942 * If the transaction group is zero, then this an initialized (but 943 * unused) label. This is only an error if the create transaction 944 * on-disk is the same as the one we're using now, in which case the 945 * user has attempted to add the same vdev multiple times in the same 946 * transaction. 947 */ 948 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 949 txg == 0 && vdtxg == crtxg) 950 return (B_TRUE); 951 952 /* 953 * Check to see if this is a spare device. We do an explicit check for 954 * spa_has_spare() here because it may be on our pending list of spares 955 * to add. 956 */ 957 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 958 spa_has_spare(spa, device_guid)) { 959 if (spare_guid) 960 *spare_guid = device_guid; 961 962 switch (reason) { 963 case VDEV_LABEL_CREATE: 964 return (B_TRUE); 965 966 case VDEV_LABEL_REPLACE: 967 return (!spa_has_spare(spa, device_guid) || 968 spare_pool != 0ULL); 969 970 case VDEV_LABEL_SPARE: 971 return (spa_has_spare(spa, device_guid)); 972 default: 973 break; 974 } 975 } 976 977 /* 978 * Check to see if this is an l2cache device. 979 */ 980 if (spa_l2cache_exists(device_guid, NULL) || 981 spa_has_l2cache(spa, device_guid)) { 982 if (l2cache_guid) 983 *l2cache_guid = device_guid; 984 985 switch (reason) { 986 case VDEV_LABEL_CREATE: 987 return (B_TRUE); 988 989 case VDEV_LABEL_REPLACE: 990 return (!spa_has_l2cache(spa, device_guid)); 991 992 case VDEV_LABEL_L2CACHE: 993 return (spa_has_l2cache(spa, device_guid)); 994 default: 995 break; 996 } 997 } 998 999 /* 1000 * We can't rely on a pool's state if it's been imported 1001 * read-only. Instead we look to see if the pools is marked 1002 * read-only in the namespace and set the state to active. 1003 */ 1004 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 1005 (spa = spa_by_guid(pool_guid, device_guid)) != NULL && 1006 spa_mode(spa) == SPA_MODE_READ) 1007 state = POOL_STATE_ACTIVE; 1008 1009 /* 1010 * If the device is marked ACTIVE, then this device is in use by another 1011 * pool on the system. 1012 */ 1013 return (state == POOL_STATE_ACTIVE); 1014 } 1015 1016 static nvlist_t * 1017 vdev_aux_label_generate(vdev_t *vd, boolean_t reason_spare) 1018 { 1019 /* 1020 * For inactive hot spares and level 2 ARC devices, we generate 1021 * a special label that identifies as a mutually shared hot 1022 * spare or l2cache device. We write the label in case of 1023 * addition or removal of hot spare or l2cache vdev (in which 1024 * case we want to revert the labels). 1025 */ 1026 nvlist_t *label = fnvlist_alloc(); 1027 fnvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 1028 spa_version(vd->vdev_spa)); 1029 fnvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, reason_spare ? 1030 POOL_STATE_SPARE : POOL_STATE_L2CACHE); 1031 fnvlist_add_uint64(label, ZPOOL_CONFIG_GUID, vd->vdev_guid); 1032 1033 /* 1034 * This is merely to facilitate reporting the ashift of the 1035 * cache device through zdb. The actual retrieval of the 1036 * ashift (in vdev_alloc()) uses the nvlist 1037 * spa->spa_l2cache->sav_config (populated in 1038 * spa_ld_open_aux_vdevs()). 1039 */ 1040 if (!reason_spare) 1041 fnvlist_add_uint64(label, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 1042 1043 /* 1044 * Add path information to help find it during pool import 1045 */ 1046 if (vd->vdev_path != NULL) 1047 fnvlist_add_string(label, ZPOOL_CONFIG_PATH, vd->vdev_path); 1048 if (vd->vdev_devid != NULL) 1049 fnvlist_add_string(label, ZPOOL_CONFIG_DEVID, vd->vdev_devid); 1050 if (vd->vdev_physpath != NULL) { 1051 fnvlist_add_string(label, ZPOOL_CONFIG_PHYS_PATH, 1052 vd->vdev_physpath); 1053 } 1054 return (label); 1055 } 1056 1057 /* 1058 * Initialize a vdev label. We check to make sure each leaf device is not in 1059 * use, and writable. We put down an initial label which we will later 1060 * overwrite with a complete label. Note that it's important to do this 1061 * sequentially, not in parallel, so that we catch cases of multiple use of the 1062 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 1063 * itself. 1064 */ 1065 int 1066 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 1067 { 1068 spa_t *spa = vd->vdev_spa; 1069 nvlist_t *label; 1070 vdev_phys_t *vp; 1071 abd_t *vp_abd; 1072 abd_t *bootenv; 1073 uberblock_t *ub; 1074 abd_t *ub_abd; 1075 zio_t *zio; 1076 char *buf; 1077 size_t buflen; 1078 int error; 1079 uint64_t spare_guid = 0, l2cache_guid = 0; 1080 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1081 boolean_t reason_spare = (reason == VDEV_LABEL_SPARE || (reason == 1082 VDEV_LABEL_REMOVE && vd->vdev_isspare)); 1083 boolean_t reason_l2cache = (reason == VDEV_LABEL_L2CACHE || (reason == 1084 VDEV_LABEL_REMOVE && vd->vdev_isl2cache)); 1085 1086 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1087 1088 for (int c = 0; c < vd->vdev_children; c++) 1089 if ((error = vdev_label_init(vd->vdev_child[c], 1090 crtxg, reason)) != 0) 1091 return (error); 1092 1093 /* Track the creation time for this vdev */ 1094 vd->vdev_crtxg = crtxg; 1095 1096 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa)) 1097 return (0); 1098 1099 /* 1100 * Dead vdevs cannot be initialized. 1101 */ 1102 if (vdev_is_dead(vd)) 1103 return (SET_ERROR(EIO)); 1104 1105 /* 1106 * Determine if the vdev is in use. 1107 */ 1108 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && 1109 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 1110 return (SET_ERROR(EBUSY)); 1111 1112 /* 1113 * If this is a request to add or replace a spare or l2cache device 1114 * that is in use elsewhere on the system, then we must update the 1115 * guid (which was initialized to a random value) to reflect the 1116 * actual GUID (which is shared between multiple pools). 1117 */ 1118 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 1119 spare_guid != 0ULL) { 1120 uint64_t guid_delta = spare_guid - vd->vdev_guid; 1121 1122 vd->vdev_guid += guid_delta; 1123 1124 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1125 pvd->vdev_guid_sum += guid_delta; 1126 1127 /* 1128 * If this is a replacement, then we want to fallthrough to the 1129 * rest of the code. If we're adding a spare, then it's already 1130 * labeled appropriately and we can just return. 1131 */ 1132 if (reason == VDEV_LABEL_SPARE) 1133 return (0); 1134 ASSERT(reason == VDEV_LABEL_REPLACE || 1135 reason == VDEV_LABEL_SPLIT); 1136 } 1137 1138 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 1139 l2cache_guid != 0ULL) { 1140 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 1141 1142 vd->vdev_guid += guid_delta; 1143 1144 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1145 pvd->vdev_guid_sum += guid_delta; 1146 1147 /* 1148 * If this is a replacement, then we want to fallthrough to the 1149 * rest of the code. If we're adding an l2cache, then it's 1150 * already labeled appropriately and we can just return. 1151 */ 1152 if (reason == VDEV_LABEL_L2CACHE) 1153 return (0); 1154 ASSERT(reason == VDEV_LABEL_REPLACE); 1155 } 1156 1157 /* 1158 * Initialize its label. 1159 */ 1160 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 1161 abd_zero(vp_abd, sizeof (vdev_phys_t)); 1162 vp = abd_to_buf(vp_abd); 1163 1164 /* 1165 * Generate a label describing the pool and our top-level vdev. 1166 * We mark it as being from txg 0 to indicate that it's not 1167 * really part of an active pool just yet. The labels will 1168 * be written again with a meaningful txg by spa_sync(). 1169 */ 1170 if (reason_spare || reason_l2cache) { 1171 label = vdev_aux_label_generate(vd, reason_spare); 1172 1173 /* 1174 * When spare or l2cache (aux) vdev is added during pool 1175 * creation, spa->spa_uberblock is not written until this 1176 * point. Write it on next config sync. 1177 */ 1178 if (uberblock_verify(&spa->spa_uberblock)) 1179 spa->spa_aux_sync_uber = B_TRUE; 1180 } else { 1181 uint64_t txg = 0ULL; 1182 1183 if (reason == VDEV_LABEL_SPLIT) 1184 txg = spa->spa_uberblock.ub_txg; 1185 label = spa_config_generate(spa, vd, txg, B_FALSE); 1186 1187 /* 1188 * Add our creation time. This allows us to detect multiple 1189 * vdev uses as described above, and automatically expires if we 1190 * fail. 1191 */ 1192 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 1193 crtxg) == 0); 1194 } 1195 1196 buf = vp->vp_nvlist; 1197 buflen = sizeof (vp->vp_nvlist); 1198 1199 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 1200 if (error != 0) { 1201 nvlist_free(label); 1202 abd_free(vp_abd); 1203 /* EFAULT means nvlist_pack ran out of room */ 1204 return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL)); 1205 } 1206 1207 /* 1208 * Initialize uberblock template. 1209 */ 1210 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE); 1211 abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t)); 1212 abd_zero_off(ub_abd, sizeof (uberblock_t), 1213 VDEV_UBERBLOCK_RING - sizeof (uberblock_t)); 1214 ub = abd_to_buf(ub_abd); 1215 ub->ub_txg = 0; 1216 1217 /* Initialize the 2nd padding area. */ 1218 bootenv = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); 1219 abd_zero(bootenv, VDEV_PAD_SIZE); 1220 1221 /* 1222 * Write everything in parallel. 1223 */ 1224 retry: 1225 zio = zio_root(spa, NULL, NULL, flags); 1226 1227 for (int l = 0; l < VDEV_LABELS; l++) { 1228 1229 vdev_label_write(zio, vd, l, vp_abd, 1230 offsetof(vdev_label_t, vl_vdev_phys), 1231 sizeof (vdev_phys_t), NULL, NULL, flags); 1232 1233 /* 1234 * Skip the 1st padding area. 1235 * Zero out the 2nd padding area where it might have 1236 * left over data from previous filesystem format. 1237 */ 1238 vdev_label_write(zio, vd, l, bootenv, 1239 offsetof(vdev_label_t, vl_be), 1240 VDEV_PAD_SIZE, NULL, NULL, flags); 1241 1242 vdev_label_write(zio, vd, l, ub_abd, 1243 offsetof(vdev_label_t, vl_uberblock), 1244 VDEV_UBERBLOCK_RING, NULL, NULL, flags); 1245 } 1246 1247 error = zio_wait(zio); 1248 1249 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 1250 flags |= ZIO_FLAG_TRYHARD; 1251 goto retry; 1252 } 1253 1254 nvlist_free(label); 1255 abd_free(bootenv); 1256 abd_free(ub_abd); 1257 abd_free(vp_abd); 1258 1259 /* 1260 * If this vdev hasn't been previously identified as a spare, then we 1261 * mark it as such only if a) we are labeling it as a spare, or b) it 1262 * exists as a spare elsewhere in the system. Do the same for 1263 * level 2 ARC devices. 1264 */ 1265 if (error == 0 && !vd->vdev_isspare && 1266 (reason == VDEV_LABEL_SPARE || 1267 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 1268 spa_spare_add(vd); 1269 1270 if (error == 0 && !vd->vdev_isl2cache && 1271 (reason == VDEV_LABEL_L2CACHE || 1272 spa_l2cache_exists(vd->vdev_guid, NULL))) 1273 spa_l2cache_add(vd); 1274 1275 return (error); 1276 } 1277 1278 /* 1279 * Done callback for vdev_label_read_bootenv_impl. If this is the first 1280 * callback to finish, store our abd in the callback pointer. Otherwise, we 1281 * just free our abd and return. 1282 */ 1283 static void 1284 vdev_label_read_bootenv_done(zio_t *zio) 1285 { 1286 zio_t *rio = zio->io_private; 1287 abd_t **cbp = rio->io_private; 1288 1289 ASSERT3U(zio->io_size, ==, VDEV_PAD_SIZE); 1290 1291 if (zio->io_error == 0) { 1292 mutex_enter(&rio->io_lock); 1293 if (*cbp == NULL) { 1294 /* Will free this buffer in vdev_label_read_bootenv. */ 1295 *cbp = zio->io_abd; 1296 } else { 1297 abd_free(zio->io_abd); 1298 } 1299 mutex_exit(&rio->io_lock); 1300 } else { 1301 abd_free(zio->io_abd); 1302 } 1303 } 1304 1305 static void 1306 vdev_label_read_bootenv_impl(zio_t *zio, vdev_t *vd, int flags) 1307 { 1308 for (int c = 0; c < vd->vdev_children; c++) 1309 vdev_label_read_bootenv_impl(zio, vd->vdev_child[c], flags); 1310 1311 /* 1312 * We just use the first label that has a correct checksum; the 1313 * bootloader should have rewritten them all to be the same on boot, 1314 * and any changes we made since boot have been the same across all 1315 * labels. 1316 */ 1317 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1318 for (int l = 0; l < VDEV_LABELS; l++) { 1319 vdev_label_read(zio, vd, l, 1320 abd_alloc_linear(VDEV_PAD_SIZE, B_FALSE), 1321 offsetof(vdev_label_t, vl_be), VDEV_PAD_SIZE, 1322 vdev_label_read_bootenv_done, zio, flags); 1323 } 1324 } 1325 } 1326 1327 int 1328 vdev_label_read_bootenv(vdev_t *rvd, nvlist_t *bootenv) 1329 { 1330 nvlist_t *config; 1331 spa_t *spa = rvd->vdev_spa; 1332 abd_t *abd = NULL; 1333 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1334 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 1335 1336 ASSERT(bootenv); 1337 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1338 1339 zio_t *zio = zio_root(spa, NULL, &abd, flags); 1340 vdev_label_read_bootenv_impl(zio, rvd, flags); 1341 int err = zio_wait(zio); 1342 1343 if (abd != NULL) { 1344 char *buf; 1345 vdev_boot_envblock_t *vbe = abd_to_buf(abd); 1346 1347 vbe->vbe_version = ntohll(vbe->vbe_version); 1348 switch (vbe->vbe_version) { 1349 case VB_RAW: 1350 /* 1351 * if we have textual data in vbe_bootenv, create nvlist 1352 * with key "envmap". 1353 */ 1354 fnvlist_add_uint64(bootenv, BOOTENV_VERSION, VB_RAW); 1355 vbe->vbe_bootenv[sizeof (vbe->vbe_bootenv) - 1] = '\0'; 1356 fnvlist_add_string(bootenv, GRUB_ENVMAP, 1357 vbe->vbe_bootenv); 1358 break; 1359 1360 case VB_NVLIST: 1361 err = nvlist_unpack(vbe->vbe_bootenv, 1362 sizeof (vbe->vbe_bootenv), &config, 0); 1363 if (err == 0) { 1364 fnvlist_merge(bootenv, config); 1365 nvlist_free(config); 1366 break; 1367 } 1368 zfs_fallthrough; 1369 default: 1370 /* Check for FreeBSD zfs bootonce command string */ 1371 buf = abd_to_buf(abd); 1372 if (*buf == '\0') { 1373 fnvlist_add_uint64(bootenv, BOOTENV_VERSION, 1374 VB_NVLIST); 1375 break; 1376 } 1377 fnvlist_add_string(bootenv, FREEBSD_BOOTONCE, buf); 1378 } 1379 1380 /* 1381 * abd was allocated in vdev_label_read_bootenv_impl() 1382 */ 1383 abd_free(abd); 1384 /* 1385 * If we managed to read any successfully, 1386 * return success. 1387 */ 1388 return (0); 1389 } 1390 return (err); 1391 } 1392 1393 int 1394 vdev_label_write_bootenv(vdev_t *vd, nvlist_t *env) 1395 { 1396 zio_t *zio; 1397 spa_t *spa = vd->vdev_spa; 1398 vdev_boot_envblock_t *bootenv; 1399 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1400 int error; 1401 size_t nvsize; 1402 char *nvbuf; 1403 const char *tmp; 1404 1405 error = nvlist_size(env, &nvsize, NV_ENCODE_XDR); 1406 if (error != 0) 1407 return (SET_ERROR(error)); 1408 1409 if (nvsize >= sizeof (bootenv->vbe_bootenv)) { 1410 return (SET_ERROR(E2BIG)); 1411 } 1412 1413 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1414 1415 error = ENXIO; 1416 for (int c = 0; c < vd->vdev_children; c++) { 1417 int child_err; 1418 1419 child_err = vdev_label_write_bootenv(vd->vdev_child[c], env); 1420 /* 1421 * As long as any of the disks managed to write all of their 1422 * labels successfully, return success. 1423 */ 1424 if (child_err == 0) 1425 error = child_err; 1426 } 1427 1428 if (!vd->vdev_ops->vdev_op_leaf || vdev_is_dead(vd) || 1429 !vdev_writeable(vd)) { 1430 return (error); 1431 } 1432 ASSERT3U(sizeof (*bootenv), ==, VDEV_PAD_SIZE); 1433 abd_t *abd = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); 1434 abd_zero(abd, VDEV_PAD_SIZE); 1435 1436 bootenv = abd_borrow_buf_copy(abd, VDEV_PAD_SIZE); 1437 nvbuf = bootenv->vbe_bootenv; 1438 nvsize = sizeof (bootenv->vbe_bootenv); 1439 1440 bootenv->vbe_version = fnvlist_lookup_uint64(env, BOOTENV_VERSION); 1441 switch (bootenv->vbe_version) { 1442 case VB_RAW: 1443 if (nvlist_lookup_string(env, GRUB_ENVMAP, &tmp) == 0) { 1444 (void) strlcpy(bootenv->vbe_bootenv, tmp, nvsize); 1445 } 1446 error = 0; 1447 break; 1448 1449 case VB_NVLIST: 1450 error = nvlist_pack(env, &nvbuf, &nvsize, NV_ENCODE_XDR, 1451 KM_SLEEP); 1452 break; 1453 1454 default: 1455 error = EINVAL; 1456 break; 1457 } 1458 1459 if (error == 0) { 1460 bootenv->vbe_version = htonll(bootenv->vbe_version); 1461 abd_return_buf_copy(abd, bootenv, VDEV_PAD_SIZE); 1462 } else { 1463 abd_free(abd); 1464 return (SET_ERROR(error)); 1465 } 1466 1467 retry: 1468 zio = zio_root(spa, NULL, NULL, flags); 1469 for (int l = 0; l < VDEV_LABELS; l++) { 1470 vdev_label_write(zio, vd, l, abd, 1471 offsetof(vdev_label_t, vl_be), 1472 VDEV_PAD_SIZE, NULL, NULL, flags); 1473 } 1474 1475 error = zio_wait(zio); 1476 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 1477 flags |= ZIO_FLAG_TRYHARD; 1478 goto retry; 1479 } 1480 1481 abd_free(abd); 1482 return (error); 1483 } 1484 1485 /* 1486 * ========================================================================== 1487 * uberblock load/sync 1488 * ========================================================================== 1489 */ 1490 1491 /* 1492 * Consider the following situation: txg is safely synced to disk. We've 1493 * written the first uberblock for txg + 1, and then we lose power. When we 1494 * come back up, we fail to see the uberblock for txg + 1 because, say, 1495 * it was on a mirrored device and the replica to which we wrote txg + 1 1496 * is now offline. If we then make some changes and sync txg + 1, and then 1497 * the missing replica comes back, then for a few seconds we'll have two 1498 * conflicting uberblocks on disk with the same txg. The solution is simple: 1499 * among uberblocks with equal txg, choose the one with the latest timestamp. 1500 */ 1501 static int 1502 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2) 1503 { 1504 int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg); 1505 1506 if (likely(cmp)) 1507 return (cmp); 1508 1509 cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp); 1510 if (likely(cmp)) 1511 return (cmp); 1512 1513 /* 1514 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware 1515 * ZFS, e.g. OpenZFS >= 0.7. 1516 * 1517 * If one ub has MMP and the other does not, they were written by 1518 * different hosts, which matters for MMP. So we treat no MMP/no SEQ as 1519 * a 0 value. 1520 * 1521 * Since timestamp and txg are the same if we get this far, either is 1522 * acceptable for importing the pool. 1523 */ 1524 unsigned int seq1 = 0; 1525 unsigned int seq2 = 0; 1526 1527 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1)) 1528 seq1 = MMP_SEQ(ub1); 1529 1530 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2)) 1531 seq2 = MMP_SEQ(ub2); 1532 1533 return (TREE_CMP(seq1, seq2)); 1534 } 1535 1536 struct ubl_cbdata { 1537 uberblock_t ubl_latest; /* Most recent uberblock */ 1538 uberblock_t *ubl_ubbest; /* Best uberblock (w/r/t max_txg) */ 1539 vdev_t *ubl_vd; /* vdev associated with the above */ 1540 }; 1541 1542 static void 1543 vdev_uberblock_load_done(zio_t *zio) 1544 { 1545 vdev_t *vd = zio->io_vd; 1546 spa_t *spa = zio->io_spa; 1547 zio_t *rio = zio->io_private; 1548 uberblock_t *ub = abd_to_buf(zio->io_abd); 1549 struct ubl_cbdata *cbp = rio->io_private; 1550 1551 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd)); 1552 1553 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 1554 mutex_enter(&rio->io_lock); 1555 if (vdev_uberblock_compare(ub, &cbp->ubl_latest) > 0) { 1556 cbp->ubl_latest = *ub; 1557 } 1558 if (ub->ub_txg <= spa->spa_load_max_txg && 1559 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) { 1560 /* 1561 * Keep track of the vdev in which this uberblock 1562 * was found. We will use this information later 1563 * to obtain the config nvlist associated with 1564 * this uberblock. 1565 */ 1566 *cbp->ubl_ubbest = *ub; 1567 cbp->ubl_vd = vd; 1568 } 1569 mutex_exit(&rio->io_lock); 1570 } 1571 1572 abd_free(zio->io_abd); 1573 } 1574 1575 static void 1576 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags, 1577 struct ubl_cbdata *cbp) 1578 { 1579 for (int c = 0; c < vd->vdev_children; c++) 1580 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp); 1581 1582 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd) && 1583 vd->vdev_ops != &vdev_draid_spare_ops) { 1584 for (int l = 0; l < VDEV_LABELS; l++) { 1585 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1586 vdev_label_read(zio, vd, l, 1587 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), 1588 B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n), 1589 VDEV_UBERBLOCK_SIZE(vd), 1590 vdev_uberblock_load_done, zio, flags); 1591 } 1592 } 1593 } 1594 } 1595 1596 /* 1597 * Reads the 'best' uberblock from disk along with its associated 1598 * configuration. First, we read the uberblock array of each label of each 1599 * vdev, keeping track of the uberblock with the highest txg in each array. 1600 * Then, we read the configuration from the same vdev as the best uberblock. 1601 */ 1602 void 1603 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config) 1604 { 1605 zio_t *zio; 1606 spa_t *spa = rvd->vdev_spa; 1607 struct ubl_cbdata cb; 1608 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1609 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 1610 1611 ASSERT(ub); 1612 ASSERT(config); 1613 1614 memset(ub, 0, sizeof (uberblock_t)); 1615 memset(&cb, 0, sizeof (cb)); 1616 *config = NULL; 1617 1618 cb.ubl_ubbest = ub; 1619 1620 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1621 zio = zio_root(spa, NULL, &cb, flags); 1622 vdev_uberblock_load_impl(zio, rvd, flags, &cb); 1623 (void) zio_wait(zio); 1624 1625 /* 1626 * It's possible that the best uberblock was discovered on a label 1627 * that has a configuration which was written in a future txg. 1628 * Search all labels on this vdev to find the configuration that 1629 * matches the txg for our uberblock. 1630 */ 1631 if (cb.ubl_vd != NULL) { 1632 vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. " 1633 "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg); 1634 1635 if (ub->ub_raidz_reflow_info != 1636 cb.ubl_latest.ub_raidz_reflow_info) { 1637 vdev_dbgmsg(cb.ubl_vd, 1638 "spa=%s best uberblock (txg=%llu info=0x%llx) " 1639 "has different raidz_reflow_info than latest " 1640 "uberblock (txg=%llu info=0x%llx)", 1641 spa->spa_name, 1642 (u_longlong_t)ub->ub_txg, 1643 (u_longlong_t)ub->ub_raidz_reflow_info, 1644 (u_longlong_t)cb.ubl_latest.ub_txg, 1645 (u_longlong_t)cb.ubl_latest.ub_raidz_reflow_info); 1646 memset(ub, 0, sizeof (uberblock_t)); 1647 spa_config_exit(spa, SCL_ALL, FTAG); 1648 return; 1649 } 1650 1651 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg); 1652 if (*config == NULL && spa->spa_extreme_rewind) { 1653 vdev_dbgmsg(cb.ubl_vd, "failed to read label config. " 1654 "Trying again without txg restrictions."); 1655 *config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX); 1656 } 1657 if (*config == NULL) { 1658 vdev_dbgmsg(cb.ubl_vd, "failed to read label config"); 1659 } 1660 } 1661 spa_config_exit(spa, SCL_ALL, FTAG); 1662 } 1663 1664 /* 1665 * For use when a leaf vdev is expanded. 1666 * The location of labels 2 and 3 changed, and at the new location the 1667 * uberblock rings are either empty or contain garbage. The sync will write 1668 * new configs there because the vdev is dirty, but expansion also needs the 1669 * uberblock rings copied. Read them from label 0 which did not move. 1670 * 1671 * Since the point is to populate labels {2,3} with valid uberblocks, 1672 * we zero uberblocks we fail to read or which are not valid. 1673 */ 1674 1675 static void 1676 vdev_copy_uberblocks(vdev_t *vd) 1677 { 1678 abd_t *ub_abd; 1679 zio_t *write_zio; 1680 int locks = (SCL_L2ARC | SCL_ZIO); 1681 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1682 ZIO_FLAG_SPECULATIVE; 1683 1684 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) == 1685 SCL_STATE); 1686 ASSERT(vd->vdev_ops->vdev_op_leaf); 1687 1688 /* 1689 * No uberblocks are stored on distributed spares, they may be 1690 * safely skipped when expanding a leaf vdev. 1691 */ 1692 if (vd->vdev_ops == &vdev_draid_spare_ops) 1693 return; 1694 1695 spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER); 1696 1697 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE); 1698 1699 write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags); 1700 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1701 const int src_label = 0; 1702 zio_t *zio; 1703 1704 zio = zio_root(vd->vdev_spa, NULL, NULL, flags); 1705 vdev_label_read(zio, vd, src_label, ub_abd, 1706 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1707 NULL, NULL, flags); 1708 1709 if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd))) 1710 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd)); 1711 1712 for (int l = 2; l < VDEV_LABELS; l++) 1713 vdev_label_write(write_zio, vd, l, ub_abd, 1714 VDEV_UBERBLOCK_OFFSET(vd, n), 1715 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL, 1716 flags | ZIO_FLAG_DONT_PROPAGATE); 1717 } 1718 (void) zio_wait(write_zio); 1719 1720 spa_config_exit(vd->vdev_spa, locks, FTAG); 1721 1722 abd_free(ub_abd); 1723 } 1724 1725 /* 1726 * On success, increment root zio's count of good writes. 1727 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 1728 */ 1729 static void 1730 vdev_uberblock_sync_done(zio_t *zio) 1731 { 1732 uint64_t *good_writes = zio->io_private; 1733 1734 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 1735 atomic_inc_64(good_writes); 1736 } 1737 1738 /* 1739 * Write the uberblock to all labels of all leaves of the specified vdev. 1740 */ 1741 static void 1742 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes, 1743 uberblock_t *ub, vdev_t *vd, int flags) 1744 { 1745 for (uint64_t c = 0; c < vd->vdev_children; c++) { 1746 vdev_uberblock_sync(zio, good_writes, 1747 ub, vd->vdev_child[c], flags); 1748 } 1749 1750 if (!vd->vdev_ops->vdev_op_leaf) 1751 return; 1752 1753 if (!vdev_writeable(vd)) 1754 return; 1755 1756 /* 1757 * There's no need to write uberblocks to a distributed spare, they 1758 * are already stored on all the leaves of the parent dRAID. For 1759 * this same reason vdev_uberblock_load_impl() skips distributed 1760 * spares when reading uberblocks. 1761 */ 1762 if (vd->vdev_ops == &vdev_draid_spare_ops) 1763 return; 1764 1765 /* If the vdev was expanded, need to copy uberblock rings. */ 1766 if (vd->vdev_state == VDEV_STATE_HEALTHY && 1767 vd->vdev_copy_uberblocks == B_TRUE) { 1768 vdev_copy_uberblocks(vd); 1769 vd->vdev_copy_uberblocks = B_FALSE; 1770 } 1771 1772 /* 1773 * We chose a slot based on the txg. If this uberblock has a special 1774 * RAIDZ expansion state, then it is essentially an update of the 1775 * current uberblock (it has the same txg). However, the current 1776 * state is committed, so we want to write it to a different slot. If 1777 * we overwrote the same slot, and we lose power during the uberblock 1778 * write, and the disk does not do single-sector overwrites 1779 * atomically (even though it is required to - i.e. we should see 1780 * either the old or the new uberblock), then we could lose this 1781 * txg's uberblock. Rewinding to the previous txg's uberblock may not 1782 * be possible because RAIDZ expansion may have already overwritten 1783 * some of the data, so we need the progress indicator in the 1784 * uberblock. 1785 */ 1786 int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0; 1787 int n = (ub->ub_txg - (RRSS_GET_STATE(ub) == RRSS_SCRATCH_VALID)) % 1788 (VDEV_UBERBLOCK_COUNT(vd) - m); 1789 1790 /* Copy the uberblock_t into the ABD */ 1791 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE); 1792 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t)); 1793 abd_zero_off(ub_abd, sizeof (uberblock_t), 1794 VDEV_UBERBLOCK_SIZE(vd) - sizeof (uberblock_t)); 1795 1796 for (int l = 0; l < VDEV_LABELS; l++) 1797 vdev_label_write(zio, vd, l, ub_abd, 1798 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1799 vdev_uberblock_sync_done, good_writes, 1800 flags | ZIO_FLAG_DONT_PROPAGATE); 1801 1802 abd_free(ub_abd); 1803 } 1804 1805 /* Sync the uberblocks to all vdevs in svd[] */ 1806 int 1807 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 1808 { 1809 spa_t *spa = svd[0]->vdev_spa; 1810 zio_t *zio; 1811 uint64_t good_writes = 0; 1812 1813 zio = zio_root(spa, NULL, NULL, flags); 1814 1815 for (int v = 0; v < svdcount; v++) 1816 vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags); 1817 1818 if (spa->spa_aux_sync_uber) { 1819 for (int v = 0; v < spa->spa_spares.sav_count; v++) { 1820 vdev_uberblock_sync(zio, &good_writes, ub, 1821 spa->spa_spares.sav_vdevs[v], flags); 1822 } 1823 for (int v = 0; v < spa->spa_l2cache.sav_count; v++) { 1824 vdev_uberblock_sync(zio, &good_writes, ub, 1825 spa->spa_l2cache.sav_vdevs[v], flags); 1826 } 1827 } 1828 (void) zio_wait(zio); 1829 1830 /* 1831 * Flush the uberblocks to disk. This ensures that the odd labels 1832 * are no longer needed (because the new uberblocks and the even 1833 * labels are safely on disk), so it is safe to overwrite them. 1834 */ 1835 zio = zio_root(spa, NULL, NULL, flags); 1836 1837 for (int v = 0; v < svdcount; v++) { 1838 if (vdev_writeable(svd[v])) { 1839 zio_flush(zio, svd[v]); 1840 } 1841 } 1842 if (spa->spa_aux_sync_uber) { 1843 spa->spa_aux_sync_uber = B_FALSE; 1844 for (int v = 0; v < spa->spa_spares.sav_count; v++) { 1845 if (vdev_writeable(spa->spa_spares.sav_vdevs[v])) { 1846 zio_flush(zio, spa->spa_spares.sav_vdevs[v]); 1847 } 1848 } 1849 for (int v = 0; v < spa->spa_l2cache.sav_count; v++) { 1850 if (vdev_writeable(spa->spa_l2cache.sav_vdevs[v])) { 1851 zio_flush(zio, spa->spa_l2cache.sav_vdevs[v]); 1852 } 1853 } 1854 } 1855 1856 (void) zio_wait(zio); 1857 1858 return (good_writes >= 1 ? 0 : EIO); 1859 } 1860 1861 /* 1862 * On success, increment the count of good writes for our top-level vdev. 1863 */ 1864 static void 1865 vdev_label_sync_done(zio_t *zio) 1866 { 1867 uint64_t *good_writes = zio->io_private; 1868 1869 if (zio->io_error == 0) 1870 atomic_inc_64(good_writes); 1871 } 1872 1873 /* 1874 * If there weren't enough good writes, indicate failure to the parent. 1875 */ 1876 static void 1877 vdev_label_sync_top_done(zio_t *zio) 1878 { 1879 uint64_t *good_writes = zio->io_private; 1880 1881 if (*good_writes == 0) 1882 zio->io_error = SET_ERROR(EIO); 1883 1884 kmem_free(good_writes, sizeof (uint64_t)); 1885 } 1886 1887 /* 1888 * We ignore errors for log and cache devices, simply free the private data. 1889 */ 1890 static void 1891 vdev_label_sync_ignore_done(zio_t *zio) 1892 { 1893 kmem_free(zio->io_private, sizeof (uint64_t)); 1894 } 1895 1896 /* 1897 * Write all even or odd labels to all leaves of the specified vdev. 1898 */ 1899 static void 1900 vdev_label_sync(zio_t *zio, uint64_t *good_writes, 1901 vdev_t *vd, int l, uint64_t txg, int flags) 1902 { 1903 nvlist_t *label; 1904 vdev_phys_t *vp; 1905 abd_t *vp_abd; 1906 char *buf; 1907 size_t buflen; 1908 vdev_t *pvd = vd->vdev_parent; 1909 boolean_t spare_in_use = B_FALSE; 1910 1911 for (int c = 0; c < vd->vdev_children; c++) { 1912 vdev_label_sync(zio, good_writes, 1913 vd->vdev_child[c], l, txg, flags); 1914 } 1915 1916 if (!vd->vdev_ops->vdev_op_leaf) 1917 return; 1918 1919 if (!vdev_writeable(vd)) 1920 return; 1921 1922 /* 1923 * The top-level config never needs to be written to a distributed 1924 * spare. When read vdev_dspare_label_read_config() will generate 1925 * the config for the vdev_label_read_config(). 1926 */ 1927 if (vd->vdev_ops == &vdev_draid_spare_ops) 1928 return; 1929 1930 if (pvd && pvd->vdev_ops == &vdev_spare_ops) 1931 spare_in_use = B_TRUE; 1932 1933 /* 1934 * Generate a label describing the top-level config to which we belong. 1935 */ 1936 if ((vd->vdev_isspare && !spare_in_use) || vd->vdev_isl2cache) { 1937 label = vdev_aux_label_generate(vd, vd->vdev_isspare); 1938 } else { 1939 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 1940 } 1941 1942 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 1943 abd_zero(vp_abd, sizeof (vdev_phys_t)); 1944 vp = abd_to_buf(vp_abd); 1945 1946 buf = vp->vp_nvlist; 1947 buflen = sizeof (vp->vp_nvlist); 1948 1949 if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) { 1950 for (; l < VDEV_LABELS; l += 2) { 1951 vdev_label_write(zio, vd, l, vp_abd, 1952 offsetof(vdev_label_t, vl_vdev_phys), 1953 sizeof (vdev_phys_t), 1954 vdev_label_sync_done, good_writes, 1955 flags | ZIO_FLAG_DONT_PROPAGATE); 1956 } 1957 } 1958 1959 abd_free(vp_abd); 1960 nvlist_free(label); 1961 } 1962 1963 static int 1964 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 1965 { 1966 list_t *dl = &spa->spa_config_dirty_list; 1967 vdev_t *vd; 1968 zio_t *zio; 1969 int error; 1970 1971 /* 1972 * Write the new labels to disk. 1973 */ 1974 zio = zio_root(spa, NULL, NULL, flags); 1975 1976 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 1977 uint64_t *good_writes; 1978 1979 ASSERT(!vd->vdev_ishole); 1980 1981 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 1982 zio_t *vio = zio_null(zio, spa, NULL, 1983 (vd->vdev_islog || vd->vdev_aux != NULL) ? 1984 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 1985 good_writes, flags); 1986 vdev_label_sync(vio, good_writes, vd, l, txg, flags); 1987 zio_nowait(vio); 1988 } 1989 1990 /* 1991 * AUX path may have changed during import 1992 */ 1993 spa_aux_vdev_t *sav[2] = {&spa->spa_spares, &spa->spa_l2cache}; 1994 for (int i = 0; i < 2; i++) { 1995 for (int v = 0; v < sav[i]->sav_count; v++) { 1996 uint64_t *good_writes; 1997 if (!sav[i]->sav_label_sync) 1998 continue; 1999 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 2000 zio_t *vio = zio_null(zio, spa, NULL, 2001 vdev_label_sync_ignore_done, good_writes, flags); 2002 vdev_label_sync(vio, good_writes, sav[i]->sav_vdevs[v], 2003 l, txg, flags); 2004 zio_nowait(vio); 2005 } 2006 } 2007 2008 error = zio_wait(zio); 2009 2010 /* 2011 * Flush the new labels to disk. 2012 */ 2013 zio = zio_root(spa, NULL, NULL, flags); 2014 2015 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 2016 zio_flush(zio, vd); 2017 2018 for (int i = 0; i < 2; i++) { 2019 if (!sav[i]->sav_label_sync) 2020 continue; 2021 for (int v = 0; v < sav[i]->sav_count; v++) 2022 zio_flush(zio, sav[i]->sav_vdevs[v]); 2023 if (l == 1) 2024 sav[i]->sav_label_sync = B_FALSE; 2025 } 2026 2027 (void) zio_wait(zio); 2028 2029 return (error); 2030 } 2031 2032 /* 2033 * Sync the uberblock and any changes to the vdev configuration. 2034 * 2035 * The order of operations is carefully crafted to ensure that 2036 * if the system panics or loses power at any time, the state on disk 2037 * is still transactionally consistent. The in-line comments below 2038 * describe the failure semantics at each stage. 2039 * 2040 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 2041 * at any time, you can just call it again, and it will resume its work. 2042 */ 2043 int 2044 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg) 2045 { 2046 spa_t *spa = svd[0]->vdev_spa; 2047 uberblock_t *ub = &spa->spa_uberblock; 2048 int error = 0; 2049 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 2050 2051 ASSERT(svdcount != 0); 2052 retry: 2053 /* 2054 * Normally, we don't want to try too hard to write every label and 2055 * uberblock. If there is a flaky disk, we don't want the rest of the 2056 * sync process to block while we retry. But if we can't write a 2057 * single label out, we should retry with ZIO_FLAG_TRYHARD before 2058 * bailing out and declaring the pool faulted. 2059 */ 2060 if (error != 0) { 2061 if ((flags & ZIO_FLAG_TRYHARD) != 0) 2062 return (error); 2063 flags |= ZIO_FLAG_TRYHARD; 2064 } 2065 2066 ASSERT(ub->ub_txg <= txg); 2067 2068 /* 2069 * If this isn't a resync due to I/O errors, 2070 * and nothing changed in this transaction group, 2071 * and multihost protection isn't enabled, 2072 * and the vdev configuration hasn't changed, 2073 * then there's nothing to do. 2074 */ 2075 if (ub->ub_txg < txg) { 2076 boolean_t changed = uberblock_update(ub, spa->spa_root_vdev, 2077 txg, spa->spa_mmp.mmp_delay); 2078 2079 if (!changed && list_is_empty(&spa->spa_config_dirty_list) && 2080 !spa_multihost(spa)) 2081 return (0); 2082 } 2083 2084 if (txg > spa_freeze_txg(spa)) 2085 return (0); 2086 2087 ASSERT(txg <= spa->spa_final_txg); 2088 2089 /* 2090 * Flush the write cache of every disk that's been written to 2091 * in this transaction group. This ensures that all blocks 2092 * written in this txg will be committed to stable storage 2093 * before any uberblock that references them. 2094 */ 2095 zio_t *zio = zio_root(spa, NULL, NULL, flags); 2096 2097 for (vdev_t *vd = 2098 txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL; 2099 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 2100 zio_flush(zio, vd); 2101 2102 (void) zio_wait(zio); 2103 2104 /* 2105 * Sync out the even labels (L0, L2) for every dirty vdev. If the 2106 * system dies in the middle of this process, that's OK: all of the 2107 * even labels that made it to disk will be newer than any uberblock, 2108 * and will therefore be considered invalid. The odd labels (L1, L3), 2109 * which have not yet been touched, will still be valid. We flush 2110 * the new labels to disk to ensure that all even-label updates 2111 * are committed to stable storage before the uberblock update. 2112 */ 2113 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) { 2114 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 2115 zfs_dbgmsg("vdev_label_sync_list() returned error %d " 2116 "for pool '%s' when syncing out the even labels " 2117 "of dirty vdevs", error, spa_name(spa)); 2118 } 2119 goto retry; 2120 } 2121 2122 /* 2123 * Sync the uberblocks to all vdevs in svd[]. 2124 * If the system dies in the middle of this step, there are two cases 2125 * to consider, and the on-disk state is consistent either way: 2126 * 2127 * (1) If none of the new uberblocks made it to disk, then the 2128 * previous uberblock will be the newest, and the odd labels 2129 * (which had not yet been touched) will be valid with respect 2130 * to that uberblock. 2131 * 2132 * (2) If one or more new uberblocks made it to disk, then they 2133 * will be the newest, and the even labels (which had all 2134 * been successfully committed) will be valid with respect 2135 * to the new uberblocks. 2136 */ 2137 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) { 2138 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 2139 zfs_dbgmsg("vdev_uberblock_sync_list() returned error " 2140 "%d for pool '%s'", error, spa_name(spa)); 2141 } 2142 goto retry; 2143 } 2144 2145 if (spa_multihost(spa)) 2146 mmp_update_uberblock(spa, ub); 2147 2148 /* 2149 * Sync out odd labels for every dirty vdev. If the system dies 2150 * in the middle of this process, the even labels and the new 2151 * uberblocks will suffice to open the pool. The next time 2152 * the pool is opened, the first thing we'll do -- before any 2153 * user data is modified -- is mark every vdev dirty so that 2154 * all labels will be brought up to date. We flush the new labels 2155 * to disk to ensure that all odd-label updates are committed to 2156 * stable storage before the next transaction group begins. 2157 */ 2158 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) { 2159 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 2160 zfs_dbgmsg("vdev_label_sync_list() returned error %d " 2161 "for pool '%s' when syncing out the odd labels of " 2162 "dirty vdevs", error, spa_name(spa)); 2163 } 2164 goto retry; 2165 } 2166 2167 return (0); 2168 } 2169