1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2017, Intel Corporation. 26 */ 27 28 /* 29 * Virtual Device Labels 30 * --------------------- 31 * 32 * The vdev label serves several distinct purposes: 33 * 34 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 35 * identity within the pool. 36 * 37 * 2. Verify that all the devices given in a configuration are present 38 * within the pool. 39 * 40 * 3. Determine the uberblock for the pool. 41 * 42 * 4. In case of an import operation, determine the configuration of the 43 * toplevel vdev of which it is a part. 44 * 45 * 5. If an import operation cannot find all the devices in the pool, 46 * provide enough information to the administrator to determine which 47 * devices are missing. 48 * 49 * It is important to note that while the kernel is responsible for writing the 50 * label, it only consumes the information in the first three cases. The 51 * latter information is only consumed in userland when determining the 52 * configuration to import a pool. 53 * 54 * 55 * Label Organization 56 * ------------------ 57 * 58 * Before describing the contents of the label, it's important to understand how 59 * the labels are written and updated with respect to the uberblock. 60 * 61 * When the pool configuration is altered, either because it was newly created 62 * or a device was added, we want to update all the labels such that we can deal 63 * with fatal failure at any point. To this end, each disk has two labels which 64 * are updated before and after the uberblock is synced. Assuming we have 65 * labels and an uberblock with the following transaction groups: 66 * 67 * L1 UB L2 68 * +------+ +------+ +------+ 69 * | | | | | | 70 * | t10 | | t10 | | t10 | 71 * | | | | | | 72 * +------+ +------+ +------+ 73 * 74 * In this stable state, the labels and the uberblock were all updated within 75 * the same transaction group (10). Each label is mirrored and checksummed, so 76 * that we can detect when we fail partway through writing the label. 77 * 78 * In order to identify which labels are valid, the labels are written in the 79 * following manner: 80 * 81 * 1. For each vdev, update 'L1' to the new label 82 * 2. Update the uberblock 83 * 3. For each vdev, update 'L2' to the new label 84 * 85 * Given arbitrary failure, we can determine the correct label to use based on 86 * the transaction group. If we fail after updating L1 but before updating the 87 * UB, we will notice that L1's transaction group is greater than the uberblock, 88 * so L2 must be valid. If we fail after writing the uberblock but before 89 * writing L2, we will notice that L2's transaction group is less than L1, and 90 * therefore L1 is valid. 91 * 92 * Another added complexity is that not every label is updated when the config 93 * is synced. If we add a single device, we do not want to have to re-write 94 * every label for every device in the pool. This means that both L1 and L2 may 95 * be older than the pool uberblock, because the necessary information is stored 96 * on another vdev. 97 * 98 * 99 * On-disk Format 100 * -------------- 101 * 102 * The vdev label consists of two distinct parts, and is wrapped within the 103 * vdev_label_t structure. The label includes 8k of padding to permit legacy 104 * VTOC disk labels, but is otherwise ignored. 105 * 106 * The first half of the label is a packed nvlist which contains pool wide 107 * properties, per-vdev properties, and configuration information. It is 108 * described in more detail below. 109 * 110 * The latter half of the label consists of a redundant array of uberblocks. 111 * These uberblocks are updated whenever a transaction group is committed, 112 * or when the configuration is updated. When a pool is loaded, we scan each 113 * vdev for the 'best' uberblock. 114 * 115 * 116 * Configuration Information 117 * ------------------------- 118 * 119 * The nvlist describing the pool and vdev contains the following elements: 120 * 121 * version ZFS on-disk version 122 * name Pool name 123 * state Pool state 124 * txg Transaction group in which this label was written 125 * pool_guid Unique identifier for this pool 126 * vdev_tree An nvlist describing vdev tree. 127 * features_for_read 128 * An nvlist of the features necessary for reading the MOS. 129 * 130 * Each leaf device label also contains the following: 131 * 132 * top_guid Unique ID for top-level vdev in which this is contained 133 * guid Unique ID for the leaf vdev 134 * 135 * The 'vs' configuration follows the format described in 'spa_config.c'. 136 */ 137 138 #include <sys/zfs_context.h> 139 #include <sys/spa.h> 140 #include <sys/spa_impl.h> 141 #include <sys/dmu.h> 142 #include <sys/zap.h> 143 #include <sys/vdev.h> 144 #include <sys/vdev_impl.h> 145 #include <sys/uberblock_impl.h> 146 #include <sys/metaslab.h> 147 #include <sys/metaslab_impl.h> 148 #include <sys/zio.h> 149 #include <sys/dsl_scan.h> 150 #include <sys/abd.h> 151 #include <sys/fs/zfs.h> 152 #include <sys/byteorder.h> 153 #include <sys/zfs_bootenv.h> 154 155 /* 156 * Basic routines to read and write from a vdev label. 157 * Used throughout the rest of this file. 158 */ 159 uint64_t 160 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 161 { 162 ASSERT(offset < sizeof (vdev_label_t)); 163 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 164 165 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 166 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 167 } 168 169 /* 170 * Returns back the vdev label associated with the passed in offset. 171 */ 172 int 173 vdev_label_number(uint64_t psize, uint64_t offset) 174 { 175 int l; 176 177 if (offset >= psize - VDEV_LABEL_END_SIZE) { 178 offset -= psize - VDEV_LABEL_END_SIZE; 179 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 180 } 181 l = offset / sizeof (vdev_label_t); 182 return (l < VDEV_LABELS ? l : -1); 183 } 184 185 static void 186 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 187 uint64_t size, zio_done_func_t *done, void *private, int flags) 188 { 189 ASSERT( 190 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE || 191 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE); 192 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 193 194 zio_nowait(zio_read_phys(zio, vd, 195 vdev_label_offset(vd->vdev_psize, l, offset), 196 size, buf, ZIO_CHECKSUM_LABEL, done, private, 197 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 198 } 199 200 void 201 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 202 uint64_t size, zio_done_func_t *done, void *private, int flags) 203 { 204 ASSERT( 205 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE || 206 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE); 207 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 208 209 zio_nowait(zio_write_phys(zio, vd, 210 vdev_label_offset(vd->vdev_psize, l, offset), 211 size, buf, ZIO_CHECKSUM_LABEL, done, private, 212 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 213 } 214 215 /* 216 * Generate the nvlist representing this vdev's stats 217 */ 218 void 219 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv) 220 { 221 nvlist_t *nvx; 222 vdev_stat_t *vs; 223 vdev_stat_ex_t *vsx; 224 225 vs = kmem_alloc(sizeof (*vs), KM_SLEEP); 226 vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP); 227 228 vdev_get_stats_ex(vd, vs, vsx); 229 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, 230 (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t)); 231 232 /* 233 * Add extended stats into a special extended stats nvlist. This keeps 234 * all the extended stats nicely grouped together. The extended stats 235 * nvlist is then added to the main nvlist. 236 */ 237 nvx = fnvlist_alloc(); 238 239 /* ZIOs in flight to disk */ 240 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE, 241 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]); 242 243 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE, 244 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]); 245 246 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE, 247 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]); 248 249 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE, 250 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]); 251 252 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE, 253 vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]); 254 255 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE, 256 vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]); 257 258 /* ZIOs pending */ 259 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE, 260 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]); 261 262 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE, 263 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]); 264 265 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE, 266 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]); 267 268 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE, 269 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]); 270 271 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE, 272 vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]); 273 274 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE, 275 vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]); 276 277 /* Histograms */ 278 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO, 279 vsx->vsx_total_histo[ZIO_TYPE_READ], 280 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ])); 281 282 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO, 283 vsx->vsx_total_histo[ZIO_TYPE_WRITE], 284 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE])); 285 286 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO, 287 vsx->vsx_disk_histo[ZIO_TYPE_READ], 288 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ])); 289 290 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO, 291 vsx->vsx_disk_histo[ZIO_TYPE_WRITE], 292 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE])); 293 294 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO, 295 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ], 296 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ])); 297 298 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO, 299 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE], 300 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE])); 301 302 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO, 303 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ], 304 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ])); 305 306 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO, 307 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE], 308 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE])); 309 310 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO, 311 vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB], 312 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB])); 313 314 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO, 315 vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM], 316 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM])); 317 318 /* Request sizes */ 319 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO, 320 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ], 321 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ])); 322 323 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO, 324 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE], 325 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE])); 326 327 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO, 328 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ], 329 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ])); 330 331 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO, 332 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE], 333 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE])); 334 335 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO, 336 vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB], 337 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB])); 338 339 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO, 340 vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM], 341 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM])); 342 343 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO, 344 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ], 345 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ])); 346 347 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO, 348 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE], 349 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE])); 350 351 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO, 352 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ], 353 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ])); 354 355 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO, 356 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE], 357 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE])); 358 359 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO, 360 vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB], 361 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB])); 362 363 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO, 364 vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM], 365 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM])); 366 367 /* IO delays */ 368 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios); 369 370 /* Add extended stats nvlist to main nvlist */ 371 fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx); 372 373 fnvlist_free(nvx); 374 kmem_free(vs, sizeof (*vs)); 375 kmem_free(vsx, sizeof (*vsx)); 376 } 377 378 static void 379 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl) 380 { 381 spa_t *spa = vd->vdev_spa; 382 383 if (vd != spa->spa_root_vdev) 384 return; 385 386 /* provide either current or previous scan information */ 387 pool_scan_stat_t ps; 388 if (spa_scan_get_stats(spa, &ps) == 0) { 389 fnvlist_add_uint64_array(nvl, 390 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps, 391 sizeof (pool_scan_stat_t) / sizeof (uint64_t)); 392 } 393 394 pool_removal_stat_t prs; 395 if (spa_removal_get_stats(spa, &prs) == 0) { 396 fnvlist_add_uint64_array(nvl, 397 ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs, 398 sizeof (prs) / sizeof (uint64_t)); 399 } 400 401 pool_checkpoint_stat_t pcs; 402 if (spa_checkpoint_get_stats(spa, &pcs) == 0) { 403 fnvlist_add_uint64_array(nvl, 404 ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs, 405 sizeof (pcs) / sizeof (uint64_t)); 406 } 407 } 408 409 static void 410 top_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl) 411 { 412 if (vd == vd->vdev_top) { 413 vdev_rebuild_stat_t vrs; 414 if (vdev_rebuild_get_stats(vd, &vrs) == 0) { 415 fnvlist_add_uint64_array(nvl, 416 ZPOOL_CONFIG_REBUILD_STATS, (uint64_t *)&vrs, 417 sizeof (vrs) / sizeof (uint64_t)); 418 } 419 } 420 } 421 422 /* 423 * Generate the nvlist representing this vdev's config. 424 */ 425 nvlist_t * 426 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 427 vdev_config_flag_t flags) 428 { 429 nvlist_t *nv = NULL; 430 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 431 432 nv = fnvlist_alloc(); 433 434 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type); 435 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE))) 436 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id); 437 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid); 438 439 if (vd->vdev_path != NULL) 440 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path); 441 442 if (vd->vdev_devid != NULL) 443 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid); 444 445 if (vd->vdev_physpath != NULL) 446 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 447 vd->vdev_physpath); 448 449 if (vd->vdev_enc_sysfs_path != NULL) 450 fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 451 vd->vdev_enc_sysfs_path); 452 453 if (vd->vdev_fru != NULL) 454 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru); 455 456 if (vd->vdev_nparity != 0) { 457 ASSERT(strcmp(vd->vdev_ops->vdev_op_type, 458 VDEV_TYPE_RAIDZ) == 0); 459 460 /* 461 * Make sure someone hasn't managed to sneak a fancy new vdev 462 * into a crufty old storage pool. 463 */ 464 ASSERT(vd->vdev_nparity == 1 || 465 (vd->vdev_nparity <= 2 && 466 spa_version(spa) >= SPA_VERSION_RAIDZ2) || 467 (vd->vdev_nparity <= 3 && 468 spa_version(spa) >= SPA_VERSION_RAIDZ3)); 469 470 /* 471 * Note that we'll add the nparity tag even on storage pools 472 * that only support a single parity device -- older software 473 * will just ignore it. 474 */ 475 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity); 476 } 477 478 if (vd->vdev_wholedisk != -1ULL) 479 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 480 vd->vdev_wholedisk); 481 482 if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING)) 483 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1); 484 485 if (vd->vdev_isspare) 486 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1); 487 488 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) && 489 vd == vd->vdev_top) { 490 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 491 vd->vdev_ms_array); 492 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 493 vd->vdev_ms_shift); 494 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 495 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 496 vd->vdev_asize); 497 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog); 498 if (vd->vdev_removing) { 499 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING, 500 vd->vdev_removing); 501 } 502 503 /* zpool command expects alloc class data */ 504 if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) { 505 const char *bias = NULL; 506 507 switch (vd->vdev_alloc_bias) { 508 case VDEV_BIAS_LOG: 509 bias = VDEV_ALLOC_BIAS_LOG; 510 break; 511 case VDEV_BIAS_SPECIAL: 512 bias = VDEV_ALLOC_BIAS_SPECIAL; 513 break; 514 case VDEV_BIAS_DEDUP: 515 bias = VDEV_ALLOC_BIAS_DEDUP; 516 break; 517 default: 518 ASSERT3U(vd->vdev_alloc_bias, ==, 519 VDEV_BIAS_NONE); 520 } 521 fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 522 bias); 523 } 524 } 525 526 if (vd->vdev_dtl_sm != NULL) { 527 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 528 space_map_object(vd->vdev_dtl_sm)); 529 } 530 531 if (vic->vic_mapping_object != 0) { 532 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 533 vic->vic_mapping_object); 534 } 535 536 if (vic->vic_births_object != 0) { 537 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 538 vic->vic_births_object); 539 } 540 541 if (vic->vic_prev_indirect_vdev != UINT64_MAX) { 542 fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 543 vic->vic_prev_indirect_vdev); 544 } 545 546 if (vd->vdev_crtxg) 547 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg); 548 549 if (vd->vdev_expansion_time) 550 fnvlist_add_uint64(nv, ZPOOL_CONFIG_EXPANSION_TIME, 551 vd->vdev_expansion_time); 552 553 if (flags & VDEV_CONFIG_MOS) { 554 if (vd->vdev_leaf_zap != 0) { 555 ASSERT(vd->vdev_ops->vdev_op_leaf); 556 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP, 557 vd->vdev_leaf_zap); 558 } 559 560 if (vd->vdev_top_zap != 0) { 561 ASSERT(vd == vd->vdev_top); 562 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 563 vd->vdev_top_zap); 564 } 565 566 if (vd->vdev_resilver_deferred) { 567 ASSERT(vd->vdev_ops->vdev_op_leaf); 568 ASSERT(spa->spa_resilver_deferred); 569 fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER); 570 } 571 } 572 573 if (getstats) { 574 vdev_config_generate_stats(vd, nv); 575 576 root_vdev_actions_getprogress(vd, nv); 577 top_vdev_actions_getprogress(vd, nv); 578 579 /* 580 * Note: this can be called from open context 581 * (spa_get_stats()), so we need the rwlock to prevent 582 * the mapping from being changed by condensing. 583 */ 584 rw_enter(&vd->vdev_indirect_rwlock, RW_READER); 585 if (vd->vdev_indirect_mapping != NULL) { 586 ASSERT(vd->vdev_indirect_births != NULL); 587 vdev_indirect_mapping_t *vim = 588 vd->vdev_indirect_mapping; 589 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, 590 vdev_indirect_mapping_size(vim)); 591 } 592 rw_exit(&vd->vdev_indirect_rwlock); 593 if (vd->vdev_mg != NULL && 594 vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) { 595 /* 596 * Compute approximately how much memory would be used 597 * for the indirect mapping if this device were to 598 * be removed. 599 * 600 * Note: If the frag metric is invalid, then not 601 * enough metaslabs have been converted to have 602 * histograms. 603 */ 604 uint64_t seg_count = 0; 605 uint64_t to_alloc = vd->vdev_stat.vs_alloc; 606 607 /* 608 * There are the same number of allocated segments 609 * as free segments, so we will have at least one 610 * entry per free segment. However, small free 611 * segments (smaller than vdev_removal_max_span) 612 * will be combined with adjacent allocated segments 613 * as a single mapping. 614 */ 615 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 616 if (i + 1 < highbit64(vdev_removal_max_span) 617 - 1) { 618 to_alloc += 619 vd->vdev_mg->mg_histogram[i] << 620 (i + 1); 621 } else { 622 seg_count += 623 vd->vdev_mg->mg_histogram[i]; 624 } 625 } 626 627 /* 628 * The maximum length of a mapping is 629 * zfs_remove_max_segment, so we need at least one entry 630 * per zfs_remove_max_segment of allocated data. 631 */ 632 seg_count += to_alloc / spa_remove_max_segment(spa); 633 634 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, 635 seg_count * 636 sizeof (vdev_indirect_mapping_entry_phys_t)); 637 } 638 } 639 640 if (!vd->vdev_ops->vdev_op_leaf) { 641 nvlist_t **child; 642 int c, idx; 643 644 ASSERT(!vd->vdev_ishole); 645 646 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 647 KM_SLEEP); 648 649 for (c = 0, idx = 0; c < vd->vdev_children; c++) { 650 vdev_t *cvd = vd->vdev_child[c]; 651 652 /* 653 * If we're generating an nvlist of removing 654 * vdevs then skip over any device which is 655 * not being removed. 656 */ 657 if ((flags & VDEV_CONFIG_REMOVING) && 658 !cvd->vdev_removing) 659 continue; 660 661 child[idx++] = vdev_config_generate(spa, cvd, 662 getstats, flags); 663 } 664 665 if (idx) { 666 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 667 child, idx); 668 } 669 670 for (c = 0; c < idx; c++) 671 nvlist_free(child[c]); 672 673 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 674 675 } else { 676 const char *aux = NULL; 677 678 if (vd->vdev_offline && !vd->vdev_tmpoffline) 679 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE); 680 if (vd->vdev_resilver_txg != 0) 681 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 682 vd->vdev_resilver_txg); 683 if (vd->vdev_rebuild_txg != 0) 684 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 685 vd->vdev_rebuild_txg); 686 if (vd->vdev_faulted) 687 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE); 688 if (vd->vdev_degraded) 689 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE); 690 if (vd->vdev_removed) 691 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE); 692 if (vd->vdev_unspare) 693 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE); 694 if (vd->vdev_ishole) 695 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE); 696 697 /* Set the reason why we're FAULTED/DEGRADED. */ 698 switch (vd->vdev_stat.vs_aux) { 699 case VDEV_AUX_ERR_EXCEEDED: 700 aux = "err_exceeded"; 701 break; 702 703 case VDEV_AUX_EXTERNAL: 704 aux = "external"; 705 break; 706 } 707 708 if (aux != NULL && !vd->vdev_tmpoffline) { 709 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux); 710 } else { 711 /* 712 * We're healthy - clear any previous AUX_STATE values. 713 */ 714 if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE)) 715 nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE); 716 } 717 718 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { 719 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, 720 vd->vdev_orig_guid); 721 } 722 } 723 724 return (nv); 725 } 726 727 /* 728 * Generate a view of the top-level vdevs. If we currently have holes 729 * in the namespace, then generate an array which contains a list of holey 730 * vdevs. Additionally, add the number of top-level children that currently 731 * exist. 732 */ 733 void 734 vdev_top_config_generate(spa_t *spa, nvlist_t *config) 735 { 736 vdev_t *rvd = spa->spa_root_vdev; 737 uint64_t *array; 738 uint_t c, idx; 739 740 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP); 741 742 for (c = 0, idx = 0; c < rvd->vdev_children; c++) { 743 vdev_t *tvd = rvd->vdev_child[c]; 744 745 if (tvd->vdev_ishole) { 746 array[idx++] = c; 747 } 748 } 749 750 if (idx) { 751 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, 752 array, idx) == 0); 753 } 754 755 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 756 rvd->vdev_children) == 0); 757 758 kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); 759 } 760 761 /* 762 * Returns the configuration from the label of the given vdev. For vdevs 763 * which don't have a txg value stored on their label (i.e. spares/cache) 764 * or have not been completely initialized (txg = 0) just return 765 * the configuration from the first valid label we find. Otherwise, 766 * find the most up-to-date label that does not exceed the specified 767 * 'txg' value. 768 */ 769 nvlist_t * 770 vdev_label_read_config(vdev_t *vd, uint64_t txg) 771 { 772 spa_t *spa = vd->vdev_spa; 773 nvlist_t *config = NULL; 774 vdev_phys_t *vp; 775 abd_t *vp_abd; 776 zio_t *zio; 777 uint64_t best_txg = 0; 778 uint64_t label_txg = 0; 779 int error = 0; 780 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 781 ZIO_FLAG_SPECULATIVE; 782 783 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 784 785 if (!vdev_readable(vd)) 786 return (NULL); 787 788 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 789 vp = abd_to_buf(vp_abd); 790 791 retry: 792 for (int l = 0; l < VDEV_LABELS; l++) { 793 nvlist_t *label = NULL; 794 795 zio = zio_root(spa, NULL, NULL, flags); 796 797 vdev_label_read(zio, vd, l, vp_abd, 798 offsetof(vdev_label_t, vl_vdev_phys), 799 sizeof (vdev_phys_t), NULL, NULL, flags); 800 801 if (zio_wait(zio) == 0 && 802 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 803 &label, 0) == 0) { 804 /* 805 * Auxiliary vdevs won't have txg values in their 806 * labels and newly added vdevs may not have been 807 * completely initialized so just return the 808 * configuration from the first valid label we 809 * encounter. 810 */ 811 error = nvlist_lookup_uint64(label, 812 ZPOOL_CONFIG_POOL_TXG, &label_txg); 813 if ((error || label_txg == 0) && !config) { 814 config = label; 815 break; 816 } else if (label_txg <= txg && label_txg > best_txg) { 817 best_txg = label_txg; 818 nvlist_free(config); 819 config = fnvlist_dup(label); 820 } 821 } 822 823 if (label != NULL) { 824 nvlist_free(label); 825 label = NULL; 826 } 827 } 828 829 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { 830 flags |= ZIO_FLAG_TRYHARD; 831 goto retry; 832 } 833 834 /* 835 * We found a valid label but it didn't pass txg restrictions. 836 */ 837 if (config == NULL && label_txg != 0) { 838 vdev_dbgmsg(vd, "label discarded as txg is too large " 839 "(%llu > %llu)", (u_longlong_t)label_txg, 840 (u_longlong_t)txg); 841 } 842 843 abd_free(vp_abd); 844 845 return (config); 846 } 847 848 /* 849 * Determine if a device is in use. The 'spare_guid' parameter will be filled 850 * in with the device guid if this spare is active elsewhere on the system. 851 */ 852 static boolean_t 853 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 854 uint64_t *spare_guid, uint64_t *l2cache_guid) 855 { 856 spa_t *spa = vd->vdev_spa; 857 uint64_t state, pool_guid, device_guid, txg, spare_pool; 858 uint64_t vdtxg = 0; 859 nvlist_t *label; 860 861 if (spare_guid) 862 *spare_guid = 0ULL; 863 if (l2cache_guid) 864 *l2cache_guid = 0ULL; 865 866 /* 867 * Read the label, if any, and perform some basic sanity checks. 868 */ 869 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) 870 return (B_FALSE); 871 872 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 873 &vdtxg); 874 875 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 876 &state) != 0 || 877 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 878 &device_guid) != 0) { 879 nvlist_free(label); 880 return (B_FALSE); 881 } 882 883 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 884 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 885 &pool_guid) != 0 || 886 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 887 &txg) != 0)) { 888 nvlist_free(label); 889 return (B_FALSE); 890 } 891 892 nvlist_free(label); 893 894 /* 895 * Check to see if this device indeed belongs to the pool it claims to 896 * be a part of. The only way this is allowed is if the device is a hot 897 * spare (which we check for later on). 898 */ 899 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 900 !spa_guid_exists(pool_guid, device_guid) && 901 !spa_spare_exists(device_guid, NULL, NULL) && 902 !spa_l2cache_exists(device_guid, NULL)) 903 return (B_FALSE); 904 905 /* 906 * If the transaction group is zero, then this an initialized (but 907 * unused) label. This is only an error if the create transaction 908 * on-disk is the same as the one we're using now, in which case the 909 * user has attempted to add the same vdev multiple times in the same 910 * transaction. 911 */ 912 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 913 txg == 0 && vdtxg == crtxg) 914 return (B_TRUE); 915 916 /* 917 * Check to see if this is a spare device. We do an explicit check for 918 * spa_has_spare() here because it may be on our pending list of spares 919 * to add. We also check if it is an l2cache device. 920 */ 921 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 922 spa_has_spare(spa, device_guid)) { 923 if (spare_guid) 924 *spare_guid = device_guid; 925 926 switch (reason) { 927 case VDEV_LABEL_CREATE: 928 case VDEV_LABEL_L2CACHE: 929 return (B_TRUE); 930 931 case VDEV_LABEL_REPLACE: 932 return (!spa_has_spare(spa, device_guid) || 933 spare_pool != 0ULL); 934 935 case VDEV_LABEL_SPARE: 936 return (spa_has_spare(spa, device_guid)); 937 default: 938 break; 939 } 940 } 941 942 /* 943 * Check to see if this is an l2cache device. 944 */ 945 if (spa_l2cache_exists(device_guid, NULL)) 946 return (B_TRUE); 947 948 /* 949 * We can't rely on a pool's state if it's been imported 950 * read-only. Instead we look to see if the pools is marked 951 * read-only in the namespace and set the state to active. 952 */ 953 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 954 (spa = spa_by_guid(pool_guid, device_guid)) != NULL && 955 spa_mode(spa) == SPA_MODE_READ) 956 state = POOL_STATE_ACTIVE; 957 958 /* 959 * If the device is marked ACTIVE, then this device is in use by another 960 * pool on the system. 961 */ 962 return (state == POOL_STATE_ACTIVE); 963 } 964 965 /* 966 * Initialize a vdev label. We check to make sure each leaf device is not in 967 * use, and writable. We put down an initial label which we will later 968 * overwrite with a complete label. Note that it's important to do this 969 * sequentially, not in parallel, so that we catch cases of multiple use of the 970 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 971 * itself. 972 */ 973 int 974 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 975 { 976 spa_t *spa = vd->vdev_spa; 977 nvlist_t *label; 978 vdev_phys_t *vp; 979 abd_t *vp_abd; 980 abd_t *bootenv; 981 uberblock_t *ub; 982 abd_t *ub_abd; 983 zio_t *zio; 984 char *buf; 985 size_t buflen; 986 int error; 987 uint64_t spare_guid = 0, l2cache_guid = 0; 988 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 989 990 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 991 992 for (int c = 0; c < vd->vdev_children; c++) 993 if ((error = vdev_label_init(vd->vdev_child[c], 994 crtxg, reason)) != 0) 995 return (error); 996 997 /* Track the creation time for this vdev */ 998 vd->vdev_crtxg = crtxg; 999 1000 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa)) 1001 return (0); 1002 1003 /* 1004 * Dead vdevs cannot be initialized. 1005 */ 1006 if (vdev_is_dead(vd)) 1007 return (SET_ERROR(EIO)); 1008 1009 /* 1010 * Determine if the vdev is in use. 1011 */ 1012 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && 1013 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 1014 return (SET_ERROR(EBUSY)); 1015 1016 /* 1017 * If this is a request to add or replace a spare or l2cache device 1018 * that is in use elsewhere on the system, then we must update the 1019 * guid (which was initialized to a random value) to reflect the 1020 * actual GUID (which is shared between multiple pools). 1021 */ 1022 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 1023 spare_guid != 0ULL) { 1024 uint64_t guid_delta = spare_guid - vd->vdev_guid; 1025 1026 vd->vdev_guid += guid_delta; 1027 1028 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1029 pvd->vdev_guid_sum += guid_delta; 1030 1031 /* 1032 * If this is a replacement, then we want to fallthrough to the 1033 * rest of the code. If we're adding a spare, then it's already 1034 * labeled appropriately and we can just return. 1035 */ 1036 if (reason == VDEV_LABEL_SPARE) 1037 return (0); 1038 ASSERT(reason == VDEV_LABEL_REPLACE || 1039 reason == VDEV_LABEL_SPLIT); 1040 } 1041 1042 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 1043 l2cache_guid != 0ULL) { 1044 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 1045 1046 vd->vdev_guid += guid_delta; 1047 1048 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1049 pvd->vdev_guid_sum += guid_delta; 1050 1051 /* 1052 * If this is a replacement, then we want to fallthrough to the 1053 * rest of the code. If we're adding an l2cache, then it's 1054 * already labeled appropriately and we can just return. 1055 */ 1056 if (reason == VDEV_LABEL_L2CACHE) 1057 return (0); 1058 ASSERT(reason == VDEV_LABEL_REPLACE); 1059 } 1060 1061 /* 1062 * Initialize its label. 1063 */ 1064 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 1065 abd_zero(vp_abd, sizeof (vdev_phys_t)); 1066 vp = abd_to_buf(vp_abd); 1067 1068 /* 1069 * Generate a label describing the pool and our top-level vdev. 1070 * We mark it as being from txg 0 to indicate that it's not 1071 * really part of an active pool just yet. The labels will 1072 * be written again with a meaningful txg by spa_sync(). 1073 */ 1074 if (reason == VDEV_LABEL_SPARE || 1075 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 1076 /* 1077 * For inactive hot spares, we generate a special label that 1078 * identifies as a mutually shared hot spare. We write the 1079 * label if we are adding a hot spare, or if we are removing an 1080 * active hot spare (in which case we want to revert the 1081 * labels). 1082 */ 1083 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1084 1085 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 1086 spa_version(spa)) == 0); 1087 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1088 POOL_STATE_SPARE) == 0); 1089 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 1090 vd->vdev_guid) == 0); 1091 } else if (reason == VDEV_LABEL_L2CACHE || 1092 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { 1093 /* 1094 * For level 2 ARC devices, add a special label. 1095 */ 1096 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1097 1098 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 1099 spa_version(spa)) == 0); 1100 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1101 POOL_STATE_L2CACHE) == 0); 1102 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 1103 vd->vdev_guid) == 0); 1104 } else { 1105 uint64_t txg = 0ULL; 1106 1107 if (reason == VDEV_LABEL_SPLIT) 1108 txg = spa->spa_uberblock.ub_txg; 1109 label = spa_config_generate(spa, vd, txg, B_FALSE); 1110 1111 /* 1112 * Add our creation time. This allows us to detect multiple 1113 * vdev uses as described above, and automatically expires if we 1114 * fail. 1115 */ 1116 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 1117 crtxg) == 0); 1118 } 1119 1120 buf = vp->vp_nvlist; 1121 buflen = sizeof (vp->vp_nvlist); 1122 1123 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 1124 if (error != 0) { 1125 nvlist_free(label); 1126 abd_free(vp_abd); 1127 /* EFAULT means nvlist_pack ran out of room */ 1128 return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL)); 1129 } 1130 1131 /* 1132 * Initialize uberblock template. 1133 */ 1134 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE); 1135 abd_zero(ub_abd, VDEV_UBERBLOCK_RING); 1136 abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t)); 1137 ub = abd_to_buf(ub_abd); 1138 ub->ub_txg = 0; 1139 1140 /* Initialize the 2nd padding area. */ 1141 bootenv = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); 1142 abd_zero(bootenv, VDEV_PAD_SIZE); 1143 1144 /* 1145 * Write everything in parallel. 1146 */ 1147 retry: 1148 zio = zio_root(spa, NULL, NULL, flags); 1149 1150 for (int l = 0; l < VDEV_LABELS; l++) { 1151 1152 vdev_label_write(zio, vd, l, vp_abd, 1153 offsetof(vdev_label_t, vl_vdev_phys), 1154 sizeof (vdev_phys_t), NULL, NULL, flags); 1155 1156 /* 1157 * Skip the 1st padding area. 1158 * Zero out the 2nd padding area where it might have 1159 * left over data from previous filesystem format. 1160 */ 1161 vdev_label_write(zio, vd, l, bootenv, 1162 offsetof(vdev_label_t, vl_be), 1163 VDEV_PAD_SIZE, NULL, NULL, flags); 1164 1165 vdev_label_write(zio, vd, l, ub_abd, 1166 offsetof(vdev_label_t, vl_uberblock), 1167 VDEV_UBERBLOCK_RING, NULL, NULL, flags); 1168 } 1169 1170 error = zio_wait(zio); 1171 1172 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 1173 flags |= ZIO_FLAG_TRYHARD; 1174 goto retry; 1175 } 1176 1177 nvlist_free(label); 1178 abd_free(bootenv); 1179 abd_free(ub_abd); 1180 abd_free(vp_abd); 1181 1182 /* 1183 * If this vdev hasn't been previously identified as a spare, then we 1184 * mark it as such only if a) we are labeling it as a spare, or b) it 1185 * exists as a spare elsewhere in the system. Do the same for 1186 * level 2 ARC devices. 1187 */ 1188 if (error == 0 && !vd->vdev_isspare && 1189 (reason == VDEV_LABEL_SPARE || 1190 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 1191 spa_spare_add(vd); 1192 1193 if (error == 0 && !vd->vdev_isl2cache && 1194 (reason == VDEV_LABEL_L2CACHE || 1195 spa_l2cache_exists(vd->vdev_guid, NULL))) 1196 spa_l2cache_add(vd); 1197 1198 return (error); 1199 } 1200 1201 /* 1202 * Done callback for vdev_label_read_bootenv_impl. If this is the first 1203 * callback to finish, store our abd in the callback pointer. Otherwise, we 1204 * just free our abd and return. 1205 */ 1206 static void 1207 vdev_label_read_bootenv_done(zio_t *zio) 1208 { 1209 zio_t *rio = zio->io_private; 1210 abd_t **cbp = rio->io_private; 1211 1212 ASSERT3U(zio->io_size, ==, VDEV_PAD_SIZE); 1213 1214 if (zio->io_error == 0) { 1215 mutex_enter(&rio->io_lock); 1216 if (*cbp == NULL) { 1217 /* Will free this buffer in vdev_label_read_bootenv. */ 1218 *cbp = zio->io_abd; 1219 } else { 1220 abd_free(zio->io_abd); 1221 } 1222 mutex_exit(&rio->io_lock); 1223 } else { 1224 abd_free(zio->io_abd); 1225 } 1226 } 1227 1228 static void 1229 vdev_label_read_bootenv_impl(zio_t *zio, vdev_t *vd, int flags) 1230 { 1231 for (int c = 0; c < vd->vdev_children; c++) 1232 vdev_label_read_bootenv_impl(zio, vd->vdev_child[c], flags); 1233 1234 /* 1235 * We just use the first label that has a correct checksum; the 1236 * bootloader should have rewritten them all to be the same on boot, 1237 * and any changes we made since boot have been the same across all 1238 * labels. 1239 */ 1240 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1241 for (int l = 0; l < VDEV_LABELS; l++) { 1242 vdev_label_read(zio, vd, l, 1243 abd_alloc_linear(VDEV_PAD_SIZE, B_FALSE), 1244 offsetof(vdev_label_t, vl_be), VDEV_PAD_SIZE, 1245 vdev_label_read_bootenv_done, zio, flags); 1246 } 1247 } 1248 } 1249 1250 int 1251 vdev_label_read_bootenv(vdev_t *rvd, nvlist_t *bootenv) 1252 { 1253 nvlist_t *config; 1254 spa_t *spa = rvd->vdev_spa; 1255 abd_t *abd = NULL; 1256 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1257 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 1258 1259 ASSERT(bootenv); 1260 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1261 1262 zio_t *zio = zio_root(spa, NULL, &abd, flags); 1263 vdev_label_read_bootenv_impl(zio, rvd, flags); 1264 int err = zio_wait(zio); 1265 1266 if (abd != NULL) { 1267 char *buf; 1268 vdev_boot_envblock_t *vbe = abd_to_buf(abd); 1269 1270 vbe->vbe_version = ntohll(vbe->vbe_version); 1271 switch (vbe->vbe_version) { 1272 case VB_RAW: 1273 /* 1274 * if we have textual data in vbe_bootenv, create nvlist 1275 * with key "envmap". 1276 */ 1277 fnvlist_add_uint64(bootenv, BOOTENV_VERSION, VB_RAW); 1278 vbe->vbe_bootenv[sizeof (vbe->vbe_bootenv) - 1] = '\0'; 1279 fnvlist_add_string(bootenv, GRUB_ENVMAP, 1280 vbe->vbe_bootenv); 1281 break; 1282 1283 case VB_NVLIST: 1284 err = nvlist_unpack(vbe->vbe_bootenv, 1285 sizeof (vbe->vbe_bootenv), &config, 0); 1286 if (err == 0) { 1287 fnvlist_merge(bootenv, config); 1288 nvlist_free(config); 1289 break; 1290 } 1291 /* FALLTHROUGH */ 1292 default: 1293 /* Check for FreeBSD zfs bootonce command string */ 1294 buf = abd_to_buf(abd); 1295 if (*buf == '\0') { 1296 fnvlist_add_uint64(bootenv, BOOTENV_VERSION, 1297 VB_NVLIST); 1298 break; 1299 } 1300 fnvlist_add_string(bootenv, FREEBSD_BOOTONCE, buf); 1301 } 1302 1303 /* 1304 * abd was allocated in vdev_label_read_bootenv_impl() 1305 */ 1306 abd_free(abd); 1307 /* 1308 * If we managed to read any successfully, 1309 * return success. 1310 */ 1311 return (0); 1312 } 1313 return (err); 1314 } 1315 1316 int 1317 vdev_label_write_bootenv(vdev_t *vd, nvlist_t *env) 1318 { 1319 zio_t *zio; 1320 spa_t *spa = vd->vdev_spa; 1321 vdev_boot_envblock_t *bootenv; 1322 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1323 int error; 1324 size_t nvsize; 1325 char *nvbuf; 1326 1327 error = nvlist_size(env, &nvsize, NV_ENCODE_XDR); 1328 if (error != 0) 1329 return (SET_ERROR(error)); 1330 1331 if (nvsize >= sizeof (bootenv->vbe_bootenv)) { 1332 return (SET_ERROR(E2BIG)); 1333 } 1334 1335 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1336 1337 error = ENXIO; 1338 for (int c = 0; c < vd->vdev_children; c++) { 1339 int child_err; 1340 1341 child_err = vdev_label_write_bootenv(vd->vdev_child[c], env); 1342 /* 1343 * As long as any of the disks managed to write all of their 1344 * labels successfully, return success. 1345 */ 1346 if (child_err == 0) 1347 error = child_err; 1348 } 1349 1350 if (!vd->vdev_ops->vdev_op_leaf || vdev_is_dead(vd) || 1351 !vdev_writeable(vd)) { 1352 return (error); 1353 } 1354 ASSERT3U(sizeof (*bootenv), ==, VDEV_PAD_SIZE); 1355 abd_t *abd = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); 1356 abd_zero(abd, VDEV_PAD_SIZE); 1357 1358 bootenv = abd_borrow_buf_copy(abd, VDEV_PAD_SIZE); 1359 nvbuf = bootenv->vbe_bootenv; 1360 nvsize = sizeof (bootenv->vbe_bootenv); 1361 1362 bootenv->vbe_version = fnvlist_lookup_uint64(env, BOOTENV_VERSION); 1363 switch (bootenv->vbe_version) { 1364 case VB_RAW: 1365 if (nvlist_lookup_string(env, GRUB_ENVMAP, &nvbuf) == 0) { 1366 (void) strlcpy(bootenv->vbe_bootenv, nvbuf, nvsize); 1367 } 1368 error = 0; 1369 break; 1370 1371 case VB_NVLIST: 1372 error = nvlist_pack(env, &nvbuf, &nvsize, NV_ENCODE_XDR, 1373 KM_SLEEP); 1374 break; 1375 1376 default: 1377 error = EINVAL; 1378 break; 1379 } 1380 1381 if (error == 0) { 1382 bootenv->vbe_version = htonll(bootenv->vbe_version); 1383 abd_return_buf_copy(abd, bootenv, VDEV_PAD_SIZE); 1384 } else { 1385 abd_free(abd); 1386 return (SET_ERROR(error)); 1387 } 1388 1389 retry: 1390 zio = zio_root(spa, NULL, NULL, flags); 1391 for (int l = 0; l < VDEV_LABELS; l++) { 1392 vdev_label_write(zio, vd, l, abd, 1393 offsetof(vdev_label_t, vl_be), 1394 VDEV_PAD_SIZE, NULL, NULL, flags); 1395 } 1396 1397 error = zio_wait(zio); 1398 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 1399 flags |= ZIO_FLAG_TRYHARD; 1400 goto retry; 1401 } 1402 1403 abd_free(abd); 1404 return (error); 1405 } 1406 1407 /* 1408 * ========================================================================== 1409 * uberblock load/sync 1410 * ========================================================================== 1411 */ 1412 1413 /* 1414 * Consider the following situation: txg is safely synced to disk. We've 1415 * written the first uberblock for txg + 1, and then we lose power. When we 1416 * come back up, we fail to see the uberblock for txg + 1 because, say, 1417 * it was on a mirrored device and the replica to which we wrote txg + 1 1418 * is now offline. If we then make some changes and sync txg + 1, and then 1419 * the missing replica comes back, then for a few seconds we'll have two 1420 * conflicting uberblocks on disk with the same txg. The solution is simple: 1421 * among uberblocks with equal txg, choose the one with the latest timestamp. 1422 */ 1423 static int 1424 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2) 1425 { 1426 int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg); 1427 1428 if (likely(cmp)) 1429 return (cmp); 1430 1431 cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp); 1432 if (likely(cmp)) 1433 return (cmp); 1434 1435 /* 1436 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware 1437 * ZFS, e.g. OpenZFS >= 0.7. 1438 * 1439 * If one ub has MMP and the other does not, they were written by 1440 * different hosts, which matters for MMP. So we treat no MMP/no SEQ as 1441 * a 0 value. 1442 * 1443 * Since timestamp and txg are the same if we get this far, either is 1444 * acceptable for importing the pool. 1445 */ 1446 unsigned int seq1 = 0; 1447 unsigned int seq2 = 0; 1448 1449 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1)) 1450 seq1 = MMP_SEQ(ub1); 1451 1452 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2)) 1453 seq2 = MMP_SEQ(ub2); 1454 1455 return (TREE_CMP(seq1, seq2)); 1456 } 1457 1458 struct ubl_cbdata { 1459 uberblock_t *ubl_ubbest; /* Best uberblock */ 1460 vdev_t *ubl_vd; /* vdev associated with the above */ 1461 }; 1462 1463 static void 1464 vdev_uberblock_load_done(zio_t *zio) 1465 { 1466 vdev_t *vd = zio->io_vd; 1467 spa_t *spa = zio->io_spa; 1468 zio_t *rio = zio->io_private; 1469 uberblock_t *ub = abd_to_buf(zio->io_abd); 1470 struct ubl_cbdata *cbp = rio->io_private; 1471 1472 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd)); 1473 1474 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 1475 mutex_enter(&rio->io_lock); 1476 if (ub->ub_txg <= spa->spa_load_max_txg && 1477 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) { 1478 /* 1479 * Keep track of the vdev in which this uberblock 1480 * was found. We will use this information later 1481 * to obtain the config nvlist associated with 1482 * this uberblock. 1483 */ 1484 *cbp->ubl_ubbest = *ub; 1485 cbp->ubl_vd = vd; 1486 } 1487 mutex_exit(&rio->io_lock); 1488 } 1489 1490 abd_free(zio->io_abd); 1491 } 1492 1493 static void 1494 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags, 1495 struct ubl_cbdata *cbp) 1496 { 1497 for (int c = 0; c < vd->vdev_children; c++) 1498 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp); 1499 1500 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1501 for (int l = 0; l < VDEV_LABELS; l++) { 1502 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1503 vdev_label_read(zio, vd, l, 1504 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), 1505 B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n), 1506 VDEV_UBERBLOCK_SIZE(vd), 1507 vdev_uberblock_load_done, zio, flags); 1508 } 1509 } 1510 } 1511 } 1512 1513 /* 1514 * Reads the 'best' uberblock from disk along with its associated 1515 * configuration. First, we read the uberblock array of each label of each 1516 * vdev, keeping track of the uberblock with the highest txg in each array. 1517 * Then, we read the configuration from the same vdev as the best uberblock. 1518 */ 1519 void 1520 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config) 1521 { 1522 zio_t *zio; 1523 spa_t *spa = rvd->vdev_spa; 1524 struct ubl_cbdata cb; 1525 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1526 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 1527 1528 ASSERT(ub); 1529 ASSERT(config); 1530 1531 bzero(ub, sizeof (uberblock_t)); 1532 *config = NULL; 1533 1534 cb.ubl_ubbest = ub; 1535 cb.ubl_vd = NULL; 1536 1537 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1538 zio = zio_root(spa, NULL, &cb, flags); 1539 vdev_uberblock_load_impl(zio, rvd, flags, &cb); 1540 (void) zio_wait(zio); 1541 1542 /* 1543 * It's possible that the best uberblock was discovered on a label 1544 * that has a configuration which was written in a future txg. 1545 * Search all labels on this vdev to find the configuration that 1546 * matches the txg for our uberblock. 1547 */ 1548 if (cb.ubl_vd != NULL) { 1549 vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. " 1550 "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg); 1551 1552 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg); 1553 if (*config == NULL && spa->spa_extreme_rewind) { 1554 vdev_dbgmsg(cb.ubl_vd, "failed to read label config. " 1555 "Trying again without txg restrictions."); 1556 *config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX); 1557 } 1558 if (*config == NULL) { 1559 vdev_dbgmsg(cb.ubl_vd, "failed to read label config"); 1560 } 1561 } 1562 spa_config_exit(spa, SCL_ALL, FTAG); 1563 } 1564 1565 /* 1566 * For use when a leaf vdev is expanded. 1567 * The location of labels 2 and 3 changed, and at the new location the 1568 * uberblock rings are either empty or contain garbage. The sync will write 1569 * new configs there because the vdev is dirty, but expansion also needs the 1570 * uberblock rings copied. Read them from label 0 which did not move. 1571 * 1572 * Since the point is to populate labels {2,3} with valid uberblocks, 1573 * we zero uberblocks we fail to read or which are not valid. 1574 */ 1575 1576 static void 1577 vdev_copy_uberblocks(vdev_t *vd) 1578 { 1579 abd_t *ub_abd; 1580 zio_t *write_zio; 1581 int locks = (SCL_L2ARC | SCL_ZIO); 1582 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1583 ZIO_FLAG_SPECULATIVE; 1584 1585 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) == 1586 SCL_STATE); 1587 ASSERT(vd->vdev_ops->vdev_op_leaf); 1588 1589 spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER); 1590 1591 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE); 1592 1593 write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags); 1594 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1595 const int src_label = 0; 1596 zio_t *zio; 1597 1598 zio = zio_root(vd->vdev_spa, NULL, NULL, flags); 1599 vdev_label_read(zio, vd, src_label, ub_abd, 1600 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1601 NULL, NULL, flags); 1602 1603 if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd))) 1604 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd)); 1605 1606 for (int l = 2; l < VDEV_LABELS; l++) 1607 vdev_label_write(write_zio, vd, l, ub_abd, 1608 VDEV_UBERBLOCK_OFFSET(vd, n), 1609 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL, 1610 flags | ZIO_FLAG_DONT_PROPAGATE); 1611 } 1612 (void) zio_wait(write_zio); 1613 1614 spa_config_exit(vd->vdev_spa, locks, FTAG); 1615 1616 abd_free(ub_abd); 1617 } 1618 1619 /* 1620 * On success, increment root zio's count of good writes. 1621 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 1622 */ 1623 static void 1624 vdev_uberblock_sync_done(zio_t *zio) 1625 { 1626 uint64_t *good_writes = zio->io_private; 1627 1628 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 1629 atomic_inc_64(good_writes); 1630 } 1631 1632 /* 1633 * Write the uberblock to all labels of all leaves of the specified vdev. 1634 */ 1635 static void 1636 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes, 1637 uberblock_t *ub, vdev_t *vd, int flags) 1638 { 1639 for (uint64_t c = 0; c < vd->vdev_children; c++) { 1640 vdev_uberblock_sync(zio, good_writes, 1641 ub, vd->vdev_child[c], flags); 1642 } 1643 1644 if (!vd->vdev_ops->vdev_op_leaf) 1645 return; 1646 1647 if (!vdev_writeable(vd)) 1648 return; 1649 1650 /* If the vdev was expanded, need to copy uberblock rings. */ 1651 if (vd->vdev_state == VDEV_STATE_HEALTHY && 1652 vd->vdev_copy_uberblocks == B_TRUE) { 1653 vdev_copy_uberblocks(vd); 1654 vd->vdev_copy_uberblocks = B_FALSE; 1655 } 1656 1657 int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0; 1658 int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m); 1659 1660 /* Copy the uberblock_t into the ABD */ 1661 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE); 1662 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd)); 1663 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t)); 1664 1665 for (int l = 0; l < VDEV_LABELS; l++) 1666 vdev_label_write(zio, vd, l, ub_abd, 1667 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1668 vdev_uberblock_sync_done, good_writes, 1669 flags | ZIO_FLAG_DONT_PROPAGATE); 1670 1671 abd_free(ub_abd); 1672 } 1673 1674 /* Sync the uberblocks to all vdevs in svd[] */ 1675 static int 1676 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 1677 { 1678 spa_t *spa = svd[0]->vdev_spa; 1679 zio_t *zio; 1680 uint64_t good_writes = 0; 1681 1682 zio = zio_root(spa, NULL, NULL, flags); 1683 1684 for (int v = 0; v < svdcount; v++) 1685 vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags); 1686 1687 (void) zio_wait(zio); 1688 1689 /* 1690 * Flush the uberblocks to disk. This ensures that the odd labels 1691 * are no longer needed (because the new uberblocks and the even 1692 * labels are safely on disk), so it is safe to overwrite them. 1693 */ 1694 zio = zio_root(spa, NULL, NULL, flags); 1695 1696 for (int v = 0; v < svdcount; v++) { 1697 if (vdev_writeable(svd[v])) { 1698 zio_flush(zio, svd[v]); 1699 } 1700 } 1701 1702 (void) zio_wait(zio); 1703 1704 return (good_writes >= 1 ? 0 : EIO); 1705 } 1706 1707 /* 1708 * On success, increment the count of good writes for our top-level vdev. 1709 */ 1710 static void 1711 vdev_label_sync_done(zio_t *zio) 1712 { 1713 uint64_t *good_writes = zio->io_private; 1714 1715 if (zio->io_error == 0) 1716 atomic_inc_64(good_writes); 1717 } 1718 1719 /* 1720 * If there weren't enough good writes, indicate failure to the parent. 1721 */ 1722 static void 1723 vdev_label_sync_top_done(zio_t *zio) 1724 { 1725 uint64_t *good_writes = zio->io_private; 1726 1727 if (*good_writes == 0) 1728 zio->io_error = SET_ERROR(EIO); 1729 1730 kmem_free(good_writes, sizeof (uint64_t)); 1731 } 1732 1733 /* 1734 * We ignore errors for log and cache devices, simply free the private data. 1735 */ 1736 static void 1737 vdev_label_sync_ignore_done(zio_t *zio) 1738 { 1739 kmem_free(zio->io_private, sizeof (uint64_t)); 1740 } 1741 1742 /* 1743 * Write all even or odd labels to all leaves of the specified vdev. 1744 */ 1745 static void 1746 vdev_label_sync(zio_t *zio, uint64_t *good_writes, 1747 vdev_t *vd, int l, uint64_t txg, int flags) 1748 { 1749 nvlist_t *label; 1750 vdev_phys_t *vp; 1751 abd_t *vp_abd; 1752 char *buf; 1753 size_t buflen; 1754 1755 for (int c = 0; c < vd->vdev_children; c++) { 1756 vdev_label_sync(zio, good_writes, 1757 vd->vdev_child[c], l, txg, flags); 1758 } 1759 1760 if (!vd->vdev_ops->vdev_op_leaf) 1761 return; 1762 1763 if (!vdev_writeable(vd)) 1764 return; 1765 1766 /* 1767 * Generate a label describing the top-level config to which we belong. 1768 */ 1769 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 1770 1771 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 1772 abd_zero(vp_abd, sizeof (vdev_phys_t)); 1773 vp = abd_to_buf(vp_abd); 1774 1775 buf = vp->vp_nvlist; 1776 buflen = sizeof (vp->vp_nvlist); 1777 1778 if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) { 1779 for (; l < VDEV_LABELS; l += 2) { 1780 vdev_label_write(zio, vd, l, vp_abd, 1781 offsetof(vdev_label_t, vl_vdev_phys), 1782 sizeof (vdev_phys_t), 1783 vdev_label_sync_done, good_writes, 1784 flags | ZIO_FLAG_DONT_PROPAGATE); 1785 } 1786 } 1787 1788 abd_free(vp_abd); 1789 nvlist_free(label); 1790 } 1791 1792 static int 1793 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 1794 { 1795 list_t *dl = &spa->spa_config_dirty_list; 1796 vdev_t *vd; 1797 zio_t *zio; 1798 int error; 1799 1800 /* 1801 * Write the new labels to disk. 1802 */ 1803 zio = zio_root(spa, NULL, NULL, flags); 1804 1805 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 1806 uint64_t *good_writes; 1807 1808 ASSERT(!vd->vdev_ishole); 1809 1810 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 1811 zio_t *vio = zio_null(zio, spa, NULL, 1812 (vd->vdev_islog || vd->vdev_aux != NULL) ? 1813 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 1814 good_writes, flags); 1815 vdev_label_sync(vio, good_writes, vd, l, txg, flags); 1816 zio_nowait(vio); 1817 } 1818 1819 error = zio_wait(zio); 1820 1821 /* 1822 * Flush the new labels to disk. 1823 */ 1824 zio = zio_root(spa, NULL, NULL, flags); 1825 1826 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 1827 zio_flush(zio, vd); 1828 1829 (void) zio_wait(zio); 1830 1831 return (error); 1832 } 1833 1834 /* 1835 * Sync the uberblock and any changes to the vdev configuration. 1836 * 1837 * The order of operations is carefully crafted to ensure that 1838 * if the system panics or loses power at any time, the state on disk 1839 * is still transactionally consistent. The in-line comments below 1840 * describe the failure semantics at each stage. 1841 * 1842 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 1843 * at any time, you can just call it again, and it will resume its work. 1844 */ 1845 int 1846 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg) 1847 { 1848 spa_t *spa = svd[0]->vdev_spa; 1849 uberblock_t *ub = &spa->spa_uberblock; 1850 int error = 0; 1851 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1852 1853 ASSERT(svdcount != 0); 1854 retry: 1855 /* 1856 * Normally, we don't want to try too hard to write every label and 1857 * uberblock. If there is a flaky disk, we don't want the rest of the 1858 * sync process to block while we retry. But if we can't write a 1859 * single label out, we should retry with ZIO_FLAG_TRYHARD before 1860 * bailing out and declaring the pool faulted. 1861 */ 1862 if (error != 0) { 1863 if ((flags & ZIO_FLAG_TRYHARD) != 0) 1864 return (error); 1865 flags |= ZIO_FLAG_TRYHARD; 1866 } 1867 1868 ASSERT(ub->ub_txg <= txg); 1869 1870 /* 1871 * If this isn't a resync due to I/O errors, 1872 * and nothing changed in this transaction group, 1873 * and the vdev configuration hasn't changed, 1874 * then there's nothing to do. 1875 */ 1876 if (ub->ub_txg < txg) { 1877 boolean_t changed = uberblock_update(ub, spa->spa_root_vdev, 1878 txg, spa->spa_mmp.mmp_delay); 1879 1880 if (!changed && list_is_empty(&spa->spa_config_dirty_list)) 1881 return (0); 1882 } 1883 1884 if (txg > spa_freeze_txg(spa)) 1885 return (0); 1886 1887 ASSERT(txg <= spa->spa_final_txg); 1888 1889 /* 1890 * Flush the write cache of every disk that's been written to 1891 * in this transaction group. This ensures that all blocks 1892 * written in this txg will be committed to stable storage 1893 * before any uberblock that references them. 1894 */ 1895 zio_t *zio = zio_root(spa, NULL, NULL, flags); 1896 1897 for (vdev_t *vd = 1898 txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL; 1899 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 1900 zio_flush(zio, vd); 1901 1902 (void) zio_wait(zio); 1903 1904 /* 1905 * Sync out the even labels (L0, L2) for every dirty vdev. If the 1906 * system dies in the middle of this process, that's OK: all of the 1907 * even labels that made it to disk will be newer than any uberblock, 1908 * and will therefore be considered invalid. The odd labels (L1, L3), 1909 * which have not yet been touched, will still be valid. We flush 1910 * the new labels to disk to ensure that all even-label updates 1911 * are committed to stable storage before the uberblock update. 1912 */ 1913 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) { 1914 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 1915 zfs_dbgmsg("vdev_label_sync_list() returned error %d " 1916 "for pool '%s' when syncing out the even labels " 1917 "of dirty vdevs", error, spa_name(spa)); 1918 } 1919 goto retry; 1920 } 1921 1922 /* 1923 * Sync the uberblocks to all vdevs in svd[]. 1924 * If the system dies in the middle of this step, there are two cases 1925 * to consider, and the on-disk state is consistent either way: 1926 * 1927 * (1) If none of the new uberblocks made it to disk, then the 1928 * previous uberblock will be the newest, and the odd labels 1929 * (which had not yet been touched) will be valid with respect 1930 * to that uberblock. 1931 * 1932 * (2) If one or more new uberblocks made it to disk, then they 1933 * will be the newest, and the even labels (which had all 1934 * been successfully committed) will be valid with respect 1935 * to the new uberblocks. 1936 */ 1937 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) { 1938 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 1939 zfs_dbgmsg("vdev_uberblock_sync_list() returned error " 1940 "%d for pool '%s'", error, spa_name(spa)); 1941 } 1942 goto retry; 1943 } 1944 1945 if (spa_multihost(spa)) 1946 mmp_update_uberblock(spa, ub); 1947 1948 /* 1949 * Sync out odd labels for every dirty vdev. If the system dies 1950 * in the middle of this process, the even labels and the new 1951 * uberblocks will suffice to open the pool. The next time 1952 * the pool is opened, the first thing we'll do -- before any 1953 * user data is modified -- is mark every vdev dirty so that 1954 * all labels will be brought up to date. We flush the new labels 1955 * to disk to ensure that all odd-label updates are committed to 1956 * stable storage before the next transaction group begins. 1957 */ 1958 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) { 1959 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 1960 zfs_dbgmsg("vdev_label_sync_list() returned error %d " 1961 "for pool '%s' when syncing out the odd labels of " 1962 "dirty vdevs", error, spa_name(spa)); 1963 } 1964 goto retry; 1965 } 1966 1967 return (0); 1968 } 1969