1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2017, Intel Corporation. 26 */ 27 28 /* 29 * Virtual Device Labels 30 * --------------------- 31 * 32 * The vdev label serves several distinct purposes: 33 * 34 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 35 * identity within the pool. 36 * 37 * 2. Verify that all the devices given in a configuration are present 38 * within the pool. 39 * 40 * 3. Determine the uberblock for the pool. 41 * 42 * 4. In case of an import operation, determine the configuration of the 43 * toplevel vdev of which it is a part. 44 * 45 * 5. If an import operation cannot find all the devices in the pool, 46 * provide enough information to the administrator to determine which 47 * devices are missing. 48 * 49 * It is important to note that while the kernel is responsible for writing the 50 * label, it only consumes the information in the first three cases. The 51 * latter information is only consumed in userland when determining the 52 * configuration to import a pool. 53 * 54 * 55 * Label Organization 56 * ------------------ 57 * 58 * Before describing the contents of the label, it's important to understand how 59 * the labels are written and updated with respect to the uberblock. 60 * 61 * When the pool configuration is altered, either because it was newly created 62 * or a device was added, we want to update all the labels such that we can deal 63 * with fatal failure at any point. To this end, each disk has two labels which 64 * are updated before and after the uberblock is synced. Assuming we have 65 * labels and an uberblock with the following transaction groups: 66 * 67 * L1 UB L2 68 * +------+ +------+ +------+ 69 * | | | | | | 70 * | t10 | | t10 | | t10 | 71 * | | | | | | 72 * +------+ +------+ +------+ 73 * 74 * In this stable state, the labels and the uberblock were all updated within 75 * the same transaction group (10). Each label is mirrored and checksummed, so 76 * that we can detect when we fail partway through writing the label. 77 * 78 * In order to identify which labels are valid, the labels are written in the 79 * following manner: 80 * 81 * 1. For each vdev, update 'L1' to the new label 82 * 2. Update the uberblock 83 * 3. For each vdev, update 'L2' to the new label 84 * 85 * Given arbitrary failure, we can determine the correct label to use based on 86 * the transaction group. If we fail after updating L1 but before updating the 87 * UB, we will notice that L1's transaction group is greater than the uberblock, 88 * so L2 must be valid. If we fail after writing the uberblock but before 89 * writing L2, we will notice that L2's transaction group is less than L1, and 90 * therefore L1 is valid. 91 * 92 * Another added complexity is that not every label is updated when the config 93 * is synced. If we add a single device, we do not want to have to re-write 94 * every label for every device in the pool. This means that both L1 and L2 may 95 * be older than the pool uberblock, because the necessary information is stored 96 * on another vdev. 97 * 98 * 99 * On-disk Format 100 * -------------- 101 * 102 * The vdev label consists of two distinct parts, and is wrapped within the 103 * vdev_label_t structure. The label includes 8k of padding to permit legacy 104 * VTOC disk labels, but is otherwise ignored. 105 * 106 * The first half of the label is a packed nvlist which contains pool wide 107 * properties, per-vdev properties, and configuration information. It is 108 * described in more detail below. 109 * 110 * The latter half of the label consists of a redundant array of uberblocks. 111 * These uberblocks are updated whenever a transaction group is committed, 112 * or when the configuration is updated. When a pool is loaded, we scan each 113 * vdev for the 'best' uberblock. 114 * 115 * 116 * Configuration Information 117 * ------------------------- 118 * 119 * The nvlist describing the pool and vdev contains the following elements: 120 * 121 * version ZFS on-disk version 122 * name Pool name 123 * state Pool state 124 * txg Transaction group in which this label was written 125 * pool_guid Unique identifier for this pool 126 * vdev_tree An nvlist describing vdev tree. 127 * features_for_read 128 * An nvlist of the features necessary for reading the MOS. 129 * 130 * Each leaf device label also contains the following: 131 * 132 * top_guid Unique ID for top-level vdev in which this is contained 133 * guid Unique ID for the leaf vdev 134 * 135 * The 'vs' configuration follows the format described in 'spa_config.c'. 136 */ 137 138 #include <sys/zfs_context.h> 139 #include <sys/spa.h> 140 #include <sys/spa_impl.h> 141 #include <sys/dmu.h> 142 #include <sys/zap.h> 143 #include <sys/vdev.h> 144 #include <sys/vdev_impl.h> 145 #include <sys/vdev_raidz.h> 146 #include <sys/vdev_draid.h> 147 #include <sys/uberblock_impl.h> 148 #include <sys/metaslab.h> 149 #include <sys/metaslab_impl.h> 150 #include <sys/zio.h> 151 #include <sys/dsl_scan.h> 152 #include <sys/abd.h> 153 #include <sys/fs/zfs.h> 154 #include <sys/byteorder.h> 155 #include <sys/zfs_bootenv.h> 156 157 /* 158 * Basic routines to read and write from a vdev label. 159 * Used throughout the rest of this file. 160 */ 161 uint64_t 162 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 163 { 164 ASSERT(offset < sizeof (vdev_label_t)); 165 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 166 167 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 168 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 169 } 170 171 /* 172 * Returns back the vdev label associated with the passed in offset. 173 */ 174 int 175 vdev_label_number(uint64_t psize, uint64_t offset) 176 { 177 int l; 178 179 if (offset >= psize - VDEV_LABEL_END_SIZE) { 180 offset -= psize - VDEV_LABEL_END_SIZE; 181 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 182 } 183 l = offset / sizeof (vdev_label_t); 184 return (l < VDEV_LABELS ? l : -1); 185 } 186 187 static void 188 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 189 uint64_t size, zio_done_func_t *done, void *private, int flags) 190 { 191 ASSERT( 192 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE || 193 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE); 194 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 195 196 zio_nowait(zio_read_phys(zio, vd, 197 vdev_label_offset(vd->vdev_psize, l, offset), 198 size, buf, ZIO_CHECKSUM_LABEL, done, private, 199 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 200 } 201 202 void 203 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 204 uint64_t size, zio_done_func_t *done, void *private, int flags) 205 { 206 ASSERT( 207 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE || 208 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE); 209 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 210 211 zio_nowait(zio_write_phys(zio, vd, 212 vdev_label_offset(vd->vdev_psize, l, offset), 213 size, buf, ZIO_CHECKSUM_LABEL, done, private, 214 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 215 } 216 217 /* 218 * Generate the nvlist representing this vdev's stats 219 */ 220 void 221 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv) 222 { 223 nvlist_t *nvx; 224 vdev_stat_t *vs; 225 vdev_stat_ex_t *vsx; 226 227 vs = kmem_alloc(sizeof (*vs), KM_SLEEP); 228 vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP); 229 230 vdev_get_stats_ex(vd, vs, vsx); 231 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, 232 (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t)); 233 234 /* 235 * Add extended stats into a special extended stats nvlist. This keeps 236 * all the extended stats nicely grouped together. The extended stats 237 * nvlist is then added to the main nvlist. 238 */ 239 nvx = fnvlist_alloc(); 240 241 /* ZIOs in flight to disk */ 242 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE, 243 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]); 244 245 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE, 246 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]); 247 248 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE, 249 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]); 250 251 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE, 252 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]); 253 254 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE, 255 vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]); 256 257 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE, 258 vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]); 259 260 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_REBUILD_ACTIVE_QUEUE, 261 vsx->vsx_active_queue[ZIO_PRIORITY_REBUILD]); 262 263 /* ZIOs pending */ 264 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE, 265 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]); 266 267 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE, 268 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]); 269 270 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE, 271 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]); 272 273 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE, 274 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]); 275 276 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE, 277 vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]); 278 279 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE, 280 vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]); 281 282 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_REBUILD_PEND_QUEUE, 283 vsx->vsx_pend_queue[ZIO_PRIORITY_REBUILD]); 284 285 /* Histograms */ 286 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO, 287 vsx->vsx_total_histo[ZIO_TYPE_READ], 288 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ])); 289 290 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO, 291 vsx->vsx_total_histo[ZIO_TYPE_WRITE], 292 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE])); 293 294 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO, 295 vsx->vsx_disk_histo[ZIO_TYPE_READ], 296 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ])); 297 298 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO, 299 vsx->vsx_disk_histo[ZIO_TYPE_WRITE], 300 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE])); 301 302 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO, 303 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ], 304 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ])); 305 306 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO, 307 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE], 308 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE])); 309 310 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO, 311 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ], 312 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ])); 313 314 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO, 315 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE], 316 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE])); 317 318 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO, 319 vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB], 320 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB])); 321 322 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO, 323 vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM], 324 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM])); 325 326 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_REBUILD_LAT_HISTO, 327 vsx->vsx_queue_histo[ZIO_PRIORITY_REBUILD], 328 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_REBUILD])); 329 330 /* Request sizes */ 331 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO, 332 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ], 333 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ])); 334 335 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO, 336 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE], 337 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE])); 338 339 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO, 340 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ], 341 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ])); 342 343 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO, 344 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE], 345 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE])); 346 347 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO, 348 vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB], 349 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB])); 350 351 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO, 352 vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM], 353 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM])); 354 355 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_REBUILD_HISTO, 356 vsx->vsx_ind_histo[ZIO_PRIORITY_REBUILD], 357 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_REBUILD])); 358 359 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO, 360 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ], 361 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ])); 362 363 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO, 364 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE], 365 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE])); 366 367 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO, 368 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ], 369 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ])); 370 371 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO, 372 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE], 373 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE])); 374 375 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO, 376 vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB], 377 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB])); 378 379 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO, 380 vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM], 381 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM])); 382 383 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_REBUILD_HISTO, 384 vsx->vsx_agg_histo[ZIO_PRIORITY_REBUILD], 385 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_REBUILD])); 386 387 /* IO delays */ 388 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios); 389 390 /* Direct I/O write verify errors */ 391 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_DIO_VERIFY_ERRORS, 392 vs->vs_dio_verify_errors); 393 394 /* Add extended stats nvlist to main nvlist */ 395 fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx); 396 397 fnvlist_free(nvx); 398 kmem_free(vs, sizeof (*vs)); 399 kmem_free(vsx, sizeof (*vsx)); 400 } 401 402 static void 403 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl) 404 { 405 spa_t *spa = vd->vdev_spa; 406 407 if (vd != spa->spa_root_vdev) 408 return; 409 410 /* provide either current or previous scan information */ 411 pool_scan_stat_t ps; 412 if (spa_scan_get_stats(spa, &ps) == 0) { 413 fnvlist_add_uint64_array(nvl, 414 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps, 415 sizeof (pool_scan_stat_t) / sizeof (uint64_t)); 416 } 417 418 pool_removal_stat_t prs; 419 if (spa_removal_get_stats(spa, &prs) == 0) { 420 fnvlist_add_uint64_array(nvl, 421 ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs, 422 sizeof (prs) / sizeof (uint64_t)); 423 } 424 425 pool_checkpoint_stat_t pcs; 426 if (spa_checkpoint_get_stats(spa, &pcs) == 0) { 427 fnvlist_add_uint64_array(nvl, 428 ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs, 429 sizeof (pcs) / sizeof (uint64_t)); 430 } 431 432 pool_raidz_expand_stat_t pres; 433 if (spa_raidz_expand_get_stats(spa, &pres) == 0) { 434 fnvlist_add_uint64_array(nvl, 435 ZPOOL_CONFIG_RAIDZ_EXPAND_STATS, (uint64_t *)&pres, 436 sizeof (pres) / sizeof (uint64_t)); 437 } 438 } 439 440 static void 441 top_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl) 442 { 443 if (vd == vd->vdev_top) { 444 vdev_rebuild_stat_t vrs; 445 if (vdev_rebuild_get_stats(vd, &vrs) == 0) { 446 fnvlist_add_uint64_array(nvl, 447 ZPOOL_CONFIG_REBUILD_STATS, (uint64_t *)&vrs, 448 sizeof (vrs) / sizeof (uint64_t)); 449 } 450 } 451 } 452 453 /* 454 * Generate the nvlist representing this vdev's config. 455 */ 456 nvlist_t * 457 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 458 vdev_config_flag_t flags) 459 { 460 nvlist_t *nv = NULL; 461 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 462 463 nv = fnvlist_alloc(); 464 465 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type); 466 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE))) 467 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id); 468 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid); 469 470 if (vd->vdev_path != NULL) 471 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path); 472 473 if (vd->vdev_devid != NULL) 474 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid); 475 476 if (vd->vdev_physpath != NULL) 477 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 478 vd->vdev_physpath); 479 480 if (vd->vdev_enc_sysfs_path != NULL) 481 fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 482 vd->vdev_enc_sysfs_path); 483 484 if (vd->vdev_fru != NULL) 485 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru); 486 487 if (vd->vdev_ops->vdev_op_config_generate != NULL) 488 vd->vdev_ops->vdev_op_config_generate(vd, nv); 489 490 if (vd->vdev_wholedisk != -1ULL) { 491 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 492 vd->vdev_wholedisk); 493 } 494 495 if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING)) 496 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1); 497 498 if (vd->vdev_isspare) 499 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1); 500 501 if (flags & VDEV_CONFIG_L2CACHE) 502 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 503 504 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) && 505 vd == vd->vdev_top) { 506 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 507 vd->vdev_ms_array); 508 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 509 vd->vdev_ms_shift); 510 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 511 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 512 vd->vdev_asize); 513 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog); 514 if (vd->vdev_noalloc) { 515 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NONALLOCATING, 516 vd->vdev_noalloc); 517 } 518 519 /* 520 * Slog devices are removed synchronously so don't 521 * persist the vdev_removing flag to the label. 522 */ 523 if (vd->vdev_removing && !vd->vdev_islog) { 524 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING, 525 vd->vdev_removing); 526 } 527 528 /* zpool command expects alloc class data */ 529 if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) { 530 const char *bias = NULL; 531 532 switch (vd->vdev_alloc_bias) { 533 case VDEV_BIAS_LOG: 534 bias = VDEV_ALLOC_BIAS_LOG; 535 break; 536 case VDEV_BIAS_SPECIAL: 537 bias = VDEV_ALLOC_BIAS_SPECIAL; 538 break; 539 case VDEV_BIAS_DEDUP: 540 bias = VDEV_ALLOC_BIAS_DEDUP; 541 break; 542 default: 543 ASSERT3U(vd->vdev_alloc_bias, ==, 544 VDEV_BIAS_NONE); 545 } 546 fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 547 bias); 548 } 549 } 550 551 if (vd->vdev_dtl_sm != NULL) { 552 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 553 space_map_object(vd->vdev_dtl_sm)); 554 } 555 556 if (vic->vic_mapping_object != 0) { 557 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 558 vic->vic_mapping_object); 559 } 560 561 if (vic->vic_births_object != 0) { 562 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 563 vic->vic_births_object); 564 } 565 566 if (vic->vic_prev_indirect_vdev != UINT64_MAX) { 567 fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 568 vic->vic_prev_indirect_vdev); 569 } 570 571 if (vd->vdev_crtxg) 572 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg); 573 574 if (vd->vdev_expansion_time) 575 fnvlist_add_uint64(nv, ZPOOL_CONFIG_EXPANSION_TIME, 576 vd->vdev_expansion_time); 577 578 if (flags & VDEV_CONFIG_MOS) { 579 if (vd->vdev_leaf_zap != 0) { 580 ASSERT(vd->vdev_ops->vdev_op_leaf); 581 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP, 582 vd->vdev_leaf_zap); 583 } 584 585 if (vd->vdev_top_zap != 0) { 586 ASSERT(vd == vd->vdev_top); 587 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 588 vd->vdev_top_zap); 589 } 590 591 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap != 0 && 592 spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) { 593 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP, 594 vd->vdev_root_zap); 595 } 596 597 if (vd->vdev_resilver_deferred) { 598 ASSERT(vd->vdev_ops->vdev_op_leaf); 599 ASSERT(spa->spa_resilver_deferred); 600 fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER); 601 } 602 } 603 604 if (getstats) { 605 vdev_config_generate_stats(vd, nv); 606 607 root_vdev_actions_getprogress(vd, nv); 608 top_vdev_actions_getprogress(vd, nv); 609 610 /* 611 * Note: this can be called from open context 612 * (spa_get_stats()), so we need the rwlock to prevent 613 * the mapping from being changed by condensing. 614 */ 615 rw_enter(&vd->vdev_indirect_rwlock, RW_READER); 616 if (vd->vdev_indirect_mapping != NULL) { 617 ASSERT(vd->vdev_indirect_births != NULL); 618 vdev_indirect_mapping_t *vim = 619 vd->vdev_indirect_mapping; 620 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, 621 vdev_indirect_mapping_size(vim)); 622 } 623 rw_exit(&vd->vdev_indirect_rwlock); 624 if (vd->vdev_mg != NULL && 625 vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) { 626 /* 627 * Compute approximately how much memory would be used 628 * for the indirect mapping if this device were to 629 * be removed. 630 * 631 * Note: If the frag metric is invalid, then not 632 * enough metaslabs have been converted to have 633 * histograms. 634 */ 635 uint64_t seg_count = 0; 636 uint64_t to_alloc = vd->vdev_stat.vs_alloc; 637 638 /* 639 * There are the same number of allocated segments 640 * as free segments, so we will have at least one 641 * entry per free segment. However, small free 642 * segments (smaller than vdev_removal_max_span) 643 * will be combined with adjacent allocated segments 644 * as a single mapping. 645 */ 646 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 647 if (i + 1 < highbit64(vdev_removal_max_span) 648 - 1) { 649 to_alloc += 650 vd->vdev_mg->mg_histogram[i] << 651 (i + 1); 652 } else { 653 seg_count += 654 vd->vdev_mg->mg_histogram[i]; 655 } 656 } 657 658 /* 659 * The maximum length of a mapping is 660 * zfs_remove_max_segment, so we need at least one entry 661 * per zfs_remove_max_segment of allocated data. 662 */ 663 seg_count += to_alloc / spa_remove_max_segment(spa); 664 665 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, 666 seg_count * 667 sizeof (vdev_indirect_mapping_entry_phys_t)); 668 } 669 } 670 671 if (!vd->vdev_ops->vdev_op_leaf) { 672 nvlist_t **child; 673 uint64_t c; 674 675 ASSERT(!vd->vdev_ishole); 676 677 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 678 KM_SLEEP); 679 680 for (c = 0; c < vd->vdev_children; c++) { 681 child[c] = vdev_config_generate(spa, vd->vdev_child[c], 682 getstats, flags); 683 } 684 685 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 686 (const nvlist_t * const *)child, vd->vdev_children); 687 688 for (c = 0; c < vd->vdev_children; c++) 689 nvlist_free(child[c]); 690 691 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 692 693 } else { 694 const char *aux = NULL; 695 696 if (vd->vdev_offline && !vd->vdev_tmpoffline) 697 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE); 698 if (vd->vdev_resilver_txg != 0) 699 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 700 vd->vdev_resilver_txg); 701 if (vd->vdev_rebuild_txg != 0) 702 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 703 vd->vdev_rebuild_txg); 704 if (vd->vdev_faulted) 705 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE); 706 if (vd->vdev_degraded) 707 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE); 708 if (vd->vdev_removed) 709 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE); 710 if (vd->vdev_unspare) 711 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE); 712 if (vd->vdev_ishole) 713 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE); 714 715 /* Set the reason why we're FAULTED/DEGRADED. */ 716 switch (vd->vdev_stat.vs_aux) { 717 case VDEV_AUX_ERR_EXCEEDED: 718 aux = "err_exceeded"; 719 break; 720 721 case VDEV_AUX_EXTERNAL: 722 aux = "external"; 723 break; 724 } 725 726 if (aux != NULL && !vd->vdev_tmpoffline) { 727 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux); 728 } else { 729 /* 730 * We're healthy - clear any previous AUX_STATE values. 731 */ 732 if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE)) 733 nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE); 734 } 735 736 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { 737 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, 738 vd->vdev_orig_guid); 739 } 740 } 741 742 return (nv); 743 } 744 745 /* 746 * Generate a view of the top-level vdevs. If we currently have holes 747 * in the namespace, then generate an array which contains a list of holey 748 * vdevs. Additionally, add the number of top-level children that currently 749 * exist. 750 */ 751 void 752 vdev_top_config_generate(spa_t *spa, nvlist_t *config) 753 { 754 vdev_t *rvd = spa->spa_root_vdev; 755 uint64_t *array; 756 uint_t c, idx; 757 758 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP); 759 760 for (c = 0, idx = 0; c < rvd->vdev_children; c++) { 761 vdev_t *tvd = rvd->vdev_child[c]; 762 763 if (tvd->vdev_ishole) { 764 array[idx++] = c; 765 } 766 } 767 768 if (idx) { 769 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, 770 array, idx) == 0); 771 } 772 773 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 774 rvd->vdev_children) == 0); 775 776 kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); 777 } 778 779 /* 780 * Returns the configuration from the label of the given vdev. For vdevs 781 * which don't have a txg value stored on their label (i.e. spares/cache) 782 * or have not been completely initialized (txg = 0) just return 783 * the configuration from the first valid label we find. Otherwise, 784 * find the most up-to-date label that does not exceed the specified 785 * 'txg' value. 786 */ 787 nvlist_t * 788 vdev_label_read_config(vdev_t *vd, uint64_t txg) 789 { 790 spa_t *spa = vd->vdev_spa; 791 nvlist_t *config = NULL; 792 vdev_phys_t *vp[VDEV_LABELS]; 793 abd_t *vp_abd[VDEV_LABELS]; 794 zio_t *zio[VDEV_LABELS]; 795 uint64_t best_txg = 0; 796 uint64_t label_txg = 0; 797 int error = 0; 798 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 799 ZIO_FLAG_SPECULATIVE; 800 801 ASSERT(vd->vdev_validate_thread == curthread || 802 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 803 804 if (!vdev_readable(vd)) 805 return (NULL); 806 807 /* 808 * The label for a dRAID distributed spare is not stored on disk. 809 * Instead it is generated when needed which allows us to bypass 810 * the pipeline when reading the config from the label. 811 */ 812 if (vd->vdev_ops == &vdev_draid_spare_ops) 813 return (vdev_draid_read_config_spare(vd)); 814 815 for (int l = 0; l < VDEV_LABELS; l++) { 816 vp_abd[l] = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 817 vp[l] = abd_to_buf(vp_abd[l]); 818 } 819 820 retry: 821 for (int l = 0; l < VDEV_LABELS; l++) { 822 zio[l] = zio_root(spa, NULL, NULL, flags); 823 824 vdev_label_read(zio[l], vd, l, vp_abd[l], 825 offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t), 826 NULL, NULL, flags); 827 } 828 for (int l = 0; l < VDEV_LABELS; l++) { 829 nvlist_t *label = NULL; 830 831 if (zio_wait(zio[l]) == 0 && 832 nvlist_unpack(vp[l]->vp_nvlist, sizeof (vp[l]->vp_nvlist), 833 &label, 0) == 0) { 834 /* 835 * Auxiliary vdevs won't have txg values in their 836 * labels and newly added vdevs may not have been 837 * completely initialized so just return the 838 * configuration from the first valid label we 839 * encounter. 840 */ 841 error = nvlist_lookup_uint64(label, 842 ZPOOL_CONFIG_POOL_TXG, &label_txg); 843 if ((error || label_txg == 0) && !config) { 844 config = label; 845 for (l++; l < VDEV_LABELS; l++) 846 zio_wait(zio[l]); 847 break; 848 } else if (label_txg <= txg && label_txg > best_txg) { 849 best_txg = label_txg; 850 nvlist_free(config); 851 config = fnvlist_dup(label); 852 } 853 } 854 855 if (label != NULL) { 856 nvlist_free(label); 857 label = NULL; 858 } 859 } 860 861 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { 862 flags |= ZIO_FLAG_TRYHARD; 863 goto retry; 864 } 865 866 /* 867 * We found a valid label but it didn't pass txg restrictions. 868 */ 869 if (config == NULL && label_txg != 0) { 870 vdev_dbgmsg(vd, "label discarded as txg is too large " 871 "(%llu > %llu)", (u_longlong_t)label_txg, 872 (u_longlong_t)txg); 873 } 874 875 for (int l = 0; l < VDEV_LABELS; l++) { 876 abd_free(vp_abd[l]); 877 } 878 879 return (config); 880 } 881 882 /* 883 * Determine if a device is in use. The 'spare_guid' parameter will be filled 884 * in with the device guid if this spare is active elsewhere on the system. 885 */ 886 static boolean_t 887 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 888 uint64_t *spare_guid, uint64_t *l2cache_guid) 889 { 890 spa_t *spa = vd->vdev_spa; 891 uint64_t state, pool_guid, device_guid, txg, spare_pool; 892 uint64_t vdtxg = 0; 893 nvlist_t *label; 894 895 if (spare_guid) 896 *spare_guid = 0ULL; 897 if (l2cache_guid) 898 *l2cache_guid = 0ULL; 899 900 /* 901 * Read the label, if any, and perform some basic sanity checks. 902 */ 903 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) 904 return (B_FALSE); 905 906 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 907 &vdtxg); 908 909 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 910 &state) != 0 || 911 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 912 &device_guid) != 0) { 913 nvlist_free(label); 914 return (B_FALSE); 915 } 916 917 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 918 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 919 &pool_guid) != 0 || 920 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 921 &txg) != 0)) { 922 nvlist_free(label); 923 return (B_FALSE); 924 } 925 926 nvlist_free(label); 927 928 /* 929 * Check to see if this device indeed belongs to the pool it claims to 930 * be a part of. The only way this is allowed is if the device is a hot 931 * spare (which we check for later on). 932 */ 933 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 934 !spa_guid_exists(pool_guid, device_guid) && 935 !spa_spare_exists(device_guid, NULL, NULL) && 936 !spa_l2cache_exists(device_guid, NULL)) 937 return (B_FALSE); 938 939 /* 940 * If the transaction group is zero, then this an initialized (but 941 * unused) label. This is only an error if the create transaction 942 * on-disk is the same as the one we're using now, in which case the 943 * user has attempted to add the same vdev multiple times in the same 944 * transaction. 945 */ 946 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 947 txg == 0 && vdtxg == crtxg) 948 return (B_TRUE); 949 950 /* 951 * Check to see if this is a spare device. We do an explicit check for 952 * spa_has_spare() here because it may be on our pending list of spares 953 * to add. 954 */ 955 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 956 spa_has_spare(spa, device_guid)) { 957 if (spare_guid) 958 *spare_guid = device_guid; 959 960 switch (reason) { 961 case VDEV_LABEL_CREATE: 962 return (B_TRUE); 963 964 case VDEV_LABEL_REPLACE: 965 return (!spa_has_spare(spa, device_guid) || 966 spare_pool != 0ULL); 967 968 case VDEV_LABEL_SPARE: 969 return (spa_has_spare(spa, device_guid)); 970 default: 971 break; 972 } 973 } 974 975 /* 976 * Check to see if this is an l2cache device. 977 */ 978 if (spa_l2cache_exists(device_guid, NULL) || 979 spa_has_l2cache(spa, device_guid)) { 980 if (l2cache_guid) 981 *l2cache_guid = device_guid; 982 983 switch (reason) { 984 case VDEV_LABEL_CREATE: 985 return (B_TRUE); 986 987 case VDEV_LABEL_REPLACE: 988 return (!spa_has_l2cache(spa, device_guid)); 989 990 case VDEV_LABEL_L2CACHE: 991 return (spa_has_l2cache(spa, device_guid)); 992 default: 993 break; 994 } 995 } 996 997 /* 998 * We can't rely on a pool's state if it's been imported 999 * read-only. Instead we look to see if the pools is marked 1000 * read-only in the namespace and set the state to active. 1001 */ 1002 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 1003 (spa = spa_by_guid(pool_guid, device_guid)) != NULL && 1004 spa_mode(spa) == SPA_MODE_READ) 1005 state = POOL_STATE_ACTIVE; 1006 1007 /* 1008 * If the device is marked ACTIVE, then this device is in use by another 1009 * pool on the system. 1010 */ 1011 return (state == POOL_STATE_ACTIVE); 1012 } 1013 1014 static nvlist_t * 1015 vdev_aux_label_generate(vdev_t *vd, boolean_t reason_spare) 1016 { 1017 /* 1018 * For inactive hot spares and level 2 ARC devices, we generate 1019 * a special label that identifies as a mutually shared hot 1020 * spare or l2cache device. We write the label in case of 1021 * addition or removal of hot spare or l2cache vdev (in which 1022 * case we want to revert the labels). 1023 */ 1024 nvlist_t *label = fnvlist_alloc(); 1025 fnvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 1026 spa_version(vd->vdev_spa)); 1027 fnvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, reason_spare ? 1028 POOL_STATE_SPARE : POOL_STATE_L2CACHE); 1029 fnvlist_add_uint64(label, ZPOOL_CONFIG_GUID, vd->vdev_guid); 1030 1031 /* 1032 * This is merely to facilitate reporting the ashift of the 1033 * cache device through zdb. The actual retrieval of the 1034 * ashift (in vdev_alloc()) uses the nvlist 1035 * spa->spa_l2cache->sav_config (populated in 1036 * spa_ld_open_aux_vdevs()). 1037 */ 1038 if (!reason_spare) 1039 fnvlist_add_uint64(label, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 1040 1041 /* 1042 * Add path information to help find it during pool import 1043 */ 1044 if (vd->vdev_path != NULL) 1045 fnvlist_add_string(label, ZPOOL_CONFIG_PATH, vd->vdev_path); 1046 if (vd->vdev_devid != NULL) 1047 fnvlist_add_string(label, ZPOOL_CONFIG_DEVID, vd->vdev_devid); 1048 if (vd->vdev_physpath != NULL) { 1049 fnvlist_add_string(label, ZPOOL_CONFIG_PHYS_PATH, 1050 vd->vdev_physpath); 1051 } 1052 return (label); 1053 } 1054 1055 /* 1056 * Initialize a vdev label. We check to make sure each leaf device is not in 1057 * use, and writable. We put down an initial label which we will later 1058 * overwrite with a complete label. Note that it's important to do this 1059 * sequentially, not in parallel, so that we catch cases of multiple use of the 1060 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 1061 * itself. 1062 */ 1063 int 1064 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 1065 { 1066 spa_t *spa = vd->vdev_spa; 1067 nvlist_t *label; 1068 vdev_phys_t *vp; 1069 abd_t *vp_abd; 1070 abd_t *bootenv; 1071 uberblock_t *ub; 1072 abd_t *ub_abd; 1073 zio_t *zio; 1074 char *buf; 1075 size_t buflen; 1076 int error; 1077 uint64_t spare_guid = 0, l2cache_guid = 0; 1078 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1079 boolean_t reason_spare = (reason == VDEV_LABEL_SPARE || (reason == 1080 VDEV_LABEL_REMOVE && vd->vdev_isspare)); 1081 boolean_t reason_l2cache = (reason == VDEV_LABEL_L2CACHE || (reason == 1082 VDEV_LABEL_REMOVE && vd->vdev_isl2cache)); 1083 1084 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1085 1086 for (int c = 0; c < vd->vdev_children; c++) 1087 if ((error = vdev_label_init(vd->vdev_child[c], 1088 crtxg, reason)) != 0) 1089 return (error); 1090 1091 /* Track the creation time for this vdev */ 1092 vd->vdev_crtxg = crtxg; 1093 1094 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa)) 1095 return (0); 1096 1097 /* 1098 * Dead vdevs cannot be initialized. 1099 */ 1100 if (vdev_is_dead(vd)) 1101 return (SET_ERROR(EIO)); 1102 1103 /* 1104 * Determine if the vdev is in use. 1105 */ 1106 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && 1107 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 1108 return (SET_ERROR(EBUSY)); 1109 1110 /* 1111 * If this is a request to add or replace a spare or l2cache device 1112 * that is in use elsewhere on the system, then we must update the 1113 * guid (which was initialized to a random value) to reflect the 1114 * actual GUID (which is shared between multiple pools). 1115 */ 1116 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 1117 spare_guid != 0ULL) { 1118 uint64_t guid_delta = spare_guid - vd->vdev_guid; 1119 1120 vd->vdev_guid += guid_delta; 1121 1122 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1123 pvd->vdev_guid_sum += guid_delta; 1124 1125 /* 1126 * If this is a replacement, then we want to fallthrough to the 1127 * rest of the code. If we're adding a spare, then it's already 1128 * labeled appropriately and we can just return. 1129 */ 1130 if (reason == VDEV_LABEL_SPARE) 1131 return (0); 1132 ASSERT(reason == VDEV_LABEL_REPLACE || 1133 reason == VDEV_LABEL_SPLIT); 1134 } 1135 1136 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 1137 l2cache_guid != 0ULL) { 1138 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 1139 1140 vd->vdev_guid += guid_delta; 1141 1142 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1143 pvd->vdev_guid_sum += guid_delta; 1144 1145 /* 1146 * If this is a replacement, then we want to fallthrough to the 1147 * rest of the code. If we're adding an l2cache, then it's 1148 * already labeled appropriately and we can just return. 1149 */ 1150 if (reason == VDEV_LABEL_L2CACHE) 1151 return (0); 1152 ASSERT(reason == VDEV_LABEL_REPLACE); 1153 } 1154 1155 /* 1156 * Initialize its label. 1157 */ 1158 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 1159 abd_zero(vp_abd, sizeof (vdev_phys_t)); 1160 vp = abd_to_buf(vp_abd); 1161 1162 /* 1163 * Generate a label describing the pool and our top-level vdev. 1164 * We mark it as being from txg 0 to indicate that it's not 1165 * really part of an active pool just yet. The labels will 1166 * be written again with a meaningful txg by spa_sync(). 1167 */ 1168 if (reason_spare || reason_l2cache) { 1169 label = vdev_aux_label_generate(vd, reason_spare); 1170 1171 /* 1172 * When spare or l2cache (aux) vdev is added during pool 1173 * creation, spa->spa_uberblock is not written until this 1174 * point. Write it on next config sync. 1175 */ 1176 if (uberblock_verify(&spa->spa_uberblock)) 1177 spa->spa_aux_sync_uber = B_TRUE; 1178 } else { 1179 uint64_t txg = 0ULL; 1180 1181 if (reason == VDEV_LABEL_SPLIT) 1182 txg = spa->spa_uberblock.ub_txg; 1183 label = spa_config_generate(spa, vd, txg, B_FALSE); 1184 1185 /* 1186 * Add our creation time. This allows us to detect multiple 1187 * vdev uses as described above, and automatically expires if we 1188 * fail. 1189 */ 1190 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 1191 crtxg) == 0); 1192 } 1193 1194 buf = vp->vp_nvlist; 1195 buflen = sizeof (vp->vp_nvlist); 1196 1197 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 1198 if (error != 0) { 1199 nvlist_free(label); 1200 abd_free(vp_abd); 1201 /* EFAULT means nvlist_pack ran out of room */ 1202 return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL)); 1203 } 1204 1205 /* 1206 * Initialize uberblock template. 1207 */ 1208 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE); 1209 abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t)); 1210 abd_zero_off(ub_abd, sizeof (uberblock_t), 1211 VDEV_UBERBLOCK_RING - sizeof (uberblock_t)); 1212 ub = abd_to_buf(ub_abd); 1213 ub->ub_txg = 0; 1214 1215 /* Initialize the 2nd padding area. */ 1216 bootenv = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); 1217 abd_zero(bootenv, VDEV_PAD_SIZE); 1218 1219 /* 1220 * Write everything in parallel. 1221 */ 1222 retry: 1223 zio = zio_root(spa, NULL, NULL, flags); 1224 1225 for (int l = 0; l < VDEV_LABELS; l++) { 1226 1227 vdev_label_write(zio, vd, l, vp_abd, 1228 offsetof(vdev_label_t, vl_vdev_phys), 1229 sizeof (vdev_phys_t), NULL, NULL, flags); 1230 1231 /* 1232 * Skip the 1st padding area. 1233 * Zero out the 2nd padding area where it might have 1234 * left over data from previous filesystem format. 1235 */ 1236 vdev_label_write(zio, vd, l, bootenv, 1237 offsetof(vdev_label_t, vl_be), 1238 VDEV_PAD_SIZE, NULL, NULL, flags); 1239 1240 vdev_label_write(zio, vd, l, ub_abd, 1241 offsetof(vdev_label_t, vl_uberblock), 1242 VDEV_UBERBLOCK_RING, NULL, NULL, flags); 1243 } 1244 1245 error = zio_wait(zio); 1246 1247 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 1248 flags |= ZIO_FLAG_TRYHARD; 1249 goto retry; 1250 } 1251 1252 nvlist_free(label); 1253 abd_free(bootenv); 1254 abd_free(ub_abd); 1255 abd_free(vp_abd); 1256 1257 /* 1258 * If this vdev hasn't been previously identified as a spare, then we 1259 * mark it as such only if a) we are labeling it as a spare, or b) it 1260 * exists as a spare elsewhere in the system. Do the same for 1261 * level 2 ARC devices. 1262 */ 1263 if (error == 0 && !vd->vdev_isspare && 1264 (reason == VDEV_LABEL_SPARE || 1265 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 1266 spa_spare_add(vd); 1267 1268 if (error == 0 && !vd->vdev_isl2cache && 1269 (reason == VDEV_LABEL_L2CACHE || 1270 spa_l2cache_exists(vd->vdev_guid, NULL))) 1271 spa_l2cache_add(vd); 1272 1273 return (error); 1274 } 1275 1276 /* 1277 * Done callback for vdev_label_read_bootenv_impl. If this is the first 1278 * callback to finish, store our abd in the callback pointer. Otherwise, we 1279 * just free our abd and return. 1280 */ 1281 static void 1282 vdev_label_read_bootenv_done(zio_t *zio) 1283 { 1284 zio_t *rio = zio->io_private; 1285 abd_t **cbp = rio->io_private; 1286 1287 ASSERT3U(zio->io_size, ==, VDEV_PAD_SIZE); 1288 1289 if (zio->io_error == 0) { 1290 mutex_enter(&rio->io_lock); 1291 if (*cbp == NULL) { 1292 /* Will free this buffer in vdev_label_read_bootenv. */ 1293 *cbp = zio->io_abd; 1294 } else { 1295 abd_free(zio->io_abd); 1296 } 1297 mutex_exit(&rio->io_lock); 1298 } else { 1299 abd_free(zio->io_abd); 1300 } 1301 } 1302 1303 static void 1304 vdev_label_read_bootenv_impl(zio_t *zio, vdev_t *vd, int flags) 1305 { 1306 for (int c = 0; c < vd->vdev_children; c++) 1307 vdev_label_read_bootenv_impl(zio, vd->vdev_child[c], flags); 1308 1309 /* 1310 * We just use the first label that has a correct checksum; the 1311 * bootloader should have rewritten them all to be the same on boot, 1312 * and any changes we made since boot have been the same across all 1313 * labels. 1314 */ 1315 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1316 for (int l = 0; l < VDEV_LABELS; l++) { 1317 vdev_label_read(zio, vd, l, 1318 abd_alloc_linear(VDEV_PAD_SIZE, B_FALSE), 1319 offsetof(vdev_label_t, vl_be), VDEV_PAD_SIZE, 1320 vdev_label_read_bootenv_done, zio, flags); 1321 } 1322 } 1323 } 1324 1325 int 1326 vdev_label_read_bootenv(vdev_t *rvd, nvlist_t *bootenv) 1327 { 1328 nvlist_t *config; 1329 spa_t *spa = rvd->vdev_spa; 1330 abd_t *abd = NULL; 1331 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1332 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 1333 1334 ASSERT(bootenv); 1335 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1336 1337 zio_t *zio = zio_root(spa, NULL, &abd, flags); 1338 vdev_label_read_bootenv_impl(zio, rvd, flags); 1339 int err = zio_wait(zio); 1340 1341 if (abd != NULL) { 1342 char *buf; 1343 vdev_boot_envblock_t *vbe = abd_to_buf(abd); 1344 1345 vbe->vbe_version = ntohll(vbe->vbe_version); 1346 switch (vbe->vbe_version) { 1347 case VB_RAW: 1348 /* 1349 * if we have textual data in vbe_bootenv, create nvlist 1350 * with key "envmap". 1351 */ 1352 fnvlist_add_uint64(bootenv, BOOTENV_VERSION, VB_RAW); 1353 vbe->vbe_bootenv[sizeof (vbe->vbe_bootenv) - 1] = '\0'; 1354 fnvlist_add_string(bootenv, GRUB_ENVMAP, 1355 vbe->vbe_bootenv); 1356 break; 1357 1358 case VB_NVLIST: 1359 err = nvlist_unpack(vbe->vbe_bootenv, 1360 sizeof (vbe->vbe_bootenv), &config, 0); 1361 if (err == 0) { 1362 fnvlist_merge(bootenv, config); 1363 nvlist_free(config); 1364 break; 1365 } 1366 zfs_fallthrough; 1367 default: 1368 /* Check for FreeBSD zfs bootonce command string */ 1369 buf = abd_to_buf(abd); 1370 if (*buf == '\0') { 1371 fnvlist_add_uint64(bootenv, BOOTENV_VERSION, 1372 VB_NVLIST); 1373 break; 1374 } 1375 fnvlist_add_string(bootenv, FREEBSD_BOOTONCE, buf); 1376 } 1377 1378 /* 1379 * abd was allocated in vdev_label_read_bootenv_impl() 1380 */ 1381 abd_free(abd); 1382 /* 1383 * If we managed to read any successfully, 1384 * return success. 1385 */ 1386 return (0); 1387 } 1388 return (err); 1389 } 1390 1391 int 1392 vdev_label_write_bootenv(vdev_t *vd, nvlist_t *env) 1393 { 1394 zio_t *zio; 1395 spa_t *spa = vd->vdev_spa; 1396 vdev_boot_envblock_t *bootenv; 1397 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1398 int error; 1399 size_t nvsize; 1400 char *nvbuf; 1401 const char *tmp; 1402 1403 error = nvlist_size(env, &nvsize, NV_ENCODE_XDR); 1404 if (error != 0) 1405 return (SET_ERROR(error)); 1406 1407 if (nvsize >= sizeof (bootenv->vbe_bootenv)) { 1408 return (SET_ERROR(E2BIG)); 1409 } 1410 1411 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1412 1413 error = ENXIO; 1414 for (int c = 0; c < vd->vdev_children; c++) { 1415 int child_err; 1416 1417 child_err = vdev_label_write_bootenv(vd->vdev_child[c], env); 1418 /* 1419 * As long as any of the disks managed to write all of their 1420 * labels successfully, return success. 1421 */ 1422 if (child_err == 0) 1423 error = child_err; 1424 } 1425 1426 if (!vd->vdev_ops->vdev_op_leaf || vdev_is_dead(vd) || 1427 !vdev_writeable(vd)) { 1428 return (error); 1429 } 1430 ASSERT3U(sizeof (*bootenv), ==, VDEV_PAD_SIZE); 1431 abd_t *abd = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); 1432 abd_zero(abd, VDEV_PAD_SIZE); 1433 1434 bootenv = abd_borrow_buf_copy(abd, VDEV_PAD_SIZE); 1435 nvbuf = bootenv->vbe_bootenv; 1436 nvsize = sizeof (bootenv->vbe_bootenv); 1437 1438 bootenv->vbe_version = fnvlist_lookup_uint64(env, BOOTENV_VERSION); 1439 switch (bootenv->vbe_version) { 1440 case VB_RAW: 1441 if (nvlist_lookup_string(env, GRUB_ENVMAP, &tmp) == 0) { 1442 (void) strlcpy(bootenv->vbe_bootenv, tmp, nvsize); 1443 } 1444 error = 0; 1445 break; 1446 1447 case VB_NVLIST: 1448 error = nvlist_pack(env, &nvbuf, &nvsize, NV_ENCODE_XDR, 1449 KM_SLEEP); 1450 break; 1451 1452 default: 1453 error = EINVAL; 1454 break; 1455 } 1456 1457 if (error == 0) { 1458 bootenv->vbe_version = htonll(bootenv->vbe_version); 1459 abd_return_buf_copy(abd, bootenv, VDEV_PAD_SIZE); 1460 } else { 1461 abd_free(abd); 1462 return (SET_ERROR(error)); 1463 } 1464 1465 retry: 1466 zio = zio_root(spa, NULL, NULL, flags); 1467 for (int l = 0; l < VDEV_LABELS; l++) { 1468 vdev_label_write(zio, vd, l, abd, 1469 offsetof(vdev_label_t, vl_be), 1470 VDEV_PAD_SIZE, NULL, NULL, flags); 1471 } 1472 1473 error = zio_wait(zio); 1474 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 1475 flags |= ZIO_FLAG_TRYHARD; 1476 goto retry; 1477 } 1478 1479 abd_free(abd); 1480 return (error); 1481 } 1482 1483 /* 1484 * ========================================================================== 1485 * uberblock load/sync 1486 * ========================================================================== 1487 */ 1488 1489 /* 1490 * Consider the following situation: txg is safely synced to disk. We've 1491 * written the first uberblock for txg + 1, and then we lose power. When we 1492 * come back up, we fail to see the uberblock for txg + 1 because, say, 1493 * it was on a mirrored device and the replica to which we wrote txg + 1 1494 * is now offline. If we then make some changes and sync txg + 1, and then 1495 * the missing replica comes back, then for a few seconds we'll have two 1496 * conflicting uberblocks on disk with the same txg. The solution is simple: 1497 * among uberblocks with equal txg, choose the one with the latest timestamp. 1498 */ 1499 static int 1500 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2) 1501 { 1502 int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg); 1503 1504 if (likely(cmp)) 1505 return (cmp); 1506 1507 cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp); 1508 if (likely(cmp)) 1509 return (cmp); 1510 1511 /* 1512 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware 1513 * ZFS, e.g. OpenZFS >= 0.7. 1514 * 1515 * If one ub has MMP and the other does not, they were written by 1516 * different hosts, which matters for MMP. So we treat no MMP/no SEQ as 1517 * a 0 value. 1518 * 1519 * Since timestamp and txg are the same if we get this far, either is 1520 * acceptable for importing the pool. 1521 */ 1522 unsigned int seq1 = 0; 1523 unsigned int seq2 = 0; 1524 1525 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1)) 1526 seq1 = MMP_SEQ(ub1); 1527 1528 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2)) 1529 seq2 = MMP_SEQ(ub2); 1530 1531 return (TREE_CMP(seq1, seq2)); 1532 } 1533 1534 struct ubl_cbdata { 1535 uberblock_t ubl_latest; /* Most recent uberblock */ 1536 uberblock_t *ubl_ubbest; /* Best uberblock (w/r/t max_txg) */ 1537 vdev_t *ubl_vd; /* vdev associated with the above */ 1538 }; 1539 1540 static void 1541 vdev_uberblock_load_done(zio_t *zio) 1542 { 1543 vdev_t *vd = zio->io_vd; 1544 spa_t *spa = zio->io_spa; 1545 zio_t *rio = zio->io_private; 1546 uberblock_t *ub = abd_to_buf(zio->io_abd); 1547 struct ubl_cbdata *cbp = rio->io_private; 1548 1549 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd)); 1550 1551 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 1552 mutex_enter(&rio->io_lock); 1553 if (vdev_uberblock_compare(ub, &cbp->ubl_latest) > 0) { 1554 cbp->ubl_latest = *ub; 1555 } 1556 if (ub->ub_txg <= spa->spa_load_max_txg && 1557 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) { 1558 /* 1559 * Keep track of the vdev in which this uberblock 1560 * was found. We will use this information later 1561 * to obtain the config nvlist associated with 1562 * this uberblock. 1563 */ 1564 *cbp->ubl_ubbest = *ub; 1565 cbp->ubl_vd = vd; 1566 } 1567 mutex_exit(&rio->io_lock); 1568 } 1569 1570 abd_free(zio->io_abd); 1571 } 1572 1573 static void 1574 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags, 1575 struct ubl_cbdata *cbp) 1576 { 1577 for (int c = 0; c < vd->vdev_children; c++) 1578 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp); 1579 1580 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd) && 1581 vd->vdev_ops != &vdev_draid_spare_ops) { 1582 for (int l = 0; l < VDEV_LABELS; l++) { 1583 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1584 vdev_label_read(zio, vd, l, 1585 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), 1586 B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n), 1587 VDEV_UBERBLOCK_SIZE(vd), 1588 vdev_uberblock_load_done, zio, flags); 1589 } 1590 } 1591 } 1592 } 1593 1594 /* 1595 * Reads the 'best' uberblock from disk along with its associated 1596 * configuration. First, we read the uberblock array of each label of each 1597 * vdev, keeping track of the uberblock with the highest txg in each array. 1598 * Then, we read the configuration from the same vdev as the best uberblock. 1599 */ 1600 void 1601 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config) 1602 { 1603 zio_t *zio; 1604 spa_t *spa = rvd->vdev_spa; 1605 struct ubl_cbdata cb; 1606 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1607 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 1608 1609 ASSERT(ub); 1610 ASSERT(config); 1611 1612 memset(ub, 0, sizeof (uberblock_t)); 1613 memset(&cb, 0, sizeof (cb)); 1614 *config = NULL; 1615 1616 cb.ubl_ubbest = ub; 1617 1618 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1619 zio = zio_root(spa, NULL, &cb, flags); 1620 vdev_uberblock_load_impl(zio, rvd, flags, &cb); 1621 (void) zio_wait(zio); 1622 1623 /* 1624 * It's possible that the best uberblock was discovered on a label 1625 * that has a configuration which was written in a future txg. 1626 * Search all labels on this vdev to find the configuration that 1627 * matches the txg for our uberblock. 1628 */ 1629 if (cb.ubl_vd != NULL) { 1630 vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. " 1631 "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg); 1632 1633 if (ub->ub_raidz_reflow_info != 1634 cb.ubl_latest.ub_raidz_reflow_info) { 1635 vdev_dbgmsg(cb.ubl_vd, 1636 "spa=%s best uberblock (txg=%llu info=0x%llx) " 1637 "has different raidz_reflow_info than latest " 1638 "uberblock (txg=%llu info=0x%llx)", 1639 spa->spa_name, 1640 (u_longlong_t)ub->ub_txg, 1641 (u_longlong_t)ub->ub_raidz_reflow_info, 1642 (u_longlong_t)cb.ubl_latest.ub_txg, 1643 (u_longlong_t)cb.ubl_latest.ub_raidz_reflow_info); 1644 memset(ub, 0, sizeof (uberblock_t)); 1645 spa_config_exit(spa, SCL_ALL, FTAG); 1646 return; 1647 } 1648 1649 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg); 1650 if (*config == NULL && spa->spa_extreme_rewind) { 1651 vdev_dbgmsg(cb.ubl_vd, "failed to read label config. " 1652 "Trying again without txg restrictions."); 1653 *config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX); 1654 } 1655 if (*config == NULL) { 1656 vdev_dbgmsg(cb.ubl_vd, "failed to read label config"); 1657 } 1658 } 1659 spa_config_exit(spa, SCL_ALL, FTAG); 1660 } 1661 1662 /* 1663 * For use when a leaf vdev is expanded. 1664 * The location of labels 2 and 3 changed, and at the new location the 1665 * uberblock rings are either empty or contain garbage. The sync will write 1666 * new configs there because the vdev is dirty, but expansion also needs the 1667 * uberblock rings copied. Read them from label 0 which did not move. 1668 * 1669 * Since the point is to populate labels {2,3} with valid uberblocks, 1670 * we zero uberblocks we fail to read or which are not valid. 1671 */ 1672 1673 static void 1674 vdev_copy_uberblocks(vdev_t *vd) 1675 { 1676 abd_t *ub_abd; 1677 zio_t *write_zio; 1678 int locks = (SCL_L2ARC | SCL_ZIO); 1679 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1680 ZIO_FLAG_SPECULATIVE; 1681 1682 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) == 1683 SCL_STATE); 1684 ASSERT(vd->vdev_ops->vdev_op_leaf); 1685 1686 /* 1687 * No uberblocks are stored on distributed spares, they may be 1688 * safely skipped when expanding a leaf vdev. 1689 */ 1690 if (vd->vdev_ops == &vdev_draid_spare_ops) 1691 return; 1692 1693 spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER); 1694 1695 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE); 1696 1697 write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags); 1698 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1699 const int src_label = 0; 1700 zio_t *zio; 1701 1702 zio = zio_root(vd->vdev_spa, NULL, NULL, flags); 1703 vdev_label_read(zio, vd, src_label, ub_abd, 1704 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1705 NULL, NULL, flags); 1706 1707 if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd))) 1708 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd)); 1709 1710 for (int l = 2; l < VDEV_LABELS; l++) 1711 vdev_label_write(write_zio, vd, l, ub_abd, 1712 VDEV_UBERBLOCK_OFFSET(vd, n), 1713 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL, 1714 flags | ZIO_FLAG_DONT_PROPAGATE); 1715 } 1716 (void) zio_wait(write_zio); 1717 1718 spa_config_exit(vd->vdev_spa, locks, FTAG); 1719 1720 abd_free(ub_abd); 1721 } 1722 1723 /* 1724 * On success, increment root zio's count of good writes. 1725 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 1726 */ 1727 static void 1728 vdev_uberblock_sync_done(zio_t *zio) 1729 { 1730 uint64_t *good_writes = zio->io_private; 1731 1732 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 1733 atomic_inc_64(good_writes); 1734 } 1735 1736 /* 1737 * Write the uberblock to all labels of all leaves of the specified vdev. 1738 */ 1739 static void 1740 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes, 1741 uberblock_t *ub, vdev_t *vd, int flags) 1742 { 1743 for (uint64_t c = 0; c < vd->vdev_children; c++) { 1744 vdev_uberblock_sync(zio, good_writes, 1745 ub, vd->vdev_child[c], flags); 1746 } 1747 1748 if (!vd->vdev_ops->vdev_op_leaf) 1749 return; 1750 1751 if (!vdev_writeable(vd)) 1752 return; 1753 1754 /* 1755 * There's no need to write uberblocks to a distributed spare, they 1756 * are already stored on all the leaves of the parent dRAID. For 1757 * this same reason vdev_uberblock_load_impl() skips distributed 1758 * spares when reading uberblocks. 1759 */ 1760 if (vd->vdev_ops == &vdev_draid_spare_ops) 1761 return; 1762 1763 /* If the vdev was expanded, need to copy uberblock rings. */ 1764 if (vd->vdev_state == VDEV_STATE_HEALTHY && 1765 vd->vdev_copy_uberblocks == B_TRUE) { 1766 vdev_copy_uberblocks(vd); 1767 vd->vdev_copy_uberblocks = B_FALSE; 1768 } 1769 1770 /* 1771 * We chose a slot based on the txg. If this uberblock has a special 1772 * RAIDZ expansion state, then it is essentially an update of the 1773 * current uberblock (it has the same txg). However, the current 1774 * state is committed, so we want to write it to a different slot. If 1775 * we overwrote the same slot, and we lose power during the uberblock 1776 * write, and the disk does not do single-sector overwrites 1777 * atomically (even though it is required to - i.e. we should see 1778 * either the old or the new uberblock), then we could lose this 1779 * txg's uberblock. Rewinding to the previous txg's uberblock may not 1780 * be possible because RAIDZ expansion may have already overwritten 1781 * some of the data, so we need the progress indicator in the 1782 * uberblock. 1783 */ 1784 int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0; 1785 int n = (ub->ub_txg - (RRSS_GET_STATE(ub) == RRSS_SCRATCH_VALID)) % 1786 (VDEV_UBERBLOCK_COUNT(vd) - m); 1787 1788 /* Copy the uberblock_t into the ABD */ 1789 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE); 1790 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t)); 1791 abd_zero_off(ub_abd, sizeof (uberblock_t), 1792 VDEV_UBERBLOCK_SIZE(vd) - sizeof (uberblock_t)); 1793 1794 for (int l = 0; l < VDEV_LABELS; l++) 1795 vdev_label_write(zio, vd, l, ub_abd, 1796 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1797 vdev_uberblock_sync_done, good_writes, 1798 flags | ZIO_FLAG_DONT_PROPAGATE); 1799 1800 abd_free(ub_abd); 1801 } 1802 1803 /* Sync the uberblocks to all vdevs in svd[] */ 1804 int 1805 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 1806 { 1807 spa_t *spa = svd[0]->vdev_spa; 1808 zio_t *zio; 1809 uint64_t good_writes = 0; 1810 1811 zio = zio_root(spa, NULL, NULL, flags); 1812 1813 for (int v = 0; v < svdcount; v++) 1814 vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags); 1815 1816 if (spa->spa_aux_sync_uber) { 1817 for (int v = 0; v < spa->spa_spares.sav_count; v++) { 1818 vdev_uberblock_sync(zio, &good_writes, ub, 1819 spa->spa_spares.sav_vdevs[v], flags); 1820 } 1821 for (int v = 0; v < spa->spa_l2cache.sav_count; v++) { 1822 vdev_uberblock_sync(zio, &good_writes, ub, 1823 spa->spa_l2cache.sav_vdevs[v], flags); 1824 } 1825 } 1826 (void) zio_wait(zio); 1827 1828 /* 1829 * Flush the uberblocks to disk. This ensures that the odd labels 1830 * are no longer needed (because the new uberblocks and the even 1831 * labels are safely on disk), so it is safe to overwrite them. 1832 */ 1833 zio = zio_root(spa, NULL, NULL, flags); 1834 1835 for (int v = 0; v < svdcount; v++) { 1836 if (vdev_writeable(svd[v])) { 1837 zio_flush(zio, svd[v]); 1838 } 1839 } 1840 if (spa->spa_aux_sync_uber) { 1841 spa->spa_aux_sync_uber = B_FALSE; 1842 for (int v = 0; v < spa->spa_spares.sav_count; v++) { 1843 if (vdev_writeable(spa->spa_spares.sav_vdevs[v])) { 1844 zio_flush(zio, spa->spa_spares.sav_vdevs[v]); 1845 } 1846 } 1847 for (int v = 0; v < spa->spa_l2cache.sav_count; v++) { 1848 if (vdev_writeable(spa->spa_l2cache.sav_vdevs[v])) { 1849 zio_flush(zio, spa->spa_l2cache.sav_vdevs[v]); 1850 } 1851 } 1852 } 1853 1854 (void) zio_wait(zio); 1855 1856 return (good_writes >= 1 ? 0 : EIO); 1857 } 1858 1859 /* 1860 * On success, increment the count of good writes for our top-level vdev. 1861 */ 1862 static void 1863 vdev_label_sync_done(zio_t *zio) 1864 { 1865 uint64_t *good_writes = zio->io_private; 1866 1867 if (zio->io_error == 0) 1868 atomic_inc_64(good_writes); 1869 } 1870 1871 /* 1872 * If there weren't enough good writes, indicate failure to the parent. 1873 */ 1874 static void 1875 vdev_label_sync_top_done(zio_t *zio) 1876 { 1877 uint64_t *good_writes = zio->io_private; 1878 1879 if (*good_writes == 0) 1880 zio->io_error = SET_ERROR(EIO); 1881 1882 kmem_free(good_writes, sizeof (uint64_t)); 1883 } 1884 1885 /* 1886 * We ignore errors for log and cache devices, simply free the private data. 1887 */ 1888 static void 1889 vdev_label_sync_ignore_done(zio_t *zio) 1890 { 1891 kmem_free(zio->io_private, sizeof (uint64_t)); 1892 } 1893 1894 /* 1895 * Write all even or odd labels to all leaves of the specified vdev. 1896 */ 1897 static void 1898 vdev_label_sync(zio_t *zio, uint64_t *good_writes, 1899 vdev_t *vd, int l, uint64_t txg, int flags) 1900 { 1901 nvlist_t *label; 1902 vdev_phys_t *vp; 1903 abd_t *vp_abd; 1904 char *buf; 1905 size_t buflen; 1906 vdev_t *pvd = vd->vdev_parent; 1907 boolean_t spare_in_use = B_FALSE; 1908 1909 for (int c = 0; c < vd->vdev_children; c++) { 1910 vdev_label_sync(zio, good_writes, 1911 vd->vdev_child[c], l, txg, flags); 1912 } 1913 1914 if (!vd->vdev_ops->vdev_op_leaf) 1915 return; 1916 1917 if (!vdev_writeable(vd)) 1918 return; 1919 1920 /* 1921 * The top-level config never needs to be written to a distributed 1922 * spare. When read vdev_dspare_label_read_config() will generate 1923 * the config for the vdev_label_read_config(). 1924 */ 1925 if (vd->vdev_ops == &vdev_draid_spare_ops) 1926 return; 1927 1928 if (pvd && pvd->vdev_ops == &vdev_spare_ops) 1929 spare_in_use = B_TRUE; 1930 1931 /* 1932 * Generate a label describing the top-level config to which we belong. 1933 */ 1934 if ((vd->vdev_isspare && !spare_in_use) || vd->vdev_isl2cache) { 1935 label = vdev_aux_label_generate(vd, vd->vdev_isspare); 1936 } else { 1937 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 1938 } 1939 1940 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 1941 abd_zero(vp_abd, sizeof (vdev_phys_t)); 1942 vp = abd_to_buf(vp_abd); 1943 1944 buf = vp->vp_nvlist; 1945 buflen = sizeof (vp->vp_nvlist); 1946 1947 if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) { 1948 for (; l < VDEV_LABELS; l += 2) { 1949 vdev_label_write(zio, vd, l, vp_abd, 1950 offsetof(vdev_label_t, vl_vdev_phys), 1951 sizeof (vdev_phys_t), 1952 vdev_label_sync_done, good_writes, 1953 flags | ZIO_FLAG_DONT_PROPAGATE); 1954 } 1955 } 1956 1957 abd_free(vp_abd); 1958 nvlist_free(label); 1959 } 1960 1961 static int 1962 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 1963 { 1964 list_t *dl = &spa->spa_config_dirty_list; 1965 vdev_t *vd; 1966 zio_t *zio; 1967 int error; 1968 1969 /* 1970 * Write the new labels to disk. 1971 */ 1972 zio = zio_root(spa, NULL, NULL, flags); 1973 1974 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 1975 uint64_t *good_writes; 1976 1977 ASSERT(!vd->vdev_ishole); 1978 1979 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 1980 zio_t *vio = zio_null(zio, spa, NULL, 1981 (vd->vdev_islog || vd->vdev_aux != NULL) ? 1982 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 1983 good_writes, flags); 1984 vdev_label_sync(vio, good_writes, vd, l, txg, flags); 1985 zio_nowait(vio); 1986 } 1987 1988 /* 1989 * AUX path may have changed during import 1990 */ 1991 spa_aux_vdev_t *sav[2] = {&spa->spa_spares, &spa->spa_l2cache}; 1992 for (int i = 0; i < 2; i++) { 1993 for (int v = 0; v < sav[i]->sav_count; v++) { 1994 uint64_t *good_writes; 1995 if (!sav[i]->sav_label_sync) 1996 continue; 1997 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 1998 zio_t *vio = zio_null(zio, spa, NULL, 1999 vdev_label_sync_ignore_done, good_writes, flags); 2000 vdev_label_sync(vio, good_writes, sav[i]->sav_vdevs[v], 2001 l, txg, flags); 2002 zio_nowait(vio); 2003 } 2004 } 2005 2006 error = zio_wait(zio); 2007 2008 /* 2009 * Flush the new labels to disk. 2010 */ 2011 zio = zio_root(spa, NULL, NULL, flags); 2012 2013 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 2014 zio_flush(zio, vd); 2015 2016 for (int i = 0; i < 2; i++) { 2017 if (!sav[i]->sav_label_sync) 2018 continue; 2019 for (int v = 0; v < sav[i]->sav_count; v++) 2020 zio_flush(zio, sav[i]->sav_vdevs[v]); 2021 if (l == 1) 2022 sav[i]->sav_label_sync = B_FALSE; 2023 } 2024 2025 (void) zio_wait(zio); 2026 2027 return (error); 2028 } 2029 2030 /* 2031 * Sync the uberblock and any changes to the vdev configuration. 2032 * 2033 * The order of operations is carefully crafted to ensure that 2034 * if the system panics or loses power at any time, the state on disk 2035 * is still transactionally consistent. The in-line comments below 2036 * describe the failure semantics at each stage. 2037 * 2038 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 2039 * at any time, you can just call it again, and it will resume its work. 2040 */ 2041 int 2042 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg) 2043 { 2044 spa_t *spa = svd[0]->vdev_spa; 2045 uberblock_t *ub = &spa->spa_uberblock; 2046 int error = 0; 2047 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 2048 2049 ASSERT(svdcount != 0); 2050 retry: 2051 /* 2052 * Normally, we don't want to try too hard to write every label and 2053 * uberblock. If there is a flaky disk, we don't want the rest of the 2054 * sync process to block while we retry. But if we can't write a 2055 * single label out, we should retry with ZIO_FLAG_TRYHARD before 2056 * bailing out and declaring the pool faulted. 2057 */ 2058 if (error != 0) { 2059 if ((flags & ZIO_FLAG_TRYHARD) != 0) 2060 return (error); 2061 flags |= ZIO_FLAG_TRYHARD; 2062 } 2063 2064 ASSERT(ub->ub_txg <= txg); 2065 2066 /* 2067 * If this isn't a resync due to I/O errors, 2068 * and nothing changed in this transaction group, 2069 * and multihost protection isn't enabled, 2070 * and the vdev configuration hasn't changed, 2071 * then there's nothing to do. 2072 */ 2073 if (ub->ub_txg < txg) { 2074 boolean_t changed = uberblock_update(ub, spa->spa_root_vdev, 2075 txg, spa->spa_mmp.mmp_delay); 2076 2077 if (!changed && list_is_empty(&spa->spa_config_dirty_list) && 2078 !spa_multihost(spa)) 2079 return (0); 2080 } 2081 2082 if (txg > spa_freeze_txg(spa)) 2083 return (0); 2084 2085 ASSERT(txg <= spa->spa_final_txg); 2086 2087 /* 2088 * Flush the write cache of every disk that's been written to 2089 * in this transaction group. This ensures that all blocks 2090 * written in this txg will be committed to stable storage 2091 * before any uberblock that references them. 2092 */ 2093 zio_t *zio = zio_root(spa, NULL, NULL, flags); 2094 2095 for (vdev_t *vd = 2096 txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL; 2097 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 2098 zio_flush(zio, vd); 2099 2100 (void) zio_wait(zio); 2101 2102 /* 2103 * Sync out the even labels (L0, L2) for every dirty vdev. If the 2104 * system dies in the middle of this process, that's OK: all of the 2105 * even labels that made it to disk will be newer than any uberblock, 2106 * and will therefore be considered invalid. The odd labels (L1, L3), 2107 * which have not yet been touched, will still be valid. We flush 2108 * the new labels to disk to ensure that all even-label updates 2109 * are committed to stable storage before the uberblock update. 2110 */ 2111 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) { 2112 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 2113 zfs_dbgmsg("vdev_label_sync_list() returned error %d " 2114 "for pool '%s' when syncing out the even labels " 2115 "of dirty vdevs", error, spa_name(spa)); 2116 } 2117 goto retry; 2118 } 2119 2120 /* 2121 * Sync the uberblocks to all vdevs in svd[]. 2122 * If the system dies in the middle of this step, there are two cases 2123 * to consider, and the on-disk state is consistent either way: 2124 * 2125 * (1) If none of the new uberblocks made it to disk, then the 2126 * previous uberblock will be the newest, and the odd labels 2127 * (which had not yet been touched) will be valid with respect 2128 * to that uberblock. 2129 * 2130 * (2) If one or more new uberblocks made it to disk, then they 2131 * will be the newest, and the even labels (which had all 2132 * been successfully committed) will be valid with respect 2133 * to the new uberblocks. 2134 */ 2135 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) { 2136 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 2137 zfs_dbgmsg("vdev_uberblock_sync_list() returned error " 2138 "%d for pool '%s'", error, spa_name(spa)); 2139 } 2140 goto retry; 2141 } 2142 2143 if (spa_multihost(spa)) 2144 mmp_update_uberblock(spa, ub); 2145 2146 /* 2147 * Sync out odd labels for every dirty vdev. If the system dies 2148 * in the middle of this process, the even labels and the new 2149 * uberblocks will suffice to open the pool. The next time 2150 * the pool is opened, the first thing we'll do -- before any 2151 * user data is modified -- is mark every vdev dirty so that 2152 * all labels will be brought up to date. We flush the new labels 2153 * to disk to ensure that all odd-label updates are committed to 2154 * stable storage before the next transaction group begins. 2155 */ 2156 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) { 2157 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 2158 zfs_dbgmsg("vdev_label_sync_list() returned error %d " 2159 "for pool '%s' when syncing out the odd labels of " 2160 "dirty vdevs", error, spa_name(spa)); 2161 } 2162 goto retry; 2163 } 2164 2165 return (0); 2166 } 2167