xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_indirect.c (revision 7fdf597e96a02165cfe22ff357b857d5fa15ed8a)
1 /*
2  * CDDL HEADER START
3  *
4  * This file and its contents are supplied under the terms of the
5  * Common Development and Distribution License ("CDDL"), version 1.0.
6  * You may only use this file in accordance with the terms of version
7  * 1.0 of the CDDL.
8  *
9  * A full copy of the text of the CDDL should have accompanied this
10  * source.  A copy of the CDDL is also available via the Internet at
11  * http://www.illumos.org/license/CDDL.
12  *
13  * CDDL HEADER END
14  */
15 
16 /*
17  * Copyright (c) 2014, 2017 by Delphix. All rights reserved.
18  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
19  * Copyright (c) 2014, 2020 by Delphix. All rights reserved.
20  */
21 
22 #include <sys/zfs_context.h>
23 #include <sys/spa.h>
24 #include <sys/spa_impl.h>
25 #include <sys/vdev_impl.h>
26 #include <sys/fs/zfs.h>
27 #include <sys/zio.h>
28 #include <sys/zio_checksum.h>
29 #include <sys/metaslab.h>
30 #include <sys/dmu.h>
31 #include <sys/vdev_indirect_mapping.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dsl_synctask.h>
34 #include <sys/zap.h>
35 #include <sys/abd.h>
36 #include <sys/zthr.h>
37 #include <sys/fm/fs/zfs.h>
38 
39 /*
40  * An indirect vdev corresponds to a vdev that has been removed.  Since
41  * we cannot rewrite block pointers of snapshots, etc., we keep a
42  * mapping from old location on the removed device to the new location
43  * on another device in the pool and use this mapping whenever we need
44  * to access the DVA.  Unfortunately, this mapping did not respect
45  * logical block boundaries when it was first created, and so a DVA on
46  * this indirect vdev may be "split" into multiple sections that each
47  * map to a different location.  As a consequence, not all DVAs can be
48  * translated to an equivalent new DVA.  Instead we must provide a
49  * "vdev_remap" operation that executes a callback on each contiguous
50  * segment of the new location.  This function is used in multiple ways:
51  *
52  *  - I/Os to this vdev use the callback to determine where the
53  *    data is now located, and issue child I/Os for each segment's new
54  *    location.
55  *
56  *  - frees and claims to this vdev use the callback to free or claim
57  *    each mapped segment.  (Note that we don't actually need to claim
58  *    log blocks on indirect vdevs, because we don't allocate to
59  *    removing vdevs.  However, zdb uses zio_claim() for its leak
60  *    detection.)
61  */
62 
63 /*
64  * "Big theory statement" for how we mark blocks obsolete.
65  *
66  * When a block on an indirect vdev is freed or remapped, a section of
67  * that vdev's mapping may no longer be referenced (aka "obsolete").  We
68  * keep track of how much of each mapping entry is obsolete.  When
69  * an entry becomes completely obsolete, we can remove it, thus reducing
70  * the memory used by the mapping.  The complete picture of obsolescence
71  * is given by the following data structures, described below:
72  *  - the entry-specific obsolete count
73  *  - the vdev-specific obsolete spacemap
74  *  - the pool-specific obsolete bpobj
75  *
76  * == On disk data structures used ==
77  *
78  * We track the obsolete space for the pool using several objects.  Each
79  * of these objects is created on demand and freed when no longer
80  * needed, and is assumed to be empty if it does not exist.
81  * SPA_FEATURE_OBSOLETE_COUNTS includes the count of these objects.
82  *
83  *  - Each vic_mapping_object (associated with an indirect vdev) can
84  *    have a vimp_counts_object.  This is an array of uint32_t's
85  *    with the same number of entries as the vic_mapping_object.  When
86  *    the mapping is condensed, entries from the vic_obsolete_sm_object
87  *    (see below) are folded into the counts.  Therefore, each
88  *    obsolete_counts entry tells us the number of bytes in the
89  *    corresponding mapping entry that were not referenced when the
90  *    mapping was last condensed.
91  *
92  *  - Each indirect or removing vdev can have a vic_obsolete_sm_object.
93  *    This is a space map containing an alloc entry for every DVA that
94  *    has been obsoleted since the last time this indirect vdev was
95  *    condensed.  We use this object in order to improve performance
96  *    when marking a DVA as obsolete.  Instead of modifying an arbitrary
97  *    offset of the vimp_counts_object, we only need to append an entry
98  *    to the end of this object.  When a DVA becomes obsolete, it is
99  *    added to the obsolete space map.  This happens when the DVA is
100  *    freed, remapped and not referenced by a snapshot, or the last
101  *    snapshot referencing it is destroyed.
102  *
103  *  - Each dataset can have a ds_remap_deadlist object.  This is a
104  *    deadlist object containing all blocks that were remapped in this
105  *    dataset but referenced in a previous snapshot.  Blocks can *only*
106  *    appear on this list if they were remapped (dsl_dataset_block_remapped);
107  *    blocks that were killed in a head dataset are put on the normal
108  *    ds_deadlist and marked obsolete when they are freed.
109  *
110  *  - The pool can have a dp_obsolete_bpobj.  This is a list of blocks
111  *    in the pool that need to be marked obsolete.  When a snapshot is
112  *    destroyed, we move some of the ds_remap_deadlist to the obsolete
113  *    bpobj (see dsl_destroy_snapshot_handle_remaps()).  We then
114  *    asynchronously process the obsolete bpobj, moving its entries to
115  *    the specific vdevs' obsolete space maps.
116  *
117  * == Summary of how we mark blocks as obsolete ==
118  *
119  * - When freeing a block: if any DVA is on an indirect vdev, append to
120  *   vic_obsolete_sm_object.
121  * - When remapping a block, add dva to ds_remap_deadlist (if prev snap
122  *   references; otherwise append to vic_obsolete_sm_object).
123  * - When freeing a snapshot: move parts of ds_remap_deadlist to
124  *   dp_obsolete_bpobj (same algorithm as ds_deadlist).
125  * - When syncing the spa: process dp_obsolete_bpobj, moving ranges to
126  *   individual vdev's vic_obsolete_sm_object.
127  */
128 
129 /*
130  * "Big theory statement" for how we condense indirect vdevs.
131  *
132  * Condensing an indirect vdev's mapping is the process of determining
133  * the precise counts of obsolete space for each mapping entry (by
134  * integrating the obsolete spacemap into the obsolete counts) and
135  * writing out a new mapping that contains only referenced entries.
136  *
137  * We condense a vdev when we expect the mapping to shrink (see
138  * vdev_indirect_should_condense()), but only perform one condense at a
139  * time to limit the memory usage.  In addition, we use a separate
140  * open-context thread (spa_condense_indirect_thread) to incrementally
141  * create the new mapping object in a way that minimizes the impact on
142  * the rest of the system.
143  *
144  * == Generating a new mapping ==
145  *
146  * To generate a new mapping, we follow these steps:
147  *
148  * 1. Save the old obsolete space map and create a new mapping object
149  *    (see spa_condense_indirect_start_sync()).  This initializes the
150  *    spa_condensing_indirect_phys with the "previous obsolete space map",
151  *    which is now read only.  Newly obsolete DVAs will be added to a
152  *    new (initially empty) obsolete space map, and will not be
153  *    considered as part of this condense operation.
154  *
155  * 2. Construct in memory the precise counts of obsolete space for each
156  *    mapping entry, by incorporating the obsolete space map into the
157  *    counts.  (See vdev_indirect_mapping_load_obsolete_{counts,spacemap}().)
158  *
159  * 3. Iterate through each mapping entry, writing to the new mapping any
160  *    entries that are not completely obsolete (i.e. which don't have
161  *    obsolete count == mapping length).  (See
162  *    spa_condense_indirect_generate_new_mapping().)
163  *
164  * 4. Destroy the old mapping object and switch over to the new one
165  *    (spa_condense_indirect_complete_sync).
166  *
167  * == Restarting from failure ==
168  *
169  * To restart the condense when we import/open the pool, we must start
170  * at the 2nd step above: reconstruct the precise counts in memory,
171  * based on the space map + counts.  Then in the 3rd step, we start
172  * iterating where we left off: at vimp_max_offset of the new mapping
173  * object.
174  */
175 
176 static int zfs_condense_indirect_vdevs_enable = B_TRUE;
177 
178 /*
179  * Condense if at least this percent of the bytes in the mapping is
180  * obsolete.  With the default of 25%, the amount of space mapped
181  * will be reduced to 1% of its original size after at most 16
182  * condenses.  Higher values will condense less often (causing less
183  * i/o); lower values will reduce the mapping size more quickly.
184  */
185 static uint_t zfs_condense_indirect_obsolete_pct = 25;
186 
187 /*
188  * Condense if the obsolete space map takes up more than this amount of
189  * space on disk (logically).  This limits the amount of disk space
190  * consumed by the obsolete space map; the default of 1GB is small enough
191  * that we typically don't mind "wasting" it.
192  */
193 static uint64_t zfs_condense_max_obsolete_bytes = 1024 * 1024 * 1024;
194 
195 /*
196  * Don't bother condensing if the mapping uses less than this amount of
197  * memory.  The default of 128KB is considered a "trivial" amount of
198  * memory and not worth reducing.
199  */
200 static uint64_t zfs_condense_min_mapping_bytes = 128 * 1024;
201 
202 /*
203  * This is used by the test suite so that it can ensure that certain
204  * actions happen while in the middle of a condense (which might otherwise
205  * complete too quickly).  If used to reduce the performance impact of
206  * condensing in production, a maximum value of 1 should be sufficient.
207  */
208 static uint_t zfs_condense_indirect_commit_entry_delay_ms = 0;
209 
210 /*
211  * If an indirect split block contains more than this many possible unique
212  * combinations when being reconstructed, consider it too computationally
213  * expensive to check them all. Instead, try at most 100 randomly-selected
214  * combinations each time the block is accessed.  This allows all segment
215  * copies to participate fairly in the reconstruction when all combinations
216  * cannot be checked and prevents repeated use of one bad copy.
217  */
218 uint_t zfs_reconstruct_indirect_combinations_max = 4096;
219 
220 /*
221  * Enable to simulate damaged segments and validate reconstruction.  This
222  * is intentionally not exposed as a module parameter.
223  */
224 unsigned long zfs_reconstruct_indirect_damage_fraction = 0;
225 
226 /*
227  * The indirect_child_t represents the vdev that we will read from, when we
228  * need to read all copies of the data (e.g. for scrub or reconstruction).
229  * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
230  * ic_vdev is the same as is_vdev.  However, for mirror top-level vdevs,
231  * ic_vdev is a child of the mirror.
232  */
233 typedef struct indirect_child {
234 	abd_t *ic_data;
235 	vdev_t *ic_vdev;
236 
237 	/*
238 	 * ic_duplicate is NULL when the ic_data contents are unique, when it
239 	 * is determined to be a duplicate it references the primary child.
240 	 */
241 	struct indirect_child *ic_duplicate;
242 	list_node_t ic_node; /* node on is_unique_child */
243 	int ic_error; /* set when a child does not contain the data */
244 } indirect_child_t;
245 
246 /*
247  * The indirect_split_t represents one mapped segment of an i/o to the
248  * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
249  * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
250  * For split blocks, there will be several of these.
251  */
252 typedef struct indirect_split {
253 	list_node_t is_node; /* link on iv_splits */
254 
255 	/*
256 	 * is_split_offset is the offset into the i/o.
257 	 * This is the sum of the previous splits' is_size's.
258 	 */
259 	uint64_t is_split_offset;
260 
261 	vdev_t *is_vdev; /* top-level vdev */
262 	uint64_t is_target_offset; /* offset on is_vdev */
263 	uint64_t is_size;
264 	int is_children; /* number of entries in is_child[] */
265 	int is_unique_children; /* number of entries in is_unique_child */
266 	list_t is_unique_child;
267 
268 	/*
269 	 * is_good_child is the child that we are currently using to
270 	 * attempt reconstruction.
271 	 */
272 	indirect_child_t *is_good_child;
273 
274 	indirect_child_t is_child[];
275 } indirect_split_t;
276 
277 /*
278  * The indirect_vsd_t is associated with each i/o to the indirect vdev.
279  * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
280  */
281 typedef struct indirect_vsd {
282 	boolean_t iv_split_block;
283 	boolean_t iv_reconstruct;
284 	uint64_t iv_unique_combinations;
285 	uint64_t iv_attempts;
286 	uint64_t iv_attempts_max;
287 
288 	list_t iv_splits; /* list of indirect_split_t's */
289 } indirect_vsd_t;
290 
291 static void
292 vdev_indirect_map_free(zio_t *zio)
293 {
294 	indirect_vsd_t *iv = zio->io_vsd;
295 
296 	indirect_split_t *is;
297 	while ((is = list_remove_head(&iv->iv_splits)) != NULL) {
298 		for (int c = 0; c < is->is_children; c++) {
299 			indirect_child_t *ic = &is->is_child[c];
300 			if (ic->ic_data != NULL)
301 				abd_free(ic->ic_data);
302 		}
303 
304 		indirect_child_t *ic;
305 		while ((ic = list_remove_head(&is->is_unique_child)) != NULL)
306 			;
307 
308 		list_destroy(&is->is_unique_child);
309 
310 		kmem_free(is,
311 		    offsetof(indirect_split_t, is_child[is->is_children]));
312 	}
313 	kmem_free(iv, sizeof (*iv));
314 }
315 
316 static const zio_vsd_ops_t vdev_indirect_vsd_ops = {
317 	.vsd_free = vdev_indirect_map_free,
318 };
319 
320 /*
321  * Mark the given offset and size as being obsolete.
322  */
323 void
324 vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset, uint64_t size)
325 {
326 	spa_t *spa = vd->vdev_spa;
327 
328 	ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, !=, 0);
329 	ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
330 	ASSERT(size > 0);
331 	VERIFY(vdev_indirect_mapping_entry_for_offset(
332 	    vd->vdev_indirect_mapping, offset) != NULL);
333 
334 	if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
335 		mutex_enter(&vd->vdev_obsolete_lock);
336 		range_tree_add(vd->vdev_obsolete_segments, offset, size);
337 		mutex_exit(&vd->vdev_obsolete_lock);
338 		vdev_dirty(vd, 0, NULL, spa_syncing_txg(spa));
339 	}
340 }
341 
342 /*
343  * Mark the DVA vdev_id:offset:size as being obsolete in the given tx. This
344  * wrapper is provided because the DMU does not know about vdev_t's and
345  * cannot directly call vdev_indirect_mark_obsolete.
346  */
347 void
348 spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev_id, uint64_t offset,
349     uint64_t size, dmu_tx_t *tx)
350 {
351 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
352 	ASSERT(dmu_tx_is_syncing(tx));
353 
354 	/* The DMU can only remap indirect vdevs. */
355 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
356 	vdev_indirect_mark_obsolete(vd, offset, size);
357 }
358 
359 static spa_condensing_indirect_t *
360 spa_condensing_indirect_create(spa_t *spa)
361 {
362 	spa_condensing_indirect_phys_t *scip =
363 	    &spa->spa_condensing_indirect_phys;
364 	spa_condensing_indirect_t *sci = kmem_zalloc(sizeof (*sci), KM_SLEEP);
365 	objset_t *mos = spa->spa_meta_objset;
366 
367 	for (int i = 0; i < TXG_SIZE; i++) {
368 		list_create(&sci->sci_new_mapping_entries[i],
369 		    sizeof (vdev_indirect_mapping_entry_t),
370 		    offsetof(vdev_indirect_mapping_entry_t, vime_node));
371 	}
372 
373 	sci->sci_new_mapping =
374 	    vdev_indirect_mapping_open(mos, scip->scip_next_mapping_object);
375 
376 	return (sci);
377 }
378 
379 static void
380 spa_condensing_indirect_destroy(spa_condensing_indirect_t *sci)
381 {
382 	for (int i = 0; i < TXG_SIZE; i++)
383 		list_destroy(&sci->sci_new_mapping_entries[i]);
384 
385 	if (sci->sci_new_mapping != NULL)
386 		vdev_indirect_mapping_close(sci->sci_new_mapping);
387 
388 	kmem_free(sci, sizeof (*sci));
389 }
390 
391 boolean_t
392 vdev_indirect_should_condense(vdev_t *vd)
393 {
394 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
395 	spa_t *spa = vd->vdev_spa;
396 
397 	ASSERT(dsl_pool_sync_context(spa->spa_dsl_pool));
398 
399 	if (!zfs_condense_indirect_vdevs_enable)
400 		return (B_FALSE);
401 
402 	/*
403 	 * We can only condense one indirect vdev at a time.
404 	 */
405 	if (spa->spa_condensing_indirect != NULL)
406 		return (B_FALSE);
407 
408 	if (spa_shutting_down(spa))
409 		return (B_FALSE);
410 
411 	/*
412 	 * The mapping object size must not change while we are
413 	 * condensing, so we can only condense indirect vdevs
414 	 * (not vdevs that are still in the middle of being removed).
415 	 */
416 	if (vd->vdev_ops != &vdev_indirect_ops)
417 		return (B_FALSE);
418 
419 	/*
420 	 * If nothing new has been marked obsolete, there is no
421 	 * point in condensing.
422 	 */
423 	uint64_t obsolete_sm_obj __maybe_unused;
424 	ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_obj));
425 	if (vd->vdev_obsolete_sm == NULL) {
426 		ASSERT0(obsolete_sm_obj);
427 		return (B_FALSE);
428 	}
429 
430 	ASSERT(vd->vdev_obsolete_sm != NULL);
431 
432 	ASSERT3U(obsolete_sm_obj, ==, space_map_object(vd->vdev_obsolete_sm));
433 
434 	uint64_t bytes_mapped = vdev_indirect_mapping_bytes_mapped(vim);
435 	uint64_t bytes_obsolete = space_map_allocated(vd->vdev_obsolete_sm);
436 	uint64_t mapping_size = vdev_indirect_mapping_size(vim);
437 	uint64_t obsolete_sm_size = space_map_length(vd->vdev_obsolete_sm);
438 
439 	ASSERT3U(bytes_obsolete, <=, bytes_mapped);
440 
441 	/*
442 	 * If a high percentage of the bytes that are mapped have become
443 	 * obsolete, condense (unless the mapping is already small enough).
444 	 * This has a good chance of reducing the amount of memory used
445 	 * by the mapping.
446 	 */
447 	if (bytes_obsolete * 100 / bytes_mapped >=
448 	    zfs_condense_indirect_obsolete_pct &&
449 	    mapping_size > zfs_condense_min_mapping_bytes) {
450 		zfs_dbgmsg("should condense vdev %llu because obsolete "
451 		    "spacemap covers %d%% of %lluMB mapping",
452 		    (u_longlong_t)vd->vdev_id,
453 		    (int)(bytes_obsolete * 100 / bytes_mapped),
454 		    (u_longlong_t)bytes_mapped / 1024 / 1024);
455 		return (B_TRUE);
456 	}
457 
458 	/*
459 	 * If the obsolete space map takes up too much space on disk,
460 	 * condense in order to free up this disk space.
461 	 */
462 	if (obsolete_sm_size >= zfs_condense_max_obsolete_bytes) {
463 		zfs_dbgmsg("should condense vdev %llu because obsolete sm "
464 		    "length %lluMB >= max size %lluMB",
465 		    (u_longlong_t)vd->vdev_id,
466 		    (u_longlong_t)obsolete_sm_size / 1024 / 1024,
467 		    (u_longlong_t)zfs_condense_max_obsolete_bytes /
468 		    1024 / 1024);
469 		return (B_TRUE);
470 	}
471 
472 	return (B_FALSE);
473 }
474 
475 /*
476  * This sync task completes (finishes) a condense, deleting the old
477  * mapping and replacing it with the new one.
478  */
479 static void
480 spa_condense_indirect_complete_sync(void *arg, dmu_tx_t *tx)
481 {
482 	spa_condensing_indirect_t *sci = arg;
483 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
484 	spa_condensing_indirect_phys_t *scip =
485 	    &spa->spa_condensing_indirect_phys;
486 	vdev_t *vd = vdev_lookup_top(spa, scip->scip_vdev);
487 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
488 	objset_t *mos = spa->spa_meta_objset;
489 	vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
490 	uint64_t old_count = vdev_indirect_mapping_num_entries(old_mapping);
491 	uint64_t new_count =
492 	    vdev_indirect_mapping_num_entries(sci->sci_new_mapping);
493 
494 	ASSERT(dmu_tx_is_syncing(tx));
495 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
496 	ASSERT3P(sci, ==, spa->spa_condensing_indirect);
497 	for (int i = 0; i < TXG_SIZE; i++) {
498 		ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
499 	}
500 	ASSERT(vic->vic_mapping_object != 0);
501 	ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
502 	ASSERT(scip->scip_next_mapping_object != 0);
503 	ASSERT(scip->scip_prev_obsolete_sm_object != 0);
504 
505 	/*
506 	 * Reset vdev_indirect_mapping to refer to the new object.
507 	 */
508 	rw_enter(&vd->vdev_indirect_rwlock, RW_WRITER);
509 	vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
510 	vd->vdev_indirect_mapping = sci->sci_new_mapping;
511 	rw_exit(&vd->vdev_indirect_rwlock);
512 
513 	sci->sci_new_mapping = NULL;
514 	vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
515 	vic->vic_mapping_object = scip->scip_next_mapping_object;
516 	scip->scip_next_mapping_object = 0;
517 
518 	space_map_free_obj(mos, scip->scip_prev_obsolete_sm_object, tx);
519 	spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
520 	scip->scip_prev_obsolete_sm_object = 0;
521 
522 	scip->scip_vdev = 0;
523 
524 	VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
525 	    DMU_POOL_CONDENSING_INDIRECT, tx));
526 	spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
527 	spa->spa_condensing_indirect = NULL;
528 
529 	zfs_dbgmsg("finished condense of vdev %llu in txg %llu: "
530 	    "new mapping object %llu has %llu entries "
531 	    "(was %llu entries)",
532 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)dmu_tx_get_txg(tx),
533 	    (u_longlong_t)vic->vic_mapping_object,
534 	    (u_longlong_t)new_count, (u_longlong_t)old_count);
535 
536 	vdev_config_dirty(spa->spa_root_vdev);
537 }
538 
539 /*
540  * This sync task appends entries to the new mapping object.
541  */
542 static void
543 spa_condense_indirect_commit_sync(void *arg, dmu_tx_t *tx)
544 {
545 	spa_condensing_indirect_t *sci = arg;
546 	uint64_t txg = dmu_tx_get_txg(tx);
547 	spa_t *spa __maybe_unused = dmu_tx_pool(tx)->dp_spa;
548 
549 	ASSERT(dmu_tx_is_syncing(tx));
550 	ASSERT3P(sci, ==, spa->spa_condensing_indirect);
551 
552 	vdev_indirect_mapping_add_entries(sci->sci_new_mapping,
553 	    &sci->sci_new_mapping_entries[txg & TXG_MASK], tx);
554 	ASSERT(list_is_empty(&sci->sci_new_mapping_entries[txg & TXG_MASK]));
555 }
556 
557 /*
558  * Open-context function to add one entry to the new mapping.  The new
559  * entry will be remembered and written from syncing context.
560  */
561 static void
562 spa_condense_indirect_commit_entry(spa_t *spa,
563     vdev_indirect_mapping_entry_phys_t *vimep, uint32_t count)
564 {
565 	spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
566 
567 	ASSERT3U(count, <, DVA_GET_ASIZE(&vimep->vimep_dst));
568 
569 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
570 	dmu_tx_hold_space(tx, sizeof (*vimep) + sizeof (count));
571 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
572 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
573 
574 	/*
575 	 * If we are the first entry committed this txg, kick off the sync
576 	 * task to write to the MOS on our behalf.
577 	 */
578 	if (list_is_empty(&sci->sci_new_mapping_entries[txgoff])) {
579 		dsl_sync_task_nowait(dmu_tx_pool(tx),
580 		    spa_condense_indirect_commit_sync, sci, tx);
581 	}
582 
583 	vdev_indirect_mapping_entry_t *vime =
584 	    kmem_alloc(sizeof (*vime), KM_SLEEP);
585 	vime->vime_mapping = *vimep;
586 	vime->vime_obsolete_count = count;
587 	list_insert_tail(&sci->sci_new_mapping_entries[txgoff], vime);
588 
589 	dmu_tx_commit(tx);
590 }
591 
592 static void
593 spa_condense_indirect_generate_new_mapping(vdev_t *vd,
594     uint32_t *obsolete_counts, uint64_t start_index, zthr_t *zthr)
595 {
596 	spa_t *spa = vd->vdev_spa;
597 	uint64_t mapi = start_index;
598 	vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
599 	uint64_t old_num_entries =
600 	    vdev_indirect_mapping_num_entries(old_mapping);
601 
602 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
603 	ASSERT3U(vd->vdev_id, ==, spa->spa_condensing_indirect_phys.scip_vdev);
604 
605 	zfs_dbgmsg("starting condense of vdev %llu from index %llu",
606 	    (u_longlong_t)vd->vdev_id,
607 	    (u_longlong_t)mapi);
608 
609 	while (mapi < old_num_entries) {
610 
611 		if (zthr_iscancelled(zthr)) {
612 			zfs_dbgmsg("pausing condense of vdev %llu "
613 			    "at index %llu", (u_longlong_t)vd->vdev_id,
614 			    (u_longlong_t)mapi);
615 			break;
616 		}
617 
618 		vdev_indirect_mapping_entry_phys_t *entry =
619 		    &old_mapping->vim_entries[mapi];
620 		uint64_t entry_size = DVA_GET_ASIZE(&entry->vimep_dst);
621 		ASSERT3U(obsolete_counts[mapi], <=, entry_size);
622 		if (obsolete_counts[mapi] < entry_size) {
623 			spa_condense_indirect_commit_entry(spa, entry,
624 			    obsolete_counts[mapi]);
625 
626 			/*
627 			 * This delay may be requested for testing, debugging,
628 			 * or performance reasons.
629 			 */
630 			hrtime_t now = gethrtime();
631 			hrtime_t sleep_until = now + MSEC2NSEC(
632 			    zfs_condense_indirect_commit_entry_delay_ms);
633 			zfs_sleep_until(sleep_until);
634 		}
635 
636 		mapi++;
637 	}
638 }
639 
640 static boolean_t
641 spa_condense_indirect_thread_check(void *arg, zthr_t *zthr)
642 {
643 	(void) zthr;
644 	spa_t *spa = arg;
645 
646 	return (spa->spa_condensing_indirect != NULL);
647 }
648 
649 static void
650 spa_condense_indirect_thread(void *arg, zthr_t *zthr)
651 {
652 	spa_t *spa = arg;
653 	vdev_t *vd;
654 
655 	ASSERT3P(spa->spa_condensing_indirect, !=, NULL);
656 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
657 	vd = vdev_lookup_top(spa, spa->spa_condensing_indirect_phys.scip_vdev);
658 	ASSERT3P(vd, !=, NULL);
659 	spa_config_exit(spa, SCL_VDEV, FTAG);
660 
661 	spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
662 	spa_condensing_indirect_phys_t *scip =
663 	    &spa->spa_condensing_indirect_phys;
664 	uint32_t *counts;
665 	uint64_t start_index;
666 	vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
667 	space_map_t *prev_obsolete_sm = NULL;
668 
669 	ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
670 	ASSERT(scip->scip_next_mapping_object != 0);
671 	ASSERT(scip->scip_prev_obsolete_sm_object != 0);
672 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
673 
674 	for (int i = 0; i < TXG_SIZE; i++) {
675 		/*
676 		 * The list must start out empty in order for the
677 		 * _commit_sync() sync task to be properly registered
678 		 * on the first call to _commit_entry(); so it's wise
679 		 * to double check and ensure we actually are starting
680 		 * with empty lists.
681 		 */
682 		ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
683 	}
684 
685 	VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
686 	    scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
687 	counts = vdev_indirect_mapping_load_obsolete_counts(old_mapping);
688 	if (prev_obsolete_sm != NULL) {
689 		vdev_indirect_mapping_load_obsolete_spacemap(old_mapping,
690 		    counts, prev_obsolete_sm);
691 	}
692 	space_map_close(prev_obsolete_sm);
693 
694 	/*
695 	 * Generate new mapping.  Determine what index to continue from
696 	 * based on the max offset that we've already written in the
697 	 * new mapping.
698 	 */
699 	uint64_t max_offset =
700 	    vdev_indirect_mapping_max_offset(sci->sci_new_mapping);
701 	if (max_offset == 0) {
702 		/* We haven't written anything to the new mapping yet. */
703 		start_index = 0;
704 	} else {
705 		/*
706 		 * Pick up from where we left off. _entry_for_offset()
707 		 * returns a pointer into the vim_entries array. If
708 		 * max_offset is greater than any of the mappings
709 		 * contained in the table  NULL will be returned and
710 		 * that indicates we've exhausted our iteration of the
711 		 * old_mapping.
712 		 */
713 
714 		vdev_indirect_mapping_entry_phys_t *entry =
715 		    vdev_indirect_mapping_entry_for_offset_or_next(old_mapping,
716 		    max_offset);
717 
718 		if (entry == NULL) {
719 			/*
720 			 * We've already written the whole new mapping.
721 			 * This special value will cause us to skip the
722 			 * generate_new_mapping step and just do the sync
723 			 * task to complete the condense.
724 			 */
725 			start_index = UINT64_MAX;
726 		} else {
727 			start_index = entry - old_mapping->vim_entries;
728 			ASSERT3U(start_index, <,
729 			    vdev_indirect_mapping_num_entries(old_mapping));
730 		}
731 	}
732 
733 	spa_condense_indirect_generate_new_mapping(vd, counts,
734 	    start_index, zthr);
735 
736 	vdev_indirect_mapping_free_obsolete_counts(old_mapping, counts);
737 
738 	/*
739 	 * If the zthr has received a cancellation signal while running
740 	 * in generate_new_mapping() or at any point after that, then bail
741 	 * early. We don't want to complete the condense if the spa is
742 	 * shutting down.
743 	 */
744 	if (zthr_iscancelled(zthr))
745 		return;
746 
747 	VERIFY0(dsl_sync_task(spa_name(spa), NULL,
748 	    spa_condense_indirect_complete_sync, sci, 0,
749 	    ZFS_SPACE_CHECK_EXTRA_RESERVED));
750 }
751 
752 /*
753  * Sync task to begin the condensing process.
754  */
755 void
756 spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx)
757 {
758 	spa_t *spa = vd->vdev_spa;
759 	spa_condensing_indirect_phys_t *scip =
760 	    &spa->spa_condensing_indirect_phys;
761 
762 	ASSERT0(scip->scip_next_mapping_object);
763 	ASSERT0(scip->scip_prev_obsolete_sm_object);
764 	ASSERT0(scip->scip_vdev);
765 	ASSERT(dmu_tx_is_syncing(tx));
766 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
767 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_OBSOLETE_COUNTS));
768 	ASSERT(vdev_indirect_mapping_num_entries(vd->vdev_indirect_mapping));
769 
770 	uint64_t obsolete_sm_obj;
771 	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_obj));
772 	ASSERT3U(obsolete_sm_obj, !=, 0);
773 
774 	scip->scip_vdev = vd->vdev_id;
775 	scip->scip_next_mapping_object =
776 	    vdev_indirect_mapping_alloc(spa->spa_meta_objset, tx);
777 
778 	scip->scip_prev_obsolete_sm_object = obsolete_sm_obj;
779 
780 	/*
781 	 * We don't need to allocate a new space map object, since
782 	 * vdev_indirect_sync_obsolete will allocate one when needed.
783 	 */
784 	space_map_close(vd->vdev_obsolete_sm);
785 	vd->vdev_obsolete_sm = NULL;
786 	VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
787 	    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
788 
789 	VERIFY0(zap_add(spa->spa_dsl_pool->dp_meta_objset,
790 	    DMU_POOL_DIRECTORY_OBJECT,
791 	    DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
792 	    sizeof (*scip) / sizeof (uint64_t), scip, tx));
793 
794 	ASSERT3P(spa->spa_condensing_indirect, ==, NULL);
795 	spa->spa_condensing_indirect = spa_condensing_indirect_create(spa);
796 
797 	zfs_dbgmsg("starting condense of vdev %llu in txg %llu: "
798 	    "posm=%llu nm=%llu",
799 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)dmu_tx_get_txg(tx),
800 	    (u_longlong_t)scip->scip_prev_obsolete_sm_object,
801 	    (u_longlong_t)scip->scip_next_mapping_object);
802 
803 	zthr_wakeup(spa->spa_condense_zthr);
804 }
805 
806 /*
807  * Sync to the given vdev's obsolete space map any segments that are no longer
808  * referenced as of the given txg.
809  *
810  * If the obsolete space map doesn't exist yet, create and open it.
811  */
812 void
813 vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx)
814 {
815 	spa_t *spa = vd->vdev_spa;
816 	vdev_indirect_config_t *vic __maybe_unused = &vd->vdev_indirect_config;
817 
818 	ASSERT3U(vic->vic_mapping_object, !=, 0);
819 	ASSERT(range_tree_space(vd->vdev_obsolete_segments) > 0);
820 	ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
821 	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS));
822 
823 	uint64_t obsolete_sm_object;
824 	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
825 	if (obsolete_sm_object == 0) {
826 		obsolete_sm_object = space_map_alloc(spa->spa_meta_objset,
827 		    zfs_vdev_standard_sm_blksz, tx);
828 
829 		ASSERT(vd->vdev_top_zap != 0);
830 		VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
831 		    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM,
832 		    sizeof (obsolete_sm_object), 1, &obsolete_sm_object, tx));
833 		ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
834 		ASSERT3U(obsolete_sm_object, !=, 0);
835 
836 		spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
837 		VERIFY0(space_map_open(&vd->vdev_obsolete_sm,
838 		    spa->spa_meta_objset, obsolete_sm_object,
839 		    0, vd->vdev_asize, 0));
840 	}
841 
842 	ASSERT(vd->vdev_obsolete_sm != NULL);
843 	ASSERT3U(obsolete_sm_object, ==,
844 	    space_map_object(vd->vdev_obsolete_sm));
845 
846 	space_map_write(vd->vdev_obsolete_sm,
847 	    vd->vdev_obsolete_segments, SM_ALLOC, SM_NO_VDEVID, tx);
848 	range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
849 }
850 
851 int
852 spa_condense_init(spa_t *spa)
853 {
854 	int error = zap_lookup(spa->spa_meta_objset,
855 	    DMU_POOL_DIRECTORY_OBJECT,
856 	    DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
857 	    sizeof (spa->spa_condensing_indirect_phys) / sizeof (uint64_t),
858 	    &spa->spa_condensing_indirect_phys);
859 	if (error == 0) {
860 		if (spa_writeable(spa)) {
861 			spa->spa_condensing_indirect =
862 			    spa_condensing_indirect_create(spa);
863 		}
864 		return (0);
865 	} else if (error == ENOENT) {
866 		return (0);
867 	} else {
868 		return (error);
869 	}
870 }
871 
872 void
873 spa_condense_fini(spa_t *spa)
874 {
875 	if (spa->spa_condensing_indirect != NULL) {
876 		spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
877 		spa->spa_condensing_indirect = NULL;
878 	}
879 }
880 
881 void
882 spa_start_indirect_condensing_thread(spa_t *spa)
883 {
884 	ASSERT3P(spa->spa_condense_zthr, ==, NULL);
885 	spa->spa_condense_zthr = zthr_create("z_indirect_condense",
886 	    spa_condense_indirect_thread_check,
887 	    spa_condense_indirect_thread, spa, minclsyspri);
888 }
889 
890 /*
891  * Gets the obsolete spacemap object from the vdev's ZAP.  On success sm_obj
892  * will contain either the obsolete spacemap object or zero if none exists.
893  * All other errors are returned to the caller.
894  */
895 int
896 vdev_obsolete_sm_object(vdev_t *vd, uint64_t *sm_obj)
897 {
898 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
899 
900 	if (vd->vdev_top_zap == 0) {
901 		*sm_obj = 0;
902 		return (0);
903 	}
904 
905 	int error = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
906 	    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, sizeof (uint64_t), 1, sm_obj);
907 	if (error == ENOENT) {
908 		*sm_obj = 0;
909 		error = 0;
910 	}
911 
912 	return (error);
913 }
914 
915 /*
916  * Gets the obsolete count are precise spacemap object from the vdev's ZAP.
917  * On success are_precise will be set to reflect if the counts are precise.
918  * All other errors are returned to the caller.
919  */
920 int
921 vdev_obsolete_counts_are_precise(vdev_t *vd, boolean_t *are_precise)
922 {
923 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
924 
925 	if (vd->vdev_top_zap == 0) {
926 		*are_precise = B_FALSE;
927 		return (0);
928 	}
929 
930 	uint64_t val = 0;
931 	int error = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
932 	    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (val), 1, &val);
933 	if (error == 0) {
934 		*are_precise = (val != 0);
935 	} else if (error == ENOENT) {
936 		*are_precise = B_FALSE;
937 		error = 0;
938 	}
939 
940 	return (error);
941 }
942 
943 static void
944 vdev_indirect_close(vdev_t *vd)
945 {
946 	(void) vd;
947 }
948 
949 static int
950 vdev_indirect_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
951     uint64_t *logical_ashift, uint64_t *physical_ashift)
952 {
953 	*psize = *max_psize = vd->vdev_asize +
954 	    VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
955 	*logical_ashift = vd->vdev_ashift;
956 	*physical_ashift = vd->vdev_physical_ashift;
957 	return (0);
958 }
959 
960 typedef struct remap_segment {
961 	vdev_t *rs_vd;
962 	uint64_t rs_offset;
963 	uint64_t rs_asize;
964 	uint64_t rs_split_offset;
965 	list_node_t rs_node;
966 } remap_segment_t;
967 
968 static remap_segment_t *
969 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
970 {
971 	remap_segment_t *rs = kmem_alloc(sizeof (remap_segment_t), KM_SLEEP);
972 	rs->rs_vd = vd;
973 	rs->rs_offset = offset;
974 	rs->rs_asize = asize;
975 	rs->rs_split_offset = split_offset;
976 	return (rs);
977 }
978 
979 /*
980  * Given an indirect vdev and an extent on that vdev, it duplicates the
981  * physical entries of the indirect mapping that correspond to the extent
982  * to a new array and returns a pointer to it. In addition, copied_entries
983  * is populated with the number of mapping entries that were duplicated.
984  *
985  * Note that the function assumes that the caller holds vdev_indirect_rwlock.
986  * This ensures that the mapping won't change due to condensing as we
987  * copy over its contents.
988  *
989  * Finally, since we are doing an allocation, it is up to the caller to
990  * free the array allocated in this function.
991  */
992 static vdev_indirect_mapping_entry_phys_t *
993 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
994     uint64_t asize, uint64_t *copied_entries)
995 {
996 	vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
997 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
998 	uint64_t entries = 0;
999 
1000 	ASSERT(RW_READ_HELD(&vd->vdev_indirect_rwlock));
1001 
1002 	vdev_indirect_mapping_entry_phys_t *first_mapping =
1003 	    vdev_indirect_mapping_entry_for_offset(vim, offset);
1004 	ASSERT3P(first_mapping, !=, NULL);
1005 
1006 	vdev_indirect_mapping_entry_phys_t *m = first_mapping;
1007 	while (asize > 0) {
1008 		uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
1009 
1010 		ASSERT3U(offset, >=, DVA_MAPPING_GET_SRC_OFFSET(m));
1011 		ASSERT3U(offset, <, DVA_MAPPING_GET_SRC_OFFSET(m) + size);
1012 
1013 		uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
1014 		uint64_t inner_size = MIN(asize, size - inner_offset);
1015 
1016 		offset += inner_size;
1017 		asize -= inner_size;
1018 		entries++;
1019 		m++;
1020 	}
1021 
1022 	size_t copy_length = entries * sizeof (*first_mapping);
1023 	duplicate_mappings = kmem_alloc(copy_length, KM_SLEEP);
1024 	memcpy(duplicate_mappings, first_mapping, copy_length);
1025 	*copied_entries = entries;
1026 
1027 	return (duplicate_mappings);
1028 }
1029 
1030 /*
1031  * Goes through the relevant indirect mappings until it hits a concrete vdev
1032  * and issues the callback. On the way to the concrete vdev, if any other
1033  * indirect vdevs are encountered, then the callback will also be called on
1034  * each of those indirect vdevs. For example, if the segment is mapped to
1035  * segment A on indirect vdev 1, and then segment A on indirect vdev 1 is
1036  * mapped to segment B on concrete vdev 2, then the callback will be called on
1037  * both vdev 1 and vdev 2.
1038  *
1039  * While the callback passed to vdev_indirect_remap() is called on every vdev
1040  * the function encounters, certain callbacks only care about concrete vdevs.
1041  * These types of callbacks should return immediately and explicitly when they
1042  * are called on an indirect vdev.
1043  *
1044  * Because there is a possibility that a DVA section in the indirect device
1045  * has been split into multiple sections in our mapping, we keep track
1046  * of the relevant contiguous segments of the new location (remap_segment_t)
1047  * in a stack. This way we can call the callback for each of the new sections
1048  * created by a single section of the indirect device. Note though, that in
1049  * this scenario the callbacks in each split block won't occur in-order in
1050  * terms of offset, so callers should not make any assumptions about that.
1051  *
1052  * For callbacks that don't handle split blocks and immediately return when
1053  * they encounter them (as is the case for remap_blkptr_cb), the caller can
1054  * assume that its callback will be applied from the first indirect vdev
1055  * encountered to the last one and then the concrete vdev, in that order.
1056  */
1057 static void
1058 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize,
1059     void (*func)(uint64_t, vdev_t *, uint64_t, uint64_t, void *), void *arg)
1060 {
1061 	list_t stack;
1062 	spa_t *spa = vd->vdev_spa;
1063 
1064 	list_create(&stack, sizeof (remap_segment_t),
1065 	    offsetof(remap_segment_t, rs_node));
1066 
1067 	for (remap_segment_t *rs = rs_alloc(vd, offset, asize, 0);
1068 	    rs != NULL; rs = list_remove_head(&stack)) {
1069 		vdev_t *v = rs->rs_vd;
1070 		uint64_t num_entries = 0;
1071 
1072 		ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1073 		ASSERT(rs->rs_asize > 0);
1074 
1075 		/*
1076 		 * Note: As this function can be called from open context
1077 		 * (e.g. zio_read()), we need the following rwlock to
1078 		 * prevent the mapping from being changed by condensing.
1079 		 *
1080 		 * So we grab the lock and we make a copy of the entries
1081 		 * that are relevant to the extent that we are working on.
1082 		 * Once that is done, we drop the lock and iterate over
1083 		 * our copy of the mapping. Once we are done with the with
1084 		 * the remap segment and we free it, we also free our copy
1085 		 * of the indirect mapping entries that are relevant to it.
1086 		 *
1087 		 * This way we don't need to wait until the function is
1088 		 * finished with a segment, to condense it. In addition, we
1089 		 * don't need a recursive rwlock for the case that a call to
1090 		 * vdev_indirect_remap() needs to call itself (through the
1091 		 * codepath of its callback) for the same vdev in the middle
1092 		 * of its execution.
1093 		 */
1094 		rw_enter(&v->vdev_indirect_rwlock, RW_READER);
1095 		ASSERT3P(v->vdev_indirect_mapping, !=, NULL);
1096 
1097 		vdev_indirect_mapping_entry_phys_t *mapping =
1098 		    vdev_indirect_mapping_duplicate_adjacent_entries(v,
1099 		    rs->rs_offset, rs->rs_asize, &num_entries);
1100 		ASSERT3P(mapping, !=, NULL);
1101 		ASSERT3U(num_entries, >, 0);
1102 		rw_exit(&v->vdev_indirect_rwlock);
1103 
1104 		for (uint64_t i = 0; i < num_entries; i++) {
1105 			/*
1106 			 * Note: the vdev_indirect_mapping can not change
1107 			 * while we are running.  It only changes while the
1108 			 * removal is in progress, and then only from syncing
1109 			 * context. While a removal is in progress, this
1110 			 * function is only called for frees, which also only
1111 			 * happen from syncing context.
1112 			 */
1113 			vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
1114 
1115 			ASSERT3P(m, !=, NULL);
1116 			ASSERT3U(rs->rs_asize, >, 0);
1117 
1118 			uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
1119 			uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
1120 			uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
1121 
1122 			ASSERT3U(rs->rs_offset, >=,
1123 			    DVA_MAPPING_GET_SRC_OFFSET(m));
1124 			ASSERT3U(rs->rs_offset, <,
1125 			    DVA_MAPPING_GET_SRC_OFFSET(m) + size);
1126 			ASSERT3U(dst_vdev, !=, v->vdev_id);
1127 
1128 			uint64_t inner_offset = rs->rs_offset -
1129 			    DVA_MAPPING_GET_SRC_OFFSET(m);
1130 			uint64_t inner_size =
1131 			    MIN(rs->rs_asize, size - inner_offset);
1132 
1133 			vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
1134 			ASSERT3P(dst_v, !=, NULL);
1135 
1136 			if (dst_v->vdev_ops == &vdev_indirect_ops) {
1137 				list_insert_head(&stack,
1138 				    rs_alloc(dst_v, dst_offset + inner_offset,
1139 				    inner_size, rs->rs_split_offset));
1140 
1141 			}
1142 
1143 			if ((zfs_flags & ZFS_DEBUG_INDIRECT_REMAP) &&
1144 			    IS_P2ALIGNED(inner_size, 2 * SPA_MINBLOCKSIZE)) {
1145 				/*
1146 				 * Note: This clause exists only solely for
1147 				 * testing purposes. We use it to ensure that
1148 				 * split blocks work and that the callbacks
1149 				 * using them yield the same result if issued
1150 				 * in reverse order.
1151 				 */
1152 				uint64_t inner_half = inner_size / 2;
1153 
1154 				func(rs->rs_split_offset + inner_half, dst_v,
1155 				    dst_offset + inner_offset + inner_half,
1156 				    inner_half, arg);
1157 
1158 				func(rs->rs_split_offset, dst_v,
1159 				    dst_offset + inner_offset,
1160 				    inner_half, arg);
1161 			} else {
1162 				func(rs->rs_split_offset, dst_v,
1163 				    dst_offset + inner_offset,
1164 				    inner_size, arg);
1165 			}
1166 
1167 			rs->rs_offset += inner_size;
1168 			rs->rs_asize -= inner_size;
1169 			rs->rs_split_offset += inner_size;
1170 		}
1171 		VERIFY0(rs->rs_asize);
1172 
1173 		kmem_free(mapping, num_entries * sizeof (*mapping));
1174 		kmem_free(rs, sizeof (remap_segment_t));
1175 	}
1176 	list_destroy(&stack);
1177 }
1178 
1179 static void
1180 vdev_indirect_child_io_done(zio_t *zio)
1181 {
1182 	zio_t *pio = zio->io_private;
1183 
1184 	mutex_enter(&pio->io_lock);
1185 	pio->io_error = zio_worst_error(pio->io_error, zio->io_error);
1186 	mutex_exit(&pio->io_lock);
1187 
1188 	abd_free(zio->io_abd);
1189 }
1190 
1191 /*
1192  * This is a callback for vdev_indirect_remap() which allocates an
1193  * indirect_split_t for each split segment and adds it to iv_splits.
1194  */
1195 static void
1196 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
1197     uint64_t size, void *arg)
1198 {
1199 	zio_t *zio = arg;
1200 	indirect_vsd_t *iv = zio->io_vsd;
1201 
1202 	ASSERT3P(vd, !=, NULL);
1203 
1204 	if (vd->vdev_ops == &vdev_indirect_ops)
1205 		return;
1206 
1207 	int n = 1;
1208 	if (vd->vdev_ops == &vdev_mirror_ops)
1209 		n = vd->vdev_children;
1210 
1211 	indirect_split_t *is =
1212 	    kmem_zalloc(offsetof(indirect_split_t, is_child[n]), KM_SLEEP);
1213 
1214 	is->is_children = n;
1215 	is->is_size = size;
1216 	is->is_split_offset = split_offset;
1217 	is->is_target_offset = offset;
1218 	is->is_vdev = vd;
1219 	list_create(&is->is_unique_child, sizeof (indirect_child_t),
1220 	    offsetof(indirect_child_t, ic_node));
1221 
1222 	/*
1223 	 * Note that we only consider multiple copies of the data for
1224 	 * *mirror* vdevs.  We don't for "replacing" or "spare" vdevs, even
1225 	 * though they use the same ops as mirror, because there's only one
1226 	 * "good" copy under the replacing/spare.
1227 	 */
1228 	if (vd->vdev_ops == &vdev_mirror_ops) {
1229 		for (int i = 0; i < n; i++) {
1230 			is->is_child[i].ic_vdev = vd->vdev_child[i];
1231 			list_link_init(&is->is_child[i].ic_node);
1232 		}
1233 	} else {
1234 		is->is_child[0].ic_vdev = vd;
1235 	}
1236 
1237 	list_insert_tail(&iv->iv_splits, is);
1238 }
1239 
1240 static void
1241 vdev_indirect_read_split_done(zio_t *zio)
1242 {
1243 	indirect_child_t *ic = zio->io_private;
1244 
1245 	if (zio->io_error != 0) {
1246 		/*
1247 		 * Clear ic_data to indicate that we do not have data for this
1248 		 * child.
1249 		 */
1250 		abd_free(ic->ic_data);
1251 		ic->ic_data = NULL;
1252 	}
1253 }
1254 
1255 /*
1256  * Issue reads for all copies (mirror children) of all splits.
1257  */
1258 static void
1259 vdev_indirect_read_all(zio_t *zio)
1260 {
1261 	indirect_vsd_t *iv = zio->io_vsd;
1262 
1263 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
1264 
1265 	for (indirect_split_t *is = list_head(&iv->iv_splits);
1266 	    is != NULL; is = list_next(&iv->iv_splits, is)) {
1267 		for (int i = 0; i < is->is_children; i++) {
1268 			indirect_child_t *ic = &is->is_child[i];
1269 
1270 			if (!vdev_readable(ic->ic_vdev))
1271 				continue;
1272 
1273 			/*
1274 			 * If a child is missing the data, set ic_error. Used
1275 			 * in vdev_indirect_repair(). We perform the read
1276 			 * nevertheless which provides the opportunity to
1277 			 * reconstruct the split block if at all possible.
1278 			 */
1279 			if (vdev_dtl_contains(ic->ic_vdev, DTL_MISSING,
1280 			    zio->io_txg, 1))
1281 				ic->ic_error = SET_ERROR(ESTALE);
1282 
1283 			ic->ic_data = abd_alloc_sametype(zio->io_abd,
1284 			    is->is_size);
1285 			ic->ic_duplicate = NULL;
1286 
1287 			zio_nowait(zio_vdev_child_io(zio, NULL,
1288 			    ic->ic_vdev, is->is_target_offset, ic->ic_data,
1289 			    is->is_size, zio->io_type, zio->io_priority, 0,
1290 			    vdev_indirect_read_split_done, ic));
1291 		}
1292 	}
1293 	iv->iv_reconstruct = B_TRUE;
1294 }
1295 
1296 static void
1297 vdev_indirect_io_start(zio_t *zio)
1298 {
1299 	spa_t *spa __maybe_unused = zio->io_spa;
1300 	indirect_vsd_t *iv = kmem_zalloc(sizeof (*iv), KM_SLEEP);
1301 	list_create(&iv->iv_splits,
1302 	    sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
1303 
1304 	zio->io_vsd = iv;
1305 	zio->io_vsd_ops = &vdev_indirect_vsd_ops;
1306 
1307 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1308 	if (zio->io_type != ZIO_TYPE_READ) {
1309 		ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
1310 		/*
1311 		 * Note: this code can handle other kinds of writes,
1312 		 * but we don't expect them.
1313 		 */
1314 		ASSERT((zio->io_flags & (ZIO_FLAG_SELF_HEAL |
1315 		    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)) != 0);
1316 	}
1317 
1318 	vdev_indirect_remap(zio->io_vd, zio->io_offset, zio->io_size,
1319 	    vdev_indirect_gather_splits, zio);
1320 
1321 	indirect_split_t *first = list_head(&iv->iv_splits);
1322 	ASSERT3P(first, !=, NULL);
1323 	if (first->is_size == zio->io_size) {
1324 		/*
1325 		 * This is not a split block; we are pointing to the entire
1326 		 * data, which will checksum the same as the original data.
1327 		 * Pass the BP down so that the child i/o can verify the
1328 		 * checksum, and try a different location if available
1329 		 * (e.g. on a mirror).
1330 		 *
1331 		 * While this special case could be handled the same as the
1332 		 * general (split block) case, doing it this way ensures
1333 		 * that the vast majority of blocks on indirect vdevs
1334 		 * (which are not split) are handled identically to blocks
1335 		 * on non-indirect vdevs.  This allows us to be less strict
1336 		 * about performance in the general (but rare) case.
1337 		 */
1338 		ASSERT0(first->is_split_offset);
1339 		ASSERT3P(list_next(&iv->iv_splits, first), ==, NULL);
1340 		zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
1341 		    first->is_vdev, first->is_target_offset,
1342 		    abd_get_offset(zio->io_abd, 0),
1343 		    zio->io_size, zio->io_type, zio->io_priority, 0,
1344 		    vdev_indirect_child_io_done, zio));
1345 	} else {
1346 		iv->iv_split_block = B_TRUE;
1347 		if (zio->io_type == ZIO_TYPE_READ &&
1348 		    zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) {
1349 			/*
1350 			 * Read all copies.  Note that for simplicity,
1351 			 * we don't bother consulting the DTL in the
1352 			 * resilver case.
1353 			 */
1354 			vdev_indirect_read_all(zio);
1355 		} else {
1356 			/*
1357 			 * If this is a read zio, we read one copy of each
1358 			 * split segment, from the top-level vdev.  Since
1359 			 * we don't know the checksum of each split
1360 			 * individually, the child zio can't ensure that
1361 			 * we get the right data. E.g. if it's a mirror,
1362 			 * it will just read from a random (healthy) leaf
1363 			 * vdev. We have to verify the checksum in
1364 			 * vdev_indirect_io_done().
1365 			 *
1366 			 * For write zios, the vdev code will ensure we write
1367 			 * to all children.
1368 			 */
1369 			for (indirect_split_t *is = list_head(&iv->iv_splits);
1370 			    is != NULL; is = list_next(&iv->iv_splits, is)) {
1371 				zio_nowait(zio_vdev_child_io(zio, NULL,
1372 				    is->is_vdev, is->is_target_offset,
1373 				    abd_get_offset_size(zio->io_abd,
1374 				    is->is_split_offset, is->is_size),
1375 				    is->is_size, zio->io_type,
1376 				    zio->io_priority, 0,
1377 				    vdev_indirect_child_io_done, zio));
1378 			}
1379 
1380 		}
1381 	}
1382 
1383 	zio_execute(zio);
1384 }
1385 
1386 /*
1387  * Report a checksum error for a child.
1388  */
1389 static void
1390 vdev_indirect_checksum_error(zio_t *zio,
1391     indirect_split_t *is, indirect_child_t *ic)
1392 {
1393 	vdev_t *vd = ic->ic_vdev;
1394 
1395 	if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1396 		return;
1397 
1398 	mutex_enter(&vd->vdev_stat_lock);
1399 	vd->vdev_stat.vs_checksum_errors++;
1400 	mutex_exit(&vd->vdev_stat_lock);
1401 
1402 	zio_bad_cksum_t zbc = { 0 };
1403 	abd_t *bad_abd = ic->ic_data;
1404 	abd_t *good_abd = is->is_good_child->ic_data;
1405 	(void) zfs_ereport_post_checksum(zio->io_spa, vd, NULL, zio,
1406 	    is->is_target_offset, is->is_size, good_abd, bad_abd, &zbc);
1407 }
1408 
1409 /*
1410  * Issue repair i/os for any incorrect copies.  We do this by comparing
1411  * each split segment's correct data (is_good_child's ic_data) with each
1412  * other copy of the data.  If they differ, then we overwrite the bad data
1413  * with the good copy.  The DTL is checked in vdev_indirect_read_all() and
1414  * if a vdev is missing a copy of the data we set ic_error and the read is
1415  * performed. This provides the opportunity to reconstruct the split block
1416  * if at all possible. ic_error is checked here and if set it suppresses
1417  * incrementing the checksum counter. Aside from this DTLs are not checked,
1418  * which simplifies this code and also issues the optimal number of writes
1419  * (based on which copies actually read bad data, as opposed to which we
1420  * think might be wrong).  For the same reason, we always use
1421  * ZIO_FLAG_SELF_HEAL, to bypass the DTL check in zio_vdev_io_start().
1422  */
1423 static void
1424 vdev_indirect_repair(zio_t *zio)
1425 {
1426 	indirect_vsd_t *iv = zio->io_vsd;
1427 
1428 	if (!spa_writeable(zio->io_spa))
1429 		return;
1430 
1431 	for (indirect_split_t *is = list_head(&iv->iv_splits);
1432 	    is != NULL; is = list_next(&iv->iv_splits, is)) {
1433 		for (int c = 0; c < is->is_children; c++) {
1434 			indirect_child_t *ic = &is->is_child[c];
1435 			if (ic == is->is_good_child)
1436 				continue;
1437 			if (ic->ic_data == NULL)
1438 				continue;
1439 			if (ic->ic_duplicate == is->is_good_child)
1440 				continue;
1441 
1442 			zio_nowait(zio_vdev_child_io(zio, NULL,
1443 			    ic->ic_vdev, is->is_target_offset,
1444 			    is->is_good_child->ic_data, is->is_size,
1445 			    ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
1446 			    ZIO_FLAG_IO_REPAIR | ZIO_FLAG_SELF_HEAL,
1447 			    NULL, NULL));
1448 
1449 			/*
1450 			 * If ic_error is set the current child does not have
1451 			 * a copy of the data, so suppress incrementing the
1452 			 * checksum counter.
1453 			 */
1454 			if (ic->ic_error == ESTALE)
1455 				continue;
1456 
1457 			vdev_indirect_checksum_error(zio, is, ic);
1458 		}
1459 	}
1460 }
1461 
1462 /*
1463  * Report checksum errors on all children that we read from.
1464  */
1465 static void
1466 vdev_indirect_all_checksum_errors(zio_t *zio)
1467 {
1468 	indirect_vsd_t *iv = zio->io_vsd;
1469 
1470 	if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1471 		return;
1472 
1473 	for (indirect_split_t *is = list_head(&iv->iv_splits);
1474 	    is != NULL; is = list_next(&iv->iv_splits, is)) {
1475 		for (int c = 0; c < is->is_children; c++) {
1476 			indirect_child_t *ic = &is->is_child[c];
1477 
1478 			if (ic->ic_data == NULL)
1479 				continue;
1480 
1481 			vdev_t *vd = ic->ic_vdev;
1482 
1483 			mutex_enter(&vd->vdev_stat_lock);
1484 			vd->vdev_stat.vs_checksum_errors++;
1485 			mutex_exit(&vd->vdev_stat_lock);
1486 			(void) zfs_ereport_post_checksum(zio->io_spa, vd,
1487 			    NULL, zio, is->is_target_offset, is->is_size,
1488 			    NULL, NULL, NULL);
1489 		}
1490 	}
1491 }
1492 
1493 /*
1494  * Copy data from all the splits to a main zio then validate the checksum.
1495  * If then checksum is successfully validated return success.
1496  */
1497 static int
1498 vdev_indirect_splits_checksum_validate(indirect_vsd_t *iv, zio_t *zio)
1499 {
1500 	zio_bad_cksum_t zbc;
1501 
1502 	for (indirect_split_t *is = list_head(&iv->iv_splits);
1503 	    is != NULL; is = list_next(&iv->iv_splits, is)) {
1504 
1505 		ASSERT3P(is->is_good_child->ic_data, !=, NULL);
1506 		ASSERT3P(is->is_good_child->ic_duplicate, ==, NULL);
1507 
1508 		abd_copy_off(zio->io_abd, is->is_good_child->ic_data,
1509 		    is->is_split_offset, 0, is->is_size);
1510 	}
1511 
1512 	return (zio_checksum_error(zio, &zbc));
1513 }
1514 
1515 /*
1516  * There are relatively few possible combinations making it feasible to
1517  * deterministically check them all.  We do this by setting the good_child
1518  * to the next unique split version.  If we reach the end of the list then
1519  * "carry over" to the next unique split version (like counting in base
1520  * is_unique_children, but each digit can have a different base).
1521  */
1522 static int
1523 vdev_indirect_splits_enumerate_all(indirect_vsd_t *iv, zio_t *zio)
1524 {
1525 	boolean_t more = B_TRUE;
1526 
1527 	iv->iv_attempts = 0;
1528 
1529 	for (indirect_split_t *is = list_head(&iv->iv_splits);
1530 	    is != NULL; is = list_next(&iv->iv_splits, is))
1531 		is->is_good_child = list_head(&is->is_unique_child);
1532 
1533 	while (more == B_TRUE) {
1534 		iv->iv_attempts++;
1535 		more = B_FALSE;
1536 
1537 		if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
1538 			return (0);
1539 
1540 		for (indirect_split_t *is = list_head(&iv->iv_splits);
1541 		    is != NULL; is = list_next(&iv->iv_splits, is)) {
1542 			is->is_good_child = list_next(&is->is_unique_child,
1543 			    is->is_good_child);
1544 			if (is->is_good_child != NULL) {
1545 				more = B_TRUE;
1546 				break;
1547 			}
1548 
1549 			is->is_good_child = list_head(&is->is_unique_child);
1550 		}
1551 	}
1552 
1553 	ASSERT3S(iv->iv_attempts, <=, iv->iv_unique_combinations);
1554 
1555 	return (SET_ERROR(ECKSUM));
1556 }
1557 
1558 /*
1559  * There are too many combinations to try all of them in a reasonable amount
1560  * of time.  So try a fixed number of random combinations from the unique
1561  * split versions, after which we'll consider the block unrecoverable.
1562  */
1563 static int
1564 vdev_indirect_splits_enumerate_randomly(indirect_vsd_t *iv, zio_t *zio)
1565 {
1566 	iv->iv_attempts = 0;
1567 
1568 	while (iv->iv_attempts < iv->iv_attempts_max) {
1569 		iv->iv_attempts++;
1570 
1571 		for (indirect_split_t *is = list_head(&iv->iv_splits);
1572 		    is != NULL; is = list_next(&iv->iv_splits, is)) {
1573 			indirect_child_t *ic = list_head(&is->is_unique_child);
1574 			int children = is->is_unique_children;
1575 
1576 			for (int i = random_in_range(children); i > 0; i--)
1577 				ic = list_next(&is->is_unique_child, ic);
1578 
1579 			ASSERT3P(ic, !=, NULL);
1580 			is->is_good_child = ic;
1581 		}
1582 
1583 		if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
1584 			return (0);
1585 	}
1586 
1587 	return (SET_ERROR(ECKSUM));
1588 }
1589 
1590 /*
1591  * This is a validation function for reconstruction.  It randomly selects
1592  * a good combination, if one can be found, and then it intentionally
1593  * damages all other segment copes by zeroing them.  This forces the
1594  * reconstruction algorithm to locate the one remaining known good copy.
1595  */
1596 static int
1597 vdev_indirect_splits_damage(indirect_vsd_t *iv, zio_t *zio)
1598 {
1599 	int error;
1600 
1601 	/* Presume all the copies are unique for initial selection. */
1602 	for (indirect_split_t *is = list_head(&iv->iv_splits);
1603 	    is != NULL; is = list_next(&iv->iv_splits, is)) {
1604 		is->is_unique_children = 0;
1605 
1606 		for (int i = 0; i < is->is_children; i++) {
1607 			indirect_child_t *ic = &is->is_child[i];
1608 			if (ic->ic_data != NULL) {
1609 				is->is_unique_children++;
1610 				list_insert_tail(&is->is_unique_child, ic);
1611 			}
1612 		}
1613 
1614 		if (list_is_empty(&is->is_unique_child)) {
1615 			error = SET_ERROR(EIO);
1616 			goto out;
1617 		}
1618 	}
1619 
1620 	/*
1621 	 * Set each is_good_child to a randomly-selected child which
1622 	 * is known to contain validated data.
1623 	 */
1624 	error = vdev_indirect_splits_enumerate_randomly(iv, zio);
1625 	if (error)
1626 		goto out;
1627 
1628 	/*
1629 	 * Damage all but the known good copy by zeroing it.  This will
1630 	 * result in two or less unique copies per indirect_child_t.
1631 	 * Both may need to be checked in order to reconstruct the block.
1632 	 * Set iv->iv_attempts_max such that all unique combinations will
1633 	 * enumerated, but limit the damage to at most 12 indirect splits.
1634 	 */
1635 	iv->iv_attempts_max = 1;
1636 
1637 	for (indirect_split_t *is = list_head(&iv->iv_splits);
1638 	    is != NULL; is = list_next(&iv->iv_splits, is)) {
1639 		for (int c = 0; c < is->is_children; c++) {
1640 			indirect_child_t *ic = &is->is_child[c];
1641 
1642 			if (ic == is->is_good_child)
1643 				continue;
1644 			if (ic->ic_data == NULL)
1645 				continue;
1646 
1647 			abd_zero(ic->ic_data, abd_get_size(ic->ic_data));
1648 		}
1649 
1650 		iv->iv_attempts_max *= 2;
1651 		if (iv->iv_attempts_max >= (1ULL << 12)) {
1652 			iv->iv_attempts_max = UINT64_MAX;
1653 			break;
1654 		}
1655 	}
1656 
1657 out:
1658 	/* Empty the unique children lists so they can be reconstructed. */
1659 	for (indirect_split_t *is = list_head(&iv->iv_splits);
1660 	    is != NULL; is = list_next(&iv->iv_splits, is)) {
1661 		indirect_child_t *ic;
1662 		while ((ic = list_remove_head(&is->is_unique_child)) != NULL)
1663 			;
1664 
1665 		is->is_unique_children = 0;
1666 	}
1667 
1668 	return (error);
1669 }
1670 
1671 /*
1672  * This function is called when we have read all copies of the data and need
1673  * to try to find a combination of copies that gives us the right checksum.
1674  *
1675  * If we pointed to any mirror vdevs, this effectively does the job of the
1676  * mirror.  The mirror vdev code can't do its own job because we don't know
1677  * the checksum of each split segment individually.
1678  *
1679  * We have to try every unique combination of copies of split segments, until
1680  * we find one that checksums correctly.  Duplicate segment copies are first
1681  * identified and latter skipped during reconstruction.  This optimization
1682  * reduces the search space and ensures that of the remaining combinations
1683  * at most one is correct.
1684  *
1685  * When the total number of combinations is small they can all be checked.
1686  * For example, if we have 3 segments in the split, and each points to a
1687  * 2-way mirror with unique copies, we will have the following pieces of data:
1688  *
1689  *       |     mirror child
1690  * split |     [0]        [1]
1691  * ======|=====================
1692  *   A   |  data_A_0   data_A_1
1693  *   B   |  data_B_0   data_B_1
1694  *   C   |  data_C_0   data_C_1
1695  *
1696  * We will try the following (mirror children)^(number of splits) (2^3=8)
1697  * combinations, which is similar to bitwise-little-endian counting in
1698  * binary.  In general each "digit" corresponds to a split segment, and the
1699  * base of each digit is is_children, which can be different for each
1700  * digit.
1701  *
1702  * "low bit"        "high bit"
1703  *        v                 v
1704  * data_A_0 data_B_0 data_C_0
1705  * data_A_1 data_B_0 data_C_0
1706  * data_A_0 data_B_1 data_C_0
1707  * data_A_1 data_B_1 data_C_0
1708  * data_A_0 data_B_0 data_C_1
1709  * data_A_1 data_B_0 data_C_1
1710  * data_A_0 data_B_1 data_C_1
1711  * data_A_1 data_B_1 data_C_1
1712  *
1713  * Note that the split segments may be on the same or different top-level
1714  * vdevs. In either case, we may need to try lots of combinations (see
1715  * zfs_reconstruct_indirect_combinations_max).  This ensures that if a mirror
1716  * has small silent errors on all of its children, we can still reconstruct
1717  * the correct data, as long as those errors are at sufficiently-separated
1718  * offsets (specifically, separated by the largest block size - default of
1719  * 128KB, but up to 16MB).
1720  */
1721 static void
1722 vdev_indirect_reconstruct_io_done(zio_t *zio)
1723 {
1724 	indirect_vsd_t *iv = zio->io_vsd;
1725 	boolean_t known_good = B_FALSE;
1726 	int error;
1727 
1728 	iv->iv_unique_combinations = 1;
1729 	iv->iv_attempts_max = UINT64_MAX;
1730 
1731 	if (zfs_reconstruct_indirect_combinations_max > 0)
1732 		iv->iv_attempts_max = zfs_reconstruct_indirect_combinations_max;
1733 
1734 	/*
1735 	 * If nonzero, every 1/x blocks will be damaged, in order to validate
1736 	 * reconstruction when there are split segments with damaged copies.
1737 	 * Known_good will be TRUE when reconstruction is known to be possible.
1738 	 */
1739 	if (zfs_reconstruct_indirect_damage_fraction != 0 &&
1740 	    random_in_range(zfs_reconstruct_indirect_damage_fraction) == 0)
1741 		known_good = (vdev_indirect_splits_damage(iv, zio) == 0);
1742 
1743 	/*
1744 	 * Determine the unique children for a split segment and add them
1745 	 * to the is_unique_child list.  By restricting reconstruction
1746 	 * to these children, only unique combinations will be considered.
1747 	 * This can vastly reduce the search space when there are a large
1748 	 * number of indirect splits.
1749 	 */
1750 	for (indirect_split_t *is = list_head(&iv->iv_splits);
1751 	    is != NULL; is = list_next(&iv->iv_splits, is)) {
1752 		is->is_unique_children = 0;
1753 
1754 		for (int i = 0; i < is->is_children; i++) {
1755 			indirect_child_t *ic_i = &is->is_child[i];
1756 
1757 			if (ic_i->ic_data == NULL ||
1758 			    ic_i->ic_duplicate != NULL)
1759 				continue;
1760 
1761 			for (int j = i + 1; j < is->is_children; j++) {
1762 				indirect_child_t *ic_j = &is->is_child[j];
1763 
1764 				if (ic_j->ic_data == NULL ||
1765 				    ic_j->ic_duplicate != NULL)
1766 					continue;
1767 
1768 				if (abd_cmp(ic_i->ic_data, ic_j->ic_data) == 0)
1769 					ic_j->ic_duplicate = ic_i;
1770 			}
1771 
1772 			is->is_unique_children++;
1773 			list_insert_tail(&is->is_unique_child, ic_i);
1774 		}
1775 
1776 		/* Reconstruction is impossible, no valid children */
1777 		EQUIV(list_is_empty(&is->is_unique_child),
1778 		    is->is_unique_children == 0);
1779 		if (list_is_empty(&is->is_unique_child)) {
1780 			zio->io_error = EIO;
1781 			vdev_indirect_all_checksum_errors(zio);
1782 			zio_checksum_verified(zio);
1783 			return;
1784 		}
1785 
1786 		iv->iv_unique_combinations *= is->is_unique_children;
1787 	}
1788 
1789 	if (iv->iv_unique_combinations <= iv->iv_attempts_max)
1790 		error = vdev_indirect_splits_enumerate_all(iv, zio);
1791 	else
1792 		error = vdev_indirect_splits_enumerate_randomly(iv, zio);
1793 
1794 	if (error != 0) {
1795 		/* All attempted combinations failed. */
1796 		ASSERT3B(known_good, ==, B_FALSE);
1797 		zio->io_error = error;
1798 		vdev_indirect_all_checksum_errors(zio);
1799 	} else {
1800 		/*
1801 		 * The checksum has been successfully validated.  Issue
1802 		 * repair I/Os to any copies of splits which don't match
1803 		 * the validated version.
1804 		 */
1805 		ASSERT0(vdev_indirect_splits_checksum_validate(iv, zio));
1806 		vdev_indirect_repair(zio);
1807 		zio_checksum_verified(zio);
1808 	}
1809 }
1810 
1811 static void
1812 vdev_indirect_io_done(zio_t *zio)
1813 {
1814 	indirect_vsd_t *iv = zio->io_vsd;
1815 
1816 	if (iv->iv_reconstruct) {
1817 		/*
1818 		 * We have read all copies of the data (e.g. from mirrors),
1819 		 * either because this was a scrub/resilver, or because the
1820 		 * one-copy read didn't checksum correctly.
1821 		 */
1822 		vdev_indirect_reconstruct_io_done(zio);
1823 		return;
1824 	}
1825 
1826 	if (!iv->iv_split_block) {
1827 		/*
1828 		 * This was not a split block, so we passed the BP down,
1829 		 * and the checksum was handled by the (one) child zio.
1830 		 */
1831 		return;
1832 	}
1833 
1834 	zio_bad_cksum_t zbc;
1835 	int ret = zio_checksum_error(zio, &zbc);
1836 	/*
1837 	 * Any Direct I/O read that has a checksum error must be treated as
1838 	 * suspicious as the contents of the buffer could be getting
1839 	 * manipulated while the I/O is taking place. The checksum verify error
1840 	 * will be reported to the top-level VDEV.
1841 	 */
1842 	if (zio->io_flags & ZIO_FLAG_DIO_READ && ret == ECKSUM) {
1843 		zio->io_error = ret;
1844 		zio->io_flags |= ZIO_FLAG_DIO_CHKSUM_ERR;
1845 		zio_dio_chksum_verify_error_report(zio);
1846 		ret = 0;
1847 	}
1848 
1849 	if (ret == 0) {
1850 		zio_checksum_verified(zio);
1851 		return;
1852 	}
1853 
1854 	/*
1855 	 * The checksum didn't match.  Read all copies of all splits, and
1856 	 * then we will try to reconstruct.  The next time
1857 	 * vdev_indirect_io_done() is called, iv_reconstruct will be set.
1858 	 */
1859 	vdev_indirect_read_all(zio);
1860 
1861 	zio_vdev_io_redone(zio);
1862 }
1863 
1864 vdev_ops_t vdev_indirect_ops = {
1865 	.vdev_op_init = NULL,
1866 	.vdev_op_fini = NULL,
1867 	.vdev_op_open = vdev_indirect_open,
1868 	.vdev_op_close = vdev_indirect_close,
1869 	.vdev_op_asize = vdev_default_asize,
1870 	.vdev_op_min_asize = vdev_default_min_asize,
1871 	.vdev_op_min_alloc = NULL,
1872 	.vdev_op_io_start = vdev_indirect_io_start,
1873 	.vdev_op_io_done = vdev_indirect_io_done,
1874 	.vdev_op_state_change = NULL,
1875 	.vdev_op_need_resilver = NULL,
1876 	.vdev_op_hold = NULL,
1877 	.vdev_op_rele = NULL,
1878 	.vdev_op_remap = vdev_indirect_remap,
1879 	.vdev_op_xlate = NULL,
1880 	.vdev_op_rebuild_asize = NULL,
1881 	.vdev_op_metaslab_init = NULL,
1882 	.vdev_op_config_generate = NULL,
1883 	.vdev_op_nparity = NULL,
1884 	.vdev_op_ndisks = NULL,
1885 	.vdev_op_type = VDEV_TYPE_INDIRECT,	/* name of this vdev type */
1886 	.vdev_op_leaf = B_FALSE			/* leaf vdev */
1887 };
1888 
1889 EXPORT_SYMBOL(spa_condense_fini);
1890 EXPORT_SYMBOL(spa_start_indirect_condensing_thread);
1891 EXPORT_SYMBOL(spa_condense_indirect_start_sync);
1892 EXPORT_SYMBOL(spa_condense_init);
1893 EXPORT_SYMBOL(spa_vdev_indirect_mark_obsolete);
1894 EXPORT_SYMBOL(vdev_indirect_mark_obsolete);
1895 EXPORT_SYMBOL(vdev_indirect_should_condense);
1896 EXPORT_SYMBOL(vdev_indirect_sync_obsolete);
1897 EXPORT_SYMBOL(vdev_obsolete_counts_are_precise);
1898 EXPORT_SYMBOL(vdev_obsolete_sm_object);
1899 
1900 ZFS_MODULE_PARAM(zfs_condense, zfs_condense_, indirect_vdevs_enable, INT,
1901 	ZMOD_RW, "Whether to attempt condensing indirect vdev mappings");
1902 
1903 ZFS_MODULE_PARAM(zfs_condense, zfs_condense_, indirect_obsolete_pct, UINT,
1904 	ZMOD_RW,
1905 	"Minimum obsolete percent of bytes in the mapping "
1906 	"to attempt condensing");
1907 
1908 ZFS_MODULE_PARAM(zfs_condense, zfs_condense_, min_mapping_bytes, U64, ZMOD_RW,
1909 	"Don't bother condensing if the mapping uses less than this amount of "
1910 	"memory");
1911 
1912 ZFS_MODULE_PARAM(zfs_condense, zfs_condense_, max_obsolete_bytes, U64,
1913 	ZMOD_RW,
1914 	"Minimum size obsolete spacemap to attempt condensing");
1915 
1916 ZFS_MODULE_PARAM(zfs_condense, zfs_condense_, indirect_commit_entry_delay_ms,
1917 	UINT, ZMOD_RW,
1918 	"Used by tests to ensure certain actions happen in the middle of a "
1919 	"condense. A maximum value of 1 should be sufficient.");
1920 
1921 ZFS_MODULE_PARAM(zfs_reconstruct, zfs_reconstruct_, indirect_combinations_max,
1922 	UINT, ZMOD_RW,
1923 	"Maximum number of combinations when reconstructing split segments");
1924