xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_label.c (revision 7fdf597e96a02165cfe22ff357b857d5fa15ed8a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  */
27 
28 /*
29  * Virtual Device Labels
30  * ---------------------
31  *
32  * The vdev label serves several distinct purposes:
33  *
34  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
35  *	   identity within the pool.
36  *
37  *	2. Verify that all the devices given in a configuration are present
38  *         within the pool.
39  *
40  *	3. Determine the uberblock for the pool.
41  *
42  *	4. In case of an import operation, determine the configuration of the
43  *         toplevel vdev of which it is a part.
44  *
45  *	5. If an import operation cannot find all the devices in the pool,
46  *         provide enough information to the administrator to determine which
47  *         devices are missing.
48  *
49  * It is important to note that while the kernel is responsible for writing the
50  * label, it only consumes the information in the first three cases.  The
51  * latter information is only consumed in userland when determining the
52  * configuration to import a pool.
53  *
54  *
55  * Label Organization
56  * ------------------
57  *
58  * Before describing the contents of the label, it's important to understand how
59  * the labels are written and updated with respect to the uberblock.
60  *
61  * When the pool configuration is altered, either because it was newly created
62  * or a device was added, we want to update all the labels such that we can deal
63  * with fatal failure at any point.  To this end, each disk has two labels which
64  * are updated before and after the uberblock is synced.  Assuming we have
65  * labels and an uberblock with the following transaction groups:
66  *
67  *              L1          UB          L2
68  *           +------+    +------+    +------+
69  *           |      |    |      |    |      |
70  *           | t10  |    | t10  |    | t10  |
71  *           |      |    |      |    |      |
72  *           +------+    +------+    +------+
73  *
74  * In this stable state, the labels and the uberblock were all updated within
75  * the same transaction group (10).  Each label is mirrored and checksummed, so
76  * that we can detect when we fail partway through writing the label.
77  *
78  * In order to identify which labels are valid, the labels are written in the
79  * following manner:
80  *
81  *	1. For each vdev, update 'L1' to the new label
82  *	2. Update the uberblock
83  *	3. For each vdev, update 'L2' to the new label
84  *
85  * Given arbitrary failure, we can determine the correct label to use based on
86  * the transaction group.  If we fail after updating L1 but before updating the
87  * UB, we will notice that L1's transaction group is greater than the uberblock,
88  * so L2 must be valid.  If we fail after writing the uberblock but before
89  * writing L2, we will notice that L2's transaction group is less than L1, and
90  * therefore L1 is valid.
91  *
92  * Another added complexity is that not every label is updated when the config
93  * is synced.  If we add a single device, we do not want to have to re-write
94  * every label for every device in the pool.  This means that both L1 and L2 may
95  * be older than the pool uberblock, because the necessary information is stored
96  * on another vdev.
97  *
98  *
99  * On-disk Format
100  * --------------
101  *
102  * The vdev label consists of two distinct parts, and is wrapped within the
103  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
104  * VTOC disk labels, but is otherwise ignored.
105  *
106  * The first half of the label is a packed nvlist which contains pool wide
107  * properties, per-vdev properties, and configuration information.  It is
108  * described in more detail below.
109  *
110  * The latter half of the label consists of a redundant array of uberblocks.
111  * These uberblocks are updated whenever a transaction group is committed,
112  * or when the configuration is updated.  When a pool is loaded, we scan each
113  * vdev for the 'best' uberblock.
114  *
115  *
116  * Configuration Information
117  * -------------------------
118  *
119  * The nvlist describing the pool and vdev contains the following elements:
120  *
121  *	version		ZFS on-disk version
122  *	name		Pool name
123  *	state		Pool state
124  *	txg		Transaction group in which this label was written
125  *	pool_guid	Unique identifier for this pool
126  *	vdev_tree	An nvlist describing vdev tree.
127  *	features_for_read
128  *			An nvlist of the features necessary for reading the MOS.
129  *
130  * Each leaf device label also contains the following:
131  *
132  *	top_guid	Unique ID for top-level vdev in which this is contained
133  *	guid		Unique ID for the leaf vdev
134  *
135  * The 'vs' configuration follows the format described in 'spa_config.c'.
136  */
137 
138 #include <sys/zfs_context.h>
139 #include <sys/spa.h>
140 #include <sys/spa_impl.h>
141 #include <sys/dmu.h>
142 #include <sys/zap.h>
143 #include <sys/vdev.h>
144 #include <sys/vdev_impl.h>
145 #include <sys/vdev_raidz.h>
146 #include <sys/vdev_draid.h>
147 #include <sys/uberblock_impl.h>
148 #include <sys/metaslab.h>
149 #include <sys/metaslab_impl.h>
150 #include <sys/zio.h>
151 #include <sys/dsl_scan.h>
152 #include <sys/abd.h>
153 #include <sys/fs/zfs.h>
154 #include <sys/byteorder.h>
155 #include <sys/zfs_bootenv.h>
156 
157 /*
158  * Basic routines to read and write from a vdev label.
159  * Used throughout the rest of this file.
160  */
161 uint64_t
162 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
163 {
164 	ASSERT(offset < sizeof (vdev_label_t));
165 	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
166 
167 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
168 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
169 }
170 
171 /*
172  * Returns back the vdev label associated with the passed in offset.
173  */
174 int
175 vdev_label_number(uint64_t psize, uint64_t offset)
176 {
177 	int l;
178 
179 	if (offset >= psize - VDEV_LABEL_END_SIZE) {
180 		offset -= psize - VDEV_LABEL_END_SIZE;
181 		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
182 	}
183 	l = offset / sizeof (vdev_label_t);
184 	return (l < VDEV_LABELS ? l : -1);
185 }
186 
187 static void
188 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
189     uint64_t size, zio_done_func_t *done, void *private, int flags)
190 {
191 	ASSERT(
192 	    spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
193 	    spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
194 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
195 
196 	zio_nowait(zio_read_phys(zio, vd,
197 	    vdev_label_offset(vd->vdev_psize, l, offset),
198 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
199 	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
200 }
201 
202 void
203 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
204     uint64_t size, zio_done_func_t *done, void *private, int flags)
205 {
206 	ASSERT(
207 	    spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
208 	    spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
209 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
210 
211 	zio_nowait(zio_write_phys(zio, vd,
212 	    vdev_label_offset(vd->vdev_psize, l, offset),
213 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
214 	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
215 }
216 
217 /*
218  * Generate the nvlist representing this vdev's stats
219  */
220 void
221 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv)
222 {
223 	nvlist_t *nvx;
224 	vdev_stat_t *vs;
225 	vdev_stat_ex_t *vsx;
226 
227 	vs = kmem_alloc(sizeof (*vs), KM_SLEEP);
228 	vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP);
229 
230 	vdev_get_stats_ex(vd, vs, vsx);
231 	fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
232 	    (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t));
233 
234 	/*
235 	 * Add extended stats into a special extended stats nvlist.  This keeps
236 	 * all the extended stats nicely grouped together.  The extended stats
237 	 * nvlist is then added to the main nvlist.
238 	 */
239 	nvx = fnvlist_alloc();
240 
241 	/* ZIOs in flight to disk */
242 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE,
243 	    vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]);
244 
245 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE,
246 	    vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]);
247 
248 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE,
249 	    vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]);
250 
251 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE,
252 	    vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]);
253 
254 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE,
255 	    vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]);
256 
257 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE,
258 	    vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]);
259 
260 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_REBUILD_ACTIVE_QUEUE,
261 	    vsx->vsx_active_queue[ZIO_PRIORITY_REBUILD]);
262 
263 	/* ZIOs pending */
264 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE,
265 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]);
266 
267 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE,
268 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]);
269 
270 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE,
271 	    vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]);
272 
273 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE,
274 	    vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]);
275 
276 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE,
277 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]);
278 
279 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE,
280 	    vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]);
281 
282 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_REBUILD_PEND_QUEUE,
283 	    vsx->vsx_pend_queue[ZIO_PRIORITY_REBUILD]);
284 
285 	/* Histograms */
286 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO,
287 	    vsx->vsx_total_histo[ZIO_TYPE_READ],
288 	    ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ]));
289 
290 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO,
291 	    vsx->vsx_total_histo[ZIO_TYPE_WRITE],
292 	    ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE]));
293 
294 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO,
295 	    vsx->vsx_disk_histo[ZIO_TYPE_READ],
296 	    ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ]));
297 
298 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO,
299 	    vsx->vsx_disk_histo[ZIO_TYPE_WRITE],
300 	    ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE]));
301 
302 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO,
303 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ],
304 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ]));
305 
306 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO,
307 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE],
308 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE]));
309 
310 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO,
311 	    vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ],
312 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ]));
313 
314 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO,
315 	    vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE],
316 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE]));
317 
318 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO,
319 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB],
320 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB]));
321 
322 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO,
323 	    vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM],
324 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM]));
325 
326 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_REBUILD_LAT_HISTO,
327 	    vsx->vsx_queue_histo[ZIO_PRIORITY_REBUILD],
328 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_REBUILD]));
329 
330 	/* Request sizes */
331 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO,
332 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ],
333 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ]));
334 
335 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO,
336 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE],
337 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE]));
338 
339 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO,
340 	    vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ],
341 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ]));
342 
343 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO,
344 	    vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE],
345 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE]));
346 
347 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO,
348 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB],
349 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB]));
350 
351 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO,
352 	    vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM],
353 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM]));
354 
355 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_REBUILD_HISTO,
356 	    vsx->vsx_ind_histo[ZIO_PRIORITY_REBUILD],
357 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_REBUILD]));
358 
359 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO,
360 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ],
361 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ]));
362 
363 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO,
364 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE],
365 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE]));
366 
367 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO,
368 	    vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ],
369 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ]));
370 
371 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO,
372 	    vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE],
373 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE]));
374 
375 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO,
376 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB],
377 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB]));
378 
379 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO,
380 	    vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM],
381 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM]));
382 
383 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_REBUILD_HISTO,
384 	    vsx->vsx_agg_histo[ZIO_PRIORITY_REBUILD],
385 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_REBUILD]));
386 
387 	/* IO delays */
388 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios);
389 
390 	/* Direct I/O write verify errors */
391 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_DIO_VERIFY_ERRORS,
392 	    vs->vs_dio_verify_errors);
393 
394 	/* Add extended stats nvlist to main nvlist */
395 	fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx);
396 
397 	fnvlist_free(nvx);
398 	kmem_free(vs, sizeof (*vs));
399 	kmem_free(vsx, sizeof (*vsx));
400 }
401 
402 static void
403 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
404 {
405 	spa_t *spa = vd->vdev_spa;
406 
407 	if (vd != spa->spa_root_vdev)
408 		return;
409 
410 	/* provide either current or previous scan information */
411 	pool_scan_stat_t ps;
412 	if (spa_scan_get_stats(spa, &ps) == 0) {
413 		fnvlist_add_uint64_array(nvl,
414 		    ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
415 		    sizeof (pool_scan_stat_t) / sizeof (uint64_t));
416 	}
417 
418 	pool_removal_stat_t prs;
419 	if (spa_removal_get_stats(spa, &prs) == 0) {
420 		fnvlist_add_uint64_array(nvl,
421 		    ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
422 		    sizeof (prs) / sizeof (uint64_t));
423 	}
424 
425 	pool_checkpoint_stat_t pcs;
426 	if (spa_checkpoint_get_stats(spa, &pcs) == 0) {
427 		fnvlist_add_uint64_array(nvl,
428 		    ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs,
429 		    sizeof (pcs) / sizeof (uint64_t));
430 	}
431 
432 	pool_raidz_expand_stat_t pres;
433 	if (spa_raidz_expand_get_stats(spa, &pres) == 0) {
434 		fnvlist_add_uint64_array(nvl,
435 		    ZPOOL_CONFIG_RAIDZ_EXPAND_STATS, (uint64_t *)&pres,
436 		    sizeof (pres) / sizeof (uint64_t));
437 	}
438 }
439 
440 static void
441 top_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
442 {
443 	if (vd == vd->vdev_top) {
444 		vdev_rebuild_stat_t vrs;
445 		if (vdev_rebuild_get_stats(vd, &vrs) == 0) {
446 			fnvlist_add_uint64_array(nvl,
447 			    ZPOOL_CONFIG_REBUILD_STATS, (uint64_t *)&vrs,
448 			    sizeof (vrs) / sizeof (uint64_t));
449 		}
450 	}
451 }
452 
453 /*
454  * Generate the nvlist representing this vdev's config.
455  */
456 nvlist_t *
457 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
458     vdev_config_flag_t flags)
459 {
460 	nvlist_t *nv = NULL;
461 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
462 
463 	nv = fnvlist_alloc();
464 
465 	fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
466 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
467 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
468 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
469 
470 	if (vd->vdev_path != NULL)
471 		fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
472 
473 	if (vd->vdev_devid != NULL)
474 		fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
475 
476 	if (vd->vdev_physpath != NULL)
477 		fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
478 		    vd->vdev_physpath);
479 
480 	if (vd->vdev_enc_sysfs_path != NULL)
481 		fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
482 		    vd->vdev_enc_sysfs_path);
483 
484 	if (vd->vdev_fru != NULL)
485 		fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
486 
487 	if (vd->vdev_ops->vdev_op_config_generate != NULL)
488 		vd->vdev_ops->vdev_op_config_generate(vd, nv);
489 
490 	if (vd->vdev_wholedisk != -1ULL) {
491 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
492 		    vd->vdev_wholedisk);
493 	}
494 
495 	if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
496 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
497 
498 	if (vd->vdev_isspare)
499 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
500 
501 	if (flags & VDEV_CONFIG_L2CACHE)
502 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
503 
504 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
505 	    vd == vd->vdev_top) {
506 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
507 		    vd->vdev_ms_array);
508 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
509 		    vd->vdev_ms_shift);
510 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
511 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
512 		    vd->vdev_asize);
513 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
514 		if (vd->vdev_noalloc) {
515 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
516 			    vd->vdev_noalloc);
517 		}
518 
519 		/*
520 		 * Slog devices are removed synchronously so don't
521 		 * persist the vdev_removing flag to the label.
522 		 */
523 		if (vd->vdev_removing && !vd->vdev_islog) {
524 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
525 			    vd->vdev_removing);
526 		}
527 
528 		/* zpool command expects alloc class data */
529 		if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) {
530 			const char *bias = NULL;
531 
532 			switch (vd->vdev_alloc_bias) {
533 			case VDEV_BIAS_LOG:
534 				bias = VDEV_ALLOC_BIAS_LOG;
535 				break;
536 			case VDEV_BIAS_SPECIAL:
537 				bias = VDEV_ALLOC_BIAS_SPECIAL;
538 				break;
539 			case VDEV_BIAS_DEDUP:
540 				bias = VDEV_ALLOC_BIAS_DEDUP;
541 				break;
542 			default:
543 				ASSERT3U(vd->vdev_alloc_bias, ==,
544 				    VDEV_BIAS_NONE);
545 			}
546 			fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
547 			    bias);
548 		}
549 	}
550 
551 	if (vd->vdev_dtl_sm != NULL) {
552 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
553 		    space_map_object(vd->vdev_dtl_sm));
554 	}
555 
556 	if (vic->vic_mapping_object != 0) {
557 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
558 		    vic->vic_mapping_object);
559 	}
560 
561 	if (vic->vic_births_object != 0) {
562 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
563 		    vic->vic_births_object);
564 	}
565 
566 	if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
567 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
568 		    vic->vic_prev_indirect_vdev);
569 	}
570 
571 	if (vd->vdev_crtxg)
572 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
573 
574 	if (vd->vdev_expansion_time)
575 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_EXPANSION_TIME,
576 		    vd->vdev_expansion_time);
577 
578 	if (flags & VDEV_CONFIG_MOS) {
579 		if (vd->vdev_leaf_zap != 0) {
580 			ASSERT(vd->vdev_ops->vdev_op_leaf);
581 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
582 			    vd->vdev_leaf_zap);
583 		}
584 
585 		if (vd->vdev_top_zap != 0) {
586 			ASSERT(vd == vd->vdev_top);
587 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
588 			    vd->vdev_top_zap);
589 		}
590 
591 		if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap != 0 &&
592 		    spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) {
593 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP,
594 			    vd->vdev_root_zap);
595 		}
596 
597 		if (vd->vdev_resilver_deferred) {
598 			ASSERT(vd->vdev_ops->vdev_op_leaf);
599 			ASSERT(spa->spa_resilver_deferred);
600 			fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER);
601 		}
602 	}
603 
604 	if (getstats) {
605 		vdev_config_generate_stats(vd, nv);
606 
607 		root_vdev_actions_getprogress(vd, nv);
608 		top_vdev_actions_getprogress(vd, nv);
609 
610 		/*
611 		 * Note: this can be called from open context
612 		 * (spa_get_stats()), so we need the rwlock to prevent
613 		 * the mapping from being changed by condensing.
614 		 */
615 		rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
616 		if (vd->vdev_indirect_mapping != NULL) {
617 			ASSERT(vd->vdev_indirect_births != NULL);
618 			vdev_indirect_mapping_t *vim =
619 			    vd->vdev_indirect_mapping;
620 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
621 			    vdev_indirect_mapping_size(vim));
622 		}
623 		rw_exit(&vd->vdev_indirect_rwlock);
624 		if (vd->vdev_mg != NULL &&
625 		    vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
626 			/*
627 			 * Compute approximately how much memory would be used
628 			 * for the indirect mapping if this device were to
629 			 * be removed.
630 			 *
631 			 * Note: If the frag metric is invalid, then not
632 			 * enough metaslabs have been converted to have
633 			 * histograms.
634 			 */
635 			uint64_t seg_count = 0;
636 			uint64_t to_alloc = vd->vdev_stat.vs_alloc;
637 
638 			/*
639 			 * There are the same number of allocated segments
640 			 * as free segments, so we will have at least one
641 			 * entry per free segment.  However, small free
642 			 * segments (smaller than vdev_removal_max_span)
643 			 * will be combined with adjacent allocated segments
644 			 * as a single mapping.
645 			 */
646 			for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
647 				if (i + 1 < highbit64(vdev_removal_max_span)
648 				    - 1) {
649 					to_alloc +=
650 					    vd->vdev_mg->mg_histogram[i] <<
651 					    (i + 1);
652 				} else {
653 					seg_count +=
654 					    vd->vdev_mg->mg_histogram[i];
655 				}
656 			}
657 
658 			/*
659 			 * The maximum length of a mapping is
660 			 * zfs_remove_max_segment, so we need at least one entry
661 			 * per zfs_remove_max_segment of allocated data.
662 			 */
663 			seg_count += to_alloc / spa_remove_max_segment(spa);
664 
665 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
666 			    seg_count *
667 			    sizeof (vdev_indirect_mapping_entry_phys_t));
668 		}
669 	}
670 
671 	if (!vd->vdev_ops->vdev_op_leaf) {
672 		nvlist_t **child;
673 		uint64_t c;
674 
675 		ASSERT(!vd->vdev_ishole);
676 
677 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
678 		    KM_SLEEP);
679 
680 		for (c = 0; c < vd->vdev_children; c++) {
681 			child[c] = vdev_config_generate(spa, vd->vdev_child[c],
682 			    getstats, flags);
683 		}
684 
685 		fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
686 		    (const nvlist_t * const *)child, vd->vdev_children);
687 
688 		for (c = 0; c < vd->vdev_children; c++)
689 			nvlist_free(child[c]);
690 
691 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
692 
693 	} else {
694 		const char *aux = NULL;
695 
696 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
697 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
698 		if (vd->vdev_resilver_txg != 0)
699 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
700 			    vd->vdev_resilver_txg);
701 		if (vd->vdev_rebuild_txg != 0)
702 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
703 			    vd->vdev_rebuild_txg);
704 		if (vd->vdev_faulted)
705 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
706 		if (vd->vdev_degraded)
707 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
708 		if (vd->vdev_removed)
709 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
710 		if (vd->vdev_unspare)
711 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
712 		if (vd->vdev_ishole)
713 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
714 
715 		/* Set the reason why we're FAULTED/DEGRADED. */
716 		switch (vd->vdev_stat.vs_aux) {
717 		case VDEV_AUX_ERR_EXCEEDED:
718 			aux = "err_exceeded";
719 			break;
720 
721 		case VDEV_AUX_EXTERNAL:
722 			aux = "external";
723 			break;
724 		}
725 
726 		if (aux != NULL && !vd->vdev_tmpoffline) {
727 			fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
728 		} else {
729 			/*
730 			 * We're healthy - clear any previous AUX_STATE values.
731 			 */
732 			if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE))
733 				nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE);
734 		}
735 
736 		if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
737 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
738 			    vd->vdev_orig_guid);
739 		}
740 	}
741 
742 	return (nv);
743 }
744 
745 /*
746  * Generate a view of the top-level vdevs.  If we currently have holes
747  * in the namespace, then generate an array which contains a list of holey
748  * vdevs.  Additionally, add the number of top-level children that currently
749  * exist.
750  */
751 void
752 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
753 {
754 	vdev_t *rvd = spa->spa_root_vdev;
755 	uint64_t *array;
756 	uint_t c, idx;
757 
758 	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
759 
760 	for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
761 		vdev_t *tvd = rvd->vdev_child[c];
762 
763 		if (tvd->vdev_ishole) {
764 			array[idx++] = c;
765 		}
766 	}
767 
768 	if (idx) {
769 		VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
770 		    array, idx) == 0);
771 	}
772 
773 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
774 	    rvd->vdev_children) == 0);
775 
776 	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
777 }
778 
779 /*
780  * Returns the configuration from the label of the given vdev. For vdevs
781  * which don't have a txg value stored on their label (i.e. spares/cache)
782  * or have not been completely initialized (txg = 0) just return
783  * the configuration from the first valid label we find. Otherwise,
784  * find the most up-to-date label that does not exceed the specified
785  * 'txg' value.
786  */
787 nvlist_t *
788 vdev_label_read_config(vdev_t *vd, uint64_t txg)
789 {
790 	spa_t *spa = vd->vdev_spa;
791 	nvlist_t *config = NULL;
792 	vdev_phys_t *vp[VDEV_LABELS];
793 	abd_t *vp_abd[VDEV_LABELS];
794 	zio_t *zio[VDEV_LABELS];
795 	uint64_t best_txg = 0;
796 	uint64_t label_txg = 0;
797 	int error = 0;
798 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
799 	    ZIO_FLAG_SPECULATIVE;
800 
801 	ASSERT(vd->vdev_validate_thread == curthread ||
802 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
803 
804 	if (!vdev_readable(vd))
805 		return (NULL);
806 
807 	/*
808 	 * The label for a dRAID distributed spare is not stored on disk.
809 	 * Instead it is generated when needed which allows us to bypass
810 	 * the pipeline when reading the config from the label.
811 	 */
812 	if (vd->vdev_ops == &vdev_draid_spare_ops)
813 		return (vdev_draid_read_config_spare(vd));
814 
815 	for (int l = 0; l < VDEV_LABELS; l++) {
816 		vp_abd[l] = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
817 		vp[l] = abd_to_buf(vp_abd[l]);
818 	}
819 
820 retry:
821 	for (int l = 0; l < VDEV_LABELS; l++) {
822 		zio[l] = zio_root(spa, NULL, NULL, flags);
823 
824 		vdev_label_read(zio[l], vd, l, vp_abd[l],
825 		    offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t),
826 		    NULL, NULL, flags);
827 	}
828 	for (int l = 0; l < VDEV_LABELS; l++) {
829 		nvlist_t *label = NULL;
830 
831 		if (zio_wait(zio[l]) == 0 &&
832 		    nvlist_unpack(vp[l]->vp_nvlist, sizeof (vp[l]->vp_nvlist),
833 		    &label, 0) == 0) {
834 			/*
835 			 * Auxiliary vdevs won't have txg values in their
836 			 * labels and newly added vdevs may not have been
837 			 * completely initialized so just return the
838 			 * configuration from the first valid label we
839 			 * encounter.
840 			 */
841 			error = nvlist_lookup_uint64(label,
842 			    ZPOOL_CONFIG_POOL_TXG, &label_txg);
843 			if ((error || label_txg == 0) && !config) {
844 				config = label;
845 				for (l++; l < VDEV_LABELS; l++)
846 					zio_wait(zio[l]);
847 				break;
848 			} else if (label_txg <= txg && label_txg > best_txg) {
849 				best_txg = label_txg;
850 				nvlist_free(config);
851 				config = fnvlist_dup(label);
852 			}
853 		}
854 
855 		if (label != NULL) {
856 			nvlist_free(label);
857 			label = NULL;
858 		}
859 	}
860 
861 	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
862 		flags |= ZIO_FLAG_TRYHARD;
863 		goto retry;
864 	}
865 
866 	/*
867 	 * We found a valid label but it didn't pass txg restrictions.
868 	 */
869 	if (config == NULL && label_txg != 0) {
870 		vdev_dbgmsg(vd, "label discarded as txg is too large "
871 		    "(%llu > %llu)", (u_longlong_t)label_txg,
872 		    (u_longlong_t)txg);
873 	}
874 
875 	for (int l = 0; l < VDEV_LABELS; l++) {
876 		abd_free(vp_abd[l]);
877 	}
878 
879 	return (config);
880 }
881 
882 /*
883  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
884  * in with the device guid if this spare is active elsewhere on the system.
885  */
886 static boolean_t
887 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
888     uint64_t *spare_guid, uint64_t *l2cache_guid)
889 {
890 	spa_t *spa = vd->vdev_spa;
891 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
892 	uint64_t vdtxg = 0;
893 	nvlist_t *label;
894 
895 	if (spare_guid)
896 		*spare_guid = 0ULL;
897 	if (l2cache_guid)
898 		*l2cache_guid = 0ULL;
899 
900 	/*
901 	 * Read the label, if any, and perform some basic sanity checks.
902 	 */
903 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
904 		return (B_FALSE);
905 
906 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
907 	    &vdtxg);
908 
909 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
910 	    &state) != 0 ||
911 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
912 	    &device_guid) != 0) {
913 		nvlist_free(label);
914 		return (B_FALSE);
915 	}
916 
917 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
918 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
919 	    &pool_guid) != 0 ||
920 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
921 	    &txg) != 0)) {
922 		nvlist_free(label);
923 		return (B_FALSE);
924 	}
925 
926 	nvlist_free(label);
927 
928 	/*
929 	 * Check to see if this device indeed belongs to the pool it claims to
930 	 * be a part of.  The only way this is allowed is if the device is a hot
931 	 * spare (which we check for later on).
932 	 */
933 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
934 	    !spa_guid_exists(pool_guid, device_guid) &&
935 	    !spa_spare_exists(device_guid, NULL, NULL) &&
936 	    !spa_l2cache_exists(device_guid, NULL))
937 		return (B_FALSE);
938 
939 	/*
940 	 * If the transaction group is zero, then this an initialized (but
941 	 * unused) label.  This is only an error if the create transaction
942 	 * on-disk is the same as the one we're using now, in which case the
943 	 * user has attempted to add the same vdev multiple times in the same
944 	 * transaction.
945 	 */
946 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
947 	    txg == 0 && vdtxg == crtxg)
948 		return (B_TRUE);
949 
950 	/*
951 	 * Check to see if this is a spare device.  We do an explicit check for
952 	 * spa_has_spare() here because it may be on our pending list of spares
953 	 * to add.
954 	 */
955 	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
956 	    spa_has_spare(spa, device_guid)) {
957 		if (spare_guid)
958 			*spare_guid = device_guid;
959 
960 		switch (reason) {
961 		case VDEV_LABEL_CREATE:
962 			return (B_TRUE);
963 
964 		case VDEV_LABEL_REPLACE:
965 			return (!spa_has_spare(spa, device_guid) ||
966 			    spare_pool != 0ULL);
967 
968 		case VDEV_LABEL_SPARE:
969 			return (spa_has_spare(spa, device_guid));
970 		default:
971 			break;
972 		}
973 	}
974 
975 	/*
976 	 * Check to see if this is an l2cache device.
977 	 */
978 	if (spa_l2cache_exists(device_guid, NULL) ||
979 	    spa_has_l2cache(spa, device_guid)) {
980 		if (l2cache_guid)
981 			*l2cache_guid = device_guid;
982 
983 		switch (reason) {
984 		case VDEV_LABEL_CREATE:
985 			return (B_TRUE);
986 
987 		case VDEV_LABEL_REPLACE:
988 			return (!spa_has_l2cache(spa, device_guid));
989 
990 		case VDEV_LABEL_L2CACHE:
991 			return (spa_has_l2cache(spa, device_guid));
992 		default:
993 			break;
994 		}
995 	}
996 
997 	/*
998 	 * We can't rely on a pool's state if it's been imported
999 	 * read-only.  Instead we look to see if the pools is marked
1000 	 * read-only in the namespace and set the state to active.
1001 	 */
1002 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
1003 	    (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
1004 	    spa_mode(spa) == SPA_MODE_READ)
1005 		state = POOL_STATE_ACTIVE;
1006 
1007 	/*
1008 	 * If the device is marked ACTIVE, then this device is in use by another
1009 	 * pool on the system.
1010 	 */
1011 	return (state == POOL_STATE_ACTIVE);
1012 }
1013 
1014 static nvlist_t *
1015 vdev_aux_label_generate(vdev_t *vd, boolean_t reason_spare)
1016 {
1017 	/*
1018 	 * For inactive hot spares and level 2 ARC devices, we generate
1019 	 * a special label that identifies as a mutually shared hot
1020 	 * spare or l2cache device. We write the label in case of
1021 	 * addition or removal of hot spare or l2cache vdev (in which
1022 	 * case we want to revert the labels).
1023 	 */
1024 	nvlist_t *label = fnvlist_alloc();
1025 	fnvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1026 	    spa_version(vd->vdev_spa));
1027 	fnvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, reason_spare ?
1028 	    POOL_STATE_SPARE : POOL_STATE_L2CACHE);
1029 	fnvlist_add_uint64(label, ZPOOL_CONFIG_GUID, vd->vdev_guid);
1030 
1031 	/*
1032 	 * This is merely to facilitate reporting the ashift of the
1033 	 * cache device through zdb. The actual retrieval of the
1034 	 * ashift (in vdev_alloc()) uses the nvlist
1035 	 * spa->spa_l2cache->sav_config (populated in
1036 	 * spa_ld_open_aux_vdevs()).
1037 	 */
1038 	if (!reason_spare)
1039 		fnvlist_add_uint64(label, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
1040 
1041 	/*
1042 	 * Add path information to help find it during pool import
1043 	 */
1044 	if (vd->vdev_path != NULL)
1045 		fnvlist_add_string(label, ZPOOL_CONFIG_PATH, vd->vdev_path);
1046 	if (vd->vdev_devid != NULL)
1047 		fnvlist_add_string(label, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
1048 	if (vd->vdev_physpath != NULL) {
1049 		fnvlist_add_string(label, ZPOOL_CONFIG_PHYS_PATH,
1050 		    vd->vdev_physpath);
1051 	}
1052 	return (label);
1053 }
1054 
1055 /*
1056  * Initialize a vdev label.  We check to make sure each leaf device is not in
1057  * use, and writable.  We put down an initial label which we will later
1058  * overwrite with a complete label.  Note that it's important to do this
1059  * sequentially, not in parallel, so that we catch cases of multiple use of the
1060  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
1061  * itself.
1062  */
1063 int
1064 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
1065 {
1066 	spa_t *spa = vd->vdev_spa;
1067 	nvlist_t *label;
1068 	vdev_phys_t *vp;
1069 	abd_t *vp_abd;
1070 	abd_t *bootenv;
1071 	uberblock_t *ub;
1072 	abd_t *ub_abd;
1073 	zio_t *zio;
1074 	char *buf;
1075 	size_t buflen;
1076 	int error;
1077 	uint64_t spare_guid = 0, l2cache_guid = 0;
1078 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1079 	boolean_t reason_spare = (reason == VDEV_LABEL_SPARE || (reason ==
1080 	    VDEV_LABEL_REMOVE && vd->vdev_isspare));
1081 	boolean_t reason_l2cache = (reason == VDEV_LABEL_L2CACHE || (reason ==
1082 	    VDEV_LABEL_REMOVE && vd->vdev_isl2cache));
1083 
1084 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1085 
1086 	for (int c = 0; c < vd->vdev_children; c++)
1087 		if ((error = vdev_label_init(vd->vdev_child[c],
1088 		    crtxg, reason)) != 0)
1089 			return (error);
1090 
1091 	/* Track the creation time for this vdev */
1092 	vd->vdev_crtxg = crtxg;
1093 
1094 	if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
1095 		return (0);
1096 
1097 	/*
1098 	 * Dead vdevs cannot be initialized.
1099 	 */
1100 	if (vdev_is_dead(vd))
1101 		return (SET_ERROR(EIO));
1102 
1103 	/*
1104 	 * Determine if the vdev is in use.
1105 	 */
1106 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
1107 	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
1108 		return (SET_ERROR(EBUSY));
1109 
1110 	/*
1111 	 * If this is a request to add or replace a spare or l2cache device
1112 	 * that is in use elsewhere on the system, then we must update the
1113 	 * guid (which was initialized to a random value) to reflect the
1114 	 * actual GUID (which is shared between multiple pools).
1115 	 */
1116 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
1117 	    spare_guid != 0ULL) {
1118 		uint64_t guid_delta = spare_guid - vd->vdev_guid;
1119 
1120 		vd->vdev_guid += guid_delta;
1121 
1122 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1123 			pvd->vdev_guid_sum += guid_delta;
1124 
1125 		/*
1126 		 * If this is a replacement, then we want to fallthrough to the
1127 		 * rest of the code.  If we're adding a spare, then it's already
1128 		 * labeled appropriately and we can just return.
1129 		 */
1130 		if (reason == VDEV_LABEL_SPARE)
1131 			return (0);
1132 		ASSERT(reason == VDEV_LABEL_REPLACE ||
1133 		    reason == VDEV_LABEL_SPLIT);
1134 	}
1135 
1136 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
1137 	    l2cache_guid != 0ULL) {
1138 		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
1139 
1140 		vd->vdev_guid += guid_delta;
1141 
1142 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1143 			pvd->vdev_guid_sum += guid_delta;
1144 
1145 		/*
1146 		 * If this is a replacement, then we want to fallthrough to the
1147 		 * rest of the code.  If we're adding an l2cache, then it's
1148 		 * already labeled appropriately and we can just return.
1149 		 */
1150 		if (reason == VDEV_LABEL_L2CACHE)
1151 			return (0);
1152 		ASSERT(reason == VDEV_LABEL_REPLACE);
1153 	}
1154 
1155 	/*
1156 	 * Initialize its label.
1157 	 */
1158 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1159 	abd_zero(vp_abd, sizeof (vdev_phys_t));
1160 	vp = abd_to_buf(vp_abd);
1161 
1162 	/*
1163 	 * Generate a label describing the pool and our top-level vdev.
1164 	 * We mark it as being from txg 0 to indicate that it's not
1165 	 * really part of an active pool just yet.  The labels will
1166 	 * be written again with a meaningful txg by spa_sync().
1167 	 */
1168 	if (reason_spare || reason_l2cache) {
1169 		label = vdev_aux_label_generate(vd, reason_spare);
1170 
1171 		/*
1172 		 * When spare or l2cache (aux) vdev is added during pool
1173 		 * creation, spa->spa_uberblock is not written until this
1174 		 * point. Write it on next config sync.
1175 		 */
1176 		if (uberblock_verify(&spa->spa_uberblock))
1177 			spa->spa_aux_sync_uber = B_TRUE;
1178 	} else {
1179 		uint64_t txg = 0ULL;
1180 
1181 		if (reason == VDEV_LABEL_SPLIT)
1182 			txg = spa->spa_uberblock.ub_txg;
1183 		label = spa_config_generate(spa, vd, txg, B_FALSE);
1184 
1185 		/*
1186 		 * Add our creation time.  This allows us to detect multiple
1187 		 * vdev uses as described above, and automatically expires if we
1188 		 * fail.
1189 		 */
1190 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
1191 		    crtxg) == 0);
1192 	}
1193 
1194 	buf = vp->vp_nvlist;
1195 	buflen = sizeof (vp->vp_nvlist);
1196 
1197 	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
1198 	if (error != 0) {
1199 		nvlist_free(label);
1200 		abd_free(vp_abd);
1201 		/* EFAULT means nvlist_pack ran out of room */
1202 		return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL));
1203 	}
1204 
1205 	/*
1206 	 * Initialize uberblock template.
1207 	 */
1208 	ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
1209 	abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
1210 	abd_zero_off(ub_abd, sizeof (uberblock_t),
1211 	    VDEV_UBERBLOCK_RING - sizeof (uberblock_t));
1212 	ub = abd_to_buf(ub_abd);
1213 	ub->ub_txg = 0;
1214 
1215 	/* Initialize the 2nd padding area. */
1216 	bootenv = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1217 	abd_zero(bootenv, VDEV_PAD_SIZE);
1218 
1219 	/*
1220 	 * Write everything in parallel.
1221 	 */
1222 retry:
1223 	zio = zio_root(spa, NULL, NULL, flags);
1224 
1225 	for (int l = 0; l < VDEV_LABELS; l++) {
1226 
1227 		vdev_label_write(zio, vd, l, vp_abd,
1228 		    offsetof(vdev_label_t, vl_vdev_phys),
1229 		    sizeof (vdev_phys_t), NULL, NULL, flags);
1230 
1231 		/*
1232 		 * Skip the 1st padding area.
1233 		 * Zero out the 2nd padding area where it might have
1234 		 * left over data from previous filesystem format.
1235 		 */
1236 		vdev_label_write(zio, vd, l, bootenv,
1237 		    offsetof(vdev_label_t, vl_be),
1238 		    VDEV_PAD_SIZE, NULL, NULL, flags);
1239 
1240 		vdev_label_write(zio, vd, l, ub_abd,
1241 		    offsetof(vdev_label_t, vl_uberblock),
1242 		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
1243 	}
1244 
1245 	error = zio_wait(zio);
1246 
1247 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1248 		flags |= ZIO_FLAG_TRYHARD;
1249 		goto retry;
1250 	}
1251 
1252 	nvlist_free(label);
1253 	abd_free(bootenv);
1254 	abd_free(ub_abd);
1255 	abd_free(vp_abd);
1256 
1257 	/*
1258 	 * If this vdev hasn't been previously identified as a spare, then we
1259 	 * mark it as such only if a) we are labeling it as a spare, or b) it
1260 	 * exists as a spare elsewhere in the system.  Do the same for
1261 	 * level 2 ARC devices.
1262 	 */
1263 	if (error == 0 && !vd->vdev_isspare &&
1264 	    (reason == VDEV_LABEL_SPARE ||
1265 	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
1266 		spa_spare_add(vd);
1267 
1268 	if (error == 0 && !vd->vdev_isl2cache &&
1269 	    (reason == VDEV_LABEL_L2CACHE ||
1270 	    spa_l2cache_exists(vd->vdev_guid, NULL)))
1271 		spa_l2cache_add(vd);
1272 
1273 	return (error);
1274 }
1275 
1276 /*
1277  * Done callback for vdev_label_read_bootenv_impl. If this is the first
1278  * callback to finish, store our abd in the callback pointer. Otherwise, we
1279  * just free our abd and return.
1280  */
1281 static void
1282 vdev_label_read_bootenv_done(zio_t *zio)
1283 {
1284 	zio_t *rio = zio->io_private;
1285 	abd_t **cbp = rio->io_private;
1286 
1287 	ASSERT3U(zio->io_size, ==, VDEV_PAD_SIZE);
1288 
1289 	if (zio->io_error == 0) {
1290 		mutex_enter(&rio->io_lock);
1291 		if (*cbp == NULL) {
1292 			/* Will free this buffer in vdev_label_read_bootenv. */
1293 			*cbp = zio->io_abd;
1294 		} else {
1295 			abd_free(zio->io_abd);
1296 		}
1297 		mutex_exit(&rio->io_lock);
1298 	} else {
1299 		abd_free(zio->io_abd);
1300 	}
1301 }
1302 
1303 static void
1304 vdev_label_read_bootenv_impl(zio_t *zio, vdev_t *vd, int flags)
1305 {
1306 	for (int c = 0; c < vd->vdev_children; c++)
1307 		vdev_label_read_bootenv_impl(zio, vd->vdev_child[c], flags);
1308 
1309 	/*
1310 	 * We just use the first label that has a correct checksum; the
1311 	 * bootloader should have rewritten them all to be the same on boot,
1312 	 * and any changes we made since boot have been the same across all
1313 	 * labels.
1314 	 */
1315 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1316 		for (int l = 0; l < VDEV_LABELS; l++) {
1317 			vdev_label_read(zio, vd, l,
1318 			    abd_alloc_linear(VDEV_PAD_SIZE, B_FALSE),
1319 			    offsetof(vdev_label_t, vl_be), VDEV_PAD_SIZE,
1320 			    vdev_label_read_bootenv_done, zio, flags);
1321 		}
1322 	}
1323 }
1324 
1325 int
1326 vdev_label_read_bootenv(vdev_t *rvd, nvlist_t *bootenv)
1327 {
1328 	nvlist_t *config;
1329 	spa_t *spa = rvd->vdev_spa;
1330 	abd_t *abd = NULL;
1331 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1332 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1333 
1334 	ASSERT(bootenv);
1335 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1336 
1337 	zio_t *zio = zio_root(spa, NULL, &abd, flags);
1338 	vdev_label_read_bootenv_impl(zio, rvd, flags);
1339 	int err = zio_wait(zio);
1340 
1341 	if (abd != NULL) {
1342 		char *buf;
1343 		vdev_boot_envblock_t *vbe = abd_to_buf(abd);
1344 
1345 		vbe->vbe_version = ntohll(vbe->vbe_version);
1346 		switch (vbe->vbe_version) {
1347 		case VB_RAW:
1348 			/*
1349 			 * if we have textual data in vbe_bootenv, create nvlist
1350 			 * with key "envmap".
1351 			 */
1352 			fnvlist_add_uint64(bootenv, BOOTENV_VERSION, VB_RAW);
1353 			vbe->vbe_bootenv[sizeof (vbe->vbe_bootenv) - 1] = '\0';
1354 			fnvlist_add_string(bootenv, GRUB_ENVMAP,
1355 			    vbe->vbe_bootenv);
1356 			break;
1357 
1358 		case VB_NVLIST:
1359 			err = nvlist_unpack(vbe->vbe_bootenv,
1360 			    sizeof (vbe->vbe_bootenv), &config, 0);
1361 			if (err == 0) {
1362 				fnvlist_merge(bootenv, config);
1363 				nvlist_free(config);
1364 				break;
1365 			}
1366 			zfs_fallthrough;
1367 		default:
1368 			/* Check for FreeBSD zfs bootonce command string */
1369 			buf = abd_to_buf(abd);
1370 			if (*buf == '\0') {
1371 				fnvlist_add_uint64(bootenv, BOOTENV_VERSION,
1372 				    VB_NVLIST);
1373 				break;
1374 			}
1375 			fnvlist_add_string(bootenv, FREEBSD_BOOTONCE, buf);
1376 		}
1377 
1378 		/*
1379 		 * abd was allocated in vdev_label_read_bootenv_impl()
1380 		 */
1381 		abd_free(abd);
1382 		/*
1383 		 * If we managed to read any successfully,
1384 		 * return success.
1385 		 */
1386 		return (0);
1387 	}
1388 	return (err);
1389 }
1390 
1391 int
1392 vdev_label_write_bootenv(vdev_t *vd, nvlist_t *env)
1393 {
1394 	zio_t *zio;
1395 	spa_t *spa = vd->vdev_spa;
1396 	vdev_boot_envblock_t *bootenv;
1397 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1398 	int error;
1399 	size_t nvsize;
1400 	char *nvbuf;
1401 	const char *tmp;
1402 
1403 	error = nvlist_size(env, &nvsize, NV_ENCODE_XDR);
1404 	if (error != 0)
1405 		return (SET_ERROR(error));
1406 
1407 	if (nvsize >= sizeof (bootenv->vbe_bootenv)) {
1408 		return (SET_ERROR(E2BIG));
1409 	}
1410 
1411 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1412 
1413 	error = ENXIO;
1414 	for (int c = 0; c < vd->vdev_children; c++) {
1415 		int child_err;
1416 
1417 		child_err = vdev_label_write_bootenv(vd->vdev_child[c], env);
1418 		/*
1419 		 * As long as any of the disks managed to write all of their
1420 		 * labels successfully, return success.
1421 		 */
1422 		if (child_err == 0)
1423 			error = child_err;
1424 	}
1425 
1426 	if (!vd->vdev_ops->vdev_op_leaf || vdev_is_dead(vd) ||
1427 	    !vdev_writeable(vd)) {
1428 		return (error);
1429 	}
1430 	ASSERT3U(sizeof (*bootenv), ==, VDEV_PAD_SIZE);
1431 	abd_t *abd = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1432 	abd_zero(abd, VDEV_PAD_SIZE);
1433 
1434 	bootenv = abd_borrow_buf_copy(abd, VDEV_PAD_SIZE);
1435 	nvbuf = bootenv->vbe_bootenv;
1436 	nvsize = sizeof (bootenv->vbe_bootenv);
1437 
1438 	bootenv->vbe_version = fnvlist_lookup_uint64(env, BOOTENV_VERSION);
1439 	switch (bootenv->vbe_version) {
1440 	case VB_RAW:
1441 		if (nvlist_lookup_string(env, GRUB_ENVMAP, &tmp) == 0) {
1442 			(void) strlcpy(bootenv->vbe_bootenv, tmp, nvsize);
1443 		}
1444 		error = 0;
1445 		break;
1446 
1447 	case VB_NVLIST:
1448 		error = nvlist_pack(env, &nvbuf, &nvsize, NV_ENCODE_XDR,
1449 		    KM_SLEEP);
1450 		break;
1451 
1452 	default:
1453 		error = EINVAL;
1454 		break;
1455 	}
1456 
1457 	if (error == 0) {
1458 		bootenv->vbe_version = htonll(bootenv->vbe_version);
1459 		abd_return_buf_copy(abd, bootenv, VDEV_PAD_SIZE);
1460 	} else {
1461 		abd_free(abd);
1462 		return (SET_ERROR(error));
1463 	}
1464 
1465 retry:
1466 	zio = zio_root(spa, NULL, NULL, flags);
1467 	for (int l = 0; l < VDEV_LABELS; l++) {
1468 		vdev_label_write(zio, vd, l, abd,
1469 		    offsetof(vdev_label_t, vl_be),
1470 		    VDEV_PAD_SIZE, NULL, NULL, flags);
1471 	}
1472 
1473 	error = zio_wait(zio);
1474 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1475 		flags |= ZIO_FLAG_TRYHARD;
1476 		goto retry;
1477 	}
1478 
1479 	abd_free(abd);
1480 	return (error);
1481 }
1482 
1483 /*
1484  * ==========================================================================
1485  * uberblock load/sync
1486  * ==========================================================================
1487  */
1488 
1489 /*
1490  * Consider the following situation: txg is safely synced to disk.  We've
1491  * written the first uberblock for txg + 1, and then we lose power.  When we
1492  * come back up, we fail to see the uberblock for txg + 1 because, say,
1493  * it was on a mirrored device and the replica to which we wrote txg + 1
1494  * is now offline.  If we then make some changes and sync txg + 1, and then
1495  * the missing replica comes back, then for a few seconds we'll have two
1496  * conflicting uberblocks on disk with the same txg.  The solution is simple:
1497  * among uberblocks with equal txg, choose the one with the latest timestamp.
1498  */
1499 static int
1500 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1501 {
1502 	int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg);
1503 
1504 	if (likely(cmp))
1505 		return (cmp);
1506 
1507 	cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1508 	if (likely(cmp))
1509 		return (cmp);
1510 
1511 	/*
1512 	 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware
1513 	 * ZFS, e.g. OpenZFS >= 0.7.
1514 	 *
1515 	 * If one ub has MMP and the other does not, they were written by
1516 	 * different hosts, which matters for MMP.  So we treat no MMP/no SEQ as
1517 	 * a 0 value.
1518 	 *
1519 	 * Since timestamp and txg are the same if we get this far, either is
1520 	 * acceptable for importing the pool.
1521 	 */
1522 	unsigned int seq1 = 0;
1523 	unsigned int seq2 = 0;
1524 
1525 	if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1526 		seq1 = MMP_SEQ(ub1);
1527 
1528 	if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1529 		seq2 = MMP_SEQ(ub2);
1530 
1531 	return (TREE_CMP(seq1, seq2));
1532 }
1533 
1534 struct ubl_cbdata {
1535 	uberblock_t	ubl_latest;	/* Most recent uberblock */
1536 	uberblock_t	*ubl_ubbest;	/* Best uberblock (w/r/t max_txg) */
1537 	vdev_t		*ubl_vd;	/* vdev associated with the above */
1538 };
1539 
1540 static void
1541 vdev_uberblock_load_done(zio_t *zio)
1542 {
1543 	vdev_t *vd = zio->io_vd;
1544 	spa_t *spa = zio->io_spa;
1545 	zio_t *rio = zio->io_private;
1546 	uberblock_t *ub = abd_to_buf(zio->io_abd);
1547 	struct ubl_cbdata *cbp = rio->io_private;
1548 
1549 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
1550 
1551 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
1552 		mutex_enter(&rio->io_lock);
1553 		if (vdev_uberblock_compare(ub, &cbp->ubl_latest) > 0) {
1554 			cbp->ubl_latest = *ub;
1555 		}
1556 		if (ub->ub_txg <= spa->spa_load_max_txg &&
1557 		    vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
1558 			/*
1559 			 * Keep track of the vdev in which this uberblock
1560 			 * was found. We will use this information later
1561 			 * to obtain the config nvlist associated with
1562 			 * this uberblock.
1563 			 */
1564 			*cbp->ubl_ubbest = *ub;
1565 			cbp->ubl_vd = vd;
1566 		}
1567 		mutex_exit(&rio->io_lock);
1568 	}
1569 
1570 	abd_free(zio->io_abd);
1571 }
1572 
1573 static void
1574 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
1575     struct ubl_cbdata *cbp)
1576 {
1577 	for (int c = 0; c < vd->vdev_children; c++)
1578 		vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
1579 
1580 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd) &&
1581 	    vd->vdev_ops != &vdev_draid_spare_ops) {
1582 		for (int l = 0; l < VDEV_LABELS; l++) {
1583 			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1584 				vdev_label_read(zio, vd, l,
1585 				    abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
1586 				    B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
1587 				    VDEV_UBERBLOCK_SIZE(vd),
1588 				    vdev_uberblock_load_done, zio, flags);
1589 			}
1590 		}
1591 	}
1592 }
1593 
1594 /*
1595  * Reads the 'best' uberblock from disk along with its associated
1596  * configuration. First, we read the uberblock array of each label of each
1597  * vdev, keeping track of the uberblock with the highest txg in each array.
1598  * Then, we read the configuration from the same vdev as the best uberblock.
1599  */
1600 void
1601 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
1602 {
1603 	zio_t *zio;
1604 	spa_t *spa = rvd->vdev_spa;
1605 	struct ubl_cbdata cb;
1606 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1607 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1608 
1609 	ASSERT(ub);
1610 	ASSERT(config);
1611 
1612 	memset(ub, 0, sizeof (uberblock_t));
1613 	memset(&cb, 0, sizeof (cb));
1614 	*config = NULL;
1615 
1616 	cb.ubl_ubbest = ub;
1617 
1618 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1619 	zio = zio_root(spa, NULL, &cb, flags);
1620 	vdev_uberblock_load_impl(zio, rvd, flags, &cb);
1621 	(void) zio_wait(zio);
1622 
1623 	/*
1624 	 * It's possible that the best uberblock was discovered on a label
1625 	 * that has a configuration which was written in a future txg.
1626 	 * Search all labels on this vdev to find the configuration that
1627 	 * matches the txg for our uberblock.
1628 	 */
1629 	if (cb.ubl_vd != NULL) {
1630 		vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. "
1631 		    "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg);
1632 
1633 		if (ub->ub_raidz_reflow_info !=
1634 		    cb.ubl_latest.ub_raidz_reflow_info) {
1635 			vdev_dbgmsg(cb.ubl_vd,
1636 			    "spa=%s best uberblock (txg=%llu info=0x%llx) "
1637 			    "has different raidz_reflow_info than latest "
1638 			    "uberblock (txg=%llu info=0x%llx)",
1639 			    spa->spa_name,
1640 			    (u_longlong_t)ub->ub_txg,
1641 			    (u_longlong_t)ub->ub_raidz_reflow_info,
1642 			    (u_longlong_t)cb.ubl_latest.ub_txg,
1643 			    (u_longlong_t)cb.ubl_latest.ub_raidz_reflow_info);
1644 			memset(ub, 0, sizeof (uberblock_t));
1645 			spa_config_exit(spa, SCL_ALL, FTAG);
1646 			return;
1647 		}
1648 
1649 		*config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
1650 		if (*config == NULL && spa->spa_extreme_rewind) {
1651 			vdev_dbgmsg(cb.ubl_vd, "failed to read label config. "
1652 			    "Trying again without txg restrictions.");
1653 			*config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX);
1654 		}
1655 		if (*config == NULL) {
1656 			vdev_dbgmsg(cb.ubl_vd, "failed to read label config");
1657 		}
1658 	}
1659 	spa_config_exit(spa, SCL_ALL, FTAG);
1660 }
1661 
1662 /*
1663  * For use when a leaf vdev is expanded.
1664  * The location of labels 2 and 3 changed, and at the new location the
1665  * uberblock rings are either empty or contain garbage.  The sync will write
1666  * new configs there because the vdev is dirty, but expansion also needs the
1667  * uberblock rings copied.  Read them from label 0 which did not move.
1668  *
1669  * Since the point is to populate labels {2,3} with valid uberblocks,
1670  * we zero uberblocks we fail to read or which are not valid.
1671  */
1672 
1673 static void
1674 vdev_copy_uberblocks(vdev_t *vd)
1675 {
1676 	abd_t *ub_abd;
1677 	zio_t *write_zio;
1678 	int locks = (SCL_L2ARC | SCL_ZIO);
1679 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1680 	    ZIO_FLAG_SPECULATIVE;
1681 
1682 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) ==
1683 	    SCL_STATE);
1684 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1685 
1686 	/*
1687 	 * No uberblocks are stored on distributed spares, they may be
1688 	 * safely skipped when expanding a leaf vdev.
1689 	 */
1690 	if (vd->vdev_ops == &vdev_draid_spare_ops)
1691 		return;
1692 
1693 	spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER);
1694 
1695 	ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1696 
1697 	write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1698 	for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1699 		const int src_label = 0;
1700 		zio_t *zio;
1701 
1702 		zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1703 		vdev_label_read(zio, vd, src_label, ub_abd,
1704 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1705 		    NULL, NULL, flags);
1706 
1707 		if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd)))
1708 			abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1709 
1710 		for (int l = 2; l < VDEV_LABELS; l++)
1711 			vdev_label_write(write_zio, vd, l, ub_abd,
1712 			    VDEV_UBERBLOCK_OFFSET(vd, n),
1713 			    VDEV_UBERBLOCK_SIZE(vd), NULL, NULL,
1714 			    flags | ZIO_FLAG_DONT_PROPAGATE);
1715 	}
1716 	(void) zio_wait(write_zio);
1717 
1718 	spa_config_exit(vd->vdev_spa, locks, FTAG);
1719 
1720 	abd_free(ub_abd);
1721 }
1722 
1723 /*
1724  * On success, increment root zio's count of good writes.
1725  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1726  */
1727 static void
1728 vdev_uberblock_sync_done(zio_t *zio)
1729 {
1730 	uint64_t *good_writes = zio->io_private;
1731 
1732 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
1733 		atomic_inc_64(good_writes);
1734 }
1735 
1736 /*
1737  * Write the uberblock to all labels of all leaves of the specified vdev.
1738  */
1739 static void
1740 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes,
1741     uberblock_t *ub, vdev_t *vd, int flags)
1742 {
1743 	for (uint64_t c = 0; c < vd->vdev_children; c++) {
1744 		vdev_uberblock_sync(zio, good_writes,
1745 		    ub, vd->vdev_child[c], flags);
1746 	}
1747 
1748 	if (!vd->vdev_ops->vdev_op_leaf)
1749 		return;
1750 
1751 	if (!vdev_writeable(vd))
1752 		return;
1753 
1754 	/*
1755 	 * There's no need to write uberblocks to a distributed spare, they
1756 	 * are already stored on all the leaves of the parent dRAID.  For
1757 	 * this same reason vdev_uberblock_load_impl() skips distributed
1758 	 * spares when reading uberblocks.
1759 	 */
1760 	if (vd->vdev_ops == &vdev_draid_spare_ops)
1761 		return;
1762 
1763 	/* If the vdev was expanded, need to copy uberblock rings. */
1764 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1765 	    vd->vdev_copy_uberblocks == B_TRUE) {
1766 		vdev_copy_uberblocks(vd);
1767 		vd->vdev_copy_uberblocks = B_FALSE;
1768 	}
1769 
1770 	/*
1771 	 * We chose a slot based on the txg.  If this uberblock has a special
1772 	 * RAIDZ expansion state, then it is essentially an update of the
1773 	 * current uberblock (it has the same txg).  However, the current
1774 	 * state is committed, so we want to write it to a different slot. If
1775 	 * we overwrote the same slot, and we lose power during the uberblock
1776 	 * write, and the disk does not do single-sector overwrites
1777 	 * atomically (even though it is required to - i.e. we should see
1778 	 * either the old or the new uberblock), then we could lose this
1779 	 * txg's uberblock. Rewinding to the previous txg's uberblock may not
1780 	 * be possible because RAIDZ expansion may have already overwritten
1781 	 * some of the data, so we need the progress indicator in the
1782 	 * uberblock.
1783 	 */
1784 	int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0;
1785 	int n = (ub->ub_txg - (RRSS_GET_STATE(ub) == RRSS_SCRATCH_VALID)) %
1786 	    (VDEV_UBERBLOCK_COUNT(vd) - m);
1787 
1788 	/* Copy the uberblock_t into the ABD */
1789 	abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1790 	abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
1791 	abd_zero_off(ub_abd, sizeof (uberblock_t),
1792 	    VDEV_UBERBLOCK_SIZE(vd) - sizeof (uberblock_t));
1793 
1794 	for (int l = 0; l < VDEV_LABELS; l++)
1795 		vdev_label_write(zio, vd, l, ub_abd,
1796 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1797 		    vdev_uberblock_sync_done, good_writes,
1798 		    flags | ZIO_FLAG_DONT_PROPAGATE);
1799 
1800 	abd_free(ub_abd);
1801 }
1802 
1803 /* Sync the uberblocks to all vdevs in svd[] */
1804 int
1805 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1806 {
1807 	spa_t *spa = svd[0]->vdev_spa;
1808 	zio_t *zio;
1809 	uint64_t good_writes = 0;
1810 
1811 	zio = zio_root(spa, NULL, NULL, flags);
1812 
1813 	for (int v = 0; v < svdcount; v++)
1814 		vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags);
1815 
1816 	if (spa->spa_aux_sync_uber) {
1817 		for (int v = 0; v < spa->spa_spares.sav_count; v++) {
1818 			vdev_uberblock_sync(zio, &good_writes, ub,
1819 			    spa->spa_spares.sav_vdevs[v], flags);
1820 		}
1821 		for (int v = 0; v < spa->spa_l2cache.sav_count; v++) {
1822 			vdev_uberblock_sync(zio, &good_writes, ub,
1823 			    spa->spa_l2cache.sav_vdevs[v], flags);
1824 		}
1825 	}
1826 	(void) zio_wait(zio);
1827 
1828 	/*
1829 	 * Flush the uberblocks to disk.  This ensures that the odd labels
1830 	 * are no longer needed (because the new uberblocks and the even
1831 	 * labels are safely on disk), so it is safe to overwrite them.
1832 	 */
1833 	zio = zio_root(spa, NULL, NULL, flags);
1834 
1835 	for (int v = 0; v < svdcount; v++) {
1836 		if (vdev_writeable(svd[v])) {
1837 			zio_flush(zio, svd[v]);
1838 		}
1839 	}
1840 	if (spa->spa_aux_sync_uber) {
1841 		spa->spa_aux_sync_uber = B_FALSE;
1842 		for (int v = 0; v < spa->spa_spares.sav_count; v++) {
1843 			if (vdev_writeable(spa->spa_spares.sav_vdevs[v])) {
1844 				zio_flush(zio, spa->spa_spares.sav_vdevs[v]);
1845 			}
1846 		}
1847 		for (int v = 0; v < spa->spa_l2cache.sav_count; v++) {
1848 			if (vdev_writeable(spa->spa_l2cache.sav_vdevs[v])) {
1849 				zio_flush(zio, spa->spa_l2cache.sav_vdevs[v]);
1850 			}
1851 		}
1852 	}
1853 
1854 	(void) zio_wait(zio);
1855 
1856 	return (good_writes >= 1 ? 0 : EIO);
1857 }
1858 
1859 /*
1860  * On success, increment the count of good writes for our top-level vdev.
1861  */
1862 static void
1863 vdev_label_sync_done(zio_t *zio)
1864 {
1865 	uint64_t *good_writes = zio->io_private;
1866 
1867 	if (zio->io_error == 0)
1868 		atomic_inc_64(good_writes);
1869 }
1870 
1871 /*
1872  * If there weren't enough good writes, indicate failure to the parent.
1873  */
1874 static void
1875 vdev_label_sync_top_done(zio_t *zio)
1876 {
1877 	uint64_t *good_writes = zio->io_private;
1878 
1879 	if (*good_writes == 0)
1880 		zio->io_error = SET_ERROR(EIO);
1881 
1882 	kmem_free(good_writes, sizeof (uint64_t));
1883 }
1884 
1885 /*
1886  * We ignore errors for log and cache devices, simply free the private data.
1887  */
1888 static void
1889 vdev_label_sync_ignore_done(zio_t *zio)
1890 {
1891 	kmem_free(zio->io_private, sizeof (uint64_t));
1892 }
1893 
1894 /*
1895  * Write all even or odd labels to all leaves of the specified vdev.
1896  */
1897 static void
1898 vdev_label_sync(zio_t *zio, uint64_t *good_writes,
1899     vdev_t *vd, int l, uint64_t txg, int flags)
1900 {
1901 	nvlist_t *label;
1902 	vdev_phys_t *vp;
1903 	abd_t *vp_abd;
1904 	char *buf;
1905 	size_t buflen;
1906 	vdev_t *pvd = vd->vdev_parent;
1907 	boolean_t spare_in_use = B_FALSE;
1908 
1909 	for (int c = 0; c < vd->vdev_children; c++) {
1910 		vdev_label_sync(zio, good_writes,
1911 		    vd->vdev_child[c], l, txg, flags);
1912 	}
1913 
1914 	if (!vd->vdev_ops->vdev_op_leaf)
1915 		return;
1916 
1917 	if (!vdev_writeable(vd))
1918 		return;
1919 
1920 	/*
1921 	 * The top-level config never needs to be written to a distributed
1922 	 * spare.  When read vdev_dspare_label_read_config() will generate
1923 	 * the config for the vdev_label_read_config().
1924 	 */
1925 	if (vd->vdev_ops == &vdev_draid_spare_ops)
1926 		return;
1927 
1928 	if (pvd && pvd->vdev_ops == &vdev_spare_ops)
1929 		spare_in_use = B_TRUE;
1930 
1931 	/*
1932 	 * Generate a label describing the top-level config to which we belong.
1933 	 */
1934 	if ((vd->vdev_isspare && !spare_in_use) || vd->vdev_isl2cache) {
1935 		label = vdev_aux_label_generate(vd, vd->vdev_isspare);
1936 	} else {
1937 		label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1938 	}
1939 
1940 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1941 	abd_zero(vp_abd, sizeof (vdev_phys_t));
1942 	vp = abd_to_buf(vp_abd);
1943 
1944 	buf = vp->vp_nvlist;
1945 	buflen = sizeof (vp->vp_nvlist);
1946 
1947 	if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) {
1948 		for (; l < VDEV_LABELS; l += 2) {
1949 			vdev_label_write(zio, vd, l, vp_abd,
1950 			    offsetof(vdev_label_t, vl_vdev_phys),
1951 			    sizeof (vdev_phys_t),
1952 			    vdev_label_sync_done, good_writes,
1953 			    flags | ZIO_FLAG_DONT_PROPAGATE);
1954 		}
1955 	}
1956 
1957 	abd_free(vp_abd);
1958 	nvlist_free(label);
1959 }
1960 
1961 static int
1962 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1963 {
1964 	list_t *dl = &spa->spa_config_dirty_list;
1965 	vdev_t *vd;
1966 	zio_t *zio;
1967 	int error;
1968 
1969 	/*
1970 	 * Write the new labels to disk.
1971 	 */
1972 	zio = zio_root(spa, NULL, NULL, flags);
1973 
1974 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1975 		uint64_t *good_writes;
1976 
1977 		ASSERT(!vd->vdev_ishole);
1978 
1979 		good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
1980 		zio_t *vio = zio_null(zio, spa, NULL,
1981 		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
1982 		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1983 		    good_writes, flags);
1984 		vdev_label_sync(vio, good_writes, vd, l, txg, flags);
1985 		zio_nowait(vio);
1986 	}
1987 
1988 	/*
1989 	 * AUX path may have changed during import
1990 	 */
1991 	spa_aux_vdev_t *sav[2] = {&spa->spa_spares, &spa->spa_l2cache};
1992 	for (int i = 0; i < 2; i++) {
1993 		for (int v = 0; v < sav[i]->sav_count; v++) {
1994 			uint64_t *good_writes;
1995 			if (!sav[i]->sav_label_sync)
1996 				continue;
1997 			good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
1998 			zio_t *vio = zio_null(zio, spa, NULL,
1999 			    vdev_label_sync_ignore_done, good_writes, flags);
2000 			vdev_label_sync(vio, good_writes, sav[i]->sav_vdevs[v],
2001 			    l, txg, flags);
2002 			zio_nowait(vio);
2003 		}
2004 	}
2005 
2006 	error = zio_wait(zio);
2007 
2008 	/*
2009 	 * Flush the new labels to disk.
2010 	 */
2011 	zio = zio_root(spa, NULL, NULL, flags);
2012 
2013 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
2014 		zio_flush(zio, vd);
2015 
2016 	for (int i = 0; i < 2; i++) {
2017 		if (!sav[i]->sav_label_sync)
2018 			continue;
2019 		for (int v = 0; v < sav[i]->sav_count; v++)
2020 			zio_flush(zio, sav[i]->sav_vdevs[v]);
2021 		if (l == 1)
2022 			sav[i]->sav_label_sync = B_FALSE;
2023 	}
2024 
2025 	(void) zio_wait(zio);
2026 
2027 	return (error);
2028 }
2029 
2030 /*
2031  * Sync the uberblock and any changes to the vdev configuration.
2032  *
2033  * The order of operations is carefully crafted to ensure that
2034  * if the system panics or loses power at any time, the state on disk
2035  * is still transactionally consistent.  The in-line comments below
2036  * describe the failure semantics at each stage.
2037  *
2038  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
2039  * at any time, you can just call it again, and it will resume its work.
2040  */
2041 int
2042 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
2043 {
2044 	spa_t *spa = svd[0]->vdev_spa;
2045 	uberblock_t *ub = &spa->spa_uberblock;
2046 	int error = 0;
2047 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
2048 
2049 	ASSERT(svdcount != 0);
2050 retry:
2051 	/*
2052 	 * Normally, we don't want to try too hard to write every label and
2053 	 * uberblock.  If there is a flaky disk, we don't want the rest of the
2054 	 * sync process to block while we retry.  But if we can't write a
2055 	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
2056 	 * bailing out and declaring the pool faulted.
2057 	 */
2058 	if (error != 0) {
2059 		if ((flags & ZIO_FLAG_TRYHARD) != 0)
2060 			return (error);
2061 		flags |= ZIO_FLAG_TRYHARD;
2062 	}
2063 
2064 	ASSERT(ub->ub_txg <= txg);
2065 
2066 	/*
2067 	 * If this isn't a resync due to I/O errors,
2068 	 * and nothing changed in this transaction group,
2069 	 * and multihost protection isn't enabled,
2070 	 * and the vdev configuration hasn't changed,
2071 	 * then there's nothing to do.
2072 	 */
2073 	if (ub->ub_txg < txg) {
2074 		boolean_t changed = uberblock_update(ub, spa->spa_root_vdev,
2075 		    txg, spa->spa_mmp.mmp_delay);
2076 
2077 		if (!changed && list_is_empty(&spa->spa_config_dirty_list) &&
2078 		    !spa_multihost(spa))
2079 			return (0);
2080 	}
2081 
2082 	if (txg > spa_freeze_txg(spa))
2083 		return (0);
2084 
2085 	ASSERT(txg <= spa->spa_final_txg);
2086 
2087 	/*
2088 	 * Flush the write cache of every disk that's been written to
2089 	 * in this transaction group.  This ensures that all blocks
2090 	 * written in this txg will be committed to stable storage
2091 	 * before any uberblock that references them.
2092 	 */
2093 	zio_t *zio = zio_root(spa, NULL, NULL, flags);
2094 
2095 	for (vdev_t *vd =
2096 	    txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL;
2097 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
2098 		zio_flush(zio, vd);
2099 
2100 	(void) zio_wait(zio);
2101 
2102 	/*
2103 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
2104 	 * system dies in the middle of this process, that's OK: all of the
2105 	 * even labels that made it to disk will be newer than any uberblock,
2106 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
2107 	 * which have not yet been touched, will still be valid.  We flush
2108 	 * the new labels to disk to ensure that all even-label updates
2109 	 * are committed to stable storage before the uberblock update.
2110 	 */
2111 	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) {
2112 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
2113 			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
2114 			    "for pool '%s' when syncing out the even labels "
2115 			    "of dirty vdevs", error, spa_name(spa));
2116 		}
2117 		goto retry;
2118 	}
2119 
2120 	/*
2121 	 * Sync the uberblocks to all vdevs in svd[].
2122 	 * If the system dies in the middle of this step, there are two cases
2123 	 * to consider, and the on-disk state is consistent either way:
2124 	 *
2125 	 * (1)	If none of the new uberblocks made it to disk, then the
2126 	 *	previous uberblock will be the newest, and the odd labels
2127 	 *	(which had not yet been touched) will be valid with respect
2128 	 *	to that uberblock.
2129 	 *
2130 	 * (2)	If one or more new uberblocks made it to disk, then they
2131 	 *	will be the newest, and the even labels (which had all
2132 	 *	been successfully committed) will be valid with respect
2133 	 *	to the new uberblocks.
2134 	 */
2135 	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) {
2136 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
2137 			zfs_dbgmsg("vdev_uberblock_sync_list() returned error "
2138 			    "%d for pool '%s'", error, spa_name(spa));
2139 		}
2140 		goto retry;
2141 	}
2142 
2143 	if (spa_multihost(spa))
2144 		mmp_update_uberblock(spa, ub);
2145 
2146 	/*
2147 	 * Sync out odd labels for every dirty vdev.  If the system dies
2148 	 * in the middle of this process, the even labels and the new
2149 	 * uberblocks will suffice to open the pool.  The next time
2150 	 * the pool is opened, the first thing we'll do -- before any
2151 	 * user data is modified -- is mark every vdev dirty so that
2152 	 * all labels will be brought up to date.  We flush the new labels
2153 	 * to disk to ensure that all odd-label updates are committed to
2154 	 * stable storage before the next transaction group begins.
2155 	 */
2156 	if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) {
2157 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
2158 			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
2159 			    "for pool '%s' when syncing out the odd labels of "
2160 			    "dirty vdevs", error, spa_name(spa));
2161 		}
2162 		goto retry;
2163 	}
2164 
2165 	return (0);
2166 }
2167