1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2017, Intel Corporation. 26 */ 27 28 /* 29 * Virtual Device Labels 30 * --------------------- 31 * 32 * The vdev label serves several distinct purposes: 33 * 34 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 35 * identity within the pool. 36 * 37 * 2. Verify that all the devices given in a configuration are present 38 * within the pool. 39 * 40 * 3. Determine the uberblock for the pool. 41 * 42 * 4. In case of an import operation, determine the configuration of the 43 * toplevel vdev of which it is a part. 44 * 45 * 5. If an import operation cannot find all the devices in the pool, 46 * provide enough information to the administrator to determine which 47 * devices are missing. 48 * 49 * It is important to note that while the kernel is responsible for writing the 50 * label, it only consumes the information in the first three cases. The 51 * latter information is only consumed in userland when determining the 52 * configuration to import a pool. 53 * 54 * 55 * Label Organization 56 * ------------------ 57 * 58 * Before describing the contents of the label, it's important to understand how 59 * the labels are written and updated with respect to the uberblock. 60 * 61 * When the pool configuration is altered, either because it was newly created 62 * or a device was added, we want to update all the labels such that we can deal 63 * with fatal failure at any point. To this end, each disk has two labels which 64 * are updated before and after the uberblock is synced. Assuming we have 65 * labels and an uberblock with the following transaction groups: 66 * 67 * L1 UB L2 68 * +------+ +------+ +------+ 69 * | | | | | | 70 * | t10 | | t10 | | t10 | 71 * | | | | | | 72 * +------+ +------+ +------+ 73 * 74 * In this stable state, the labels and the uberblock were all updated within 75 * the same transaction group (10). Each label is mirrored and checksummed, so 76 * that we can detect when we fail partway through writing the label. 77 * 78 * In order to identify which labels are valid, the labels are written in the 79 * following manner: 80 * 81 * 1. For each vdev, update 'L1' to the new label 82 * 2. Update the uberblock 83 * 3. For each vdev, update 'L2' to the new label 84 * 85 * Given arbitrary failure, we can determine the correct label to use based on 86 * the transaction group. If we fail after updating L1 but before updating the 87 * UB, we will notice that L1's transaction group is greater than the uberblock, 88 * so L2 must be valid. If we fail after writing the uberblock but before 89 * writing L2, we will notice that L2's transaction group is less than L1, and 90 * therefore L1 is valid. 91 * 92 * Another added complexity is that not every label is updated when the config 93 * is synced. If we add a single device, we do not want to have to re-write 94 * every label for every device in the pool. This means that both L1 and L2 may 95 * be older than the pool uberblock, because the necessary information is stored 96 * on another vdev. 97 * 98 * 99 * On-disk Format 100 * -------------- 101 * 102 * The vdev label consists of two distinct parts, and is wrapped within the 103 * vdev_label_t structure. The label includes 8k of padding to permit legacy 104 * VTOC disk labels, but is otherwise ignored. 105 * 106 * The first half of the label is a packed nvlist which contains pool wide 107 * properties, per-vdev properties, and configuration information. It is 108 * described in more detail below. 109 * 110 * The latter half of the label consists of a redundant array of uberblocks. 111 * These uberblocks are updated whenever a transaction group is committed, 112 * or when the configuration is updated. When a pool is loaded, we scan each 113 * vdev for the 'best' uberblock. 114 * 115 * 116 * Configuration Information 117 * ------------------------- 118 * 119 * The nvlist describing the pool and vdev contains the following elements: 120 * 121 * version ZFS on-disk version 122 * name Pool name 123 * state Pool state 124 * txg Transaction group in which this label was written 125 * pool_guid Unique identifier for this pool 126 * vdev_tree An nvlist describing vdev tree. 127 * features_for_read 128 * An nvlist of the features necessary for reading the MOS. 129 * 130 * Each leaf device label also contains the following: 131 * 132 * top_guid Unique ID for top-level vdev in which this is contained 133 * guid Unique ID for the leaf vdev 134 * 135 * The 'vs' configuration follows the format described in 'spa_config.c'. 136 */ 137 138 #include <sys/zfs_context.h> 139 #include <sys/spa.h> 140 #include <sys/spa_impl.h> 141 #include <sys/dmu.h> 142 #include <sys/zap.h> 143 #include <sys/vdev.h> 144 #include <sys/vdev_impl.h> 145 #include <sys/uberblock_impl.h> 146 #include <sys/metaslab.h> 147 #include <sys/metaslab_impl.h> 148 #include <sys/zio.h> 149 #include <sys/dsl_scan.h> 150 #include <sys/abd.h> 151 #include <sys/fs/zfs.h> 152 #include <sys/byteorder.h> 153 #include <sys/zfs_bootenv.h> 154 155 /* 156 * Basic routines to read and write from a vdev label. 157 * Used throughout the rest of this file. 158 */ 159 uint64_t 160 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 161 { 162 ASSERT(offset < sizeof (vdev_label_t)); 163 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 164 165 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 166 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 167 } 168 169 /* 170 * Returns back the vdev label associated with the passed in offset. 171 */ 172 int 173 vdev_label_number(uint64_t psize, uint64_t offset) 174 { 175 int l; 176 177 if (offset >= psize - VDEV_LABEL_END_SIZE) { 178 offset -= psize - VDEV_LABEL_END_SIZE; 179 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 180 } 181 l = offset / sizeof (vdev_label_t); 182 return (l < VDEV_LABELS ? l : -1); 183 } 184 185 static void 186 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 187 uint64_t size, zio_done_func_t *done, void *private, int flags) 188 { 189 ASSERT( 190 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE || 191 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE); 192 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 193 194 zio_nowait(zio_read_phys(zio, vd, 195 vdev_label_offset(vd->vdev_psize, l, offset), 196 size, buf, ZIO_CHECKSUM_LABEL, done, private, 197 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 198 } 199 200 void 201 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 202 uint64_t size, zio_done_func_t *done, void *private, int flags) 203 { 204 ASSERT( 205 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE || 206 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE); 207 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 208 209 zio_nowait(zio_write_phys(zio, vd, 210 vdev_label_offset(vd->vdev_psize, l, offset), 211 size, buf, ZIO_CHECKSUM_LABEL, done, private, 212 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 213 } 214 215 /* 216 * Generate the nvlist representing this vdev's stats 217 */ 218 void 219 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv) 220 { 221 nvlist_t *nvx; 222 vdev_stat_t *vs; 223 vdev_stat_ex_t *vsx; 224 225 vs = kmem_alloc(sizeof (*vs), KM_SLEEP); 226 vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP); 227 228 vdev_get_stats_ex(vd, vs, vsx); 229 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, 230 (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t)); 231 232 /* 233 * Add extended stats into a special extended stats nvlist. This keeps 234 * all the extended stats nicely grouped together. The extended stats 235 * nvlist is then added to the main nvlist. 236 */ 237 nvx = fnvlist_alloc(); 238 239 /* ZIOs in flight to disk */ 240 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE, 241 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]); 242 243 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE, 244 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]); 245 246 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE, 247 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]); 248 249 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE, 250 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]); 251 252 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE, 253 vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]); 254 255 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE, 256 vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]); 257 258 /* ZIOs pending */ 259 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE, 260 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]); 261 262 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE, 263 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]); 264 265 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE, 266 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]); 267 268 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE, 269 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]); 270 271 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE, 272 vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]); 273 274 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE, 275 vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]); 276 277 /* Histograms */ 278 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO, 279 vsx->vsx_total_histo[ZIO_TYPE_READ], 280 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ])); 281 282 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO, 283 vsx->vsx_total_histo[ZIO_TYPE_WRITE], 284 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE])); 285 286 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO, 287 vsx->vsx_disk_histo[ZIO_TYPE_READ], 288 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ])); 289 290 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO, 291 vsx->vsx_disk_histo[ZIO_TYPE_WRITE], 292 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE])); 293 294 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO, 295 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ], 296 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ])); 297 298 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO, 299 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE], 300 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE])); 301 302 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO, 303 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ], 304 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ])); 305 306 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO, 307 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE], 308 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE])); 309 310 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO, 311 vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB], 312 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB])); 313 314 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO, 315 vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM], 316 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM])); 317 318 /* Request sizes */ 319 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO, 320 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ], 321 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ])); 322 323 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO, 324 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE], 325 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE])); 326 327 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO, 328 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ], 329 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ])); 330 331 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO, 332 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE], 333 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE])); 334 335 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO, 336 vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB], 337 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB])); 338 339 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO, 340 vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM], 341 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM])); 342 343 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO, 344 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ], 345 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ])); 346 347 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO, 348 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE], 349 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE])); 350 351 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO, 352 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ], 353 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ])); 354 355 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO, 356 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE], 357 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE])); 358 359 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO, 360 vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB], 361 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB])); 362 363 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO, 364 vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM], 365 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM])); 366 367 /* IO delays */ 368 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios); 369 370 /* Add extended stats nvlist to main nvlist */ 371 fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx); 372 373 fnvlist_free(nvx); 374 kmem_free(vs, sizeof (*vs)); 375 kmem_free(vsx, sizeof (*vsx)); 376 } 377 378 static void 379 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl) 380 { 381 spa_t *spa = vd->vdev_spa; 382 383 if (vd != spa->spa_root_vdev) 384 return; 385 386 /* provide either current or previous scan information */ 387 pool_scan_stat_t ps; 388 if (spa_scan_get_stats(spa, &ps) == 0) { 389 fnvlist_add_uint64_array(nvl, 390 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps, 391 sizeof (pool_scan_stat_t) / sizeof (uint64_t)); 392 } 393 394 pool_removal_stat_t prs; 395 if (spa_removal_get_stats(spa, &prs) == 0) { 396 fnvlist_add_uint64_array(nvl, 397 ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs, 398 sizeof (prs) / sizeof (uint64_t)); 399 } 400 401 pool_checkpoint_stat_t pcs; 402 if (spa_checkpoint_get_stats(spa, &pcs) == 0) { 403 fnvlist_add_uint64_array(nvl, 404 ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs, 405 sizeof (pcs) / sizeof (uint64_t)); 406 } 407 } 408 409 static void 410 top_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl) 411 { 412 if (vd == vd->vdev_top) { 413 vdev_rebuild_stat_t vrs; 414 if (vdev_rebuild_get_stats(vd, &vrs) == 0) { 415 fnvlist_add_uint64_array(nvl, 416 ZPOOL_CONFIG_REBUILD_STATS, (uint64_t *)&vrs, 417 sizeof (vrs) / sizeof (uint64_t)); 418 } 419 } 420 } 421 422 /* 423 * Generate the nvlist representing this vdev's config. 424 */ 425 nvlist_t * 426 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 427 vdev_config_flag_t flags) 428 { 429 nvlist_t *nv = NULL; 430 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 431 432 nv = fnvlist_alloc(); 433 434 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type); 435 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE))) 436 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id); 437 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid); 438 439 if (vd->vdev_path != NULL) 440 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path); 441 442 if (vd->vdev_devid != NULL) 443 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid); 444 445 if (vd->vdev_physpath != NULL) 446 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 447 vd->vdev_physpath); 448 449 if (vd->vdev_enc_sysfs_path != NULL) 450 fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 451 vd->vdev_enc_sysfs_path); 452 453 if (vd->vdev_fru != NULL) 454 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru); 455 456 if (vd->vdev_nparity != 0) { 457 ASSERT(strcmp(vd->vdev_ops->vdev_op_type, 458 VDEV_TYPE_RAIDZ) == 0); 459 460 /* 461 * Make sure someone hasn't managed to sneak a fancy new vdev 462 * into a crufty old storage pool. 463 */ 464 ASSERT(vd->vdev_nparity == 1 || 465 (vd->vdev_nparity <= 2 && 466 spa_version(spa) >= SPA_VERSION_RAIDZ2) || 467 (vd->vdev_nparity <= 3 && 468 spa_version(spa) >= SPA_VERSION_RAIDZ3)); 469 470 /* 471 * Note that we'll add the nparity tag even on storage pools 472 * that only support a single parity device -- older software 473 * will just ignore it. 474 */ 475 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity); 476 } 477 478 if (vd->vdev_wholedisk != -1ULL) 479 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 480 vd->vdev_wholedisk); 481 482 if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING)) 483 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1); 484 485 if (vd->vdev_isspare) 486 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1); 487 488 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) && 489 vd == vd->vdev_top) { 490 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 491 vd->vdev_ms_array); 492 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 493 vd->vdev_ms_shift); 494 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 495 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 496 vd->vdev_asize); 497 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog); 498 if (vd->vdev_removing) { 499 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING, 500 vd->vdev_removing); 501 } 502 503 /* zpool command expects alloc class data */ 504 if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) { 505 const char *bias = NULL; 506 507 switch (vd->vdev_alloc_bias) { 508 case VDEV_BIAS_LOG: 509 bias = VDEV_ALLOC_BIAS_LOG; 510 break; 511 case VDEV_BIAS_SPECIAL: 512 bias = VDEV_ALLOC_BIAS_SPECIAL; 513 break; 514 case VDEV_BIAS_DEDUP: 515 bias = VDEV_ALLOC_BIAS_DEDUP; 516 break; 517 default: 518 ASSERT3U(vd->vdev_alloc_bias, ==, 519 VDEV_BIAS_NONE); 520 } 521 fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 522 bias); 523 } 524 } 525 526 if (vd->vdev_dtl_sm != NULL) { 527 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 528 space_map_object(vd->vdev_dtl_sm)); 529 } 530 531 if (vic->vic_mapping_object != 0) { 532 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 533 vic->vic_mapping_object); 534 } 535 536 if (vic->vic_births_object != 0) { 537 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 538 vic->vic_births_object); 539 } 540 541 if (vic->vic_prev_indirect_vdev != UINT64_MAX) { 542 fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 543 vic->vic_prev_indirect_vdev); 544 } 545 546 if (vd->vdev_crtxg) 547 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg); 548 549 if (vd->vdev_expansion_time) 550 fnvlist_add_uint64(nv, ZPOOL_CONFIG_EXPANSION_TIME, 551 vd->vdev_expansion_time); 552 553 if (flags & VDEV_CONFIG_MOS) { 554 if (vd->vdev_leaf_zap != 0) { 555 ASSERT(vd->vdev_ops->vdev_op_leaf); 556 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP, 557 vd->vdev_leaf_zap); 558 } 559 560 if (vd->vdev_top_zap != 0) { 561 ASSERT(vd == vd->vdev_top); 562 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 563 vd->vdev_top_zap); 564 } 565 566 if (vd->vdev_resilver_deferred) { 567 ASSERT(vd->vdev_ops->vdev_op_leaf); 568 ASSERT(spa->spa_resilver_deferred); 569 fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER); 570 } 571 } 572 573 if (getstats) { 574 vdev_config_generate_stats(vd, nv); 575 576 root_vdev_actions_getprogress(vd, nv); 577 top_vdev_actions_getprogress(vd, nv); 578 579 /* 580 * Note: this can be called from open context 581 * (spa_get_stats()), so we need the rwlock to prevent 582 * the mapping from being changed by condensing. 583 */ 584 rw_enter(&vd->vdev_indirect_rwlock, RW_READER); 585 if (vd->vdev_indirect_mapping != NULL) { 586 ASSERT(vd->vdev_indirect_births != NULL); 587 vdev_indirect_mapping_t *vim = 588 vd->vdev_indirect_mapping; 589 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, 590 vdev_indirect_mapping_size(vim)); 591 } 592 rw_exit(&vd->vdev_indirect_rwlock); 593 if (vd->vdev_mg != NULL && 594 vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) { 595 /* 596 * Compute approximately how much memory would be used 597 * for the indirect mapping if this device were to 598 * be removed. 599 * 600 * Note: If the frag metric is invalid, then not 601 * enough metaslabs have been converted to have 602 * histograms. 603 */ 604 uint64_t seg_count = 0; 605 uint64_t to_alloc = vd->vdev_stat.vs_alloc; 606 607 /* 608 * There are the same number of allocated segments 609 * as free segments, so we will have at least one 610 * entry per free segment. However, small free 611 * segments (smaller than vdev_removal_max_span) 612 * will be combined with adjacent allocated segments 613 * as a single mapping. 614 */ 615 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 616 if (1ULL << (i + 1) < vdev_removal_max_span) { 617 to_alloc += 618 vd->vdev_mg->mg_histogram[i] << 619 (i + 1); 620 } else { 621 seg_count += 622 vd->vdev_mg->mg_histogram[i]; 623 } 624 } 625 626 /* 627 * The maximum length of a mapping is 628 * zfs_remove_max_segment, so we need at least one entry 629 * per zfs_remove_max_segment of allocated data. 630 */ 631 seg_count += to_alloc / spa_remove_max_segment(spa); 632 633 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, 634 seg_count * 635 sizeof (vdev_indirect_mapping_entry_phys_t)); 636 } 637 } 638 639 if (!vd->vdev_ops->vdev_op_leaf) { 640 nvlist_t **child; 641 int c, idx; 642 643 ASSERT(!vd->vdev_ishole); 644 645 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 646 KM_SLEEP); 647 648 for (c = 0, idx = 0; c < vd->vdev_children; c++) { 649 vdev_t *cvd = vd->vdev_child[c]; 650 651 /* 652 * If we're generating an nvlist of removing 653 * vdevs then skip over any device which is 654 * not being removed. 655 */ 656 if ((flags & VDEV_CONFIG_REMOVING) && 657 !cvd->vdev_removing) 658 continue; 659 660 child[idx++] = vdev_config_generate(spa, cvd, 661 getstats, flags); 662 } 663 664 if (idx) { 665 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 666 child, idx); 667 } 668 669 for (c = 0; c < idx; c++) 670 nvlist_free(child[c]); 671 672 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 673 674 } else { 675 const char *aux = NULL; 676 677 if (vd->vdev_offline && !vd->vdev_tmpoffline) 678 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE); 679 if (vd->vdev_resilver_txg != 0) 680 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 681 vd->vdev_resilver_txg); 682 if (vd->vdev_rebuild_txg != 0) 683 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 684 vd->vdev_rebuild_txg); 685 if (vd->vdev_faulted) 686 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE); 687 if (vd->vdev_degraded) 688 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE); 689 if (vd->vdev_removed) 690 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE); 691 if (vd->vdev_unspare) 692 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE); 693 if (vd->vdev_ishole) 694 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE); 695 696 /* Set the reason why we're FAULTED/DEGRADED. */ 697 switch (vd->vdev_stat.vs_aux) { 698 case VDEV_AUX_ERR_EXCEEDED: 699 aux = "err_exceeded"; 700 break; 701 702 case VDEV_AUX_EXTERNAL: 703 aux = "external"; 704 break; 705 } 706 707 if (aux != NULL && !vd->vdev_tmpoffline) { 708 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux); 709 } else { 710 /* 711 * We're healthy - clear any previous AUX_STATE values. 712 */ 713 if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE)) 714 nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE); 715 } 716 717 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { 718 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, 719 vd->vdev_orig_guid); 720 } 721 } 722 723 return (nv); 724 } 725 726 /* 727 * Generate a view of the top-level vdevs. If we currently have holes 728 * in the namespace, then generate an array which contains a list of holey 729 * vdevs. Additionally, add the number of top-level children that currently 730 * exist. 731 */ 732 void 733 vdev_top_config_generate(spa_t *spa, nvlist_t *config) 734 { 735 vdev_t *rvd = spa->spa_root_vdev; 736 uint64_t *array; 737 uint_t c, idx; 738 739 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP); 740 741 for (c = 0, idx = 0; c < rvd->vdev_children; c++) { 742 vdev_t *tvd = rvd->vdev_child[c]; 743 744 if (tvd->vdev_ishole) { 745 array[idx++] = c; 746 } 747 } 748 749 if (idx) { 750 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, 751 array, idx) == 0); 752 } 753 754 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 755 rvd->vdev_children) == 0); 756 757 kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); 758 } 759 760 /* 761 * Returns the configuration from the label of the given vdev. For vdevs 762 * which don't have a txg value stored on their label (i.e. spares/cache) 763 * or have not been completely initialized (txg = 0) just return 764 * the configuration from the first valid label we find. Otherwise, 765 * find the most up-to-date label that does not exceed the specified 766 * 'txg' value. 767 */ 768 nvlist_t * 769 vdev_label_read_config(vdev_t *vd, uint64_t txg) 770 { 771 spa_t *spa = vd->vdev_spa; 772 nvlist_t *config = NULL; 773 vdev_phys_t *vp; 774 abd_t *vp_abd; 775 zio_t *zio; 776 uint64_t best_txg = 0; 777 uint64_t label_txg = 0; 778 int error = 0; 779 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 780 ZIO_FLAG_SPECULATIVE; 781 782 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 783 784 if (!vdev_readable(vd)) 785 return (NULL); 786 787 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 788 vp = abd_to_buf(vp_abd); 789 790 retry: 791 for (int l = 0; l < VDEV_LABELS; l++) { 792 nvlist_t *label = NULL; 793 794 zio = zio_root(spa, NULL, NULL, flags); 795 796 vdev_label_read(zio, vd, l, vp_abd, 797 offsetof(vdev_label_t, vl_vdev_phys), 798 sizeof (vdev_phys_t), NULL, NULL, flags); 799 800 if (zio_wait(zio) == 0 && 801 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 802 &label, 0) == 0) { 803 /* 804 * Auxiliary vdevs won't have txg values in their 805 * labels and newly added vdevs may not have been 806 * completely initialized so just return the 807 * configuration from the first valid label we 808 * encounter. 809 */ 810 error = nvlist_lookup_uint64(label, 811 ZPOOL_CONFIG_POOL_TXG, &label_txg); 812 if ((error || label_txg == 0) && !config) { 813 config = label; 814 break; 815 } else if (label_txg <= txg && label_txg > best_txg) { 816 best_txg = label_txg; 817 nvlist_free(config); 818 config = fnvlist_dup(label); 819 } 820 } 821 822 if (label != NULL) { 823 nvlist_free(label); 824 label = NULL; 825 } 826 } 827 828 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { 829 flags |= ZIO_FLAG_TRYHARD; 830 goto retry; 831 } 832 833 /* 834 * We found a valid label but it didn't pass txg restrictions. 835 */ 836 if (config == NULL && label_txg != 0) { 837 vdev_dbgmsg(vd, "label discarded as txg is too large " 838 "(%llu > %llu)", (u_longlong_t)label_txg, 839 (u_longlong_t)txg); 840 } 841 842 abd_free(vp_abd); 843 844 return (config); 845 } 846 847 /* 848 * Determine if a device is in use. The 'spare_guid' parameter will be filled 849 * in with the device guid if this spare is active elsewhere on the system. 850 */ 851 static boolean_t 852 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 853 uint64_t *spare_guid, uint64_t *l2cache_guid) 854 { 855 spa_t *spa = vd->vdev_spa; 856 uint64_t state, pool_guid, device_guid, txg, spare_pool; 857 uint64_t vdtxg = 0; 858 nvlist_t *label; 859 860 if (spare_guid) 861 *spare_guid = 0ULL; 862 if (l2cache_guid) 863 *l2cache_guid = 0ULL; 864 865 /* 866 * Read the label, if any, and perform some basic sanity checks. 867 */ 868 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) 869 return (B_FALSE); 870 871 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 872 &vdtxg); 873 874 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 875 &state) != 0 || 876 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 877 &device_guid) != 0) { 878 nvlist_free(label); 879 return (B_FALSE); 880 } 881 882 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 883 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 884 &pool_guid) != 0 || 885 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 886 &txg) != 0)) { 887 nvlist_free(label); 888 return (B_FALSE); 889 } 890 891 nvlist_free(label); 892 893 /* 894 * Check to see if this device indeed belongs to the pool it claims to 895 * be a part of. The only way this is allowed is if the device is a hot 896 * spare (which we check for later on). 897 */ 898 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 899 !spa_guid_exists(pool_guid, device_guid) && 900 !spa_spare_exists(device_guid, NULL, NULL) && 901 !spa_l2cache_exists(device_guid, NULL)) 902 return (B_FALSE); 903 904 /* 905 * If the transaction group is zero, then this an initialized (but 906 * unused) label. This is only an error if the create transaction 907 * on-disk is the same as the one we're using now, in which case the 908 * user has attempted to add the same vdev multiple times in the same 909 * transaction. 910 */ 911 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 912 txg == 0 && vdtxg == crtxg) 913 return (B_TRUE); 914 915 /* 916 * Check to see if this is a spare device. We do an explicit check for 917 * spa_has_spare() here because it may be on our pending list of spares 918 * to add. We also check if it is an l2cache device. 919 */ 920 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 921 spa_has_spare(spa, device_guid)) { 922 if (spare_guid) 923 *spare_guid = device_guid; 924 925 switch (reason) { 926 case VDEV_LABEL_CREATE: 927 case VDEV_LABEL_L2CACHE: 928 return (B_TRUE); 929 930 case VDEV_LABEL_REPLACE: 931 return (!spa_has_spare(spa, device_guid) || 932 spare_pool != 0ULL); 933 934 case VDEV_LABEL_SPARE: 935 return (spa_has_spare(spa, device_guid)); 936 default: 937 break; 938 } 939 } 940 941 /* 942 * Check to see if this is an l2cache device. 943 */ 944 if (spa_l2cache_exists(device_guid, NULL)) 945 return (B_TRUE); 946 947 /* 948 * We can't rely on a pool's state if it's been imported 949 * read-only. Instead we look to see if the pools is marked 950 * read-only in the namespace and set the state to active. 951 */ 952 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 953 (spa = spa_by_guid(pool_guid, device_guid)) != NULL && 954 spa_mode(spa) == SPA_MODE_READ) 955 state = POOL_STATE_ACTIVE; 956 957 /* 958 * If the device is marked ACTIVE, then this device is in use by another 959 * pool on the system. 960 */ 961 return (state == POOL_STATE_ACTIVE); 962 } 963 964 /* 965 * Initialize a vdev label. We check to make sure each leaf device is not in 966 * use, and writable. We put down an initial label which we will later 967 * overwrite with a complete label. Note that it's important to do this 968 * sequentially, not in parallel, so that we catch cases of multiple use of the 969 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 970 * itself. 971 */ 972 int 973 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 974 { 975 spa_t *spa = vd->vdev_spa; 976 nvlist_t *label; 977 vdev_phys_t *vp; 978 abd_t *vp_abd; 979 abd_t *bootenv; 980 uberblock_t *ub; 981 abd_t *ub_abd; 982 zio_t *zio; 983 char *buf; 984 size_t buflen; 985 int error; 986 uint64_t spare_guid = 0, l2cache_guid = 0; 987 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 988 989 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 990 991 for (int c = 0; c < vd->vdev_children; c++) 992 if ((error = vdev_label_init(vd->vdev_child[c], 993 crtxg, reason)) != 0) 994 return (error); 995 996 /* Track the creation time for this vdev */ 997 vd->vdev_crtxg = crtxg; 998 999 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa)) 1000 return (0); 1001 1002 /* 1003 * Dead vdevs cannot be initialized. 1004 */ 1005 if (vdev_is_dead(vd)) 1006 return (SET_ERROR(EIO)); 1007 1008 /* 1009 * Determine if the vdev is in use. 1010 */ 1011 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && 1012 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 1013 return (SET_ERROR(EBUSY)); 1014 1015 /* 1016 * If this is a request to add or replace a spare or l2cache device 1017 * that is in use elsewhere on the system, then we must update the 1018 * guid (which was initialized to a random value) to reflect the 1019 * actual GUID (which is shared between multiple pools). 1020 */ 1021 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 1022 spare_guid != 0ULL) { 1023 uint64_t guid_delta = spare_guid - vd->vdev_guid; 1024 1025 vd->vdev_guid += guid_delta; 1026 1027 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1028 pvd->vdev_guid_sum += guid_delta; 1029 1030 /* 1031 * If this is a replacement, then we want to fallthrough to the 1032 * rest of the code. If we're adding a spare, then it's already 1033 * labeled appropriately and we can just return. 1034 */ 1035 if (reason == VDEV_LABEL_SPARE) 1036 return (0); 1037 ASSERT(reason == VDEV_LABEL_REPLACE || 1038 reason == VDEV_LABEL_SPLIT); 1039 } 1040 1041 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 1042 l2cache_guid != 0ULL) { 1043 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 1044 1045 vd->vdev_guid += guid_delta; 1046 1047 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1048 pvd->vdev_guid_sum += guid_delta; 1049 1050 /* 1051 * If this is a replacement, then we want to fallthrough to the 1052 * rest of the code. If we're adding an l2cache, then it's 1053 * already labeled appropriately and we can just return. 1054 */ 1055 if (reason == VDEV_LABEL_L2CACHE) 1056 return (0); 1057 ASSERT(reason == VDEV_LABEL_REPLACE); 1058 } 1059 1060 /* 1061 * Initialize its label. 1062 */ 1063 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 1064 abd_zero(vp_abd, sizeof (vdev_phys_t)); 1065 vp = abd_to_buf(vp_abd); 1066 1067 /* 1068 * Generate a label describing the pool and our top-level vdev. 1069 * We mark it as being from txg 0 to indicate that it's not 1070 * really part of an active pool just yet. The labels will 1071 * be written again with a meaningful txg by spa_sync(). 1072 */ 1073 if (reason == VDEV_LABEL_SPARE || 1074 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 1075 /* 1076 * For inactive hot spares, we generate a special label that 1077 * identifies as a mutually shared hot spare. We write the 1078 * label if we are adding a hot spare, or if we are removing an 1079 * active hot spare (in which case we want to revert the 1080 * labels). 1081 */ 1082 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1083 1084 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 1085 spa_version(spa)) == 0); 1086 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1087 POOL_STATE_SPARE) == 0); 1088 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 1089 vd->vdev_guid) == 0); 1090 } else if (reason == VDEV_LABEL_L2CACHE || 1091 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { 1092 /* 1093 * For level 2 ARC devices, add a special label. 1094 */ 1095 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1096 1097 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 1098 spa_version(spa)) == 0); 1099 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1100 POOL_STATE_L2CACHE) == 0); 1101 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 1102 vd->vdev_guid) == 0); 1103 } else { 1104 uint64_t txg = 0ULL; 1105 1106 if (reason == VDEV_LABEL_SPLIT) 1107 txg = spa->spa_uberblock.ub_txg; 1108 label = spa_config_generate(spa, vd, txg, B_FALSE); 1109 1110 /* 1111 * Add our creation time. This allows us to detect multiple 1112 * vdev uses as described above, and automatically expires if we 1113 * fail. 1114 */ 1115 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 1116 crtxg) == 0); 1117 } 1118 1119 buf = vp->vp_nvlist; 1120 buflen = sizeof (vp->vp_nvlist); 1121 1122 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 1123 if (error != 0) { 1124 nvlist_free(label); 1125 abd_free(vp_abd); 1126 /* EFAULT means nvlist_pack ran out of room */ 1127 return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL)); 1128 } 1129 1130 /* 1131 * Initialize uberblock template. 1132 */ 1133 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE); 1134 abd_zero(ub_abd, VDEV_UBERBLOCK_RING); 1135 abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t)); 1136 ub = abd_to_buf(ub_abd); 1137 ub->ub_txg = 0; 1138 1139 /* Initialize the 2nd padding area. */ 1140 bootenv = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); 1141 abd_zero(bootenv, VDEV_PAD_SIZE); 1142 1143 /* 1144 * Write everything in parallel. 1145 */ 1146 retry: 1147 zio = zio_root(spa, NULL, NULL, flags); 1148 1149 for (int l = 0; l < VDEV_LABELS; l++) { 1150 1151 vdev_label_write(zio, vd, l, vp_abd, 1152 offsetof(vdev_label_t, vl_vdev_phys), 1153 sizeof (vdev_phys_t), NULL, NULL, flags); 1154 1155 /* 1156 * Skip the 1st padding area. 1157 * Zero out the 2nd padding area where it might have 1158 * left over data from previous filesystem format. 1159 */ 1160 vdev_label_write(zio, vd, l, bootenv, 1161 offsetof(vdev_label_t, vl_be), 1162 VDEV_PAD_SIZE, NULL, NULL, flags); 1163 1164 vdev_label_write(zio, vd, l, ub_abd, 1165 offsetof(vdev_label_t, vl_uberblock), 1166 VDEV_UBERBLOCK_RING, NULL, NULL, flags); 1167 } 1168 1169 error = zio_wait(zio); 1170 1171 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 1172 flags |= ZIO_FLAG_TRYHARD; 1173 goto retry; 1174 } 1175 1176 nvlist_free(label); 1177 abd_free(bootenv); 1178 abd_free(ub_abd); 1179 abd_free(vp_abd); 1180 1181 /* 1182 * If this vdev hasn't been previously identified as a spare, then we 1183 * mark it as such only if a) we are labeling it as a spare, or b) it 1184 * exists as a spare elsewhere in the system. Do the same for 1185 * level 2 ARC devices. 1186 */ 1187 if (error == 0 && !vd->vdev_isspare && 1188 (reason == VDEV_LABEL_SPARE || 1189 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 1190 spa_spare_add(vd); 1191 1192 if (error == 0 && !vd->vdev_isl2cache && 1193 (reason == VDEV_LABEL_L2CACHE || 1194 spa_l2cache_exists(vd->vdev_guid, NULL))) 1195 spa_l2cache_add(vd); 1196 1197 return (error); 1198 } 1199 1200 /* 1201 * Done callback for vdev_label_read_bootenv_impl. If this is the first 1202 * callback to finish, store our abd in the callback pointer. Otherwise, we 1203 * just free our abd and return. 1204 */ 1205 static void 1206 vdev_label_read_bootenv_done(zio_t *zio) 1207 { 1208 zio_t *rio = zio->io_private; 1209 abd_t **cbp = rio->io_private; 1210 1211 ASSERT3U(zio->io_size, ==, VDEV_PAD_SIZE); 1212 1213 if (zio->io_error == 0) { 1214 mutex_enter(&rio->io_lock); 1215 if (*cbp == NULL) { 1216 /* Will free this buffer in vdev_label_read_bootenv. */ 1217 *cbp = zio->io_abd; 1218 } else { 1219 abd_free(zio->io_abd); 1220 } 1221 mutex_exit(&rio->io_lock); 1222 } else { 1223 abd_free(zio->io_abd); 1224 } 1225 } 1226 1227 static void 1228 vdev_label_read_bootenv_impl(zio_t *zio, vdev_t *vd, int flags) 1229 { 1230 for (int c = 0; c < vd->vdev_children; c++) 1231 vdev_label_read_bootenv_impl(zio, vd->vdev_child[c], flags); 1232 1233 /* 1234 * We just use the first label that has a correct checksum; the 1235 * bootloader should have rewritten them all to be the same on boot, 1236 * and any changes we made since boot have been the same across all 1237 * labels. 1238 */ 1239 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1240 for (int l = 0; l < VDEV_LABELS; l++) { 1241 vdev_label_read(zio, vd, l, 1242 abd_alloc_linear(VDEV_PAD_SIZE, B_FALSE), 1243 offsetof(vdev_label_t, vl_be), VDEV_PAD_SIZE, 1244 vdev_label_read_bootenv_done, zio, flags); 1245 } 1246 } 1247 } 1248 1249 int 1250 vdev_label_read_bootenv(vdev_t *rvd, nvlist_t *bootenv) 1251 { 1252 nvlist_t *config; 1253 spa_t *spa = rvd->vdev_spa; 1254 abd_t *abd = NULL; 1255 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1256 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 1257 1258 ASSERT(bootenv); 1259 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1260 1261 zio_t *zio = zio_root(spa, NULL, &abd, flags); 1262 vdev_label_read_bootenv_impl(zio, rvd, flags); 1263 int err = zio_wait(zio); 1264 1265 if (abd != NULL) { 1266 char *buf; 1267 vdev_boot_envblock_t *vbe = abd_to_buf(abd); 1268 1269 vbe->vbe_version = ntohll(vbe->vbe_version); 1270 switch (vbe->vbe_version) { 1271 case VB_RAW: 1272 /* 1273 * if we have textual data in vbe_bootenv, create nvlist 1274 * with key "envmap". 1275 */ 1276 fnvlist_add_uint64(bootenv, BOOTENV_VERSION, VB_RAW); 1277 vbe->vbe_bootenv[sizeof (vbe->vbe_bootenv) - 1] = '\0'; 1278 fnvlist_add_string(bootenv, GRUB_ENVMAP, 1279 vbe->vbe_bootenv); 1280 break; 1281 1282 case VB_NVLIST: 1283 err = nvlist_unpack(vbe->vbe_bootenv, 1284 sizeof (vbe->vbe_bootenv), &config, 0); 1285 if (err == 0) { 1286 fnvlist_merge(bootenv, config); 1287 nvlist_free(config); 1288 break; 1289 } 1290 /* FALLTHROUGH */ 1291 default: 1292 /* Check for FreeBSD zfs bootonce command string */ 1293 buf = abd_to_buf(abd); 1294 if (*buf == '\0') { 1295 fnvlist_add_uint64(bootenv, BOOTENV_VERSION, 1296 VB_NVLIST); 1297 break; 1298 } 1299 fnvlist_add_string(bootenv, FREEBSD_BOOTONCE, buf); 1300 } 1301 1302 /* 1303 * abd was allocated in vdev_label_read_bootenv_impl() 1304 */ 1305 abd_free(abd); 1306 /* 1307 * If we managed to read any successfully, 1308 * return success. 1309 */ 1310 return (0); 1311 } 1312 return (err); 1313 } 1314 1315 int 1316 vdev_label_write_bootenv(vdev_t *vd, nvlist_t *env) 1317 { 1318 zio_t *zio; 1319 spa_t *spa = vd->vdev_spa; 1320 vdev_boot_envblock_t *bootenv; 1321 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1322 int error; 1323 size_t nvsize; 1324 char *nvbuf; 1325 1326 error = nvlist_size(env, &nvsize, NV_ENCODE_XDR); 1327 if (error != 0) 1328 return (SET_ERROR(error)); 1329 1330 if (nvsize >= sizeof (bootenv->vbe_bootenv)) { 1331 return (SET_ERROR(E2BIG)); 1332 } 1333 1334 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1335 1336 error = ENXIO; 1337 for (int c = 0; c < vd->vdev_children; c++) { 1338 int child_err; 1339 1340 child_err = vdev_label_write_bootenv(vd->vdev_child[c], env); 1341 /* 1342 * As long as any of the disks managed to write all of their 1343 * labels successfully, return success. 1344 */ 1345 if (child_err == 0) 1346 error = child_err; 1347 } 1348 1349 if (!vd->vdev_ops->vdev_op_leaf || vdev_is_dead(vd) || 1350 !vdev_writeable(vd)) { 1351 return (error); 1352 } 1353 ASSERT3U(sizeof (*bootenv), ==, VDEV_PAD_SIZE); 1354 abd_t *abd = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); 1355 abd_zero(abd, VDEV_PAD_SIZE); 1356 1357 bootenv = abd_borrow_buf_copy(abd, VDEV_PAD_SIZE); 1358 nvbuf = bootenv->vbe_bootenv; 1359 nvsize = sizeof (bootenv->vbe_bootenv); 1360 1361 bootenv->vbe_version = fnvlist_lookup_uint64(env, BOOTENV_VERSION); 1362 switch (bootenv->vbe_version) { 1363 case VB_RAW: 1364 if (nvlist_lookup_string(env, GRUB_ENVMAP, &nvbuf) == 0) { 1365 (void) strlcpy(bootenv->vbe_bootenv, nvbuf, nvsize); 1366 } 1367 error = 0; 1368 break; 1369 1370 case VB_NVLIST: 1371 error = nvlist_pack(env, &nvbuf, &nvsize, NV_ENCODE_XDR, 1372 KM_SLEEP); 1373 break; 1374 1375 default: 1376 error = EINVAL; 1377 break; 1378 } 1379 1380 if (error == 0) { 1381 bootenv->vbe_version = htonll(bootenv->vbe_version); 1382 abd_return_buf_copy(abd, bootenv, VDEV_PAD_SIZE); 1383 } else { 1384 abd_free(abd); 1385 return (SET_ERROR(error)); 1386 } 1387 1388 retry: 1389 zio = zio_root(spa, NULL, NULL, flags); 1390 for (int l = 0; l < VDEV_LABELS; l++) { 1391 vdev_label_write(zio, vd, l, abd, 1392 offsetof(vdev_label_t, vl_be), 1393 VDEV_PAD_SIZE, NULL, NULL, flags); 1394 } 1395 1396 error = zio_wait(zio); 1397 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 1398 flags |= ZIO_FLAG_TRYHARD; 1399 goto retry; 1400 } 1401 1402 abd_free(abd); 1403 return (error); 1404 } 1405 1406 /* 1407 * ========================================================================== 1408 * uberblock load/sync 1409 * ========================================================================== 1410 */ 1411 1412 /* 1413 * Consider the following situation: txg is safely synced to disk. We've 1414 * written the first uberblock for txg + 1, and then we lose power. When we 1415 * come back up, we fail to see the uberblock for txg + 1 because, say, 1416 * it was on a mirrored device and the replica to which we wrote txg + 1 1417 * is now offline. If we then make some changes and sync txg + 1, and then 1418 * the missing replica comes back, then for a few seconds we'll have two 1419 * conflicting uberblocks on disk with the same txg. The solution is simple: 1420 * among uberblocks with equal txg, choose the one with the latest timestamp. 1421 */ 1422 static int 1423 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2) 1424 { 1425 int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg); 1426 1427 if (likely(cmp)) 1428 return (cmp); 1429 1430 cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp); 1431 if (likely(cmp)) 1432 return (cmp); 1433 1434 /* 1435 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware 1436 * ZFS, e.g. zfsonlinux >= 0.7. 1437 * 1438 * If one ub has MMP and the other does not, they were written by 1439 * different hosts, which matters for MMP. So we treat no MMP/no SEQ as 1440 * a 0 value. 1441 * 1442 * Since timestamp and txg are the same if we get this far, either is 1443 * acceptable for importing the pool. 1444 */ 1445 unsigned int seq1 = 0; 1446 unsigned int seq2 = 0; 1447 1448 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1)) 1449 seq1 = MMP_SEQ(ub1); 1450 1451 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2)) 1452 seq2 = MMP_SEQ(ub2); 1453 1454 return (TREE_CMP(seq1, seq2)); 1455 } 1456 1457 struct ubl_cbdata { 1458 uberblock_t *ubl_ubbest; /* Best uberblock */ 1459 vdev_t *ubl_vd; /* vdev associated with the above */ 1460 }; 1461 1462 static void 1463 vdev_uberblock_load_done(zio_t *zio) 1464 { 1465 vdev_t *vd = zio->io_vd; 1466 spa_t *spa = zio->io_spa; 1467 zio_t *rio = zio->io_private; 1468 uberblock_t *ub = abd_to_buf(zio->io_abd); 1469 struct ubl_cbdata *cbp = rio->io_private; 1470 1471 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd)); 1472 1473 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 1474 mutex_enter(&rio->io_lock); 1475 if (ub->ub_txg <= spa->spa_load_max_txg && 1476 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) { 1477 /* 1478 * Keep track of the vdev in which this uberblock 1479 * was found. We will use this information later 1480 * to obtain the config nvlist associated with 1481 * this uberblock. 1482 */ 1483 *cbp->ubl_ubbest = *ub; 1484 cbp->ubl_vd = vd; 1485 } 1486 mutex_exit(&rio->io_lock); 1487 } 1488 1489 abd_free(zio->io_abd); 1490 } 1491 1492 static void 1493 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags, 1494 struct ubl_cbdata *cbp) 1495 { 1496 for (int c = 0; c < vd->vdev_children; c++) 1497 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp); 1498 1499 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1500 for (int l = 0; l < VDEV_LABELS; l++) { 1501 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1502 vdev_label_read(zio, vd, l, 1503 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), 1504 B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n), 1505 VDEV_UBERBLOCK_SIZE(vd), 1506 vdev_uberblock_load_done, zio, flags); 1507 } 1508 } 1509 } 1510 } 1511 1512 /* 1513 * Reads the 'best' uberblock from disk along with its associated 1514 * configuration. First, we read the uberblock array of each label of each 1515 * vdev, keeping track of the uberblock with the highest txg in each array. 1516 * Then, we read the configuration from the same vdev as the best uberblock. 1517 */ 1518 void 1519 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config) 1520 { 1521 zio_t *zio; 1522 spa_t *spa = rvd->vdev_spa; 1523 struct ubl_cbdata cb; 1524 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1525 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 1526 1527 ASSERT(ub); 1528 ASSERT(config); 1529 1530 bzero(ub, sizeof (uberblock_t)); 1531 *config = NULL; 1532 1533 cb.ubl_ubbest = ub; 1534 cb.ubl_vd = NULL; 1535 1536 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1537 zio = zio_root(spa, NULL, &cb, flags); 1538 vdev_uberblock_load_impl(zio, rvd, flags, &cb); 1539 (void) zio_wait(zio); 1540 1541 /* 1542 * It's possible that the best uberblock was discovered on a label 1543 * that has a configuration which was written in a future txg. 1544 * Search all labels on this vdev to find the configuration that 1545 * matches the txg for our uberblock. 1546 */ 1547 if (cb.ubl_vd != NULL) { 1548 vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. " 1549 "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg); 1550 1551 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg); 1552 if (*config == NULL && spa->spa_extreme_rewind) { 1553 vdev_dbgmsg(cb.ubl_vd, "failed to read label config. " 1554 "Trying again without txg restrictions."); 1555 *config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX); 1556 } 1557 if (*config == NULL) { 1558 vdev_dbgmsg(cb.ubl_vd, "failed to read label config"); 1559 } 1560 } 1561 spa_config_exit(spa, SCL_ALL, FTAG); 1562 } 1563 1564 /* 1565 * For use when a leaf vdev is expanded. 1566 * The location of labels 2 and 3 changed, and at the new location the 1567 * uberblock rings are either empty or contain garbage. The sync will write 1568 * new configs there because the vdev is dirty, but expansion also needs the 1569 * uberblock rings copied. Read them from label 0 which did not move. 1570 * 1571 * Since the point is to populate labels {2,3} with valid uberblocks, 1572 * we zero uberblocks we fail to read or which are not valid. 1573 */ 1574 1575 static void 1576 vdev_copy_uberblocks(vdev_t *vd) 1577 { 1578 abd_t *ub_abd; 1579 zio_t *write_zio; 1580 int locks = (SCL_L2ARC | SCL_ZIO); 1581 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1582 ZIO_FLAG_SPECULATIVE; 1583 1584 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) == 1585 SCL_STATE); 1586 ASSERT(vd->vdev_ops->vdev_op_leaf); 1587 1588 spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER); 1589 1590 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE); 1591 1592 write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags); 1593 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1594 const int src_label = 0; 1595 zio_t *zio; 1596 1597 zio = zio_root(vd->vdev_spa, NULL, NULL, flags); 1598 vdev_label_read(zio, vd, src_label, ub_abd, 1599 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1600 NULL, NULL, flags); 1601 1602 if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd))) 1603 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd)); 1604 1605 for (int l = 2; l < VDEV_LABELS; l++) 1606 vdev_label_write(write_zio, vd, l, ub_abd, 1607 VDEV_UBERBLOCK_OFFSET(vd, n), 1608 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL, 1609 flags | ZIO_FLAG_DONT_PROPAGATE); 1610 } 1611 (void) zio_wait(write_zio); 1612 1613 spa_config_exit(vd->vdev_spa, locks, FTAG); 1614 1615 abd_free(ub_abd); 1616 } 1617 1618 /* 1619 * On success, increment root zio's count of good writes. 1620 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 1621 */ 1622 static void 1623 vdev_uberblock_sync_done(zio_t *zio) 1624 { 1625 uint64_t *good_writes = zio->io_private; 1626 1627 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 1628 atomic_inc_64(good_writes); 1629 } 1630 1631 /* 1632 * Write the uberblock to all labels of all leaves of the specified vdev. 1633 */ 1634 static void 1635 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes, 1636 uberblock_t *ub, vdev_t *vd, int flags) 1637 { 1638 for (uint64_t c = 0; c < vd->vdev_children; c++) { 1639 vdev_uberblock_sync(zio, good_writes, 1640 ub, vd->vdev_child[c], flags); 1641 } 1642 1643 if (!vd->vdev_ops->vdev_op_leaf) 1644 return; 1645 1646 if (!vdev_writeable(vd)) 1647 return; 1648 1649 /* If the vdev was expanded, need to copy uberblock rings. */ 1650 if (vd->vdev_state == VDEV_STATE_HEALTHY && 1651 vd->vdev_copy_uberblocks == B_TRUE) { 1652 vdev_copy_uberblocks(vd); 1653 vd->vdev_copy_uberblocks = B_FALSE; 1654 } 1655 1656 int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0; 1657 int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m); 1658 1659 /* Copy the uberblock_t into the ABD */ 1660 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE); 1661 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd)); 1662 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t)); 1663 1664 for (int l = 0; l < VDEV_LABELS; l++) 1665 vdev_label_write(zio, vd, l, ub_abd, 1666 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1667 vdev_uberblock_sync_done, good_writes, 1668 flags | ZIO_FLAG_DONT_PROPAGATE); 1669 1670 abd_free(ub_abd); 1671 } 1672 1673 /* Sync the uberblocks to all vdevs in svd[] */ 1674 static int 1675 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 1676 { 1677 spa_t *spa = svd[0]->vdev_spa; 1678 zio_t *zio; 1679 uint64_t good_writes = 0; 1680 1681 zio = zio_root(spa, NULL, NULL, flags); 1682 1683 for (int v = 0; v < svdcount; v++) 1684 vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags); 1685 1686 (void) zio_wait(zio); 1687 1688 /* 1689 * Flush the uberblocks to disk. This ensures that the odd labels 1690 * are no longer needed (because the new uberblocks and the even 1691 * labels are safely on disk), so it is safe to overwrite them. 1692 */ 1693 zio = zio_root(spa, NULL, NULL, flags); 1694 1695 for (int v = 0; v < svdcount; v++) { 1696 if (vdev_writeable(svd[v])) { 1697 zio_flush(zio, svd[v]); 1698 } 1699 } 1700 1701 (void) zio_wait(zio); 1702 1703 return (good_writes >= 1 ? 0 : EIO); 1704 } 1705 1706 /* 1707 * On success, increment the count of good writes for our top-level vdev. 1708 */ 1709 static void 1710 vdev_label_sync_done(zio_t *zio) 1711 { 1712 uint64_t *good_writes = zio->io_private; 1713 1714 if (zio->io_error == 0) 1715 atomic_inc_64(good_writes); 1716 } 1717 1718 /* 1719 * If there weren't enough good writes, indicate failure to the parent. 1720 */ 1721 static void 1722 vdev_label_sync_top_done(zio_t *zio) 1723 { 1724 uint64_t *good_writes = zio->io_private; 1725 1726 if (*good_writes == 0) 1727 zio->io_error = SET_ERROR(EIO); 1728 1729 kmem_free(good_writes, sizeof (uint64_t)); 1730 } 1731 1732 /* 1733 * We ignore errors for log and cache devices, simply free the private data. 1734 */ 1735 static void 1736 vdev_label_sync_ignore_done(zio_t *zio) 1737 { 1738 kmem_free(zio->io_private, sizeof (uint64_t)); 1739 } 1740 1741 /* 1742 * Write all even or odd labels to all leaves of the specified vdev. 1743 */ 1744 static void 1745 vdev_label_sync(zio_t *zio, uint64_t *good_writes, 1746 vdev_t *vd, int l, uint64_t txg, int flags) 1747 { 1748 nvlist_t *label; 1749 vdev_phys_t *vp; 1750 abd_t *vp_abd; 1751 char *buf; 1752 size_t buflen; 1753 1754 for (int c = 0; c < vd->vdev_children; c++) { 1755 vdev_label_sync(zio, good_writes, 1756 vd->vdev_child[c], l, txg, flags); 1757 } 1758 1759 if (!vd->vdev_ops->vdev_op_leaf) 1760 return; 1761 1762 if (!vdev_writeable(vd)) 1763 return; 1764 1765 /* 1766 * Generate a label describing the top-level config to which we belong. 1767 */ 1768 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 1769 1770 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 1771 abd_zero(vp_abd, sizeof (vdev_phys_t)); 1772 vp = abd_to_buf(vp_abd); 1773 1774 buf = vp->vp_nvlist; 1775 buflen = sizeof (vp->vp_nvlist); 1776 1777 if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) { 1778 for (; l < VDEV_LABELS; l += 2) { 1779 vdev_label_write(zio, vd, l, vp_abd, 1780 offsetof(vdev_label_t, vl_vdev_phys), 1781 sizeof (vdev_phys_t), 1782 vdev_label_sync_done, good_writes, 1783 flags | ZIO_FLAG_DONT_PROPAGATE); 1784 } 1785 } 1786 1787 abd_free(vp_abd); 1788 nvlist_free(label); 1789 } 1790 1791 static int 1792 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 1793 { 1794 list_t *dl = &spa->spa_config_dirty_list; 1795 vdev_t *vd; 1796 zio_t *zio; 1797 int error; 1798 1799 /* 1800 * Write the new labels to disk. 1801 */ 1802 zio = zio_root(spa, NULL, NULL, flags); 1803 1804 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 1805 uint64_t *good_writes; 1806 1807 ASSERT(!vd->vdev_ishole); 1808 1809 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 1810 zio_t *vio = zio_null(zio, spa, NULL, 1811 (vd->vdev_islog || vd->vdev_aux != NULL) ? 1812 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 1813 good_writes, flags); 1814 vdev_label_sync(vio, good_writes, vd, l, txg, flags); 1815 zio_nowait(vio); 1816 } 1817 1818 error = zio_wait(zio); 1819 1820 /* 1821 * Flush the new labels to disk. 1822 */ 1823 zio = zio_root(spa, NULL, NULL, flags); 1824 1825 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 1826 zio_flush(zio, vd); 1827 1828 (void) zio_wait(zio); 1829 1830 return (error); 1831 } 1832 1833 /* 1834 * Sync the uberblock and any changes to the vdev configuration. 1835 * 1836 * The order of operations is carefully crafted to ensure that 1837 * if the system panics or loses power at any time, the state on disk 1838 * is still transactionally consistent. The in-line comments below 1839 * describe the failure semantics at each stage. 1840 * 1841 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 1842 * at any time, you can just call it again, and it will resume its work. 1843 */ 1844 int 1845 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg) 1846 { 1847 spa_t *spa = svd[0]->vdev_spa; 1848 uberblock_t *ub = &spa->spa_uberblock; 1849 int error = 0; 1850 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1851 1852 ASSERT(svdcount != 0); 1853 retry: 1854 /* 1855 * Normally, we don't want to try too hard to write every label and 1856 * uberblock. If there is a flaky disk, we don't want the rest of the 1857 * sync process to block while we retry. But if we can't write a 1858 * single label out, we should retry with ZIO_FLAG_TRYHARD before 1859 * bailing out and declaring the pool faulted. 1860 */ 1861 if (error != 0) { 1862 if ((flags & ZIO_FLAG_TRYHARD) != 0) 1863 return (error); 1864 flags |= ZIO_FLAG_TRYHARD; 1865 } 1866 1867 ASSERT(ub->ub_txg <= txg); 1868 1869 /* 1870 * If this isn't a resync due to I/O errors, 1871 * and nothing changed in this transaction group, 1872 * and the vdev configuration hasn't changed, 1873 * then there's nothing to do. 1874 */ 1875 if (ub->ub_txg < txg) { 1876 boolean_t changed = uberblock_update(ub, spa->spa_root_vdev, 1877 txg, spa->spa_mmp.mmp_delay); 1878 1879 if (!changed && list_is_empty(&spa->spa_config_dirty_list)) 1880 return (0); 1881 } 1882 1883 if (txg > spa_freeze_txg(spa)) 1884 return (0); 1885 1886 ASSERT(txg <= spa->spa_final_txg); 1887 1888 /* 1889 * Flush the write cache of every disk that's been written to 1890 * in this transaction group. This ensures that all blocks 1891 * written in this txg will be committed to stable storage 1892 * before any uberblock that references them. 1893 */ 1894 zio_t *zio = zio_root(spa, NULL, NULL, flags); 1895 1896 for (vdev_t *vd = 1897 txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL; 1898 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 1899 zio_flush(zio, vd); 1900 1901 (void) zio_wait(zio); 1902 1903 /* 1904 * Sync out the even labels (L0, L2) for every dirty vdev. If the 1905 * system dies in the middle of this process, that's OK: all of the 1906 * even labels that made it to disk will be newer than any uberblock, 1907 * and will therefore be considered invalid. The odd labels (L1, L3), 1908 * which have not yet been touched, will still be valid. We flush 1909 * the new labels to disk to ensure that all even-label updates 1910 * are committed to stable storage before the uberblock update. 1911 */ 1912 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) { 1913 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 1914 zfs_dbgmsg("vdev_label_sync_list() returned error %d " 1915 "for pool '%s' when syncing out the even labels " 1916 "of dirty vdevs", error, spa_name(spa)); 1917 } 1918 goto retry; 1919 } 1920 1921 /* 1922 * Sync the uberblocks to all vdevs in svd[]. 1923 * If the system dies in the middle of this step, there are two cases 1924 * to consider, and the on-disk state is consistent either way: 1925 * 1926 * (1) If none of the new uberblocks made it to disk, then the 1927 * previous uberblock will be the newest, and the odd labels 1928 * (which had not yet been touched) will be valid with respect 1929 * to that uberblock. 1930 * 1931 * (2) If one or more new uberblocks made it to disk, then they 1932 * will be the newest, and the even labels (which had all 1933 * been successfully committed) will be valid with respect 1934 * to the new uberblocks. 1935 */ 1936 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) { 1937 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 1938 zfs_dbgmsg("vdev_uberblock_sync_list() returned error " 1939 "%d for pool '%s'", error, spa_name(spa)); 1940 } 1941 goto retry; 1942 } 1943 1944 if (spa_multihost(spa)) 1945 mmp_update_uberblock(spa, ub); 1946 1947 /* 1948 * Sync out odd labels for every dirty vdev. If the system dies 1949 * in the middle of this process, the even labels and the new 1950 * uberblocks will suffice to open the pool. The next time 1951 * the pool is opened, the first thing we'll do -- before any 1952 * user data is modified -- is mark every vdev dirty so that 1953 * all labels will be brought up to date. We flush the new labels 1954 * to disk to ensure that all odd-label updates are committed to 1955 * stable storage before the next transaction group begins. 1956 */ 1957 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) { 1958 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 1959 zfs_dbgmsg("vdev_label_sync_list() returned error %d " 1960 "for pool '%s' when syncing out the odd labels of " 1961 "dirty vdevs", error, spa_name(spa)); 1962 } 1963 goto retry; 1964 } 1965 1966 return (0); 1967 } 1968