1 /* 2 * CDDL HEADER START 3 * 4 * This file and its contents are supplied under the terms of the 5 * Common Development and Distribution License ("CDDL"), version 1.0. 6 * You may only use this file in accordance with the terms of version 7 * 1.0 of the CDDL. 8 * 9 * A full copy of the text of the CDDL should have accompanied this 10 * source. A copy of the CDDL is also available via the Internet at 11 * http://www.illumos.org/license/CDDL. 12 * 13 * CDDL HEADER END 14 */ 15 16 /* 17 * Copyright (c) 2014, 2017 by Delphix. All rights reserved. 18 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 19 * Copyright (c) 2014, 2020 by Delphix. All rights reserved. 20 */ 21 22 #include <sys/zfs_context.h> 23 #include <sys/spa.h> 24 #include <sys/spa_impl.h> 25 #include <sys/vdev_impl.h> 26 #include <sys/fs/zfs.h> 27 #include <sys/zio.h> 28 #include <sys/zio_checksum.h> 29 #include <sys/metaslab.h> 30 #include <sys/dmu.h> 31 #include <sys/vdev_indirect_mapping.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/dsl_synctask.h> 34 #include <sys/zap.h> 35 #include <sys/abd.h> 36 #include <sys/zthr.h> 37 38 /* 39 * An indirect vdev corresponds to a vdev that has been removed. Since 40 * we cannot rewrite block pointers of snapshots, etc., we keep a 41 * mapping from old location on the removed device to the new location 42 * on another device in the pool and use this mapping whenever we need 43 * to access the DVA. Unfortunately, this mapping did not respect 44 * logical block boundaries when it was first created, and so a DVA on 45 * this indirect vdev may be "split" into multiple sections that each 46 * map to a different location. As a consequence, not all DVAs can be 47 * translated to an equivalent new DVA. Instead we must provide a 48 * "vdev_remap" operation that executes a callback on each contiguous 49 * segment of the new location. This function is used in multiple ways: 50 * 51 * - I/Os to this vdev use the callback to determine where the 52 * data is now located, and issue child I/Os for each segment's new 53 * location. 54 * 55 * - frees and claims to this vdev use the callback to free or claim 56 * each mapped segment. (Note that we don't actually need to claim 57 * log blocks on indirect vdevs, because we don't allocate to 58 * removing vdevs. However, zdb uses zio_claim() for its leak 59 * detection.) 60 */ 61 62 /* 63 * "Big theory statement" for how we mark blocks obsolete. 64 * 65 * When a block on an indirect vdev is freed or remapped, a section of 66 * that vdev's mapping may no longer be referenced (aka "obsolete"). We 67 * keep track of how much of each mapping entry is obsolete. When 68 * an entry becomes completely obsolete, we can remove it, thus reducing 69 * the memory used by the mapping. The complete picture of obsolescence 70 * is given by the following data structures, described below: 71 * - the entry-specific obsolete count 72 * - the vdev-specific obsolete spacemap 73 * - the pool-specific obsolete bpobj 74 * 75 * == On disk data structures used == 76 * 77 * We track the obsolete space for the pool using several objects. Each 78 * of these objects is created on demand and freed when no longer 79 * needed, and is assumed to be empty if it does not exist. 80 * SPA_FEATURE_OBSOLETE_COUNTS includes the count of these objects. 81 * 82 * - Each vic_mapping_object (associated with an indirect vdev) can 83 * have a vimp_counts_object. This is an array of uint32_t's 84 * with the same number of entries as the vic_mapping_object. When 85 * the mapping is condensed, entries from the vic_obsolete_sm_object 86 * (see below) are folded into the counts. Therefore, each 87 * obsolete_counts entry tells us the number of bytes in the 88 * corresponding mapping entry that were not referenced when the 89 * mapping was last condensed. 90 * 91 * - Each indirect or removing vdev can have a vic_obsolete_sm_object. 92 * This is a space map containing an alloc entry for every DVA that 93 * has been obsoleted since the last time this indirect vdev was 94 * condensed. We use this object in order to improve performance 95 * when marking a DVA as obsolete. Instead of modifying an arbitrary 96 * offset of the vimp_counts_object, we only need to append an entry 97 * to the end of this object. When a DVA becomes obsolete, it is 98 * added to the obsolete space map. This happens when the DVA is 99 * freed, remapped and not referenced by a snapshot, or the last 100 * snapshot referencing it is destroyed. 101 * 102 * - Each dataset can have a ds_remap_deadlist object. This is a 103 * deadlist object containing all blocks that were remapped in this 104 * dataset but referenced in a previous snapshot. Blocks can *only* 105 * appear on this list if they were remapped (dsl_dataset_block_remapped); 106 * blocks that were killed in a head dataset are put on the normal 107 * ds_deadlist and marked obsolete when they are freed. 108 * 109 * - The pool can have a dp_obsolete_bpobj. This is a list of blocks 110 * in the pool that need to be marked obsolete. When a snapshot is 111 * destroyed, we move some of the ds_remap_deadlist to the obsolete 112 * bpobj (see dsl_destroy_snapshot_handle_remaps()). We then 113 * asynchronously process the obsolete bpobj, moving its entries to 114 * the specific vdevs' obsolete space maps. 115 * 116 * == Summary of how we mark blocks as obsolete == 117 * 118 * - When freeing a block: if any DVA is on an indirect vdev, append to 119 * vic_obsolete_sm_object. 120 * - When remapping a block, add dva to ds_remap_deadlist (if prev snap 121 * references; otherwise append to vic_obsolete_sm_object). 122 * - When freeing a snapshot: move parts of ds_remap_deadlist to 123 * dp_obsolete_bpobj (same algorithm as ds_deadlist). 124 * - When syncing the spa: process dp_obsolete_bpobj, moving ranges to 125 * individual vdev's vic_obsolete_sm_object. 126 */ 127 128 /* 129 * "Big theory statement" for how we condense indirect vdevs. 130 * 131 * Condensing an indirect vdev's mapping is the process of determining 132 * the precise counts of obsolete space for each mapping entry (by 133 * integrating the obsolete spacemap into the obsolete counts) and 134 * writing out a new mapping that contains only referenced entries. 135 * 136 * We condense a vdev when we expect the mapping to shrink (see 137 * vdev_indirect_should_condense()), but only perform one condense at a 138 * time to limit the memory usage. In addition, we use a separate 139 * open-context thread (spa_condense_indirect_thread) to incrementally 140 * create the new mapping object in a way that minimizes the impact on 141 * the rest of the system. 142 * 143 * == Generating a new mapping == 144 * 145 * To generate a new mapping, we follow these steps: 146 * 147 * 1. Save the old obsolete space map and create a new mapping object 148 * (see spa_condense_indirect_start_sync()). This initializes the 149 * spa_condensing_indirect_phys with the "previous obsolete space map", 150 * which is now read only. Newly obsolete DVAs will be added to a 151 * new (initially empty) obsolete space map, and will not be 152 * considered as part of this condense operation. 153 * 154 * 2. Construct in memory the precise counts of obsolete space for each 155 * mapping entry, by incorporating the obsolete space map into the 156 * counts. (See vdev_indirect_mapping_load_obsolete_{counts,spacemap}().) 157 * 158 * 3. Iterate through each mapping entry, writing to the new mapping any 159 * entries that are not completely obsolete (i.e. which don't have 160 * obsolete count == mapping length). (See 161 * spa_condense_indirect_generate_new_mapping().) 162 * 163 * 4. Destroy the old mapping object and switch over to the new one 164 * (spa_condense_indirect_complete_sync). 165 * 166 * == Restarting from failure == 167 * 168 * To restart the condense when we import/open the pool, we must start 169 * at the 2nd step above: reconstruct the precise counts in memory, 170 * based on the space map + counts. Then in the 3rd step, we start 171 * iterating where we left off: at vimp_max_offset of the new mapping 172 * object. 173 */ 174 175 static int zfs_condense_indirect_vdevs_enable = B_TRUE; 176 177 /* 178 * Condense if at least this percent of the bytes in the mapping is 179 * obsolete. With the default of 25%, the amount of space mapped 180 * will be reduced to 1% of its original size after at most 16 181 * condenses. Higher values will condense less often (causing less 182 * i/o); lower values will reduce the mapping size more quickly. 183 */ 184 static uint_t zfs_condense_indirect_obsolete_pct = 25; 185 186 /* 187 * Condense if the obsolete space map takes up more than this amount of 188 * space on disk (logically). This limits the amount of disk space 189 * consumed by the obsolete space map; the default of 1GB is small enough 190 * that we typically don't mind "wasting" it. 191 */ 192 static unsigned long zfs_condense_max_obsolete_bytes = 1024 * 1024 * 1024; 193 194 /* 195 * Don't bother condensing if the mapping uses less than this amount of 196 * memory. The default of 128KB is considered a "trivial" amount of 197 * memory and not worth reducing. 198 */ 199 static unsigned long zfs_condense_min_mapping_bytes = 128 * 1024; 200 201 /* 202 * This is used by the test suite so that it can ensure that certain 203 * actions happen while in the middle of a condense (which might otherwise 204 * complete too quickly). If used to reduce the performance impact of 205 * condensing in production, a maximum value of 1 should be sufficient. 206 */ 207 static uint_t zfs_condense_indirect_commit_entry_delay_ms = 0; 208 209 /* 210 * If an indirect split block contains more than this many possible unique 211 * combinations when being reconstructed, consider it too computationally 212 * expensive to check them all. Instead, try at most 100 randomly-selected 213 * combinations each time the block is accessed. This allows all segment 214 * copies to participate fairly in the reconstruction when all combinations 215 * cannot be checked and prevents repeated use of one bad copy. 216 */ 217 uint_t zfs_reconstruct_indirect_combinations_max = 4096; 218 219 /* 220 * Enable to simulate damaged segments and validate reconstruction. This 221 * is intentionally not exposed as a module parameter. 222 */ 223 unsigned long zfs_reconstruct_indirect_damage_fraction = 0; 224 225 /* 226 * The indirect_child_t represents the vdev that we will read from, when we 227 * need to read all copies of the data (e.g. for scrub or reconstruction). 228 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror), 229 * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs, 230 * ic_vdev is a child of the mirror. 231 */ 232 typedef struct indirect_child { 233 abd_t *ic_data; 234 vdev_t *ic_vdev; 235 236 /* 237 * ic_duplicate is NULL when the ic_data contents are unique, when it 238 * is determined to be a duplicate it references the primary child. 239 */ 240 struct indirect_child *ic_duplicate; 241 list_node_t ic_node; /* node on is_unique_child */ 242 int ic_error; /* set when a child does not contain the data */ 243 } indirect_child_t; 244 245 /* 246 * The indirect_split_t represents one mapped segment of an i/o to the 247 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be 248 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size. 249 * For split blocks, there will be several of these. 250 */ 251 typedef struct indirect_split { 252 list_node_t is_node; /* link on iv_splits */ 253 254 /* 255 * is_split_offset is the offset into the i/o. 256 * This is the sum of the previous splits' is_size's. 257 */ 258 uint64_t is_split_offset; 259 260 vdev_t *is_vdev; /* top-level vdev */ 261 uint64_t is_target_offset; /* offset on is_vdev */ 262 uint64_t is_size; 263 int is_children; /* number of entries in is_child[] */ 264 int is_unique_children; /* number of entries in is_unique_child */ 265 list_t is_unique_child; 266 267 /* 268 * is_good_child is the child that we are currently using to 269 * attempt reconstruction. 270 */ 271 indirect_child_t *is_good_child; 272 273 indirect_child_t is_child[1]; /* variable-length */ 274 } indirect_split_t; 275 276 /* 277 * The indirect_vsd_t is associated with each i/o to the indirect vdev. 278 * It is the "Vdev-Specific Data" in the zio_t's io_vsd. 279 */ 280 typedef struct indirect_vsd { 281 boolean_t iv_split_block; 282 boolean_t iv_reconstruct; 283 uint64_t iv_unique_combinations; 284 uint64_t iv_attempts; 285 uint64_t iv_attempts_max; 286 287 list_t iv_splits; /* list of indirect_split_t's */ 288 } indirect_vsd_t; 289 290 static void 291 vdev_indirect_map_free(zio_t *zio) 292 { 293 indirect_vsd_t *iv = zio->io_vsd; 294 295 indirect_split_t *is; 296 while ((is = list_head(&iv->iv_splits)) != NULL) { 297 for (int c = 0; c < is->is_children; c++) { 298 indirect_child_t *ic = &is->is_child[c]; 299 if (ic->ic_data != NULL) 300 abd_free(ic->ic_data); 301 } 302 list_remove(&iv->iv_splits, is); 303 304 indirect_child_t *ic; 305 while ((ic = list_head(&is->is_unique_child)) != NULL) 306 list_remove(&is->is_unique_child, ic); 307 308 list_destroy(&is->is_unique_child); 309 310 kmem_free(is, 311 offsetof(indirect_split_t, is_child[is->is_children])); 312 } 313 kmem_free(iv, sizeof (*iv)); 314 } 315 316 static const zio_vsd_ops_t vdev_indirect_vsd_ops = { 317 .vsd_free = vdev_indirect_map_free, 318 }; 319 320 /* 321 * Mark the given offset and size as being obsolete. 322 */ 323 void 324 vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset, uint64_t size) 325 { 326 spa_t *spa = vd->vdev_spa; 327 328 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, !=, 0); 329 ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops); 330 ASSERT(size > 0); 331 VERIFY(vdev_indirect_mapping_entry_for_offset( 332 vd->vdev_indirect_mapping, offset) != NULL); 333 334 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) { 335 mutex_enter(&vd->vdev_obsolete_lock); 336 range_tree_add(vd->vdev_obsolete_segments, offset, size); 337 mutex_exit(&vd->vdev_obsolete_lock); 338 vdev_dirty(vd, 0, NULL, spa_syncing_txg(spa)); 339 } 340 } 341 342 /* 343 * Mark the DVA vdev_id:offset:size as being obsolete in the given tx. This 344 * wrapper is provided because the DMU does not know about vdev_t's and 345 * cannot directly call vdev_indirect_mark_obsolete. 346 */ 347 void 348 spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev_id, uint64_t offset, 349 uint64_t size, dmu_tx_t *tx) 350 { 351 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 352 ASSERT(dmu_tx_is_syncing(tx)); 353 354 /* The DMU can only remap indirect vdevs. */ 355 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 356 vdev_indirect_mark_obsolete(vd, offset, size); 357 } 358 359 static spa_condensing_indirect_t * 360 spa_condensing_indirect_create(spa_t *spa) 361 { 362 spa_condensing_indirect_phys_t *scip = 363 &spa->spa_condensing_indirect_phys; 364 spa_condensing_indirect_t *sci = kmem_zalloc(sizeof (*sci), KM_SLEEP); 365 objset_t *mos = spa->spa_meta_objset; 366 367 for (int i = 0; i < TXG_SIZE; i++) { 368 list_create(&sci->sci_new_mapping_entries[i], 369 sizeof (vdev_indirect_mapping_entry_t), 370 offsetof(vdev_indirect_mapping_entry_t, vime_node)); 371 } 372 373 sci->sci_new_mapping = 374 vdev_indirect_mapping_open(mos, scip->scip_next_mapping_object); 375 376 return (sci); 377 } 378 379 static void 380 spa_condensing_indirect_destroy(spa_condensing_indirect_t *sci) 381 { 382 for (int i = 0; i < TXG_SIZE; i++) 383 list_destroy(&sci->sci_new_mapping_entries[i]); 384 385 if (sci->sci_new_mapping != NULL) 386 vdev_indirect_mapping_close(sci->sci_new_mapping); 387 388 kmem_free(sci, sizeof (*sci)); 389 } 390 391 boolean_t 392 vdev_indirect_should_condense(vdev_t *vd) 393 { 394 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 395 spa_t *spa = vd->vdev_spa; 396 397 ASSERT(dsl_pool_sync_context(spa->spa_dsl_pool)); 398 399 if (!zfs_condense_indirect_vdevs_enable) 400 return (B_FALSE); 401 402 /* 403 * We can only condense one indirect vdev at a time. 404 */ 405 if (spa->spa_condensing_indirect != NULL) 406 return (B_FALSE); 407 408 if (spa_shutting_down(spa)) 409 return (B_FALSE); 410 411 /* 412 * The mapping object size must not change while we are 413 * condensing, so we can only condense indirect vdevs 414 * (not vdevs that are still in the middle of being removed). 415 */ 416 if (vd->vdev_ops != &vdev_indirect_ops) 417 return (B_FALSE); 418 419 /* 420 * If nothing new has been marked obsolete, there is no 421 * point in condensing. 422 */ 423 uint64_t obsolete_sm_obj __maybe_unused; 424 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_obj)); 425 if (vd->vdev_obsolete_sm == NULL) { 426 ASSERT0(obsolete_sm_obj); 427 return (B_FALSE); 428 } 429 430 ASSERT(vd->vdev_obsolete_sm != NULL); 431 432 ASSERT3U(obsolete_sm_obj, ==, space_map_object(vd->vdev_obsolete_sm)); 433 434 uint64_t bytes_mapped = vdev_indirect_mapping_bytes_mapped(vim); 435 uint64_t bytes_obsolete = space_map_allocated(vd->vdev_obsolete_sm); 436 uint64_t mapping_size = vdev_indirect_mapping_size(vim); 437 uint64_t obsolete_sm_size = space_map_length(vd->vdev_obsolete_sm); 438 439 ASSERT3U(bytes_obsolete, <=, bytes_mapped); 440 441 /* 442 * If a high percentage of the bytes that are mapped have become 443 * obsolete, condense (unless the mapping is already small enough). 444 * This has a good chance of reducing the amount of memory used 445 * by the mapping. 446 */ 447 if (bytes_obsolete * 100 / bytes_mapped >= 448 zfs_condense_indirect_obsolete_pct && 449 mapping_size > zfs_condense_min_mapping_bytes) { 450 zfs_dbgmsg("should condense vdev %llu because obsolete " 451 "spacemap covers %d%% of %lluMB mapping", 452 (u_longlong_t)vd->vdev_id, 453 (int)(bytes_obsolete * 100 / bytes_mapped), 454 (u_longlong_t)bytes_mapped / 1024 / 1024); 455 return (B_TRUE); 456 } 457 458 /* 459 * If the obsolete space map takes up too much space on disk, 460 * condense in order to free up this disk space. 461 */ 462 if (obsolete_sm_size >= zfs_condense_max_obsolete_bytes) { 463 zfs_dbgmsg("should condense vdev %llu because obsolete sm " 464 "length %lluMB >= max size %lluMB", 465 (u_longlong_t)vd->vdev_id, 466 (u_longlong_t)obsolete_sm_size / 1024 / 1024, 467 (u_longlong_t)zfs_condense_max_obsolete_bytes / 468 1024 / 1024); 469 return (B_TRUE); 470 } 471 472 return (B_FALSE); 473 } 474 475 /* 476 * This sync task completes (finishes) a condense, deleting the old 477 * mapping and replacing it with the new one. 478 */ 479 static void 480 spa_condense_indirect_complete_sync(void *arg, dmu_tx_t *tx) 481 { 482 spa_condensing_indirect_t *sci = arg; 483 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 484 spa_condensing_indirect_phys_t *scip = 485 &spa->spa_condensing_indirect_phys; 486 vdev_t *vd = vdev_lookup_top(spa, scip->scip_vdev); 487 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 488 objset_t *mos = spa->spa_meta_objset; 489 vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping; 490 uint64_t old_count = vdev_indirect_mapping_num_entries(old_mapping); 491 uint64_t new_count = 492 vdev_indirect_mapping_num_entries(sci->sci_new_mapping); 493 494 ASSERT(dmu_tx_is_syncing(tx)); 495 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 496 ASSERT3P(sci, ==, spa->spa_condensing_indirect); 497 for (int i = 0; i < TXG_SIZE; i++) { 498 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i])); 499 } 500 ASSERT(vic->vic_mapping_object != 0); 501 ASSERT3U(vd->vdev_id, ==, scip->scip_vdev); 502 ASSERT(scip->scip_next_mapping_object != 0); 503 ASSERT(scip->scip_prev_obsolete_sm_object != 0); 504 505 /* 506 * Reset vdev_indirect_mapping to refer to the new object. 507 */ 508 rw_enter(&vd->vdev_indirect_rwlock, RW_WRITER); 509 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 510 vd->vdev_indirect_mapping = sci->sci_new_mapping; 511 rw_exit(&vd->vdev_indirect_rwlock); 512 513 sci->sci_new_mapping = NULL; 514 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx); 515 vic->vic_mapping_object = scip->scip_next_mapping_object; 516 scip->scip_next_mapping_object = 0; 517 518 space_map_free_obj(mos, scip->scip_prev_obsolete_sm_object, tx); 519 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 520 scip->scip_prev_obsolete_sm_object = 0; 521 522 scip->scip_vdev = 0; 523 524 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT, 525 DMU_POOL_CONDENSING_INDIRECT, tx)); 526 spa_condensing_indirect_destroy(spa->spa_condensing_indirect); 527 spa->spa_condensing_indirect = NULL; 528 529 zfs_dbgmsg("finished condense of vdev %llu in txg %llu: " 530 "new mapping object %llu has %llu entries " 531 "(was %llu entries)", 532 (u_longlong_t)vd->vdev_id, (u_longlong_t)dmu_tx_get_txg(tx), 533 (u_longlong_t)vic->vic_mapping_object, 534 (u_longlong_t)new_count, (u_longlong_t)old_count); 535 536 vdev_config_dirty(spa->spa_root_vdev); 537 } 538 539 /* 540 * This sync task appends entries to the new mapping object. 541 */ 542 static void 543 spa_condense_indirect_commit_sync(void *arg, dmu_tx_t *tx) 544 { 545 spa_condensing_indirect_t *sci = arg; 546 uint64_t txg = dmu_tx_get_txg(tx); 547 spa_t *spa __maybe_unused = dmu_tx_pool(tx)->dp_spa; 548 549 ASSERT(dmu_tx_is_syncing(tx)); 550 ASSERT3P(sci, ==, spa->spa_condensing_indirect); 551 552 vdev_indirect_mapping_add_entries(sci->sci_new_mapping, 553 &sci->sci_new_mapping_entries[txg & TXG_MASK], tx); 554 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[txg & TXG_MASK])); 555 } 556 557 /* 558 * Open-context function to add one entry to the new mapping. The new 559 * entry will be remembered and written from syncing context. 560 */ 561 static void 562 spa_condense_indirect_commit_entry(spa_t *spa, 563 vdev_indirect_mapping_entry_phys_t *vimep, uint32_t count) 564 { 565 spa_condensing_indirect_t *sci = spa->spa_condensing_indirect; 566 567 ASSERT3U(count, <, DVA_GET_ASIZE(&vimep->vimep_dst)); 568 569 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 570 dmu_tx_hold_space(tx, sizeof (*vimep) + sizeof (count)); 571 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 572 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 573 574 /* 575 * If we are the first entry committed this txg, kick off the sync 576 * task to write to the MOS on our behalf. 577 */ 578 if (list_is_empty(&sci->sci_new_mapping_entries[txgoff])) { 579 dsl_sync_task_nowait(dmu_tx_pool(tx), 580 spa_condense_indirect_commit_sync, sci, tx); 581 } 582 583 vdev_indirect_mapping_entry_t *vime = 584 kmem_alloc(sizeof (*vime), KM_SLEEP); 585 vime->vime_mapping = *vimep; 586 vime->vime_obsolete_count = count; 587 list_insert_tail(&sci->sci_new_mapping_entries[txgoff], vime); 588 589 dmu_tx_commit(tx); 590 } 591 592 static void 593 spa_condense_indirect_generate_new_mapping(vdev_t *vd, 594 uint32_t *obsolete_counts, uint64_t start_index, zthr_t *zthr) 595 { 596 spa_t *spa = vd->vdev_spa; 597 uint64_t mapi = start_index; 598 vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping; 599 uint64_t old_num_entries = 600 vdev_indirect_mapping_num_entries(old_mapping); 601 602 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 603 ASSERT3U(vd->vdev_id, ==, spa->spa_condensing_indirect_phys.scip_vdev); 604 605 zfs_dbgmsg("starting condense of vdev %llu from index %llu", 606 (u_longlong_t)vd->vdev_id, 607 (u_longlong_t)mapi); 608 609 while (mapi < old_num_entries) { 610 611 if (zthr_iscancelled(zthr)) { 612 zfs_dbgmsg("pausing condense of vdev %llu " 613 "at index %llu", (u_longlong_t)vd->vdev_id, 614 (u_longlong_t)mapi); 615 break; 616 } 617 618 vdev_indirect_mapping_entry_phys_t *entry = 619 &old_mapping->vim_entries[mapi]; 620 uint64_t entry_size = DVA_GET_ASIZE(&entry->vimep_dst); 621 ASSERT3U(obsolete_counts[mapi], <=, entry_size); 622 if (obsolete_counts[mapi] < entry_size) { 623 spa_condense_indirect_commit_entry(spa, entry, 624 obsolete_counts[mapi]); 625 626 /* 627 * This delay may be requested for testing, debugging, 628 * or performance reasons. 629 */ 630 hrtime_t now = gethrtime(); 631 hrtime_t sleep_until = now + MSEC2NSEC( 632 zfs_condense_indirect_commit_entry_delay_ms); 633 zfs_sleep_until(sleep_until); 634 } 635 636 mapi++; 637 } 638 } 639 640 static boolean_t 641 spa_condense_indirect_thread_check(void *arg, zthr_t *zthr) 642 { 643 (void) zthr; 644 spa_t *spa = arg; 645 646 return (spa->spa_condensing_indirect != NULL); 647 } 648 649 static void 650 spa_condense_indirect_thread(void *arg, zthr_t *zthr) 651 { 652 spa_t *spa = arg; 653 vdev_t *vd; 654 655 ASSERT3P(spa->spa_condensing_indirect, !=, NULL); 656 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 657 vd = vdev_lookup_top(spa, spa->spa_condensing_indirect_phys.scip_vdev); 658 ASSERT3P(vd, !=, NULL); 659 spa_config_exit(spa, SCL_VDEV, FTAG); 660 661 spa_condensing_indirect_t *sci = spa->spa_condensing_indirect; 662 spa_condensing_indirect_phys_t *scip = 663 &spa->spa_condensing_indirect_phys; 664 uint32_t *counts; 665 uint64_t start_index; 666 vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping; 667 space_map_t *prev_obsolete_sm = NULL; 668 669 ASSERT3U(vd->vdev_id, ==, scip->scip_vdev); 670 ASSERT(scip->scip_next_mapping_object != 0); 671 ASSERT(scip->scip_prev_obsolete_sm_object != 0); 672 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 673 674 for (int i = 0; i < TXG_SIZE; i++) { 675 /* 676 * The list must start out empty in order for the 677 * _commit_sync() sync task to be properly registered 678 * on the first call to _commit_entry(); so it's wise 679 * to double check and ensure we actually are starting 680 * with empty lists. 681 */ 682 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i])); 683 } 684 685 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset, 686 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0)); 687 counts = vdev_indirect_mapping_load_obsolete_counts(old_mapping); 688 if (prev_obsolete_sm != NULL) { 689 vdev_indirect_mapping_load_obsolete_spacemap(old_mapping, 690 counts, prev_obsolete_sm); 691 } 692 space_map_close(prev_obsolete_sm); 693 694 /* 695 * Generate new mapping. Determine what index to continue from 696 * based on the max offset that we've already written in the 697 * new mapping. 698 */ 699 uint64_t max_offset = 700 vdev_indirect_mapping_max_offset(sci->sci_new_mapping); 701 if (max_offset == 0) { 702 /* We haven't written anything to the new mapping yet. */ 703 start_index = 0; 704 } else { 705 /* 706 * Pick up from where we left off. _entry_for_offset() 707 * returns a pointer into the vim_entries array. If 708 * max_offset is greater than any of the mappings 709 * contained in the table NULL will be returned and 710 * that indicates we've exhausted our iteration of the 711 * old_mapping. 712 */ 713 714 vdev_indirect_mapping_entry_phys_t *entry = 715 vdev_indirect_mapping_entry_for_offset_or_next(old_mapping, 716 max_offset); 717 718 if (entry == NULL) { 719 /* 720 * We've already written the whole new mapping. 721 * This special value will cause us to skip the 722 * generate_new_mapping step and just do the sync 723 * task to complete the condense. 724 */ 725 start_index = UINT64_MAX; 726 } else { 727 start_index = entry - old_mapping->vim_entries; 728 ASSERT3U(start_index, <, 729 vdev_indirect_mapping_num_entries(old_mapping)); 730 } 731 } 732 733 spa_condense_indirect_generate_new_mapping(vd, counts, 734 start_index, zthr); 735 736 vdev_indirect_mapping_free_obsolete_counts(old_mapping, counts); 737 738 /* 739 * If the zthr has received a cancellation signal while running 740 * in generate_new_mapping() or at any point after that, then bail 741 * early. We don't want to complete the condense if the spa is 742 * shutting down. 743 */ 744 if (zthr_iscancelled(zthr)) 745 return; 746 747 VERIFY0(dsl_sync_task(spa_name(spa), NULL, 748 spa_condense_indirect_complete_sync, sci, 0, 749 ZFS_SPACE_CHECK_EXTRA_RESERVED)); 750 } 751 752 /* 753 * Sync task to begin the condensing process. 754 */ 755 void 756 spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx) 757 { 758 spa_t *spa = vd->vdev_spa; 759 spa_condensing_indirect_phys_t *scip = 760 &spa->spa_condensing_indirect_phys; 761 762 ASSERT0(scip->scip_next_mapping_object); 763 ASSERT0(scip->scip_prev_obsolete_sm_object); 764 ASSERT0(scip->scip_vdev); 765 ASSERT(dmu_tx_is_syncing(tx)); 766 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 767 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_OBSOLETE_COUNTS)); 768 ASSERT(vdev_indirect_mapping_num_entries(vd->vdev_indirect_mapping)); 769 770 uint64_t obsolete_sm_obj; 771 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_obj)); 772 ASSERT3U(obsolete_sm_obj, !=, 0); 773 774 scip->scip_vdev = vd->vdev_id; 775 scip->scip_next_mapping_object = 776 vdev_indirect_mapping_alloc(spa->spa_meta_objset, tx); 777 778 scip->scip_prev_obsolete_sm_object = obsolete_sm_obj; 779 780 /* 781 * We don't need to allocate a new space map object, since 782 * vdev_indirect_sync_obsolete will allocate one when needed. 783 */ 784 space_map_close(vd->vdev_obsolete_sm); 785 vd->vdev_obsolete_sm = NULL; 786 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap, 787 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx)); 788 789 VERIFY0(zap_add(spa->spa_dsl_pool->dp_meta_objset, 790 DMU_POOL_DIRECTORY_OBJECT, 791 DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t), 792 sizeof (*scip) / sizeof (uint64_t), scip, tx)); 793 794 ASSERT3P(spa->spa_condensing_indirect, ==, NULL); 795 spa->spa_condensing_indirect = spa_condensing_indirect_create(spa); 796 797 zfs_dbgmsg("starting condense of vdev %llu in txg %llu: " 798 "posm=%llu nm=%llu", 799 (u_longlong_t)vd->vdev_id, (u_longlong_t)dmu_tx_get_txg(tx), 800 (u_longlong_t)scip->scip_prev_obsolete_sm_object, 801 (u_longlong_t)scip->scip_next_mapping_object); 802 803 zthr_wakeup(spa->spa_condense_zthr); 804 } 805 806 /* 807 * Sync to the given vdev's obsolete space map any segments that are no longer 808 * referenced as of the given txg. 809 * 810 * If the obsolete space map doesn't exist yet, create and open it. 811 */ 812 void 813 vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx) 814 { 815 spa_t *spa = vd->vdev_spa; 816 vdev_indirect_config_t *vic __maybe_unused = &vd->vdev_indirect_config; 817 818 ASSERT3U(vic->vic_mapping_object, !=, 0); 819 ASSERT(range_tree_space(vd->vdev_obsolete_segments) > 0); 820 ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops); 821 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)); 822 823 uint64_t obsolete_sm_object; 824 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 825 if (obsolete_sm_object == 0) { 826 obsolete_sm_object = space_map_alloc(spa->spa_meta_objset, 827 zfs_vdev_standard_sm_blksz, tx); 828 829 ASSERT(vd->vdev_top_zap != 0); 830 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap, 831 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, 832 sizeof (obsolete_sm_object), 1, &obsolete_sm_object, tx)); 833 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 834 ASSERT3U(obsolete_sm_object, !=, 0); 835 836 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx); 837 VERIFY0(space_map_open(&vd->vdev_obsolete_sm, 838 spa->spa_meta_objset, obsolete_sm_object, 839 0, vd->vdev_asize, 0)); 840 } 841 842 ASSERT(vd->vdev_obsolete_sm != NULL); 843 ASSERT3U(obsolete_sm_object, ==, 844 space_map_object(vd->vdev_obsolete_sm)); 845 846 space_map_write(vd->vdev_obsolete_sm, 847 vd->vdev_obsolete_segments, SM_ALLOC, SM_NO_VDEVID, tx); 848 range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL); 849 } 850 851 int 852 spa_condense_init(spa_t *spa) 853 { 854 int error = zap_lookup(spa->spa_meta_objset, 855 DMU_POOL_DIRECTORY_OBJECT, 856 DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t), 857 sizeof (spa->spa_condensing_indirect_phys) / sizeof (uint64_t), 858 &spa->spa_condensing_indirect_phys); 859 if (error == 0) { 860 if (spa_writeable(spa)) { 861 spa->spa_condensing_indirect = 862 spa_condensing_indirect_create(spa); 863 } 864 return (0); 865 } else if (error == ENOENT) { 866 return (0); 867 } else { 868 return (error); 869 } 870 } 871 872 void 873 spa_condense_fini(spa_t *spa) 874 { 875 if (spa->spa_condensing_indirect != NULL) { 876 spa_condensing_indirect_destroy(spa->spa_condensing_indirect); 877 spa->spa_condensing_indirect = NULL; 878 } 879 } 880 881 void 882 spa_start_indirect_condensing_thread(spa_t *spa) 883 { 884 ASSERT3P(spa->spa_condense_zthr, ==, NULL); 885 spa->spa_condense_zthr = zthr_create("z_indirect_condense", 886 spa_condense_indirect_thread_check, 887 spa_condense_indirect_thread, spa, minclsyspri); 888 } 889 890 /* 891 * Gets the obsolete spacemap object from the vdev's ZAP. On success sm_obj 892 * will contain either the obsolete spacemap object or zero if none exists. 893 * All other errors are returned to the caller. 894 */ 895 int 896 vdev_obsolete_sm_object(vdev_t *vd, uint64_t *sm_obj) 897 { 898 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 899 900 if (vd->vdev_top_zap == 0) { 901 *sm_obj = 0; 902 return (0); 903 } 904 905 int error = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap, 906 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, sizeof (uint64_t), 1, sm_obj); 907 if (error == ENOENT) { 908 *sm_obj = 0; 909 error = 0; 910 } 911 912 return (error); 913 } 914 915 /* 916 * Gets the obsolete count are precise spacemap object from the vdev's ZAP. 917 * On success are_precise will be set to reflect if the counts are precise. 918 * All other errors are returned to the caller. 919 */ 920 int 921 vdev_obsolete_counts_are_precise(vdev_t *vd, boolean_t *are_precise) 922 { 923 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 924 925 if (vd->vdev_top_zap == 0) { 926 *are_precise = B_FALSE; 927 return (0); 928 } 929 930 uint64_t val = 0; 931 int error = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap, 932 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (val), 1, &val); 933 if (error == 0) { 934 *are_precise = (val != 0); 935 } else if (error == ENOENT) { 936 *are_precise = B_FALSE; 937 error = 0; 938 } 939 940 return (error); 941 } 942 943 static void 944 vdev_indirect_close(vdev_t *vd) 945 { 946 (void) vd; 947 } 948 949 static int 950 vdev_indirect_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize, 951 uint64_t *logical_ashift, uint64_t *physical_ashift) 952 { 953 *psize = *max_psize = vd->vdev_asize + 954 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 955 *logical_ashift = vd->vdev_ashift; 956 *physical_ashift = vd->vdev_physical_ashift; 957 return (0); 958 } 959 960 typedef struct remap_segment { 961 vdev_t *rs_vd; 962 uint64_t rs_offset; 963 uint64_t rs_asize; 964 uint64_t rs_split_offset; 965 list_node_t rs_node; 966 } remap_segment_t; 967 968 static remap_segment_t * 969 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset) 970 { 971 remap_segment_t *rs = kmem_alloc(sizeof (remap_segment_t), KM_SLEEP); 972 rs->rs_vd = vd; 973 rs->rs_offset = offset; 974 rs->rs_asize = asize; 975 rs->rs_split_offset = split_offset; 976 return (rs); 977 } 978 979 /* 980 * Given an indirect vdev and an extent on that vdev, it duplicates the 981 * physical entries of the indirect mapping that correspond to the extent 982 * to a new array and returns a pointer to it. In addition, copied_entries 983 * is populated with the number of mapping entries that were duplicated. 984 * 985 * Note that the function assumes that the caller holds vdev_indirect_rwlock. 986 * This ensures that the mapping won't change due to condensing as we 987 * copy over its contents. 988 * 989 * Finally, since we are doing an allocation, it is up to the caller to 990 * free the array allocated in this function. 991 */ 992 static vdev_indirect_mapping_entry_phys_t * 993 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset, 994 uint64_t asize, uint64_t *copied_entries) 995 { 996 vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL; 997 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 998 uint64_t entries = 0; 999 1000 ASSERT(RW_READ_HELD(&vd->vdev_indirect_rwlock)); 1001 1002 vdev_indirect_mapping_entry_phys_t *first_mapping = 1003 vdev_indirect_mapping_entry_for_offset(vim, offset); 1004 ASSERT3P(first_mapping, !=, NULL); 1005 1006 vdev_indirect_mapping_entry_phys_t *m = first_mapping; 1007 while (asize > 0) { 1008 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 1009 1010 ASSERT3U(offset, >=, DVA_MAPPING_GET_SRC_OFFSET(m)); 1011 ASSERT3U(offset, <, DVA_MAPPING_GET_SRC_OFFSET(m) + size); 1012 1013 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m); 1014 uint64_t inner_size = MIN(asize, size - inner_offset); 1015 1016 offset += inner_size; 1017 asize -= inner_size; 1018 entries++; 1019 m++; 1020 } 1021 1022 size_t copy_length = entries * sizeof (*first_mapping); 1023 duplicate_mappings = kmem_alloc(copy_length, KM_SLEEP); 1024 memcpy(duplicate_mappings, first_mapping, copy_length); 1025 *copied_entries = entries; 1026 1027 return (duplicate_mappings); 1028 } 1029 1030 /* 1031 * Goes through the relevant indirect mappings until it hits a concrete vdev 1032 * and issues the callback. On the way to the concrete vdev, if any other 1033 * indirect vdevs are encountered, then the callback will also be called on 1034 * each of those indirect vdevs. For example, if the segment is mapped to 1035 * segment A on indirect vdev 1, and then segment A on indirect vdev 1 is 1036 * mapped to segment B on concrete vdev 2, then the callback will be called on 1037 * both vdev 1 and vdev 2. 1038 * 1039 * While the callback passed to vdev_indirect_remap() is called on every vdev 1040 * the function encounters, certain callbacks only care about concrete vdevs. 1041 * These types of callbacks should return immediately and explicitly when they 1042 * are called on an indirect vdev. 1043 * 1044 * Because there is a possibility that a DVA section in the indirect device 1045 * has been split into multiple sections in our mapping, we keep track 1046 * of the relevant contiguous segments of the new location (remap_segment_t) 1047 * in a stack. This way we can call the callback for each of the new sections 1048 * created by a single section of the indirect device. Note though, that in 1049 * this scenario the callbacks in each split block won't occur in-order in 1050 * terms of offset, so callers should not make any assumptions about that. 1051 * 1052 * For callbacks that don't handle split blocks and immediately return when 1053 * they encounter them (as is the case for remap_blkptr_cb), the caller can 1054 * assume that its callback will be applied from the first indirect vdev 1055 * encountered to the last one and then the concrete vdev, in that order. 1056 */ 1057 static void 1058 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, 1059 void (*func)(uint64_t, vdev_t *, uint64_t, uint64_t, void *), void *arg) 1060 { 1061 list_t stack; 1062 spa_t *spa = vd->vdev_spa; 1063 1064 list_create(&stack, sizeof (remap_segment_t), 1065 offsetof(remap_segment_t, rs_node)); 1066 1067 for (remap_segment_t *rs = rs_alloc(vd, offset, asize, 0); 1068 rs != NULL; rs = list_remove_head(&stack)) { 1069 vdev_t *v = rs->rs_vd; 1070 uint64_t num_entries = 0; 1071 1072 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1073 ASSERT(rs->rs_asize > 0); 1074 1075 /* 1076 * Note: As this function can be called from open context 1077 * (e.g. zio_read()), we need the following rwlock to 1078 * prevent the mapping from being changed by condensing. 1079 * 1080 * So we grab the lock and we make a copy of the entries 1081 * that are relevant to the extent that we are working on. 1082 * Once that is done, we drop the lock and iterate over 1083 * our copy of the mapping. Once we are done with the with 1084 * the remap segment and we free it, we also free our copy 1085 * of the indirect mapping entries that are relevant to it. 1086 * 1087 * This way we don't need to wait until the function is 1088 * finished with a segment, to condense it. In addition, we 1089 * don't need a recursive rwlock for the case that a call to 1090 * vdev_indirect_remap() needs to call itself (through the 1091 * codepath of its callback) for the same vdev in the middle 1092 * of its execution. 1093 */ 1094 rw_enter(&v->vdev_indirect_rwlock, RW_READER); 1095 ASSERT3P(v->vdev_indirect_mapping, !=, NULL); 1096 1097 vdev_indirect_mapping_entry_phys_t *mapping = 1098 vdev_indirect_mapping_duplicate_adjacent_entries(v, 1099 rs->rs_offset, rs->rs_asize, &num_entries); 1100 ASSERT3P(mapping, !=, NULL); 1101 ASSERT3U(num_entries, >, 0); 1102 rw_exit(&v->vdev_indirect_rwlock); 1103 1104 for (uint64_t i = 0; i < num_entries; i++) { 1105 /* 1106 * Note: the vdev_indirect_mapping can not change 1107 * while we are running. It only changes while the 1108 * removal is in progress, and then only from syncing 1109 * context. While a removal is in progress, this 1110 * function is only called for frees, which also only 1111 * happen from syncing context. 1112 */ 1113 vdev_indirect_mapping_entry_phys_t *m = &mapping[i]; 1114 1115 ASSERT3P(m, !=, NULL); 1116 ASSERT3U(rs->rs_asize, >, 0); 1117 1118 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); 1119 uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst); 1120 uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst); 1121 1122 ASSERT3U(rs->rs_offset, >=, 1123 DVA_MAPPING_GET_SRC_OFFSET(m)); 1124 ASSERT3U(rs->rs_offset, <, 1125 DVA_MAPPING_GET_SRC_OFFSET(m) + size); 1126 ASSERT3U(dst_vdev, !=, v->vdev_id); 1127 1128 uint64_t inner_offset = rs->rs_offset - 1129 DVA_MAPPING_GET_SRC_OFFSET(m); 1130 uint64_t inner_size = 1131 MIN(rs->rs_asize, size - inner_offset); 1132 1133 vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev); 1134 ASSERT3P(dst_v, !=, NULL); 1135 1136 if (dst_v->vdev_ops == &vdev_indirect_ops) { 1137 list_insert_head(&stack, 1138 rs_alloc(dst_v, dst_offset + inner_offset, 1139 inner_size, rs->rs_split_offset)); 1140 1141 } 1142 1143 if ((zfs_flags & ZFS_DEBUG_INDIRECT_REMAP) && 1144 IS_P2ALIGNED(inner_size, 2 * SPA_MINBLOCKSIZE)) { 1145 /* 1146 * Note: This clause exists only solely for 1147 * testing purposes. We use it to ensure that 1148 * split blocks work and that the callbacks 1149 * using them yield the same result if issued 1150 * in reverse order. 1151 */ 1152 uint64_t inner_half = inner_size / 2; 1153 1154 func(rs->rs_split_offset + inner_half, dst_v, 1155 dst_offset + inner_offset + inner_half, 1156 inner_half, arg); 1157 1158 func(rs->rs_split_offset, dst_v, 1159 dst_offset + inner_offset, 1160 inner_half, arg); 1161 } else { 1162 func(rs->rs_split_offset, dst_v, 1163 dst_offset + inner_offset, 1164 inner_size, arg); 1165 } 1166 1167 rs->rs_offset += inner_size; 1168 rs->rs_asize -= inner_size; 1169 rs->rs_split_offset += inner_size; 1170 } 1171 VERIFY0(rs->rs_asize); 1172 1173 kmem_free(mapping, num_entries * sizeof (*mapping)); 1174 kmem_free(rs, sizeof (remap_segment_t)); 1175 } 1176 list_destroy(&stack); 1177 } 1178 1179 static void 1180 vdev_indirect_child_io_done(zio_t *zio) 1181 { 1182 zio_t *pio = zio->io_private; 1183 1184 mutex_enter(&pio->io_lock); 1185 pio->io_error = zio_worst_error(pio->io_error, zio->io_error); 1186 mutex_exit(&pio->io_lock); 1187 1188 abd_free(zio->io_abd); 1189 } 1190 1191 /* 1192 * This is a callback for vdev_indirect_remap() which allocates an 1193 * indirect_split_t for each split segment and adds it to iv_splits. 1194 */ 1195 static void 1196 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset, 1197 uint64_t size, void *arg) 1198 { 1199 zio_t *zio = arg; 1200 indirect_vsd_t *iv = zio->io_vsd; 1201 1202 ASSERT3P(vd, !=, NULL); 1203 1204 if (vd->vdev_ops == &vdev_indirect_ops) 1205 return; 1206 1207 int n = 1; 1208 if (vd->vdev_ops == &vdev_mirror_ops) 1209 n = vd->vdev_children; 1210 1211 indirect_split_t *is = 1212 kmem_zalloc(offsetof(indirect_split_t, is_child[n]), KM_SLEEP); 1213 1214 is->is_children = n; 1215 is->is_size = size; 1216 is->is_split_offset = split_offset; 1217 is->is_target_offset = offset; 1218 is->is_vdev = vd; 1219 list_create(&is->is_unique_child, sizeof (indirect_child_t), 1220 offsetof(indirect_child_t, ic_node)); 1221 1222 /* 1223 * Note that we only consider multiple copies of the data for 1224 * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even 1225 * though they use the same ops as mirror, because there's only one 1226 * "good" copy under the replacing/spare. 1227 */ 1228 if (vd->vdev_ops == &vdev_mirror_ops) { 1229 for (int i = 0; i < n; i++) { 1230 is->is_child[i].ic_vdev = vd->vdev_child[i]; 1231 list_link_init(&is->is_child[i].ic_node); 1232 } 1233 } else { 1234 is->is_child[0].ic_vdev = vd; 1235 } 1236 1237 list_insert_tail(&iv->iv_splits, is); 1238 } 1239 1240 static void 1241 vdev_indirect_read_split_done(zio_t *zio) 1242 { 1243 indirect_child_t *ic = zio->io_private; 1244 1245 if (zio->io_error != 0) { 1246 /* 1247 * Clear ic_data to indicate that we do not have data for this 1248 * child. 1249 */ 1250 abd_free(ic->ic_data); 1251 ic->ic_data = NULL; 1252 } 1253 } 1254 1255 /* 1256 * Issue reads for all copies (mirror children) of all splits. 1257 */ 1258 static void 1259 vdev_indirect_read_all(zio_t *zio) 1260 { 1261 indirect_vsd_t *iv = zio->io_vsd; 1262 1263 ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ); 1264 1265 for (indirect_split_t *is = list_head(&iv->iv_splits); 1266 is != NULL; is = list_next(&iv->iv_splits, is)) { 1267 for (int i = 0; i < is->is_children; i++) { 1268 indirect_child_t *ic = &is->is_child[i]; 1269 1270 if (!vdev_readable(ic->ic_vdev)) 1271 continue; 1272 1273 /* 1274 * If a child is missing the data, set ic_error. Used 1275 * in vdev_indirect_repair(). We perform the read 1276 * nevertheless which provides the opportunity to 1277 * reconstruct the split block if at all possible. 1278 */ 1279 if (vdev_dtl_contains(ic->ic_vdev, DTL_MISSING, 1280 zio->io_txg, 1)) 1281 ic->ic_error = SET_ERROR(ESTALE); 1282 1283 ic->ic_data = abd_alloc_sametype(zio->io_abd, 1284 is->is_size); 1285 ic->ic_duplicate = NULL; 1286 1287 zio_nowait(zio_vdev_child_io(zio, NULL, 1288 ic->ic_vdev, is->is_target_offset, ic->ic_data, 1289 is->is_size, zio->io_type, zio->io_priority, 0, 1290 vdev_indirect_read_split_done, ic)); 1291 } 1292 } 1293 iv->iv_reconstruct = B_TRUE; 1294 } 1295 1296 static void 1297 vdev_indirect_io_start(zio_t *zio) 1298 { 1299 spa_t *spa __maybe_unused = zio->io_spa; 1300 indirect_vsd_t *iv = kmem_zalloc(sizeof (*iv), KM_SLEEP); 1301 list_create(&iv->iv_splits, 1302 sizeof (indirect_split_t), offsetof(indirect_split_t, is_node)); 1303 1304 zio->io_vsd = iv; 1305 zio->io_vsd_ops = &vdev_indirect_vsd_ops; 1306 1307 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1308 if (zio->io_type != ZIO_TYPE_READ) { 1309 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 1310 /* 1311 * Note: this code can handle other kinds of writes, 1312 * but we don't expect them. 1313 */ 1314 ASSERT((zio->io_flags & (ZIO_FLAG_SELF_HEAL | 1315 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)) != 0); 1316 } 1317 1318 vdev_indirect_remap(zio->io_vd, zio->io_offset, zio->io_size, 1319 vdev_indirect_gather_splits, zio); 1320 1321 indirect_split_t *first = list_head(&iv->iv_splits); 1322 if (first->is_size == zio->io_size) { 1323 /* 1324 * This is not a split block; we are pointing to the entire 1325 * data, which will checksum the same as the original data. 1326 * Pass the BP down so that the child i/o can verify the 1327 * checksum, and try a different location if available 1328 * (e.g. on a mirror). 1329 * 1330 * While this special case could be handled the same as the 1331 * general (split block) case, doing it this way ensures 1332 * that the vast majority of blocks on indirect vdevs 1333 * (which are not split) are handled identically to blocks 1334 * on non-indirect vdevs. This allows us to be less strict 1335 * about performance in the general (but rare) case. 1336 */ 1337 ASSERT0(first->is_split_offset); 1338 ASSERT3P(list_next(&iv->iv_splits, first), ==, NULL); 1339 zio_nowait(zio_vdev_child_io(zio, zio->io_bp, 1340 first->is_vdev, first->is_target_offset, 1341 abd_get_offset(zio->io_abd, 0), 1342 zio->io_size, zio->io_type, zio->io_priority, 0, 1343 vdev_indirect_child_io_done, zio)); 1344 } else { 1345 iv->iv_split_block = B_TRUE; 1346 if (zio->io_type == ZIO_TYPE_READ && 1347 zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) { 1348 /* 1349 * Read all copies. Note that for simplicity, 1350 * we don't bother consulting the DTL in the 1351 * resilver case. 1352 */ 1353 vdev_indirect_read_all(zio); 1354 } else { 1355 /* 1356 * If this is a read zio, we read one copy of each 1357 * split segment, from the top-level vdev. Since 1358 * we don't know the checksum of each split 1359 * individually, the child zio can't ensure that 1360 * we get the right data. E.g. if it's a mirror, 1361 * it will just read from a random (healthy) leaf 1362 * vdev. We have to verify the checksum in 1363 * vdev_indirect_io_done(). 1364 * 1365 * For write zios, the vdev code will ensure we write 1366 * to all children. 1367 */ 1368 for (indirect_split_t *is = list_head(&iv->iv_splits); 1369 is != NULL; is = list_next(&iv->iv_splits, is)) { 1370 zio_nowait(zio_vdev_child_io(zio, NULL, 1371 is->is_vdev, is->is_target_offset, 1372 abd_get_offset(zio->io_abd, 1373 is->is_split_offset), is->is_size, 1374 zio->io_type, zio->io_priority, 0, 1375 vdev_indirect_child_io_done, zio)); 1376 } 1377 1378 } 1379 } 1380 1381 zio_execute(zio); 1382 } 1383 1384 /* 1385 * Report a checksum error for a child. 1386 */ 1387 static void 1388 vdev_indirect_checksum_error(zio_t *zio, 1389 indirect_split_t *is, indirect_child_t *ic) 1390 { 1391 vdev_t *vd = ic->ic_vdev; 1392 1393 if (zio->io_flags & ZIO_FLAG_SPECULATIVE) 1394 return; 1395 1396 mutex_enter(&vd->vdev_stat_lock); 1397 vd->vdev_stat.vs_checksum_errors++; 1398 mutex_exit(&vd->vdev_stat_lock); 1399 1400 zio_bad_cksum_t zbc = {{{ 0 }}}; 1401 abd_t *bad_abd = ic->ic_data; 1402 abd_t *good_abd = is->is_good_child->ic_data; 1403 (void) zfs_ereport_post_checksum(zio->io_spa, vd, NULL, zio, 1404 is->is_target_offset, is->is_size, good_abd, bad_abd, &zbc); 1405 } 1406 1407 /* 1408 * Issue repair i/os for any incorrect copies. We do this by comparing 1409 * each split segment's correct data (is_good_child's ic_data) with each 1410 * other copy of the data. If they differ, then we overwrite the bad data 1411 * with the good copy. The DTL is checked in vdev_indirect_read_all() and 1412 * if a vdev is missing a copy of the data we set ic_error and the read is 1413 * performed. This provides the opportunity to reconstruct the split block 1414 * if at all possible. ic_error is checked here and if set it suppresses 1415 * incrementing the checksum counter. Aside from this DTLs are not checked, 1416 * which simplifies this code and also issues the optimal number of writes 1417 * (based on which copies actually read bad data, as opposed to which we 1418 * think might be wrong). For the same reason, we always use 1419 * ZIO_FLAG_SELF_HEAL, to bypass the DTL check in zio_vdev_io_start(). 1420 */ 1421 static void 1422 vdev_indirect_repair(zio_t *zio) 1423 { 1424 indirect_vsd_t *iv = zio->io_vsd; 1425 1426 if (!spa_writeable(zio->io_spa)) 1427 return; 1428 1429 for (indirect_split_t *is = list_head(&iv->iv_splits); 1430 is != NULL; is = list_next(&iv->iv_splits, is)) { 1431 for (int c = 0; c < is->is_children; c++) { 1432 indirect_child_t *ic = &is->is_child[c]; 1433 if (ic == is->is_good_child) 1434 continue; 1435 if (ic->ic_data == NULL) 1436 continue; 1437 if (ic->ic_duplicate == is->is_good_child) 1438 continue; 1439 1440 zio_nowait(zio_vdev_child_io(zio, NULL, 1441 ic->ic_vdev, is->is_target_offset, 1442 is->is_good_child->ic_data, is->is_size, 1443 ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE, 1444 ZIO_FLAG_IO_REPAIR | ZIO_FLAG_SELF_HEAL, 1445 NULL, NULL)); 1446 1447 /* 1448 * If ic_error is set the current child does not have 1449 * a copy of the data, so suppress incrementing the 1450 * checksum counter. 1451 */ 1452 if (ic->ic_error == ESTALE) 1453 continue; 1454 1455 vdev_indirect_checksum_error(zio, is, ic); 1456 } 1457 } 1458 } 1459 1460 /* 1461 * Report checksum errors on all children that we read from. 1462 */ 1463 static void 1464 vdev_indirect_all_checksum_errors(zio_t *zio) 1465 { 1466 indirect_vsd_t *iv = zio->io_vsd; 1467 1468 if (zio->io_flags & ZIO_FLAG_SPECULATIVE) 1469 return; 1470 1471 for (indirect_split_t *is = list_head(&iv->iv_splits); 1472 is != NULL; is = list_next(&iv->iv_splits, is)) { 1473 for (int c = 0; c < is->is_children; c++) { 1474 indirect_child_t *ic = &is->is_child[c]; 1475 1476 if (ic->ic_data == NULL) 1477 continue; 1478 1479 vdev_t *vd = ic->ic_vdev; 1480 1481 (void) zfs_ereport_post_checksum(zio->io_spa, vd, 1482 NULL, zio, is->is_target_offset, is->is_size, 1483 NULL, NULL, NULL); 1484 mutex_enter(&vd->vdev_stat_lock); 1485 vd->vdev_stat.vs_checksum_errors++; 1486 mutex_exit(&vd->vdev_stat_lock); 1487 } 1488 } 1489 } 1490 1491 /* 1492 * Copy data from all the splits to a main zio then validate the checksum. 1493 * If then checksum is successfully validated return success. 1494 */ 1495 static int 1496 vdev_indirect_splits_checksum_validate(indirect_vsd_t *iv, zio_t *zio) 1497 { 1498 zio_bad_cksum_t zbc; 1499 1500 for (indirect_split_t *is = list_head(&iv->iv_splits); 1501 is != NULL; is = list_next(&iv->iv_splits, is)) { 1502 1503 ASSERT3P(is->is_good_child->ic_data, !=, NULL); 1504 ASSERT3P(is->is_good_child->ic_duplicate, ==, NULL); 1505 1506 abd_copy_off(zio->io_abd, is->is_good_child->ic_data, 1507 is->is_split_offset, 0, is->is_size); 1508 } 1509 1510 return (zio_checksum_error(zio, &zbc)); 1511 } 1512 1513 /* 1514 * There are relatively few possible combinations making it feasible to 1515 * deterministically check them all. We do this by setting the good_child 1516 * to the next unique split version. If we reach the end of the list then 1517 * "carry over" to the next unique split version (like counting in base 1518 * is_unique_children, but each digit can have a different base). 1519 */ 1520 static int 1521 vdev_indirect_splits_enumerate_all(indirect_vsd_t *iv, zio_t *zio) 1522 { 1523 boolean_t more = B_TRUE; 1524 1525 iv->iv_attempts = 0; 1526 1527 for (indirect_split_t *is = list_head(&iv->iv_splits); 1528 is != NULL; is = list_next(&iv->iv_splits, is)) 1529 is->is_good_child = list_head(&is->is_unique_child); 1530 1531 while (more == B_TRUE) { 1532 iv->iv_attempts++; 1533 more = B_FALSE; 1534 1535 if (vdev_indirect_splits_checksum_validate(iv, zio) == 0) 1536 return (0); 1537 1538 for (indirect_split_t *is = list_head(&iv->iv_splits); 1539 is != NULL; is = list_next(&iv->iv_splits, is)) { 1540 is->is_good_child = list_next(&is->is_unique_child, 1541 is->is_good_child); 1542 if (is->is_good_child != NULL) { 1543 more = B_TRUE; 1544 break; 1545 } 1546 1547 is->is_good_child = list_head(&is->is_unique_child); 1548 } 1549 } 1550 1551 ASSERT3S(iv->iv_attempts, <=, iv->iv_unique_combinations); 1552 1553 return (SET_ERROR(ECKSUM)); 1554 } 1555 1556 /* 1557 * There are too many combinations to try all of them in a reasonable amount 1558 * of time. So try a fixed number of random combinations from the unique 1559 * split versions, after which we'll consider the block unrecoverable. 1560 */ 1561 static int 1562 vdev_indirect_splits_enumerate_randomly(indirect_vsd_t *iv, zio_t *zio) 1563 { 1564 iv->iv_attempts = 0; 1565 1566 while (iv->iv_attempts < iv->iv_attempts_max) { 1567 iv->iv_attempts++; 1568 1569 for (indirect_split_t *is = list_head(&iv->iv_splits); 1570 is != NULL; is = list_next(&iv->iv_splits, is)) { 1571 indirect_child_t *ic = list_head(&is->is_unique_child); 1572 int children = is->is_unique_children; 1573 1574 for (int i = random_in_range(children); i > 0; i--) 1575 ic = list_next(&is->is_unique_child, ic); 1576 1577 ASSERT3P(ic, !=, NULL); 1578 is->is_good_child = ic; 1579 } 1580 1581 if (vdev_indirect_splits_checksum_validate(iv, zio) == 0) 1582 return (0); 1583 } 1584 1585 return (SET_ERROR(ECKSUM)); 1586 } 1587 1588 /* 1589 * This is a validation function for reconstruction. It randomly selects 1590 * a good combination, if one can be found, and then it intentionally 1591 * damages all other segment copes by zeroing them. This forces the 1592 * reconstruction algorithm to locate the one remaining known good copy. 1593 */ 1594 static int 1595 vdev_indirect_splits_damage(indirect_vsd_t *iv, zio_t *zio) 1596 { 1597 int error; 1598 1599 /* Presume all the copies are unique for initial selection. */ 1600 for (indirect_split_t *is = list_head(&iv->iv_splits); 1601 is != NULL; is = list_next(&iv->iv_splits, is)) { 1602 is->is_unique_children = 0; 1603 1604 for (int i = 0; i < is->is_children; i++) { 1605 indirect_child_t *ic = &is->is_child[i]; 1606 if (ic->ic_data != NULL) { 1607 is->is_unique_children++; 1608 list_insert_tail(&is->is_unique_child, ic); 1609 } 1610 } 1611 1612 if (list_is_empty(&is->is_unique_child)) { 1613 error = SET_ERROR(EIO); 1614 goto out; 1615 } 1616 } 1617 1618 /* 1619 * Set each is_good_child to a randomly-selected child which 1620 * is known to contain validated data. 1621 */ 1622 error = vdev_indirect_splits_enumerate_randomly(iv, zio); 1623 if (error) 1624 goto out; 1625 1626 /* 1627 * Damage all but the known good copy by zeroing it. This will 1628 * result in two or less unique copies per indirect_child_t. 1629 * Both may need to be checked in order to reconstruct the block. 1630 * Set iv->iv_attempts_max such that all unique combinations will 1631 * enumerated, but limit the damage to at most 12 indirect splits. 1632 */ 1633 iv->iv_attempts_max = 1; 1634 1635 for (indirect_split_t *is = list_head(&iv->iv_splits); 1636 is != NULL; is = list_next(&iv->iv_splits, is)) { 1637 for (int c = 0; c < is->is_children; c++) { 1638 indirect_child_t *ic = &is->is_child[c]; 1639 1640 if (ic == is->is_good_child) 1641 continue; 1642 if (ic->ic_data == NULL) 1643 continue; 1644 1645 abd_zero(ic->ic_data, abd_get_size(ic->ic_data)); 1646 } 1647 1648 iv->iv_attempts_max *= 2; 1649 if (iv->iv_attempts_max >= (1ULL << 12)) { 1650 iv->iv_attempts_max = UINT64_MAX; 1651 break; 1652 } 1653 } 1654 1655 out: 1656 /* Empty the unique children lists so they can be reconstructed. */ 1657 for (indirect_split_t *is = list_head(&iv->iv_splits); 1658 is != NULL; is = list_next(&iv->iv_splits, is)) { 1659 indirect_child_t *ic; 1660 while ((ic = list_head(&is->is_unique_child)) != NULL) 1661 list_remove(&is->is_unique_child, ic); 1662 1663 is->is_unique_children = 0; 1664 } 1665 1666 return (error); 1667 } 1668 1669 /* 1670 * This function is called when we have read all copies of the data and need 1671 * to try to find a combination of copies that gives us the right checksum. 1672 * 1673 * If we pointed to any mirror vdevs, this effectively does the job of the 1674 * mirror. The mirror vdev code can't do its own job because we don't know 1675 * the checksum of each split segment individually. 1676 * 1677 * We have to try every unique combination of copies of split segments, until 1678 * we find one that checksums correctly. Duplicate segment copies are first 1679 * identified and latter skipped during reconstruction. This optimization 1680 * reduces the search space and ensures that of the remaining combinations 1681 * at most one is correct. 1682 * 1683 * When the total number of combinations is small they can all be checked. 1684 * For example, if we have 3 segments in the split, and each points to a 1685 * 2-way mirror with unique copies, we will have the following pieces of data: 1686 * 1687 * | mirror child 1688 * split | [0] [1] 1689 * ======|===================== 1690 * A | data_A_0 data_A_1 1691 * B | data_B_0 data_B_1 1692 * C | data_C_0 data_C_1 1693 * 1694 * We will try the following (mirror children)^(number of splits) (2^3=8) 1695 * combinations, which is similar to bitwise-little-endian counting in 1696 * binary. In general each "digit" corresponds to a split segment, and the 1697 * base of each digit is is_children, which can be different for each 1698 * digit. 1699 * 1700 * "low bit" "high bit" 1701 * v v 1702 * data_A_0 data_B_0 data_C_0 1703 * data_A_1 data_B_0 data_C_0 1704 * data_A_0 data_B_1 data_C_0 1705 * data_A_1 data_B_1 data_C_0 1706 * data_A_0 data_B_0 data_C_1 1707 * data_A_1 data_B_0 data_C_1 1708 * data_A_0 data_B_1 data_C_1 1709 * data_A_1 data_B_1 data_C_1 1710 * 1711 * Note that the split segments may be on the same or different top-level 1712 * vdevs. In either case, we may need to try lots of combinations (see 1713 * zfs_reconstruct_indirect_combinations_max). This ensures that if a mirror 1714 * has small silent errors on all of its children, we can still reconstruct 1715 * the correct data, as long as those errors are at sufficiently-separated 1716 * offsets (specifically, separated by the largest block size - default of 1717 * 128KB, but up to 16MB). 1718 */ 1719 static void 1720 vdev_indirect_reconstruct_io_done(zio_t *zio) 1721 { 1722 indirect_vsd_t *iv = zio->io_vsd; 1723 boolean_t known_good = B_FALSE; 1724 int error; 1725 1726 iv->iv_unique_combinations = 1; 1727 iv->iv_attempts_max = UINT64_MAX; 1728 1729 if (zfs_reconstruct_indirect_combinations_max > 0) 1730 iv->iv_attempts_max = zfs_reconstruct_indirect_combinations_max; 1731 1732 /* 1733 * If nonzero, every 1/x blocks will be damaged, in order to validate 1734 * reconstruction when there are split segments with damaged copies. 1735 * Known_good will be TRUE when reconstruction is known to be possible. 1736 */ 1737 if (zfs_reconstruct_indirect_damage_fraction != 0 && 1738 random_in_range(zfs_reconstruct_indirect_damage_fraction) == 0) 1739 known_good = (vdev_indirect_splits_damage(iv, zio) == 0); 1740 1741 /* 1742 * Determine the unique children for a split segment and add them 1743 * to the is_unique_child list. By restricting reconstruction 1744 * to these children, only unique combinations will be considered. 1745 * This can vastly reduce the search space when there are a large 1746 * number of indirect splits. 1747 */ 1748 for (indirect_split_t *is = list_head(&iv->iv_splits); 1749 is != NULL; is = list_next(&iv->iv_splits, is)) { 1750 is->is_unique_children = 0; 1751 1752 for (int i = 0; i < is->is_children; i++) { 1753 indirect_child_t *ic_i = &is->is_child[i]; 1754 1755 if (ic_i->ic_data == NULL || 1756 ic_i->ic_duplicate != NULL) 1757 continue; 1758 1759 for (int j = i + 1; j < is->is_children; j++) { 1760 indirect_child_t *ic_j = &is->is_child[j]; 1761 1762 if (ic_j->ic_data == NULL || 1763 ic_j->ic_duplicate != NULL) 1764 continue; 1765 1766 if (abd_cmp(ic_i->ic_data, ic_j->ic_data) == 0) 1767 ic_j->ic_duplicate = ic_i; 1768 } 1769 1770 is->is_unique_children++; 1771 list_insert_tail(&is->is_unique_child, ic_i); 1772 } 1773 1774 /* Reconstruction is impossible, no valid children */ 1775 EQUIV(list_is_empty(&is->is_unique_child), 1776 is->is_unique_children == 0); 1777 if (list_is_empty(&is->is_unique_child)) { 1778 zio->io_error = EIO; 1779 vdev_indirect_all_checksum_errors(zio); 1780 zio_checksum_verified(zio); 1781 return; 1782 } 1783 1784 iv->iv_unique_combinations *= is->is_unique_children; 1785 } 1786 1787 if (iv->iv_unique_combinations <= iv->iv_attempts_max) 1788 error = vdev_indirect_splits_enumerate_all(iv, zio); 1789 else 1790 error = vdev_indirect_splits_enumerate_randomly(iv, zio); 1791 1792 if (error != 0) { 1793 /* All attempted combinations failed. */ 1794 ASSERT3B(known_good, ==, B_FALSE); 1795 zio->io_error = error; 1796 vdev_indirect_all_checksum_errors(zio); 1797 } else { 1798 /* 1799 * The checksum has been successfully validated. Issue 1800 * repair I/Os to any copies of splits which don't match 1801 * the validated version. 1802 */ 1803 ASSERT0(vdev_indirect_splits_checksum_validate(iv, zio)); 1804 vdev_indirect_repair(zio); 1805 zio_checksum_verified(zio); 1806 } 1807 } 1808 1809 static void 1810 vdev_indirect_io_done(zio_t *zio) 1811 { 1812 indirect_vsd_t *iv = zio->io_vsd; 1813 1814 if (iv->iv_reconstruct) { 1815 /* 1816 * We have read all copies of the data (e.g. from mirrors), 1817 * either because this was a scrub/resilver, or because the 1818 * one-copy read didn't checksum correctly. 1819 */ 1820 vdev_indirect_reconstruct_io_done(zio); 1821 return; 1822 } 1823 1824 if (!iv->iv_split_block) { 1825 /* 1826 * This was not a split block, so we passed the BP down, 1827 * and the checksum was handled by the (one) child zio. 1828 */ 1829 return; 1830 } 1831 1832 zio_bad_cksum_t zbc; 1833 int ret = zio_checksum_error(zio, &zbc); 1834 if (ret == 0) { 1835 zio_checksum_verified(zio); 1836 return; 1837 } 1838 1839 /* 1840 * The checksum didn't match. Read all copies of all splits, and 1841 * then we will try to reconstruct. The next time 1842 * vdev_indirect_io_done() is called, iv_reconstruct will be set. 1843 */ 1844 vdev_indirect_read_all(zio); 1845 1846 zio_vdev_io_redone(zio); 1847 } 1848 1849 vdev_ops_t vdev_indirect_ops = { 1850 .vdev_op_init = NULL, 1851 .vdev_op_fini = NULL, 1852 .vdev_op_open = vdev_indirect_open, 1853 .vdev_op_close = vdev_indirect_close, 1854 .vdev_op_asize = vdev_default_asize, 1855 .vdev_op_min_asize = vdev_default_min_asize, 1856 .vdev_op_min_alloc = NULL, 1857 .vdev_op_io_start = vdev_indirect_io_start, 1858 .vdev_op_io_done = vdev_indirect_io_done, 1859 .vdev_op_state_change = NULL, 1860 .vdev_op_need_resilver = NULL, 1861 .vdev_op_hold = NULL, 1862 .vdev_op_rele = NULL, 1863 .vdev_op_remap = vdev_indirect_remap, 1864 .vdev_op_xlate = NULL, 1865 .vdev_op_rebuild_asize = NULL, 1866 .vdev_op_metaslab_init = NULL, 1867 .vdev_op_config_generate = NULL, 1868 .vdev_op_nparity = NULL, 1869 .vdev_op_ndisks = NULL, 1870 .vdev_op_type = VDEV_TYPE_INDIRECT, /* name of this vdev type */ 1871 .vdev_op_leaf = B_FALSE /* leaf vdev */ 1872 }; 1873 1874 EXPORT_SYMBOL(spa_condense_fini); 1875 EXPORT_SYMBOL(spa_start_indirect_condensing_thread); 1876 EXPORT_SYMBOL(spa_condense_indirect_start_sync); 1877 EXPORT_SYMBOL(spa_condense_init); 1878 EXPORT_SYMBOL(spa_vdev_indirect_mark_obsolete); 1879 EXPORT_SYMBOL(vdev_indirect_mark_obsolete); 1880 EXPORT_SYMBOL(vdev_indirect_should_condense); 1881 EXPORT_SYMBOL(vdev_indirect_sync_obsolete); 1882 EXPORT_SYMBOL(vdev_obsolete_counts_are_precise); 1883 EXPORT_SYMBOL(vdev_obsolete_sm_object); 1884 1885 /* BEGIN CSTYLED */ 1886 ZFS_MODULE_PARAM(zfs_condense, zfs_condense_, indirect_vdevs_enable, INT, 1887 ZMOD_RW, "Whether to attempt condensing indirect vdev mappings"); 1888 1889 ZFS_MODULE_PARAM(zfs_condense, zfs_condense_, indirect_obsolete_pct, UINT, 1890 ZMOD_RW, 1891 "Minimum obsolete percent of bytes in the mapping " 1892 "to attempt condensing"); 1893 1894 ZFS_MODULE_PARAM(zfs_condense, zfs_condense_, min_mapping_bytes, ULONG, ZMOD_RW, 1895 "Don't bother condensing if the mapping uses less than this amount of " 1896 "memory"); 1897 1898 ZFS_MODULE_PARAM(zfs_condense, zfs_condense_, max_obsolete_bytes, ULONG, 1899 ZMOD_RW, 1900 "Minimum size obsolete spacemap to attempt condensing"); 1901 1902 ZFS_MODULE_PARAM(zfs_condense, zfs_condense_, indirect_commit_entry_delay_ms, 1903 UINT, ZMOD_RW, 1904 "Used by tests to ensure certain actions happen in the middle of a " 1905 "condense. A maximum value of 1 should be sufficient."); 1906 1907 ZFS_MODULE_PARAM(zfs_reconstruct, zfs_reconstruct_, indirect_combinations_max, 1908 UINT, ZMOD_RW, 1909 "Maximum number of combinations when reconstructing split segments"); 1910 /* END CSTYLED */ 1911