1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2017, Intel Corporation. 26 */ 27 28 /* 29 * Virtual Device Labels 30 * --------------------- 31 * 32 * The vdev label serves several distinct purposes: 33 * 34 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 35 * identity within the pool. 36 * 37 * 2. Verify that all the devices given in a configuration are present 38 * within the pool. 39 * 40 * 3. Determine the uberblock for the pool. 41 * 42 * 4. In case of an import operation, determine the configuration of the 43 * toplevel vdev of which it is a part. 44 * 45 * 5. If an import operation cannot find all the devices in the pool, 46 * provide enough information to the administrator to determine which 47 * devices are missing. 48 * 49 * It is important to note that while the kernel is responsible for writing the 50 * label, it only consumes the information in the first three cases. The 51 * latter information is only consumed in userland when determining the 52 * configuration to import a pool. 53 * 54 * 55 * Label Organization 56 * ------------------ 57 * 58 * Before describing the contents of the label, it's important to understand how 59 * the labels are written and updated with respect to the uberblock. 60 * 61 * When the pool configuration is altered, either because it was newly created 62 * or a device was added, we want to update all the labels such that we can deal 63 * with fatal failure at any point. To this end, each disk has two labels which 64 * are updated before and after the uberblock is synced. Assuming we have 65 * labels and an uberblock with the following transaction groups: 66 * 67 * L1 UB L2 68 * +------+ +------+ +------+ 69 * | | | | | | 70 * | t10 | | t10 | | t10 | 71 * | | | | | | 72 * +------+ +------+ +------+ 73 * 74 * In this stable state, the labels and the uberblock were all updated within 75 * the same transaction group (10). Each label is mirrored and checksummed, so 76 * that we can detect when we fail partway through writing the label. 77 * 78 * In order to identify which labels are valid, the labels are written in the 79 * following manner: 80 * 81 * 1. For each vdev, update 'L1' to the new label 82 * 2. Update the uberblock 83 * 3. For each vdev, update 'L2' to the new label 84 * 85 * Given arbitrary failure, we can determine the correct label to use based on 86 * the transaction group. If we fail after updating L1 but before updating the 87 * UB, we will notice that L1's transaction group is greater than the uberblock, 88 * so L2 must be valid. If we fail after writing the uberblock but before 89 * writing L2, we will notice that L2's transaction group is less than L1, and 90 * therefore L1 is valid. 91 * 92 * Another added complexity is that not every label is updated when the config 93 * is synced. If we add a single device, we do not want to have to re-write 94 * every label for every device in the pool. This means that both L1 and L2 may 95 * be older than the pool uberblock, because the necessary information is stored 96 * on another vdev. 97 * 98 * 99 * On-disk Format 100 * -------------- 101 * 102 * The vdev label consists of two distinct parts, and is wrapped within the 103 * vdev_label_t structure. The label includes 8k of padding to permit legacy 104 * VTOC disk labels, but is otherwise ignored. 105 * 106 * The first half of the label is a packed nvlist which contains pool wide 107 * properties, per-vdev properties, and configuration information. It is 108 * described in more detail below. 109 * 110 * The latter half of the label consists of a redundant array of uberblocks. 111 * These uberblocks are updated whenever a transaction group is committed, 112 * or when the configuration is updated. When a pool is loaded, we scan each 113 * vdev for the 'best' uberblock. 114 * 115 * 116 * Configuration Information 117 * ------------------------- 118 * 119 * The nvlist describing the pool and vdev contains the following elements: 120 * 121 * version ZFS on-disk version 122 * name Pool name 123 * state Pool state 124 * txg Transaction group in which this label was written 125 * pool_guid Unique identifier for this pool 126 * vdev_tree An nvlist describing vdev tree. 127 * features_for_read 128 * An nvlist of the features necessary for reading the MOS. 129 * 130 * Each leaf device label also contains the following: 131 * 132 * top_guid Unique ID for top-level vdev in which this is contained 133 * guid Unique ID for the leaf vdev 134 * 135 * The 'vs' configuration follows the format described in 'spa_config.c'. 136 */ 137 138 #include <sys/zfs_context.h> 139 #include <sys/spa.h> 140 #include <sys/spa_impl.h> 141 #include <sys/dmu.h> 142 #include <sys/zap.h> 143 #include <sys/vdev.h> 144 #include <sys/vdev_impl.h> 145 #include <sys/vdev_draid.h> 146 #include <sys/uberblock_impl.h> 147 #include <sys/metaslab.h> 148 #include <sys/metaslab_impl.h> 149 #include <sys/zio.h> 150 #include <sys/dsl_scan.h> 151 #include <sys/abd.h> 152 #include <sys/fs/zfs.h> 153 #include <sys/byteorder.h> 154 #include <sys/zfs_bootenv.h> 155 156 /* 157 * Basic routines to read and write from a vdev label. 158 * Used throughout the rest of this file. 159 */ 160 uint64_t 161 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 162 { 163 ASSERT(offset < sizeof (vdev_label_t)); 164 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 165 166 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 167 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 168 } 169 170 /* 171 * Returns back the vdev label associated with the passed in offset. 172 */ 173 int 174 vdev_label_number(uint64_t psize, uint64_t offset) 175 { 176 int l; 177 178 if (offset >= psize - VDEV_LABEL_END_SIZE) { 179 offset -= psize - VDEV_LABEL_END_SIZE; 180 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 181 } 182 l = offset / sizeof (vdev_label_t); 183 return (l < VDEV_LABELS ? l : -1); 184 } 185 186 static void 187 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 188 uint64_t size, zio_done_func_t *done, void *private, int flags) 189 { 190 ASSERT( 191 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE || 192 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE); 193 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 194 195 zio_nowait(zio_read_phys(zio, vd, 196 vdev_label_offset(vd->vdev_psize, l, offset), 197 size, buf, ZIO_CHECKSUM_LABEL, done, private, 198 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 199 } 200 201 void 202 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 203 uint64_t size, zio_done_func_t *done, void *private, int flags) 204 { 205 ASSERT( 206 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE || 207 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE); 208 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 209 210 zio_nowait(zio_write_phys(zio, vd, 211 vdev_label_offset(vd->vdev_psize, l, offset), 212 size, buf, ZIO_CHECKSUM_LABEL, done, private, 213 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 214 } 215 216 /* 217 * Generate the nvlist representing this vdev's stats 218 */ 219 void 220 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv) 221 { 222 nvlist_t *nvx; 223 vdev_stat_t *vs; 224 vdev_stat_ex_t *vsx; 225 226 vs = kmem_alloc(sizeof (*vs), KM_SLEEP); 227 vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP); 228 229 vdev_get_stats_ex(vd, vs, vsx); 230 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, 231 (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t)); 232 233 /* 234 * Add extended stats into a special extended stats nvlist. This keeps 235 * all the extended stats nicely grouped together. The extended stats 236 * nvlist is then added to the main nvlist. 237 */ 238 nvx = fnvlist_alloc(); 239 240 /* ZIOs in flight to disk */ 241 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE, 242 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]); 243 244 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE, 245 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]); 246 247 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE, 248 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]); 249 250 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE, 251 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]); 252 253 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE, 254 vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]); 255 256 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE, 257 vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]); 258 259 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_REBUILD_ACTIVE_QUEUE, 260 vsx->vsx_active_queue[ZIO_PRIORITY_REBUILD]); 261 262 /* ZIOs pending */ 263 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE, 264 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]); 265 266 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE, 267 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]); 268 269 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE, 270 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]); 271 272 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE, 273 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]); 274 275 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE, 276 vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]); 277 278 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE, 279 vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]); 280 281 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_REBUILD_PEND_QUEUE, 282 vsx->vsx_pend_queue[ZIO_PRIORITY_REBUILD]); 283 284 /* Histograms */ 285 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO, 286 vsx->vsx_total_histo[ZIO_TYPE_READ], 287 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ])); 288 289 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO, 290 vsx->vsx_total_histo[ZIO_TYPE_WRITE], 291 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE])); 292 293 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO, 294 vsx->vsx_disk_histo[ZIO_TYPE_READ], 295 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ])); 296 297 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO, 298 vsx->vsx_disk_histo[ZIO_TYPE_WRITE], 299 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE])); 300 301 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO, 302 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ], 303 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ])); 304 305 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO, 306 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE], 307 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE])); 308 309 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO, 310 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ], 311 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ])); 312 313 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO, 314 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE], 315 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE])); 316 317 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO, 318 vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB], 319 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB])); 320 321 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO, 322 vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM], 323 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM])); 324 325 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_REBUILD_LAT_HISTO, 326 vsx->vsx_queue_histo[ZIO_PRIORITY_REBUILD], 327 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_REBUILD])); 328 329 /* Request sizes */ 330 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO, 331 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ], 332 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ])); 333 334 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO, 335 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE], 336 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE])); 337 338 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO, 339 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ], 340 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ])); 341 342 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO, 343 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE], 344 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE])); 345 346 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO, 347 vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB], 348 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB])); 349 350 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO, 351 vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM], 352 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM])); 353 354 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_REBUILD_HISTO, 355 vsx->vsx_ind_histo[ZIO_PRIORITY_REBUILD], 356 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_REBUILD])); 357 358 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO, 359 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ], 360 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ])); 361 362 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO, 363 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE], 364 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE])); 365 366 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO, 367 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ], 368 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ])); 369 370 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO, 371 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE], 372 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE])); 373 374 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO, 375 vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB], 376 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB])); 377 378 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO, 379 vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM], 380 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM])); 381 382 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_REBUILD_HISTO, 383 vsx->vsx_agg_histo[ZIO_PRIORITY_REBUILD], 384 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_REBUILD])); 385 386 /* IO delays */ 387 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios); 388 389 /* Add extended stats nvlist to main nvlist */ 390 fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx); 391 392 fnvlist_free(nvx); 393 kmem_free(vs, sizeof (*vs)); 394 kmem_free(vsx, sizeof (*vsx)); 395 } 396 397 static void 398 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl) 399 { 400 spa_t *spa = vd->vdev_spa; 401 402 if (vd != spa->spa_root_vdev) 403 return; 404 405 /* provide either current or previous scan information */ 406 pool_scan_stat_t ps; 407 if (spa_scan_get_stats(spa, &ps) == 0) { 408 fnvlist_add_uint64_array(nvl, 409 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps, 410 sizeof (pool_scan_stat_t) / sizeof (uint64_t)); 411 } 412 413 pool_removal_stat_t prs; 414 if (spa_removal_get_stats(spa, &prs) == 0) { 415 fnvlist_add_uint64_array(nvl, 416 ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs, 417 sizeof (prs) / sizeof (uint64_t)); 418 } 419 420 pool_checkpoint_stat_t pcs; 421 if (spa_checkpoint_get_stats(spa, &pcs) == 0) { 422 fnvlist_add_uint64_array(nvl, 423 ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs, 424 sizeof (pcs) / sizeof (uint64_t)); 425 } 426 } 427 428 static void 429 top_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl) 430 { 431 if (vd == vd->vdev_top) { 432 vdev_rebuild_stat_t vrs; 433 if (vdev_rebuild_get_stats(vd, &vrs) == 0) { 434 fnvlist_add_uint64_array(nvl, 435 ZPOOL_CONFIG_REBUILD_STATS, (uint64_t *)&vrs, 436 sizeof (vrs) / sizeof (uint64_t)); 437 } 438 } 439 } 440 441 /* 442 * Generate the nvlist representing this vdev's config. 443 */ 444 nvlist_t * 445 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 446 vdev_config_flag_t flags) 447 { 448 nvlist_t *nv = NULL; 449 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 450 451 nv = fnvlist_alloc(); 452 453 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type); 454 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE))) 455 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id); 456 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid); 457 458 if (vd->vdev_path != NULL) 459 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path); 460 461 if (vd->vdev_devid != NULL) 462 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid); 463 464 if (vd->vdev_physpath != NULL) 465 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 466 vd->vdev_physpath); 467 468 if (vd->vdev_enc_sysfs_path != NULL) 469 fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 470 vd->vdev_enc_sysfs_path); 471 472 if (vd->vdev_fru != NULL) 473 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru); 474 475 if (vd->vdev_ops->vdev_op_config_generate != NULL) 476 vd->vdev_ops->vdev_op_config_generate(vd, nv); 477 478 if (vd->vdev_wholedisk != -1ULL) { 479 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 480 vd->vdev_wholedisk); 481 } 482 483 if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING)) 484 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1); 485 486 if (vd->vdev_isspare) 487 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1); 488 489 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) && 490 vd == vd->vdev_top) { 491 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 492 vd->vdev_ms_array); 493 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 494 vd->vdev_ms_shift); 495 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 496 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 497 vd->vdev_asize); 498 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog); 499 if (vd->vdev_noalloc) { 500 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NONALLOCATING, 501 vd->vdev_noalloc); 502 } 503 if (vd->vdev_removing) { 504 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING, 505 vd->vdev_removing); 506 } 507 508 /* zpool command expects alloc class data */ 509 if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) { 510 const char *bias = NULL; 511 512 switch (vd->vdev_alloc_bias) { 513 case VDEV_BIAS_LOG: 514 bias = VDEV_ALLOC_BIAS_LOG; 515 break; 516 case VDEV_BIAS_SPECIAL: 517 bias = VDEV_ALLOC_BIAS_SPECIAL; 518 break; 519 case VDEV_BIAS_DEDUP: 520 bias = VDEV_ALLOC_BIAS_DEDUP; 521 break; 522 default: 523 ASSERT3U(vd->vdev_alloc_bias, ==, 524 VDEV_BIAS_NONE); 525 } 526 fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 527 bias); 528 } 529 } 530 531 if (vd->vdev_dtl_sm != NULL) { 532 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 533 space_map_object(vd->vdev_dtl_sm)); 534 } 535 536 if (vic->vic_mapping_object != 0) { 537 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 538 vic->vic_mapping_object); 539 } 540 541 if (vic->vic_births_object != 0) { 542 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 543 vic->vic_births_object); 544 } 545 546 if (vic->vic_prev_indirect_vdev != UINT64_MAX) { 547 fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 548 vic->vic_prev_indirect_vdev); 549 } 550 551 if (vd->vdev_crtxg) 552 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg); 553 554 if (vd->vdev_expansion_time) 555 fnvlist_add_uint64(nv, ZPOOL_CONFIG_EXPANSION_TIME, 556 vd->vdev_expansion_time); 557 558 if (flags & VDEV_CONFIG_MOS) { 559 if (vd->vdev_leaf_zap != 0) { 560 ASSERT(vd->vdev_ops->vdev_op_leaf); 561 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP, 562 vd->vdev_leaf_zap); 563 } 564 565 if (vd->vdev_top_zap != 0) { 566 ASSERT(vd == vd->vdev_top); 567 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 568 vd->vdev_top_zap); 569 } 570 571 if (vd->vdev_resilver_deferred) { 572 ASSERT(vd->vdev_ops->vdev_op_leaf); 573 ASSERT(spa->spa_resilver_deferred); 574 fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER); 575 } 576 } 577 578 if (getstats) { 579 vdev_config_generate_stats(vd, nv); 580 581 root_vdev_actions_getprogress(vd, nv); 582 top_vdev_actions_getprogress(vd, nv); 583 584 /* 585 * Note: this can be called from open context 586 * (spa_get_stats()), so we need the rwlock to prevent 587 * the mapping from being changed by condensing. 588 */ 589 rw_enter(&vd->vdev_indirect_rwlock, RW_READER); 590 if (vd->vdev_indirect_mapping != NULL) { 591 ASSERT(vd->vdev_indirect_births != NULL); 592 vdev_indirect_mapping_t *vim = 593 vd->vdev_indirect_mapping; 594 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, 595 vdev_indirect_mapping_size(vim)); 596 } 597 rw_exit(&vd->vdev_indirect_rwlock); 598 if (vd->vdev_mg != NULL && 599 vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) { 600 /* 601 * Compute approximately how much memory would be used 602 * for the indirect mapping if this device were to 603 * be removed. 604 * 605 * Note: If the frag metric is invalid, then not 606 * enough metaslabs have been converted to have 607 * histograms. 608 */ 609 uint64_t seg_count = 0; 610 uint64_t to_alloc = vd->vdev_stat.vs_alloc; 611 612 /* 613 * There are the same number of allocated segments 614 * as free segments, so we will have at least one 615 * entry per free segment. However, small free 616 * segments (smaller than vdev_removal_max_span) 617 * will be combined with adjacent allocated segments 618 * as a single mapping. 619 */ 620 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 621 if (i + 1 < highbit64(vdev_removal_max_span) 622 - 1) { 623 to_alloc += 624 vd->vdev_mg->mg_histogram[i] << 625 (i + 1); 626 } else { 627 seg_count += 628 vd->vdev_mg->mg_histogram[i]; 629 } 630 } 631 632 /* 633 * The maximum length of a mapping is 634 * zfs_remove_max_segment, so we need at least one entry 635 * per zfs_remove_max_segment of allocated data. 636 */ 637 seg_count += to_alloc / spa_remove_max_segment(spa); 638 639 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, 640 seg_count * 641 sizeof (vdev_indirect_mapping_entry_phys_t)); 642 } 643 } 644 645 if (!vd->vdev_ops->vdev_op_leaf) { 646 nvlist_t **child; 647 int c, idx; 648 649 ASSERT(!vd->vdev_ishole); 650 651 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 652 KM_SLEEP); 653 654 for (c = 0, idx = 0; c < vd->vdev_children; c++) { 655 vdev_t *cvd = vd->vdev_child[c]; 656 657 /* 658 * If we're generating an nvlist of removing 659 * vdevs then skip over any device which is 660 * not being removed. 661 */ 662 if ((flags & VDEV_CONFIG_REMOVING) && 663 !cvd->vdev_removing) 664 continue; 665 666 child[idx++] = vdev_config_generate(spa, cvd, 667 getstats, flags); 668 } 669 670 if (idx) { 671 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 672 (const nvlist_t * const *)child, idx); 673 } 674 675 for (c = 0; c < idx; c++) 676 nvlist_free(child[c]); 677 678 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 679 680 } else { 681 const char *aux = NULL; 682 683 if (vd->vdev_offline && !vd->vdev_tmpoffline) 684 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE); 685 if (vd->vdev_resilver_txg != 0) 686 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 687 vd->vdev_resilver_txg); 688 if (vd->vdev_rebuild_txg != 0) 689 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 690 vd->vdev_rebuild_txg); 691 if (vd->vdev_faulted) 692 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE); 693 if (vd->vdev_degraded) 694 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE); 695 if (vd->vdev_removed) 696 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE); 697 if (vd->vdev_unspare) 698 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE); 699 if (vd->vdev_ishole) 700 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE); 701 702 /* Set the reason why we're FAULTED/DEGRADED. */ 703 switch (vd->vdev_stat.vs_aux) { 704 case VDEV_AUX_ERR_EXCEEDED: 705 aux = "err_exceeded"; 706 break; 707 708 case VDEV_AUX_EXTERNAL: 709 aux = "external"; 710 break; 711 } 712 713 if (aux != NULL && !vd->vdev_tmpoffline) { 714 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux); 715 } else { 716 /* 717 * We're healthy - clear any previous AUX_STATE values. 718 */ 719 if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE)) 720 nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE); 721 } 722 723 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { 724 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, 725 vd->vdev_orig_guid); 726 } 727 } 728 729 return (nv); 730 } 731 732 /* 733 * Generate a view of the top-level vdevs. If we currently have holes 734 * in the namespace, then generate an array which contains a list of holey 735 * vdevs. Additionally, add the number of top-level children that currently 736 * exist. 737 */ 738 void 739 vdev_top_config_generate(spa_t *spa, nvlist_t *config) 740 { 741 vdev_t *rvd = spa->spa_root_vdev; 742 uint64_t *array; 743 uint_t c, idx; 744 745 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP); 746 747 for (c = 0, idx = 0; c < rvd->vdev_children; c++) { 748 vdev_t *tvd = rvd->vdev_child[c]; 749 750 if (tvd->vdev_ishole) { 751 array[idx++] = c; 752 } 753 } 754 755 if (idx) { 756 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, 757 array, idx) == 0); 758 } 759 760 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 761 rvd->vdev_children) == 0); 762 763 kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); 764 } 765 766 /* 767 * Returns the configuration from the label of the given vdev. For vdevs 768 * which don't have a txg value stored on their label (i.e. spares/cache) 769 * or have not been completely initialized (txg = 0) just return 770 * the configuration from the first valid label we find. Otherwise, 771 * find the most up-to-date label that does not exceed the specified 772 * 'txg' value. 773 */ 774 nvlist_t * 775 vdev_label_read_config(vdev_t *vd, uint64_t txg) 776 { 777 spa_t *spa = vd->vdev_spa; 778 nvlist_t *config = NULL; 779 vdev_phys_t *vp[VDEV_LABELS]; 780 abd_t *vp_abd[VDEV_LABELS]; 781 zio_t *zio[VDEV_LABELS]; 782 uint64_t best_txg = 0; 783 uint64_t label_txg = 0; 784 int error = 0; 785 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 786 ZIO_FLAG_SPECULATIVE; 787 788 ASSERT(vd->vdev_validate_thread == curthread || 789 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 790 791 if (!vdev_readable(vd)) 792 return (NULL); 793 794 /* 795 * The label for a dRAID distributed spare is not stored on disk. 796 * Instead it is generated when needed which allows us to bypass 797 * the pipeline when reading the config from the label. 798 */ 799 if (vd->vdev_ops == &vdev_draid_spare_ops) 800 return (vdev_draid_read_config_spare(vd)); 801 802 for (int l = 0; l < VDEV_LABELS; l++) { 803 vp_abd[l] = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 804 vp[l] = abd_to_buf(vp_abd[l]); 805 } 806 807 retry: 808 for (int l = 0; l < VDEV_LABELS; l++) { 809 zio[l] = zio_root(spa, NULL, NULL, flags); 810 811 vdev_label_read(zio[l], vd, l, vp_abd[l], 812 offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t), 813 NULL, NULL, flags); 814 } 815 for (int l = 0; l < VDEV_LABELS; l++) { 816 nvlist_t *label = NULL; 817 818 if (zio_wait(zio[l]) == 0 && 819 nvlist_unpack(vp[l]->vp_nvlist, sizeof (vp[l]->vp_nvlist), 820 &label, 0) == 0) { 821 /* 822 * Auxiliary vdevs won't have txg values in their 823 * labels and newly added vdevs may not have been 824 * completely initialized so just return the 825 * configuration from the first valid label we 826 * encounter. 827 */ 828 error = nvlist_lookup_uint64(label, 829 ZPOOL_CONFIG_POOL_TXG, &label_txg); 830 if ((error || label_txg == 0) && !config) { 831 config = label; 832 for (l++; l < VDEV_LABELS; l++) 833 zio_wait(zio[l]); 834 break; 835 } else if (label_txg <= txg && label_txg > best_txg) { 836 best_txg = label_txg; 837 nvlist_free(config); 838 config = fnvlist_dup(label); 839 } 840 } 841 842 if (label != NULL) { 843 nvlist_free(label); 844 label = NULL; 845 } 846 } 847 848 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { 849 flags |= ZIO_FLAG_TRYHARD; 850 goto retry; 851 } 852 853 /* 854 * We found a valid label but it didn't pass txg restrictions. 855 */ 856 if (config == NULL && label_txg != 0) { 857 vdev_dbgmsg(vd, "label discarded as txg is too large " 858 "(%llu > %llu)", (u_longlong_t)label_txg, 859 (u_longlong_t)txg); 860 } 861 862 for (int l = 0; l < VDEV_LABELS; l++) { 863 abd_free(vp_abd[l]); 864 } 865 866 return (config); 867 } 868 869 /* 870 * Determine if a device is in use. The 'spare_guid' parameter will be filled 871 * in with the device guid if this spare is active elsewhere on the system. 872 */ 873 static boolean_t 874 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 875 uint64_t *spare_guid, uint64_t *l2cache_guid) 876 { 877 spa_t *spa = vd->vdev_spa; 878 uint64_t state, pool_guid, device_guid, txg, spare_pool; 879 uint64_t vdtxg = 0; 880 nvlist_t *label; 881 882 if (spare_guid) 883 *spare_guid = 0ULL; 884 if (l2cache_guid) 885 *l2cache_guid = 0ULL; 886 887 /* 888 * Read the label, if any, and perform some basic sanity checks. 889 */ 890 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) 891 return (B_FALSE); 892 893 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 894 &vdtxg); 895 896 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 897 &state) != 0 || 898 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 899 &device_guid) != 0) { 900 nvlist_free(label); 901 return (B_FALSE); 902 } 903 904 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 905 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 906 &pool_guid) != 0 || 907 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 908 &txg) != 0)) { 909 nvlist_free(label); 910 return (B_FALSE); 911 } 912 913 nvlist_free(label); 914 915 /* 916 * Check to see if this device indeed belongs to the pool it claims to 917 * be a part of. The only way this is allowed is if the device is a hot 918 * spare (which we check for later on). 919 */ 920 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 921 !spa_guid_exists(pool_guid, device_guid) && 922 !spa_spare_exists(device_guid, NULL, NULL) && 923 !spa_l2cache_exists(device_guid, NULL)) 924 return (B_FALSE); 925 926 /* 927 * If the transaction group is zero, then this an initialized (but 928 * unused) label. This is only an error if the create transaction 929 * on-disk is the same as the one we're using now, in which case the 930 * user has attempted to add the same vdev multiple times in the same 931 * transaction. 932 */ 933 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 934 txg == 0 && vdtxg == crtxg) 935 return (B_TRUE); 936 937 /* 938 * Check to see if this is a spare device. We do an explicit check for 939 * spa_has_spare() here because it may be on our pending list of spares 940 * to add. 941 */ 942 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 943 spa_has_spare(spa, device_guid)) { 944 if (spare_guid) 945 *spare_guid = device_guid; 946 947 switch (reason) { 948 case VDEV_LABEL_CREATE: 949 return (B_TRUE); 950 951 case VDEV_LABEL_REPLACE: 952 return (!spa_has_spare(spa, device_guid) || 953 spare_pool != 0ULL); 954 955 case VDEV_LABEL_SPARE: 956 return (spa_has_spare(spa, device_guid)); 957 default: 958 break; 959 } 960 } 961 962 /* 963 * Check to see if this is an l2cache device. 964 */ 965 if (spa_l2cache_exists(device_guid, NULL) || 966 spa_has_l2cache(spa, device_guid)) { 967 if (l2cache_guid) 968 *l2cache_guid = device_guid; 969 970 switch (reason) { 971 case VDEV_LABEL_CREATE: 972 return (B_TRUE); 973 974 case VDEV_LABEL_REPLACE: 975 return (!spa_has_l2cache(spa, device_guid)); 976 977 case VDEV_LABEL_L2CACHE: 978 return (spa_has_l2cache(spa, device_guid)); 979 default: 980 break; 981 } 982 } 983 984 /* 985 * We can't rely on a pool's state if it's been imported 986 * read-only. Instead we look to see if the pools is marked 987 * read-only in the namespace and set the state to active. 988 */ 989 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 990 (spa = spa_by_guid(pool_guid, device_guid)) != NULL && 991 spa_mode(spa) == SPA_MODE_READ) 992 state = POOL_STATE_ACTIVE; 993 994 /* 995 * If the device is marked ACTIVE, then this device is in use by another 996 * pool on the system. 997 */ 998 return (state == POOL_STATE_ACTIVE); 999 } 1000 1001 /* 1002 * Initialize a vdev label. We check to make sure each leaf device is not in 1003 * use, and writable. We put down an initial label which we will later 1004 * overwrite with a complete label. Note that it's important to do this 1005 * sequentially, not in parallel, so that we catch cases of multiple use of the 1006 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 1007 * itself. 1008 */ 1009 int 1010 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 1011 { 1012 spa_t *spa = vd->vdev_spa; 1013 nvlist_t *label; 1014 vdev_phys_t *vp; 1015 abd_t *vp_abd; 1016 abd_t *bootenv; 1017 uberblock_t *ub; 1018 abd_t *ub_abd; 1019 zio_t *zio; 1020 char *buf; 1021 size_t buflen; 1022 int error; 1023 uint64_t spare_guid = 0, l2cache_guid = 0; 1024 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1025 1026 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1027 1028 for (int c = 0; c < vd->vdev_children; c++) 1029 if ((error = vdev_label_init(vd->vdev_child[c], 1030 crtxg, reason)) != 0) 1031 return (error); 1032 1033 /* Track the creation time for this vdev */ 1034 vd->vdev_crtxg = crtxg; 1035 1036 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa)) 1037 return (0); 1038 1039 /* 1040 * Dead vdevs cannot be initialized. 1041 */ 1042 if (vdev_is_dead(vd)) 1043 return (SET_ERROR(EIO)); 1044 1045 /* 1046 * Determine if the vdev is in use. 1047 */ 1048 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && 1049 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 1050 return (SET_ERROR(EBUSY)); 1051 1052 /* 1053 * If this is a request to add or replace a spare or l2cache device 1054 * that is in use elsewhere on the system, then we must update the 1055 * guid (which was initialized to a random value) to reflect the 1056 * actual GUID (which is shared between multiple pools). 1057 */ 1058 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 1059 spare_guid != 0ULL) { 1060 uint64_t guid_delta = spare_guid - vd->vdev_guid; 1061 1062 vd->vdev_guid += guid_delta; 1063 1064 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1065 pvd->vdev_guid_sum += guid_delta; 1066 1067 /* 1068 * If this is a replacement, then we want to fallthrough to the 1069 * rest of the code. If we're adding a spare, then it's already 1070 * labeled appropriately and we can just return. 1071 */ 1072 if (reason == VDEV_LABEL_SPARE) 1073 return (0); 1074 ASSERT(reason == VDEV_LABEL_REPLACE || 1075 reason == VDEV_LABEL_SPLIT); 1076 } 1077 1078 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 1079 l2cache_guid != 0ULL) { 1080 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 1081 1082 vd->vdev_guid += guid_delta; 1083 1084 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1085 pvd->vdev_guid_sum += guid_delta; 1086 1087 /* 1088 * If this is a replacement, then we want to fallthrough to the 1089 * rest of the code. If we're adding an l2cache, then it's 1090 * already labeled appropriately and we can just return. 1091 */ 1092 if (reason == VDEV_LABEL_L2CACHE) 1093 return (0); 1094 ASSERT(reason == VDEV_LABEL_REPLACE); 1095 } 1096 1097 /* 1098 * Initialize its label. 1099 */ 1100 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 1101 abd_zero(vp_abd, sizeof (vdev_phys_t)); 1102 vp = abd_to_buf(vp_abd); 1103 1104 /* 1105 * Generate a label describing the pool and our top-level vdev. 1106 * We mark it as being from txg 0 to indicate that it's not 1107 * really part of an active pool just yet. The labels will 1108 * be written again with a meaningful txg by spa_sync(). 1109 */ 1110 if (reason == VDEV_LABEL_SPARE || 1111 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 1112 /* 1113 * For inactive hot spares, we generate a special label that 1114 * identifies as a mutually shared hot spare. We write the 1115 * label if we are adding a hot spare, or if we are removing an 1116 * active hot spare (in which case we want to revert the 1117 * labels). 1118 */ 1119 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1120 1121 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 1122 spa_version(spa)) == 0); 1123 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1124 POOL_STATE_SPARE) == 0); 1125 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 1126 vd->vdev_guid) == 0); 1127 } else if (reason == VDEV_LABEL_L2CACHE || 1128 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { 1129 /* 1130 * For level 2 ARC devices, add a special label. 1131 */ 1132 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1133 1134 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 1135 spa_version(spa)) == 0); 1136 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1137 POOL_STATE_L2CACHE) == 0); 1138 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 1139 vd->vdev_guid) == 0); 1140 } else { 1141 uint64_t txg = 0ULL; 1142 1143 if (reason == VDEV_LABEL_SPLIT) 1144 txg = spa->spa_uberblock.ub_txg; 1145 label = spa_config_generate(spa, vd, txg, B_FALSE); 1146 1147 /* 1148 * Add our creation time. This allows us to detect multiple 1149 * vdev uses as described above, and automatically expires if we 1150 * fail. 1151 */ 1152 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 1153 crtxg) == 0); 1154 } 1155 1156 buf = vp->vp_nvlist; 1157 buflen = sizeof (vp->vp_nvlist); 1158 1159 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 1160 if (error != 0) { 1161 nvlist_free(label); 1162 abd_free(vp_abd); 1163 /* EFAULT means nvlist_pack ran out of room */ 1164 return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL)); 1165 } 1166 1167 /* 1168 * Initialize uberblock template. 1169 */ 1170 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE); 1171 abd_zero(ub_abd, VDEV_UBERBLOCK_RING); 1172 abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t)); 1173 ub = abd_to_buf(ub_abd); 1174 ub->ub_txg = 0; 1175 1176 /* Initialize the 2nd padding area. */ 1177 bootenv = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); 1178 abd_zero(bootenv, VDEV_PAD_SIZE); 1179 1180 /* 1181 * Write everything in parallel. 1182 */ 1183 retry: 1184 zio = zio_root(spa, NULL, NULL, flags); 1185 1186 for (int l = 0; l < VDEV_LABELS; l++) { 1187 1188 vdev_label_write(zio, vd, l, vp_abd, 1189 offsetof(vdev_label_t, vl_vdev_phys), 1190 sizeof (vdev_phys_t), NULL, NULL, flags); 1191 1192 /* 1193 * Skip the 1st padding area. 1194 * Zero out the 2nd padding area where it might have 1195 * left over data from previous filesystem format. 1196 */ 1197 vdev_label_write(zio, vd, l, bootenv, 1198 offsetof(vdev_label_t, vl_be), 1199 VDEV_PAD_SIZE, NULL, NULL, flags); 1200 1201 vdev_label_write(zio, vd, l, ub_abd, 1202 offsetof(vdev_label_t, vl_uberblock), 1203 VDEV_UBERBLOCK_RING, NULL, NULL, flags); 1204 } 1205 1206 error = zio_wait(zio); 1207 1208 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 1209 flags |= ZIO_FLAG_TRYHARD; 1210 goto retry; 1211 } 1212 1213 nvlist_free(label); 1214 abd_free(bootenv); 1215 abd_free(ub_abd); 1216 abd_free(vp_abd); 1217 1218 /* 1219 * If this vdev hasn't been previously identified as a spare, then we 1220 * mark it as such only if a) we are labeling it as a spare, or b) it 1221 * exists as a spare elsewhere in the system. Do the same for 1222 * level 2 ARC devices. 1223 */ 1224 if (error == 0 && !vd->vdev_isspare && 1225 (reason == VDEV_LABEL_SPARE || 1226 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 1227 spa_spare_add(vd); 1228 1229 if (error == 0 && !vd->vdev_isl2cache && 1230 (reason == VDEV_LABEL_L2CACHE || 1231 spa_l2cache_exists(vd->vdev_guid, NULL))) 1232 spa_l2cache_add(vd); 1233 1234 return (error); 1235 } 1236 1237 /* 1238 * Done callback for vdev_label_read_bootenv_impl. If this is the first 1239 * callback to finish, store our abd in the callback pointer. Otherwise, we 1240 * just free our abd and return. 1241 */ 1242 static void 1243 vdev_label_read_bootenv_done(zio_t *zio) 1244 { 1245 zio_t *rio = zio->io_private; 1246 abd_t **cbp = rio->io_private; 1247 1248 ASSERT3U(zio->io_size, ==, VDEV_PAD_SIZE); 1249 1250 if (zio->io_error == 0) { 1251 mutex_enter(&rio->io_lock); 1252 if (*cbp == NULL) { 1253 /* Will free this buffer in vdev_label_read_bootenv. */ 1254 *cbp = zio->io_abd; 1255 } else { 1256 abd_free(zio->io_abd); 1257 } 1258 mutex_exit(&rio->io_lock); 1259 } else { 1260 abd_free(zio->io_abd); 1261 } 1262 } 1263 1264 static void 1265 vdev_label_read_bootenv_impl(zio_t *zio, vdev_t *vd, int flags) 1266 { 1267 for (int c = 0; c < vd->vdev_children; c++) 1268 vdev_label_read_bootenv_impl(zio, vd->vdev_child[c], flags); 1269 1270 /* 1271 * We just use the first label that has a correct checksum; the 1272 * bootloader should have rewritten them all to be the same on boot, 1273 * and any changes we made since boot have been the same across all 1274 * labels. 1275 */ 1276 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1277 for (int l = 0; l < VDEV_LABELS; l++) { 1278 vdev_label_read(zio, vd, l, 1279 abd_alloc_linear(VDEV_PAD_SIZE, B_FALSE), 1280 offsetof(vdev_label_t, vl_be), VDEV_PAD_SIZE, 1281 vdev_label_read_bootenv_done, zio, flags); 1282 } 1283 } 1284 } 1285 1286 int 1287 vdev_label_read_bootenv(vdev_t *rvd, nvlist_t *bootenv) 1288 { 1289 nvlist_t *config; 1290 spa_t *spa = rvd->vdev_spa; 1291 abd_t *abd = NULL; 1292 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1293 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 1294 1295 ASSERT(bootenv); 1296 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1297 1298 zio_t *zio = zio_root(spa, NULL, &abd, flags); 1299 vdev_label_read_bootenv_impl(zio, rvd, flags); 1300 int err = zio_wait(zio); 1301 1302 if (abd != NULL) { 1303 char *buf; 1304 vdev_boot_envblock_t *vbe = abd_to_buf(abd); 1305 1306 vbe->vbe_version = ntohll(vbe->vbe_version); 1307 switch (vbe->vbe_version) { 1308 case VB_RAW: 1309 /* 1310 * if we have textual data in vbe_bootenv, create nvlist 1311 * with key "envmap". 1312 */ 1313 fnvlist_add_uint64(bootenv, BOOTENV_VERSION, VB_RAW); 1314 vbe->vbe_bootenv[sizeof (vbe->vbe_bootenv) - 1] = '\0'; 1315 fnvlist_add_string(bootenv, GRUB_ENVMAP, 1316 vbe->vbe_bootenv); 1317 break; 1318 1319 case VB_NVLIST: 1320 err = nvlist_unpack(vbe->vbe_bootenv, 1321 sizeof (vbe->vbe_bootenv), &config, 0); 1322 if (err == 0) { 1323 fnvlist_merge(bootenv, config); 1324 nvlist_free(config); 1325 break; 1326 } 1327 zfs_fallthrough; 1328 default: 1329 /* Check for FreeBSD zfs bootonce command string */ 1330 buf = abd_to_buf(abd); 1331 if (*buf == '\0') { 1332 fnvlist_add_uint64(bootenv, BOOTENV_VERSION, 1333 VB_NVLIST); 1334 break; 1335 } 1336 fnvlist_add_string(bootenv, FREEBSD_BOOTONCE, buf); 1337 } 1338 1339 /* 1340 * abd was allocated in vdev_label_read_bootenv_impl() 1341 */ 1342 abd_free(abd); 1343 /* 1344 * If we managed to read any successfully, 1345 * return success. 1346 */ 1347 return (0); 1348 } 1349 return (err); 1350 } 1351 1352 int 1353 vdev_label_write_bootenv(vdev_t *vd, nvlist_t *env) 1354 { 1355 zio_t *zio; 1356 spa_t *spa = vd->vdev_spa; 1357 vdev_boot_envblock_t *bootenv; 1358 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1359 int error; 1360 size_t nvsize; 1361 char *nvbuf; 1362 1363 error = nvlist_size(env, &nvsize, NV_ENCODE_XDR); 1364 if (error != 0) 1365 return (SET_ERROR(error)); 1366 1367 if (nvsize >= sizeof (bootenv->vbe_bootenv)) { 1368 return (SET_ERROR(E2BIG)); 1369 } 1370 1371 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1372 1373 error = ENXIO; 1374 for (int c = 0; c < vd->vdev_children; c++) { 1375 int child_err; 1376 1377 child_err = vdev_label_write_bootenv(vd->vdev_child[c], env); 1378 /* 1379 * As long as any of the disks managed to write all of their 1380 * labels successfully, return success. 1381 */ 1382 if (child_err == 0) 1383 error = child_err; 1384 } 1385 1386 if (!vd->vdev_ops->vdev_op_leaf || vdev_is_dead(vd) || 1387 !vdev_writeable(vd)) { 1388 return (error); 1389 } 1390 ASSERT3U(sizeof (*bootenv), ==, VDEV_PAD_SIZE); 1391 abd_t *abd = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); 1392 abd_zero(abd, VDEV_PAD_SIZE); 1393 1394 bootenv = abd_borrow_buf_copy(abd, VDEV_PAD_SIZE); 1395 nvbuf = bootenv->vbe_bootenv; 1396 nvsize = sizeof (bootenv->vbe_bootenv); 1397 1398 bootenv->vbe_version = fnvlist_lookup_uint64(env, BOOTENV_VERSION); 1399 switch (bootenv->vbe_version) { 1400 case VB_RAW: 1401 if (nvlist_lookup_string(env, GRUB_ENVMAP, &nvbuf) == 0) { 1402 (void) strlcpy(bootenv->vbe_bootenv, nvbuf, nvsize); 1403 } 1404 error = 0; 1405 break; 1406 1407 case VB_NVLIST: 1408 error = nvlist_pack(env, &nvbuf, &nvsize, NV_ENCODE_XDR, 1409 KM_SLEEP); 1410 break; 1411 1412 default: 1413 error = EINVAL; 1414 break; 1415 } 1416 1417 if (error == 0) { 1418 bootenv->vbe_version = htonll(bootenv->vbe_version); 1419 abd_return_buf_copy(abd, bootenv, VDEV_PAD_SIZE); 1420 } else { 1421 abd_free(abd); 1422 return (SET_ERROR(error)); 1423 } 1424 1425 retry: 1426 zio = zio_root(spa, NULL, NULL, flags); 1427 for (int l = 0; l < VDEV_LABELS; l++) { 1428 vdev_label_write(zio, vd, l, abd, 1429 offsetof(vdev_label_t, vl_be), 1430 VDEV_PAD_SIZE, NULL, NULL, flags); 1431 } 1432 1433 error = zio_wait(zio); 1434 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 1435 flags |= ZIO_FLAG_TRYHARD; 1436 goto retry; 1437 } 1438 1439 abd_free(abd); 1440 return (error); 1441 } 1442 1443 /* 1444 * ========================================================================== 1445 * uberblock load/sync 1446 * ========================================================================== 1447 */ 1448 1449 /* 1450 * Consider the following situation: txg is safely synced to disk. We've 1451 * written the first uberblock for txg + 1, and then we lose power. When we 1452 * come back up, we fail to see the uberblock for txg + 1 because, say, 1453 * it was on a mirrored device and the replica to which we wrote txg + 1 1454 * is now offline. If we then make some changes and sync txg + 1, and then 1455 * the missing replica comes back, then for a few seconds we'll have two 1456 * conflicting uberblocks on disk with the same txg. The solution is simple: 1457 * among uberblocks with equal txg, choose the one with the latest timestamp. 1458 */ 1459 static int 1460 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2) 1461 { 1462 int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg); 1463 1464 if (likely(cmp)) 1465 return (cmp); 1466 1467 cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp); 1468 if (likely(cmp)) 1469 return (cmp); 1470 1471 /* 1472 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware 1473 * ZFS, e.g. OpenZFS >= 0.7. 1474 * 1475 * If one ub has MMP and the other does not, they were written by 1476 * different hosts, which matters for MMP. So we treat no MMP/no SEQ as 1477 * a 0 value. 1478 * 1479 * Since timestamp and txg are the same if we get this far, either is 1480 * acceptable for importing the pool. 1481 */ 1482 unsigned int seq1 = 0; 1483 unsigned int seq2 = 0; 1484 1485 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1)) 1486 seq1 = MMP_SEQ(ub1); 1487 1488 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2)) 1489 seq2 = MMP_SEQ(ub2); 1490 1491 return (TREE_CMP(seq1, seq2)); 1492 } 1493 1494 struct ubl_cbdata { 1495 uberblock_t *ubl_ubbest; /* Best uberblock */ 1496 vdev_t *ubl_vd; /* vdev associated with the above */ 1497 }; 1498 1499 static void 1500 vdev_uberblock_load_done(zio_t *zio) 1501 { 1502 vdev_t *vd = zio->io_vd; 1503 spa_t *spa = zio->io_spa; 1504 zio_t *rio = zio->io_private; 1505 uberblock_t *ub = abd_to_buf(zio->io_abd); 1506 struct ubl_cbdata *cbp = rio->io_private; 1507 1508 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd)); 1509 1510 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 1511 mutex_enter(&rio->io_lock); 1512 if (ub->ub_txg <= spa->spa_load_max_txg && 1513 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) { 1514 /* 1515 * Keep track of the vdev in which this uberblock 1516 * was found. We will use this information later 1517 * to obtain the config nvlist associated with 1518 * this uberblock. 1519 */ 1520 *cbp->ubl_ubbest = *ub; 1521 cbp->ubl_vd = vd; 1522 } 1523 mutex_exit(&rio->io_lock); 1524 } 1525 1526 abd_free(zio->io_abd); 1527 } 1528 1529 static void 1530 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags, 1531 struct ubl_cbdata *cbp) 1532 { 1533 for (int c = 0; c < vd->vdev_children; c++) 1534 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp); 1535 1536 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd) && 1537 vd->vdev_ops != &vdev_draid_spare_ops) { 1538 for (int l = 0; l < VDEV_LABELS; l++) { 1539 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1540 vdev_label_read(zio, vd, l, 1541 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), 1542 B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n), 1543 VDEV_UBERBLOCK_SIZE(vd), 1544 vdev_uberblock_load_done, zio, flags); 1545 } 1546 } 1547 } 1548 } 1549 1550 /* 1551 * Reads the 'best' uberblock from disk along with its associated 1552 * configuration. First, we read the uberblock array of each label of each 1553 * vdev, keeping track of the uberblock with the highest txg in each array. 1554 * Then, we read the configuration from the same vdev as the best uberblock. 1555 */ 1556 void 1557 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config) 1558 { 1559 zio_t *zio; 1560 spa_t *spa = rvd->vdev_spa; 1561 struct ubl_cbdata cb; 1562 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1563 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 1564 1565 ASSERT(ub); 1566 ASSERT(config); 1567 1568 memset(ub, 0, sizeof (uberblock_t)); 1569 *config = NULL; 1570 1571 cb.ubl_ubbest = ub; 1572 cb.ubl_vd = NULL; 1573 1574 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1575 zio = zio_root(spa, NULL, &cb, flags); 1576 vdev_uberblock_load_impl(zio, rvd, flags, &cb); 1577 (void) zio_wait(zio); 1578 1579 /* 1580 * It's possible that the best uberblock was discovered on a label 1581 * that has a configuration which was written in a future txg. 1582 * Search all labels on this vdev to find the configuration that 1583 * matches the txg for our uberblock. 1584 */ 1585 if (cb.ubl_vd != NULL) { 1586 vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. " 1587 "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg); 1588 1589 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg); 1590 if (*config == NULL && spa->spa_extreme_rewind) { 1591 vdev_dbgmsg(cb.ubl_vd, "failed to read label config. " 1592 "Trying again without txg restrictions."); 1593 *config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX); 1594 } 1595 if (*config == NULL) { 1596 vdev_dbgmsg(cb.ubl_vd, "failed to read label config"); 1597 } 1598 } 1599 spa_config_exit(spa, SCL_ALL, FTAG); 1600 } 1601 1602 /* 1603 * For use when a leaf vdev is expanded. 1604 * The location of labels 2 and 3 changed, and at the new location the 1605 * uberblock rings are either empty or contain garbage. The sync will write 1606 * new configs there because the vdev is dirty, but expansion also needs the 1607 * uberblock rings copied. Read them from label 0 which did not move. 1608 * 1609 * Since the point is to populate labels {2,3} with valid uberblocks, 1610 * we zero uberblocks we fail to read or which are not valid. 1611 */ 1612 1613 static void 1614 vdev_copy_uberblocks(vdev_t *vd) 1615 { 1616 abd_t *ub_abd; 1617 zio_t *write_zio; 1618 int locks = (SCL_L2ARC | SCL_ZIO); 1619 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1620 ZIO_FLAG_SPECULATIVE; 1621 1622 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) == 1623 SCL_STATE); 1624 ASSERT(vd->vdev_ops->vdev_op_leaf); 1625 1626 /* 1627 * No uberblocks are stored on distributed spares, they may be 1628 * safely skipped when expanding a leaf vdev. 1629 */ 1630 if (vd->vdev_ops == &vdev_draid_spare_ops) 1631 return; 1632 1633 spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER); 1634 1635 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE); 1636 1637 write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags); 1638 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1639 const int src_label = 0; 1640 zio_t *zio; 1641 1642 zio = zio_root(vd->vdev_spa, NULL, NULL, flags); 1643 vdev_label_read(zio, vd, src_label, ub_abd, 1644 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1645 NULL, NULL, flags); 1646 1647 if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd))) 1648 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd)); 1649 1650 for (int l = 2; l < VDEV_LABELS; l++) 1651 vdev_label_write(write_zio, vd, l, ub_abd, 1652 VDEV_UBERBLOCK_OFFSET(vd, n), 1653 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL, 1654 flags | ZIO_FLAG_DONT_PROPAGATE); 1655 } 1656 (void) zio_wait(write_zio); 1657 1658 spa_config_exit(vd->vdev_spa, locks, FTAG); 1659 1660 abd_free(ub_abd); 1661 } 1662 1663 /* 1664 * On success, increment root zio's count of good writes. 1665 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 1666 */ 1667 static void 1668 vdev_uberblock_sync_done(zio_t *zio) 1669 { 1670 uint64_t *good_writes = zio->io_private; 1671 1672 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 1673 atomic_inc_64(good_writes); 1674 } 1675 1676 /* 1677 * Write the uberblock to all labels of all leaves of the specified vdev. 1678 */ 1679 static void 1680 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes, 1681 uberblock_t *ub, vdev_t *vd, int flags) 1682 { 1683 for (uint64_t c = 0; c < vd->vdev_children; c++) { 1684 vdev_uberblock_sync(zio, good_writes, 1685 ub, vd->vdev_child[c], flags); 1686 } 1687 1688 if (!vd->vdev_ops->vdev_op_leaf) 1689 return; 1690 1691 if (!vdev_writeable(vd)) 1692 return; 1693 1694 /* 1695 * There's no need to write uberblocks to a distributed spare, they 1696 * are already stored on all the leaves of the parent dRAID. For 1697 * this same reason vdev_uberblock_load_impl() skips distributed 1698 * spares when reading uberblocks. 1699 */ 1700 if (vd->vdev_ops == &vdev_draid_spare_ops) 1701 return; 1702 1703 /* If the vdev was expanded, need to copy uberblock rings. */ 1704 if (vd->vdev_state == VDEV_STATE_HEALTHY && 1705 vd->vdev_copy_uberblocks == B_TRUE) { 1706 vdev_copy_uberblocks(vd); 1707 vd->vdev_copy_uberblocks = B_FALSE; 1708 } 1709 1710 int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0; 1711 int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m); 1712 1713 /* Copy the uberblock_t into the ABD */ 1714 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE); 1715 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd)); 1716 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t)); 1717 1718 for (int l = 0; l < VDEV_LABELS; l++) 1719 vdev_label_write(zio, vd, l, ub_abd, 1720 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1721 vdev_uberblock_sync_done, good_writes, 1722 flags | ZIO_FLAG_DONT_PROPAGATE); 1723 1724 abd_free(ub_abd); 1725 } 1726 1727 /* Sync the uberblocks to all vdevs in svd[] */ 1728 static int 1729 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 1730 { 1731 spa_t *spa = svd[0]->vdev_spa; 1732 zio_t *zio; 1733 uint64_t good_writes = 0; 1734 1735 zio = zio_root(spa, NULL, NULL, flags); 1736 1737 for (int v = 0; v < svdcount; v++) 1738 vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags); 1739 1740 (void) zio_wait(zio); 1741 1742 /* 1743 * Flush the uberblocks to disk. This ensures that the odd labels 1744 * are no longer needed (because the new uberblocks and the even 1745 * labels are safely on disk), so it is safe to overwrite them. 1746 */ 1747 zio = zio_root(spa, NULL, NULL, flags); 1748 1749 for (int v = 0; v < svdcount; v++) { 1750 if (vdev_writeable(svd[v])) { 1751 zio_flush(zio, svd[v]); 1752 } 1753 } 1754 1755 (void) zio_wait(zio); 1756 1757 return (good_writes >= 1 ? 0 : EIO); 1758 } 1759 1760 /* 1761 * On success, increment the count of good writes for our top-level vdev. 1762 */ 1763 static void 1764 vdev_label_sync_done(zio_t *zio) 1765 { 1766 uint64_t *good_writes = zio->io_private; 1767 1768 if (zio->io_error == 0) 1769 atomic_inc_64(good_writes); 1770 } 1771 1772 /* 1773 * If there weren't enough good writes, indicate failure to the parent. 1774 */ 1775 static void 1776 vdev_label_sync_top_done(zio_t *zio) 1777 { 1778 uint64_t *good_writes = zio->io_private; 1779 1780 if (*good_writes == 0) 1781 zio->io_error = SET_ERROR(EIO); 1782 1783 kmem_free(good_writes, sizeof (uint64_t)); 1784 } 1785 1786 /* 1787 * We ignore errors for log and cache devices, simply free the private data. 1788 */ 1789 static void 1790 vdev_label_sync_ignore_done(zio_t *zio) 1791 { 1792 kmem_free(zio->io_private, sizeof (uint64_t)); 1793 } 1794 1795 /* 1796 * Write all even or odd labels to all leaves of the specified vdev. 1797 */ 1798 static void 1799 vdev_label_sync(zio_t *zio, uint64_t *good_writes, 1800 vdev_t *vd, int l, uint64_t txg, int flags) 1801 { 1802 nvlist_t *label; 1803 vdev_phys_t *vp; 1804 abd_t *vp_abd; 1805 char *buf; 1806 size_t buflen; 1807 1808 for (int c = 0; c < vd->vdev_children; c++) { 1809 vdev_label_sync(zio, good_writes, 1810 vd->vdev_child[c], l, txg, flags); 1811 } 1812 1813 if (!vd->vdev_ops->vdev_op_leaf) 1814 return; 1815 1816 if (!vdev_writeable(vd)) 1817 return; 1818 1819 /* 1820 * The top-level config never needs to be written to a distributed 1821 * spare. When read vdev_dspare_label_read_config() will generate 1822 * the config for the vdev_label_read_config(). 1823 */ 1824 if (vd->vdev_ops == &vdev_draid_spare_ops) 1825 return; 1826 1827 /* 1828 * Generate a label describing the top-level config to which we belong. 1829 */ 1830 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 1831 1832 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 1833 abd_zero(vp_abd, sizeof (vdev_phys_t)); 1834 vp = abd_to_buf(vp_abd); 1835 1836 buf = vp->vp_nvlist; 1837 buflen = sizeof (vp->vp_nvlist); 1838 1839 if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) { 1840 for (; l < VDEV_LABELS; l += 2) { 1841 vdev_label_write(zio, vd, l, vp_abd, 1842 offsetof(vdev_label_t, vl_vdev_phys), 1843 sizeof (vdev_phys_t), 1844 vdev_label_sync_done, good_writes, 1845 flags | ZIO_FLAG_DONT_PROPAGATE); 1846 } 1847 } 1848 1849 abd_free(vp_abd); 1850 nvlist_free(label); 1851 } 1852 1853 static int 1854 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 1855 { 1856 list_t *dl = &spa->spa_config_dirty_list; 1857 vdev_t *vd; 1858 zio_t *zio; 1859 int error; 1860 1861 /* 1862 * Write the new labels to disk. 1863 */ 1864 zio = zio_root(spa, NULL, NULL, flags); 1865 1866 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 1867 uint64_t *good_writes; 1868 1869 ASSERT(!vd->vdev_ishole); 1870 1871 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 1872 zio_t *vio = zio_null(zio, spa, NULL, 1873 (vd->vdev_islog || vd->vdev_aux != NULL) ? 1874 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 1875 good_writes, flags); 1876 vdev_label_sync(vio, good_writes, vd, l, txg, flags); 1877 zio_nowait(vio); 1878 } 1879 1880 error = zio_wait(zio); 1881 1882 /* 1883 * Flush the new labels to disk. 1884 */ 1885 zio = zio_root(spa, NULL, NULL, flags); 1886 1887 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 1888 zio_flush(zio, vd); 1889 1890 (void) zio_wait(zio); 1891 1892 return (error); 1893 } 1894 1895 /* 1896 * Sync the uberblock and any changes to the vdev configuration. 1897 * 1898 * The order of operations is carefully crafted to ensure that 1899 * if the system panics or loses power at any time, the state on disk 1900 * is still transactionally consistent. The in-line comments below 1901 * describe the failure semantics at each stage. 1902 * 1903 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 1904 * at any time, you can just call it again, and it will resume its work. 1905 */ 1906 int 1907 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg) 1908 { 1909 spa_t *spa = svd[0]->vdev_spa; 1910 uberblock_t *ub = &spa->spa_uberblock; 1911 int error = 0; 1912 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1913 1914 ASSERT(svdcount != 0); 1915 retry: 1916 /* 1917 * Normally, we don't want to try too hard to write every label and 1918 * uberblock. If there is a flaky disk, we don't want the rest of the 1919 * sync process to block while we retry. But if we can't write a 1920 * single label out, we should retry with ZIO_FLAG_TRYHARD before 1921 * bailing out and declaring the pool faulted. 1922 */ 1923 if (error != 0) { 1924 if ((flags & ZIO_FLAG_TRYHARD) != 0) 1925 return (error); 1926 flags |= ZIO_FLAG_TRYHARD; 1927 } 1928 1929 ASSERT(ub->ub_txg <= txg); 1930 1931 /* 1932 * If this isn't a resync due to I/O errors, 1933 * and nothing changed in this transaction group, 1934 * and the vdev configuration hasn't changed, 1935 * then there's nothing to do. 1936 */ 1937 if (ub->ub_txg < txg) { 1938 boolean_t changed = uberblock_update(ub, spa->spa_root_vdev, 1939 txg, spa->spa_mmp.mmp_delay); 1940 1941 if (!changed && list_is_empty(&spa->spa_config_dirty_list)) 1942 return (0); 1943 } 1944 1945 if (txg > spa_freeze_txg(spa)) 1946 return (0); 1947 1948 ASSERT(txg <= spa->spa_final_txg); 1949 1950 /* 1951 * Flush the write cache of every disk that's been written to 1952 * in this transaction group. This ensures that all blocks 1953 * written in this txg will be committed to stable storage 1954 * before any uberblock that references them. 1955 */ 1956 zio_t *zio = zio_root(spa, NULL, NULL, flags); 1957 1958 for (vdev_t *vd = 1959 txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL; 1960 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 1961 zio_flush(zio, vd); 1962 1963 (void) zio_wait(zio); 1964 1965 /* 1966 * Sync out the even labels (L0, L2) for every dirty vdev. If the 1967 * system dies in the middle of this process, that's OK: all of the 1968 * even labels that made it to disk will be newer than any uberblock, 1969 * and will therefore be considered invalid. The odd labels (L1, L3), 1970 * which have not yet been touched, will still be valid. We flush 1971 * the new labels to disk to ensure that all even-label updates 1972 * are committed to stable storage before the uberblock update. 1973 */ 1974 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) { 1975 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 1976 zfs_dbgmsg("vdev_label_sync_list() returned error %d " 1977 "for pool '%s' when syncing out the even labels " 1978 "of dirty vdevs", error, spa_name(spa)); 1979 } 1980 goto retry; 1981 } 1982 1983 /* 1984 * Sync the uberblocks to all vdevs in svd[]. 1985 * If the system dies in the middle of this step, there are two cases 1986 * to consider, and the on-disk state is consistent either way: 1987 * 1988 * (1) If none of the new uberblocks made it to disk, then the 1989 * previous uberblock will be the newest, and the odd labels 1990 * (which had not yet been touched) will be valid with respect 1991 * to that uberblock. 1992 * 1993 * (2) If one or more new uberblocks made it to disk, then they 1994 * will be the newest, and the even labels (which had all 1995 * been successfully committed) will be valid with respect 1996 * to the new uberblocks. 1997 */ 1998 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) { 1999 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 2000 zfs_dbgmsg("vdev_uberblock_sync_list() returned error " 2001 "%d for pool '%s'", error, spa_name(spa)); 2002 } 2003 goto retry; 2004 } 2005 2006 if (spa_multihost(spa)) 2007 mmp_update_uberblock(spa, ub); 2008 2009 /* 2010 * Sync out odd labels for every dirty vdev. If the system dies 2011 * in the middle of this process, the even labels and the new 2012 * uberblocks will suffice to open the pool. The next time 2013 * the pool is opened, the first thing we'll do -- before any 2014 * user data is modified -- is mark every vdev dirty so that 2015 * all labels will be brought up to date. We flush the new labels 2016 * to disk to ensure that all odd-label updates are committed to 2017 * stable storage before the next transaction group begins. 2018 */ 2019 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) { 2020 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 2021 zfs_dbgmsg("vdev_label_sync_list() returned error %d " 2022 "for pool '%s' when syncing out the odd labels of " 2023 "dirty vdevs", error, spa_name(spa)); 2024 } 2025 goto retry; 2026 } 2027 2028 return (0); 2029 } 2030