xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_label.c (revision 0577e39bec76b23aa099b68d5d1c832cc3823c38)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  */
27 
28 /*
29  * Virtual Device Labels
30  * ---------------------
31  *
32  * The vdev label serves several distinct purposes:
33  *
34  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
35  *	   identity within the pool.
36  *
37  *	2. Verify that all the devices given in a configuration are present
38  *         within the pool.
39  *
40  *	3. Determine the uberblock for the pool.
41  *
42  *	4. In case of an import operation, determine the configuration of the
43  *         toplevel vdev of which it is a part.
44  *
45  *	5. If an import operation cannot find all the devices in the pool,
46  *         provide enough information to the administrator to determine which
47  *         devices are missing.
48  *
49  * It is important to note that while the kernel is responsible for writing the
50  * label, it only consumes the information in the first three cases.  The
51  * latter information is only consumed in userland when determining the
52  * configuration to import a pool.
53  *
54  *
55  * Label Organization
56  * ------------------
57  *
58  * Before describing the contents of the label, it's important to understand how
59  * the labels are written and updated with respect to the uberblock.
60  *
61  * When the pool configuration is altered, either because it was newly created
62  * or a device was added, we want to update all the labels such that we can deal
63  * with fatal failure at any point.  To this end, each disk has two labels which
64  * are updated before and after the uberblock is synced.  Assuming we have
65  * labels and an uberblock with the following transaction groups:
66  *
67  *              L1          UB          L2
68  *           +------+    +------+    +------+
69  *           |      |    |      |    |      |
70  *           | t10  |    | t10  |    | t10  |
71  *           |      |    |      |    |      |
72  *           +------+    +------+    +------+
73  *
74  * In this stable state, the labels and the uberblock were all updated within
75  * the same transaction group (10).  Each label is mirrored and checksummed, so
76  * that we can detect when we fail partway through writing the label.
77  *
78  * In order to identify which labels are valid, the labels are written in the
79  * following manner:
80  *
81  *	1. For each vdev, update 'L1' to the new label
82  *	2. Update the uberblock
83  *	3. For each vdev, update 'L2' to the new label
84  *
85  * Given arbitrary failure, we can determine the correct label to use based on
86  * the transaction group.  If we fail after updating L1 but before updating the
87  * UB, we will notice that L1's transaction group is greater than the uberblock,
88  * so L2 must be valid.  If we fail after writing the uberblock but before
89  * writing L2, we will notice that L2's transaction group is less than L1, and
90  * therefore L1 is valid.
91  *
92  * Another added complexity is that not every label is updated when the config
93  * is synced.  If we add a single device, we do not want to have to re-write
94  * every label for every device in the pool.  This means that both L1 and L2 may
95  * be older than the pool uberblock, because the necessary information is stored
96  * on another vdev.
97  *
98  *
99  * On-disk Format
100  * --------------
101  *
102  * The vdev label consists of two distinct parts, and is wrapped within the
103  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
104  * VTOC disk labels, but is otherwise ignored.
105  *
106  * The first half of the label is a packed nvlist which contains pool wide
107  * properties, per-vdev properties, and configuration information.  It is
108  * described in more detail below.
109  *
110  * The latter half of the label consists of a redundant array of uberblocks.
111  * These uberblocks are updated whenever a transaction group is committed,
112  * or when the configuration is updated.  When a pool is loaded, we scan each
113  * vdev for the 'best' uberblock.
114  *
115  *
116  * Configuration Information
117  * -------------------------
118  *
119  * The nvlist describing the pool and vdev contains the following elements:
120  *
121  *	version		ZFS on-disk version
122  *	name		Pool name
123  *	state		Pool state
124  *	txg		Transaction group in which this label was written
125  *	pool_guid	Unique identifier for this pool
126  *	vdev_tree	An nvlist describing vdev tree.
127  *	features_for_read
128  *			An nvlist of the features necessary for reading the MOS.
129  *
130  * Each leaf device label also contains the following:
131  *
132  *	top_guid	Unique ID for top-level vdev in which this is contained
133  *	guid		Unique ID for the leaf vdev
134  *
135  * The 'vs' configuration follows the format described in 'spa_config.c'.
136  */
137 
138 #include <sys/zfs_context.h>
139 #include <sys/spa.h>
140 #include <sys/spa_impl.h>
141 #include <sys/dmu.h>
142 #include <sys/zap.h>
143 #include <sys/vdev.h>
144 #include <sys/vdev_impl.h>
145 #include <sys/vdev_draid.h>
146 #include <sys/uberblock_impl.h>
147 #include <sys/metaslab.h>
148 #include <sys/metaslab_impl.h>
149 #include <sys/zio.h>
150 #include <sys/dsl_scan.h>
151 #include <sys/abd.h>
152 #include <sys/fs/zfs.h>
153 #include <sys/byteorder.h>
154 #include <sys/zfs_bootenv.h>
155 
156 /*
157  * Basic routines to read and write from a vdev label.
158  * Used throughout the rest of this file.
159  */
160 uint64_t
161 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
162 {
163 	ASSERT(offset < sizeof (vdev_label_t));
164 	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
165 
166 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
167 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
168 }
169 
170 /*
171  * Returns back the vdev label associated with the passed in offset.
172  */
173 int
174 vdev_label_number(uint64_t psize, uint64_t offset)
175 {
176 	int l;
177 
178 	if (offset >= psize - VDEV_LABEL_END_SIZE) {
179 		offset -= psize - VDEV_LABEL_END_SIZE;
180 		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
181 	}
182 	l = offset / sizeof (vdev_label_t);
183 	return (l < VDEV_LABELS ? l : -1);
184 }
185 
186 static void
187 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
188     uint64_t size, zio_done_func_t *done, void *private, int flags)
189 {
190 	ASSERT(
191 	    spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
192 	    spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
193 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
194 
195 	zio_nowait(zio_read_phys(zio, vd,
196 	    vdev_label_offset(vd->vdev_psize, l, offset),
197 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
198 	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
199 }
200 
201 void
202 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
203     uint64_t size, zio_done_func_t *done, void *private, int flags)
204 {
205 	ASSERT(
206 	    spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
207 	    spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
208 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
209 
210 	zio_nowait(zio_write_phys(zio, vd,
211 	    vdev_label_offset(vd->vdev_psize, l, offset),
212 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
213 	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
214 }
215 
216 /*
217  * Generate the nvlist representing this vdev's stats
218  */
219 void
220 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv)
221 {
222 	nvlist_t *nvx;
223 	vdev_stat_t *vs;
224 	vdev_stat_ex_t *vsx;
225 
226 	vs = kmem_alloc(sizeof (*vs), KM_SLEEP);
227 	vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP);
228 
229 	vdev_get_stats_ex(vd, vs, vsx);
230 	fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
231 	    (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t));
232 
233 	/*
234 	 * Add extended stats into a special extended stats nvlist.  This keeps
235 	 * all the extended stats nicely grouped together.  The extended stats
236 	 * nvlist is then added to the main nvlist.
237 	 */
238 	nvx = fnvlist_alloc();
239 
240 	/* ZIOs in flight to disk */
241 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE,
242 	    vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]);
243 
244 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE,
245 	    vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]);
246 
247 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE,
248 	    vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]);
249 
250 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE,
251 	    vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]);
252 
253 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE,
254 	    vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]);
255 
256 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE,
257 	    vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]);
258 
259 	/* ZIOs pending */
260 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE,
261 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]);
262 
263 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE,
264 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]);
265 
266 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE,
267 	    vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]);
268 
269 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE,
270 	    vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]);
271 
272 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE,
273 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]);
274 
275 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE,
276 	    vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]);
277 
278 	/* Histograms */
279 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO,
280 	    vsx->vsx_total_histo[ZIO_TYPE_READ],
281 	    ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ]));
282 
283 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO,
284 	    vsx->vsx_total_histo[ZIO_TYPE_WRITE],
285 	    ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE]));
286 
287 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO,
288 	    vsx->vsx_disk_histo[ZIO_TYPE_READ],
289 	    ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ]));
290 
291 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO,
292 	    vsx->vsx_disk_histo[ZIO_TYPE_WRITE],
293 	    ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE]));
294 
295 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO,
296 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ],
297 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ]));
298 
299 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO,
300 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE],
301 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE]));
302 
303 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO,
304 	    vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ],
305 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ]));
306 
307 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO,
308 	    vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE],
309 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE]));
310 
311 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO,
312 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB],
313 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB]));
314 
315 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO,
316 	    vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM],
317 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM]));
318 
319 	/* Request sizes */
320 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO,
321 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ],
322 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ]));
323 
324 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO,
325 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE],
326 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE]));
327 
328 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO,
329 	    vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ],
330 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ]));
331 
332 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO,
333 	    vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE],
334 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE]));
335 
336 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO,
337 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB],
338 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB]));
339 
340 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO,
341 	    vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM],
342 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM]));
343 
344 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO,
345 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ],
346 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ]));
347 
348 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO,
349 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE],
350 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE]));
351 
352 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO,
353 	    vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ],
354 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ]));
355 
356 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO,
357 	    vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE],
358 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE]));
359 
360 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO,
361 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB],
362 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB]));
363 
364 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO,
365 	    vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM],
366 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM]));
367 
368 	/* IO delays */
369 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios);
370 
371 	/* Add extended stats nvlist to main nvlist */
372 	fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx);
373 
374 	fnvlist_free(nvx);
375 	kmem_free(vs, sizeof (*vs));
376 	kmem_free(vsx, sizeof (*vsx));
377 }
378 
379 static void
380 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
381 {
382 	spa_t *spa = vd->vdev_spa;
383 
384 	if (vd != spa->spa_root_vdev)
385 		return;
386 
387 	/* provide either current or previous scan information */
388 	pool_scan_stat_t ps;
389 	if (spa_scan_get_stats(spa, &ps) == 0) {
390 		fnvlist_add_uint64_array(nvl,
391 		    ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
392 		    sizeof (pool_scan_stat_t) / sizeof (uint64_t));
393 	}
394 
395 	pool_removal_stat_t prs;
396 	if (spa_removal_get_stats(spa, &prs) == 0) {
397 		fnvlist_add_uint64_array(nvl,
398 		    ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
399 		    sizeof (prs) / sizeof (uint64_t));
400 	}
401 
402 	pool_checkpoint_stat_t pcs;
403 	if (spa_checkpoint_get_stats(spa, &pcs) == 0) {
404 		fnvlist_add_uint64_array(nvl,
405 		    ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs,
406 		    sizeof (pcs) / sizeof (uint64_t));
407 	}
408 }
409 
410 static void
411 top_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
412 {
413 	if (vd == vd->vdev_top) {
414 		vdev_rebuild_stat_t vrs;
415 		if (vdev_rebuild_get_stats(vd, &vrs) == 0) {
416 			fnvlist_add_uint64_array(nvl,
417 			    ZPOOL_CONFIG_REBUILD_STATS, (uint64_t *)&vrs,
418 			    sizeof (vrs) / sizeof (uint64_t));
419 		}
420 	}
421 }
422 
423 /*
424  * Generate the nvlist representing this vdev's config.
425  */
426 nvlist_t *
427 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
428     vdev_config_flag_t flags)
429 {
430 	nvlist_t *nv = NULL;
431 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
432 
433 	nv = fnvlist_alloc();
434 
435 	fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
436 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
437 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
438 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
439 
440 	if (vd->vdev_path != NULL)
441 		fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
442 
443 	if (vd->vdev_devid != NULL)
444 		fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
445 
446 	if (vd->vdev_physpath != NULL)
447 		fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
448 		    vd->vdev_physpath);
449 
450 	if (vd->vdev_enc_sysfs_path != NULL)
451 		fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
452 		    vd->vdev_enc_sysfs_path);
453 
454 	if (vd->vdev_fru != NULL)
455 		fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
456 
457 	if (vd->vdev_ops->vdev_op_config_generate != NULL)
458 		vd->vdev_ops->vdev_op_config_generate(vd, nv);
459 
460 	if (vd->vdev_wholedisk != -1ULL) {
461 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
462 		    vd->vdev_wholedisk);
463 	}
464 
465 	if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
466 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
467 
468 	if (vd->vdev_isspare)
469 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
470 
471 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
472 	    vd == vd->vdev_top) {
473 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
474 		    vd->vdev_ms_array);
475 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
476 		    vd->vdev_ms_shift);
477 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
478 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
479 		    vd->vdev_asize);
480 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
481 		if (vd->vdev_removing) {
482 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
483 			    vd->vdev_removing);
484 		}
485 
486 		/* zpool command expects alloc class data */
487 		if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) {
488 			const char *bias = NULL;
489 
490 			switch (vd->vdev_alloc_bias) {
491 			case VDEV_BIAS_LOG:
492 				bias = VDEV_ALLOC_BIAS_LOG;
493 				break;
494 			case VDEV_BIAS_SPECIAL:
495 				bias = VDEV_ALLOC_BIAS_SPECIAL;
496 				break;
497 			case VDEV_BIAS_DEDUP:
498 				bias = VDEV_ALLOC_BIAS_DEDUP;
499 				break;
500 			default:
501 				ASSERT3U(vd->vdev_alloc_bias, ==,
502 				    VDEV_BIAS_NONE);
503 			}
504 			fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
505 			    bias);
506 		}
507 	}
508 
509 	if (vd->vdev_dtl_sm != NULL) {
510 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
511 		    space_map_object(vd->vdev_dtl_sm));
512 	}
513 
514 	if (vic->vic_mapping_object != 0) {
515 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
516 		    vic->vic_mapping_object);
517 	}
518 
519 	if (vic->vic_births_object != 0) {
520 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
521 		    vic->vic_births_object);
522 	}
523 
524 	if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
525 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
526 		    vic->vic_prev_indirect_vdev);
527 	}
528 
529 	if (vd->vdev_crtxg)
530 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
531 
532 	if (vd->vdev_expansion_time)
533 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_EXPANSION_TIME,
534 		    vd->vdev_expansion_time);
535 
536 	if (flags & VDEV_CONFIG_MOS) {
537 		if (vd->vdev_leaf_zap != 0) {
538 			ASSERT(vd->vdev_ops->vdev_op_leaf);
539 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
540 			    vd->vdev_leaf_zap);
541 		}
542 
543 		if (vd->vdev_top_zap != 0) {
544 			ASSERT(vd == vd->vdev_top);
545 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
546 			    vd->vdev_top_zap);
547 		}
548 
549 		if (vd->vdev_resilver_deferred) {
550 			ASSERT(vd->vdev_ops->vdev_op_leaf);
551 			ASSERT(spa->spa_resilver_deferred);
552 			fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER);
553 		}
554 	}
555 
556 	if (getstats) {
557 		vdev_config_generate_stats(vd, nv);
558 
559 		root_vdev_actions_getprogress(vd, nv);
560 		top_vdev_actions_getprogress(vd, nv);
561 
562 		/*
563 		 * Note: this can be called from open context
564 		 * (spa_get_stats()), so we need the rwlock to prevent
565 		 * the mapping from being changed by condensing.
566 		 */
567 		rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
568 		if (vd->vdev_indirect_mapping != NULL) {
569 			ASSERT(vd->vdev_indirect_births != NULL);
570 			vdev_indirect_mapping_t *vim =
571 			    vd->vdev_indirect_mapping;
572 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
573 			    vdev_indirect_mapping_size(vim));
574 		}
575 		rw_exit(&vd->vdev_indirect_rwlock);
576 		if (vd->vdev_mg != NULL &&
577 		    vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
578 			/*
579 			 * Compute approximately how much memory would be used
580 			 * for the indirect mapping if this device were to
581 			 * be removed.
582 			 *
583 			 * Note: If the frag metric is invalid, then not
584 			 * enough metaslabs have been converted to have
585 			 * histograms.
586 			 */
587 			uint64_t seg_count = 0;
588 			uint64_t to_alloc = vd->vdev_stat.vs_alloc;
589 
590 			/*
591 			 * There are the same number of allocated segments
592 			 * as free segments, so we will have at least one
593 			 * entry per free segment.  However, small free
594 			 * segments (smaller than vdev_removal_max_span)
595 			 * will be combined with adjacent allocated segments
596 			 * as a single mapping.
597 			 */
598 			for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
599 				if (i + 1 < highbit64(vdev_removal_max_span)
600 				    - 1) {
601 					to_alloc +=
602 					    vd->vdev_mg->mg_histogram[i] <<
603 					    (i + 1);
604 				} else {
605 					seg_count +=
606 					    vd->vdev_mg->mg_histogram[i];
607 				}
608 			}
609 
610 			/*
611 			 * The maximum length of a mapping is
612 			 * zfs_remove_max_segment, so we need at least one entry
613 			 * per zfs_remove_max_segment of allocated data.
614 			 */
615 			seg_count += to_alloc / spa_remove_max_segment(spa);
616 
617 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
618 			    seg_count *
619 			    sizeof (vdev_indirect_mapping_entry_phys_t));
620 		}
621 	}
622 
623 	if (!vd->vdev_ops->vdev_op_leaf) {
624 		nvlist_t **child;
625 		int c, idx;
626 
627 		ASSERT(!vd->vdev_ishole);
628 
629 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
630 		    KM_SLEEP);
631 
632 		for (c = 0, idx = 0; c < vd->vdev_children; c++) {
633 			vdev_t *cvd = vd->vdev_child[c];
634 
635 			/*
636 			 * If we're generating an nvlist of removing
637 			 * vdevs then skip over any device which is
638 			 * not being removed.
639 			 */
640 			if ((flags & VDEV_CONFIG_REMOVING) &&
641 			    !cvd->vdev_removing)
642 				continue;
643 
644 			child[idx++] = vdev_config_generate(spa, cvd,
645 			    getstats, flags);
646 		}
647 
648 		if (idx) {
649 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
650 			    child, idx);
651 		}
652 
653 		for (c = 0; c < idx; c++)
654 			nvlist_free(child[c]);
655 
656 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
657 
658 	} else {
659 		const char *aux = NULL;
660 
661 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
662 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
663 		if (vd->vdev_resilver_txg != 0)
664 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
665 			    vd->vdev_resilver_txg);
666 		if (vd->vdev_rebuild_txg != 0)
667 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
668 			    vd->vdev_rebuild_txg);
669 		if (vd->vdev_faulted)
670 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
671 		if (vd->vdev_degraded)
672 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
673 		if (vd->vdev_removed)
674 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
675 		if (vd->vdev_unspare)
676 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
677 		if (vd->vdev_ishole)
678 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
679 
680 		/* Set the reason why we're FAULTED/DEGRADED. */
681 		switch (vd->vdev_stat.vs_aux) {
682 		case VDEV_AUX_ERR_EXCEEDED:
683 			aux = "err_exceeded";
684 			break;
685 
686 		case VDEV_AUX_EXTERNAL:
687 			aux = "external";
688 			break;
689 		}
690 
691 		if (aux != NULL && !vd->vdev_tmpoffline) {
692 			fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
693 		} else {
694 			/*
695 			 * We're healthy - clear any previous AUX_STATE values.
696 			 */
697 			if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE))
698 				nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE);
699 		}
700 
701 		if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
702 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
703 			    vd->vdev_orig_guid);
704 		}
705 	}
706 
707 	return (nv);
708 }
709 
710 /*
711  * Generate a view of the top-level vdevs.  If we currently have holes
712  * in the namespace, then generate an array which contains a list of holey
713  * vdevs.  Additionally, add the number of top-level children that currently
714  * exist.
715  */
716 void
717 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
718 {
719 	vdev_t *rvd = spa->spa_root_vdev;
720 	uint64_t *array;
721 	uint_t c, idx;
722 
723 	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
724 
725 	for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
726 		vdev_t *tvd = rvd->vdev_child[c];
727 
728 		if (tvd->vdev_ishole) {
729 			array[idx++] = c;
730 		}
731 	}
732 
733 	if (idx) {
734 		VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
735 		    array, idx) == 0);
736 	}
737 
738 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
739 	    rvd->vdev_children) == 0);
740 
741 	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
742 }
743 
744 /*
745  * Returns the configuration from the label of the given vdev. For vdevs
746  * which don't have a txg value stored on their label (i.e. spares/cache)
747  * or have not been completely initialized (txg = 0) just return
748  * the configuration from the first valid label we find. Otherwise,
749  * find the most up-to-date label that does not exceed the specified
750  * 'txg' value.
751  */
752 nvlist_t *
753 vdev_label_read_config(vdev_t *vd, uint64_t txg)
754 {
755 	spa_t *spa = vd->vdev_spa;
756 	nvlist_t *config = NULL;
757 	vdev_phys_t *vp[VDEV_LABELS];
758 	abd_t *vp_abd[VDEV_LABELS];
759 	zio_t *zio[VDEV_LABELS];
760 	uint64_t best_txg = 0;
761 	uint64_t label_txg = 0;
762 	int error = 0;
763 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
764 	    ZIO_FLAG_SPECULATIVE;
765 
766 	ASSERT(vd->vdev_validate_thread == curthread ||
767 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
768 
769 	if (!vdev_readable(vd))
770 		return (NULL);
771 
772 	/*
773 	 * The label for a dRAID distributed spare is not stored on disk.
774 	 * Instead it is generated when needed which allows us to bypass
775 	 * the pipeline when reading the config from the label.
776 	 */
777 	if (vd->vdev_ops == &vdev_draid_spare_ops)
778 		return (vdev_draid_read_config_spare(vd));
779 
780 	for (int l = 0; l < VDEV_LABELS; l++) {
781 		vp_abd[l] = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
782 		vp[l] = abd_to_buf(vp_abd[l]);
783 	}
784 
785 retry:
786 	for (int l = 0; l < VDEV_LABELS; l++) {
787 		zio[l] = zio_root(spa, NULL, NULL, flags);
788 
789 		vdev_label_read(zio[l], vd, l, vp_abd[l],
790 		    offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t),
791 		    NULL, NULL, flags);
792 	}
793 	for (int l = 0; l < VDEV_LABELS; l++) {
794 		nvlist_t *label = NULL;
795 
796 		if (zio_wait(zio[l]) == 0 &&
797 		    nvlist_unpack(vp[l]->vp_nvlist, sizeof (vp[l]->vp_nvlist),
798 		    &label, 0) == 0) {
799 			/*
800 			 * Auxiliary vdevs won't have txg values in their
801 			 * labels and newly added vdevs may not have been
802 			 * completely initialized so just return the
803 			 * configuration from the first valid label we
804 			 * encounter.
805 			 */
806 			error = nvlist_lookup_uint64(label,
807 			    ZPOOL_CONFIG_POOL_TXG, &label_txg);
808 			if ((error || label_txg == 0) && !config) {
809 				config = label;
810 				for (l++; l < VDEV_LABELS; l++)
811 					zio_wait(zio[l]);
812 				break;
813 			} else if (label_txg <= txg && label_txg > best_txg) {
814 				best_txg = label_txg;
815 				nvlist_free(config);
816 				config = fnvlist_dup(label);
817 			}
818 		}
819 
820 		if (label != NULL) {
821 			nvlist_free(label);
822 			label = NULL;
823 		}
824 	}
825 
826 	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
827 		flags |= ZIO_FLAG_TRYHARD;
828 		goto retry;
829 	}
830 
831 	/*
832 	 * We found a valid label but it didn't pass txg restrictions.
833 	 */
834 	if (config == NULL && label_txg != 0) {
835 		vdev_dbgmsg(vd, "label discarded as txg is too large "
836 		    "(%llu > %llu)", (u_longlong_t)label_txg,
837 		    (u_longlong_t)txg);
838 	}
839 
840 	for (int l = 0; l < VDEV_LABELS; l++) {
841 		abd_free(vp_abd[l]);
842 	}
843 
844 	return (config);
845 }
846 
847 /*
848  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
849  * in with the device guid if this spare is active elsewhere on the system.
850  */
851 static boolean_t
852 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
853     uint64_t *spare_guid, uint64_t *l2cache_guid)
854 {
855 	spa_t *spa = vd->vdev_spa;
856 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
857 	uint64_t vdtxg = 0;
858 	nvlist_t *label;
859 
860 	if (spare_guid)
861 		*spare_guid = 0ULL;
862 	if (l2cache_guid)
863 		*l2cache_guid = 0ULL;
864 
865 	/*
866 	 * Read the label, if any, and perform some basic sanity checks.
867 	 */
868 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
869 		return (B_FALSE);
870 
871 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
872 	    &vdtxg);
873 
874 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
875 	    &state) != 0 ||
876 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
877 	    &device_guid) != 0) {
878 		nvlist_free(label);
879 		return (B_FALSE);
880 	}
881 
882 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
883 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
884 	    &pool_guid) != 0 ||
885 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
886 	    &txg) != 0)) {
887 		nvlist_free(label);
888 		return (B_FALSE);
889 	}
890 
891 	nvlist_free(label);
892 
893 	/*
894 	 * Check to see if this device indeed belongs to the pool it claims to
895 	 * be a part of.  The only way this is allowed is if the device is a hot
896 	 * spare (which we check for later on).
897 	 */
898 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
899 	    !spa_guid_exists(pool_guid, device_guid) &&
900 	    !spa_spare_exists(device_guid, NULL, NULL) &&
901 	    !spa_l2cache_exists(device_guid, NULL))
902 		return (B_FALSE);
903 
904 	/*
905 	 * If the transaction group is zero, then this an initialized (but
906 	 * unused) label.  This is only an error if the create transaction
907 	 * on-disk is the same as the one we're using now, in which case the
908 	 * user has attempted to add the same vdev multiple times in the same
909 	 * transaction.
910 	 */
911 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
912 	    txg == 0 && vdtxg == crtxg)
913 		return (B_TRUE);
914 
915 	/*
916 	 * Check to see if this is a spare device.  We do an explicit check for
917 	 * spa_has_spare() here because it may be on our pending list of spares
918 	 * to add.  We also check if it is an l2cache device.
919 	 */
920 	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
921 	    spa_has_spare(spa, device_guid)) {
922 		if (spare_guid)
923 			*spare_guid = device_guid;
924 
925 		switch (reason) {
926 		case VDEV_LABEL_CREATE:
927 		case VDEV_LABEL_L2CACHE:
928 			return (B_TRUE);
929 
930 		case VDEV_LABEL_REPLACE:
931 			return (!spa_has_spare(spa, device_guid) ||
932 			    spare_pool != 0ULL);
933 
934 		case VDEV_LABEL_SPARE:
935 			return (spa_has_spare(spa, device_guid));
936 		default:
937 			break;
938 		}
939 	}
940 
941 	/*
942 	 * Check to see if this is an l2cache device.
943 	 */
944 	if (spa_l2cache_exists(device_guid, NULL))
945 		return (B_TRUE);
946 
947 	/*
948 	 * We can't rely on a pool's state if it's been imported
949 	 * read-only.  Instead we look to see if the pools is marked
950 	 * read-only in the namespace and set the state to active.
951 	 */
952 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
953 	    (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
954 	    spa_mode(spa) == SPA_MODE_READ)
955 		state = POOL_STATE_ACTIVE;
956 
957 	/*
958 	 * If the device is marked ACTIVE, then this device is in use by another
959 	 * pool on the system.
960 	 */
961 	return (state == POOL_STATE_ACTIVE);
962 }
963 
964 /*
965  * Initialize a vdev label.  We check to make sure each leaf device is not in
966  * use, and writable.  We put down an initial label which we will later
967  * overwrite with a complete label.  Note that it's important to do this
968  * sequentially, not in parallel, so that we catch cases of multiple use of the
969  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
970  * itself.
971  */
972 int
973 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
974 {
975 	spa_t *spa = vd->vdev_spa;
976 	nvlist_t *label;
977 	vdev_phys_t *vp;
978 	abd_t *vp_abd;
979 	abd_t *bootenv;
980 	uberblock_t *ub;
981 	abd_t *ub_abd;
982 	zio_t *zio;
983 	char *buf;
984 	size_t buflen;
985 	int error;
986 	uint64_t spare_guid = 0, l2cache_guid = 0;
987 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
988 
989 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
990 
991 	for (int c = 0; c < vd->vdev_children; c++)
992 		if ((error = vdev_label_init(vd->vdev_child[c],
993 		    crtxg, reason)) != 0)
994 			return (error);
995 
996 	/* Track the creation time for this vdev */
997 	vd->vdev_crtxg = crtxg;
998 
999 	if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
1000 		return (0);
1001 
1002 	/*
1003 	 * Dead vdevs cannot be initialized.
1004 	 */
1005 	if (vdev_is_dead(vd))
1006 		return (SET_ERROR(EIO));
1007 
1008 	/*
1009 	 * Determine if the vdev is in use.
1010 	 */
1011 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
1012 	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
1013 		return (SET_ERROR(EBUSY));
1014 
1015 	/*
1016 	 * If this is a request to add or replace a spare or l2cache device
1017 	 * that is in use elsewhere on the system, then we must update the
1018 	 * guid (which was initialized to a random value) to reflect the
1019 	 * actual GUID (which is shared between multiple pools).
1020 	 */
1021 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
1022 	    spare_guid != 0ULL) {
1023 		uint64_t guid_delta = spare_guid - vd->vdev_guid;
1024 
1025 		vd->vdev_guid += guid_delta;
1026 
1027 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1028 			pvd->vdev_guid_sum += guid_delta;
1029 
1030 		/*
1031 		 * If this is a replacement, then we want to fallthrough to the
1032 		 * rest of the code.  If we're adding a spare, then it's already
1033 		 * labeled appropriately and we can just return.
1034 		 */
1035 		if (reason == VDEV_LABEL_SPARE)
1036 			return (0);
1037 		ASSERT(reason == VDEV_LABEL_REPLACE ||
1038 		    reason == VDEV_LABEL_SPLIT);
1039 	}
1040 
1041 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
1042 	    l2cache_guid != 0ULL) {
1043 		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
1044 
1045 		vd->vdev_guid += guid_delta;
1046 
1047 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1048 			pvd->vdev_guid_sum += guid_delta;
1049 
1050 		/*
1051 		 * If this is a replacement, then we want to fallthrough to the
1052 		 * rest of the code.  If we're adding an l2cache, then it's
1053 		 * already labeled appropriately and we can just return.
1054 		 */
1055 		if (reason == VDEV_LABEL_L2CACHE)
1056 			return (0);
1057 		ASSERT(reason == VDEV_LABEL_REPLACE);
1058 	}
1059 
1060 	/*
1061 	 * Initialize its label.
1062 	 */
1063 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1064 	abd_zero(vp_abd, sizeof (vdev_phys_t));
1065 	vp = abd_to_buf(vp_abd);
1066 
1067 	/*
1068 	 * Generate a label describing the pool and our top-level vdev.
1069 	 * We mark it as being from txg 0 to indicate that it's not
1070 	 * really part of an active pool just yet.  The labels will
1071 	 * be written again with a meaningful txg by spa_sync().
1072 	 */
1073 	if (reason == VDEV_LABEL_SPARE ||
1074 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
1075 		/*
1076 		 * For inactive hot spares, we generate a special label that
1077 		 * identifies as a mutually shared hot spare.  We write the
1078 		 * label if we are adding a hot spare, or if we are removing an
1079 		 * active hot spare (in which case we want to revert the
1080 		 * labels).
1081 		 */
1082 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1083 
1084 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1085 		    spa_version(spa)) == 0);
1086 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1087 		    POOL_STATE_SPARE) == 0);
1088 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1089 		    vd->vdev_guid) == 0);
1090 	} else if (reason == VDEV_LABEL_L2CACHE ||
1091 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
1092 		/*
1093 		 * For level 2 ARC devices, add a special label.
1094 		 */
1095 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1096 
1097 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1098 		    spa_version(spa)) == 0);
1099 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1100 		    POOL_STATE_L2CACHE) == 0);
1101 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1102 		    vd->vdev_guid) == 0);
1103 	} else {
1104 		uint64_t txg = 0ULL;
1105 
1106 		if (reason == VDEV_LABEL_SPLIT)
1107 			txg = spa->spa_uberblock.ub_txg;
1108 		label = spa_config_generate(spa, vd, txg, B_FALSE);
1109 
1110 		/*
1111 		 * Add our creation time.  This allows us to detect multiple
1112 		 * vdev uses as described above, and automatically expires if we
1113 		 * fail.
1114 		 */
1115 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
1116 		    crtxg) == 0);
1117 	}
1118 
1119 	buf = vp->vp_nvlist;
1120 	buflen = sizeof (vp->vp_nvlist);
1121 
1122 	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
1123 	if (error != 0) {
1124 		nvlist_free(label);
1125 		abd_free(vp_abd);
1126 		/* EFAULT means nvlist_pack ran out of room */
1127 		return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL));
1128 	}
1129 
1130 	/*
1131 	 * Initialize uberblock template.
1132 	 */
1133 	ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
1134 	abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
1135 	abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
1136 	ub = abd_to_buf(ub_abd);
1137 	ub->ub_txg = 0;
1138 
1139 	/* Initialize the 2nd padding area. */
1140 	bootenv = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1141 	abd_zero(bootenv, VDEV_PAD_SIZE);
1142 
1143 	/*
1144 	 * Write everything in parallel.
1145 	 */
1146 retry:
1147 	zio = zio_root(spa, NULL, NULL, flags);
1148 
1149 	for (int l = 0; l < VDEV_LABELS; l++) {
1150 
1151 		vdev_label_write(zio, vd, l, vp_abd,
1152 		    offsetof(vdev_label_t, vl_vdev_phys),
1153 		    sizeof (vdev_phys_t), NULL, NULL, flags);
1154 
1155 		/*
1156 		 * Skip the 1st padding area.
1157 		 * Zero out the 2nd padding area where it might have
1158 		 * left over data from previous filesystem format.
1159 		 */
1160 		vdev_label_write(zio, vd, l, bootenv,
1161 		    offsetof(vdev_label_t, vl_be),
1162 		    VDEV_PAD_SIZE, NULL, NULL, flags);
1163 
1164 		vdev_label_write(zio, vd, l, ub_abd,
1165 		    offsetof(vdev_label_t, vl_uberblock),
1166 		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
1167 	}
1168 
1169 	error = zio_wait(zio);
1170 
1171 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1172 		flags |= ZIO_FLAG_TRYHARD;
1173 		goto retry;
1174 	}
1175 
1176 	nvlist_free(label);
1177 	abd_free(bootenv);
1178 	abd_free(ub_abd);
1179 	abd_free(vp_abd);
1180 
1181 	/*
1182 	 * If this vdev hasn't been previously identified as a spare, then we
1183 	 * mark it as such only if a) we are labeling it as a spare, or b) it
1184 	 * exists as a spare elsewhere in the system.  Do the same for
1185 	 * level 2 ARC devices.
1186 	 */
1187 	if (error == 0 && !vd->vdev_isspare &&
1188 	    (reason == VDEV_LABEL_SPARE ||
1189 	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
1190 		spa_spare_add(vd);
1191 
1192 	if (error == 0 && !vd->vdev_isl2cache &&
1193 	    (reason == VDEV_LABEL_L2CACHE ||
1194 	    spa_l2cache_exists(vd->vdev_guid, NULL)))
1195 		spa_l2cache_add(vd);
1196 
1197 	return (error);
1198 }
1199 
1200 /*
1201  * Done callback for vdev_label_read_bootenv_impl. If this is the first
1202  * callback to finish, store our abd in the callback pointer. Otherwise, we
1203  * just free our abd and return.
1204  */
1205 static void
1206 vdev_label_read_bootenv_done(zio_t *zio)
1207 {
1208 	zio_t *rio = zio->io_private;
1209 	abd_t **cbp = rio->io_private;
1210 
1211 	ASSERT3U(zio->io_size, ==, VDEV_PAD_SIZE);
1212 
1213 	if (zio->io_error == 0) {
1214 		mutex_enter(&rio->io_lock);
1215 		if (*cbp == NULL) {
1216 			/* Will free this buffer in vdev_label_read_bootenv. */
1217 			*cbp = zio->io_abd;
1218 		} else {
1219 			abd_free(zio->io_abd);
1220 		}
1221 		mutex_exit(&rio->io_lock);
1222 	} else {
1223 		abd_free(zio->io_abd);
1224 	}
1225 }
1226 
1227 static void
1228 vdev_label_read_bootenv_impl(zio_t *zio, vdev_t *vd, int flags)
1229 {
1230 	for (int c = 0; c < vd->vdev_children; c++)
1231 		vdev_label_read_bootenv_impl(zio, vd->vdev_child[c], flags);
1232 
1233 	/*
1234 	 * We just use the first label that has a correct checksum; the
1235 	 * bootloader should have rewritten them all to be the same on boot,
1236 	 * and any changes we made since boot have been the same across all
1237 	 * labels.
1238 	 */
1239 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1240 		for (int l = 0; l < VDEV_LABELS; l++) {
1241 			vdev_label_read(zio, vd, l,
1242 			    abd_alloc_linear(VDEV_PAD_SIZE, B_FALSE),
1243 			    offsetof(vdev_label_t, vl_be), VDEV_PAD_SIZE,
1244 			    vdev_label_read_bootenv_done, zio, flags);
1245 		}
1246 	}
1247 }
1248 
1249 int
1250 vdev_label_read_bootenv(vdev_t *rvd, nvlist_t *bootenv)
1251 {
1252 	nvlist_t *config;
1253 	spa_t *spa = rvd->vdev_spa;
1254 	abd_t *abd = NULL;
1255 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1256 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1257 
1258 	ASSERT(bootenv);
1259 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1260 
1261 	zio_t *zio = zio_root(spa, NULL, &abd, flags);
1262 	vdev_label_read_bootenv_impl(zio, rvd, flags);
1263 	int err = zio_wait(zio);
1264 
1265 	if (abd != NULL) {
1266 		char *buf;
1267 		vdev_boot_envblock_t *vbe = abd_to_buf(abd);
1268 
1269 		vbe->vbe_version = ntohll(vbe->vbe_version);
1270 		switch (vbe->vbe_version) {
1271 		case VB_RAW:
1272 			/*
1273 			 * if we have textual data in vbe_bootenv, create nvlist
1274 			 * with key "envmap".
1275 			 */
1276 			fnvlist_add_uint64(bootenv, BOOTENV_VERSION, VB_RAW);
1277 			vbe->vbe_bootenv[sizeof (vbe->vbe_bootenv) - 1] = '\0';
1278 			fnvlist_add_string(bootenv, GRUB_ENVMAP,
1279 			    vbe->vbe_bootenv);
1280 			break;
1281 
1282 		case VB_NVLIST:
1283 			err = nvlist_unpack(vbe->vbe_bootenv,
1284 			    sizeof (vbe->vbe_bootenv), &config, 0);
1285 			if (err == 0) {
1286 				fnvlist_merge(bootenv, config);
1287 				nvlist_free(config);
1288 				break;
1289 			}
1290 			/* FALLTHROUGH */
1291 		default:
1292 			/* Check for FreeBSD zfs bootonce command string */
1293 			buf = abd_to_buf(abd);
1294 			if (*buf == '\0') {
1295 				fnvlist_add_uint64(bootenv, BOOTENV_VERSION,
1296 				    VB_NVLIST);
1297 				break;
1298 			}
1299 			fnvlist_add_string(bootenv, FREEBSD_BOOTONCE, buf);
1300 		}
1301 
1302 		/*
1303 		 * abd was allocated in vdev_label_read_bootenv_impl()
1304 		 */
1305 		abd_free(abd);
1306 		/*
1307 		 * If we managed to read any successfully,
1308 		 * return success.
1309 		 */
1310 		return (0);
1311 	}
1312 	return (err);
1313 }
1314 
1315 int
1316 vdev_label_write_bootenv(vdev_t *vd, nvlist_t *env)
1317 {
1318 	zio_t *zio;
1319 	spa_t *spa = vd->vdev_spa;
1320 	vdev_boot_envblock_t *bootenv;
1321 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1322 	int error;
1323 	size_t nvsize;
1324 	char *nvbuf;
1325 
1326 	error = nvlist_size(env, &nvsize, NV_ENCODE_XDR);
1327 	if (error != 0)
1328 		return (SET_ERROR(error));
1329 
1330 	if (nvsize >= sizeof (bootenv->vbe_bootenv)) {
1331 		return (SET_ERROR(E2BIG));
1332 	}
1333 
1334 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1335 
1336 	error = ENXIO;
1337 	for (int c = 0; c < vd->vdev_children; c++) {
1338 		int child_err;
1339 
1340 		child_err = vdev_label_write_bootenv(vd->vdev_child[c], env);
1341 		/*
1342 		 * As long as any of the disks managed to write all of their
1343 		 * labels successfully, return success.
1344 		 */
1345 		if (child_err == 0)
1346 			error = child_err;
1347 	}
1348 
1349 	if (!vd->vdev_ops->vdev_op_leaf || vdev_is_dead(vd) ||
1350 	    !vdev_writeable(vd)) {
1351 		return (error);
1352 	}
1353 	ASSERT3U(sizeof (*bootenv), ==, VDEV_PAD_SIZE);
1354 	abd_t *abd = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1355 	abd_zero(abd, VDEV_PAD_SIZE);
1356 
1357 	bootenv = abd_borrow_buf_copy(abd, VDEV_PAD_SIZE);
1358 	nvbuf = bootenv->vbe_bootenv;
1359 	nvsize = sizeof (bootenv->vbe_bootenv);
1360 
1361 	bootenv->vbe_version = fnvlist_lookup_uint64(env, BOOTENV_VERSION);
1362 	switch (bootenv->vbe_version) {
1363 	case VB_RAW:
1364 		if (nvlist_lookup_string(env, GRUB_ENVMAP, &nvbuf) == 0) {
1365 			(void) strlcpy(bootenv->vbe_bootenv, nvbuf, nvsize);
1366 		}
1367 		error = 0;
1368 		break;
1369 
1370 	case VB_NVLIST:
1371 		error = nvlist_pack(env, &nvbuf, &nvsize, NV_ENCODE_XDR,
1372 		    KM_SLEEP);
1373 		break;
1374 
1375 	default:
1376 		error = EINVAL;
1377 		break;
1378 	}
1379 
1380 	if (error == 0) {
1381 		bootenv->vbe_version = htonll(bootenv->vbe_version);
1382 		abd_return_buf_copy(abd, bootenv, VDEV_PAD_SIZE);
1383 	} else {
1384 		abd_free(abd);
1385 		return (SET_ERROR(error));
1386 	}
1387 
1388 retry:
1389 	zio = zio_root(spa, NULL, NULL, flags);
1390 	for (int l = 0; l < VDEV_LABELS; l++) {
1391 		vdev_label_write(zio, vd, l, abd,
1392 		    offsetof(vdev_label_t, vl_be),
1393 		    VDEV_PAD_SIZE, NULL, NULL, flags);
1394 	}
1395 
1396 	error = zio_wait(zio);
1397 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1398 		flags |= ZIO_FLAG_TRYHARD;
1399 		goto retry;
1400 	}
1401 
1402 	abd_free(abd);
1403 	return (error);
1404 }
1405 
1406 /*
1407  * ==========================================================================
1408  * uberblock load/sync
1409  * ==========================================================================
1410  */
1411 
1412 /*
1413  * Consider the following situation: txg is safely synced to disk.  We've
1414  * written the first uberblock for txg + 1, and then we lose power.  When we
1415  * come back up, we fail to see the uberblock for txg + 1 because, say,
1416  * it was on a mirrored device and the replica to which we wrote txg + 1
1417  * is now offline.  If we then make some changes and sync txg + 1, and then
1418  * the missing replica comes back, then for a few seconds we'll have two
1419  * conflicting uberblocks on disk with the same txg.  The solution is simple:
1420  * among uberblocks with equal txg, choose the one with the latest timestamp.
1421  */
1422 static int
1423 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1424 {
1425 	int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg);
1426 
1427 	if (likely(cmp))
1428 		return (cmp);
1429 
1430 	cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1431 	if (likely(cmp))
1432 		return (cmp);
1433 
1434 	/*
1435 	 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware
1436 	 * ZFS, e.g. OpenZFS >= 0.7.
1437 	 *
1438 	 * If one ub has MMP and the other does not, they were written by
1439 	 * different hosts, which matters for MMP.  So we treat no MMP/no SEQ as
1440 	 * a 0 value.
1441 	 *
1442 	 * Since timestamp and txg are the same if we get this far, either is
1443 	 * acceptable for importing the pool.
1444 	 */
1445 	unsigned int seq1 = 0;
1446 	unsigned int seq2 = 0;
1447 
1448 	if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1449 		seq1 = MMP_SEQ(ub1);
1450 
1451 	if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1452 		seq2 = MMP_SEQ(ub2);
1453 
1454 	return (TREE_CMP(seq1, seq2));
1455 }
1456 
1457 struct ubl_cbdata {
1458 	uberblock_t	*ubl_ubbest;	/* Best uberblock */
1459 	vdev_t		*ubl_vd;	/* vdev associated with the above */
1460 };
1461 
1462 static void
1463 vdev_uberblock_load_done(zio_t *zio)
1464 {
1465 	vdev_t *vd = zio->io_vd;
1466 	spa_t *spa = zio->io_spa;
1467 	zio_t *rio = zio->io_private;
1468 	uberblock_t *ub = abd_to_buf(zio->io_abd);
1469 	struct ubl_cbdata *cbp = rio->io_private;
1470 
1471 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
1472 
1473 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
1474 		mutex_enter(&rio->io_lock);
1475 		if (ub->ub_txg <= spa->spa_load_max_txg &&
1476 		    vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
1477 			/*
1478 			 * Keep track of the vdev in which this uberblock
1479 			 * was found. We will use this information later
1480 			 * to obtain the config nvlist associated with
1481 			 * this uberblock.
1482 			 */
1483 			*cbp->ubl_ubbest = *ub;
1484 			cbp->ubl_vd = vd;
1485 		}
1486 		mutex_exit(&rio->io_lock);
1487 	}
1488 
1489 	abd_free(zio->io_abd);
1490 }
1491 
1492 static void
1493 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
1494     struct ubl_cbdata *cbp)
1495 {
1496 	for (int c = 0; c < vd->vdev_children; c++)
1497 		vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
1498 
1499 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd) &&
1500 	    vd->vdev_ops != &vdev_draid_spare_ops) {
1501 		for (int l = 0; l < VDEV_LABELS; l++) {
1502 			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1503 				vdev_label_read(zio, vd, l,
1504 				    abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
1505 				    B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
1506 				    VDEV_UBERBLOCK_SIZE(vd),
1507 				    vdev_uberblock_load_done, zio, flags);
1508 			}
1509 		}
1510 	}
1511 }
1512 
1513 /*
1514  * Reads the 'best' uberblock from disk along with its associated
1515  * configuration. First, we read the uberblock array of each label of each
1516  * vdev, keeping track of the uberblock with the highest txg in each array.
1517  * Then, we read the configuration from the same vdev as the best uberblock.
1518  */
1519 void
1520 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
1521 {
1522 	zio_t *zio;
1523 	spa_t *spa = rvd->vdev_spa;
1524 	struct ubl_cbdata cb;
1525 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1526 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1527 
1528 	ASSERT(ub);
1529 	ASSERT(config);
1530 
1531 	bzero(ub, sizeof (uberblock_t));
1532 	*config = NULL;
1533 
1534 	cb.ubl_ubbest = ub;
1535 	cb.ubl_vd = NULL;
1536 
1537 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1538 	zio = zio_root(spa, NULL, &cb, flags);
1539 	vdev_uberblock_load_impl(zio, rvd, flags, &cb);
1540 	(void) zio_wait(zio);
1541 
1542 	/*
1543 	 * It's possible that the best uberblock was discovered on a label
1544 	 * that has a configuration which was written in a future txg.
1545 	 * Search all labels on this vdev to find the configuration that
1546 	 * matches the txg for our uberblock.
1547 	 */
1548 	if (cb.ubl_vd != NULL) {
1549 		vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. "
1550 		    "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg);
1551 
1552 		*config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
1553 		if (*config == NULL && spa->spa_extreme_rewind) {
1554 			vdev_dbgmsg(cb.ubl_vd, "failed to read label config. "
1555 			    "Trying again without txg restrictions.");
1556 			*config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX);
1557 		}
1558 		if (*config == NULL) {
1559 			vdev_dbgmsg(cb.ubl_vd, "failed to read label config");
1560 		}
1561 	}
1562 	spa_config_exit(spa, SCL_ALL, FTAG);
1563 }
1564 
1565 /*
1566  * For use when a leaf vdev is expanded.
1567  * The location of labels 2 and 3 changed, and at the new location the
1568  * uberblock rings are either empty or contain garbage.  The sync will write
1569  * new configs there because the vdev is dirty, but expansion also needs the
1570  * uberblock rings copied.  Read them from label 0 which did not move.
1571  *
1572  * Since the point is to populate labels {2,3} with valid uberblocks,
1573  * we zero uberblocks we fail to read or which are not valid.
1574  */
1575 
1576 static void
1577 vdev_copy_uberblocks(vdev_t *vd)
1578 {
1579 	abd_t *ub_abd;
1580 	zio_t *write_zio;
1581 	int locks = (SCL_L2ARC | SCL_ZIO);
1582 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1583 	    ZIO_FLAG_SPECULATIVE;
1584 
1585 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) ==
1586 	    SCL_STATE);
1587 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1588 
1589 	/*
1590 	 * No uberblocks are stored on distributed spares, they may be
1591 	 * safely skipped when expanding a leaf vdev.
1592 	 */
1593 	if (vd->vdev_ops == &vdev_draid_spare_ops)
1594 		return;
1595 
1596 	spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER);
1597 
1598 	ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1599 
1600 	write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1601 	for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1602 		const int src_label = 0;
1603 		zio_t *zio;
1604 
1605 		zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1606 		vdev_label_read(zio, vd, src_label, ub_abd,
1607 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1608 		    NULL, NULL, flags);
1609 
1610 		if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd)))
1611 			abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1612 
1613 		for (int l = 2; l < VDEV_LABELS; l++)
1614 			vdev_label_write(write_zio, vd, l, ub_abd,
1615 			    VDEV_UBERBLOCK_OFFSET(vd, n),
1616 			    VDEV_UBERBLOCK_SIZE(vd), NULL, NULL,
1617 			    flags | ZIO_FLAG_DONT_PROPAGATE);
1618 	}
1619 	(void) zio_wait(write_zio);
1620 
1621 	spa_config_exit(vd->vdev_spa, locks, FTAG);
1622 
1623 	abd_free(ub_abd);
1624 }
1625 
1626 /*
1627  * On success, increment root zio's count of good writes.
1628  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1629  */
1630 static void
1631 vdev_uberblock_sync_done(zio_t *zio)
1632 {
1633 	uint64_t *good_writes = zio->io_private;
1634 
1635 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
1636 		atomic_inc_64(good_writes);
1637 }
1638 
1639 /*
1640  * Write the uberblock to all labels of all leaves of the specified vdev.
1641  */
1642 static void
1643 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes,
1644     uberblock_t *ub, vdev_t *vd, int flags)
1645 {
1646 	for (uint64_t c = 0; c < vd->vdev_children; c++) {
1647 		vdev_uberblock_sync(zio, good_writes,
1648 		    ub, vd->vdev_child[c], flags);
1649 	}
1650 
1651 	if (!vd->vdev_ops->vdev_op_leaf)
1652 		return;
1653 
1654 	if (!vdev_writeable(vd))
1655 		return;
1656 
1657 	/*
1658 	 * There's no need to write uberblocks to a distributed spare, they
1659 	 * are already stored on all the leaves of the parent dRAID.  For
1660 	 * this same reason vdev_uberblock_load_impl() skips distributed
1661 	 * spares when reading uberblocks.
1662 	 */
1663 	if (vd->vdev_ops == &vdev_draid_spare_ops)
1664 		return;
1665 
1666 	/* If the vdev was expanded, need to copy uberblock rings. */
1667 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1668 	    vd->vdev_copy_uberblocks == B_TRUE) {
1669 		vdev_copy_uberblocks(vd);
1670 		vd->vdev_copy_uberblocks = B_FALSE;
1671 	}
1672 
1673 	int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0;
1674 	int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m);
1675 
1676 	/* Copy the uberblock_t into the ABD */
1677 	abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1678 	abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1679 	abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
1680 
1681 	for (int l = 0; l < VDEV_LABELS; l++)
1682 		vdev_label_write(zio, vd, l, ub_abd,
1683 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1684 		    vdev_uberblock_sync_done, good_writes,
1685 		    flags | ZIO_FLAG_DONT_PROPAGATE);
1686 
1687 	abd_free(ub_abd);
1688 }
1689 
1690 /* Sync the uberblocks to all vdevs in svd[] */
1691 static int
1692 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1693 {
1694 	spa_t *spa = svd[0]->vdev_spa;
1695 	zio_t *zio;
1696 	uint64_t good_writes = 0;
1697 
1698 	zio = zio_root(spa, NULL, NULL, flags);
1699 
1700 	for (int v = 0; v < svdcount; v++)
1701 		vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags);
1702 
1703 	(void) zio_wait(zio);
1704 
1705 	/*
1706 	 * Flush the uberblocks to disk.  This ensures that the odd labels
1707 	 * are no longer needed (because the new uberblocks and the even
1708 	 * labels are safely on disk), so it is safe to overwrite them.
1709 	 */
1710 	zio = zio_root(spa, NULL, NULL, flags);
1711 
1712 	for (int v = 0; v < svdcount; v++) {
1713 		if (vdev_writeable(svd[v])) {
1714 			zio_flush(zio, svd[v]);
1715 		}
1716 	}
1717 
1718 	(void) zio_wait(zio);
1719 
1720 	return (good_writes >= 1 ? 0 : EIO);
1721 }
1722 
1723 /*
1724  * On success, increment the count of good writes for our top-level vdev.
1725  */
1726 static void
1727 vdev_label_sync_done(zio_t *zio)
1728 {
1729 	uint64_t *good_writes = zio->io_private;
1730 
1731 	if (zio->io_error == 0)
1732 		atomic_inc_64(good_writes);
1733 }
1734 
1735 /*
1736  * If there weren't enough good writes, indicate failure to the parent.
1737  */
1738 static void
1739 vdev_label_sync_top_done(zio_t *zio)
1740 {
1741 	uint64_t *good_writes = zio->io_private;
1742 
1743 	if (*good_writes == 0)
1744 		zio->io_error = SET_ERROR(EIO);
1745 
1746 	kmem_free(good_writes, sizeof (uint64_t));
1747 }
1748 
1749 /*
1750  * We ignore errors for log and cache devices, simply free the private data.
1751  */
1752 static void
1753 vdev_label_sync_ignore_done(zio_t *zio)
1754 {
1755 	kmem_free(zio->io_private, sizeof (uint64_t));
1756 }
1757 
1758 /*
1759  * Write all even or odd labels to all leaves of the specified vdev.
1760  */
1761 static void
1762 vdev_label_sync(zio_t *zio, uint64_t *good_writes,
1763     vdev_t *vd, int l, uint64_t txg, int flags)
1764 {
1765 	nvlist_t *label;
1766 	vdev_phys_t *vp;
1767 	abd_t *vp_abd;
1768 	char *buf;
1769 	size_t buflen;
1770 
1771 	for (int c = 0; c < vd->vdev_children; c++) {
1772 		vdev_label_sync(zio, good_writes,
1773 		    vd->vdev_child[c], l, txg, flags);
1774 	}
1775 
1776 	if (!vd->vdev_ops->vdev_op_leaf)
1777 		return;
1778 
1779 	if (!vdev_writeable(vd))
1780 		return;
1781 
1782 	/*
1783 	 * The top-level config never needs to be written to a distributed
1784 	 * spare.  When read vdev_dspare_label_read_config() will generate
1785 	 * the config for the vdev_label_read_config().
1786 	 */
1787 	if (vd->vdev_ops == &vdev_draid_spare_ops)
1788 		return;
1789 
1790 	/*
1791 	 * Generate a label describing the top-level config to which we belong.
1792 	 */
1793 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1794 
1795 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1796 	abd_zero(vp_abd, sizeof (vdev_phys_t));
1797 	vp = abd_to_buf(vp_abd);
1798 
1799 	buf = vp->vp_nvlist;
1800 	buflen = sizeof (vp->vp_nvlist);
1801 
1802 	if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) {
1803 		for (; l < VDEV_LABELS; l += 2) {
1804 			vdev_label_write(zio, vd, l, vp_abd,
1805 			    offsetof(vdev_label_t, vl_vdev_phys),
1806 			    sizeof (vdev_phys_t),
1807 			    vdev_label_sync_done, good_writes,
1808 			    flags | ZIO_FLAG_DONT_PROPAGATE);
1809 		}
1810 	}
1811 
1812 	abd_free(vp_abd);
1813 	nvlist_free(label);
1814 }
1815 
1816 static int
1817 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1818 {
1819 	list_t *dl = &spa->spa_config_dirty_list;
1820 	vdev_t *vd;
1821 	zio_t *zio;
1822 	int error;
1823 
1824 	/*
1825 	 * Write the new labels to disk.
1826 	 */
1827 	zio = zio_root(spa, NULL, NULL, flags);
1828 
1829 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1830 		uint64_t *good_writes;
1831 
1832 		ASSERT(!vd->vdev_ishole);
1833 
1834 		good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
1835 		zio_t *vio = zio_null(zio, spa, NULL,
1836 		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
1837 		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1838 		    good_writes, flags);
1839 		vdev_label_sync(vio, good_writes, vd, l, txg, flags);
1840 		zio_nowait(vio);
1841 	}
1842 
1843 	error = zio_wait(zio);
1844 
1845 	/*
1846 	 * Flush the new labels to disk.
1847 	 */
1848 	zio = zio_root(spa, NULL, NULL, flags);
1849 
1850 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1851 		zio_flush(zio, vd);
1852 
1853 	(void) zio_wait(zio);
1854 
1855 	return (error);
1856 }
1857 
1858 /*
1859  * Sync the uberblock and any changes to the vdev configuration.
1860  *
1861  * The order of operations is carefully crafted to ensure that
1862  * if the system panics or loses power at any time, the state on disk
1863  * is still transactionally consistent.  The in-line comments below
1864  * describe the failure semantics at each stage.
1865  *
1866  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1867  * at any time, you can just call it again, and it will resume its work.
1868  */
1869 int
1870 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
1871 {
1872 	spa_t *spa = svd[0]->vdev_spa;
1873 	uberblock_t *ub = &spa->spa_uberblock;
1874 	int error = 0;
1875 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1876 
1877 	ASSERT(svdcount != 0);
1878 retry:
1879 	/*
1880 	 * Normally, we don't want to try too hard to write every label and
1881 	 * uberblock.  If there is a flaky disk, we don't want the rest of the
1882 	 * sync process to block while we retry.  But if we can't write a
1883 	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1884 	 * bailing out and declaring the pool faulted.
1885 	 */
1886 	if (error != 0) {
1887 		if ((flags & ZIO_FLAG_TRYHARD) != 0)
1888 			return (error);
1889 		flags |= ZIO_FLAG_TRYHARD;
1890 	}
1891 
1892 	ASSERT(ub->ub_txg <= txg);
1893 
1894 	/*
1895 	 * If this isn't a resync due to I/O errors,
1896 	 * and nothing changed in this transaction group,
1897 	 * and the vdev configuration hasn't changed,
1898 	 * then there's nothing to do.
1899 	 */
1900 	if (ub->ub_txg < txg) {
1901 		boolean_t changed = uberblock_update(ub, spa->spa_root_vdev,
1902 		    txg, spa->spa_mmp.mmp_delay);
1903 
1904 		if (!changed && list_is_empty(&spa->spa_config_dirty_list))
1905 			return (0);
1906 	}
1907 
1908 	if (txg > spa_freeze_txg(spa))
1909 		return (0);
1910 
1911 	ASSERT(txg <= spa->spa_final_txg);
1912 
1913 	/*
1914 	 * Flush the write cache of every disk that's been written to
1915 	 * in this transaction group.  This ensures that all blocks
1916 	 * written in this txg will be committed to stable storage
1917 	 * before any uberblock that references them.
1918 	 */
1919 	zio_t *zio = zio_root(spa, NULL, NULL, flags);
1920 
1921 	for (vdev_t *vd =
1922 	    txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL;
1923 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1924 		zio_flush(zio, vd);
1925 
1926 	(void) zio_wait(zio);
1927 
1928 	/*
1929 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1930 	 * system dies in the middle of this process, that's OK: all of the
1931 	 * even labels that made it to disk will be newer than any uberblock,
1932 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1933 	 * which have not yet been touched, will still be valid.  We flush
1934 	 * the new labels to disk to ensure that all even-label updates
1935 	 * are committed to stable storage before the uberblock update.
1936 	 */
1937 	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) {
1938 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1939 			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1940 			    "for pool '%s' when syncing out the even labels "
1941 			    "of dirty vdevs", error, spa_name(spa));
1942 		}
1943 		goto retry;
1944 	}
1945 
1946 	/*
1947 	 * Sync the uberblocks to all vdevs in svd[].
1948 	 * If the system dies in the middle of this step, there are two cases
1949 	 * to consider, and the on-disk state is consistent either way:
1950 	 *
1951 	 * (1)	If none of the new uberblocks made it to disk, then the
1952 	 *	previous uberblock will be the newest, and the odd labels
1953 	 *	(which had not yet been touched) will be valid with respect
1954 	 *	to that uberblock.
1955 	 *
1956 	 * (2)	If one or more new uberblocks made it to disk, then they
1957 	 *	will be the newest, and the even labels (which had all
1958 	 *	been successfully committed) will be valid with respect
1959 	 *	to the new uberblocks.
1960 	 */
1961 	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) {
1962 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1963 			zfs_dbgmsg("vdev_uberblock_sync_list() returned error "
1964 			    "%d for pool '%s'", error, spa_name(spa));
1965 		}
1966 		goto retry;
1967 	}
1968 
1969 	if (spa_multihost(spa))
1970 		mmp_update_uberblock(spa, ub);
1971 
1972 	/*
1973 	 * Sync out odd labels for every dirty vdev.  If the system dies
1974 	 * in the middle of this process, the even labels and the new
1975 	 * uberblocks will suffice to open the pool.  The next time
1976 	 * the pool is opened, the first thing we'll do -- before any
1977 	 * user data is modified -- is mark every vdev dirty so that
1978 	 * all labels will be brought up to date.  We flush the new labels
1979 	 * to disk to ensure that all odd-label updates are committed to
1980 	 * stable storage before the next transaction group begins.
1981 	 */
1982 	if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) {
1983 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1984 			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1985 			    "for pool '%s' when syncing out the odd labels of "
1986 			    "dirty vdevs", error, spa_name(spa));
1987 		}
1988 		goto retry;
1989 	}
1990 
1991 	return (0);
1992 }
1993