xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_label.c (revision 8311bc5f17dec348749f763b82dfe2737bc53cd7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  */
27 
28 /*
29  * Virtual Device Labels
30  * ---------------------
31  *
32  * The vdev label serves several distinct purposes:
33  *
34  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
35  *	   identity within the pool.
36  *
37  *	2. Verify that all the devices given in a configuration are present
38  *         within the pool.
39  *
40  *	3. Determine the uberblock for the pool.
41  *
42  *	4. In case of an import operation, determine the configuration of the
43  *         toplevel vdev of which it is a part.
44  *
45  *	5. If an import operation cannot find all the devices in the pool,
46  *         provide enough information to the administrator to determine which
47  *         devices are missing.
48  *
49  * It is important to note that while the kernel is responsible for writing the
50  * label, it only consumes the information in the first three cases.  The
51  * latter information is only consumed in userland when determining the
52  * configuration to import a pool.
53  *
54  *
55  * Label Organization
56  * ------------------
57  *
58  * Before describing the contents of the label, it's important to understand how
59  * the labels are written and updated with respect to the uberblock.
60  *
61  * When the pool configuration is altered, either because it was newly created
62  * or a device was added, we want to update all the labels such that we can deal
63  * with fatal failure at any point.  To this end, each disk has two labels which
64  * are updated before and after the uberblock is synced.  Assuming we have
65  * labels and an uberblock with the following transaction groups:
66  *
67  *              L1          UB          L2
68  *           +------+    +------+    +------+
69  *           |      |    |      |    |      |
70  *           | t10  |    | t10  |    | t10  |
71  *           |      |    |      |    |      |
72  *           +------+    +------+    +------+
73  *
74  * In this stable state, the labels and the uberblock were all updated within
75  * the same transaction group (10).  Each label is mirrored and checksummed, so
76  * that we can detect when we fail partway through writing the label.
77  *
78  * In order to identify which labels are valid, the labels are written in the
79  * following manner:
80  *
81  *	1. For each vdev, update 'L1' to the new label
82  *	2. Update the uberblock
83  *	3. For each vdev, update 'L2' to the new label
84  *
85  * Given arbitrary failure, we can determine the correct label to use based on
86  * the transaction group.  If we fail after updating L1 but before updating the
87  * UB, we will notice that L1's transaction group is greater than the uberblock,
88  * so L2 must be valid.  If we fail after writing the uberblock but before
89  * writing L2, we will notice that L2's transaction group is less than L1, and
90  * therefore L1 is valid.
91  *
92  * Another added complexity is that not every label is updated when the config
93  * is synced.  If we add a single device, we do not want to have to re-write
94  * every label for every device in the pool.  This means that both L1 and L2 may
95  * be older than the pool uberblock, because the necessary information is stored
96  * on another vdev.
97  *
98  *
99  * On-disk Format
100  * --------------
101  *
102  * The vdev label consists of two distinct parts, and is wrapped within the
103  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
104  * VTOC disk labels, but is otherwise ignored.
105  *
106  * The first half of the label is a packed nvlist which contains pool wide
107  * properties, per-vdev properties, and configuration information.  It is
108  * described in more detail below.
109  *
110  * The latter half of the label consists of a redundant array of uberblocks.
111  * These uberblocks are updated whenever a transaction group is committed,
112  * or when the configuration is updated.  When a pool is loaded, we scan each
113  * vdev for the 'best' uberblock.
114  *
115  *
116  * Configuration Information
117  * -------------------------
118  *
119  * The nvlist describing the pool and vdev contains the following elements:
120  *
121  *	version		ZFS on-disk version
122  *	name		Pool name
123  *	state		Pool state
124  *	txg		Transaction group in which this label was written
125  *	pool_guid	Unique identifier for this pool
126  *	vdev_tree	An nvlist describing vdev tree.
127  *	features_for_read
128  *			An nvlist of the features necessary for reading the MOS.
129  *
130  * Each leaf device label also contains the following:
131  *
132  *	top_guid	Unique ID for top-level vdev in which this is contained
133  *	guid		Unique ID for the leaf vdev
134  *
135  * The 'vs' configuration follows the format described in 'spa_config.c'.
136  */
137 
138 #include <sys/zfs_context.h>
139 #include <sys/spa.h>
140 #include <sys/spa_impl.h>
141 #include <sys/dmu.h>
142 #include <sys/zap.h>
143 #include <sys/vdev.h>
144 #include <sys/vdev_impl.h>
145 #include <sys/vdev_raidz.h>
146 #include <sys/vdev_draid.h>
147 #include <sys/uberblock_impl.h>
148 #include <sys/metaslab.h>
149 #include <sys/metaslab_impl.h>
150 #include <sys/zio.h>
151 #include <sys/dsl_scan.h>
152 #include <sys/abd.h>
153 #include <sys/fs/zfs.h>
154 #include <sys/byteorder.h>
155 #include <sys/zfs_bootenv.h>
156 
157 /*
158  * Basic routines to read and write from a vdev label.
159  * Used throughout the rest of this file.
160  */
161 uint64_t
162 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
163 {
164 	ASSERT(offset < sizeof (vdev_label_t));
165 	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
166 
167 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
168 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
169 }
170 
171 /*
172  * Returns back the vdev label associated with the passed in offset.
173  */
174 int
175 vdev_label_number(uint64_t psize, uint64_t offset)
176 {
177 	int l;
178 
179 	if (offset >= psize - VDEV_LABEL_END_SIZE) {
180 		offset -= psize - VDEV_LABEL_END_SIZE;
181 		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
182 	}
183 	l = offset / sizeof (vdev_label_t);
184 	return (l < VDEV_LABELS ? l : -1);
185 }
186 
187 static void
188 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
189     uint64_t size, zio_done_func_t *done, void *private, int flags)
190 {
191 	ASSERT(
192 	    spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
193 	    spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
194 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
195 
196 	zio_nowait(zio_read_phys(zio, vd,
197 	    vdev_label_offset(vd->vdev_psize, l, offset),
198 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
199 	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
200 }
201 
202 void
203 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
204     uint64_t size, zio_done_func_t *done, void *private, int flags)
205 {
206 	ASSERT(
207 	    spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
208 	    spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
209 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
210 
211 	zio_nowait(zio_write_phys(zio, vd,
212 	    vdev_label_offset(vd->vdev_psize, l, offset),
213 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
214 	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
215 }
216 
217 /*
218  * Generate the nvlist representing this vdev's stats
219  */
220 void
221 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv)
222 {
223 	nvlist_t *nvx;
224 	vdev_stat_t *vs;
225 	vdev_stat_ex_t *vsx;
226 
227 	vs = kmem_alloc(sizeof (*vs), KM_SLEEP);
228 	vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP);
229 
230 	vdev_get_stats_ex(vd, vs, vsx);
231 	fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
232 	    (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t));
233 
234 	/*
235 	 * Add extended stats into a special extended stats nvlist.  This keeps
236 	 * all the extended stats nicely grouped together.  The extended stats
237 	 * nvlist is then added to the main nvlist.
238 	 */
239 	nvx = fnvlist_alloc();
240 
241 	/* ZIOs in flight to disk */
242 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE,
243 	    vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]);
244 
245 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE,
246 	    vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]);
247 
248 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE,
249 	    vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]);
250 
251 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE,
252 	    vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]);
253 
254 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE,
255 	    vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]);
256 
257 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE,
258 	    vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]);
259 
260 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_REBUILD_ACTIVE_QUEUE,
261 	    vsx->vsx_active_queue[ZIO_PRIORITY_REBUILD]);
262 
263 	/* ZIOs pending */
264 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE,
265 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]);
266 
267 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE,
268 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]);
269 
270 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE,
271 	    vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]);
272 
273 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE,
274 	    vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]);
275 
276 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE,
277 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]);
278 
279 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE,
280 	    vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]);
281 
282 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_REBUILD_PEND_QUEUE,
283 	    vsx->vsx_pend_queue[ZIO_PRIORITY_REBUILD]);
284 
285 	/* Histograms */
286 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO,
287 	    vsx->vsx_total_histo[ZIO_TYPE_READ],
288 	    ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ]));
289 
290 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO,
291 	    vsx->vsx_total_histo[ZIO_TYPE_WRITE],
292 	    ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE]));
293 
294 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO,
295 	    vsx->vsx_disk_histo[ZIO_TYPE_READ],
296 	    ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ]));
297 
298 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO,
299 	    vsx->vsx_disk_histo[ZIO_TYPE_WRITE],
300 	    ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE]));
301 
302 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO,
303 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ],
304 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ]));
305 
306 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO,
307 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE],
308 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE]));
309 
310 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO,
311 	    vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ],
312 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ]));
313 
314 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO,
315 	    vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE],
316 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE]));
317 
318 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO,
319 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB],
320 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB]));
321 
322 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO,
323 	    vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM],
324 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM]));
325 
326 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_REBUILD_LAT_HISTO,
327 	    vsx->vsx_queue_histo[ZIO_PRIORITY_REBUILD],
328 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_REBUILD]));
329 
330 	/* Request sizes */
331 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO,
332 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ],
333 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ]));
334 
335 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO,
336 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE],
337 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE]));
338 
339 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO,
340 	    vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ],
341 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ]));
342 
343 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO,
344 	    vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE],
345 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE]));
346 
347 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO,
348 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB],
349 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB]));
350 
351 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO,
352 	    vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM],
353 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM]));
354 
355 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_REBUILD_HISTO,
356 	    vsx->vsx_ind_histo[ZIO_PRIORITY_REBUILD],
357 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_REBUILD]));
358 
359 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO,
360 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ],
361 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ]));
362 
363 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO,
364 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE],
365 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE]));
366 
367 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO,
368 	    vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ],
369 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ]));
370 
371 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO,
372 	    vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE],
373 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE]));
374 
375 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO,
376 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB],
377 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB]));
378 
379 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO,
380 	    vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM],
381 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM]));
382 
383 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_REBUILD_HISTO,
384 	    vsx->vsx_agg_histo[ZIO_PRIORITY_REBUILD],
385 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_REBUILD]));
386 
387 	/* IO delays */
388 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios);
389 
390 	/* Add extended stats nvlist to main nvlist */
391 	fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx);
392 
393 	fnvlist_free(nvx);
394 	kmem_free(vs, sizeof (*vs));
395 	kmem_free(vsx, sizeof (*vsx));
396 }
397 
398 static void
399 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
400 {
401 	spa_t *spa = vd->vdev_spa;
402 
403 	if (vd != spa->spa_root_vdev)
404 		return;
405 
406 	/* provide either current or previous scan information */
407 	pool_scan_stat_t ps;
408 	if (spa_scan_get_stats(spa, &ps) == 0) {
409 		fnvlist_add_uint64_array(nvl,
410 		    ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
411 		    sizeof (pool_scan_stat_t) / sizeof (uint64_t));
412 	}
413 
414 	pool_removal_stat_t prs;
415 	if (spa_removal_get_stats(spa, &prs) == 0) {
416 		fnvlist_add_uint64_array(nvl,
417 		    ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
418 		    sizeof (prs) / sizeof (uint64_t));
419 	}
420 
421 	pool_checkpoint_stat_t pcs;
422 	if (spa_checkpoint_get_stats(spa, &pcs) == 0) {
423 		fnvlist_add_uint64_array(nvl,
424 		    ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs,
425 		    sizeof (pcs) / sizeof (uint64_t));
426 	}
427 
428 	pool_raidz_expand_stat_t pres;
429 	if (spa_raidz_expand_get_stats(spa, &pres) == 0) {
430 		fnvlist_add_uint64_array(nvl,
431 		    ZPOOL_CONFIG_RAIDZ_EXPAND_STATS, (uint64_t *)&pres,
432 		    sizeof (pres) / sizeof (uint64_t));
433 	}
434 }
435 
436 static void
437 top_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
438 {
439 	if (vd == vd->vdev_top) {
440 		vdev_rebuild_stat_t vrs;
441 		if (vdev_rebuild_get_stats(vd, &vrs) == 0) {
442 			fnvlist_add_uint64_array(nvl,
443 			    ZPOOL_CONFIG_REBUILD_STATS, (uint64_t *)&vrs,
444 			    sizeof (vrs) / sizeof (uint64_t));
445 		}
446 	}
447 }
448 
449 /*
450  * Generate the nvlist representing this vdev's config.
451  */
452 nvlist_t *
453 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
454     vdev_config_flag_t flags)
455 {
456 	nvlist_t *nv = NULL;
457 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
458 
459 	nv = fnvlist_alloc();
460 
461 	fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
462 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
463 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
464 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
465 
466 	if (vd->vdev_path != NULL)
467 		fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
468 
469 	if (vd->vdev_devid != NULL)
470 		fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
471 
472 	if (vd->vdev_physpath != NULL)
473 		fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
474 		    vd->vdev_physpath);
475 
476 	if (vd->vdev_enc_sysfs_path != NULL)
477 		fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
478 		    vd->vdev_enc_sysfs_path);
479 
480 	if (vd->vdev_fru != NULL)
481 		fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
482 
483 	if (vd->vdev_ops->vdev_op_config_generate != NULL)
484 		vd->vdev_ops->vdev_op_config_generate(vd, nv);
485 
486 	if (vd->vdev_wholedisk != -1ULL) {
487 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
488 		    vd->vdev_wholedisk);
489 	}
490 
491 	if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
492 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
493 
494 	if (vd->vdev_isspare)
495 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
496 
497 	if (flags & VDEV_CONFIG_L2CACHE)
498 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
499 
500 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
501 	    vd == vd->vdev_top) {
502 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
503 		    vd->vdev_ms_array);
504 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
505 		    vd->vdev_ms_shift);
506 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
507 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
508 		    vd->vdev_asize);
509 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
510 		if (vd->vdev_noalloc) {
511 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
512 			    vd->vdev_noalloc);
513 		}
514 
515 		/*
516 		 * Slog devices are removed synchronously so don't
517 		 * persist the vdev_removing flag to the label.
518 		 */
519 		if (vd->vdev_removing && !vd->vdev_islog) {
520 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
521 			    vd->vdev_removing);
522 		}
523 
524 		/* zpool command expects alloc class data */
525 		if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) {
526 			const char *bias = NULL;
527 
528 			switch (vd->vdev_alloc_bias) {
529 			case VDEV_BIAS_LOG:
530 				bias = VDEV_ALLOC_BIAS_LOG;
531 				break;
532 			case VDEV_BIAS_SPECIAL:
533 				bias = VDEV_ALLOC_BIAS_SPECIAL;
534 				break;
535 			case VDEV_BIAS_DEDUP:
536 				bias = VDEV_ALLOC_BIAS_DEDUP;
537 				break;
538 			default:
539 				ASSERT3U(vd->vdev_alloc_bias, ==,
540 				    VDEV_BIAS_NONE);
541 			}
542 			fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
543 			    bias);
544 		}
545 	}
546 
547 	if (vd->vdev_dtl_sm != NULL) {
548 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
549 		    space_map_object(vd->vdev_dtl_sm));
550 	}
551 
552 	if (vic->vic_mapping_object != 0) {
553 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
554 		    vic->vic_mapping_object);
555 	}
556 
557 	if (vic->vic_births_object != 0) {
558 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
559 		    vic->vic_births_object);
560 	}
561 
562 	if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
563 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
564 		    vic->vic_prev_indirect_vdev);
565 	}
566 
567 	if (vd->vdev_crtxg)
568 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
569 
570 	if (vd->vdev_expansion_time)
571 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_EXPANSION_TIME,
572 		    vd->vdev_expansion_time);
573 
574 	if (flags & VDEV_CONFIG_MOS) {
575 		if (vd->vdev_leaf_zap != 0) {
576 			ASSERT(vd->vdev_ops->vdev_op_leaf);
577 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
578 			    vd->vdev_leaf_zap);
579 		}
580 
581 		if (vd->vdev_top_zap != 0) {
582 			ASSERT(vd == vd->vdev_top);
583 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
584 			    vd->vdev_top_zap);
585 		}
586 
587 		if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap != 0 &&
588 		    spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) {
589 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP,
590 			    vd->vdev_root_zap);
591 		}
592 
593 		if (vd->vdev_resilver_deferred) {
594 			ASSERT(vd->vdev_ops->vdev_op_leaf);
595 			ASSERT(spa->spa_resilver_deferred);
596 			fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER);
597 		}
598 	}
599 
600 	if (getstats) {
601 		vdev_config_generate_stats(vd, nv);
602 
603 		root_vdev_actions_getprogress(vd, nv);
604 		top_vdev_actions_getprogress(vd, nv);
605 
606 		/*
607 		 * Note: this can be called from open context
608 		 * (spa_get_stats()), so we need the rwlock to prevent
609 		 * the mapping from being changed by condensing.
610 		 */
611 		rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
612 		if (vd->vdev_indirect_mapping != NULL) {
613 			ASSERT(vd->vdev_indirect_births != NULL);
614 			vdev_indirect_mapping_t *vim =
615 			    vd->vdev_indirect_mapping;
616 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
617 			    vdev_indirect_mapping_size(vim));
618 		}
619 		rw_exit(&vd->vdev_indirect_rwlock);
620 		if (vd->vdev_mg != NULL &&
621 		    vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
622 			/*
623 			 * Compute approximately how much memory would be used
624 			 * for the indirect mapping if this device were to
625 			 * be removed.
626 			 *
627 			 * Note: If the frag metric is invalid, then not
628 			 * enough metaslabs have been converted to have
629 			 * histograms.
630 			 */
631 			uint64_t seg_count = 0;
632 			uint64_t to_alloc = vd->vdev_stat.vs_alloc;
633 
634 			/*
635 			 * There are the same number of allocated segments
636 			 * as free segments, so we will have at least one
637 			 * entry per free segment.  However, small free
638 			 * segments (smaller than vdev_removal_max_span)
639 			 * will be combined with adjacent allocated segments
640 			 * as a single mapping.
641 			 */
642 			for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
643 				if (i + 1 < highbit64(vdev_removal_max_span)
644 				    - 1) {
645 					to_alloc +=
646 					    vd->vdev_mg->mg_histogram[i] <<
647 					    (i + 1);
648 				} else {
649 					seg_count +=
650 					    vd->vdev_mg->mg_histogram[i];
651 				}
652 			}
653 
654 			/*
655 			 * The maximum length of a mapping is
656 			 * zfs_remove_max_segment, so we need at least one entry
657 			 * per zfs_remove_max_segment of allocated data.
658 			 */
659 			seg_count += to_alloc / spa_remove_max_segment(spa);
660 
661 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
662 			    seg_count *
663 			    sizeof (vdev_indirect_mapping_entry_phys_t));
664 		}
665 	}
666 
667 	if (!vd->vdev_ops->vdev_op_leaf) {
668 		nvlist_t **child;
669 		uint64_t c;
670 
671 		ASSERT(!vd->vdev_ishole);
672 
673 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
674 		    KM_SLEEP);
675 
676 		for (c = 0; c < vd->vdev_children; c++) {
677 			child[c] = vdev_config_generate(spa, vd->vdev_child[c],
678 			    getstats, flags);
679 		}
680 
681 		fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
682 		    (const nvlist_t * const *)child, vd->vdev_children);
683 
684 		for (c = 0; c < vd->vdev_children; c++)
685 			nvlist_free(child[c]);
686 
687 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
688 
689 	} else {
690 		const char *aux = NULL;
691 
692 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
693 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
694 		if (vd->vdev_resilver_txg != 0)
695 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
696 			    vd->vdev_resilver_txg);
697 		if (vd->vdev_rebuild_txg != 0)
698 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
699 			    vd->vdev_rebuild_txg);
700 		if (vd->vdev_faulted)
701 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
702 		if (vd->vdev_degraded)
703 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
704 		if (vd->vdev_removed)
705 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
706 		if (vd->vdev_unspare)
707 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
708 		if (vd->vdev_ishole)
709 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
710 
711 		/* Set the reason why we're FAULTED/DEGRADED. */
712 		switch (vd->vdev_stat.vs_aux) {
713 		case VDEV_AUX_ERR_EXCEEDED:
714 			aux = "err_exceeded";
715 			break;
716 
717 		case VDEV_AUX_EXTERNAL:
718 			aux = "external";
719 			break;
720 		}
721 
722 		if (aux != NULL && !vd->vdev_tmpoffline) {
723 			fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
724 		} else {
725 			/*
726 			 * We're healthy - clear any previous AUX_STATE values.
727 			 */
728 			if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE))
729 				nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE);
730 		}
731 
732 		if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
733 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
734 			    vd->vdev_orig_guid);
735 		}
736 	}
737 
738 	return (nv);
739 }
740 
741 /*
742  * Generate a view of the top-level vdevs.  If we currently have holes
743  * in the namespace, then generate an array which contains a list of holey
744  * vdevs.  Additionally, add the number of top-level children that currently
745  * exist.
746  */
747 void
748 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
749 {
750 	vdev_t *rvd = spa->spa_root_vdev;
751 	uint64_t *array;
752 	uint_t c, idx;
753 
754 	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
755 
756 	for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
757 		vdev_t *tvd = rvd->vdev_child[c];
758 
759 		if (tvd->vdev_ishole) {
760 			array[idx++] = c;
761 		}
762 	}
763 
764 	if (idx) {
765 		VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
766 		    array, idx) == 0);
767 	}
768 
769 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
770 	    rvd->vdev_children) == 0);
771 
772 	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
773 }
774 
775 /*
776  * Returns the configuration from the label of the given vdev. For vdevs
777  * which don't have a txg value stored on their label (i.e. spares/cache)
778  * or have not been completely initialized (txg = 0) just return
779  * the configuration from the first valid label we find. Otherwise,
780  * find the most up-to-date label that does not exceed the specified
781  * 'txg' value.
782  */
783 nvlist_t *
784 vdev_label_read_config(vdev_t *vd, uint64_t txg)
785 {
786 	spa_t *spa = vd->vdev_spa;
787 	nvlist_t *config = NULL;
788 	vdev_phys_t *vp[VDEV_LABELS];
789 	abd_t *vp_abd[VDEV_LABELS];
790 	zio_t *zio[VDEV_LABELS];
791 	uint64_t best_txg = 0;
792 	uint64_t label_txg = 0;
793 	int error = 0;
794 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
795 	    ZIO_FLAG_SPECULATIVE;
796 
797 	ASSERT(vd->vdev_validate_thread == curthread ||
798 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
799 
800 	if (!vdev_readable(vd))
801 		return (NULL);
802 
803 	/*
804 	 * The label for a dRAID distributed spare is not stored on disk.
805 	 * Instead it is generated when needed which allows us to bypass
806 	 * the pipeline when reading the config from the label.
807 	 */
808 	if (vd->vdev_ops == &vdev_draid_spare_ops)
809 		return (vdev_draid_read_config_spare(vd));
810 
811 	for (int l = 0; l < VDEV_LABELS; l++) {
812 		vp_abd[l] = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
813 		vp[l] = abd_to_buf(vp_abd[l]);
814 	}
815 
816 retry:
817 	for (int l = 0; l < VDEV_LABELS; l++) {
818 		zio[l] = zio_root(spa, NULL, NULL, flags);
819 
820 		vdev_label_read(zio[l], vd, l, vp_abd[l],
821 		    offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t),
822 		    NULL, NULL, flags);
823 	}
824 	for (int l = 0; l < VDEV_LABELS; l++) {
825 		nvlist_t *label = NULL;
826 
827 		if (zio_wait(zio[l]) == 0 &&
828 		    nvlist_unpack(vp[l]->vp_nvlist, sizeof (vp[l]->vp_nvlist),
829 		    &label, 0) == 0) {
830 			/*
831 			 * Auxiliary vdevs won't have txg values in their
832 			 * labels and newly added vdevs may not have been
833 			 * completely initialized so just return the
834 			 * configuration from the first valid label we
835 			 * encounter.
836 			 */
837 			error = nvlist_lookup_uint64(label,
838 			    ZPOOL_CONFIG_POOL_TXG, &label_txg);
839 			if ((error || label_txg == 0) && !config) {
840 				config = label;
841 				for (l++; l < VDEV_LABELS; l++)
842 					zio_wait(zio[l]);
843 				break;
844 			} else if (label_txg <= txg && label_txg > best_txg) {
845 				best_txg = label_txg;
846 				nvlist_free(config);
847 				config = fnvlist_dup(label);
848 			}
849 		}
850 
851 		if (label != NULL) {
852 			nvlist_free(label);
853 			label = NULL;
854 		}
855 	}
856 
857 	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
858 		flags |= ZIO_FLAG_TRYHARD;
859 		goto retry;
860 	}
861 
862 	/*
863 	 * We found a valid label but it didn't pass txg restrictions.
864 	 */
865 	if (config == NULL && label_txg != 0) {
866 		vdev_dbgmsg(vd, "label discarded as txg is too large "
867 		    "(%llu > %llu)", (u_longlong_t)label_txg,
868 		    (u_longlong_t)txg);
869 	}
870 
871 	for (int l = 0; l < VDEV_LABELS; l++) {
872 		abd_free(vp_abd[l]);
873 	}
874 
875 	return (config);
876 }
877 
878 /*
879  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
880  * in with the device guid if this spare is active elsewhere on the system.
881  */
882 static boolean_t
883 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
884     uint64_t *spare_guid, uint64_t *l2cache_guid)
885 {
886 	spa_t *spa = vd->vdev_spa;
887 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
888 	uint64_t vdtxg = 0;
889 	nvlist_t *label;
890 
891 	if (spare_guid)
892 		*spare_guid = 0ULL;
893 	if (l2cache_guid)
894 		*l2cache_guid = 0ULL;
895 
896 	/*
897 	 * Read the label, if any, and perform some basic sanity checks.
898 	 */
899 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
900 		return (B_FALSE);
901 
902 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
903 	    &vdtxg);
904 
905 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
906 	    &state) != 0 ||
907 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
908 	    &device_guid) != 0) {
909 		nvlist_free(label);
910 		return (B_FALSE);
911 	}
912 
913 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
914 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
915 	    &pool_guid) != 0 ||
916 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
917 	    &txg) != 0)) {
918 		nvlist_free(label);
919 		return (B_FALSE);
920 	}
921 
922 	nvlist_free(label);
923 
924 	/*
925 	 * Check to see if this device indeed belongs to the pool it claims to
926 	 * be a part of.  The only way this is allowed is if the device is a hot
927 	 * spare (which we check for later on).
928 	 */
929 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
930 	    !spa_guid_exists(pool_guid, device_guid) &&
931 	    !spa_spare_exists(device_guid, NULL, NULL) &&
932 	    !spa_l2cache_exists(device_guid, NULL))
933 		return (B_FALSE);
934 
935 	/*
936 	 * If the transaction group is zero, then this an initialized (but
937 	 * unused) label.  This is only an error if the create transaction
938 	 * on-disk is the same as the one we're using now, in which case the
939 	 * user has attempted to add the same vdev multiple times in the same
940 	 * transaction.
941 	 */
942 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
943 	    txg == 0 && vdtxg == crtxg)
944 		return (B_TRUE);
945 
946 	/*
947 	 * Check to see if this is a spare device.  We do an explicit check for
948 	 * spa_has_spare() here because it may be on our pending list of spares
949 	 * to add.
950 	 */
951 	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
952 	    spa_has_spare(spa, device_guid)) {
953 		if (spare_guid)
954 			*spare_guid = device_guid;
955 
956 		switch (reason) {
957 		case VDEV_LABEL_CREATE:
958 			return (B_TRUE);
959 
960 		case VDEV_LABEL_REPLACE:
961 			return (!spa_has_spare(spa, device_guid) ||
962 			    spare_pool != 0ULL);
963 
964 		case VDEV_LABEL_SPARE:
965 			return (spa_has_spare(spa, device_guid));
966 		default:
967 			break;
968 		}
969 	}
970 
971 	/*
972 	 * Check to see if this is an l2cache device.
973 	 */
974 	if (spa_l2cache_exists(device_guid, NULL) ||
975 	    spa_has_l2cache(spa, device_guid)) {
976 		if (l2cache_guid)
977 			*l2cache_guid = device_guid;
978 
979 		switch (reason) {
980 		case VDEV_LABEL_CREATE:
981 			return (B_TRUE);
982 
983 		case VDEV_LABEL_REPLACE:
984 			return (!spa_has_l2cache(spa, device_guid));
985 
986 		case VDEV_LABEL_L2CACHE:
987 			return (spa_has_l2cache(spa, device_guid));
988 		default:
989 			break;
990 		}
991 	}
992 
993 	/*
994 	 * We can't rely on a pool's state if it's been imported
995 	 * read-only.  Instead we look to see if the pools is marked
996 	 * read-only in the namespace and set the state to active.
997 	 */
998 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
999 	    (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
1000 	    spa_mode(spa) == SPA_MODE_READ)
1001 		state = POOL_STATE_ACTIVE;
1002 
1003 	/*
1004 	 * If the device is marked ACTIVE, then this device is in use by another
1005 	 * pool on the system.
1006 	 */
1007 	return (state == POOL_STATE_ACTIVE);
1008 }
1009 
1010 /*
1011  * Initialize a vdev label.  We check to make sure each leaf device is not in
1012  * use, and writable.  We put down an initial label which we will later
1013  * overwrite with a complete label.  Note that it's important to do this
1014  * sequentially, not in parallel, so that we catch cases of multiple use of the
1015  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
1016  * itself.
1017  */
1018 int
1019 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
1020 {
1021 	spa_t *spa = vd->vdev_spa;
1022 	nvlist_t *label;
1023 	vdev_phys_t *vp;
1024 	abd_t *vp_abd;
1025 	abd_t *bootenv;
1026 	uberblock_t *ub;
1027 	abd_t *ub_abd;
1028 	zio_t *zio;
1029 	char *buf;
1030 	size_t buflen;
1031 	int error;
1032 	uint64_t spare_guid = 0, l2cache_guid = 0;
1033 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1034 	boolean_t reason_spare = (reason == VDEV_LABEL_SPARE || (reason ==
1035 	    VDEV_LABEL_REMOVE && vd->vdev_isspare));
1036 	boolean_t reason_l2cache = (reason == VDEV_LABEL_L2CACHE || (reason ==
1037 	    VDEV_LABEL_REMOVE && vd->vdev_isl2cache));
1038 
1039 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1040 
1041 	for (int c = 0; c < vd->vdev_children; c++)
1042 		if ((error = vdev_label_init(vd->vdev_child[c],
1043 		    crtxg, reason)) != 0)
1044 			return (error);
1045 
1046 	/* Track the creation time for this vdev */
1047 	vd->vdev_crtxg = crtxg;
1048 
1049 	if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
1050 		return (0);
1051 
1052 	/*
1053 	 * Dead vdevs cannot be initialized.
1054 	 */
1055 	if (vdev_is_dead(vd))
1056 		return (SET_ERROR(EIO));
1057 
1058 	/*
1059 	 * Determine if the vdev is in use.
1060 	 */
1061 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
1062 	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
1063 		return (SET_ERROR(EBUSY));
1064 
1065 	/*
1066 	 * If this is a request to add or replace a spare or l2cache device
1067 	 * that is in use elsewhere on the system, then we must update the
1068 	 * guid (which was initialized to a random value) to reflect the
1069 	 * actual GUID (which is shared between multiple pools).
1070 	 */
1071 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
1072 	    spare_guid != 0ULL) {
1073 		uint64_t guid_delta = spare_guid - vd->vdev_guid;
1074 
1075 		vd->vdev_guid += guid_delta;
1076 
1077 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1078 			pvd->vdev_guid_sum += guid_delta;
1079 
1080 		/*
1081 		 * If this is a replacement, then we want to fallthrough to the
1082 		 * rest of the code.  If we're adding a spare, then it's already
1083 		 * labeled appropriately and we can just return.
1084 		 */
1085 		if (reason == VDEV_LABEL_SPARE)
1086 			return (0);
1087 		ASSERT(reason == VDEV_LABEL_REPLACE ||
1088 		    reason == VDEV_LABEL_SPLIT);
1089 	}
1090 
1091 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
1092 	    l2cache_guid != 0ULL) {
1093 		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
1094 
1095 		vd->vdev_guid += guid_delta;
1096 
1097 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1098 			pvd->vdev_guid_sum += guid_delta;
1099 
1100 		/*
1101 		 * If this is a replacement, then we want to fallthrough to the
1102 		 * rest of the code.  If we're adding an l2cache, then it's
1103 		 * already labeled appropriately and we can just return.
1104 		 */
1105 		if (reason == VDEV_LABEL_L2CACHE)
1106 			return (0);
1107 		ASSERT(reason == VDEV_LABEL_REPLACE);
1108 	}
1109 
1110 	/*
1111 	 * Initialize its label.
1112 	 */
1113 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1114 	abd_zero(vp_abd, sizeof (vdev_phys_t));
1115 	vp = abd_to_buf(vp_abd);
1116 
1117 	/*
1118 	 * Generate a label describing the pool and our top-level vdev.
1119 	 * We mark it as being from txg 0 to indicate that it's not
1120 	 * really part of an active pool just yet.  The labels will
1121 	 * be written again with a meaningful txg by spa_sync().
1122 	 */
1123 	if (reason_spare || reason_l2cache) {
1124 		/*
1125 		 * For inactive hot spares and level 2 ARC devices, we generate
1126 		 * a special label that identifies as a mutually shared hot
1127 		 * spare or l2cache device. We write the label in case of
1128 		 * addition or removal of hot spare or l2cache vdev (in which
1129 		 * case we want to revert the labels).
1130 		 */
1131 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1132 
1133 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1134 		    spa_version(spa)) == 0);
1135 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1136 		    reason_spare ? POOL_STATE_SPARE : POOL_STATE_L2CACHE) == 0);
1137 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1138 		    vd->vdev_guid) == 0);
1139 
1140 		/*
1141 		 * This is merely to facilitate reporting the ashift of the
1142 		 * cache device through zdb. The actual retrieval of the
1143 		 * ashift (in vdev_alloc()) uses the nvlist
1144 		 * spa->spa_l2cache->sav_config (populated in
1145 		 * spa_ld_open_aux_vdevs()).
1146 		 */
1147 		if (reason_l2cache) {
1148 			VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_ASHIFT,
1149 			    vd->vdev_ashift) == 0);
1150 		}
1151 
1152 		/*
1153 		 * Add path information to help find it during pool import
1154 		 */
1155 		if (vd->vdev_path != NULL) {
1156 			VERIFY(nvlist_add_string(label, ZPOOL_CONFIG_PATH,
1157 			    vd->vdev_path) == 0);
1158 		}
1159 		if (vd->vdev_devid != NULL) {
1160 			VERIFY(nvlist_add_string(label, ZPOOL_CONFIG_DEVID,
1161 			    vd->vdev_devid) == 0);
1162 		}
1163 		if (vd->vdev_physpath != NULL) {
1164 			VERIFY(nvlist_add_string(label, ZPOOL_CONFIG_PHYS_PATH,
1165 			    vd->vdev_physpath) == 0);
1166 		}
1167 
1168 		/*
1169 		 * When spare or l2cache (aux) vdev is added during pool
1170 		 * creation, spa->spa_uberblock is not written until this
1171 		 * point. Write it on next config sync.
1172 		 */
1173 		if (uberblock_verify(&spa->spa_uberblock))
1174 			spa->spa_aux_sync_uber = B_TRUE;
1175 	} else {
1176 		uint64_t txg = 0ULL;
1177 
1178 		if (reason == VDEV_LABEL_SPLIT)
1179 			txg = spa->spa_uberblock.ub_txg;
1180 		label = spa_config_generate(spa, vd, txg, B_FALSE);
1181 
1182 		/*
1183 		 * Add our creation time.  This allows us to detect multiple
1184 		 * vdev uses as described above, and automatically expires if we
1185 		 * fail.
1186 		 */
1187 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
1188 		    crtxg) == 0);
1189 	}
1190 
1191 	buf = vp->vp_nvlist;
1192 	buflen = sizeof (vp->vp_nvlist);
1193 
1194 	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
1195 	if (error != 0) {
1196 		nvlist_free(label);
1197 		abd_free(vp_abd);
1198 		/* EFAULT means nvlist_pack ran out of room */
1199 		return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL));
1200 	}
1201 
1202 	/*
1203 	 * Initialize uberblock template.
1204 	 */
1205 	ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
1206 	abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
1207 	abd_zero_off(ub_abd, sizeof (uberblock_t),
1208 	    VDEV_UBERBLOCK_RING - sizeof (uberblock_t));
1209 	ub = abd_to_buf(ub_abd);
1210 	ub->ub_txg = 0;
1211 
1212 	/* Initialize the 2nd padding area. */
1213 	bootenv = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1214 	abd_zero(bootenv, VDEV_PAD_SIZE);
1215 
1216 	/*
1217 	 * Write everything in parallel.
1218 	 */
1219 retry:
1220 	zio = zio_root(spa, NULL, NULL, flags);
1221 
1222 	for (int l = 0; l < VDEV_LABELS; l++) {
1223 
1224 		vdev_label_write(zio, vd, l, vp_abd,
1225 		    offsetof(vdev_label_t, vl_vdev_phys),
1226 		    sizeof (vdev_phys_t), NULL, NULL, flags);
1227 
1228 		/*
1229 		 * Skip the 1st padding area.
1230 		 * Zero out the 2nd padding area where it might have
1231 		 * left over data from previous filesystem format.
1232 		 */
1233 		vdev_label_write(zio, vd, l, bootenv,
1234 		    offsetof(vdev_label_t, vl_be),
1235 		    VDEV_PAD_SIZE, NULL, NULL, flags);
1236 
1237 		vdev_label_write(zio, vd, l, ub_abd,
1238 		    offsetof(vdev_label_t, vl_uberblock),
1239 		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
1240 	}
1241 
1242 	error = zio_wait(zio);
1243 
1244 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1245 		flags |= ZIO_FLAG_TRYHARD;
1246 		goto retry;
1247 	}
1248 
1249 	nvlist_free(label);
1250 	abd_free(bootenv);
1251 	abd_free(ub_abd);
1252 	abd_free(vp_abd);
1253 
1254 	/*
1255 	 * If this vdev hasn't been previously identified as a spare, then we
1256 	 * mark it as such only if a) we are labeling it as a spare, or b) it
1257 	 * exists as a spare elsewhere in the system.  Do the same for
1258 	 * level 2 ARC devices.
1259 	 */
1260 	if (error == 0 && !vd->vdev_isspare &&
1261 	    (reason == VDEV_LABEL_SPARE ||
1262 	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
1263 		spa_spare_add(vd);
1264 
1265 	if (error == 0 && !vd->vdev_isl2cache &&
1266 	    (reason == VDEV_LABEL_L2CACHE ||
1267 	    spa_l2cache_exists(vd->vdev_guid, NULL)))
1268 		spa_l2cache_add(vd);
1269 
1270 	return (error);
1271 }
1272 
1273 /*
1274  * Done callback for vdev_label_read_bootenv_impl. If this is the first
1275  * callback to finish, store our abd in the callback pointer. Otherwise, we
1276  * just free our abd and return.
1277  */
1278 static void
1279 vdev_label_read_bootenv_done(zio_t *zio)
1280 {
1281 	zio_t *rio = zio->io_private;
1282 	abd_t **cbp = rio->io_private;
1283 
1284 	ASSERT3U(zio->io_size, ==, VDEV_PAD_SIZE);
1285 
1286 	if (zio->io_error == 0) {
1287 		mutex_enter(&rio->io_lock);
1288 		if (*cbp == NULL) {
1289 			/* Will free this buffer in vdev_label_read_bootenv. */
1290 			*cbp = zio->io_abd;
1291 		} else {
1292 			abd_free(zio->io_abd);
1293 		}
1294 		mutex_exit(&rio->io_lock);
1295 	} else {
1296 		abd_free(zio->io_abd);
1297 	}
1298 }
1299 
1300 static void
1301 vdev_label_read_bootenv_impl(zio_t *zio, vdev_t *vd, int flags)
1302 {
1303 	for (int c = 0; c < vd->vdev_children; c++)
1304 		vdev_label_read_bootenv_impl(zio, vd->vdev_child[c], flags);
1305 
1306 	/*
1307 	 * We just use the first label that has a correct checksum; the
1308 	 * bootloader should have rewritten them all to be the same on boot,
1309 	 * and any changes we made since boot have been the same across all
1310 	 * labels.
1311 	 */
1312 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1313 		for (int l = 0; l < VDEV_LABELS; l++) {
1314 			vdev_label_read(zio, vd, l,
1315 			    abd_alloc_linear(VDEV_PAD_SIZE, B_FALSE),
1316 			    offsetof(vdev_label_t, vl_be), VDEV_PAD_SIZE,
1317 			    vdev_label_read_bootenv_done, zio, flags);
1318 		}
1319 	}
1320 }
1321 
1322 int
1323 vdev_label_read_bootenv(vdev_t *rvd, nvlist_t *bootenv)
1324 {
1325 	nvlist_t *config;
1326 	spa_t *spa = rvd->vdev_spa;
1327 	abd_t *abd = NULL;
1328 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1329 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1330 
1331 	ASSERT(bootenv);
1332 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1333 
1334 	zio_t *zio = zio_root(spa, NULL, &abd, flags);
1335 	vdev_label_read_bootenv_impl(zio, rvd, flags);
1336 	int err = zio_wait(zio);
1337 
1338 	if (abd != NULL) {
1339 		char *buf;
1340 		vdev_boot_envblock_t *vbe = abd_to_buf(abd);
1341 
1342 		vbe->vbe_version = ntohll(vbe->vbe_version);
1343 		switch (vbe->vbe_version) {
1344 		case VB_RAW:
1345 			/*
1346 			 * if we have textual data in vbe_bootenv, create nvlist
1347 			 * with key "envmap".
1348 			 */
1349 			fnvlist_add_uint64(bootenv, BOOTENV_VERSION, VB_RAW);
1350 			vbe->vbe_bootenv[sizeof (vbe->vbe_bootenv) - 1] = '\0';
1351 			fnvlist_add_string(bootenv, GRUB_ENVMAP,
1352 			    vbe->vbe_bootenv);
1353 			break;
1354 
1355 		case VB_NVLIST:
1356 			err = nvlist_unpack(vbe->vbe_bootenv,
1357 			    sizeof (vbe->vbe_bootenv), &config, 0);
1358 			if (err == 0) {
1359 				fnvlist_merge(bootenv, config);
1360 				nvlist_free(config);
1361 				break;
1362 			}
1363 			zfs_fallthrough;
1364 		default:
1365 			/* Check for FreeBSD zfs bootonce command string */
1366 			buf = abd_to_buf(abd);
1367 			if (*buf == '\0') {
1368 				fnvlist_add_uint64(bootenv, BOOTENV_VERSION,
1369 				    VB_NVLIST);
1370 				break;
1371 			}
1372 			fnvlist_add_string(bootenv, FREEBSD_BOOTONCE, buf);
1373 		}
1374 
1375 		/*
1376 		 * abd was allocated in vdev_label_read_bootenv_impl()
1377 		 */
1378 		abd_free(abd);
1379 		/*
1380 		 * If we managed to read any successfully,
1381 		 * return success.
1382 		 */
1383 		return (0);
1384 	}
1385 	return (err);
1386 }
1387 
1388 int
1389 vdev_label_write_bootenv(vdev_t *vd, nvlist_t *env)
1390 {
1391 	zio_t *zio;
1392 	spa_t *spa = vd->vdev_spa;
1393 	vdev_boot_envblock_t *bootenv;
1394 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1395 	int error;
1396 	size_t nvsize;
1397 	char *nvbuf;
1398 	const char *tmp;
1399 
1400 	error = nvlist_size(env, &nvsize, NV_ENCODE_XDR);
1401 	if (error != 0)
1402 		return (SET_ERROR(error));
1403 
1404 	if (nvsize >= sizeof (bootenv->vbe_bootenv)) {
1405 		return (SET_ERROR(E2BIG));
1406 	}
1407 
1408 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1409 
1410 	error = ENXIO;
1411 	for (int c = 0; c < vd->vdev_children; c++) {
1412 		int child_err;
1413 
1414 		child_err = vdev_label_write_bootenv(vd->vdev_child[c], env);
1415 		/*
1416 		 * As long as any of the disks managed to write all of their
1417 		 * labels successfully, return success.
1418 		 */
1419 		if (child_err == 0)
1420 			error = child_err;
1421 	}
1422 
1423 	if (!vd->vdev_ops->vdev_op_leaf || vdev_is_dead(vd) ||
1424 	    !vdev_writeable(vd)) {
1425 		return (error);
1426 	}
1427 	ASSERT3U(sizeof (*bootenv), ==, VDEV_PAD_SIZE);
1428 	abd_t *abd = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1429 	abd_zero(abd, VDEV_PAD_SIZE);
1430 
1431 	bootenv = abd_borrow_buf_copy(abd, VDEV_PAD_SIZE);
1432 	nvbuf = bootenv->vbe_bootenv;
1433 	nvsize = sizeof (bootenv->vbe_bootenv);
1434 
1435 	bootenv->vbe_version = fnvlist_lookup_uint64(env, BOOTENV_VERSION);
1436 	switch (bootenv->vbe_version) {
1437 	case VB_RAW:
1438 		if (nvlist_lookup_string(env, GRUB_ENVMAP, &tmp) == 0) {
1439 			(void) strlcpy(bootenv->vbe_bootenv, tmp, nvsize);
1440 		}
1441 		error = 0;
1442 		break;
1443 
1444 	case VB_NVLIST:
1445 		error = nvlist_pack(env, &nvbuf, &nvsize, NV_ENCODE_XDR,
1446 		    KM_SLEEP);
1447 		break;
1448 
1449 	default:
1450 		error = EINVAL;
1451 		break;
1452 	}
1453 
1454 	if (error == 0) {
1455 		bootenv->vbe_version = htonll(bootenv->vbe_version);
1456 		abd_return_buf_copy(abd, bootenv, VDEV_PAD_SIZE);
1457 	} else {
1458 		abd_free(abd);
1459 		return (SET_ERROR(error));
1460 	}
1461 
1462 retry:
1463 	zio = zio_root(spa, NULL, NULL, flags);
1464 	for (int l = 0; l < VDEV_LABELS; l++) {
1465 		vdev_label_write(zio, vd, l, abd,
1466 		    offsetof(vdev_label_t, vl_be),
1467 		    VDEV_PAD_SIZE, NULL, NULL, flags);
1468 	}
1469 
1470 	error = zio_wait(zio);
1471 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1472 		flags |= ZIO_FLAG_TRYHARD;
1473 		goto retry;
1474 	}
1475 
1476 	abd_free(abd);
1477 	return (error);
1478 }
1479 
1480 /*
1481  * ==========================================================================
1482  * uberblock load/sync
1483  * ==========================================================================
1484  */
1485 
1486 /*
1487  * Consider the following situation: txg is safely synced to disk.  We've
1488  * written the first uberblock for txg + 1, and then we lose power.  When we
1489  * come back up, we fail to see the uberblock for txg + 1 because, say,
1490  * it was on a mirrored device and the replica to which we wrote txg + 1
1491  * is now offline.  If we then make some changes and sync txg + 1, and then
1492  * the missing replica comes back, then for a few seconds we'll have two
1493  * conflicting uberblocks on disk with the same txg.  The solution is simple:
1494  * among uberblocks with equal txg, choose the one with the latest timestamp.
1495  */
1496 static int
1497 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1498 {
1499 	int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg);
1500 
1501 	if (likely(cmp))
1502 		return (cmp);
1503 
1504 	cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1505 	if (likely(cmp))
1506 		return (cmp);
1507 
1508 	/*
1509 	 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware
1510 	 * ZFS, e.g. OpenZFS >= 0.7.
1511 	 *
1512 	 * If one ub has MMP and the other does not, they were written by
1513 	 * different hosts, which matters for MMP.  So we treat no MMP/no SEQ as
1514 	 * a 0 value.
1515 	 *
1516 	 * Since timestamp and txg are the same if we get this far, either is
1517 	 * acceptable for importing the pool.
1518 	 */
1519 	unsigned int seq1 = 0;
1520 	unsigned int seq2 = 0;
1521 
1522 	if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1523 		seq1 = MMP_SEQ(ub1);
1524 
1525 	if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1526 		seq2 = MMP_SEQ(ub2);
1527 
1528 	return (TREE_CMP(seq1, seq2));
1529 }
1530 
1531 struct ubl_cbdata {
1532 	uberblock_t	ubl_latest;	/* Most recent uberblock */
1533 	uberblock_t	*ubl_ubbest;	/* Best uberblock (w/r/t max_txg) */
1534 	vdev_t		*ubl_vd;	/* vdev associated with the above */
1535 };
1536 
1537 static void
1538 vdev_uberblock_load_done(zio_t *zio)
1539 {
1540 	vdev_t *vd = zio->io_vd;
1541 	spa_t *spa = zio->io_spa;
1542 	zio_t *rio = zio->io_private;
1543 	uberblock_t *ub = abd_to_buf(zio->io_abd);
1544 	struct ubl_cbdata *cbp = rio->io_private;
1545 
1546 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
1547 
1548 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
1549 		mutex_enter(&rio->io_lock);
1550 		if (vdev_uberblock_compare(ub, &cbp->ubl_latest) > 0) {
1551 			cbp->ubl_latest = *ub;
1552 		}
1553 		if (ub->ub_txg <= spa->spa_load_max_txg &&
1554 		    vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
1555 			/*
1556 			 * Keep track of the vdev in which this uberblock
1557 			 * was found. We will use this information later
1558 			 * to obtain the config nvlist associated with
1559 			 * this uberblock.
1560 			 */
1561 			*cbp->ubl_ubbest = *ub;
1562 			cbp->ubl_vd = vd;
1563 		}
1564 		mutex_exit(&rio->io_lock);
1565 	}
1566 
1567 	abd_free(zio->io_abd);
1568 }
1569 
1570 static void
1571 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
1572     struct ubl_cbdata *cbp)
1573 {
1574 	for (int c = 0; c < vd->vdev_children; c++)
1575 		vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
1576 
1577 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd) &&
1578 	    vd->vdev_ops != &vdev_draid_spare_ops) {
1579 		for (int l = 0; l < VDEV_LABELS; l++) {
1580 			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1581 				vdev_label_read(zio, vd, l,
1582 				    abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
1583 				    B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
1584 				    VDEV_UBERBLOCK_SIZE(vd),
1585 				    vdev_uberblock_load_done, zio, flags);
1586 			}
1587 		}
1588 	}
1589 }
1590 
1591 /*
1592  * Reads the 'best' uberblock from disk along with its associated
1593  * configuration. First, we read the uberblock array of each label of each
1594  * vdev, keeping track of the uberblock with the highest txg in each array.
1595  * Then, we read the configuration from the same vdev as the best uberblock.
1596  */
1597 void
1598 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
1599 {
1600 	zio_t *zio;
1601 	spa_t *spa = rvd->vdev_spa;
1602 	struct ubl_cbdata cb;
1603 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1604 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1605 
1606 	ASSERT(ub);
1607 	ASSERT(config);
1608 
1609 	memset(ub, 0, sizeof (uberblock_t));
1610 	memset(&cb, 0, sizeof (cb));
1611 	*config = NULL;
1612 
1613 	cb.ubl_ubbest = ub;
1614 
1615 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1616 	zio = zio_root(spa, NULL, &cb, flags);
1617 	vdev_uberblock_load_impl(zio, rvd, flags, &cb);
1618 	(void) zio_wait(zio);
1619 
1620 	/*
1621 	 * It's possible that the best uberblock was discovered on a label
1622 	 * that has a configuration which was written in a future txg.
1623 	 * Search all labels on this vdev to find the configuration that
1624 	 * matches the txg for our uberblock.
1625 	 */
1626 	if (cb.ubl_vd != NULL) {
1627 		vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. "
1628 		    "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg);
1629 
1630 		if (ub->ub_raidz_reflow_info !=
1631 		    cb.ubl_latest.ub_raidz_reflow_info) {
1632 			vdev_dbgmsg(cb.ubl_vd,
1633 			    "spa=%s best uberblock (txg=%llu info=0x%llx) "
1634 			    "has different raidz_reflow_info than latest "
1635 			    "uberblock (txg=%llu info=0x%llx)",
1636 			    spa->spa_name,
1637 			    (u_longlong_t)ub->ub_txg,
1638 			    (u_longlong_t)ub->ub_raidz_reflow_info,
1639 			    (u_longlong_t)cb.ubl_latest.ub_txg,
1640 			    (u_longlong_t)cb.ubl_latest.ub_raidz_reflow_info);
1641 			memset(ub, 0, sizeof (uberblock_t));
1642 			spa_config_exit(spa, SCL_ALL, FTAG);
1643 			return;
1644 		}
1645 
1646 		*config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
1647 		if (*config == NULL && spa->spa_extreme_rewind) {
1648 			vdev_dbgmsg(cb.ubl_vd, "failed to read label config. "
1649 			    "Trying again without txg restrictions.");
1650 			*config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX);
1651 		}
1652 		if (*config == NULL) {
1653 			vdev_dbgmsg(cb.ubl_vd, "failed to read label config");
1654 		}
1655 	}
1656 	spa_config_exit(spa, SCL_ALL, FTAG);
1657 }
1658 
1659 /*
1660  * For use when a leaf vdev is expanded.
1661  * The location of labels 2 and 3 changed, and at the new location the
1662  * uberblock rings are either empty or contain garbage.  The sync will write
1663  * new configs there because the vdev is dirty, but expansion also needs the
1664  * uberblock rings copied.  Read them from label 0 which did not move.
1665  *
1666  * Since the point is to populate labels {2,3} with valid uberblocks,
1667  * we zero uberblocks we fail to read or which are not valid.
1668  */
1669 
1670 static void
1671 vdev_copy_uberblocks(vdev_t *vd)
1672 {
1673 	abd_t *ub_abd;
1674 	zio_t *write_zio;
1675 	int locks = (SCL_L2ARC | SCL_ZIO);
1676 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1677 	    ZIO_FLAG_SPECULATIVE;
1678 
1679 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) ==
1680 	    SCL_STATE);
1681 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1682 
1683 	/*
1684 	 * No uberblocks are stored on distributed spares, they may be
1685 	 * safely skipped when expanding a leaf vdev.
1686 	 */
1687 	if (vd->vdev_ops == &vdev_draid_spare_ops)
1688 		return;
1689 
1690 	spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER);
1691 
1692 	ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1693 
1694 	write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1695 	for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1696 		const int src_label = 0;
1697 		zio_t *zio;
1698 
1699 		zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1700 		vdev_label_read(zio, vd, src_label, ub_abd,
1701 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1702 		    NULL, NULL, flags);
1703 
1704 		if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd)))
1705 			abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1706 
1707 		for (int l = 2; l < VDEV_LABELS; l++)
1708 			vdev_label_write(write_zio, vd, l, ub_abd,
1709 			    VDEV_UBERBLOCK_OFFSET(vd, n),
1710 			    VDEV_UBERBLOCK_SIZE(vd), NULL, NULL,
1711 			    flags | ZIO_FLAG_DONT_PROPAGATE);
1712 	}
1713 	(void) zio_wait(write_zio);
1714 
1715 	spa_config_exit(vd->vdev_spa, locks, FTAG);
1716 
1717 	abd_free(ub_abd);
1718 }
1719 
1720 /*
1721  * On success, increment root zio's count of good writes.
1722  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1723  */
1724 static void
1725 vdev_uberblock_sync_done(zio_t *zio)
1726 {
1727 	uint64_t *good_writes = zio->io_private;
1728 
1729 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
1730 		atomic_inc_64(good_writes);
1731 }
1732 
1733 /*
1734  * Write the uberblock to all labels of all leaves of the specified vdev.
1735  */
1736 static void
1737 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes,
1738     uberblock_t *ub, vdev_t *vd, int flags)
1739 {
1740 	for (uint64_t c = 0; c < vd->vdev_children; c++) {
1741 		vdev_uberblock_sync(zio, good_writes,
1742 		    ub, vd->vdev_child[c], flags);
1743 	}
1744 
1745 	if (!vd->vdev_ops->vdev_op_leaf)
1746 		return;
1747 
1748 	if (!vdev_writeable(vd))
1749 		return;
1750 
1751 	/*
1752 	 * There's no need to write uberblocks to a distributed spare, they
1753 	 * are already stored on all the leaves of the parent dRAID.  For
1754 	 * this same reason vdev_uberblock_load_impl() skips distributed
1755 	 * spares when reading uberblocks.
1756 	 */
1757 	if (vd->vdev_ops == &vdev_draid_spare_ops)
1758 		return;
1759 
1760 	/* If the vdev was expanded, need to copy uberblock rings. */
1761 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1762 	    vd->vdev_copy_uberblocks == B_TRUE) {
1763 		vdev_copy_uberblocks(vd);
1764 		vd->vdev_copy_uberblocks = B_FALSE;
1765 	}
1766 
1767 	/*
1768 	 * We chose a slot based on the txg.  If this uberblock has a special
1769 	 * RAIDZ expansion state, then it is essentially an update of the
1770 	 * current uberblock (it has the same txg).  However, the current
1771 	 * state is committed, so we want to write it to a different slot. If
1772 	 * we overwrote the same slot, and we lose power during the uberblock
1773 	 * write, and the disk does not do single-sector overwrites
1774 	 * atomically (even though it is required to - i.e. we should see
1775 	 * either the old or the new uberblock), then we could lose this
1776 	 * txg's uberblock. Rewinding to the previous txg's uberblock may not
1777 	 * be possible because RAIDZ expansion may have already overwritten
1778 	 * some of the data, so we need the progress indicator in the
1779 	 * uberblock.
1780 	 */
1781 	int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0;
1782 	int n = (ub->ub_txg - (RRSS_GET_STATE(ub) == RRSS_SCRATCH_VALID)) %
1783 	    (VDEV_UBERBLOCK_COUNT(vd) - m);
1784 
1785 	/* Copy the uberblock_t into the ABD */
1786 	abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1787 	abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
1788 	abd_zero_off(ub_abd, sizeof (uberblock_t),
1789 	    VDEV_UBERBLOCK_SIZE(vd) - sizeof (uberblock_t));
1790 
1791 	for (int l = 0; l < VDEV_LABELS; l++)
1792 		vdev_label_write(zio, vd, l, ub_abd,
1793 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1794 		    vdev_uberblock_sync_done, good_writes,
1795 		    flags | ZIO_FLAG_DONT_PROPAGATE);
1796 
1797 	abd_free(ub_abd);
1798 }
1799 
1800 /* Sync the uberblocks to all vdevs in svd[] */
1801 int
1802 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1803 {
1804 	spa_t *spa = svd[0]->vdev_spa;
1805 	zio_t *zio;
1806 	uint64_t good_writes = 0;
1807 
1808 	zio = zio_root(spa, NULL, NULL, flags);
1809 
1810 	for (int v = 0; v < svdcount; v++)
1811 		vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags);
1812 
1813 	if (spa->spa_aux_sync_uber) {
1814 		for (int v = 0; v < spa->spa_spares.sav_count; v++) {
1815 			vdev_uberblock_sync(zio, &good_writes, ub,
1816 			    spa->spa_spares.sav_vdevs[v], flags);
1817 		}
1818 		for (int v = 0; v < spa->spa_l2cache.sav_count; v++) {
1819 			vdev_uberblock_sync(zio, &good_writes, ub,
1820 			    spa->spa_l2cache.sav_vdevs[v], flags);
1821 		}
1822 	}
1823 	(void) zio_wait(zio);
1824 
1825 	/*
1826 	 * Flush the uberblocks to disk.  This ensures that the odd labels
1827 	 * are no longer needed (because the new uberblocks and the even
1828 	 * labels are safely on disk), so it is safe to overwrite them.
1829 	 */
1830 	zio = zio_root(spa, NULL, NULL, flags);
1831 
1832 	for (int v = 0; v < svdcount; v++) {
1833 		if (vdev_writeable(svd[v])) {
1834 			zio_flush(zio, svd[v]);
1835 		}
1836 	}
1837 	if (spa->spa_aux_sync_uber) {
1838 		spa->spa_aux_sync_uber = B_FALSE;
1839 		for (int v = 0; v < spa->spa_spares.sav_count; v++) {
1840 			if (vdev_writeable(spa->spa_spares.sav_vdevs[v])) {
1841 				zio_flush(zio, spa->spa_spares.sav_vdevs[v]);
1842 			}
1843 		}
1844 		for (int v = 0; v < spa->spa_l2cache.sav_count; v++) {
1845 			if (vdev_writeable(spa->spa_l2cache.sav_vdevs[v])) {
1846 				zio_flush(zio, spa->spa_l2cache.sav_vdevs[v]);
1847 			}
1848 		}
1849 	}
1850 
1851 	(void) zio_wait(zio);
1852 
1853 	return (good_writes >= 1 ? 0 : EIO);
1854 }
1855 
1856 /*
1857  * On success, increment the count of good writes for our top-level vdev.
1858  */
1859 static void
1860 vdev_label_sync_done(zio_t *zio)
1861 {
1862 	uint64_t *good_writes = zio->io_private;
1863 
1864 	if (zio->io_error == 0)
1865 		atomic_inc_64(good_writes);
1866 }
1867 
1868 /*
1869  * If there weren't enough good writes, indicate failure to the parent.
1870  */
1871 static void
1872 vdev_label_sync_top_done(zio_t *zio)
1873 {
1874 	uint64_t *good_writes = zio->io_private;
1875 
1876 	if (*good_writes == 0)
1877 		zio->io_error = SET_ERROR(EIO);
1878 
1879 	kmem_free(good_writes, sizeof (uint64_t));
1880 }
1881 
1882 /*
1883  * We ignore errors for log and cache devices, simply free the private data.
1884  */
1885 static void
1886 vdev_label_sync_ignore_done(zio_t *zio)
1887 {
1888 	kmem_free(zio->io_private, sizeof (uint64_t));
1889 }
1890 
1891 /*
1892  * Write all even or odd labels to all leaves of the specified vdev.
1893  */
1894 static void
1895 vdev_label_sync(zio_t *zio, uint64_t *good_writes,
1896     vdev_t *vd, int l, uint64_t txg, int flags)
1897 {
1898 	nvlist_t *label;
1899 	vdev_phys_t *vp;
1900 	abd_t *vp_abd;
1901 	char *buf;
1902 	size_t buflen;
1903 
1904 	for (int c = 0; c < vd->vdev_children; c++) {
1905 		vdev_label_sync(zio, good_writes,
1906 		    vd->vdev_child[c], l, txg, flags);
1907 	}
1908 
1909 	if (!vd->vdev_ops->vdev_op_leaf)
1910 		return;
1911 
1912 	if (!vdev_writeable(vd))
1913 		return;
1914 
1915 	/*
1916 	 * The top-level config never needs to be written to a distributed
1917 	 * spare.  When read vdev_dspare_label_read_config() will generate
1918 	 * the config for the vdev_label_read_config().
1919 	 */
1920 	if (vd->vdev_ops == &vdev_draid_spare_ops)
1921 		return;
1922 
1923 	/*
1924 	 * Generate a label describing the top-level config to which we belong.
1925 	 */
1926 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1927 
1928 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1929 	abd_zero(vp_abd, sizeof (vdev_phys_t));
1930 	vp = abd_to_buf(vp_abd);
1931 
1932 	buf = vp->vp_nvlist;
1933 	buflen = sizeof (vp->vp_nvlist);
1934 
1935 	if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) {
1936 		for (; l < VDEV_LABELS; l += 2) {
1937 			vdev_label_write(zio, vd, l, vp_abd,
1938 			    offsetof(vdev_label_t, vl_vdev_phys),
1939 			    sizeof (vdev_phys_t),
1940 			    vdev_label_sync_done, good_writes,
1941 			    flags | ZIO_FLAG_DONT_PROPAGATE);
1942 		}
1943 	}
1944 
1945 	abd_free(vp_abd);
1946 	nvlist_free(label);
1947 }
1948 
1949 static int
1950 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1951 {
1952 	list_t *dl = &spa->spa_config_dirty_list;
1953 	vdev_t *vd;
1954 	zio_t *zio;
1955 	int error;
1956 
1957 	/*
1958 	 * Write the new labels to disk.
1959 	 */
1960 	zio = zio_root(spa, NULL, NULL, flags);
1961 
1962 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1963 		uint64_t *good_writes;
1964 
1965 		ASSERT(!vd->vdev_ishole);
1966 
1967 		good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
1968 		zio_t *vio = zio_null(zio, spa, NULL,
1969 		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
1970 		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1971 		    good_writes, flags);
1972 		vdev_label_sync(vio, good_writes, vd, l, txg, flags);
1973 		zio_nowait(vio);
1974 	}
1975 
1976 	error = zio_wait(zio);
1977 
1978 	/*
1979 	 * Flush the new labels to disk.
1980 	 */
1981 	zio = zio_root(spa, NULL, NULL, flags);
1982 
1983 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1984 		zio_flush(zio, vd);
1985 
1986 	(void) zio_wait(zio);
1987 
1988 	return (error);
1989 }
1990 
1991 /*
1992  * Sync the uberblock and any changes to the vdev configuration.
1993  *
1994  * The order of operations is carefully crafted to ensure that
1995  * if the system panics or loses power at any time, the state on disk
1996  * is still transactionally consistent.  The in-line comments below
1997  * describe the failure semantics at each stage.
1998  *
1999  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
2000  * at any time, you can just call it again, and it will resume its work.
2001  */
2002 int
2003 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
2004 {
2005 	spa_t *spa = svd[0]->vdev_spa;
2006 	uberblock_t *ub = &spa->spa_uberblock;
2007 	int error = 0;
2008 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
2009 
2010 	ASSERT(svdcount != 0);
2011 retry:
2012 	/*
2013 	 * Normally, we don't want to try too hard to write every label and
2014 	 * uberblock.  If there is a flaky disk, we don't want the rest of the
2015 	 * sync process to block while we retry.  But if we can't write a
2016 	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
2017 	 * bailing out and declaring the pool faulted.
2018 	 */
2019 	if (error != 0) {
2020 		if ((flags & ZIO_FLAG_TRYHARD) != 0)
2021 			return (error);
2022 		flags |= ZIO_FLAG_TRYHARD;
2023 	}
2024 
2025 	ASSERT(ub->ub_txg <= txg);
2026 
2027 	/*
2028 	 * If this isn't a resync due to I/O errors,
2029 	 * and nothing changed in this transaction group,
2030 	 * and the vdev configuration hasn't changed,
2031 	 * then there's nothing to do.
2032 	 */
2033 	if (ub->ub_txg < txg) {
2034 		boolean_t changed = uberblock_update(ub, spa->spa_root_vdev,
2035 		    txg, spa->spa_mmp.mmp_delay);
2036 
2037 		if (!changed && list_is_empty(&spa->spa_config_dirty_list))
2038 			return (0);
2039 	}
2040 
2041 	if (txg > spa_freeze_txg(spa))
2042 		return (0);
2043 
2044 	ASSERT(txg <= spa->spa_final_txg);
2045 
2046 	/*
2047 	 * Flush the write cache of every disk that's been written to
2048 	 * in this transaction group.  This ensures that all blocks
2049 	 * written in this txg will be committed to stable storage
2050 	 * before any uberblock that references them.
2051 	 */
2052 	zio_t *zio = zio_root(spa, NULL, NULL, flags);
2053 
2054 	for (vdev_t *vd =
2055 	    txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL;
2056 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
2057 		zio_flush(zio, vd);
2058 
2059 	(void) zio_wait(zio);
2060 
2061 	/*
2062 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
2063 	 * system dies in the middle of this process, that's OK: all of the
2064 	 * even labels that made it to disk will be newer than any uberblock,
2065 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
2066 	 * which have not yet been touched, will still be valid.  We flush
2067 	 * the new labels to disk to ensure that all even-label updates
2068 	 * are committed to stable storage before the uberblock update.
2069 	 */
2070 	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) {
2071 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
2072 			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
2073 			    "for pool '%s' when syncing out the even labels "
2074 			    "of dirty vdevs", error, spa_name(spa));
2075 		}
2076 		goto retry;
2077 	}
2078 
2079 	/*
2080 	 * Sync the uberblocks to all vdevs in svd[].
2081 	 * If the system dies in the middle of this step, there are two cases
2082 	 * to consider, and the on-disk state is consistent either way:
2083 	 *
2084 	 * (1)	If none of the new uberblocks made it to disk, then the
2085 	 *	previous uberblock will be the newest, and the odd labels
2086 	 *	(which had not yet been touched) will be valid with respect
2087 	 *	to that uberblock.
2088 	 *
2089 	 * (2)	If one or more new uberblocks made it to disk, then they
2090 	 *	will be the newest, and the even labels (which had all
2091 	 *	been successfully committed) will be valid with respect
2092 	 *	to the new uberblocks.
2093 	 */
2094 	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) {
2095 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
2096 			zfs_dbgmsg("vdev_uberblock_sync_list() returned error "
2097 			    "%d for pool '%s'", error, spa_name(spa));
2098 		}
2099 		goto retry;
2100 	}
2101 
2102 	if (spa_multihost(spa))
2103 		mmp_update_uberblock(spa, ub);
2104 
2105 	/*
2106 	 * Sync out odd labels for every dirty vdev.  If the system dies
2107 	 * in the middle of this process, the even labels and the new
2108 	 * uberblocks will suffice to open the pool.  The next time
2109 	 * the pool is opened, the first thing we'll do -- before any
2110 	 * user data is modified -- is mark every vdev dirty so that
2111 	 * all labels will be brought up to date.  We flush the new labels
2112 	 * to disk to ensure that all odd-label updates are committed to
2113 	 * stable storage before the next transaction group begins.
2114 	 */
2115 	if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) {
2116 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
2117 			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
2118 			    "for pool '%s' when syncing out the odd labels of "
2119 			    "dirty vdevs", error, spa_name(spa));
2120 		}
2121 		goto retry;
2122 	}
2123 
2124 	return (0);
2125 }
2126