1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2018 Intel Corporation. 23 * Copyright (c) 2020 by Lawrence Livermore National Security, LLC. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/spa.h> 28 #include <sys/spa_impl.h> 29 #include <sys/vdev_impl.h> 30 #include <sys/vdev_draid.h> 31 #include <sys/vdev_raidz.h> 32 #include <sys/vdev_rebuild.h> 33 #include <sys/abd.h> 34 #include <sys/zio.h> 35 #include <sys/nvpair.h> 36 #include <sys/zio_checksum.h> 37 #include <sys/fs/zfs.h> 38 #include <sys/fm/fs/zfs.h> 39 #include <zfs_fletcher.h> 40 41 #ifdef ZFS_DEBUG 42 #include <sys/vdev.h> /* For vdev_xlate() in vdev_draid_io_verify() */ 43 #endif 44 45 /* 46 * dRAID is a distributed spare implementation for ZFS. A dRAID vdev is 47 * comprised of multiple raidz redundancy groups which are spread over the 48 * dRAID children. To ensure an even distribution, and avoid hot spots, a 49 * permutation mapping is applied to the order of the dRAID children. 50 * This mixing effectively distributes the parity columns evenly over all 51 * of the disks in the dRAID. 52 * 53 * This is beneficial because it means when resilvering all of the disks 54 * can participate thereby increasing the available IOPs and bandwidth. 55 * Furthermore, by reserving a small fraction of each child's total capacity 56 * virtual distributed spare disks can be created. These spares similarly 57 * benefit from the performance gains of spanning all of the children. The 58 * consequence of which is that resilvering to a distributed spare can 59 * substantially reduce the time required to restore full parity to pool 60 * with a failed disks. 61 * 62 * === dRAID group layout === 63 * 64 * First, let's define a "row" in the configuration to be a 16M chunk from 65 * each physical drive at the same offset. This is the minimum allowable 66 * size since it must be possible to store a full 16M block when there is 67 * only a single data column. Next, we define a "group" to be a set of 68 * sequential disks containing both the parity and data columns. We allow 69 * groups to span multiple rows in order to align any group size to any 70 * number of physical drives. Finally, a "slice" is comprised of the rows 71 * which contain the target number of groups. The permutation mappings 72 * are applied in a round robin fashion to each slice. 73 * 74 * Given D+P drives in a group (including parity drives) and C-S physical 75 * drives (not including the spare drives), we can distribute the groups 76 * across R rows without remainder by selecting the least common multiple 77 * of D+P and C-S as the number of groups; i.e. ngroups = LCM(D+P, C-S). 78 * 79 * In the example below, there are C=14 physical drives in the configuration 80 * with S=2 drives worth of spare capacity. Each group has a width of 9 81 * which includes D=8 data and P=1 parity drive. There are 4 groups and 82 * 3 rows per slice. Each group has a size of 144M (16M * 9) and a slice 83 * size is 576M (144M * 4). When allocating from a dRAID each group is 84 * filled before moving on to the next as show in slice0 below. 85 * 86 * data disks (8 data + 1 parity) spares (2) 87 * +===+===+===+===+===+===+===+===+===+===+===+===+===+===+ 88 * ^ | 2 | 6 | 1 | 11| 4 | 0 | 7 | 10| 8 | 9 | 13| 5 | 12| 3 | device map 0 89 * | +===+===+===+===+===+===+===+===+===+===+===+===+===+===+ 90 * | | group 0 | group 1..| | 91 * | +-----------------------------------+-----------+-------| 92 * | | 0 1 2 3 4 5 6 7 8 | 36 37 38| | r 93 * | | 9 10 11 12 13 14 15 16 17| 45 46 47| | o 94 * | | 18 19 20 21 22 23 24 25 26| 54 55 56| | w 95 * | 27 28 29 30 31 32 33 34 35| 63 64 65| | 0 96 * s +-----------------------+-----------------------+-------+ 97 * l | ..group 1 | group 2.. | | 98 * i +-----------------------+-----------------------+-------+ 99 * c | 39 40 41 42 43 44| 72 73 74 75 76 77| | r 100 * e | 48 49 50 51 52 53| 81 82 83 84 85 86| | o 101 * 0 | 57 58 59 60 61 62| 90 91 92 93 94 95| | w 102 * | 66 67 68 69 70 71| 99 100 101 102 103 104| | 1 103 * | +-----------+-----------+-----------------------+-------+ 104 * | |..group 2 | group 3 | | 105 * | +-----------+-----------+-----------------------+-------+ 106 * | | 78 79 80|108 109 110 111 112 113 114 115 116| | r 107 * | | 87 88 89|117 118 119 120 121 122 123 124 125| | o 108 * | | 96 97 98|126 127 128 129 130 131 132 133 134| | w 109 * v |105 106 107|135 136 137 138 139 140 141 142 143| | 2 110 * +===+===+===+===+===+===+===+===+===+===+===+===+===+===+ 111 * | 9 | 11| 12| 2 | 4 | 1 | 3 | 0 | 10| 13| 8 | 5 | 6 | 7 | device map 1 112 * s +===+===+===+===+===+===+===+===+===+===+===+===+===+===+ 113 * l | group 4 | group 5..| | row 3 114 * i +-----------------------+-----------+-----------+-------| 115 * c | ..group 5 | group 6.. | | row 4 116 * e +-----------+-----------+-----------------------+-------+ 117 * 1 |..group 6 | group 7 | | row 5 118 * +===+===+===+===+===+===+===+===+===+===+===+===+===+===+ 119 * | 3 | 5 | 10| 8 | 6 | 11| 12| 0 | 2 | 4 | 7 | 1 | 9 | 13| device map 2 120 * s +===+===+===+===+===+===+===+===+===+===+===+===+===+===+ 121 * l | group 8 | group 9..| | row 6 122 * i +-----------------------------------------------+-------| 123 * c | ..group 9 | group 10.. | | row 7 124 * e +-----------------------+-----------------------+-------+ 125 * 2 |..group 10 | group 11 | | row 8 126 * +-----------+-----------------------------------+-------+ 127 * 128 * This layout has several advantages over requiring that each row contain 129 * a whole number of groups. 130 * 131 * 1. The group count is not a relevant parameter when defining a dRAID 132 * layout. Only the group width is needed, and *all* groups will have 133 * the desired size. 134 * 135 * 2. All possible group widths (<= physical disk count) can be supported. 136 * 137 * 3. The logic within vdev_draid.c is simplified when the group width is 138 * the same for all groups (although some of the logic around computing 139 * permutation numbers and drive offsets is more complicated). 140 * 141 * N.B. The following array describes all valid dRAID permutation maps. 142 * Each row is used to generate a permutation map for a different number 143 * of children from a unique seed. The seeds were generated and carefully 144 * evaluated by the 'draid' utility in order to provide balanced mappings. 145 * In addition to the seed a checksum of the in-memory mapping is stored 146 * for verification. 147 * 148 * The imbalance ratio of a given failure (e.g. 5 disks wide, child 3 failed, 149 * with a given permutation map) is the ratio of the amounts of I/O that will 150 * be sent to the least and most busy disks when resilvering. The average 151 * imbalance ratio (of a given number of disks and permutation map) is the 152 * average of the ratios of all possible single and double disk failures. 153 * 154 * In order to achieve a low imbalance ratio the number of permutations in 155 * the mapping must be significantly larger than the number of children. 156 * For dRAID the number of permutations has been limited to 512 to minimize 157 * the map size. This does result in a gradually increasing imbalance ratio 158 * as seen in the table below. Increasing the number of permutations for 159 * larger child counts would reduce the imbalance ratio. However, in practice 160 * when there are a large number of children each child is responsible for 161 * fewer total IOs so it's less of a concern. 162 * 163 * Note these values are hard coded and must never be changed. Existing 164 * pools depend on the same mapping always being generated in order to 165 * read and write from the correct locations. Any change would make 166 * existing pools completely inaccessible. 167 */ 168 static const draid_map_t draid_maps[VDEV_DRAID_MAX_MAPS] = { 169 { 2, 256, 0x89ef3dabbcc7de37, 0x00000000433d433d }, /* 1.000 */ 170 { 3, 256, 0x89a57f3de98121b4, 0x00000000bcd8b7b5 }, /* 1.000 */ 171 { 4, 256, 0xc9ea9ec82340c885, 0x00000001819d7c69 }, /* 1.000 */ 172 { 5, 256, 0xf46733b7f4d47dfd, 0x00000002a1648d74 }, /* 1.010 */ 173 { 6, 256, 0x88c3c62d8585b362, 0x00000003d3b0c2c4 }, /* 1.031 */ 174 { 7, 256, 0x3a65d809b4d1b9d5, 0x000000055c4183ee }, /* 1.043 */ 175 { 8, 256, 0xe98930e3c5d2e90a, 0x00000006edfb0329 }, /* 1.059 */ 176 { 9, 256, 0x5a5430036b982ccb, 0x00000008ceaf6934 }, /* 1.056 */ 177 { 10, 256, 0x92bf389e9eadac74, 0x0000000b26668c09 }, /* 1.072 */ 178 { 11, 256, 0x74ccebf1dcf3ae80, 0x0000000dd691358c }, /* 1.083 */ 179 { 12, 256, 0x8847e41a1a9f5671, 0x00000010a0c63c8e }, /* 1.097 */ 180 { 13, 256, 0x7481b56debf0e637, 0x0000001424121fe4 }, /* 1.100 */ 181 { 14, 256, 0x559b8c44065f8967, 0x00000016ab2ff079 }, /* 1.121 */ 182 { 15, 256, 0x34c49545a2ee7f01, 0x0000001a6028efd6 }, /* 1.103 */ 183 { 16, 256, 0xb85f4fa81a7698f7, 0x0000001e95ff5e66 }, /* 1.111 */ 184 { 17, 256, 0x6353e47b7e47aba0, 0x00000021a81fa0fe }, /* 1.133 */ 185 { 18, 256, 0xaa549746b1cbb81c, 0x00000026f02494c9 }, /* 1.131 */ 186 { 19, 256, 0x892e343f2f31d690, 0x00000029eb392835 }, /* 1.130 */ 187 { 20, 256, 0x76914824db98cc3f, 0x0000003004f31a7c }, /* 1.141 */ 188 { 21, 256, 0x4b3cbabf9cfb1d0f, 0x00000036363a2408 }, /* 1.139 */ 189 { 22, 256, 0xf45c77abb4f035d4, 0x00000038dd0f3e84 }, /* 1.150 */ 190 { 23, 256, 0x5e18bd7f3fd4baf4, 0x0000003f0660391f }, /* 1.174 */ 191 { 24, 256, 0xa7b3a4d285d6503b, 0x000000443dfc9ff6 }, /* 1.168 */ 192 { 25, 256, 0x56ac7dd967521f5a, 0x0000004b03a87eb7 }, /* 1.180 */ 193 { 26, 256, 0x3a42dfda4eb880f7, 0x000000522c719bba }, /* 1.226 */ 194 { 27, 256, 0xd200d2fc6b54bf60, 0x0000005760b4fdf5 }, /* 1.228 */ 195 { 28, 256, 0xc52605bbd486c546, 0x0000005e00d8f74c }, /* 1.217 */ 196 { 29, 256, 0xc761779e63cd762f, 0x00000067be3cd85c }, /* 1.239 */ 197 { 30, 256, 0xca577b1e07f85ca5, 0x0000006f5517f3e4 }, /* 1.238 */ 198 { 31, 256, 0xfd50a593c518b3d4, 0x0000007370e7778f }, /* 1.273 */ 199 { 32, 512, 0xc6c87ba5b042650b, 0x000000f7eb08a156 }, /* 1.191 */ 200 { 33, 512, 0xc3880d0c9d458304, 0x0000010734b5d160 }, /* 1.199 */ 201 { 34, 512, 0xe920927e4d8b2c97, 0x00000118c1edbce0 }, /* 1.195 */ 202 { 35, 512, 0x8da7fcda87bde316, 0x0000012a3e9f9110 }, /* 1.201 */ 203 { 36, 512, 0xcf09937491514a29, 0x0000013bd6a24bef }, /* 1.194 */ 204 { 37, 512, 0x9b5abbf345cbd7cc, 0x0000014b9d90fac3 }, /* 1.237 */ 205 { 38, 512, 0x506312a44668d6a9, 0x0000015e1b5f6148 }, /* 1.242 */ 206 { 39, 512, 0x71659ede62b4755f, 0x00000173ef029bcd }, /* 1.231 */ 207 { 40, 512, 0xa7fde73fb74cf2d7, 0x000001866fb72748 }, /* 1.233 */ 208 { 41, 512, 0x19e8b461a1dea1d3, 0x000001a046f76b23 }, /* 1.271 */ 209 { 42, 512, 0x031c9b868cc3e976, 0x000001afa64c49d3 }, /* 1.263 */ 210 { 43, 512, 0xbaa5125faa781854, 0x000001c76789e278 }, /* 1.270 */ 211 { 44, 512, 0x4ed55052550d721b, 0x000001d800ccd8eb }, /* 1.281 */ 212 { 45, 512, 0x0fd63ddbdff90677, 0x000001f08ad59ed2 }, /* 1.282 */ 213 { 46, 512, 0x36d66546de7fdd6f, 0x000002016f09574b }, /* 1.286 */ 214 { 47, 512, 0x99f997e7eafb69d7, 0x0000021e42e47cb6 }, /* 1.329 */ 215 { 48, 512, 0xbecd9c2571312c5d, 0x000002320fe2872b }, /* 1.286 */ 216 { 49, 512, 0xd97371329e488a32, 0x0000024cd73f2ca7 }, /* 1.322 */ 217 { 50, 512, 0x30e9b136670749ee, 0x000002681c83b0e0 }, /* 1.335 */ 218 { 51, 512, 0x11ad6bc8f47aaeb4, 0x0000027e9261b5d5 }, /* 1.305 */ 219 { 52, 512, 0x68e445300af432c1, 0x0000029aa0eb7dbf }, /* 1.330 */ 220 { 53, 512, 0x910fb561657ea98c, 0x000002b3dca04853 }, /* 1.365 */ 221 { 54, 512, 0xd619693d8ce5e7a5, 0x000002cc280e9c97 }, /* 1.334 */ 222 { 55, 512, 0x24e281f564dbb60a, 0x000002e9fa842713 }, /* 1.364 */ 223 { 56, 512, 0x947a7d3bdaab44c5, 0x000003046680f72e }, /* 1.374 */ 224 { 57, 512, 0x2d44fec9c093e0de, 0x00000324198ba810 }, /* 1.363 */ 225 { 58, 512, 0x87743c272d29bb4c, 0x0000033ec48c9ac9 }, /* 1.401 */ 226 { 59, 512, 0x96aa3b6f67f5d923, 0x0000034faead902c }, /* 1.392 */ 227 { 60, 512, 0x94a4f1faf520b0d3, 0x0000037d713ab005 }, /* 1.360 */ 228 { 61, 512, 0xb13ed3a272f711a2, 0x00000397368f3cbd }, /* 1.396 */ 229 { 62, 512, 0x3b1b11805fa4a64a, 0x000003b8a5e2840c }, /* 1.453 */ 230 { 63, 512, 0x4c74caad9172ba71, 0x000003d4be280290 }, /* 1.437 */ 231 { 64, 512, 0x035ff643923dd29e, 0x000003fad6c355e1 }, /* 1.402 */ 232 { 65, 512, 0x768e9171b11abd3c, 0x0000040eb07fed20 }, /* 1.459 */ 233 { 66, 512, 0x75880e6f78a13ddd, 0x000004433d6acf14 }, /* 1.423 */ 234 { 67, 512, 0x910b9714f698a877, 0x00000451ea65d5db }, /* 1.447 */ 235 { 68, 512, 0x87f5db6f9fdcf5c7, 0x000004732169e3f7 }, /* 1.450 */ 236 { 69, 512, 0x836d4968fbaa3706, 0x000004954068a380 }, /* 1.455 */ 237 { 70, 512, 0xc567d73a036421ab, 0x000004bd7cb7bd3d }, /* 1.463 */ 238 { 71, 512, 0x619df40f240b8fed, 0x000004e376c2e972 }, /* 1.463 */ 239 { 72, 512, 0x42763a680d5bed8e, 0x000005084275c680 }, /* 1.452 */ 240 { 73, 512, 0x5866f064b3230431, 0x0000052906f2c9ab }, /* 1.498 */ 241 { 74, 512, 0x9fa08548b1621a44, 0x0000054708019247 }, /* 1.526 */ 242 { 75, 512, 0xb6053078ce0fc303, 0x00000572cc5c72b0 }, /* 1.491 */ 243 { 76, 512, 0x4a7aad7bf3890923, 0x0000058e987bc8e9 }, /* 1.470 */ 244 { 77, 512, 0xe165613fd75b5a53, 0x000005c20473a211 }, /* 1.527 */ 245 { 78, 512, 0x3ff154ac878163a6, 0x000005d659194bf3 }, /* 1.509 */ 246 { 79, 512, 0x24b93ade0aa8a532, 0x0000060a201c4f8e }, /* 1.569 */ 247 { 80, 512, 0xc18e2d14cd9bb554, 0x0000062c55cfe48c }, /* 1.555 */ 248 { 81, 512, 0x98cc78302feb58b6, 0x0000066656a07194 }, /* 1.509 */ 249 { 82, 512, 0xc6c5fd5a2abc0543, 0x0000067cff94fbf8 }, /* 1.596 */ 250 { 83, 512, 0xa7962f514acbba21, 0x000006ab7b5afa2e }, /* 1.568 */ 251 { 84, 512, 0xba02545069ddc6dc, 0x000006d19861364f }, /* 1.541 */ 252 { 85, 512, 0x447c73192c35073e, 0x000006fce315ce35 }, /* 1.623 */ 253 { 86, 512, 0x48beef9e2d42b0c2, 0x00000720a8e38b6b }, /* 1.620 */ 254 { 87, 512, 0x4874cf98541a35e0, 0x00000758382a2273 }, /* 1.597 */ 255 { 88, 512, 0xad4cf8333a31127a, 0x00000781e1651b1b }, /* 1.575 */ 256 { 89, 512, 0x47ae4859d57888c1, 0x000007b27edbe5bc }, /* 1.627 */ 257 { 90, 512, 0x06f7723cfe5d1891, 0x000007dc2a96d8eb }, /* 1.596 */ 258 { 91, 512, 0xd4e44218d660576d, 0x0000080ac46f02d5 }, /* 1.622 */ 259 { 92, 512, 0x7066702b0d5be1f2, 0x00000832c96d154e }, /* 1.695 */ 260 { 93, 512, 0x011209b4f9e11fb9, 0x0000085eefda104c }, /* 1.605 */ 261 { 94, 512, 0x47ffba30a0b35708, 0x00000899badc32dc }, /* 1.625 */ 262 { 95, 512, 0x1a95a6ac4538aaa8, 0x000008b6b69a42b2 }, /* 1.687 */ 263 { 96, 512, 0xbda2b239bb2008eb, 0x000008f22d2de38a }, /* 1.621 */ 264 { 97, 512, 0x7ffa0bea90355c6c, 0x0000092e5b23b816 }, /* 1.699 */ 265 { 98, 512, 0x1d56ba34be426795, 0x0000094f482e5d1b }, /* 1.688 */ 266 { 99, 512, 0x0aa89d45c502e93d, 0x00000977d94a98ce }, /* 1.642 */ 267 { 100, 512, 0x54369449f6857774, 0x000009c06c9b34cc }, /* 1.683 */ 268 { 101, 512, 0xf7d4dd8445b46765, 0x000009e5dc542259 }, /* 1.755 */ 269 { 102, 512, 0xfa8866312f169469, 0x00000a16b54eae93 }, /* 1.692 */ 270 { 103, 512, 0xd8a5aea08aef3ff9, 0x00000a381d2cbfe7 }, /* 1.747 */ 271 { 104, 512, 0x66bcd2c3d5f9ef0e, 0x00000a8191817be7 }, /* 1.751 */ 272 { 105, 512, 0x3fb13a47a012ec81, 0x00000ab562b9a254 }, /* 1.751 */ 273 { 106, 512, 0x43100f01c9e5e3ca, 0x00000aeee84c185f }, /* 1.726 */ 274 { 107, 512, 0xca09c50ccee2d054, 0x00000b1c359c047d }, /* 1.788 */ 275 { 108, 512, 0xd7176732ac503f9b, 0x00000b578bc52a73 }, /* 1.740 */ 276 { 109, 512, 0xed206e51f8d9422d, 0x00000b8083e0d960 }, /* 1.780 */ 277 { 110, 512, 0x17ead5dc6ba0dcd6, 0x00000bcfb1a32ca8 }, /* 1.836 */ 278 { 111, 512, 0x5f1dc21e38a969eb, 0x00000c0171becdd6 }, /* 1.778 */ 279 { 112, 512, 0xddaa973de33ec528, 0x00000c3edaba4b95 }, /* 1.831 */ 280 { 113, 512, 0x2a5eccd7735a3630, 0x00000c630664e7df }, /* 1.825 */ 281 { 114, 512, 0xafcccee5c0b71446, 0x00000cb65392f6e4 }, /* 1.826 */ 282 { 115, 512, 0x8fa30c5e7b147e27, 0x00000cd4db391e55 }, /* 1.843 */ 283 { 116, 512, 0x5afe0711fdfafd82, 0x00000d08cb4ec35d }, /* 1.826 */ 284 { 117, 512, 0x533a6090238afd4c, 0x00000d336f115d1b }, /* 1.803 */ 285 { 118, 512, 0x90cf11b595e39a84, 0x00000d8e041c2048 }, /* 1.857 */ 286 { 119, 512, 0x0d61a3b809444009, 0x00000dcb798afe35 }, /* 1.877 */ 287 { 120, 512, 0x7f34da0f54b0d114, 0x00000df3922664e1 }, /* 1.849 */ 288 { 121, 512, 0xa52258d5b72f6551, 0x00000e4d37a9872d }, /* 1.867 */ 289 { 122, 512, 0xc1de54d7672878db, 0x00000e6583a94cf6 }, /* 1.978 */ 290 { 123, 512, 0x1d03354316a414ab, 0x00000ebffc50308d }, /* 1.947 */ 291 { 124, 512, 0xcebdcc377665412c, 0x00000edee1997cea }, /* 1.865 */ 292 { 125, 512, 0x4ddd4c04b1a12344, 0x00000f21d64b373f }, /* 1.881 */ 293 { 126, 512, 0x64fc8f94e3973658, 0x00000f8f87a8896b }, /* 1.882 */ 294 { 127, 512, 0x68765f78034a334e, 0x00000fb8fe62197e }, /* 1.867 */ 295 { 128, 512, 0xaf36b871a303e816, 0x00000fec6f3afb1e }, /* 1.972 */ 296 { 129, 512, 0x2a4cbf73866c3a28, 0x00001027febfe4e5 }, /* 1.896 */ 297 { 130, 512, 0x9cb128aacdcd3b2f, 0x0000106aa8ac569d }, /* 1.965 */ 298 { 131, 512, 0x5511d41c55869124, 0x000010bbd755ddf1 }, /* 1.963 */ 299 { 132, 512, 0x42f92461937f284a, 0x000010fb8bceb3b5 }, /* 1.925 */ 300 { 133, 512, 0xe2d89a1cf6f1f287, 0x0000114cf5331e34 }, /* 1.862 */ 301 { 134, 512, 0xdc631a038956200e, 0x0000116428d2adc5 }, /* 2.042 */ 302 { 135, 512, 0xb2e5ac222cd236be, 0x000011ca88e4d4d2 }, /* 1.935 */ 303 { 136, 512, 0xbc7d8236655d88e7, 0x000011e39cb94e66 }, /* 2.005 */ 304 { 137, 512, 0x073e02d88d2d8e75, 0x0000123136c7933c }, /* 2.041 */ 305 { 138, 512, 0x3ddb9c3873166be0, 0x00001280e4ec6d52 }, /* 1.997 */ 306 { 139, 512, 0x7d3b1a845420e1b5, 0x000012c2e7cd6a44 }, /* 1.996 */ 307 { 140, 512, 0x60102308aa7b2a6c, 0x000012fc490e6c7d }, /* 2.053 */ 308 { 141, 512, 0xdb22bb2f9eb894aa, 0x00001343f5a85a1a }, /* 1.971 */ 309 { 142, 512, 0xd853f879a13b1606, 0x000013bb7d5f9048 }, /* 2.018 */ 310 { 143, 512, 0x001620a03f804b1d, 0x000013e74cc794fd }, /* 1.961 */ 311 { 144, 512, 0xfdb52dda76fbf667, 0x00001442d2f22480 }, /* 2.046 */ 312 { 145, 512, 0xa9160110f66e24ff, 0x0000144b899f9dbb }, /* 1.968 */ 313 { 146, 512, 0x77306a30379ae03b, 0x000014cb98eb1f81 }, /* 2.143 */ 314 { 147, 512, 0x14f5985d2752319d, 0x000014feab821fc9 }, /* 2.064 */ 315 { 148, 512, 0xa4b8ff11de7863f8, 0x0000154a0e60b9c9 }, /* 2.023 */ 316 { 149, 512, 0x44b345426455c1b3, 0x000015999c3c569c }, /* 2.136 */ 317 { 150, 512, 0x272677826049b46c, 0x000015c9697f4b92 }, /* 2.063 */ 318 { 151, 512, 0x2f9216e2cd74fe40, 0x0000162b1f7bbd39 }, /* 1.974 */ 319 { 152, 512, 0x706ae3e763ad8771, 0x00001661371c55e1 }, /* 2.210 */ 320 { 153, 512, 0xf7fd345307c2480e, 0x000016e251f28b6a }, /* 2.006 */ 321 { 154, 512, 0x6e94e3d26b3139eb, 0x000016f2429bb8c6 }, /* 2.193 */ 322 { 155, 512, 0x5458bbfbb781fcba, 0x0000173efdeca1b9 }, /* 2.163 */ 323 { 156, 512, 0xa80e2afeccd93b33, 0x000017bfdcb78adc }, /* 2.046 */ 324 { 157, 512, 0x1e4ccbb22796cf9d, 0x00001826fdcc39c9 }, /* 2.084 */ 325 { 158, 512, 0x8fba4b676aaa3663, 0x00001841a1379480 }, /* 2.264 */ 326 { 159, 512, 0xf82b843814b315fa, 0x000018886e19b8a3 }, /* 2.074 */ 327 { 160, 512, 0x7f21e920ecf753a3, 0x0000191812ca0ea7 }, /* 2.282 */ 328 { 161, 512, 0x48bb8ea2c4caa620, 0x0000192f310faccf }, /* 2.148 */ 329 { 162, 512, 0x5cdb652b4952c91b, 0x0000199e1d7437c7 }, /* 2.355 */ 330 { 163, 512, 0x6ac1ba6f78c06cd4, 0x000019cd11f82c70 }, /* 2.164 */ 331 { 164, 512, 0x9faf5f9ca2669a56, 0x00001a18d5431f6a }, /* 2.393 */ 332 { 165, 512, 0xaa57e9383eb01194, 0x00001a9e7d253d85 }, /* 2.178 */ 333 { 166, 512, 0x896967bf495c34d2, 0x00001afb8319b9fc }, /* 2.334 */ 334 { 167, 512, 0xdfad5f05de225f1b, 0x00001b3a59c3093b }, /* 2.266 */ 335 { 168, 512, 0xfd299a99f9f2abdd, 0x00001bb6f1a10799 }, /* 2.304 */ 336 { 169, 512, 0xdda239e798fe9fd4, 0x00001bfae0c9692d }, /* 2.218 */ 337 { 170, 512, 0x5fca670414a32c3e, 0x00001c22129dbcff }, /* 2.377 */ 338 { 171, 512, 0x1bb8934314b087de, 0x00001c955db36cd0 }, /* 2.155 */ 339 { 172, 512, 0xd96394b4b082200d, 0x00001cfc8619b7e6 }, /* 2.404 */ 340 { 173, 512, 0xb612a7735b1c8cbc, 0x00001d303acdd585 }, /* 2.205 */ 341 { 174, 512, 0x28e7430fe5875fe1, 0x00001d7ed5b3697d }, /* 2.359 */ 342 { 175, 512, 0x5038e89efdd981b9, 0x00001dc40ec35c59 }, /* 2.158 */ 343 { 176, 512, 0x075fd78f1d14db7c, 0x00001e31c83b4a2b }, /* 2.614 */ 344 { 177, 512, 0xc50fafdb5021be15, 0x00001e7cdac82fbc }, /* 2.239 */ 345 { 178, 512, 0xe6dc7572ce7b91c7, 0x00001edd8bb454fc }, /* 2.493 */ 346 { 179, 512, 0x21f7843e7beda537, 0x00001f3a8e019d6c }, /* 2.327 */ 347 { 180, 512, 0xc83385e20b43ec82, 0x00001f70735ec137 }, /* 2.231 */ 348 { 181, 512, 0xca818217dddb21fd, 0x0000201ca44c5a3c }, /* 2.237 */ 349 { 182, 512, 0xe6035defea48f933, 0x00002038e3346658 }, /* 2.691 */ 350 { 183, 512, 0x47262a4f953dac5a, 0x000020c2e554314e }, /* 2.170 */ 351 { 184, 512, 0xe24c7246260873ea, 0x000021197e618d64 }, /* 2.600 */ 352 { 185, 512, 0xeef6b57c9b58e9e1, 0x0000217ea48ecddc }, /* 2.391 */ 353 { 186, 512, 0x2becd3346e386142, 0x000021c496d4a5f9 }, /* 2.677 */ 354 { 187, 512, 0x63c6207bdf3b40a3, 0x0000220e0f2eec0c }, /* 2.410 */ 355 { 188, 512, 0x3056ce8989767d4b, 0x0000228eb76cd137 }, /* 2.776 */ 356 { 189, 512, 0x91af61c307cee780, 0x000022e17e2ea501 }, /* 2.266 */ 357 { 190, 512, 0xda359da225f6d54f, 0x00002358a2debc19 }, /* 2.717 */ 358 { 191, 512, 0x0a5f7a2a55607ba0, 0x0000238a79dac18c }, /* 2.474 */ 359 { 192, 512, 0x27bb75bf5224638a, 0x00002403a58e2351 }, /* 2.673 */ 360 { 193, 512, 0x1ebfdb94630f5d0f, 0x00002492a10cb339 }, /* 2.420 */ 361 { 194, 512, 0x6eae5e51d9c5f6fb, 0x000024ce4bf98715 }, /* 2.898 */ 362 { 195, 512, 0x08d903b4daedc2e0, 0x0000250d1e15886c }, /* 2.363 */ 363 { 196, 512, 0xc722a2f7fa7cd686, 0x0000258a99ed0c9e }, /* 2.747 */ 364 { 197, 512, 0x8f71faf0e54e361d, 0x000025dee11976f5 }, /* 2.531 */ 365 { 198, 512, 0x87f64695c91a54e7, 0x0000264e00a43da0 }, /* 2.707 */ 366 { 199, 512, 0xc719cbac2c336b92, 0x000026d327277ac1 }, /* 2.315 */ 367 { 200, 512, 0xe7e647afaf771ade, 0x000027523a5c44bf }, /* 3.012 */ 368 { 201, 512, 0x12d4b5c38ce8c946, 0x0000273898432545 }, /* 2.378 */ 369 { 202, 512, 0xf2e0cd4067bdc94a, 0x000027e47bb2c935 }, /* 2.969 */ 370 { 203, 512, 0x21b79f14d6d947d3, 0x0000281e64977f0d }, /* 2.594 */ 371 { 204, 512, 0x515093f952f18cd6, 0x0000289691a473fd }, /* 2.763 */ 372 { 205, 512, 0xd47b160a1b1022c8, 0x00002903e8b52411 }, /* 2.457 */ 373 { 206, 512, 0xc02fc96684715a16, 0x0000297515608601 }, /* 3.057 */ 374 { 207, 512, 0xef51e68efba72ed0, 0x000029ef73604804 }, /* 2.590 */ 375 { 208, 512, 0x9e3be6e5448b4f33, 0x00002a2846ed074b }, /* 3.047 */ 376 { 209, 512, 0x81d446c6d5fec063, 0x00002a92ca693455 }, /* 2.676 */ 377 { 210, 512, 0xff215de8224e57d5, 0x00002b2271fe3729 }, /* 2.993 */ 378 { 211, 512, 0xe2524d9ba8f69796, 0x00002b64b99c3ba2 }, /* 2.457 */ 379 { 212, 512, 0xf6b28e26097b7e4b, 0x00002bd768b6e068 }, /* 3.182 */ 380 { 213, 512, 0x893a487f30ce1644, 0x00002c67f722b4b2 }, /* 2.563 */ 381 { 214, 512, 0x386566c3fc9871df, 0x00002cc1cf8b4037 }, /* 3.025 */ 382 { 215, 512, 0x1e0ed78edf1f558a, 0x00002d3948d36c7f }, /* 2.730 */ 383 { 216, 512, 0xe3bc20c31e61f113, 0x00002d6d6b12e025 }, /* 3.036 */ 384 { 217, 512, 0xd6c3ad2e23021882, 0x00002deff7572241 }, /* 2.722 */ 385 { 218, 512, 0xb4a9f95cf0f69c5a, 0x00002e67d537aa36 }, /* 3.356 */ 386 { 219, 512, 0x6e98ed6f6c38e82f, 0x00002e9720626789 }, /* 2.697 */ 387 { 220, 512, 0x2e01edba33fddac7, 0x00002f407c6b0198 }, /* 2.979 */ 388 { 221, 512, 0x559d02e1f5f57ccc, 0x00002fb6a5ab4f24 }, /* 2.858 */ 389 { 222, 512, 0xac18f5a916adcd8e, 0x0000304ae1c5c57e }, /* 3.258 */ 390 { 223, 512, 0x15789fbaddb86f4b, 0x0000306f6e019c78 }, /* 2.693 */ 391 { 224, 512, 0xf4a9c36d5bc4c408, 0x000030da40434213 }, /* 3.259 */ 392 { 225, 512, 0xf640f90fd2727f44, 0x00003189ed37b90c }, /* 2.733 */ 393 { 226, 512, 0xb5313d390d61884a, 0x000031e152616b37 }, /* 3.235 */ 394 { 227, 512, 0x4bae6b3ce9160939, 0x0000321f40aeac42 }, /* 2.983 */ 395 { 228, 512, 0x838c34480f1a66a1, 0x000032f389c0f78e }, /* 3.308 */ 396 { 229, 512, 0xb1c4a52c8e3d6060, 0x0000330062a40284 }, /* 2.715 */ 397 { 230, 512, 0xe0f1110c6d0ed822, 0x0000338be435644f }, /* 3.540 */ 398 { 231, 512, 0x9f1a8ccdcea68d4b, 0x000034045a4e97e1 }, /* 2.779 */ 399 { 232, 512, 0x3261ed62223f3099, 0x000034702cfc401c }, /* 3.084 */ 400 { 233, 512, 0xf2191e2311022d65, 0x00003509dd19c9fc }, /* 2.987 */ 401 { 234, 512, 0xf102a395c2033abc, 0x000035654dc96fae }, /* 3.341 */ 402 { 235, 512, 0x11fe378f027906b6, 0x000035b5193b0264 }, /* 2.793 */ 403 { 236, 512, 0xf777f2c026b337aa, 0x000036704f5d9297 }, /* 3.518 */ 404 { 237, 512, 0x1b04e9c2ee143f32, 0x000036dfbb7af218 }, /* 2.962 */ 405 { 238, 512, 0x2fcec95266f9352c, 0x00003785c8df24a9 }, /* 3.196 */ 406 { 239, 512, 0xfe2b0e47e427dd85, 0x000037cbdf5da729 }, /* 2.914 */ 407 { 240, 512, 0x72b49bf2225f6c6d, 0x0000382227c15855 }, /* 3.408 */ 408 { 241, 512, 0x50486b43df7df9c7, 0x0000389b88be6453 }, /* 2.903 */ 409 { 242, 512, 0x5192a3e53181c8ab, 0x000038ddf3d67263 }, /* 3.778 */ 410 { 243, 512, 0xe9f5d8365296fd5e, 0x0000399f1c6c9e9c }, /* 3.026 */ 411 { 244, 512, 0xc740263f0301efa8, 0x00003a147146512d }, /* 3.347 */ 412 { 245, 512, 0x23cd0f2b5671e67d, 0x00003ab10bcc0d9d }, /* 3.212 */ 413 { 246, 512, 0x002ccc7e5cd41390, 0x00003ad6cd14a6c0 }, /* 3.482 */ 414 { 247, 512, 0x9aafb3c02544b31b, 0x00003b8cb8779fb0 }, /* 3.146 */ 415 { 248, 512, 0x72ba07a78b121999, 0x00003c24142a5a3f }, /* 3.626 */ 416 { 249, 512, 0x3d784aa58edfc7b4, 0x00003cd084817d99 }, /* 2.952 */ 417 { 250, 512, 0xaab750424d8004af, 0x00003d506a8e098e }, /* 3.463 */ 418 { 251, 512, 0x84403fcf8e6b5ca2, 0x00003d4c54c2aec4 }, /* 3.131 */ 419 { 252, 512, 0x71eb7455ec98e207, 0x00003e655715cf2c }, /* 3.538 */ 420 { 253, 512, 0xd752b4f19301595b, 0x00003ecd7b2ca5ac }, /* 2.974 */ 421 { 254, 512, 0xc4674129750499de, 0x00003e99e86d3e95 }, /* 3.843 */ 422 { 255, 512, 0x9772baff5cd12ef5, 0x00003f895c019841 }, /* 3.088 */ 423 }; 424 425 /* 426 * Verify the map is valid. Each device index must appear exactly 427 * once in every row, and the permutation array checksum must match. 428 */ 429 static int 430 verify_perms(uint8_t *perms, uint64_t children, uint64_t nperms, 431 uint64_t checksum) 432 { 433 int countssz = sizeof (uint16_t) * children; 434 uint16_t *counts = kmem_zalloc(countssz, KM_SLEEP); 435 436 for (int i = 0; i < nperms; i++) { 437 for (int j = 0; j < children; j++) { 438 uint8_t val = perms[(i * children) + j]; 439 440 if (val >= children || counts[val] != i) { 441 kmem_free(counts, countssz); 442 return (EINVAL); 443 } 444 445 counts[val]++; 446 } 447 } 448 449 if (checksum != 0) { 450 int permssz = sizeof (uint8_t) * children * nperms; 451 zio_cksum_t cksum; 452 453 fletcher_4_native_varsize(perms, permssz, &cksum); 454 455 if (checksum != cksum.zc_word[0]) { 456 kmem_free(counts, countssz); 457 return (ECKSUM); 458 } 459 } 460 461 kmem_free(counts, countssz); 462 463 return (0); 464 } 465 466 /* 467 * Generate the permutation array for the draid_map_t. These maps control 468 * the placement of all data in a dRAID. Therefore it's critical that the 469 * seed always generates the same mapping. We provide our own pseudo-random 470 * number generator for this purpose. 471 */ 472 int 473 vdev_draid_generate_perms(const draid_map_t *map, uint8_t **permsp) 474 { 475 VERIFY3U(map->dm_children, >=, VDEV_DRAID_MIN_CHILDREN); 476 VERIFY3U(map->dm_children, <=, VDEV_DRAID_MAX_CHILDREN); 477 VERIFY3U(map->dm_seed, !=, 0); 478 VERIFY3U(map->dm_nperms, !=, 0); 479 VERIFY3P(map->dm_perms, ==, NULL); 480 481 #ifdef _KERNEL 482 /* 483 * The kernel code always provides both a map_seed and checksum. 484 * Only the tests/zfs-tests/cmd/draid/draid.c utility will provide 485 * a zero checksum when generating new candidate maps. 486 */ 487 VERIFY3U(map->dm_checksum, !=, 0); 488 #endif 489 uint64_t children = map->dm_children; 490 uint64_t nperms = map->dm_nperms; 491 int rowsz = sizeof (uint8_t) * children; 492 int permssz = rowsz * nperms; 493 uint8_t *perms; 494 495 /* Allocate the permutation array */ 496 perms = vmem_alloc(permssz, KM_SLEEP); 497 498 /* Setup an initial row with a known pattern */ 499 uint8_t *initial_row = kmem_alloc(rowsz, KM_SLEEP); 500 for (int i = 0; i < children; i++) 501 initial_row[i] = i; 502 503 uint64_t draid_seed[2] = { VDEV_DRAID_SEED, map->dm_seed }; 504 uint8_t *current_row, *previous_row = initial_row; 505 506 /* 507 * Perform a Fisher-Yates shuffle of each row using the previous 508 * row as the starting point. An initial_row with known pattern 509 * is used as the input for the first row. 510 */ 511 for (int i = 0; i < nperms; i++) { 512 current_row = &perms[i * children]; 513 memcpy(current_row, previous_row, rowsz); 514 515 for (int j = children - 1; j > 0; j--) { 516 uint64_t k = vdev_draid_rand(draid_seed) % (j + 1); 517 uint8_t val = current_row[j]; 518 current_row[j] = current_row[k]; 519 current_row[k] = val; 520 } 521 522 previous_row = current_row; 523 } 524 525 kmem_free(initial_row, rowsz); 526 527 int error = verify_perms(perms, children, nperms, map->dm_checksum); 528 if (error) { 529 vmem_free(perms, permssz); 530 return (error); 531 } 532 533 *permsp = perms; 534 535 return (0); 536 } 537 538 /* 539 * Lookup the fixed draid_map_t for the requested number of children. 540 */ 541 int 542 vdev_draid_lookup_map(uint64_t children, const draid_map_t **mapp) 543 { 544 for (int i = 0; i < VDEV_DRAID_MAX_MAPS; i++) { 545 if (draid_maps[i].dm_children == children) { 546 *mapp = &draid_maps[i]; 547 return (0); 548 } 549 } 550 551 return (ENOENT); 552 } 553 554 /* 555 * Lookup the permutation array and iteration id for the provided offset. 556 */ 557 static void 558 vdev_draid_get_perm(vdev_draid_config_t *vdc, uint64_t pindex, 559 uint8_t **base, uint64_t *iter) 560 { 561 uint64_t ncols = vdc->vdc_children; 562 uint64_t poff = pindex % (vdc->vdc_nperms * ncols); 563 564 *base = vdc->vdc_perms + (poff / ncols) * ncols; 565 *iter = poff % ncols; 566 } 567 568 static inline uint64_t 569 vdev_draid_permute_id(vdev_draid_config_t *vdc, 570 uint8_t *base, uint64_t iter, uint64_t index) 571 { 572 return ((base[index] + iter) % vdc->vdc_children); 573 } 574 575 /* 576 * Return the asize which is the psize rounded up to a full group width. 577 * i.e. vdev_draid_psize_to_asize(). 578 */ 579 static uint64_t 580 vdev_draid_asize(vdev_t *vd, uint64_t psize) 581 { 582 vdev_draid_config_t *vdc = vd->vdev_tsd; 583 uint64_t ashift = vd->vdev_ashift; 584 585 ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops); 586 587 uint64_t rows = ((psize - 1) / (vdc->vdc_ndata << ashift)) + 1; 588 uint64_t asize = (rows * vdc->vdc_groupwidth) << ashift; 589 590 ASSERT3U(asize, !=, 0); 591 ASSERT3U(asize % (vdc->vdc_groupwidth), ==, 0); 592 593 return (asize); 594 } 595 596 /* 597 * Deflate the asize to the psize, this includes stripping parity. 598 */ 599 uint64_t 600 vdev_draid_asize_to_psize(vdev_t *vd, uint64_t asize) 601 { 602 vdev_draid_config_t *vdc = vd->vdev_tsd; 603 604 ASSERT0(asize % vdc->vdc_groupwidth); 605 606 return ((asize / vdc->vdc_groupwidth) * vdc->vdc_ndata); 607 } 608 609 /* 610 * Convert a logical offset to the corresponding group number. 611 */ 612 static uint64_t 613 vdev_draid_offset_to_group(vdev_t *vd, uint64_t offset) 614 { 615 vdev_draid_config_t *vdc = vd->vdev_tsd; 616 617 ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops); 618 619 return (offset / vdc->vdc_groupsz); 620 } 621 622 /* 623 * Convert a group number to the logical starting offset for that group. 624 */ 625 static uint64_t 626 vdev_draid_group_to_offset(vdev_t *vd, uint64_t group) 627 { 628 vdev_draid_config_t *vdc = vd->vdev_tsd; 629 630 ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops); 631 632 return (group * vdc->vdc_groupsz); 633 } 634 635 /* 636 * Full stripe writes. When writing, all columns (D+P) are required. Parity 637 * is calculated over all the columns, including empty zero filled sectors, 638 * and each is written to disk. While only the data columns are needed for 639 * a normal read, all of the columns are required for reconstruction when 640 * performing a sequential resilver. 641 * 642 * For "big columns" it's sufficient to map the correct range of the zio ABD. 643 * Partial columns require allocating a gang ABD in order to zero fill the 644 * empty sectors. When the column is empty a zero filled sector must be 645 * mapped. In all cases the data ABDs must be the same size as the parity 646 * ABDs (e.g. rc->rc_size == parity_size). 647 */ 648 static void 649 vdev_draid_map_alloc_write(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr) 650 { 651 uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift; 652 uint64_t parity_size = rr->rr_col[0].rc_size; 653 uint64_t abd_off = abd_offset; 654 655 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 656 ASSERT3U(parity_size, ==, abd_get_size(rr->rr_col[0].rc_abd)); 657 658 for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 659 raidz_col_t *rc = &rr->rr_col[c]; 660 661 if (rc->rc_size == 0) { 662 /* empty data column (small write), add a skip sector */ 663 ASSERT3U(skip_size, ==, parity_size); 664 rc->rc_abd = abd_get_zeros(skip_size); 665 } else if (rc->rc_size == parity_size) { 666 /* this is a "big column" */ 667 rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct, 668 zio->io_abd, abd_off, rc->rc_size); 669 } else { 670 /* short data column, add a skip sector */ 671 ASSERT3U(rc->rc_size + skip_size, ==, parity_size); 672 rc->rc_abd = abd_alloc_gang(); 673 abd_gang_add(rc->rc_abd, abd_get_offset_size( 674 zio->io_abd, abd_off, rc->rc_size), B_TRUE); 675 abd_gang_add(rc->rc_abd, abd_get_zeros(skip_size), 676 B_TRUE); 677 } 678 679 ASSERT3U(abd_get_size(rc->rc_abd), ==, parity_size); 680 681 abd_off += rc->rc_size; 682 rc->rc_size = parity_size; 683 } 684 685 IMPLY(abd_offset != 0, abd_off == zio->io_size); 686 } 687 688 /* 689 * Scrub/resilver reads. In order to store the contents of the skip sectors 690 * an additional ABD is allocated. The columns are handled in the same way 691 * as a full stripe write except instead of using the zero ABD the newly 692 * allocated skip ABD is used to back the skip sectors. In all cases the 693 * data ABD must be the same size as the parity ABDs. 694 */ 695 static void 696 vdev_draid_map_alloc_scrub(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr) 697 { 698 uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift; 699 uint64_t parity_size = rr->rr_col[0].rc_size; 700 uint64_t abd_off = abd_offset; 701 uint64_t skip_off = 0; 702 703 ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ); 704 ASSERT3P(rr->rr_abd_empty, ==, NULL); 705 706 if (rr->rr_nempty > 0) { 707 rr->rr_abd_empty = abd_alloc_linear(rr->rr_nempty * skip_size, 708 B_FALSE); 709 } 710 711 for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 712 raidz_col_t *rc = &rr->rr_col[c]; 713 714 if (rc->rc_size == 0) { 715 /* empty data column (small read), add a skip sector */ 716 ASSERT3U(skip_size, ==, parity_size); 717 ASSERT3U(rr->rr_nempty, !=, 0); 718 rc->rc_abd = abd_get_offset_size(rr->rr_abd_empty, 719 skip_off, skip_size); 720 skip_off += skip_size; 721 } else if (rc->rc_size == parity_size) { 722 /* this is a "big column" */ 723 rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct, 724 zio->io_abd, abd_off, rc->rc_size); 725 } else { 726 /* short data column, add a skip sector */ 727 ASSERT3U(rc->rc_size + skip_size, ==, parity_size); 728 ASSERT3U(rr->rr_nempty, !=, 0); 729 rc->rc_abd = abd_alloc_gang(); 730 abd_gang_add(rc->rc_abd, abd_get_offset_size( 731 zio->io_abd, abd_off, rc->rc_size), B_TRUE); 732 abd_gang_add(rc->rc_abd, abd_get_offset_size( 733 rr->rr_abd_empty, skip_off, skip_size), B_TRUE); 734 skip_off += skip_size; 735 } 736 737 uint64_t abd_size = abd_get_size(rc->rc_abd); 738 ASSERT3U(abd_size, ==, abd_get_size(rr->rr_col[0].rc_abd)); 739 740 /* 741 * Increase rc_size so the skip ABD is included in subsequent 742 * parity calculations. 743 */ 744 abd_off += rc->rc_size; 745 rc->rc_size = abd_size; 746 } 747 748 IMPLY(abd_offset != 0, abd_off == zio->io_size); 749 ASSERT3U(skip_off, ==, rr->rr_nempty * skip_size); 750 } 751 752 /* 753 * Normal reads. In this common case only the columns containing data 754 * are read in to the zio ABDs. Neither the parity columns or empty skip 755 * sectors are read unless the checksum fails verification. In which case 756 * vdev_raidz_read_all() will call vdev_draid_map_alloc_empty() to expand 757 * the raid map in order to allow reconstruction using the parity data and 758 * skip sectors. 759 */ 760 static void 761 vdev_draid_map_alloc_read(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr) 762 { 763 uint64_t abd_off = abd_offset; 764 765 ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ); 766 767 for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 768 raidz_col_t *rc = &rr->rr_col[c]; 769 770 if (rc->rc_size > 0) { 771 rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct, 772 zio->io_abd, abd_off, rc->rc_size); 773 abd_off += rc->rc_size; 774 } 775 } 776 777 IMPLY(abd_offset != 0, abd_off == zio->io_size); 778 } 779 780 /* 781 * Converts a normal "read" raidz_row_t to a "scrub" raidz_row_t. The key 782 * difference is that an ABD is allocated to back skip sectors so they may 783 * be read in to memory, verified, and repaired if needed. 784 */ 785 void 786 vdev_draid_map_alloc_empty(zio_t *zio, raidz_row_t *rr) 787 { 788 uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift; 789 uint64_t parity_size = rr->rr_col[0].rc_size; 790 uint64_t skip_off = 0; 791 792 ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ); 793 ASSERT3P(rr->rr_abd_empty, ==, NULL); 794 795 if (rr->rr_nempty > 0) { 796 rr->rr_abd_empty = abd_alloc_linear(rr->rr_nempty * skip_size, 797 B_FALSE); 798 } 799 800 for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 801 raidz_col_t *rc = &rr->rr_col[c]; 802 803 if (rc->rc_size == 0) { 804 /* empty data column (small read), add a skip sector */ 805 ASSERT3U(skip_size, ==, parity_size); 806 ASSERT3U(rr->rr_nempty, !=, 0); 807 ASSERT3P(rc->rc_abd, ==, NULL); 808 rc->rc_abd = abd_get_offset_size(rr->rr_abd_empty, 809 skip_off, skip_size); 810 skip_off += skip_size; 811 } else if (rc->rc_size == parity_size) { 812 /* this is a "big column", nothing to add */ 813 ASSERT3P(rc->rc_abd, !=, NULL); 814 } else { 815 /* 816 * short data column, add a skip sector and clear 817 * rc_tried to force the entire column to be re-read 818 * thereby including the missing skip sector data 819 * which is needed for reconstruction. 820 */ 821 ASSERT3U(rc->rc_size + skip_size, ==, parity_size); 822 ASSERT3U(rr->rr_nempty, !=, 0); 823 ASSERT3P(rc->rc_abd, !=, NULL); 824 ASSERT(!abd_is_gang(rc->rc_abd)); 825 abd_t *read_abd = rc->rc_abd; 826 rc->rc_abd = abd_alloc_gang(); 827 abd_gang_add(rc->rc_abd, read_abd, B_TRUE); 828 abd_gang_add(rc->rc_abd, abd_get_offset_size( 829 rr->rr_abd_empty, skip_off, skip_size), B_TRUE); 830 skip_off += skip_size; 831 rc->rc_tried = 0; 832 } 833 834 /* 835 * Increase rc_size so the empty ABD is included in subsequent 836 * parity calculations. 837 */ 838 rc->rc_size = parity_size; 839 } 840 841 ASSERT3U(skip_off, ==, rr->rr_nempty * skip_size); 842 } 843 844 /* 845 * Verify that all empty sectors are zero filled before using them to 846 * calculate parity. Otherwise, silent corruption in an empty sector will 847 * result in bad parity being generated. That bad parity will then be 848 * considered authoritative and overwrite the good parity on disk. This 849 * is possible because the checksum is only calculated over the data, 850 * thus it cannot be used to detect damage in empty sectors. 851 */ 852 int 853 vdev_draid_map_verify_empty(zio_t *zio, raidz_row_t *rr) 854 { 855 uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift; 856 uint64_t parity_size = rr->rr_col[0].rc_size; 857 uint64_t skip_off = parity_size - skip_size; 858 uint64_t empty_off = 0; 859 int ret = 0; 860 861 ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ); 862 ASSERT3P(rr->rr_abd_empty, !=, NULL); 863 ASSERT3U(rr->rr_bigcols, >, 0); 864 865 void *zero_buf = kmem_zalloc(skip_size, KM_SLEEP); 866 867 for (int c = rr->rr_bigcols; c < rr->rr_cols; c++) { 868 raidz_col_t *rc = &rr->rr_col[c]; 869 870 ASSERT3P(rc->rc_abd, !=, NULL); 871 ASSERT3U(rc->rc_size, ==, parity_size); 872 873 if (abd_cmp_buf_off(rc->rc_abd, zero_buf, skip_off, 874 skip_size) != 0) { 875 vdev_raidz_checksum_error(zio, rc, rc->rc_abd); 876 abd_zero_off(rc->rc_abd, skip_off, skip_size); 877 rc->rc_error = SET_ERROR(ECKSUM); 878 ret++; 879 } 880 881 empty_off += skip_size; 882 } 883 884 ASSERT3U(empty_off, ==, abd_get_size(rr->rr_abd_empty)); 885 886 kmem_free(zero_buf, skip_size); 887 888 return (ret); 889 } 890 891 /* 892 * Given a logical address within a dRAID configuration, return the physical 893 * address on the first drive in the group that this address maps to 894 * (at position 'start' in permutation number 'perm'). 895 */ 896 static uint64_t 897 vdev_draid_logical_to_physical(vdev_t *vd, uint64_t logical_offset, 898 uint64_t *perm, uint64_t *start) 899 { 900 vdev_draid_config_t *vdc = vd->vdev_tsd; 901 902 /* b is the dRAID (parent) sector offset. */ 903 uint64_t ashift = vd->vdev_top->vdev_ashift; 904 uint64_t b_offset = logical_offset >> ashift; 905 906 /* 907 * The height of a row in units of the vdev's minimum sector size. 908 * This is the amount of data written to each disk of each group 909 * in a given permutation. 910 */ 911 uint64_t rowheight_sectors = VDEV_DRAID_ROWHEIGHT >> ashift; 912 913 /* 914 * We cycle through a disk permutation every groupsz * ngroups chunk 915 * of address space. Note that ngroups * groupsz must be a multiple 916 * of the number of data drives (ndisks) in order to guarantee 917 * alignment. So, for example, if our row height is 16MB, our group 918 * size is 10, and there are 13 data drives in the draid, then ngroups 919 * will be 13, we will change permutation every 2.08GB and each 920 * disk will have 160MB of data per chunk. 921 */ 922 uint64_t groupwidth = vdc->vdc_groupwidth; 923 uint64_t ngroups = vdc->vdc_ngroups; 924 uint64_t ndisks = vdc->vdc_ndisks; 925 926 /* 927 * groupstart is where the group this IO will land in "starts" in 928 * the permutation array. 929 */ 930 uint64_t group = logical_offset / vdc->vdc_groupsz; 931 uint64_t groupstart = (group * groupwidth) % ndisks; 932 ASSERT3U(groupstart + groupwidth, <=, ndisks + groupstart); 933 *start = groupstart; 934 935 /* b_offset is the sector offset within a group chunk */ 936 b_offset = b_offset % (rowheight_sectors * groupwidth); 937 ASSERT0(b_offset % groupwidth); 938 939 /* 940 * Find the starting byte offset on each child vdev: 941 * - within a permutation there are ngroups groups spread over the 942 * rows, where each row covers a slice portion of the disk 943 * - each permutation has (groupwidth * ngroups) / ndisks rows 944 * - so each permutation covers rows * slice portion of the disk 945 * - so we need to find the row where this IO group target begins 946 */ 947 *perm = group / ngroups; 948 uint64_t row = (*perm * ((groupwidth * ngroups) / ndisks)) + 949 (((group % ngroups) * groupwidth) / ndisks); 950 951 return (((rowheight_sectors * row) + 952 (b_offset / groupwidth)) << ashift); 953 } 954 955 static uint64_t 956 vdev_draid_map_alloc_row(zio_t *zio, raidz_row_t **rrp, uint64_t io_offset, 957 uint64_t abd_offset, uint64_t abd_size) 958 { 959 vdev_t *vd = zio->io_vd; 960 vdev_draid_config_t *vdc = vd->vdev_tsd; 961 uint64_t ashift = vd->vdev_top->vdev_ashift; 962 uint64_t io_size = abd_size; 963 uint64_t io_asize = vdev_draid_asize(vd, io_size); 964 uint64_t group = vdev_draid_offset_to_group(vd, io_offset); 965 uint64_t start_offset = vdev_draid_group_to_offset(vd, group + 1); 966 967 /* 968 * Limit the io_size to the space remaining in the group. A second 969 * row in the raidz_map_t is created for the remainder. 970 */ 971 if (io_offset + io_asize > start_offset) { 972 io_size = vdev_draid_asize_to_psize(vd, 973 start_offset - io_offset); 974 } 975 976 /* 977 * At most a block may span the logical end of one group and the start 978 * of the next group. Therefore, at the end of a group the io_size must 979 * span the group width evenly and the remainder must be aligned to the 980 * start of the next group. 981 */ 982 IMPLY(abd_offset == 0 && io_size < zio->io_size, 983 (io_asize >> ashift) % vdc->vdc_groupwidth == 0); 984 IMPLY(abd_offset != 0, 985 vdev_draid_group_to_offset(vd, group) == io_offset); 986 987 /* Lookup starting byte offset on each child vdev */ 988 uint64_t groupstart, perm; 989 uint64_t physical_offset = vdev_draid_logical_to_physical(vd, 990 io_offset, &perm, &groupstart); 991 992 /* 993 * If there is less than groupwidth drives available after the group 994 * start, the group is going to wrap onto the next row. 'wrap' is the 995 * group disk number that starts on the next row. 996 */ 997 uint64_t ndisks = vdc->vdc_ndisks; 998 uint64_t groupwidth = vdc->vdc_groupwidth; 999 uint64_t wrap = groupwidth; 1000 1001 if (groupstart + groupwidth > ndisks) 1002 wrap = ndisks - groupstart; 1003 1004 /* The io size in units of the vdev's minimum sector size. */ 1005 const uint64_t psize = io_size >> ashift; 1006 1007 /* 1008 * "Quotient": The number of data sectors for this stripe on all but 1009 * the "big column" child vdevs that also contain "remainder" data. 1010 */ 1011 uint64_t q = psize / vdc->vdc_ndata; 1012 1013 /* 1014 * "Remainder": The number of partial stripe data sectors in this I/O. 1015 * This will add a sector to some, but not all, child vdevs. 1016 */ 1017 uint64_t r = psize - q * vdc->vdc_ndata; 1018 1019 /* The number of "big columns" - those which contain remainder data. */ 1020 uint64_t bc = (r == 0 ? 0 : r + vdc->vdc_nparity); 1021 ASSERT3U(bc, <, groupwidth); 1022 1023 /* The total number of data and parity sectors for this I/O. */ 1024 uint64_t tot = psize + (vdc->vdc_nparity * (q + (r == 0 ? 0 : 1))); 1025 1026 raidz_row_t *rr; 1027 rr = kmem_alloc(offsetof(raidz_row_t, rr_col[groupwidth]), KM_SLEEP); 1028 rr->rr_cols = groupwidth; 1029 rr->rr_scols = groupwidth; 1030 rr->rr_bigcols = bc; 1031 rr->rr_missingdata = 0; 1032 rr->rr_missingparity = 0; 1033 rr->rr_firstdatacol = vdc->vdc_nparity; 1034 rr->rr_abd_empty = NULL; 1035 #ifdef ZFS_DEBUG 1036 rr->rr_offset = io_offset; 1037 rr->rr_size = io_size; 1038 #endif 1039 *rrp = rr; 1040 1041 uint8_t *base; 1042 uint64_t iter, asize = 0; 1043 vdev_draid_get_perm(vdc, perm, &base, &iter); 1044 for (uint64_t i = 0; i < groupwidth; i++) { 1045 raidz_col_t *rc = &rr->rr_col[i]; 1046 uint64_t c = (groupstart + i) % ndisks; 1047 1048 /* increment the offset if we wrap to the next row */ 1049 if (i == wrap) 1050 physical_offset += VDEV_DRAID_ROWHEIGHT; 1051 1052 rc->rc_devidx = vdev_draid_permute_id(vdc, base, iter, c); 1053 rc->rc_offset = physical_offset; 1054 rc->rc_abd = NULL; 1055 rc->rc_orig_data = NULL; 1056 rc->rc_error = 0; 1057 rc->rc_tried = 0; 1058 rc->rc_skipped = 0; 1059 rc->rc_force_repair = 0; 1060 rc->rc_allow_repair = 1; 1061 rc->rc_need_orig_restore = B_FALSE; 1062 1063 if (q == 0 && i >= bc) 1064 rc->rc_size = 0; 1065 else if (i < bc) 1066 rc->rc_size = (q + 1) << ashift; 1067 else 1068 rc->rc_size = q << ashift; 1069 1070 asize += rc->rc_size; 1071 } 1072 1073 ASSERT3U(asize, ==, tot << ashift); 1074 rr->rr_nempty = roundup(tot, groupwidth) - tot; 1075 IMPLY(bc > 0, rr->rr_nempty == groupwidth - bc); 1076 1077 /* Allocate buffers for the parity columns */ 1078 for (uint64_t c = 0; c < rr->rr_firstdatacol; c++) { 1079 raidz_col_t *rc = &rr->rr_col[c]; 1080 rc->rc_abd = abd_alloc_linear(rc->rc_size, B_FALSE); 1081 } 1082 1083 /* 1084 * Map buffers for data columns and allocate/map buffers for skip 1085 * sectors. There are three distinct cases for dRAID which are 1086 * required to support sequential rebuild. 1087 */ 1088 if (zio->io_type == ZIO_TYPE_WRITE) { 1089 vdev_draid_map_alloc_write(zio, abd_offset, rr); 1090 } else if ((rr->rr_nempty > 0) && 1091 (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) { 1092 vdev_draid_map_alloc_scrub(zio, abd_offset, rr); 1093 } else { 1094 ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ); 1095 vdev_draid_map_alloc_read(zio, abd_offset, rr); 1096 } 1097 1098 return (io_size); 1099 } 1100 1101 /* 1102 * Allocate the raidz mapping to be applied to the dRAID I/O. The parity 1103 * calculations for dRAID are identical to raidz however there are a few 1104 * differences in the layout. 1105 * 1106 * - dRAID always allocates a full stripe width. Any extra sectors due 1107 * this padding are zero filled and written to disk. They will be read 1108 * back during a scrub or repair operation since they are included in 1109 * the parity calculation. This property enables sequential resilvering. 1110 * 1111 * - When the block at the logical offset spans redundancy groups then two 1112 * rows are allocated in the raidz_map_t. One row resides at the end of 1113 * the first group and the other at the start of the following group. 1114 */ 1115 static raidz_map_t * 1116 vdev_draid_map_alloc(zio_t *zio) 1117 { 1118 raidz_row_t *rr[2]; 1119 uint64_t abd_offset = 0; 1120 uint64_t abd_size = zio->io_size; 1121 uint64_t io_offset = zio->io_offset; 1122 uint64_t size; 1123 int nrows = 1; 1124 1125 size = vdev_draid_map_alloc_row(zio, &rr[0], io_offset, 1126 abd_offset, abd_size); 1127 if (size < abd_size) { 1128 vdev_t *vd = zio->io_vd; 1129 1130 io_offset += vdev_draid_asize(vd, size); 1131 abd_offset += size; 1132 abd_size -= size; 1133 nrows++; 1134 1135 ASSERT3U(io_offset, ==, vdev_draid_group_to_offset( 1136 vd, vdev_draid_offset_to_group(vd, io_offset))); 1137 ASSERT3U(abd_offset, <, zio->io_size); 1138 ASSERT3U(abd_size, !=, 0); 1139 1140 size = vdev_draid_map_alloc_row(zio, &rr[1], 1141 io_offset, abd_offset, abd_size); 1142 VERIFY3U(size, ==, abd_size); 1143 } 1144 1145 raidz_map_t *rm; 1146 rm = kmem_zalloc(offsetof(raidz_map_t, rm_row[nrows]), KM_SLEEP); 1147 rm->rm_ops = vdev_raidz_math_get_ops(); 1148 rm->rm_nrows = nrows; 1149 rm->rm_row[0] = rr[0]; 1150 if (nrows == 2) 1151 rm->rm_row[1] = rr[1]; 1152 1153 return (rm); 1154 } 1155 1156 /* 1157 * Given an offset into a dRAID return the next group width aligned offset 1158 * which can be used to start an allocation. 1159 */ 1160 static uint64_t 1161 vdev_draid_get_astart(vdev_t *vd, const uint64_t start) 1162 { 1163 vdev_draid_config_t *vdc = vd->vdev_tsd; 1164 1165 ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops); 1166 1167 return (roundup(start, vdc->vdc_groupwidth << vd->vdev_ashift)); 1168 } 1169 1170 /* 1171 * Allocatable space for dRAID is (children - nspares) * sizeof(smallest child) 1172 * rounded down to the last full slice. So each child must provide at least 1173 * 1 / (children - nspares) of its asize. 1174 */ 1175 static uint64_t 1176 vdev_draid_min_asize(vdev_t *vd) 1177 { 1178 vdev_draid_config_t *vdc = vd->vdev_tsd; 1179 1180 ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops); 1181 1182 return (VDEV_DRAID_REFLOW_RESERVE + 1183 (vd->vdev_min_asize + vdc->vdc_ndisks - 1) / (vdc->vdc_ndisks)); 1184 } 1185 1186 /* 1187 * When using dRAID the minimum allocation size is determined by the number 1188 * of data disks in the redundancy group. Full stripes are always used. 1189 */ 1190 static uint64_t 1191 vdev_draid_min_alloc(vdev_t *vd) 1192 { 1193 vdev_draid_config_t *vdc = vd->vdev_tsd; 1194 1195 ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops); 1196 1197 return (vdc->vdc_ndata << vd->vdev_ashift); 1198 } 1199 1200 /* 1201 * Returns true if the txg range does not exist on any leaf vdev. 1202 * 1203 * A dRAID spare does not fit into the DTL model. While it has child vdevs 1204 * there is no redundancy among them, and the effective child vdev is 1205 * determined by offset. Essentially we do a vdev_dtl_reassess() on the 1206 * fly by replacing a dRAID spare with the child vdev under the offset. 1207 * Note that it is a recursive process because the child vdev can be 1208 * another dRAID spare and so on. 1209 */ 1210 boolean_t 1211 vdev_draid_missing(vdev_t *vd, uint64_t physical_offset, uint64_t txg, 1212 uint64_t size) 1213 { 1214 if (vd->vdev_ops == &vdev_spare_ops || 1215 vd->vdev_ops == &vdev_replacing_ops) { 1216 /* 1217 * Check all of the readable children, if any child 1218 * contains the txg range the data it is not missing. 1219 */ 1220 for (int c = 0; c < vd->vdev_children; c++) { 1221 vdev_t *cvd = vd->vdev_child[c]; 1222 1223 if (!vdev_readable(cvd)) 1224 continue; 1225 1226 if (!vdev_draid_missing(cvd, physical_offset, 1227 txg, size)) 1228 return (B_FALSE); 1229 } 1230 1231 return (B_TRUE); 1232 } 1233 1234 if (vd->vdev_ops == &vdev_draid_spare_ops) { 1235 /* 1236 * When sequentially resilvering we don't have a proper 1237 * txg range so instead we must presume all txgs are 1238 * missing on this vdev until the resilver completes. 1239 */ 1240 if (vd->vdev_rebuild_txg != 0) 1241 return (B_TRUE); 1242 1243 /* 1244 * DTL_MISSING is set for all prior txgs when a resilver 1245 * is started in spa_vdev_attach(). 1246 */ 1247 if (vdev_dtl_contains(vd, DTL_MISSING, txg, size)) 1248 return (B_TRUE); 1249 1250 /* 1251 * Consult the DTL on the relevant vdev. Either a vdev 1252 * leaf or spare/replace mirror child may be returned so 1253 * we must recursively call vdev_draid_missing_impl(). 1254 */ 1255 vd = vdev_draid_spare_get_child(vd, physical_offset); 1256 if (vd == NULL) 1257 return (B_TRUE); 1258 1259 return (vdev_draid_missing(vd, physical_offset, 1260 txg, size)); 1261 } 1262 1263 return (vdev_dtl_contains(vd, DTL_MISSING, txg, size)); 1264 } 1265 1266 /* 1267 * Returns true if the txg is only partially replicated on the leaf vdevs. 1268 */ 1269 static boolean_t 1270 vdev_draid_partial(vdev_t *vd, uint64_t physical_offset, uint64_t txg, 1271 uint64_t size) 1272 { 1273 if (vd->vdev_ops == &vdev_spare_ops || 1274 vd->vdev_ops == &vdev_replacing_ops) { 1275 /* 1276 * Check all of the readable children, if any child is 1277 * missing the txg range then it is partially replicated. 1278 */ 1279 for (int c = 0; c < vd->vdev_children; c++) { 1280 vdev_t *cvd = vd->vdev_child[c]; 1281 1282 if (!vdev_readable(cvd)) 1283 continue; 1284 1285 if (vdev_draid_partial(cvd, physical_offset, txg, size)) 1286 return (B_TRUE); 1287 } 1288 1289 return (B_FALSE); 1290 } 1291 1292 if (vd->vdev_ops == &vdev_draid_spare_ops) { 1293 /* 1294 * When sequentially resilvering we don't have a proper 1295 * txg range so instead we must presume all txgs are 1296 * missing on this vdev until the resilver completes. 1297 */ 1298 if (vd->vdev_rebuild_txg != 0) 1299 return (B_TRUE); 1300 1301 /* 1302 * DTL_MISSING is set for all prior txgs when a resilver 1303 * is started in spa_vdev_attach(). 1304 */ 1305 if (vdev_dtl_contains(vd, DTL_MISSING, txg, size)) 1306 return (B_TRUE); 1307 1308 /* 1309 * Consult the DTL on the relevant vdev. Either a vdev 1310 * leaf or spare/replace mirror child may be returned so 1311 * we must recursively call vdev_draid_missing_impl(). 1312 */ 1313 vd = vdev_draid_spare_get_child(vd, physical_offset); 1314 if (vd == NULL) 1315 return (B_TRUE); 1316 1317 return (vdev_draid_partial(vd, physical_offset, txg, size)); 1318 } 1319 1320 return (vdev_dtl_contains(vd, DTL_MISSING, txg, size)); 1321 } 1322 1323 /* 1324 * Determine if the vdev is readable at the given offset. 1325 */ 1326 boolean_t 1327 vdev_draid_readable(vdev_t *vd, uint64_t physical_offset) 1328 { 1329 if (vd->vdev_ops == &vdev_draid_spare_ops) { 1330 vd = vdev_draid_spare_get_child(vd, physical_offset); 1331 if (vd == NULL) 1332 return (B_FALSE); 1333 } 1334 1335 if (vd->vdev_ops == &vdev_spare_ops || 1336 vd->vdev_ops == &vdev_replacing_ops) { 1337 1338 for (int c = 0; c < vd->vdev_children; c++) { 1339 vdev_t *cvd = vd->vdev_child[c]; 1340 1341 if (!vdev_readable(cvd)) 1342 continue; 1343 1344 if (vdev_draid_readable(cvd, physical_offset)) 1345 return (B_TRUE); 1346 } 1347 1348 return (B_FALSE); 1349 } 1350 1351 return (vdev_readable(vd)); 1352 } 1353 1354 /* 1355 * Returns the first distributed spare found under the provided vdev tree. 1356 */ 1357 static vdev_t * 1358 vdev_draid_find_spare(vdev_t *vd) 1359 { 1360 if (vd->vdev_ops == &vdev_draid_spare_ops) 1361 return (vd); 1362 1363 for (int c = 0; c < vd->vdev_children; c++) { 1364 vdev_t *svd = vdev_draid_find_spare(vd->vdev_child[c]); 1365 if (svd != NULL) 1366 return (svd); 1367 } 1368 1369 return (NULL); 1370 } 1371 1372 /* 1373 * Returns B_TRUE if the passed in vdev is currently "faulted". 1374 * Faulted, in this context, means that the vdev represents a 1375 * replacing or sparing vdev tree. 1376 */ 1377 static boolean_t 1378 vdev_draid_faulted(vdev_t *vd, uint64_t physical_offset) 1379 { 1380 if (vd->vdev_ops == &vdev_draid_spare_ops) { 1381 vd = vdev_draid_spare_get_child(vd, physical_offset); 1382 if (vd == NULL) 1383 return (B_FALSE); 1384 1385 /* 1386 * After resolving the distributed spare to a leaf vdev 1387 * check the parent to determine if it's "faulted". 1388 */ 1389 vd = vd->vdev_parent; 1390 } 1391 1392 return (vd->vdev_ops == &vdev_replacing_ops || 1393 vd->vdev_ops == &vdev_spare_ops); 1394 } 1395 1396 /* 1397 * Determine if the dRAID block at the logical offset is degraded. 1398 * Used by sequential resilver. 1399 */ 1400 static boolean_t 1401 vdev_draid_group_degraded(vdev_t *vd, uint64_t offset) 1402 { 1403 vdev_draid_config_t *vdc = vd->vdev_tsd; 1404 1405 ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops); 1406 ASSERT3U(vdev_draid_get_astart(vd, offset), ==, offset); 1407 1408 uint64_t groupstart, perm; 1409 uint64_t physical_offset = vdev_draid_logical_to_physical(vd, 1410 offset, &perm, &groupstart); 1411 1412 uint8_t *base; 1413 uint64_t iter; 1414 vdev_draid_get_perm(vdc, perm, &base, &iter); 1415 1416 for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) { 1417 uint64_t c = (groupstart + i) % vdc->vdc_ndisks; 1418 uint64_t cid = vdev_draid_permute_id(vdc, base, iter, c); 1419 vdev_t *cvd = vd->vdev_child[cid]; 1420 1421 /* Group contains a faulted vdev. */ 1422 if (vdev_draid_faulted(cvd, physical_offset)) 1423 return (B_TRUE); 1424 1425 /* 1426 * Always check groups with active distributed spares 1427 * because any vdev failure in the pool will affect them. 1428 */ 1429 if (vdev_draid_find_spare(cvd) != NULL) 1430 return (B_TRUE); 1431 } 1432 1433 return (B_FALSE); 1434 } 1435 1436 /* 1437 * Determine if the txg is missing. Used by healing resilver. 1438 */ 1439 static boolean_t 1440 vdev_draid_group_missing(vdev_t *vd, uint64_t offset, uint64_t txg, 1441 uint64_t size) 1442 { 1443 vdev_draid_config_t *vdc = vd->vdev_tsd; 1444 1445 ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops); 1446 ASSERT3U(vdev_draid_get_astart(vd, offset), ==, offset); 1447 1448 uint64_t groupstart, perm; 1449 uint64_t physical_offset = vdev_draid_logical_to_physical(vd, 1450 offset, &perm, &groupstart); 1451 1452 uint8_t *base; 1453 uint64_t iter; 1454 vdev_draid_get_perm(vdc, perm, &base, &iter); 1455 1456 for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) { 1457 uint64_t c = (groupstart + i) % vdc->vdc_ndisks; 1458 uint64_t cid = vdev_draid_permute_id(vdc, base, iter, c); 1459 vdev_t *cvd = vd->vdev_child[cid]; 1460 1461 /* Transaction group is known to be partially replicated. */ 1462 if (vdev_draid_partial(cvd, physical_offset, txg, size)) 1463 return (B_TRUE); 1464 1465 /* 1466 * Always check groups with active distributed spares 1467 * because any vdev failure in the pool will affect them. 1468 */ 1469 if (vdev_draid_find_spare(cvd) != NULL) 1470 return (B_TRUE); 1471 } 1472 1473 return (B_FALSE); 1474 } 1475 1476 /* 1477 * Find the smallest child asize and largest sector size to calculate the 1478 * available capacity. Distributed spares are ignored since their capacity 1479 * is also based of the minimum child size in the top-level dRAID. 1480 */ 1481 static void 1482 vdev_draid_calculate_asize(vdev_t *vd, uint64_t *asizep, uint64_t *max_asizep, 1483 uint64_t *logical_ashiftp, uint64_t *physical_ashiftp) 1484 { 1485 uint64_t logical_ashift = 0, physical_ashift = 0; 1486 uint64_t asize = 0, max_asize = 0; 1487 1488 ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops); 1489 1490 for (int c = 0; c < vd->vdev_children; c++) { 1491 vdev_t *cvd = vd->vdev_child[c]; 1492 1493 if (cvd->vdev_ops == &vdev_draid_spare_ops) 1494 continue; 1495 1496 asize = MIN(asize - 1, cvd->vdev_asize - 1) + 1; 1497 max_asize = MIN(max_asize - 1, cvd->vdev_max_asize - 1) + 1; 1498 logical_ashift = MAX(logical_ashift, cvd->vdev_ashift); 1499 } 1500 for (int c = 0; c < vd->vdev_children; c++) { 1501 vdev_t *cvd = vd->vdev_child[c]; 1502 1503 if (cvd->vdev_ops == &vdev_draid_spare_ops) 1504 continue; 1505 physical_ashift = vdev_best_ashift(logical_ashift, 1506 physical_ashift, cvd->vdev_physical_ashift); 1507 } 1508 1509 *asizep = asize; 1510 *max_asizep = max_asize; 1511 *logical_ashiftp = logical_ashift; 1512 *physical_ashiftp = physical_ashift; 1513 } 1514 1515 /* 1516 * Open spare vdevs. 1517 */ 1518 static boolean_t 1519 vdev_draid_open_spares(vdev_t *vd) 1520 { 1521 return (vd->vdev_ops == &vdev_draid_spare_ops || 1522 vd->vdev_ops == &vdev_replacing_ops || 1523 vd->vdev_ops == &vdev_spare_ops); 1524 } 1525 1526 /* 1527 * Open all children, excluding spares. 1528 */ 1529 static boolean_t 1530 vdev_draid_open_children(vdev_t *vd) 1531 { 1532 return (!vdev_draid_open_spares(vd)); 1533 } 1534 1535 /* 1536 * Open a top-level dRAID vdev. 1537 */ 1538 static int 1539 vdev_draid_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize, 1540 uint64_t *logical_ashift, uint64_t *physical_ashift) 1541 { 1542 vdev_draid_config_t *vdc = vd->vdev_tsd; 1543 uint64_t nparity = vdc->vdc_nparity; 1544 int open_errors = 0; 1545 1546 if (nparity > VDEV_DRAID_MAXPARITY || 1547 vd->vdev_children < nparity + 1) { 1548 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 1549 return (SET_ERROR(EINVAL)); 1550 } 1551 1552 /* 1553 * First open the normal children then the distributed spares. This 1554 * ordering is important to ensure the distributed spares calculate 1555 * the correct psize in the event that the dRAID vdevs were expanded. 1556 */ 1557 vdev_open_children_subset(vd, vdev_draid_open_children); 1558 vdev_open_children_subset(vd, vdev_draid_open_spares); 1559 1560 /* Verify enough of the children are available to continue. */ 1561 for (int c = 0; c < vd->vdev_children; c++) { 1562 if (vd->vdev_child[c]->vdev_open_error != 0) { 1563 if ((++open_errors) > nparity) { 1564 vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS; 1565 return (SET_ERROR(ENXIO)); 1566 } 1567 } 1568 } 1569 1570 /* 1571 * Allocatable capacity is the sum of the space on all children less 1572 * the number of distributed spares rounded down to last full row 1573 * and then to the last full group. An additional 32MB of scratch 1574 * space is reserved at the end of each child for use by the dRAID 1575 * expansion feature. 1576 */ 1577 uint64_t child_asize, child_max_asize; 1578 vdev_draid_calculate_asize(vd, &child_asize, &child_max_asize, 1579 logical_ashift, physical_ashift); 1580 1581 /* 1582 * Should be unreachable since the minimum child size is 64MB, but 1583 * we want to make sure an underflow absolutely cannot occur here. 1584 */ 1585 if (child_asize < VDEV_DRAID_REFLOW_RESERVE || 1586 child_max_asize < VDEV_DRAID_REFLOW_RESERVE) { 1587 return (SET_ERROR(ENXIO)); 1588 } 1589 1590 child_asize = ((child_asize - VDEV_DRAID_REFLOW_RESERVE) / 1591 VDEV_DRAID_ROWHEIGHT) * VDEV_DRAID_ROWHEIGHT; 1592 child_max_asize = ((child_max_asize - VDEV_DRAID_REFLOW_RESERVE) / 1593 VDEV_DRAID_ROWHEIGHT) * VDEV_DRAID_ROWHEIGHT; 1594 1595 *asize = (((child_asize * vdc->vdc_ndisks) / vdc->vdc_groupsz) * 1596 vdc->vdc_groupsz); 1597 *max_asize = (((child_max_asize * vdc->vdc_ndisks) / vdc->vdc_groupsz) * 1598 vdc->vdc_groupsz); 1599 1600 return (0); 1601 } 1602 1603 /* 1604 * Close a top-level dRAID vdev. 1605 */ 1606 static void 1607 vdev_draid_close(vdev_t *vd) 1608 { 1609 for (int c = 0; c < vd->vdev_children; c++) { 1610 if (vd->vdev_child[c] != NULL) 1611 vdev_close(vd->vdev_child[c]); 1612 } 1613 } 1614 1615 /* 1616 * Return the maximum asize for a rebuild zio in the provided range 1617 * given the following constraints. A dRAID chunks may not: 1618 * 1619 * - Exceed the maximum allowed block size (SPA_MAXBLOCKSIZE), or 1620 * - Span dRAID redundancy groups. 1621 */ 1622 static uint64_t 1623 vdev_draid_rebuild_asize(vdev_t *vd, uint64_t start, uint64_t asize, 1624 uint64_t max_segment) 1625 { 1626 vdev_draid_config_t *vdc = vd->vdev_tsd; 1627 1628 ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops); 1629 1630 uint64_t ashift = vd->vdev_ashift; 1631 uint64_t ndata = vdc->vdc_ndata; 1632 uint64_t psize = MIN(P2ROUNDUP(max_segment * ndata, 1 << ashift), 1633 SPA_MAXBLOCKSIZE); 1634 1635 ASSERT3U(vdev_draid_get_astart(vd, start), ==, start); 1636 ASSERT3U(asize % (vdc->vdc_groupwidth << ashift), ==, 0); 1637 1638 /* Chunks must evenly span all data columns in the group. */ 1639 psize = (((psize >> ashift) / ndata) * ndata) << ashift; 1640 uint64_t chunk_size = MIN(asize, vdev_psize_to_asize(vd, psize)); 1641 1642 /* Reduce the chunk size to the group space remaining. */ 1643 uint64_t group = vdev_draid_offset_to_group(vd, start); 1644 uint64_t left = vdev_draid_group_to_offset(vd, group + 1) - start; 1645 chunk_size = MIN(chunk_size, left); 1646 1647 ASSERT3U(chunk_size % (vdc->vdc_groupwidth << ashift), ==, 0); 1648 ASSERT3U(vdev_draid_offset_to_group(vd, start), ==, 1649 vdev_draid_offset_to_group(vd, start + chunk_size - 1)); 1650 1651 return (chunk_size); 1652 } 1653 1654 /* 1655 * Align the start of the metaslab to the group width and slightly reduce 1656 * its size to a multiple of the group width. Since full stripe writes are 1657 * required by dRAID this space is unallocable. Furthermore, aligning the 1658 * metaslab start is important for vdev initialize and TRIM which both operate 1659 * on metaslab boundaries which vdev_xlate() expects to be aligned. 1660 */ 1661 static void 1662 vdev_draid_metaslab_init(vdev_t *vd, uint64_t *ms_start, uint64_t *ms_size) 1663 { 1664 vdev_draid_config_t *vdc = vd->vdev_tsd; 1665 1666 ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops); 1667 1668 uint64_t sz = vdc->vdc_groupwidth << vd->vdev_ashift; 1669 uint64_t astart = vdev_draid_get_astart(vd, *ms_start); 1670 uint64_t asize = ((*ms_size - (astart - *ms_start)) / sz) * sz; 1671 1672 *ms_start = astart; 1673 *ms_size = asize; 1674 1675 ASSERT0(*ms_start % sz); 1676 ASSERT0(*ms_size % sz); 1677 } 1678 1679 /* 1680 * Add virtual dRAID spares to the list of valid spares. In order to accomplish 1681 * this the existing array must be freed and reallocated with the additional 1682 * entries. 1683 */ 1684 int 1685 vdev_draid_spare_create(nvlist_t *nvroot, vdev_t *vd, uint64_t *ndraidp, 1686 uint64_t next_vdev_id) 1687 { 1688 uint64_t draid_nspares = 0; 1689 uint64_t ndraid = 0; 1690 int error; 1691 1692 for (uint64_t i = 0; i < vd->vdev_children; i++) { 1693 vdev_t *cvd = vd->vdev_child[i]; 1694 1695 if (cvd->vdev_ops == &vdev_draid_ops) { 1696 vdev_draid_config_t *vdc = cvd->vdev_tsd; 1697 draid_nspares += vdc->vdc_nspares; 1698 ndraid++; 1699 } 1700 } 1701 1702 if (draid_nspares == 0) { 1703 *ndraidp = ndraid; 1704 return (0); 1705 } 1706 1707 nvlist_t **old_spares, **new_spares; 1708 uint_t old_nspares; 1709 error = nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 1710 &old_spares, &old_nspares); 1711 if (error) 1712 old_nspares = 0; 1713 1714 /* Allocate memory and copy of the existing spares. */ 1715 new_spares = kmem_alloc(sizeof (nvlist_t *) * 1716 (draid_nspares + old_nspares), KM_SLEEP); 1717 for (uint_t i = 0; i < old_nspares; i++) 1718 new_spares[i] = fnvlist_dup(old_spares[i]); 1719 1720 /* Add new distributed spares to ZPOOL_CONFIG_SPARES. */ 1721 uint64_t n = old_nspares; 1722 for (uint64_t vdev_id = 0; vdev_id < vd->vdev_children; vdev_id++) { 1723 vdev_t *cvd = vd->vdev_child[vdev_id]; 1724 char path[64]; 1725 1726 if (cvd->vdev_ops != &vdev_draid_ops) 1727 continue; 1728 1729 vdev_draid_config_t *vdc = cvd->vdev_tsd; 1730 uint64_t nspares = vdc->vdc_nspares; 1731 uint64_t nparity = vdc->vdc_nparity; 1732 1733 for (uint64_t spare_id = 0; spare_id < nspares; spare_id++) { 1734 memset(path, 0, sizeof (path)); 1735 (void) snprintf(path, sizeof (path) - 1, 1736 "%s%llu-%llu-%llu", VDEV_TYPE_DRAID, 1737 (u_longlong_t)nparity, 1738 (u_longlong_t)next_vdev_id + vdev_id, 1739 (u_longlong_t)spare_id); 1740 1741 nvlist_t *spare = fnvlist_alloc(); 1742 fnvlist_add_string(spare, ZPOOL_CONFIG_PATH, path); 1743 fnvlist_add_string(spare, ZPOOL_CONFIG_TYPE, 1744 VDEV_TYPE_DRAID_SPARE); 1745 fnvlist_add_uint64(spare, ZPOOL_CONFIG_TOP_GUID, 1746 cvd->vdev_guid); 1747 fnvlist_add_uint64(spare, ZPOOL_CONFIG_SPARE_ID, 1748 spare_id); 1749 fnvlist_add_uint64(spare, ZPOOL_CONFIG_IS_LOG, 0); 1750 fnvlist_add_uint64(spare, ZPOOL_CONFIG_IS_SPARE, 1); 1751 fnvlist_add_uint64(spare, ZPOOL_CONFIG_WHOLE_DISK, 1); 1752 fnvlist_add_uint64(spare, ZPOOL_CONFIG_ASHIFT, 1753 cvd->vdev_ashift); 1754 1755 new_spares[n] = spare; 1756 n++; 1757 } 1758 } 1759 1760 if (n > 0) { 1761 (void) nvlist_remove_all(nvroot, ZPOOL_CONFIG_SPARES); 1762 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 1763 (const nvlist_t **)new_spares, n); 1764 } 1765 1766 for (int i = 0; i < n; i++) 1767 nvlist_free(new_spares[i]); 1768 1769 kmem_free(new_spares, sizeof (*new_spares) * n); 1770 *ndraidp = ndraid; 1771 1772 return (0); 1773 } 1774 1775 /* 1776 * Determine if any portion of the provided block resides on a child vdev 1777 * with a dirty DTL and therefore needs to be resilvered. 1778 */ 1779 static boolean_t 1780 vdev_draid_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 1781 uint64_t phys_birth) 1782 { 1783 uint64_t offset = DVA_GET_OFFSET(dva); 1784 uint64_t asize = vdev_draid_asize(vd, psize); 1785 1786 if (phys_birth == TXG_UNKNOWN) { 1787 /* 1788 * Sequential resilver. There is no meaningful phys_birth 1789 * for this block, we can only determine if block resides 1790 * in a degraded group in which case it must be resilvered. 1791 */ 1792 ASSERT3U(vdev_draid_offset_to_group(vd, offset), ==, 1793 vdev_draid_offset_to_group(vd, offset + asize - 1)); 1794 1795 return (vdev_draid_group_degraded(vd, offset)); 1796 } else { 1797 /* 1798 * Healing resilver. TXGs not in DTL_PARTIAL are intact, 1799 * as are blocks in non-degraded groups. 1800 */ 1801 if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)) 1802 return (B_FALSE); 1803 1804 if (vdev_draid_group_missing(vd, offset, phys_birth, 1)) 1805 return (B_TRUE); 1806 1807 /* The block may span groups in which case check both. */ 1808 if (vdev_draid_offset_to_group(vd, offset) != 1809 vdev_draid_offset_to_group(vd, offset + asize - 1)) { 1810 if (vdev_draid_group_missing(vd, 1811 offset + asize, phys_birth, 1)) 1812 return (B_TRUE); 1813 } 1814 1815 return (B_FALSE); 1816 } 1817 } 1818 1819 static boolean_t 1820 vdev_draid_rebuilding(vdev_t *vd) 1821 { 1822 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_rebuild_txg) 1823 return (B_TRUE); 1824 1825 for (int i = 0; i < vd->vdev_children; i++) { 1826 if (vdev_draid_rebuilding(vd->vdev_child[i])) { 1827 return (B_TRUE); 1828 } 1829 } 1830 1831 return (B_FALSE); 1832 } 1833 1834 static void 1835 vdev_draid_io_verify(vdev_t *vd, raidz_row_t *rr, int col) 1836 { 1837 #ifdef ZFS_DEBUG 1838 range_seg64_t logical_rs, physical_rs, remain_rs; 1839 logical_rs.rs_start = rr->rr_offset; 1840 logical_rs.rs_end = logical_rs.rs_start + 1841 vdev_draid_asize(vd, rr->rr_size); 1842 1843 raidz_col_t *rc = &rr->rr_col[col]; 1844 vdev_t *cvd = vd->vdev_child[rc->rc_devidx]; 1845 1846 vdev_xlate(cvd, &logical_rs, &physical_rs, &remain_rs); 1847 ASSERT(vdev_xlate_is_empty(&remain_rs)); 1848 ASSERT3U(rc->rc_offset, ==, physical_rs.rs_start); 1849 ASSERT3U(rc->rc_offset, <, physical_rs.rs_end); 1850 ASSERT3U(rc->rc_offset + rc->rc_size, ==, physical_rs.rs_end); 1851 #endif 1852 } 1853 1854 /* 1855 * For write operations: 1856 * 1. Generate the parity data 1857 * 2. Create child zio write operations to each column's vdev, for both 1858 * data and parity. A gang ABD is allocated by vdev_draid_map_alloc() 1859 * if a skip sector needs to be added to a column. 1860 */ 1861 static void 1862 vdev_draid_io_start_write(zio_t *zio, raidz_row_t *rr) 1863 { 1864 vdev_t *vd = zio->io_vd; 1865 raidz_map_t *rm = zio->io_vsd; 1866 1867 vdev_raidz_generate_parity_row(rm, rr); 1868 1869 for (int c = 0; c < rr->rr_cols; c++) { 1870 raidz_col_t *rc = &rr->rr_col[c]; 1871 1872 /* 1873 * Empty columns are zero filled and included in the parity 1874 * calculation and therefore must be written. 1875 */ 1876 ASSERT3U(rc->rc_size, !=, 0); 1877 1878 /* Verify physical to logical translation */ 1879 vdev_draid_io_verify(vd, rr, c); 1880 1881 zio_nowait(zio_vdev_child_io(zio, NULL, 1882 vd->vdev_child[rc->rc_devidx], rc->rc_offset, 1883 rc->rc_abd, rc->rc_size, zio->io_type, zio->io_priority, 1884 0, vdev_raidz_child_done, rc)); 1885 } 1886 } 1887 1888 /* 1889 * For read operations: 1890 * 1. The vdev_draid_map_alloc() function will create a minimal raidz 1891 * mapping for the read based on the zio->io_flags. There are two 1892 * possible mappings either 1) a normal read, or 2) a scrub/resilver. 1893 * 2. Create the zio read operations. This will include all parity 1894 * columns and skip sectors for a scrub/resilver. 1895 */ 1896 static void 1897 vdev_draid_io_start_read(zio_t *zio, raidz_row_t *rr) 1898 { 1899 vdev_t *vd = zio->io_vd; 1900 1901 /* Sequential rebuild must do IO at redundancy group boundary. */ 1902 IMPLY(zio->io_priority == ZIO_PRIORITY_REBUILD, rr->rr_nempty == 0); 1903 1904 /* 1905 * Iterate over the columns in reverse order so that we hit the parity 1906 * last. Any errors along the way will force us to read the parity. 1907 * For scrub/resilver IOs which verify skip sectors, a gang ABD will 1908 * have been allocated to store them and rc->rc_size is increased. 1909 */ 1910 for (int c = rr->rr_cols - 1; c >= 0; c--) { 1911 raidz_col_t *rc = &rr->rr_col[c]; 1912 vdev_t *cvd = vd->vdev_child[rc->rc_devidx]; 1913 1914 if (!vdev_draid_readable(cvd, rc->rc_offset)) { 1915 if (c >= rr->rr_firstdatacol) 1916 rr->rr_missingdata++; 1917 else 1918 rr->rr_missingparity++; 1919 rc->rc_error = SET_ERROR(ENXIO); 1920 rc->rc_tried = 1; 1921 rc->rc_skipped = 1; 1922 continue; 1923 } 1924 1925 if (vdev_draid_missing(cvd, rc->rc_offset, zio->io_txg, 1)) { 1926 if (c >= rr->rr_firstdatacol) 1927 rr->rr_missingdata++; 1928 else 1929 rr->rr_missingparity++; 1930 rc->rc_error = SET_ERROR(ESTALE); 1931 rc->rc_skipped = 1; 1932 continue; 1933 } 1934 1935 /* 1936 * Empty columns may be read during vdev_draid_io_done(). 1937 * Only skip them after the readable and missing checks 1938 * verify they are available. 1939 */ 1940 if (rc->rc_size == 0) { 1941 rc->rc_skipped = 1; 1942 continue; 1943 } 1944 1945 if (zio->io_flags & ZIO_FLAG_RESILVER) { 1946 vdev_t *svd; 1947 1948 /* 1949 * Sequential rebuilds need to always consider the data 1950 * on the child being rebuilt to be stale. This is 1951 * important when all columns are available to aid 1952 * known reconstruction in identifing which columns 1953 * contain incorrect data. 1954 * 1955 * Furthermore, all repairs need to be constrained to 1956 * the devices being rebuilt because without a checksum 1957 * we cannot verify the data is actually correct and 1958 * performing an incorrect repair could result in 1959 * locking in damage and making the data unrecoverable. 1960 */ 1961 if (zio->io_priority == ZIO_PRIORITY_REBUILD) { 1962 if (vdev_draid_rebuilding(cvd)) { 1963 if (c >= rr->rr_firstdatacol) 1964 rr->rr_missingdata++; 1965 else 1966 rr->rr_missingparity++; 1967 rc->rc_error = SET_ERROR(ESTALE); 1968 rc->rc_skipped = 1; 1969 rc->rc_allow_repair = 1; 1970 continue; 1971 } else { 1972 rc->rc_allow_repair = 0; 1973 } 1974 } else { 1975 rc->rc_allow_repair = 1; 1976 } 1977 1978 /* 1979 * If this child is a distributed spare then the 1980 * offset might reside on the vdev being replaced. 1981 * In which case this data must be written to the 1982 * new device. Failure to do so would result in 1983 * checksum errors when the old device is detached 1984 * and the pool is scrubbed. 1985 */ 1986 if ((svd = vdev_draid_find_spare(cvd)) != NULL) { 1987 svd = vdev_draid_spare_get_child(svd, 1988 rc->rc_offset); 1989 if (svd && (svd->vdev_ops == &vdev_spare_ops || 1990 svd->vdev_ops == &vdev_replacing_ops)) { 1991 rc->rc_force_repair = 1; 1992 1993 if (vdev_draid_rebuilding(svd)) 1994 rc->rc_allow_repair = 1; 1995 } 1996 } 1997 1998 /* 1999 * Always issue a repair IO to this child when its 2000 * a spare or replacing vdev with an active rebuild. 2001 */ 2002 if ((cvd->vdev_ops == &vdev_spare_ops || 2003 cvd->vdev_ops == &vdev_replacing_ops) && 2004 vdev_draid_rebuilding(cvd)) { 2005 rc->rc_force_repair = 1; 2006 rc->rc_allow_repair = 1; 2007 } 2008 } 2009 } 2010 2011 /* 2012 * Either a parity or data column is missing this means a repair 2013 * may be attempted by vdev_draid_io_done(). Expand the raid map 2014 * to read in empty columns which are needed along with the parity 2015 * during reconstruction. 2016 */ 2017 if ((rr->rr_missingdata > 0 || rr->rr_missingparity > 0) && 2018 rr->rr_nempty > 0 && rr->rr_abd_empty == NULL) { 2019 vdev_draid_map_alloc_empty(zio, rr); 2020 } 2021 2022 for (int c = rr->rr_cols - 1; c >= 0; c--) { 2023 raidz_col_t *rc = &rr->rr_col[c]; 2024 vdev_t *cvd = vd->vdev_child[rc->rc_devidx]; 2025 2026 if (rc->rc_error || rc->rc_size == 0) 2027 continue; 2028 2029 if (c >= rr->rr_firstdatacol || rr->rr_missingdata > 0 || 2030 (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) { 2031 zio_nowait(zio_vdev_child_io(zio, NULL, cvd, 2032 rc->rc_offset, rc->rc_abd, rc->rc_size, 2033 zio->io_type, zio->io_priority, 0, 2034 vdev_raidz_child_done, rc)); 2035 } 2036 } 2037 } 2038 2039 /* 2040 * Start an IO operation to a dRAID vdev. 2041 */ 2042 static void 2043 vdev_draid_io_start(zio_t *zio) 2044 { 2045 vdev_t *vd __maybe_unused = zio->io_vd; 2046 2047 ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops); 2048 ASSERT3U(zio->io_offset, ==, vdev_draid_get_astart(vd, zio->io_offset)); 2049 2050 raidz_map_t *rm = vdev_draid_map_alloc(zio); 2051 zio->io_vsd = rm; 2052 zio->io_vsd_ops = &vdev_raidz_vsd_ops; 2053 2054 if (zio->io_type == ZIO_TYPE_WRITE) { 2055 for (int i = 0; i < rm->rm_nrows; i++) { 2056 vdev_draid_io_start_write(zio, rm->rm_row[i]); 2057 } 2058 } else { 2059 ASSERT(zio->io_type == ZIO_TYPE_READ); 2060 2061 for (int i = 0; i < rm->rm_nrows; i++) { 2062 vdev_draid_io_start_read(zio, rm->rm_row[i]); 2063 } 2064 } 2065 2066 zio_execute(zio); 2067 } 2068 2069 /* 2070 * Complete an IO operation on a dRAID vdev. The raidz logic can be applied 2071 * to dRAID since the layout is fully described by the raidz_map_t. 2072 */ 2073 static void 2074 vdev_draid_io_done(zio_t *zio) 2075 { 2076 vdev_raidz_io_done(zio); 2077 } 2078 2079 static void 2080 vdev_draid_state_change(vdev_t *vd, int faulted, int degraded) 2081 { 2082 vdev_draid_config_t *vdc = vd->vdev_tsd; 2083 ASSERT(vd->vdev_ops == &vdev_draid_ops); 2084 2085 if (faulted > vdc->vdc_nparity) 2086 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2087 VDEV_AUX_NO_REPLICAS); 2088 else if (degraded + faulted != 0) 2089 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE); 2090 else 2091 vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE); 2092 } 2093 2094 static void 2095 vdev_draid_xlate(vdev_t *cvd, const range_seg64_t *logical_rs, 2096 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 2097 { 2098 vdev_t *raidvd = cvd->vdev_parent; 2099 ASSERT(raidvd->vdev_ops == &vdev_draid_ops); 2100 2101 vdev_draid_config_t *vdc = raidvd->vdev_tsd; 2102 uint64_t ashift = raidvd->vdev_top->vdev_ashift; 2103 2104 /* Make sure the offsets are block-aligned */ 2105 ASSERT0(logical_rs->rs_start % (1 << ashift)); 2106 ASSERT0(logical_rs->rs_end % (1 << ashift)); 2107 2108 uint64_t logical_start = logical_rs->rs_start; 2109 uint64_t logical_end = logical_rs->rs_end; 2110 2111 /* 2112 * Unaligned ranges must be skipped. All metaslabs are correctly 2113 * aligned so this should not happen, but this case is handled in 2114 * case it's needed by future callers. 2115 */ 2116 uint64_t astart = vdev_draid_get_astart(raidvd, logical_start); 2117 if (astart != logical_start) { 2118 physical_rs->rs_start = logical_start; 2119 physical_rs->rs_end = logical_start; 2120 remain_rs->rs_start = MIN(astart, logical_end); 2121 remain_rs->rs_end = logical_end; 2122 return; 2123 } 2124 2125 /* 2126 * Unlike with mirrors and raidz a dRAID logical range can map 2127 * to multiple non-contiguous physical ranges. This is handled by 2128 * limiting the size of the logical range to a single group and 2129 * setting the remain argument such that it describes the remaining 2130 * unmapped logical range. This is stricter than absolutely 2131 * necessary but helps simplify the logic below. 2132 */ 2133 uint64_t group = vdev_draid_offset_to_group(raidvd, logical_start); 2134 uint64_t nextstart = vdev_draid_group_to_offset(raidvd, group + 1); 2135 if (logical_end > nextstart) 2136 logical_end = nextstart; 2137 2138 /* Find the starting offset for each vdev in the group */ 2139 uint64_t perm, groupstart; 2140 uint64_t start = vdev_draid_logical_to_physical(raidvd, 2141 logical_start, &perm, &groupstart); 2142 uint64_t end = start; 2143 2144 uint8_t *base; 2145 uint64_t iter, id; 2146 vdev_draid_get_perm(vdc, perm, &base, &iter); 2147 2148 /* 2149 * Check if the passed child falls within the group. If it does 2150 * update the start and end to reflect the physical range. 2151 * Otherwise, leave them unmodified which will result in an empty 2152 * (zero-length) physical range being returned. 2153 */ 2154 for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) { 2155 uint64_t c = (groupstart + i) % vdc->vdc_ndisks; 2156 2157 if (c == 0 && i != 0) { 2158 /* the group wrapped, increment the start */ 2159 start += VDEV_DRAID_ROWHEIGHT; 2160 end = start; 2161 } 2162 2163 id = vdev_draid_permute_id(vdc, base, iter, c); 2164 if (id == cvd->vdev_id) { 2165 uint64_t b_size = (logical_end >> ashift) - 2166 (logical_start >> ashift); 2167 ASSERT3U(b_size, >, 0); 2168 end = start + ((((b_size - 1) / 2169 vdc->vdc_groupwidth) + 1) << ashift); 2170 break; 2171 } 2172 } 2173 physical_rs->rs_start = start; 2174 physical_rs->rs_end = end; 2175 2176 /* 2177 * Only top-level vdevs are allowed to set remain_rs because 2178 * when .vdev_op_xlate() is called for their children the full 2179 * logical range is not provided by vdev_xlate(). 2180 */ 2181 remain_rs->rs_start = logical_end; 2182 remain_rs->rs_end = logical_rs->rs_end; 2183 2184 ASSERT3U(physical_rs->rs_start, <=, logical_start); 2185 ASSERT3U(physical_rs->rs_end - physical_rs->rs_start, <=, 2186 logical_end - logical_start); 2187 } 2188 2189 /* 2190 * Add dRAID specific fields to the config nvlist. 2191 */ 2192 static void 2193 vdev_draid_config_generate(vdev_t *vd, nvlist_t *nv) 2194 { 2195 ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops); 2196 vdev_draid_config_t *vdc = vd->vdev_tsd; 2197 2198 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vdc->vdc_nparity); 2199 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, vdc->vdc_ndata); 2200 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, vdc->vdc_nspares); 2201 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, vdc->vdc_ngroups); 2202 } 2203 2204 /* 2205 * Initialize private dRAID specific fields from the nvlist. 2206 */ 2207 static int 2208 vdev_draid_init(spa_t *spa, nvlist_t *nv, void **tsd) 2209 { 2210 (void) spa; 2211 uint64_t ndata, nparity, nspares, ngroups; 2212 int error; 2213 2214 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, &ndata)) 2215 return (SET_ERROR(EINVAL)); 2216 2217 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &nparity) || 2218 nparity == 0 || nparity > VDEV_DRAID_MAXPARITY) { 2219 return (SET_ERROR(EINVAL)); 2220 } 2221 2222 uint_t children; 2223 nvlist_t **child; 2224 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 2225 &child, &children) != 0 || children == 0 || 2226 children > VDEV_DRAID_MAX_CHILDREN) { 2227 return (SET_ERROR(EINVAL)); 2228 } 2229 2230 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, &nspares) || 2231 nspares > 100 || nspares > (children - (ndata + nparity))) { 2232 return (SET_ERROR(EINVAL)); 2233 } 2234 2235 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, &ngroups) || 2236 ngroups == 0 || ngroups > VDEV_DRAID_MAX_CHILDREN) { 2237 return (SET_ERROR(EINVAL)); 2238 } 2239 2240 /* 2241 * Validate the minimum number of children exist per group for the 2242 * specified parity level (draid1 >= 2, draid2 >= 3, draid3 >= 4). 2243 */ 2244 if (children < (ndata + nparity + nspares)) 2245 return (SET_ERROR(EINVAL)); 2246 2247 /* 2248 * Create the dRAID configuration using the pool nvlist configuration 2249 * and the fixed mapping for the correct number of children. 2250 */ 2251 vdev_draid_config_t *vdc; 2252 const draid_map_t *map; 2253 2254 error = vdev_draid_lookup_map(children, &map); 2255 if (error) 2256 return (SET_ERROR(EINVAL)); 2257 2258 vdc = kmem_zalloc(sizeof (*vdc), KM_SLEEP); 2259 vdc->vdc_ndata = ndata; 2260 vdc->vdc_nparity = nparity; 2261 vdc->vdc_nspares = nspares; 2262 vdc->vdc_children = children; 2263 vdc->vdc_ngroups = ngroups; 2264 vdc->vdc_nperms = map->dm_nperms; 2265 2266 error = vdev_draid_generate_perms(map, &vdc->vdc_perms); 2267 if (error) { 2268 kmem_free(vdc, sizeof (*vdc)); 2269 return (SET_ERROR(EINVAL)); 2270 } 2271 2272 /* 2273 * Derived constants. 2274 */ 2275 vdc->vdc_groupwidth = vdc->vdc_ndata + vdc->vdc_nparity; 2276 vdc->vdc_ndisks = vdc->vdc_children - vdc->vdc_nspares; 2277 vdc->vdc_groupsz = vdc->vdc_groupwidth * VDEV_DRAID_ROWHEIGHT; 2278 vdc->vdc_devslicesz = (vdc->vdc_groupsz * vdc->vdc_ngroups) / 2279 vdc->vdc_ndisks; 2280 2281 ASSERT3U(vdc->vdc_groupwidth, >=, 2); 2282 ASSERT3U(vdc->vdc_groupwidth, <=, vdc->vdc_ndisks); 2283 ASSERT3U(vdc->vdc_groupsz, >=, 2 * VDEV_DRAID_ROWHEIGHT); 2284 ASSERT3U(vdc->vdc_devslicesz, >=, VDEV_DRAID_ROWHEIGHT); 2285 ASSERT3U(vdc->vdc_devslicesz % VDEV_DRAID_ROWHEIGHT, ==, 0); 2286 ASSERT3U((vdc->vdc_groupwidth * vdc->vdc_ngroups) % 2287 vdc->vdc_ndisks, ==, 0); 2288 2289 *tsd = vdc; 2290 2291 return (0); 2292 } 2293 2294 static void 2295 vdev_draid_fini(vdev_t *vd) 2296 { 2297 vdev_draid_config_t *vdc = vd->vdev_tsd; 2298 2299 vmem_free(vdc->vdc_perms, sizeof (uint8_t) * 2300 vdc->vdc_children * vdc->vdc_nperms); 2301 kmem_free(vdc, sizeof (*vdc)); 2302 } 2303 2304 static uint64_t 2305 vdev_draid_nparity(vdev_t *vd) 2306 { 2307 vdev_draid_config_t *vdc = vd->vdev_tsd; 2308 2309 return (vdc->vdc_nparity); 2310 } 2311 2312 static uint64_t 2313 vdev_draid_ndisks(vdev_t *vd) 2314 { 2315 vdev_draid_config_t *vdc = vd->vdev_tsd; 2316 2317 return (vdc->vdc_ndisks); 2318 } 2319 2320 vdev_ops_t vdev_draid_ops = { 2321 .vdev_op_init = vdev_draid_init, 2322 .vdev_op_fini = vdev_draid_fini, 2323 .vdev_op_open = vdev_draid_open, 2324 .vdev_op_close = vdev_draid_close, 2325 .vdev_op_asize = vdev_draid_asize, 2326 .vdev_op_min_asize = vdev_draid_min_asize, 2327 .vdev_op_min_alloc = vdev_draid_min_alloc, 2328 .vdev_op_io_start = vdev_draid_io_start, 2329 .vdev_op_io_done = vdev_draid_io_done, 2330 .vdev_op_state_change = vdev_draid_state_change, 2331 .vdev_op_need_resilver = vdev_draid_need_resilver, 2332 .vdev_op_hold = NULL, 2333 .vdev_op_rele = NULL, 2334 .vdev_op_remap = NULL, 2335 .vdev_op_xlate = vdev_draid_xlate, 2336 .vdev_op_rebuild_asize = vdev_draid_rebuild_asize, 2337 .vdev_op_metaslab_init = vdev_draid_metaslab_init, 2338 .vdev_op_config_generate = vdev_draid_config_generate, 2339 .vdev_op_nparity = vdev_draid_nparity, 2340 .vdev_op_ndisks = vdev_draid_ndisks, 2341 .vdev_op_type = VDEV_TYPE_DRAID, 2342 .vdev_op_leaf = B_FALSE, 2343 }; 2344 2345 2346 /* 2347 * A dRAID distributed spare is a virtual leaf vdev which is included in the 2348 * parent dRAID configuration. The last N columns of the dRAID permutation 2349 * table are used to determine on which dRAID children a specific offset 2350 * should be written. These spare leaf vdevs can only be used to replace 2351 * faulted children in the same dRAID configuration. 2352 */ 2353 2354 /* 2355 * Distributed spare state. All fields are set when the distributed spare is 2356 * first opened and are immutable. 2357 */ 2358 typedef struct { 2359 vdev_t *vds_draid_vdev; /* top-level parent dRAID vdev */ 2360 uint64_t vds_top_guid; /* top-level parent dRAID guid */ 2361 uint64_t vds_spare_id; /* spare id (0 - vdc->vdc_nspares-1) */ 2362 } vdev_draid_spare_t; 2363 2364 /* 2365 * Returns the parent dRAID vdev to which the distributed spare belongs. 2366 * This may be safely called even when the vdev is not open. 2367 */ 2368 vdev_t * 2369 vdev_draid_spare_get_parent(vdev_t *vd) 2370 { 2371 vdev_draid_spare_t *vds = vd->vdev_tsd; 2372 2373 ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops); 2374 2375 if (vds->vds_draid_vdev != NULL) 2376 return (vds->vds_draid_vdev); 2377 2378 return (vdev_lookup_by_guid(vd->vdev_spa->spa_root_vdev, 2379 vds->vds_top_guid)); 2380 } 2381 2382 /* 2383 * A dRAID space is active when it's the child of a vdev using the 2384 * vdev_spare_ops, vdev_replacing_ops or vdev_draid_ops. 2385 */ 2386 static boolean_t 2387 vdev_draid_spare_is_active(vdev_t *vd) 2388 { 2389 vdev_t *pvd = vd->vdev_parent; 2390 2391 if (pvd != NULL && (pvd->vdev_ops == &vdev_spare_ops || 2392 pvd->vdev_ops == &vdev_replacing_ops || 2393 pvd->vdev_ops == &vdev_draid_ops)) { 2394 return (B_TRUE); 2395 } else { 2396 return (B_FALSE); 2397 } 2398 } 2399 2400 /* 2401 * Given a dRAID distribute spare vdev, returns the physical child vdev 2402 * on which the provided offset resides. This may involve recursing through 2403 * multiple layers of distributed spares. Note that offset is relative to 2404 * this vdev. 2405 */ 2406 vdev_t * 2407 vdev_draid_spare_get_child(vdev_t *vd, uint64_t physical_offset) 2408 { 2409 vdev_draid_spare_t *vds = vd->vdev_tsd; 2410 2411 ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops); 2412 2413 /* The vdev is closed */ 2414 if (vds->vds_draid_vdev == NULL) 2415 return (NULL); 2416 2417 vdev_t *tvd = vds->vds_draid_vdev; 2418 vdev_draid_config_t *vdc = tvd->vdev_tsd; 2419 2420 ASSERT3P(tvd->vdev_ops, ==, &vdev_draid_ops); 2421 ASSERT3U(vds->vds_spare_id, <, vdc->vdc_nspares); 2422 2423 uint8_t *base; 2424 uint64_t iter; 2425 uint64_t perm = physical_offset / vdc->vdc_devslicesz; 2426 2427 vdev_draid_get_perm(vdc, perm, &base, &iter); 2428 2429 uint64_t cid = vdev_draid_permute_id(vdc, base, iter, 2430 (tvd->vdev_children - 1) - vds->vds_spare_id); 2431 vdev_t *cvd = tvd->vdev_child[cid]; 2432 2433 if (cvd->vdev_ops == &vdev_draid_spare_ops) 2434 return (vdev_draid_spare_get_child(cvd, physical_offset)); 2435 2436 return (cvd); 2437 } 2438 2439 static void 2440 vdev_draid_spare_close(vdev_t *vd) 2441 { 2442 vdev_draid_spare_t *vds = vd->vdev_tsd; 2443 vds->vds_draid_vdev = NULL; 2444 } 2445 2446 /* 2447 * Opening a dRAID spare device is done by looking up the associated dRAID 2448 * top-level vdev guid from the spare configuration. 2449 */ 2450 static int 2451 vdev_draid_spare_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize, 2452 uint64_t *logical_ashift, uint64_t *physical_ashift) 2453 { 2454 vdev_draid_spare_t *vds = vd->vdev_tsd; 2455 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2456 uint64_t asize, max_asize; 2457 2458 vdev_t *tvd = vdev_lookup_by_guid(rvd, vds->vds_top_guid); 2459 if (tvd == NULL) { 2460 /* 2461 * When spa_vdev_add() is labeling new spares the 2462 * associated dRAID is not attached to the root vdev 2463 * nor does this spare have a parent. Simulate a valid 2464 * device in order to allow the label to be initialized 2465 * and the distributed spare added to the configuration. 2466 */ 2467 if (vd->vdev_parent == NULL) { 2468 *psize = *max_psize = SPA_MINDEVSIZE; 2469 *logical_ashift = *physical_ashift = ASHIFT_MIN; 2470 return (0); 2471 } 2472 2473 return (SET_ERROR(EINVAL)); 2474 } 2475 2476 vdev_draid_config_t *vdc = tvd->vdev_tsd; 2477 if (tvd->vdev_ops != &vdev_draid_ops || vdc == NULL) 2478 return (SET_ERROR(EINVAL)); 2479 2480 if (vds->vds_spare_id >= vdc->vdc_nspares) 2481 return (SET_ERROR(EINVAL)); 2482 2483 /* 2484 * Neither tvd->vdev_asize or tvd->vdev_max_asize can be used here 2485 * because the caller may be vdev_draid_open() in which case the 2486 * values are stale as they haven't yet been updated by vdev_open(). 2487 * To avoid this always recalculate the dRAID asize and max_asize. 2488 */ 2489 vdev_draid_calculate_asize(tvd, &asize, &max_asize, 2490 logical_ashift, physical_ashift); 2491 2492 *psize = asize + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2493 *max_psize = max_asize + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2494 2495 vds->vds_draid_vdev = tvd; 2496 2497 return (0); 2498 } 2499 2500 /* 2501 * Completed distributed spare IO. Store the result in the parent zio 2502 * as if it had performed the operation itself. Only the first error is 2503 * preserved if there are multiple errors. 2504 */ 2505 static void 2506 vdev_draid_spare_child_done(zio_t *zio) 2507 { 2508 zio_t *pio = zio->io_private; 2509 2510 /* 2511 * IOs are issued to non-writable vdevs in order to keep their 2512 * DTLs accurate. However, we don't want to propagate the 2513 * error in to the distributed spare's DTL. When resilvering 2514 * vdev_draid_need_resilver() will consult the relevant DTL 2515 * to determine if the data is missing and must be repaired. 2516 */ 2517 if (!vdev_writeable(zio->io_vd)) 2518 return; 2519 2520 if (pio->io_error == 0) 2521 pio->io_error = zio->io_error; 2522 } 2523 2524 /* 2525 * Returns a valid label nvlist for the distributed spare vdev. This is 2526 * used to bypass the IO pipeline to avoid the complexity of constructing 2527 * a complete label with valid checksum to return when read. 2528 */ 2529 nvlist_t * 2530 vdev_draid_read_config_spare(vdev_t *vd) 2531 { 2532 spa_t *spa = vd->vdev_spa; 2533 spa_aux_vdev_t *sav = &spa->spa_spares; 2534 uint64_t guid = vd->vdev_guid; 2535 2536 nvlist_t *nv = fnvlist_alloc(); 2537 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1); 2538 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg); 2539 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VERSION, spa_version(spa)); 2540 fnvlist_add_string(nv, ZPOOL_CONFIG_POOL_NAME, spa_name(spa)); 2541 fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_GUID, spa_guid(spa)); 2542 fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg); 2543 fnvlist_add_uint64(nv, ZPOOL_CONFIG_TOP_GUID, vd->vdev_top->vdev_guid); 2544 fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_STATE, 2545 vdev_draid_spare_is_active(vd) ? 2546 POOL_STATE_ACTIVE : POOL_STATE_SPARE); 2547 2548 /* Set the vdev guid based on the vdev list in sav_count. */ 2549 for (int i = 0; i < sav->sav_count; i++) { 2550 if (sav->sav_vdevs[i]->vdev_ops == &vdev_draid_spare_ops && 2551 strcmp(sav->sav_vdevs[i]->vdev_path, vd->vdev_path) == 0) { 2552 guid = sav->sav_vdevs[i]->vdev_guid; 2553 break; 2554 } 2555 } 2556 2557 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, guid); 2558 2559 return (nv); 2560 } 2561 2562 /* 2563 * Handle any ioctl requested of the distributed spare. Only flushes 2564 * are supported in which case all children must be flushed. 2565 */ 2566 static int 2567 vdev_draid_spare_ioctl(zio_t *zio) 2568 { 2569 vdev_t *vd = zio->io_vd; 2570 int error = 0; 2571 2572 if (zio->io_cmd == DKIOCFLUSHWRITECACHE) { 2573 for (int c = 0; c < vd->vdev_children; c++) { 2574 zio_nowait(zio_vdev_child_io(zio, NULL, 2575 vd->vdev_child[c], zio->io_offset, zio->io_abd, 2576 zio->io_size, zio->io_type, zio->io_priority, 0, 2577 vdev_draid_spare_child_done, zio)); 2578 } 2579 } else { 2580 error = SET_ERROR(ENOTSUP); 2581 } 2582 2583 return (error); 2584 } 2585 2586 /* 2587 * Initiate an IO to the distributed spare. For normal IOs this entails using 2588 * the zio->io_offset and permutation table to calculate which child dRAID vdev 2589 * is responsible for the data. Then passing along the zio to that child to 2590 * perform the actual IO. The label ranges are not stored on disk and require 2591 * some special handling which is described below. 2592 */ 2593 static void 2594 vdev_draid_spare_io_start(zio_t *zio) 2595 { 2596 vdev_t *cvd = NULL, *vd = zio->io_vd; 2597 vdev_draid_spare_t *vds = vd->vdev_tsd; 2598 uint64_t offset = zio->io_offset - VDEV_LABEL_START_SIZE; 2599 2600 /* 2601 * If the vdev is closed, it's likely in the REMOVED or FAULTED state. 2602 * Nothing to be done here but return failure. 2603 */ 2604 if (vds == NULL) { 2605 zio->io_error = ENXIO; 2606 zio_interrupt(zio); 2607 return; 2608 } 2609 2610 switch (zio->io_type) { 2611 case ZIO_TYPE_IOCTL: 2612 zio->io_error = vdev_draid_spare_ioctl(zio); 2613 break; 2614 2615 case ZIO_TYPE_WRITE: 2616 if (VDEV_OFFSET_IS_LABEL(vd, zio->io_offset)) { 2617 /* 2618 * Accept probe IOs and config writers to simulate the 2619 * existence of an on disk label. vdev_label_sync(), 2620 * vdev_uberblock_sync() and vdev_copy_uberblocks() 2621 * skip the distributed spares. This only leaves 2622 * vdev_label_init() which is allowed to succeed to 2623 * avoid adding special cases the function. 2624 */ 2625 if (zio->io_flags & ZIO_FLAG_PROBE || 2626 zio->io_flags & ZIO_FLAG_CONFIG_WRITER) { 2627 zio->io_error = 0; 2628 } else { 2629 zio->io_error = SET_ERROR(EIO); 2630 } 2631 } else { 2632 cvd = vdev_draid_spare_get_child(vd, offset); 2633 2634 if (cvd == NULL) { 2635 zio->io_error = SET_ERROR(ENXIO); 2636 } else { 2637 zio_nowait(zio_vdev_child_io(zio, NULL, cvd, 2638 offset, zio->io_abd, zio->io_size, 2639 zio->io_type, zio->io_priority, 0, 2640 vdev_draid_spare_child_done, zio)); 2641 } 2642 } 2643 break; 2644 2645 case ZIO_TYPE_READ: 2646 if (VDEV_OFFSET_IS_LABEL(vd, zio->io_offset)) { 2647 /* 2648 * Accept probe IOs to simulate the existence of a 2649 * label. vdev_label_read_config() bypasses the 2650 * pipeline to read the label configuration and 2651 * vdev_uberblock_load() skips distributed spares 2652 * when attempting to locate the best uberblock. 2653 */ 2654 if (zio->io_flags & ZIO_FLAG_PROBE) { 2655 zio->io_error = 0; 2656 } else { 2657 zio->io_error = SET_ERROR(EIO); 2658 } 2659 } else { 2660 cvd = vdev_draid_spare_get_child(vd, offset); 2661 2662 if (cvd == NULL || !vdev_readable(cvd)) { 2663 zio->io_error = SET_ERROR(ENXIO); 2664 } else { 2665 zio_nowait(zio_vdev_child_io(zio, NULL, cvd, 2666 offset, zio->io_abd, zio->io_size, 2667 zio->io_type, zio->io_priority, 0, 2668 vdev_draid_spare_child_done, zio)); 2669 } 2670 } 2671 break; 2672 2673 case ZIO_TYPE_TRIM: 2674 /* The vdev label ranges are never trimmed */ 2675 ASSERT0(VDEV_OFFSET_IS_LABEL(vd, zio->io_offset)); 2676 2677 cvd = vdev_draid_spare_get_child(vd, offset); 2678 2679 if (cvd == NULL || !cvd->vdev_has_trim) { 2680 zio->io_error = SET_ERROR(ENXIO); 2681 } else { 2682 zio_nowait(zio_vdev_child_io(zio, NULL, cvd, 2683 offset, zio->io_abd, zio->io_size, 2684 zio->io_type, zio->io_priority, 0, 2685 vdev_draid_spare_child_done, zio)); 2686 } 2687 break; 2688 2689 default: 2690 zio->io_error = SET_ERROR(ENOTSUP); 2691 break; 2692 } 2693 2694 zio_execute(zio); 2695 } 2696 2697 static void 2698 vdev_draid_spare_io_done(zio_t *zio) 2699 { 2700 (void) zio; 2701 } 2702 2703 /* 2704 * Lookup the full spare config in spa->spa_spares.sav_config and 2705 * return the top_guid and spare_id for the named spare. 2706 */ 2707 static int 2708 vdev_draid_spare_lookup(spa_t *spa, nvlist_t *nv, uint64_t *top_guidp, 2709 uint64_t *spare_idp) 2710 { 2711 nvlist_t **spares; 2712 uint_t nspares; 2713 int error; 2714 2715 if ((spa->spa_spares.sav_config == NULL) || 2716 (nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2717 ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)) { 2718 return (SET_ERROR(ENOENT)); 2719 } 2720 2721 char *spare_name; 2722 error = nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &spare_name); 2723 if (error != 0) 2724 return (SET_ERROR(EINVAL)); 2725 2726 for (int i = 0; i < nspares; i++) { 2727 nvlist_t *spare = spares[i]; 2728 uint64_t top_guid, spare_id; 2729 char *type, *path; 2730 2731 /* Skip non-distributed spares */ 2732 error = nvlist_lookup_string(spare, ZPOOL_CONFIG_TYPE, &type); 2733 if (error != 0 || strcmp(type, VDEV_TYPE_DRAID_SPARE) != 0) 2734 continue; 2735 2736 /* Skip spares with the wrong name */ 2737 error = nvlist_lookup_string(spare, ZPOOL_CONFIG_PATH, &path); 2738 if (error != 0 || strcmp(path, spare_name) != 0) 2739 continue; 2740 2741 /* Found the matching spare */ 2742 error = nvlist_lookup_uint64(spare, 2743 ZPOOL_CONFIG_TOP_GUID, &top_guid); 2744 if (error == 0) { 2745 error = nvlist_lookup_uint64(spare, 2746 ZPOOL_CONFIG_SPARE_ID, &spare_id); 2747 } 2748 2749 if (error != 0) { 2750 return (SET_ERROR(EINVAL)); 2751 } else { 2752 *top_guidp = top_guid; 2753 *spare_idp = spare_id; 2754 return (0); 2755 } 2756 } 2757 2758 return (SET_ERROR(ENOENT)); 2759 } 2760 2761 /* 2762 * Initialize private dRAID spare specific fields from the nvlist. 2763 */ 2764 static int 2765 vdev_draid_spare_init(spa_t *spa, nvlist_t *nv, void **tsd) 2766 { 2767 vdev_draid_spare_t *vds; 2768 uint64_t top_guid = 0; 2769 uint64_t spare_id; 2770 2771 /* 2772 * In the normal case check the list of spares stored in the spa 2773 * to lookup the top_guid and spare_id for provided spare config. 2774 * When creating a new pool or adding vdevs the spare list is not 2775 * yet populated and the values are provided in the passed config. 2776 */ 2777 if (vdev_draid_spare_lookup(spa, nv, &top_guid, &spare_id) != 0) { 2778 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_TOP_GUID, 2779 &top_guid) != 0) 2780 return (SET_ERROR(EINVAL)); 2781 2782 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_SPARE_ID, 2783 &spare_id) != 0) 2784 return (SET_ERROR(EINVAL)); 2785 } 2786 2787 vds = kmem_alloc(sizeof (vdev_draid_spare_t), KM_SLEEP); 2788 vds->vds_draid_vdev = NULL; 2789 vds->vds_top_guid = top_guid; 2790 vds->vds_spare_id = spare_id; 2791 2792 *tsd = vds; 2793 2794 return (0); 2795 } 2796 2797 static void 2798 vdev_draid_spare_fini(vdev_t *vd) 2799 { 2800 kmem_free(vd->vdev_tsd, sizeof (vdev_draid_spare_t)); 2801 } 2802 2803 static void 2804 vdev_draid_spare_config_generate(vdev_t *vd, nvlist_t *nv) 2805 { 2806 vdev_draid_spare_t *vds = vd->vdev_tsd; 2807 2808 ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops); 2809 2810 fnvlist_add_uint64(nv, ZPOOL_CONFIG_TOP_GUID, vds->vds_top_guid); 2811 fnvlist_add_uint64(nv, ZPOOL_CONFIG_SPARE_ID, vds->vds_spare_id); 2812 } 2813 2814 vdev_ops_t vdev_draid_spare_ops = { 2815 .vdev_op_init = vdev_draid_spare_init, 2816 .vdev_op_fini = vdev_draid_spare_fini, 2817 .vdev_op_open = vdev_draid_spare_open, 2818 .vdev_op_close = vdev_draid_spare_close, 2819 .vdev_op_asize = vdev_default_asize, 2820 .vdev_op_min_asize = vdev_default_min_asize, 2821 .vdev_op_min_alloc = NULL, 2822 .vdev_op_io_start = vdev_draid_spare_io_start, 2823 .vdev_op_io_done = vdev_draid_spare_io_done, 2824 .vdev_op_state_change = NULL, 2825 .vdev_op_need_resilver = NULL, 2826 .vdev_op_hold = NULL, 2827 .vdev_op_rele = NULL, 2828 .vdev_op_remap = NULL, 2829 .vdev_op_xlate = vdev_default_xlate, 2830 .vdev_op_rebuild_asize = NULL, 2831 .vdev_op_metaslab_init = NULL, 2832 .vdev_op_config_generate = vdev_draid_spare_config_generate, 2833 .vdev_op_nparity = NULL, 2834 .vdev_op_ndisks = NULL, 2835 .vdev_op_type = VDEV_TYPE_DRAID_SPARE, 2836 .vdev_op_leaf = B_TRUE, 2837 }; 2838