1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2017, Intel Corporation. 26 */ 27 28 /* 29 * Virtual Device Labels 30 * --------------------- 31 * 32 * The vdev label serves several distinct purposes: 33 * 34 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 35 * identity within the pool. 36 * 37 * 2. Verify that all the devices given in a configuration are present 38 * within the pool. 39 * 40 * 3. Determine the uberblock for the pool. 41 * 42 * 4. In case of an import operation, determine the configuration of the 43 * toplevel vdev of which it is a part. 44 * 45 * 5. If an import operation cannot find all the devices in the pool, 46 * provide enough information to the administrator to determine which 47 * devices are missing. 48 * 49 * It is important to note that while the kernel is responsible for writing the 50 * label, it only consumes the information in the first three cases. The 51 * latter information is only consumed in userland when determining the 52 * configuration to import a pool. 53 * 54 * 55 * Label Organization 56 * ------------------ 57 * 58 * Before describing the contents of the label, it's important to understand how 59 * the labels are written and updated with respect to the uberblock. 60 * 61 * When the pool configuration is altered, either because it was newly created 62 * or a device was added, we want to update all the labels such that we can deal 63 * with fatal failure at any point. To this end, each disk has two labels which 64 * are updated before and after the uberblock is synced. Assuming we have 65 * labels and an uberblock with the following transaction groups: 66 * 67 * L1 UB L2 68 * +------+ +------+ +------+ 69 * | | | | | | 70 * | t10 | | t10 | | t10 | 71 * | | | | | | 72 * +------+ +------+ +------+ 73 * 74 * In this stable state, the labels and the uberblock were all updated within 75 * the same transaction group (10). Each label is mirrored and checksummed, so 76 * that we can detect when we fail partway through writing the label. 77 * 78 * In order to identify which labels are valid, the labels are written in the 79 * following manner: 80 * 81 * 1. For each vdev, update 'L1' to the new label 82 * 2. Update the uberblock 83 * 3. For each vdev, update 'L2' to the new label 84 * 85 * Given arbitrary failure, we can determine the correct label to use based on 86 * the transaction group. If we fail after updating L1 but before updating the 87 * UB, we will notice that L1's transaction group is greater than the uberblock, 88 * so L2 must be valid. If we fail after writing the uberblock but before 89 * writing L2, we will notice that L2's transaction group is less than L1, and 90 * therefore L1 is valid. 91 * 92 * Another added complexity is that not every label is updated when the config 93 * is synced. If we add a single device, we do not want to have to re-write 94 * every label for every device in the pool. This means that both L1 and L2 may 95 * be older than the pool uberblock, because the necessary information is stored 96 * on another vdev. 97 * 98 * 99 * On-disk Format 100 * -------------- 101 * 102 * The vdev label consists of two distinct parts, and is wrapped within the 103 * vdev_label_t structure. The label includes 8k of padding to permit legacy 104 * VTOC disk labels, but is otherwise ignored. 105 * 106 * The first half of the label is a packed nvlist which contains pool wide 107 * properties, per-vdev properties, and configuration information. It is 108 * described in more detail below. 109 * 110 * The latter half of the label consists of a redundant array of uberblocks. 111 * These uberblocks are updated whenever a transaction group is committed, 112 * or when the configuration is updated. When a pool is loaded, we scan each 113 * vdev for the 'best' uberblock. 114 * 115 * 116 * Configuration Information 117 * ------------------------- 118 * 119 * The nvlist describing the pool and vdev contains the following elements: 120 * 121 * version ZFS on-disk version 122 * name Pool name 123 * state Pool state 124 * txg Transaction group in which this label was written 125 * pool_guid Unique identifier for this pool 126 * vdev_tree An nvlist describing vdev tree. 127 * features_for_read 128 * An nvlist of the features necessary for reading the MOS. 129 * 130 * Each leaf device label also contains the following: 131 * 132 * top_guid Unique ID for top-level vdev in which this is contained 133 * guid Unique ID for the leaf vdev 134 * 135 * The 'vs' configuration follows the format described in 'spa_config.c'. 136 */ 137 138 #include <sys/zfs_context.h> 139 #include <sys/spa.h> 140 #include <sys/spa_impl.h> 141 #include <sys/dmu.h> 142 #include <sys/zap.h> 143 #include <sys/vdev.h> 144 #include <sys/vdev_impl.h> 145 #include <sys/vdev_raidz.h> 146 #include <sys/vdev_draid.h> 147 #include <sys/uberblock_impl.h> 148 #include <sys/metaslab.h> 149 #include <sys/metaslab_impl.h> 150 #include <sys/zio.h> 151 #include <sys/dsl_scan.h> 152 #include <sys/abd.h> 153 #include <sys/fs/zfs.h> 154 #include <sys/byteorder.h> 155 #include <sys/zfs_bootenv.h> 156 157 /* 158 * Basic routines to read and write from a vdev label. 159 * Used throughout the rest of this file. 160 */ 161 uint64_t 162 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 163 { 164 ASSERT(offset < sizeof (vdev_label_t)); 165 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 166 167 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 168 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 169 } 170 171 /* 172 * Returns back the vdev label associated with the passed in offset. 173 */ 174 int 175 vdev_label_number(uint64_t psize, uint64_t offset) 176 { 177 int l; 178 179 if (offset >= psize - VDEV_LABEL_END_SIZE) { 180 offset -= psize - VDEV_LABEL_END_SIZE; 181 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 182 } 183 l = offset / sizeof (vdev_label_t); 184 return (l < VDEV_LABELS ? l : -1); 185 } 186 187 static void 188 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 189 uint64_t size, zio_done_func_t *done, void *private, int flags) 190 { 191 ASSERT( 192 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE || 193 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE); 194 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 195 196 zio_nowait(zio_read_phys(zio, vd, 197 vdev_label_offset(vd->vdev_psize, l, offset), 198 size, buf, ZIO_CHECKSUM_LABEL, done, private, 199 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 200 } 201 202 void 203 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 204 uint64_t size, zio_done_func_t *done, void *private, int flags) 205 { 206 ASSERT( 207 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE || 208 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE); 209 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 210 211 zio_nowait(zio_write_phys(zio, vd, 212 vdev_label_offset(vd->vdev_psize, l, offset), 213 size, buf, ZIO_CHECKSUM_LABEL, done, private, 214 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 215 } 216 217 /* 218 * Generate the nvlist representing this vdev's stats 219 */ 220 void 221 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv) 222 { 223 nvlist_t *nvx; 224 vdev_stat_t *vs; 225 vdev_stat_ex_t *vsx; 226 227 vs = kmem_alloc(sizeof (*vs), KM_SLEEP); 228 vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP); 229 230 vdev_get_stats_ex(vd, vs, vsx); 231 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, 232 (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t)); 233 234 /* 235 * Add extended stats into a special extended stats nvlist. This keeps 236 * all the extended stats nicely grouped together. The extended stats 237 * nvlist is then added to the main nvlist. 238 */ 239 nvx = fnvlist_alloc(); 240 241 /* ZIOs in flight to disk */ 242 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE, 243 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]); 244 245 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE, 246 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]); 247 248 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE, 249 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]); 250 251 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE, 252 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]); 253 254 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE, 255 vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]); 256 257 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE, 258 vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]); 259 260 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_REBUILD_ACTIVE_QUEUE, 261 vsx->vsx_active_queue[ZIO_PRIORITY_REBUILD]); 262 263 /* ZIOs pending */ 264 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE, 265 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]); 266 267 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE, 268 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]); 269 270 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE, 271 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]); 272 273 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE, 274 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]); 275 276 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE, 277 vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]); 278 279 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE, 280 vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]); 281 282 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_REBUILD_PEND_QUEUE, 283 vsx->vsx_pend_queue[ZIO_PRIORITY_REBUILD]); 284 285 /* Histograms */ 286 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO, 287 vsx->vsx_total_histo[ZIO_TYPE_READ], 288 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ])); 289 290 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO, 291 vsx->vsx_total_histo[ZIO_TYPE_WRITE], 292 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE])); 293 294 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO, 295 vsx->vsx_disk_histo[ZIO_TYPE_READ], 296 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ])); 297 298 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO, 299 vsx->vsx_disk_histo[ZIO_TYPE_WRITE], 300 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE])); 301 302 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO, 303 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ], 304 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ])); 305 306 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO, 307 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE], 308 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE])); 309 310 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO, 311 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ], 312 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ])); 313 314 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO, 315 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE], 316 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE])); 317 318 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO, 319 vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB], 320 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB])); 321 322 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO, 323 vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM], 324 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM])); 325 326 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_REBUILD_LAT_HISTO, 327 vsx->vsx_queue_histo[ZIO_PRIORITY_REBUILD], 328 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_REBUILD])); 329 330 /* Request sizes */ 331 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO, 332 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ], 333 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ])); 334 335 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO, 336 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE], 337 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE])); 338 339 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO, 340 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ], 341 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ])); 342 343 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO, 344 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE], 345 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE])); 346 347 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO, 348 vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB], 349 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB])); 350 351 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO, 352 vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM], 353 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM])); 354 355 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_REBUILD_HISTO, 356 vsx->vsx_ind_histo[ZIO_PRIORITY_REBUILD], 357 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_REBUILD])); 358 359 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO, 360 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ], 361 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ])); 362 363 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO, 364 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE], 365 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE])); 366 367 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO, 368 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ], 369 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ])); 370 371 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO, 372 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE], 373 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE])); 374 375 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO, 376 vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB], 377 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB])); 378 379 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO, 380 vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM], 381 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM])); 382 383 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_REBUILD_HISTO, 384 vsx->vsx_agg_histo[ZIO_PRIORITY_REBUILD], 385 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_REBUILD])); 386 387 /* IO delays */ 388 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios); 389 390 /* Direct I/O write verify errors */ 391 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_DIO_VERIFY_ERRORS, 392 vs->vs_dio_verify_errors); 393 394 /* Add extended stats nvlist to main nvlist */ 395 fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx); 396 397 fnvlist_free(nvx); 398 kmem_free(vs, sizeof (*vs)); 399 kmem_free(vsx, sizeof (*vsx)); 400 } 401 402 static void 403 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl) 404 { 405 spa_t *spa = vd->vdev_spa; 406 407 if (vd != spa->spa_root_vdev) 408 return; 409 410 /* provide either current or previous scan information */ 411 pool_scan_stat_t ps; 412 if (spa_scan_get_stats(spa, &ps) == 0) { 413 fnvlist_add_uint64_array(nvl, 414 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps, 415 sizeof (pool_scan_stat_t) / sizeof (uint64_t)); 416 } 417 418 pool_removal_stat_t prs; 419 if (spa_removal_get_stats(spa, &prs) == 0) { 420 fnvlist_add_uint64_array(nvl, 421 ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs, 422 sizeof (prs) / sizeof (uint64_t)); 423 } 424 425 pool_checkpoint_stat_t pcs; 426 if (spa_checkpoint_get_stats(spa, &pcs) == 0) { 427 fnvlist_add_uint64_array(nvl, 428 ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs, 429 sizeof (pcs) / sizeof (uint64_t)); 430 } 431 432 pool_raidz_expand_stat_t pres; 433 if (spa_raidz_expand_get_stats(spa, &pres) == 0) { 434 fnvlist_add_uint64_array(nvl, 435 ZPOOL_CONFIG_RAIDZ_EXPAND_STATS, (uint64_t *)&pres, 436 sizeof (pres) / sizeof (uint64_t)); 437 } 438 } 439 440 static void 441 top_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl) 442 { 443 if (vd == vd->vdev_top) { 444 vdev_rebuild_stat_t vrs; 445 if (vdev_rebuild_get_stats(vd, &vrs) == 0) { 446 fnvlist_add_uint64_array(nvl, 447 ZPOOL_CONFIG_REBUILD_STATS, (uint64_t *)&vrs, 448 sizeof (vrs) / sizeof (uint64_t)); 449 } 450 } 451 } 452 453 /* 454 * Generate the nvlist representing this vdev's config. 455 */ 456 nvlist_t * 457 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 458 vdev_config_flag_t flags) 459 { 460 nvlist_t *nv = NULL; 461 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 462 463 nv = fnvlist_alloc(); 464 465 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type); 466 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE))) 467 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id); 468 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid); 469 470 if (vd->vdev_path != NULL) 471 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path); 472 473 if (vd->vdev_devid != NULL) 474 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid); 475 476 if (vd->vdev_physpath != NULL) 477 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 478 vd->vdev_physpath); 479 480 if (vd->vdev_enc_sysfs_path != NULL) 481 fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 482 vd->vdev_enc_sysfs_path); 483 484 if (vd->vdev_fru != NULL) 485 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru); 486 487 if (vd->vdev_ops->vdev_op_config_generate != NULL) 488 vd->vdev_ops->vdev_op_config_generate(vd, nv); 489 490 if (vd->vdev_wholedisk != -1ULL) { 491 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 492 vd->vdev_wholedisk); 493 } 494 495 if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING)) 496 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1); 497 498 if (vd->vdev_isspare) 499 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1); 500 501 if (flags & VDEV_CONFIG_L2CACHE) 502 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 503 504 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) && 505 vd == vd->vdev_top) { 506 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 507 vd->vdev_ms_array); 508 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 509 vd->vdev_ms_shift); 510 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 511 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 512 vd->vdev_asize); 513 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog); 514 if (vd->vdev_noalloc) { 515 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NONALLOCATING, 516 vd->vdev_noalloc); 517 } 518 519 /* 520 * Slog devices are removed synchronously so don't 521 * persist the vdev_removing flag to the label. 522 */ 523 if (vd->vdev_removing && !vd->vdev_islog) { 524 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING, 525 vd->vdev_removing); 526 } 527 528 /* zpool command expects alloc class data */ 529 if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) { 530 const char *bias = NULL; 531 532 switch (vd->vdev_alloc_bias) { 533 case VDEV_BIAS_LOG: 534 bias = VDEV_ALLOC_BIAS_LOG; 535 break; 536 case VDEV_BIAS_SPECIAL: 537 bias = VDEV_ALLOC_BIAS_SPECIAL; 538 break; 539 case VDEV_BIAS_DEDUP: 540 bias = VDEV_ALLOC_BIAS_DEDUP; 541 break; 542 default: 543 ASSERT3U(vd->vdev_alloc_bias, ==, 544 VDEV_BIAS_NONE); 545 } 546 fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 547 bias); 548 } 549 } 550 551 if (vd->vdev_dtl_sm != NULL) { 552 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 553 space_map_object(vd->vdev_dtl_sm)); 554 } 555 556 if (vic->vic_mapping_object != 0) { 557 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 558 vic->vic_mapping_object); 559 } 560 561 if (vic->vic_births_object != 0) { 562 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 563 vic->vic_births_object); 564 } 565 566 if (vic->vic_prev_indirect_vdev != UINT64_MAX) { 567 fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 568 vic->vic_prev_indirect_vdev); 569 } 570 571 if (vd->vdev_crtxg) 572 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg); 573 574 if (vd->vdev_expansion_time) 575 fnvlist_add_uint64(nv, ZPOOL_CONFIG_EXPANSION_TIME, 576 vd->vdev_expansion_time); 577 578 if (flags & VDEV_CONFIG_MOS) { 579 if (vd->vdev_leaf_zap != 0) { 580 ASSERT(vd->vdev_ops->vdev_op_leaf); 581 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP, 582 vd->vdev_leaf_zap); 583 } 584 585 if (vd->vdev_top_zap != 0) { 586 ASSERT(vd == vd->vdev_top); 587 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 588 vd->vdev_top_zap); 589 } 590 591 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap != 0 && 592 spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) { 593 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP, 594 vd->vdev_root_zap); 595 } 596 597 if (vd->vdev_resilver_deferred) { 598 ASSERT(vd->vdev_ops->vdev_op_leaf); 599 ASSERT(spa->spa_resilver_deferred); 600 fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER); 601 } 602 } 603 604 if (getstats) { 605 vdev_config_generate_stats(vd, nv); 606 607 root_vdev_actions_getprogress(vd, nv); 608 top_vdev_actions_getprogress(vd, nv); 609 610 /* 611 * Note: this can be called from open context 612 * (spa_get_stats()), so we need the rwlock to prevent 613 * the mapping from being changed by condensing. 614 */ 615 rw_enter(&vd->vdev_indirect_rwlock, RW_READER); 616 if (vd->vdev_indirect_mapping != NULL) { 617 ASSERT(vd->vdev_indirect_births != NULL); 618 vdev_indirect_mapping_t *vim = 619 vd->vdev_indirect_mapping; 620 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, 621 vdev_indirect_mapping_size(vim)); 622 } 623 rw_exit(&vd->vdev_indirect_rwlock); 624 if (vd->vdev_mg != NULL && 625 vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) { 626 /* 627 * Compute approximately how much memory would be used 628 * for the indirect mapping if this device were to 629 * be removed. 630 * 631 * Note: If the frag metric is invalid, then not 632 * enough metaslabs have been converted to have 633 * histograms. 634 */ 635 uint64_t seg_count = 0; 636 uint64_t to_alloc = vd->vdev_stat.vs_alloc; 637 638 /* 639 * There are the same number of allocated segments 640 * as free segments, so we will have at least one 641 * entry per free segment. However, small free 642 * segments (smaller than vdev_removal_max_span) 643 * will be combined with adjacent allocated segments 644 * as a single mapping. 645 */ 646 for (int i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; 647 i++) { 648 if (i + 1 < highbit64(vdev_removal_max_span) 649 - 1) { 650 to_alloc += 651 vd->vdev_mg->mg_histogram[i] << 652 (i + 1); 653 } else { 654 seg_count += 655 vd->vdev_mg->mg_histogram[i]; 656 } 657 } 658 659 /* 660 * The maximum length of a mapping is 661 * zfs_remove_max_segment, so we need at least one entry 662 * per zfs_remove_max_segment of allocated data. 663 */ 664 seg_count += to_alloc / spa_remove_max_segment(spa); 665 666 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, 667 seg_count * 668 sizeof (vdev_indirect_mapping_entry_phys_t)); 669 } 670 } 671 672 if (!vd->vdev_ops->vdev_op_leaf) { 673 nvlist_t **child; 674 uint64_t c; 675 676 ASSERT(!vd->vdev_ishole); 677 678 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 679 KM_SLEEP); 680 681 for (c = 0; c < vd->vdev_children; c++) { 682 child[c] = vdev_config_generate(spa, vd->vdev_child[c], 683 getstats, flags); 684 } 685 686 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 687 (const nvlist_t * const *)child, vd->vdev_children); 688 689 for (c = 0; c < vd->vdev_children; c++) 690 nvlist_free(child[c]); 691 692 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 693 694 } else { 695 const char *aux = NULL; 696 697 if (vd->vdev_offline && !vd->vdev_tmpoffline) 698 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE); 699 if (vd->vdev_resilver_txg != 0) 700 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 701 vd->vdev_resilver_txg); 702 if (vd->vdev_rebuild_txg != 0) 703 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 704 vd->vdev_rebuild_txg); 705 if (vd->vdev_faulted) 706 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE); 707 if (vd->vdev_degraded) 708 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE); 709 if (vd->vdev_removed) 710 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE); 711 if (vd->vdev_unspare) 712 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE); 713 if (vd->vdev_ishole) 714 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE); 715 716 /* Set the reason why we're FAULTED/DEGRADED. */ 717 switch (vd->vdev_stat.vs_aux) { 718 case VDEV_AUX_ERR_EXCEEDED: 719 aux = "err_exceeded"; 720 break; 721 722 case VDEV_AUX_EXTERNAL: 723 aux = "external"; 724 break; 725 } 726 727 if (aux != NULL && !vd->vdev_tmpoffline) { 728 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux); 729 } else { 730 /* 731 * We're healthy - clear any previous AUX_STATE values. 732 */ 733 if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE)) 734 nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE); 735 } 736 737 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { 738 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, 739 vd->vdev_orig_guid); 740 } 741 } 742 743 return (nv); 744 } 745 746 /* 747 * Generate a view of the top-level vdevs. If we currently have holes 748 * in the namespace, then generate an array which contains a list of holey 749 * vdevs. Additionally, add the number of top-level children that currently 750 * exist. 751 */ 752 void 753 vdev_top_config_generate(spa_t *spa, nvlist_t *config) 754 { 755 vdev_t *rvd = spa->spa_root_vdev; 756 uint64_t *array; 757 uint_t c, idx; 758 759 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP); 760 761 for (c = 0, idx = 0; c < rvd->vdev_children; c++) { 762 vdev_t *tvd = rvd->vdev_child[c]; 763 764 if (tvd->vdev_ishole) { 765 array[idx++] = c; 766 } 767 } 768 769 if (idx) { 770 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, 771 array, idx) == 0); 772 } 773 774 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 775 rvd->vdev_children) == 0); 776 777 kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); 778 } 779 780 /* 781 * Returns the configuration from the label of the given vdev. For vdevs 782 * which don't have a txg value stored on their label (i.e. spares/cache) 783 * or have not been completely initialized (txg = 0) just return 784 * the configuration from the first valid label we find. Otherwise, 785 * find the most up-to-date label that does not exceed the specified 786 * 'txg' value. 787 */ 788 nvlist_t * 789 vdev_label_read_config(vdev_t *vd, uint64_t txg) 790 { 791 spa_t *spa = vd->vdev_spa; 792 nvlist_t *config = NULL; 793 vdev_phys_t *vp[VDEV_LABELS]; 794 abd_t *vp_abd[VDEV_LABELS]; 795 zio_t *zio[VDEV_LABELS]; 796 uint64_t best_txg = 0; 797 uint64_t label_txg = 0; 798 int error = 0; 799 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 800 ZIO_FLAG_SPECULATIVE; 801 802 ASSERT(vd->vdev_validate_thread == curthread || 803 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 804 805 if (!vdev_readable(vd)) 806 return (NULL); 807 808 /* 809 * The label for a dRAID distributed spare is not stored on disk. 810 * Instead it is generated when needed which allows us to bypass 811 * the pipeline when reading the config from the label. 812 */ 813 if (vd->vdev_ops == &vdev_draid_spare_ops) 814 return (vdev_draid_read_config_spare(vd)); 815 816 for (int l = 0; l < VDEV_LABELS; l++) { 817 vp_abd[l] = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 818 vp[l] = abd_to_buf(vp_abd[l]); 819 } 820 821 retry: 822 for (int l = 0; l < VDEV_LABELS; l++) { 823 zio[l] = zio_root(spa, NULL, NULL, flags); 824 825 vdev_label_read(zio[l], vd, l, vp_abd[l], 826 offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t), 827 NULL, NULL, flags); 828 } 829 for (int l = 0; l < VDEV_LABELS; l++) { 830 nvlist_t *label = NULL; 831 832 if (zio_wait(zio[l]) == 0 && 833 nvlist_unpack(vp[l]->vp_nvlist, sizeof (vp[l]->vp_nvlist), 834 &label, 0) == 0) { 835 /* 836 * Auxiliary vdevs won't have txg values in their 837 * labels and newly added vdevs may not have been 838 * completely initialized so just return the 839 * configuration from the first valid label we 840 * encounter. 841 */ 842 error = nvlist_lookup_uint64(label, 843 ZPOOL_CONFIG_POOL_TXG, &label_txg); 844 if ((error || label_txg == 0) && !config) { 845 config = label; 846 for (l++; l < VDEV_LABELS; l++) 847 zio_wait(zio[l]); 848 break; 849 } else if (label_txg <= txg && label_txg > best_txg) { 850 best_txg = label_txg; 851 nvlist_free(config); 852 config = fnvlist_dup(label); 853 } 854 } 855 856 if (label != NULL) { 857 nvlist_free(label); 858 label = NULL; 859 } 860 } 861 862 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { 863 flags |= ZIO_FLAG_TRYHARD; 864 goto retry; 865 } 866 867 /* 868 * We found a valid label but it didn't pass txg restrictions. 869 */ 870 if (config == NULL && label_txg != 0) { 871 vdev_dbgmsg(vd, "label discarded as txg is too large " 872 "(%llu > %llu)", (u_longlong_t)label_txg, 873 (u_longlong_t)txg); 874 } 875 876 for (int l = 0; l < VDEV_LABELS; l++) { 877 abd_free(vp_abd[l]); 878 } 879 880 return (config); 881 } 882 883 /* 884 * Determine if a device is in use. The 'spare_guid' parameter will be filled 885 * in with the device guid if this spare is active elsewhere on the system. 886 */ 887 static boolean_t 888 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 889 uint64_t *spare_guid, uint64_t *l2cache_guid) 890 { 891 spa_t *spa = vd->vdev_spa; 892 uint64_t state, pool_guid, device_guid, txg, spare_pool; 893 uint64_t vdtxg = 0; 894 nvlist_t *label; 895 896 if (spare_guid) 897 *spare_guid = 0ULL; 898 if (l2cache_guid) 899 *l2cache_guid = 0ULL; 900 901 /* 902 * Read the label, if any, and perform some basic sanity checks. 903 */ 904 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) 905 return (B_FALSE); 906 907 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 908 &vdtxg); 909 910 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 911 &state) != 0 || 912 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 913 &device_guid) != 0) { 914 nvlist_free(label); 915 return (B_FALSE); 916 } 917 918 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 919 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 920 &pool_guid) != 0 || 921 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 922 &txg) != 0)) { 923 nvlist_free(label); 924 return (B_FALSE); 925 } 926 927 nvlist_free(label); 928 929 /* 930 * Check to see if this device indeed belongs to the pool it claims to 931 * be a part of. The only way this is allowed is if the device is a hot 932 * spare (which we check for later on). 933 */ 934 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 935 !spa_guid_exists(pool_guid, device_guid) && 936 !spa_spare_exists(device_guid, NULL, NULL) && 937 !spa_l2cache_exists(device_guid, NULL)) 938 return (B_FALSE); 939 940 /* 941 * If the transaction group is zero, then this an initialized (but 942 * unused) label. This is only an error if the create transaction 943 * on-disk is the same as the one we're using now, in which case the 944 * user has attempted to add the same vdev multiple times in the same 945 * transaction. 946 */ 947 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 948 txg == 0 && vdtxg == crtxg) 949 return (B_TRUE); 950 951 /* 952 * Check to see if this is a spare device. We do an explicit check for 953 * spa_has_spare() here because it may be on our pending list of spares 954 * to add. 955 */ 956 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 957 spa_has_spare(spa, device_guid)) { 958 if (spare_guid) 959 *spare_guid = device_guid; 960 961 switch (reason) { 962 case VDEV_LABEL_CREATE: 963 return (B_TRUE); 964 965 case VDEV_LABEL_REPLACE: 966 return (!spa_has_spare(spa, device_guid) || 967 spare_pool != 0ULL); 968 969 case VDEV_LABEL_SPARE: 970 return (spa_has_spare(spa, device_guid)); 971 default: 972 break; 973 } 974 } 975 976 /* 977 * Check to see if this is an l2cache device. 978 */ 979 if (spa_l2cache_exists(device_guid, NULL) || 980 spa_has_l2cache(spa, device_guid)) { 981 if (l2cache_guid) 982 *l2cache_guid = device_guid; 983 984 switch (reason) { 985 case VDEV_LABEL_CREATE: 986 return (B_TRUE); 987 988 case VDEV_LABEL_REPLACE: 989 return (!spa_has_l2cache(spa, device_guid)); 990 991 case VDEV_LABEL_L2CACHE: 992 return (spa_has_l2cache(spa, device_guid)); 993 default: 994 break; 995 } 996 } 997 998 /* 999 * We can't rely on a pool's state if it's been imported 1000 * read-only. Instead we look to see if the pools is marked 1001 * read-only in the namespace and set the state to active. 1002 */ 1003 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 1004 (spa = spa_by_guid(pool_guid, device_guid)) != NULL && 1005 spa_mode(spa) == SPA_MODE_READ) 1006 state = POOL_STATE_ACTIVE; 1007 1008 /* 1009 * If the device is marked ACTIVE, then this device is in use by another 1010 * pool on the system. 1011 */ 1012 return (state == POOL_STATE_ACTIVE); 1013 } 1014 1015 static nvlist_t * 1016 vdev_aux_label_generate(vdev_t *vd, boolean_t reason_spare) 1017 { 1018 /* 1019 * For inactive hot spares and level 2 ARC devices, we generate 1020 * a special label that identifies as a mutually shared hot 1021 * spare or l2cache device. We write the label in case of 1022 * addition or removal of hot spare or l2cache vdev (in which 1023 * case we want to revert the labels). 1024 */ 1025 nvlist_t *label = fnvlist_alloc(); 1026 fnvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 1027 spa_version(vd->vdev_spa)); 1028 fnvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, reason_spare ? 1029 POOL_STATE_SPARE : POOL_STATE_L2CACHE); 1030 fnvlist_add_uint64(label, ZPOOL_CONFIG_GUID, vd->vdev_guid); 1031 1032 /* 1033 * This is merely to facilitate reporting the ashift of the 1034 * cache device through zdb. The actual retrieval of the 1035 * ashift (in vdev_alloc()) uses the nvlist 1036 * spa->spa_l2cache->sav_config (populated in 1037 * spa_ld_open_aux_vdevs()). 1038 */ 1039 if (!reason_spare) 1040 fnvlist_add_uint64(label, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 1041 1042 /* 1043 * Add path information to help find it during pool import 1044 */ 1045 if (vd->vdev_path != NULL) 1046 fnvlist_add_string(label, ZPOOL_CONFIG_PATH, vd->vdev_path); 1047 if (vd->vdev_devid != NULL) 1048 fnvlist_add_string(label, ZPOOL_CONFIG_DEVID, vd->vdev_devid); 1049 if (vd->vdev_physpath != NULL) { 1050 fnvlist_add_string(label, ZPOOL_CONFIG_PHYS_PATH, 1051 vd->vdev_physpath); 1052 } 1053 return (label); 1054 } 1055 1056 /* 1057 * Initialize a vdev label. We check to make sure each leaf device is not in 1058 * use, and writable. We put down an initial label which we will later 1059 * overwrite with a complete label. Note that it's important to do this 1060 * sequentially, not in parallel, so that we catch cases of multiple use of the 1061 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 1062 * itself. 1063 */ 1064 int 1065 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 1066 { 1067 spa_t *spa = vd->vdev_spa; 1068 nvlist_t *label; 1069 vdev_phys_t *vp; 1070 abd_t *vp_abd; 1071 abd_t *bootenv; 1072 uberblock_t *ub; 1073 abd_t *ub_abd; 1074 zio_t *zio; 1075 char *buf; 1076 size_t buflen; 1077 int error; 1078 uint64_t spare_guid = 0, l2cache_guid = 0; 1079 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1080 boolean_t reason_spare = (reason == VDEV_LABEL_SPARE || (reason == 1081 VDEV_LABEL_REMOVE && vd->vdev_isspare)); 1082 boolean_t reason_l2cache = (reason == VDEV_LABEL_L2CACHE || (reason == 1083 VDEV_LABEL_REMOVE && vd->vdev_isl2cache)); 1084 1085 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1086 1087 for (int c = 0; c < vd->vdev_children; c++) 1088 if ((error = vdev_label_init(vd->vdev_child[c], 1089 crtxg, reason)) != 0) 1090 return (error); 1091 1092 /* Track the creation time for this vdev */ 1093 vd->vdev_crtxg = crtxg; 1094 1095 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa)) 1096 return (0); 1097 1098 /* 1099 * Dead vdevs cannot be initialized. 1100 */ 1101 if (vdev_is_dead(vd)) 1102 return (SET_ERROR(EIO)); 1103 1104 /* 1105 * Determine if the vdev is in use. 1106 */ 1107 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && 1108 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 1109 return (SET_ERROR(EBUSY)); 1110 1111 /* 1112 * If this is a request to add or replace a spare or l2cache device 1113 * that is in use elsewhere on the system, then we must update the 1114 * guid (which was initialized to a random value) to reflect the 1115 * actual GUID (which is shared between multiple pools). 1116 */ 1117 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 1118 spare_guid != 0ULL) { 1119 uint64_t guid_delta = spare_guid - vd->vdev_guid; 1120 1121 vd->vdev_guid += guid_delta; 1122 1123 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1124 pvd->vdev_guid_sum += guid_delta; 1125 1126 /* 1127 * If this is a replacement, then we want to fallthrough to the 1128 * rest of the code. If we're adding a spare, then it's already 1129 * labeled appropriately and we can just return. 1130 */ 1131 if (reason == VDEV_LABEL_SPARE) 1132 return (0); 1133 ASSERT(reason == VDEV_LABEL_REPLACE || 1134 reason == VDEV_LABEL_SPLIT); 1135 } 1136 1137 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 1138 l2cache_guid != 0ULL) { 1139 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 1140 1141 vd->vdev_guid += guid_delta; 1142 1143 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1144 pvd->vdev_guid_sum += guid_delta; 1145 1146 /* 1147 * If this is a replacement, then we want to fallthrough to the 1148 * rest of the code. If we're adding an l2cache, then it's 1149 * already labeled appropriately and we can just return. 1150 */ 1151 if (reason == VDEV_LABEL_L2CACHE) 1152 return (0); 1153 ASSERT(reason == VDEV_LABEL_REPLACE); 1154 } 1155 1156 /* 1157 * Initialize its label. 1158 */ 1159 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 1160 abd_zero(vp_abd, sizeof (vdev_phys_t)); 1161 vp = abd_to_buf(vp_abd); 1162 1163 /* 1164 * Generate a label describing the pool and our top-level vdev. 1165 * We mark it as being from txg 0 to indicate that it's not 1166 * really part of an active pool just yet. The labels will 1167 * be written again with a meaningful txg by spa_sync(). 1168 */ 1169 if (reason_spare || reason_l2cache) { 1170 label = vdev_aux_label_generate(vd, reason_spare); 1171 1172 /* 1173 * When spare or l2cache (aux) vdev is added during pool 1174 * creation, spa->spa_uberblock is not written until this 1175 * point. Write it on next config sync. 1176 */ 1177 if (uberblock_verify(&spa->spa_uberblock)) 1178 spa->spa_aux_sync_uber = B_TRUE; 1179 } else { 1180 uint64_t txg = 0ULL; 1181 1182 if (reason == VDEV_LABEL_SPLIT) 1183 txg = spa->spa_uberblock.ub_txg; 1184 label = spa_config_generate(spa, vd, txg, B_FALSE); 1185 1186 /* 1187 * Add our creation time. This allows us to detect multiple 1188 * vdev uses as described above, and automatically expires if we 1189 * fail. 1190 */ 1191 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 1192 crtxg) == 0); 1193 } 1194 1195 buf = vp->vp_nvlist; 1196 buflen = sizeof (vp->vp_nvlist); 1197 1198 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 1199 if (error != 0) { 1200 nvlist_free(label); 1201 abd_free(vp_abd); 1202 /* EFAULT means nvlist_pack ran out of room */ 1203 return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL)); 1204 } 1205 1206 /* 1207 * Initialize uberblock template. 1208 */ 1209 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE); 1210 abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t)); 1211 abd_zero_off(ub_abd, sizeof (uberblock_t), 1212 VDEV_UBERBLOCK_RING - sizeof (uberblock_t)); 1213 ub = abd_to_buf(ub_abd); 1214 ub->ub_txg = 0; 1215 1216 /* Initialize the 2nd padding area. */ 1217 bootenv = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); 1218 abd_zero(bootenv, VDEV_PAD_SIZE); 1219 1220 /* 1221 * Write everything in parallel. 1222 */ 1223 retry: 1224 zio = zio_root(spa, NULL, NULL, flags); 1225 1226 for (int l = 0; l < VDEV_LABELS; l++) { 1227 1228 vdev_label_write(zio, vd, l, vp_abd, 1229 offsetof(vdev_label_t, vl_vdev_phys), 1230 sizeof (vdev_phys_t), NULL, NULL, flags); 1231 1232 /* 1233 * Skip the 1st padding area. 1234 * Zero out the 2nd padding area where it might have 1235 * left over data from previous filesystem format. 1236 */ 1237 vdev_label_write(zio, vd, l, bootenv, 1238 offsetof(vdev_label_t, vl_be), 1239 VDEV_PAD_SIZE, NULL, NULL, flags); 1240 1241 vdev_label_write(zio, vd, l, ub_abd, 1242 offsetof(vdev_label_t, vl_uberblock), 1243 VDEV_UBERBLOCK_RING, NULL, NULL, flags); 1244 } 1245 1246 error = zio_wait(zio); 1247 1248 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 1249 flags |= ZIO_FLAG_TRYHARD; 1250 goto retry; 1251 } 1252 1253 nvlist_free(label); 1254 abd_free(bootenv); 1255 abd_free(ub_abd); 1256 abd_free(vp_abd); 1257 1258 /* 1259 * If this vdev hasn't been previously identified as a spare, then we 1260 * mark it as such only if a) we are labeling it as a spare, or b) it 1261 * exists as a spare elsewhere in the system. Do the same for 1262 * level 2 ARC devices. 1263 */ 1264 if (error == 0 && !vd->vdev_isspare && 1265 (reason == VDEV_LABEL_SPARE || 1266 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 1267 spa_spare_add(vd); 1268 1269 if (error == 0 && !vd->vdev_isl2cache && 1270 (reason == VDEV_LABEL_L2CACHE || 1271 spa_l2cache_exists(vd->vdev_guid, NULL))) 1272 spa_l2cache_add(vd); 1273 1274 return (error); 1275 } 1276 1277 /* 1278 * Done callback for vdev_label_read_bootenv_impl. If this is the first 1279 * callback to finish, store our abd in the callback pointer. Otherwise, we 1280 * just free our abd and return. 1281 */ 1282 static void 1283 vdev_label_read_bootenv_done(zio_t *zio) 1284 { 1285 zio_t *rio = zio->io_private; 1286 abd_t **cbp = rio->io_private; 1287 1288 ASSERT3U(zio->io_size, ==, VDEV_PAD_SIZE); 1289 1290 if (zio->io_error == 0) { 1291 mutex_enter(&rio->io_lock); 1292 if (*cbp == NULL) { 1293 /* Will free this buffer in vdev_label_read_bootenv. */ 1294 *cbp = zio->io_abd; 1295 } else { 1296 abd_free(zio->io_abd); 1297 } 1298 mutex_exit(&rio->io_lock); 1299 } else { 1300 abd_free(zio->io_abd); 1301 } 1302 } 1303 1304 static void 1305 vdev_label_read_bootenv_impl(zio_t *zio, vdev_t *vd, int flags) 1306 { 1307 for (int c = 0; c < vd->vdev_children; c++) 1308 vdev_label_read_bootenv_impl(zio, vd->vdev_child[c], flags); 1309 1310 /* 1311 * We just use the first label that has a correct checksum; the 1312 * bootloader should have rewritten them all to be the same on boot, 1313 * and any changes we made since boot have been the same across all 1314 * labels. 1315 */ 1316 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1317 for (int l = 0; l < VDEV_LABELS; l++) { 1318 vdev_label_read(zio, vd, l, 1319 abd_alloc_linear(VDEV_PAD_SIZE, B_FALSE), 1320 offsetof(vdev_label_t, vl_be), VDEV_PAD_SIZE, 1321 vdev_label_read_bootenv_done, zio, flags); 1322 } 1323 } 1324 } 1325 1326 int 1327 vdev_label_read_bootenv(vdev_t *rvd, nvlist_t *bootenv) 1328 { 1329 nvlist_t *config; 1330 spa_t *spa = rvd->vdev_spa; 1331 abd_t *abd = NULL; 1332 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1333 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 1334 1335 ASSERT(bootenv); 1336 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1337 1338 zio_t *zio = zio_root(spa, NULL, &abd, flags); 1339 vdev_label_read_bootenv_impl(zio, rvd, flags); 1340 int err = zio_wait(zio); 1341 1342 if (abd != NULL) { 1343 char *buf; 1344 vdev_boot_envblock_t *vbe = abd_to_buf(abd); 1345 1346 vbe->vbe_version = ntohll(vbe->vbe_version); 1347 switch (vbe->vbe_version) { 1348 case VB_RAW: 1349 /* 1350 * if we have textual data in vbe_bootenv, create nvlist 1351 * with key "envmap". 1352 */ 1353 fnvlist_add_uint64(bootenv, BOOTENV_VERSION, VB_RAW); 1354 vbe->vbe_bootenv[sizeof (vbe->vbe_bootenv) - 1] = '\0'; 1355 fnvlist_add_string(bootenv, GRUB_ENVMAP, 1356 vbe->vbe_bootenv); 1357 break; 1358 1359 case VB_NVLIST: 1360 err = nvlist_unpack(vbe->vbe_bootenv, 1361 sizeof (vbe->vbe_bootenv), &config, 0); 1362 if (err == 0) { 1363 fnvlist_merge(bootenv, config); 1364 nvlist_free(config); 1365 break; 1366 } 1367 zfs_fallthrough; 1368 default: 1369 /* Check for FreeBSD zfs bootonce command string */ 1370 buf = abd_to_buf(abd); 1371 if (*buf == '\0') { 1372 fnvlist_add_uint64(bootenv, BOOTENV_VERSION, 1373 VB_NVLIST); 1374 break; 1375 } 1376 fnvlist_add_string(bootenv, FREEBSD_BOOTONCE, buf); 1377 } 1378 1379 /* 1380 * abd was allocated in vdev_label_read_bootenv_impl() 1381 */ 1382 abd_free(abd); 1383 /* 1384 * If we managed to read any successfully, 1385 * return success. 1386 */ 1387 return (0); 1388 } 1389 return (err); 1390 } 1391 1392 int 1393 vdev_label_write_bootenv(vdev_t *vd, nvlist_t *env) 1394 { 1395 zio_t *zio; 1396 spa_t *spa = vd->vdev_spa; 1397 vdev_boot_envblock_t *bootenv; 1398 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1399 int error; 1400 size_t nvsize; 1401 char *nvbuf; 1402 const char *tmp; 1403 1404 error = nvlist_size(env, &nvsize, NV_ENCODE_XDR); 1405 if (error != 0) 1406 return (SET_ERROR(error)); 1407 1408 if (nvsize >= sizeof (bootenv->vbe_bootenv)) { 1409 return (SET_ERROR(E2BIG)); 1410 } 1411 1412 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1413 1414 error = ENXIO; 1415 for (int c = 0; c < vd->vdev_children; c++) { 1416 int child_err; 1417 1418 child_err = vdev_label_write_bootenv(vd->vdev_child[c], env); 1419 /* 1420 * As long as any of the disks managed to write all of their 1421 * labels successfully, return success. 1422 */ 1423 if (child_err == 0) 1424 error = child_err; 1425 } 1426 1427 if (!vd->vdev_ops->vdev_op_leaf || vdev_is_dead(vd) || 1428 !vdev_writeable(vd)) { 1429 return (error); 1430 } 1431 ASSERT3U(sizeof (*bootenv), ==, VDEV_PAD_SIZE); 1432 abd_t *abd = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); 1433 abd_zero(abd, VDEV_PAD_SIZE); 1434 1435 bootenv = abd_borrow_buf_copy(abd, VDEV_PAD_SIZE); 1436 nvbuf = bootenv->vbe_bootenv; 1437 nvsize = sizeof (bootenv->vbe_bootenv); 1438 1439 bootenv->vbe_version = fnvlist_lookup_uint64(env, BOOTENV_VERSION); 1440 switch (bootenv->vbe_version) { 1441 case VB_RAW: 1442 if (nvlist_lookup_string(env, GRUB_ENVMAP, &tmp) == 0) { 1443 (void) strlcpy(bootenv->vbe_bootenv, tmp, nvsize); 1444 } 1445 error = 0; 1446 break; 1447 1448 case VB_NVLIST: 1449 error = nvlist_pack(env, &nvbuf, &nvsize, NV_ENCODE_XDR, 1450 KM_SLEEP); 1451 break; 1452 1453 default: 1454 error = EINVAL; 1455 break; 1456 } 1457 1458 if (error == 0) { 1459 bootenv->vbe_version = htonll(bootenv->vbe_version); 1460 abd_return_buf_copy(abd, bootenv, VDEV_PAD_SIZE); 1461 } else { 1462 abd_free(abd); 1463 return (SET_ERROR(error)); 1464 } 1465 1466 retry: 1467 zio = zio_root(spa, NULL, NULL, flags); 1468 for (int l = 0; l < VDEV_LABELS; l++) { 1469 vdev_label_write(zio, vd, l, abd, 1470 offsetof(vdev_label_t, vl_be), 1471 VDEV_PAD_SIZE, NULL, NULL, flags); 1472 } 1473 1474 error = zio_wait(zio); 1475 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 1476 flags |= ZIO_FLAG_TRYHARD; 1477 goto retry; 1478 } 1479 1480 abd_free(abd); 1481 return (error); 1482 } 1483 1484 /* 1485 * ========================================================================== 1486 * uberblock load/sync 1487 * ========================================================================== 1488 */ 1489 1490 /* 1491 * Consider the following situation: txg is safely synced to disk. We've 1492 * written the first uberblock for txg + 1, and then we lose power. When we 1493 * come back up, we fail to see the uberblock for txg + 1 because, say, 1494 * it was on a mirrored device and the replica to which we wrote txg + 1 1495 * is now offline. If we then make some changes and sync txg + 1, and then 1496 * the missing replica comes back, then for a few seconds we'll have two 1497 * conflicting uberblocks on disk with the same txg. The solution is simple: 1498 * among uberblocks with equal txg, choose the one with the latest timestamp. 1499 */ 1500 static int 1501 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2) 1502 { 1503 int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg); 1504 1505 if (likely(cmp)) 1506 return (cmp); 1507 1508 cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp); 1509 if (likely(cmp)) 1510 return (cmp); 1511 1512 /* 1513 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware 1514 * ZFS, e.g. OpenZFS >= 0.7. 1515 * 1516 * If one ub has MMP and the other does not, they were written by 1517 * different hosts, which matters for MMP. So we treat no MMP/no SEQ as 1518 * a 0 value. 1519 * 1520 * Since timestamp and txg are the same if we get this far, either is 1521 * acceptable for importing the pool. 1522 */ 1523 unsigned int seq1 = 0; 1524 unsigned int seq2 = 0; 1525 1526 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1)) 1527 seq1 = MMP_SEQ(ub1); 1528 1529 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2)) 1530 seq2 = MMP_SEQ(ub2); 1531 1532 return (TREE_CMP(seq1, seq2)); 1533 } 1534 1535 struct ubl_cbdata { 1536 uberblock_t ubl_latest; /* Most recent uberblock */ 1537 uberblock_t *ubl_ubbest; /* Best uberblock (w/r/t max_txg) */ 1538 vdev_t *ubl_vd; /* vdev associated with the above */ 1539 }; 1540 1541 static void 1542 vdev_uberblock_load_done(zio_t *zio) 1543 { 1544 vdev_t *vd = zio->io_vd; 1545 spa_t *spa = zio->io_spa; 1546 zio_t *rio = zio->io_private; 1547 uberblock_t *ub = abd_to_buf(zio->io_abd); 1548 struct ubl_cbdata *cbp = rio->io_private; 1549 1550 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd)); 1551 1552 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 1553 mutex_enter(&rio->io_lock); 1554 if (vdev_uberblock_compare(ub, &cbp->ubl_latest) > 0) { 1555 cbp->ubl_latest = *ub; 1556 } 1557 if (ub->ub_txg <= spa->spa_load_max_txg && 1558 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) { 1559 /* 1560 * Keep track of the vdev in which this uberblock 1561 * was found. We will use this information later 1562 * to obtain the config nvlist associated with 1563 * this uberblock. 1564 */ 1565 *cbp->ubl_ubbest = *ub; 1566 cbp->ubl_vd = vd; 1567 } 1568 mutex_exit(&rio->io_lock); 1569 } 1570 1571 abd_free(zio->io_abd); 1572 } 1573 1574 static void 1575 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags, 1576 struct ubl_cbdata *cbp) 1577 { 1578 for (int c = 0; c < vd->vdev_children; c++) 1579 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp); 1580 1581 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd) && 1582 vd->vdev_ops != &vdev_draid_spare_ops) { 1583 for (int l = 0; l < VDEV_LABELS; l++) { 1584 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1585 vdev_label_read(zio, vd, l, 1586 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), 1587 B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n), 1588 VDEV_UBERBLOCK_SIZE(vd), 1589 vdev_uberblock_load_done, zio, flags); 1590 } 1591 } 1592 } 1593 } 1594 1595 /* 1596 * Reads the 'best' uberblock from disk along with its associated 1597 * configuration. First, we read the uberblock array of each label of each 1598 * vdev, keeping track of the uberblock with the highest txg in each array. 1599 * Then, we read the configuration from the same vdev as the best uberblock. 1600 */ 1601 void 1602 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config) 1603 { 1604 zio_t *zio; 1605 spa_t *spa = rvd->vdev_spa; 1606 struct ubl_cbdata cb; 1607 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1608 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 1609 1610 ASSERT(ub); 1611 ASSERT(config); 1612 1613 memset(ub, 0, sizeof (uberblock_t)); 1614 memset(&cb, 0, sizeof (cb)); 1615 *config = NULL; 1616 1617 cb.ubl_ubbest = ub; 1618 1619 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1620 zio = zio_root(spa, NULL, &cb, flags); 1621 vdev_uberblock_load_impl(zio, rvd, flags, &cb); 1622 (void) zio_wait(zio); 1623 1624 /* 1625 * It's possible that the best uberblock was discovered on a label 1626 * that has a configuration which was written in a future txg. 1627 * Search all labels on this vdev to find the configuration that 1628 * matches the txg for our uberblock. 1629 */ 1630 if (cb.ubl_vd != NULL) { 1631 vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. " 1632 "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg); 1633 1634 if (ub->ub_raidz_reflow_info != 1635 cb.ubl_latest.ub_raidz_reflow_info) { 1636 vdev_dbgmsg(cb.ubl_vd, 1637 "spa=%s best uberblock (txg=%llu info=0x%llx) " 1638 "has different raidz_reflow_info than latest " 1639 "uberblock (txg=%llu info=0x%llx)", 1640 spa->spa_name, 1641 (u_longlong_t)ub->ub_txg, 1642 (u_longlong_t)ub->ub_raidz_reflow_info, 1643 (u_longlong_t)cb.ubl_latest.ub_txg, 1644 (u_longlong_t)cb.ubl_latest.ub_raidz_reflow_info); 1645 memset(ub, 0, sizeof (uberblock_t)); 1646 spa_config_exit(spa, SCL_ALL, FTAG); 1647 return; 1648 } 1649 1650 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg); 1651 if (*config == NULL && spa->spa_extreme_rewind) { 1652 vdev_dbgmsg(cb.ubl_vd, "failed to read label config. " 1653 "Trying again without txg restrictions."); 1654 *config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX); 1655 } 1656 if (*config == NULL) { 1657 vdev_dbgmsg(cb.ubl_vd, "failed to read label config"); 1658 } 1659 } 1660 spa_config_exit(spa, SCL_ALL, FTAG); 1661 } 1662 1663 /* 1664 * For use when a leaf vdev is expanded. 1665 * The location of labels 2 and 3 changed, and at the new location the 1666 * uberblock rings are either empty or contain garbage. The sync will write 1667 * new configs there because the vdev is dirty, but expansion also needs the 1668 * uberblock rings copied. Read them from label 0 which did not move. 1669 * 1670 * Since the point is to populate labels {2,3} with valid uberblocks, 1671 * we zero uberblocks we fail to read or which are not valid. 1672 */ 1673 1674 static void 1675 vdev_copy_uberblocks(vdev_t *vd) 1676 { 1677 abd_t *ub_abd; 1678 zio_t *write_zio; 1679 int locks = (SCL_L2ARC | SCL_ZIO); 1680 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1681 ZIO_FLAG_SPECULATIVE; 1682 1683 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) == 1684 SCL_STATE); 1685 ASSERT(vd->vdev_ops->vdev_op_leaf); 1686 1687 /* 1688 * No uberblocks are stored on distributed spares, they may be 1689 * safely skipped when expanding a leaf vdev. 1690 */ 1691 if (vd->vdev_ops == &vdev_draid_spare_ops) 1692 return; 1693 1694 spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER); 1695 1696 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE); 1697 1698 write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags); 1699 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1700 const int src_label = 0; 1701 zio_t *zio; 1702 1703 zio = zio_root(vd->vdev_spa, NULL, NULL, flags); 1704 vdev_label_read(zio, vd, src_label, ub_abd, 1705 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1706 NULL, NULL, flags); 1707 1708 if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd))) 1709 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd)); 1710 1711 for (int l = 2; l < VDEV_LABELS; l++) 1712 vdev_label_write(write_zio, vd, l, ub_abd, 1713 VDEV_UBERBLOCK_OFFSET(vd, n), 1714 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL, 1715 flags | ZIO_FLAG_DONT_PROPAGATE); 1716 } 1717 (void) zio_wait(write_zio); 1718 1719 spa_config_exit(vd->vdev_spa, locks, FTAG); 1720 1721 abd_free(ub_abd); 1722 } 1723 1724 /* 1725 * On success, increment root zio's count of good writes. 1726 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 1727 */ 1728 static void 1729 vdev_uberblock_sync_done(zio_t *zio) 1730 { 1731 uint64_t *good_writes = zio->io_private; 1732 1733 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 1734 atomic_inc_64(good_writes); 1735 } 1736 1737 /* 1738 * Write the uberblock to all labels of all leaves of the specified vdev. 1739 */ 1740 static void 1741 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes, 1742 uberblock_t *ub, vdev_t *vd, int flags) 1743 { 1744 for (uint64_t c = 0; c < vd->vdev_children; c++) { 1745 vdev_uberblock_sync(zio, good_writes, 1746 ub, vd->vdev_child[c], flags); 1747 } 1748 1749 if (!vd->vdev_ops->vdev_op_leaf) 1750 return; 1751 1752 if (!vdev_writeable(vd)) 1753 return; 1754 1755 /* 1756 * There's no need to write uberblocks to a distributed spare, they 1757 * are already stored on all the leaves of the parent dRAID. For 1758 * this same reason vdev_uberblock_load_impl() skips distributed 1759 * spares when reading uberblocks. 1760 */ 1761 if (vd->vdev_ops == &vdev_draid_spare_ops) 1762 return; 1763 1764 /* If the vdev was expanded, need to copy uberblock rings. */ 1765 if (vd->vdev_state == VDEV_STATE_HEALTHY && 1766 vd->vdev_copy_uberblocks == B_TRUE) { 1767 vdev_copy_uberblocks(vd); 1768 vd->vdev_copy_uberblocks = B_FALSE; 1769 } 1770 1771 /* 1772 * We chose a slot based on the txg. If this uberblock has a special 1773 * RAIDZ expansion state, then it is essentially an update of the 1774 * current uberblock (it has the same txg). However, the current 1775 * state is committed, so we want to write it to a different slot. If 1776 * we overwrote the same slot, and we lose power during the uberblock 1777 * write, and the disk does not do single-sector overwrites 1778 * atomically (even though it is required to - i.e. we should see 1779 * either the old or the new uberblock), then we could lose this 1780 * txg's uberblock. Rewinding to the previous txg's uberblock may not 1781 * be possible because RAIDZ expansion may have already overwritten 1782 * some of the data, so we need the progress indicator in the 1783 * uberblock. 1784 */ 1785 int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0; 1786 int n = (ub->ub_txg - (RRSS_GET_STATE(ub) == RRSS_SCRATCH_VALID)) % 1787 (VDEV_UBERBLOCK_COUNT(vd) - m); 1788 1789 /* Copy the uberblock_t into the ABD */ 1790 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE); 1791 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t)); 1792 abd_zero_off(ub_abd, sizeof (uberblock_t), 1793 VDEV_UBERBLOCK_SIZE(vd) - sizeof (uberblock_t)); 1794 1795 for (int l = 0; l < VDEV_LABELS; l++) 1796 vdev_label_write(zio, vd, l, ub_abd, 1797 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1798 vdev_uberblock_sync_done, good_writes, 1799 flags | ZIO_FLAG_DONT_PROPAGATE); 1800 1801 abd_free(ub_abd); 1802 } 1803 1804 /* Sync the uberblocks to all vdevs in svd[] */ 1805 int 1806 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 1807 { 1808 spa_t *spa = svd[0]->vdev_spa; 1809 zio_t *zio; 1810 uint64_t good_writes = 0; 1811 1812 zio = zio_root(spa, NULL, NULL, flags); 1813 1814 for (int v = 0; v < svdcount; v++) 1815 vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags); 1816 1817 if (spa->spa_aux_sync_uber) { 1818 for (int v = 0; v < spa->spa_spares.sav_count; v++) { 1819 vdev_uberblock_sync(zio, &good_writes, ub, 1820 spa->spa_spares.sav_vdevs[v], flags); 1821 } 1822 for (int v = 0; v < spa->spa_l2cache.sav_count; v++) { 1823 vdev_uberblock_sync(zio, &good_writes, ub, 1824 spa->spa_l2cache.sav_vdevs[v], flags); 1825 } 1826 } 1827 (void) zio_wait(zio); 1828 1829 /* 1830 * Flush the uberblocks to disk. This ensures that the odd labels 1831 * are no longer needed (because the new uberblocks and the even 1832 * labels are safely on disk), so it is safe to overwrite them. 1833 */ 1834 zio = zio_root(spa, NULL, NULL, flags); 1835 1836 for (int v = 0; v < svdcount; v++) { 1837 if (vdev_writeable(svd[v])) { 1838 zio_flush(zio, svd[v]); 1839 } 1840 } 1841 if (spa->spa_aux_sync_uber) { 1842 spa->spa_aux_sync_uber = B_FALSE; 1843 for (int v = 0; v < spa->spa_spares.sav_count; v++) { 1844 if (vdev_writeable(spa->spa_spares.sav_vdevs[v])) { 1845 zio_flush(zio, spa->spa_spares.sav_vdevs[v]); 1846 } 1847 } 1848 for (int v = 0; v < spa->spa_l2cache.sav_count; v++) { 1849 if (vdev_writeable(spa->spa_l2cache.sav_vdevs[v])) { 1850 zio_flush(zio, spa->spa_l2cache.sav_vdevs[v]); 1851 } 1852 } 1853 } 1854 1855 (void) zio_wait(zio); 1856 1857 return (good_writes >= 1 ? 0 : EIO); 1858 } 1859 1860 /* 1861 * On success, increment the count of good writes for our top-level vdev. 1862 */ 1863 static void 1864 vdev_label_sync_done(zio_t *zio) 1865 { 1866 uint64_t *good_writes = zio->io_private; 1867 1868 if (zio->io_error == 0) 1869 atomic_inc_64(good_writes); 1870 } 1871 1872 /* 1873 * If there weren't enough good writes, indicate failure to the parent. 1874 */ 1875 static void 1876 vdev_label_sync_top_done(zio_t *zio) 1877 { 1878 uint64_t *good_writes = zio->io_private; 1879 1880 if (*good_writes == 0) 1881 zio->io_error = SET_ERROR(EIO); 1882 1883 kmem_free(good_writes, sizeof (uint64_t)); 1884 } 1885 1886 /* 1887 * We ignore errors for log and cache devices, simply free the private data. 1888 */ 1889 static void 1890 vdev_label_sync_ignore_done(zio_t *zio) 1891 { 1892 kmem_free(zio->io_private, sizeof (uint64_t)); 1893 } 1894 1895 /* 1896 * Write all even or odd labels to all leaves of the specified vdev. 1897 */ 1898 static void 1899 vdev_label_sync(zio_t *zio, uint64_t *good_writes, 1900 vdev_t *vd, int l, uint64_t txg, int flags) 1901 { 1902 nvlist_t *label; 1903 vdev_phys_t *vp; 1904 abd_t *vp_abd; 1905 char *buf; 1906 size_t buflen; 1907 vdev_t *pvd = vd->vdev_parent; 1908 boolean_t spare_in_use = B_FALSE; 1909 1910 for (int c = 0; c < vd->vdev_children; c++) { 1911 vdev_label_sync(zio, good_writes, 1912 vd->vdev_child[c], l, txg, flags); 1913 } 1914 1915 if (!vd->vdev_ops->vdev_op_leaf) 1916 return; 1917 1918 if (!vdev_writeable(vd)) 1919 return; 1920 1921 /* 1922 * The top-level config never needs to be written to a distributed 1923 * spare. When read vdev_dspare_label_read_config() will generate 1924 * the config for the vdev_label_read_config(). 1925 */ 1926 if (vd->vdev_ops == &vdev_draid_spare_ops) 1927 return; 1928 1929 if (pvd && pvd->vdev_ops == &vdev_spare_ops) 1930 spare_in_use = B_TRUE; 1931 1932 /* 1933 * Generate a label describing the top-level config to which we belong. 1934 */ 1935 if ((vd->vdev_isspare && !spare_in_use) || vd->vdev_isl2cache) { 1936 label = vdev_aux_label_generate(vd, vd->vdev_isspare); 1937 } else { 1938 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 1939 } 1940 1941 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 1942 abd_zero(vp_abd, sizeof (vdev_phys_t)); 1943 vp = abd_to_buf(vp_abd); 1944 1945 buf = vp->vp_nvlist; 1946 buflen = sizeof (vp->vp_nvlist); 1947 1948 if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) { 1949 for (; l < VDEV_LABELS; l += 2) { 1950 vdev_label_write(zio, vd, l, vp_abd, 1951 offsetof(vdev_label_t, vl_vdev_phys), 1952 sizeof (vdev_phys_t), 1953 vdev_label_sync_done, good_writes, 1954 flags | ZIO_FLAG_DONT_PROPAGATE); 1955 } 1956 } 1957 1958 abd_free(vp_abd); 1959 nvlist_free(label); 1960 } 1961 1962 static int 1963 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 1964 { 1965 list_t *dl = &spa->spa_config_dirty_list; 1966 vdev_t *vd; 1967 zio_t *zio; 1968 int error; 1969 1970 /* 1971 * Write the new labels to disk. 1972 */ 1973 zio = zio_root(spa, NULL, NULL, flags); 1974 1975 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 1976 uint64_t *good_writes; 1977 1978 ASSERT(!vd->vdev_ishole); 1979 1980 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 1981 zio_t *vio = zio_null(zio, spa, NULL, 1982 (vd->vdev_islog || vd->vdev_aux != NULL) ? 1983 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 1984 good_writes, flags); 1985 vdev_label_sync(vio, good_writes, vd, l, txg, flags); 1986 zio_nowait(vio); 1987 } 1988 1989 /* 1990 * AUX path may have changed during import 1991 */ 1992 spa_aux_vdev_t *sav[2] = {&spa->spa_spares, &spa->spa_l2cache}; 1993 for (int i = 0; i < 2; i++) { 1994 for (int v = 0; v < sav[i]->sav_count; v++) { 1995 uint64_t *good_writes; 1996 if (!sav[i]->sav_label_sync) 1997 continue; 1998 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 1999 zio_t *vio = zio_null(zio, spa, NULL, 2000 vdev_label_sync_ignore_done, good_writes, flags); 2001 vdev_label_sync(vio, good_writes, sav[i]->sav_vdevs[v], 2002 l, txg, flags); 2003 zio_nowait(vio); 2004 } 2005 } 2006 2007 error = zio_wait(zio); 2008 2009 /* 2010 * Flush the new labels to disk. 2011 */ 2012 zio = zio_root(spa, NULL, NULL, flags); 2013 2014 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 2015 zio_flush(zio, vd); 2016 2017 for (int i = 0; i < 2; i++) { 2018 if (!sav[i]->sav_label_sync) 2019 continue; 2020 for (int v = 0; v < sav[i]->sav_count; v++) 2021 zio_flush(zio, sav[i]->sav_vdevs[v]); 2022 if (l == 1) 2023 sav[i]->sav_label_sync = B_FALSE; 2024 } 2025 2026 (void) zio_wait(zio); 2027 2028 return (error); 2029 } 2030 2031 /* 2032 * Sync the uberblock and any changes to the vdev configuration. 2033 * 2034 * The order of operations is carefully crafted to ensure that 2035 * if the system panics or loses power at any time, the state on disk 2036 * is still transactionally consistent. The in-line comments below 2037 * describe the failure semantics at each stage. 2038 * 2039 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 2040 * at any time, you can just call it again, and it will resume its work. 2041 */ 2042 int 2043 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg) 2044 { 2045 spa_t *spa = svd[0]->vdev_spa; 2046 uberblock_t *ub = &spa->spa_uberblock; 2047 int error = 0; 2048 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 2049 2050 ASSERT(svdcount != 0); 2051 retry: 2052 /* 2053 * Normally, we don't want to try too hard to write every label and 2054 * uberblock. If there is a flaky disk, we don't want the rest of the 2055 * sync process to block while we retry. But if we can't write a 2056 * single label out, we should retry with ZIO_FLAG_TRYHARD before 2057 * bailing out and declaring the pool faulted. 2058 */ 2059 if (error != 0) { 2060 if ((flags & ZIO_FLAG_TRYHARD) != 0) 2061 return (error); 2062 flags |= ZIO_FLAG_TRYHARD; 2063 } 2064 2065 ASSERT(ub->ub_txg <= txg); 2066 2067 /* 2068 * If this isn't a resync due to I/O errors, 2069 * and nothing changed in this transaction group, 2070 * and multihost protection isn't enabled, 2071 * and the vdev configuration hasn't changed, 2072 * then there's nothing to do. 2073 */ 2074 if (ub->ub_txg < txg) { 2075 boolean_t changed = uberblock_update(ub, spa->spa_root_vdev, 2076 txg, spa->spa_mmp.mmp_delay); 2077 2078 if (!changed && list_is_empty(&spa->spa_config_dirty_list) && 2079 !spa_multihost(spa)) 2080 return (0); 2081 } 2082 2083 if (txg > spa_freeze_txg(spa)) 2084 return (0); 2085 2086 ASSERT(txg <= spa->spa_final_txg); 2087 2088 /* 2089 * Flush the write cache of every disk that's been written to 2090 * in this transaction group. This ensures that all blocks 2091 * written in this txg will be committed to stable storage 2092 * before any uberblock that references them. 2093 */ 2094 zio_t *zio = zio_root(spa, NULL, NULL, flags); 2095 2096 for (vdev_t *vd = 2097 txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL; 2098 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 2099 zio_flush(zio, vd); 2100 2101 (void) zio_wait(zio); 2102 2103 /* 2104 * Sync out the even labels (L0, L2) for every dirty vdev. If the 2105 * system dies in the middle of this process, that's OK: all of the 2106 * even labels that made it to disk will be newer than any uberblock, 2107 * and will therefore be considered invalid. The odd labels (L1, L3), 2108 * which have not yet been touched, will still be valid. We flush 2109 * the new labels to disk to ensure that all even-label updates 2110 * are committed to stable storage before the uberblock update. 2111 */ 2112 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) { 2113 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 2114 zfs_dbgmsg("vdev_label_sync_list() returned error %d " 2115 "for pool '%s' when syncing out the even labels " 2116 "of dirty vdevs", error, spa_name(spa)); 2117 } 2118 goto retry; 2119 } 2120 2121 /* 2122 * Sync the uberblocks to all vdevs in svd[]. 2123 * If the system dies in the middle of this step, there are two cases 2124 * to consider, and the on-disk state is consistent either way: 2125 * 2126 * (1) If none of the new uberblocks made it to disk, then the 2127 * previous uberblock will be the newest, and the odd labels 2128 * (which had not yet been touched) will be valid with respect 2129 * to that uberblock. 2130 * 2131 * (2) If one or more new uberblocks made it to disk, then they 2132 * will be the newest, and the even labels (which had all 2133 * been successfully committed) will be valid with respect 2134 * to the new uberblocks. 2135 */ 2136 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) { 2137 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 2138 zfs_dbgmsg("vdev_uberblock_sync_list() returned error " 2139 "%d for pool '%s'", error, spa_name(spa)); 2140 } 2141 goto retry; 2142 } 2143 2144 if (spa_multihost(spa)) 2145 mmp_update_uberblock(spa, ub); 2146 2147 /* 2148 * Sync out odd labels for every dirty vdev. If the system dies 2149 * in the middle of this process, the even labels and the new 2150 * uberblocks will suffice to open the pool. The next time 2151 * the pool is opened, the first thing we'll do -- before any 2152 * user data is modified -- is mark every vdev dirty so that 2153 * all labels will be brought up to date. We flush the new labels 2154 * to disk to ensure that all odd-label updates are committed to 2155 * stable storage before the next transaction group begins. 2156 */ 2157 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) { 2158 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 2159 zfs_dbgmsg("vdev_label_sync_list() returned error %d " 2160 "for pool '%s' when syncing out the odd labels of " 2161 "dirty vdevs", error, spa_name(spa)); 2162 } 2163 goto retry; 2164 } 2165 2166 return (0); 2167 } 2168