xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_draid.c (revision b51f459a2098622c31ed54f5c1bf0e03efce403b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2018 Intel Corporation.
23  * Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/spa.h>
28 #include <sys/spa_impl.h>
29 #include <sys/vdev_impl.h>
30 #include <sys/vdev_draid.h>
31 #include <sys/vdev_raidz.h>
32 #include <sys/vdev_rebuild.h>
33 #include <sys/abd.h>
34 #include <sys/zio.h>
35 #include <sys/nvpair.h>
36 #include <sys/zio_checksum.h>
37 #include <sys/fs/zfs.h>
38 #include <sys/fm/fs/zfs.h>
39 #include <zfs_fletcher.h>
40 
41 #ifdef ZFS_DEBUG
42 #include <sys/vdev.h>	/* For vdev_xlate() in vdev_draid_io_verify() */
43 #endif
44 
45 /*
46  * dRAID is a distributed spare implementation for ZFS. A dRAID vdev is
47  * comprised of multiple raidz redundancy groups which are spread over the
48  * dRAID children. To ensure an even distribution, and avoid hot spots, a
49  * permutation mapping is applied to the order of the dRAID children.
50  * This mixing effectively distributes the parity columns evenly over all
51  * of the disks in the dRAID.
52  *
53  * This is beneficial because it means when resilvering all of the disks
54  * can participate thereby increasing the available IOPs and bandwidth.
55  * Furthermore, by reserving a small fraction of each child's total capacity
56  * virtual distributed spare disks can be created. These spares similarly
57  * benefit from the performance gains of spanning all of the children. The
58  * consequence of which is that resilvering to a distributed spare can
59  * substantially reduce the time required to restore full parity to pool
60  * with a failed disks.
61  *
62  * === dRAID group layout ===
63  *
64  * First, let's define a "row" in the configuration to be a 16M chunk from
65  * each physical drive at the same offset. This is the minimum allowable
66  * size since it must be possible to store a full 16M block when there is
67  * only a single data column. Next, we define a "group" to be a set of
68  * sequential disks containing both the parity and data columns. We allow
69  * groups to span multiple rows in order to align any group size to any
70  * number of physical drives. Finally, a "slice" is comprised of the rows
71  * which contain the target number of groups. The permutation mappings
72  * are applied in a round robin fashion to each slice.
73  *
74  * Given D+P drives in a group (including parity drives) and C-S physical
75  * drives (not including the spare drives), we can distribute the groups
76  * across R rows without remainder by selecting the least common multiple
77  * of D+P and C-S as the number of groups; i.e. ngroups = LCM(D+P, C-S).
78  *
79  * In the example below, there are C=14 physical drives in the configuration
80  * with S=2 drives worth of spare capacity. Each group has a width of 9
81  * which includes D=8 data and P=1 parity drive. There are 4 groups and
82  * 3 rows per slice.  Each group has a size of 144M (16M * 9) and a slice
83  * size is 576M (144M * 4). When allocating from a dRAID each group is
84  * filled before moving on to the next as show in slice0 below.
85  *
86  *             data disks (8 data + 1 parity)          spares (2)
87  *     +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
88  *  ^  | 2 | 6 | 1 | 11| 4 | 0 | 7 | 10| 8 | 9 | 13| 5 | 12| 3 | device map 0
89  *  |  +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
90  *  |  |              group 0              |  group 1..|       |
91  *  |  +-----------------------------------+-----------+-------|
92  *  |  | 0   1   2   3   4   5   6   7   8 | 36  37  38|       |  r
93  *  |  | 9   10  11  12  13  14  15  16  17| 45  46  47|       |  o
94  *  |  | 18  19  20  21  22  23  24  25  26| 54  55  56|       |  w
95  *     | 27  28  29  30  31  32  33  34  35| 63  64  65|       |  0
96  *  s  +-----------------------+-----------------------+-------+
97  *  l  |       ..group 1       |        group 2..      |       |
98  *  i  +-----------------------+-----------------------+-------+
99  *  c  | 39  40  41  42  43  44| 72  73  74  75  76  77|       |  r
100  *  e  | 48  49  50  51  52  53| 81  82  83  84  85  86|       |  o
101  *  0  | 57  58  59  60  61  62| 90  91  92  93  94  95|       |  w
102  *     | 66  67  68  69  70  71| 99 100 101 102 103 104|       |  1
103  *  |  +-----------+-----------+-----------------------+-------+
104  *  |  |..group 2  |            group 3                |       |
105  *  |  +-----------+-----------+-----------------------+-------+
106  *  |  | 78  79  80|108 109 110 111 112 113 114 115 116|       |  r
107  *  |  | 87  88  89|117 118 119 120 121 122 123 124 125|       |  o
108  *  |  | 96  97  98|126 127 128 129 130 131 132 133 134|       |  w
109  *  v  |105 106 107|135 136 137 138 139 140 141 142 143|       |  2
110  *     +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
111  *     | 9 | 11| 12| 2 | 4 | 1 | 3 | 0 | 10| 13| 8 | 5 | 6 | 7 | device map 1
112  *  s  +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
113  *  l  |              group 4              |  group 5..|       | row 3
114  *  i  +-----------------------+-----------+-----------+-------|
115  *  c  |       ..group 5       |        group 6..      |       | row 4
116  *  e  +-----------+-----------+-----------------------+-------+
117  *  1  |..group 6  |            group 7                |       | row 5
118  *     +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
119  *     | 3 | 5 | 10| 8 | 6 | 11| 12| 0 | 2 | 4 | 7 | 1 | 9 | 13| device map 2
120  *  s  +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
121  *  l  |              group 8              |  group 9..|       | row 6
122  *  i  +-----------------------------------------------+-------|
123  *  c  |       ..group 9       |        group 10..     |       | row 7
124  *  e  +-----------------------+-----------------------+-------+
125  *  2  |..group 10 |            group 11               |       | row 8
126  *     +-----------+-----------------------------------+-------+
127  *
128  * This layout has several advantages over requiring that each row contain
129  * a whole number of groups.
130  *
131  * 1. The group count is not a relevant parameter when defining a dRAID
132  *    layout. Only the group width is needed, and *all* groups will have
133  *    the desired size.
134  *
135  * 2. All possible group widths (<= physical disk count) can be supported.
136  *
137  * 3. The logic within vdev_draid.c is simplified when the group width is
138  *    the same for all groups (although some of the logic around computing
139  *    permutation numbers and drive offsets is more complicated).
140  *
141  * N.B. The following array describes all valid dRAID permutation maps.
142  * Each row is used to generate a permutation map for a different number
143  * of children from a unique seed. The seeds were generated and carefully
144  * evaluated by the 'draid' utility in order to provide balanced mappings.
145  * In addition to the seed a checksum of the in-memory mapping is stored
146  * for verification.
147  *
148  * The imbalance ratio of a given failure (e.g. 5 disks wide, child 3 failed,
149  * with a given permutation map) is the ratio of the amounts of I/O that will
150  * be sent to the least and most busy disks when resilvering. The average
151  * imbalance ratio (of a given number of disks and permutation map) is the
152  * average of the ratios of all possible single and double disk failures.
153  *
154  * In order to achieve a low imbalance ratio the number of permutations in
155  * the mapping must be significantly larger than the number of children.
156  * For dRAID the number of permutations has been limited to 512 to minimize
157  * the map size. This does result in a gradually increasing imbalance ratio
158  * as seen in the table below. Increasing the number of permutations for
159  * larger child counts would reduce the imbalance ratio. However, in practice
160  * when there are a large number of children each child is responsible for
161  * fewer total IOs so it's less of a concern.
162  *
163  * Note these values are hard coded and must never be changed.  Existing
164  * pools depend on the same mapping always being generated in order to
165  * read and write from the correct locations.  Any change would make
166  * existing pools completely inaccessible.
167  */
168 static const draid_map_t draid_maps[VDEV_DRAID_MAX_MAPS] = {
169 	{   2, 256, 0x89ef3dabbcc7de37, 0x00000000433d433d },	/* 1.000 */
170 	{   3, 256, 0x89a57f3de98121b4, 0x00000000bcd8b7b5 },	/* 1.000 */
171 	{   4, 256, 0xc9ea9ec82340c885, 0x00000001819d7c69 },	/* 1.000 */
172 	{   5, 256, 0xf46733b7f4d47dfd, 0x00000002a1648d74 },	/* 1.010 */
173 	{   6, 256, 0x88c3c62d8585b362, 0x00000003d3b0c2c4 },	/* 1.031 */
174 	{   7, 256, 0x3a65d809b4d1b9d5, 0x000000055c4183ee },	/* 1.043 */
175 	{   8, 256, 0xe98930e3c5d2e90a, 0x00000006edfb0329 },	/* 1.059 */
176 	{   9, 256, 0x5a5430036b982ccb, 0x00000008ceaf6934 },	/* 1.056 */
177 	{  10, 256, 0x92bf389e9eadac74, 0x0000000b26668c09 },	/* 1.072 */
178 	{  11, 256, 0x74ccebf1dcf3ae80, 0x0000000dd691358c },	/* 1.083 */
179 	{  12, 256, 0x8847e41a1a9f5671, 0x00000010a0c63c8e },	/* 1.097 */
180 	{  13, 256, 0x7481b56debf0e637, 0x0000001424121fe4 },	/* 1.100 */
181 	{  14, 256, 0x559b8c44065f8967, 0x00000016ab2ff079 },	/* 1.121 */
182 	{  15, 256, 0x34c49545a2ee7f01, 0x0000001a6028efd6 },	/* 1.103 */
183 	{  16, 256, 0xb85f4fa81a7698f7, 0x0000001e95ff5e66 },	/* 1.111 */
184 	{  17, 256, 0x6353e47b7e47aba0, 0x00000021a81fa0fe },	/* 1.133 */
185 	{  18, 256, 0xaa549746b1cbb81c, 0x00000026f02494c9 },	/* 1.131 */
186 	{  19, 256, 0x892e343f2f31d690, 0x00000029eb392835 },	/* 1.130 */
187 	{  20, 256, 0x76914824db98cc3f, 0x0000003004f31a7c },	/* 1.141 */
188 	{  21, 256, 0x4b3cbabf9cfb1d0f, 0x00000036363a2408 },	/* 1.139 */
189 	{  22, 256, 0xf45c77abb4f035d4, 0x00000038dd0f3e84 },	/* 1.150 */
190 	{  23, 256, 0x5e18bd7f3fd4baf4, 0x0000003f0660391f },	/* 1.174 */
191 	{  24, 256, 0xa7b3a4d285d6503b, 0x000000443dfc9ff6 },	/* 1.168 */
192 	{  25, 256, 0x56ac7dd967521f5a, 0x0000004b03a87eb7 },	/* 1.180 */
193 	{  26, 256, 0x3a42dfda4eb880f7, 0x000000522c719bba },	/* 1.226 */
194 	{  27, 256, 0xd200d2fc6b54bf60, 0x0000005760b4fdf5 },	/* 1.228 */
195 	{  28, 256, 0xc52605bbd486c546, 0x0000005e00d8f74c },	/* 1.217 */
196 	{  29, 256, 0xc761779e63cd762f, 0x00000067be3cd85c },	/* 1.239 */
197 	{  30, 256, 0xca577b1e07f85ca5, 0x0000006f5517f3e4 },	/* 1.238 */
198 	{  31, 256, 0xfd50a593c518b3d4, 0x0000007370e7778f },	/* 1.273 */
199 	{  32, 512, 0xc6c87ba5b042650b, 0x000000f7eb08a156 },	/* 1.191 */
200 	{  33, 512, 0xc3880d0c9d458304, 0x0000010734b5d160 },	/* 1.199 */
201 	{  34, 512, 0xe920927e4d8b2c97, 0x00000118c1edbce0 },	/* 1.195 */
202 	{  35, 512, 0x8da7fcda87bde316, 0x0000012a3e9f9110 },	/* 1.201 */
203 	{  36, 512, 0xcf09937491514a29, 0x0000013bd6a24bef },	/* 1.194 */
204 	{  37, 512, 0x9b5abbf345cbd7cc, 0x0000014b9d90fac3 },	/* 1.237 */
205 	{  38, 512, 0x506312a44668d6a9, 0x0000015e1b5f6148 },	/* 1.242 */
206 	{  39, 512, 0x71659ede62b4755f, 0x00000173ef029bcd },	/* 1.231 */
207 	{  40, 512, 0xa7fde73fb74cf2d7, 0x000001866fb72748 },	/* 1.233 */
208 	{  41, 512, 0x19e8b461a1dea1d3, 0x000001a046f76b23 },	/* 1.271 */
209 	{  42, 512, 0x031c9b868cc3e976, 0x000001afa64c49d3 },	/* 1.263 */
210 	{  43, 512, 0xbaa5125faa781854, 0x000001c76789e278 },	/* 1.270 */
211 	{  44, 512, 0x4ed55052550d721b, 0x000001d800ccd8eb },	/* 1.281 */
212 	{  45, 512, 0x0fd63ddbdff90677, 0x000001f08ad59ed2 },	/* 1.282 */
213 	{  46, 512, 0x36d66546de7fdd6f, 0x000002016f09574b },	/* 1.286 */
214 	{  47, 512, 0x99f997e7eafb69d7, 0x0000021e42e47cb6 },	/* 1.329 */
215 	{  48, 512, 0xbecd9c2571312c5d, 0x000002320fe2872b },	/* 1.286 */
216 	{  49, 512, 0xd97371329e488a32, 0x0000024cd73f2ca7 },	/* 1.322 */
217 	{  50, 512, 0x30e9b136670749ee, 0x000002681c83b0e0 },	/* 1.335 */
218 	{  51, 512, 0x11ad6bc8f47aaeb4, 0x0000027e9261b5d5 },	/* 1.305 */
219 	{  52, 512, 0x68e445300af432c1, 0x0000029aa0eb7dbf },	/* 1.330 */
220 	{  53, 512, 0x910fb561657ea98c, 0x000002b3dca04853 },	/* 1.365 */
221 	{  54, 512, 0xd619693d8ce5e7a5, 0x000002cc280e9c97 },	/* 1.334 */
222 	{  55, 512, 0x24e281f564dbb60a, 0x000002e9fa842713 },	/* 1.364 */
223 	{  56, 512, 0x947a7d3bdaab44c5, 0x000003046680f72e },	/* 1.374 */
224 	{  57, 512, 0x2d44fec9c093e0de, 0x00000324198ba810 },	/* 1.363 */
225 	{  58, 512, 0x87743c272d29bb4c, 0x0000033ec48c9ac9 },	/* 1.401 */
226 	{  59, 512, 0x96aa3b6f67f5d923, 0x0000034faead902c },	/* 1.392 */
227 	{  60, 512, 0x94a4f1faf520b0d3, 0x0000037d713ab005 },	/* 1.360 */
228 	{  61, 512, 0xb13ed3a272f711a2, 0x00000397368f3cbd },	/* 1.396 */
229 	{  62, 512, 0x3b1b11805fa4a64a, 0x000003b8a5e2840c },	/* 1.453 */
230 	{  63, 512, 0x4c74caad9172ba71, 0x000003d4be280290 },	/* 1.437 */
231 	{  64, 512, 0x035ff643923dd29e, 0x000003fad6c355e1 },	/* 1.402 */
232 	{  65, 512, 0x768e9171b11abd3c, 0x0000040eb07fed20 },	/* 1.459 */
233 	{  66, 512, 0x75880e6f78a13ddd, 0x000004433d6acf14 },	/* 1.423 */
234 	{  67, 512, 0x910b9714f698a877, 0x00000451ea65d5db },	/* 1.447 */
235 	{  68, 512, 0x87f5db6f9fdcf5c7, 0x000004732169e3f7 },	/* 1.450 */
236 	{  69, 512, 0x836d4968fbaa3706, 0x000004954068a380 },	/* 1.455 */
237 	{  70, 512, 0xc567d73a036421ab, 0x000004bd7cb7bd3d },	/* 1.463 */
238 	{  71, 512, 0x619df40f240b8fed, 0x000004e376c2e972 },	/* 1.463 */
239 	{  72, 512, 0x42763a680d5bed8e, 0x000005084275c680 },	/* 1.452 */
240 	{  73, 512, 0x5866f064b3230431, 0x0000052906f2c9ab },	/* 1.498 */
241 	{  74, 512, 0x9fa08548b1621a44, 0x0000054708019247 },	/* 1.526 */
242 	{  75, 512, 0xb6053078ce0fc303, 0x00000572cc5c72b0 },	/* 1.491 */
243 	{  76, 512, 0x4a7aad7bf3890923, 0x0000058e987bc8e9 },	/* 1.470 */
244 	{  77, 512, 0xe165613fd75b5a53, 0x000005c20473a211 },	/* 1.527 */
245 	{  78, 512, 0x3ff154ac878163a6, 0x000005d659194bf3 },	/* 1.509 */
246 	{  79, 512, 0x24b93ade0aa8a532, 0x0000060a201c4f8e },	/* 1.569 */
247 	{  80, 512, 0xc18e2d14cd9bb554, 0x0000062c55cfe48c },	/* 1.555 */
248 	{  81, 512, 0x98cc78302feb58b6, 0x0000066656a07194 },	/* 1.509 */
249 	{  82, 512, 0xc6c5fd5a2abc0543, 0x0000067cff94fbf8 },	/* 1.596 */
250 	{  83, 512, 0xa7962f514acbba21, 0x000006ab7b5afa2e },	/* 1.568 */
251 	{  84, 512, 0xba02545069ddc6dc, 0x000006d19861364f },	/* 1.541 */
252 	{  85, 512, 0x447c73192c35073e, 0x000006fce315ce35 },	/* 1.623 */
253 	{  86, 512, 0x48beef9e2d42b0c2, 0x00000720a8e38b6b },	/* 1.620 */
254 	{  87, 512, 0x4874cf98541a35e0, 0x00000758382a2273 },	/* 1.597 */
255 	{  88, 512, 0xad4cf8333a31127a, 0x00000781e1651b1b },	/* 1.575 */
256 	{  89, 512, 0x47ae4859d57888c1, 0x000007b27edbe5bc },	/* 1.627 */
257 	{  90, 512, 0x06f7723cfe5d1891, 0x000007dc2a96d8eb },	/* 1.596 */
258 	{  91, 512, 0xd4e44218d660576d, 0x0000080ac46f02d5 },	/* 1.622 */
259 	{  92, 512, 0x7066702b0d5be1f2, 0x00000832c96d154e },	/* 1.695 */
260 	{  93, 512, 0x011209b4f9e11fb9, 0x0000085eefda104c },	/* 1.605 */
261 	{  94, 512, 0x47ffba30a0b35708, 0x00000899badc32dc },	/* 1.625 */
262 	{  95, 512, 0x1a95a6ac4538aaa8, 0x000008b6b69a42b2 },	/* 1.687 */
263 	{  96, 512, 0xbda2b239bb2008eb, 0x000008f22d2de38a },	/* 1.621 */
264 	{  97, 512, 0x7ffa0bea90355c6c, 0x0000092e5b23b816 },	/* 1.699 */
265 	{  98, 512, 0x1d56ba34be426795, 0x0000094f482e5d1b },	/* 1.688 */
266 	{  99, 512, 0x0aa89d45c502e93d, 0x00000977d94a98ce },	/* 1.642 */
267 	{ 100, 512, 0x54369449f6857774, 0x000009c06c9b34cc },	/* 1.683 */
268 	{ 101, 512, 0xf7d4dd8445b46765, 0x000009e5dc542259 },	/* 1.755 */
269 	{ 102, 512, 0xfa8866312f169469, 0x00000a16b54eae93 },	/* 1.692 */
270 	{ 103, 512, 0xd8a5aea08aef3ff9, 0x00000a381d2cbfe7 },	/* 1.747 */
271 	{ 104, 512, 0x66bcd2c3d5f9ef0e, 0x00000a8191817be7 },	/* 1.751 */
272 	{ 105, 512, 0x3fb13a47a012ec81, 0x00000ab562b9a254 },	/* 1.751 */
273 	{ 106, 512, 0x43100f01c9e5e3ca, 0x00000aeee84c185f },	/* 1.726 */
274 	{ 107, 512, 0xca09c50ccee2d054, 0x00000b1c359c047d },	/* 1.788 */
275 	{ 108, 512, 0xd7176732ac503f9b, 0x00000b578bc52a73 },	/* 1.740 */
276 	{ 109, 512, 0xed206e51f8d9422d, 0x00000b8083e0d960 },	/* 1.780 */
277 	{ 110, 512, 0x17ead5dc6ba0dcd6, 0x00000bcfb1a32ca8 },	/* 1.836 */
278 	{ 111, 512, 0x5f1dc21e38a969eb, 0x00000c0171becdd6 },	/* 1.778 */
279 	{ 112, 512, 0xddaa973de33ec528, 0x00000c3edaba4b95 },	/* 1.831 */
280 	{ 113, 512, 0x2a5eccd7735a3630, 0x00000c630664e7df },	/* 1.825 */
281 	{ 114, 512, 0xafcccee5c0b71446, 0x00000cb65392f6e4 },	/* 1.826 */
282 	{ 115, 512, 0x8fa30c5e7b147e27, 0x00000cd4db391e55 },	/* 1.843 */
283 	{ 116, 512, 0x5afe0711fdfafd82, 0x00000d08cb4ec35d },	/* 1.826 */
284 	{ 117, 512, 0x533a6090238afd4c, 0x00000d336f115d1b },	/* 1.803 */
285 	{ 118, 512, 0x90cf11b595e39a84, 0x00000d8e041c2048 },	/* 1.857 */
286 	{ 119, 512, 0x0d61a3b809444009, 0x00000dcb798afe35 },	/* 1.877 */
287 	{ 120, 512, 0x7f34da0f54b0d114, 0x00000df3922664e1 },	/* 1.849 */
288 	{ 121, 512, 0xa52258d5b72f6551, 0x00000e4d37a9872d },	/* 1.867 */
289 	{ 122, 512, 0xc1de54d7672878db, 0x00000e6583a94cf6 },	/* 1.978 */
290 	{ 123, 512, 0x1d03354316a414ab, 0x00000ebffc50308d },	/* 1.947 */
291 	{ 124, 512, 0xcebdcc377665412c, 0x00000edee1997cea },	/* 1.865 */
292 	{ 125, 512, 0x4ddd4c04b1a12344, 0x00000f21d64b373f },	/* 1.881 */
293 	{ 126, 512, 0x64fc8f94e3973658, 0x00000f8f87a8896b },	/* 1.882 */
294 	{ 127, 512, 0x68765f78034a334e, 0x00000fb8fe62197e },	/* 1.867 */
295 	{ 128, 512, 0xaf36b871a303e816, 0x00000fec6f3afb1e },	/* 1.972 */
296 	{ 129, 512, 0x2a4cbf73866c3a28, 0x00001027febfe4e5 },	/* 1.896 */
297 	{ 130, 512, 0x9cb128aacdcd3b2f, 0x0000106aa8ac569d },	/* 1.965 */
298 	{ 131, 512, 0x5511d41c55869124, 0x000010bbd755ddf1 },	/* 1.963 */
299 	{ 132, 512, 0x42f92461937f284a, 0x000010fb8bceb3b5 },	/* 1.925 */
300 	{ 133, 512, 0xe2d89a1cf6f1f287, 0x0000114cf5331e34 },	/* 1.862 */
301 	{ 134, 512, 0xdc631a038956200e, 0x0000116428d2adc5 },	/* 2.042 */
302 	{ 135, 512, 0xb2e5ac222cd236be, 0x000011ca88e4d4d2 },	/* 1.935 */
303 	{ 136, 512, 0xbc7d8236655d88e7, 0x000011e39cb94e66 },	/* 2.005 */
304 	{ 137, 512, 0x073e02d88d2d8e75, 0x0000123136c7933c },	/* 2.041 */
305 	{ 138, 512, 0x3ddb9c3873166be0, 0x00001280e4ec6d52 },	/* 1.997 */
306 	{ 139, 512, 0x7d3b1a845420e1b5, 0x000012c2e7cd6a44 },	/* 1.996 */
307 	{ 140, 512, 0x60102308aa7b2a6c, 0x000012fc490e6c7d },	/* 2.053 */
308 	{ 141, 512, 0xdb22bb2f9eb894aa, 0x00001343f5a85a1a },	/* 1.971 */
309 	{ 142, 512, 0xd853f879a13b1606, 0x000013bb7d5f9048 },	/* 2.018 */
310 	{ 143, 512, 0x001620a03f804b1d, 0x000013e74cc794fd },	/* 1.961 */
311 	{ 144, 512, 0xfdb52dda76fbf667, 0x00001442d2f22480 },	/* 2.046 */
312 	{ 145, 512, 0xa9160110f66e24ff, 0x0000144b899f9dbb },	/* 1.968 */
313 	{ 146, 512, 0x77306a30379ae03b, 0x000014cb98eb1f81 },	/* 2.143 */
314 	{ 147, 512, 0x14f5985d2752319d, 0x000014feab821fc9 },	/* 2.064 */
315 	{ 148, 512, 0xa4b8ff11de7863f8, 0x0000154a0e60b9c9 },	/* 2.023 */
316 	{ 149, 512, 0x44b345426455c1b3, 0x000015999c3c569c },	/* 2.136 */
317 	{ 150, 512, 0x272677826049b46c, 0x000015c9697f4b92 },	/* 2.063 */
318 	{ 151, 512, 0x2f9216e2cd74fe40, 0x0000162b1f7bbd39 },	/* 1.974 */
319 	{ 152, 512, 0x706ae3e763ad8771, 0x00001661371c55e1 },	/* 2.210 */
320 	{ 153, 512, 0xf7fd345307c2480e, 0x000016e251f28b6a },	/* 2.006 */
321 	{ 154, 512, 0x6e94e3d26b3139eb, 0x000016f2429bb8c6 },	/* 2.193 */
322 	{ 155, 512, 0x5458bbfbb781fcba, 0x0000173efdeca1b9 },	/* 2.163 */
323 	{ 156, 512, 0xa80e2afeccd93b33, 0x000017bfdcb78adc },	/* 2.046 */
324 	{ 157, 512, 0x1e4ccbb22796cf9d, 0x00001826fdcc39c9 },	/* 2.084 */
325 	{ 158, 512, 0x8fba4b676aaa3663, 0x00001841a1379480 },	/* 2.264 */
326 	{ 159, 512, 0xf82b843814b315fa, 0x000018886e19b8a3 },	/* 2.074 */
327 	{ 160, 512, 0x7f21e920ecf753a3, 0x0000191812ca0ea7 },	/* 2.282 */
328 	{ 161, 512, 0x48bb8ea2c4caa620, 0x0000192f310faccf },	/* 2.148 */
329 	{ 162, 512, 0x5cdb652b4952c91b, 0x0000199e1d7437c7 },	/* 2.355 */
330 	{ 163, 512, 0x6ac1ba6f78c06cd4, 0x000019cd11f82c70 },	/* 2.164 */
331 	{ 164, 512, 0x9faf5f9ca2669a56, 0x00001a18d5431f6a },	/* 2.393 */
332 	{ 165, 512, 0xaa57e9383eb01194, 0x00001a9e7d253d85 },	/* 2.178 */
333 	{ 166, 512, 0x896967bf495c34d2, 0x00001afb8319b9fc },	/* 2.334 */
334 	{ 167, 512, 0xdfad5f05de225f1b, 0x00001b3a59c3093b },	/* 2.266 */
335 	{ 168, 512, 0xfd299a99f9f2abdd, 0x00001bb6f1a10799 },	/* 2.304 */
336 	{ 169, 512, 0xdda239e798fe9fd4, 0x00001bfae0c9692d },	/* 2.218 */
337 	{ 170, 512, 0x5fca670414a32c3e, 0x00001c22129dbcff },	/* 2.377 */
338 	{ 171, 512, 0x1bb8934314b087de, 0x00001c955db36cd0 },	/* 2.155 */
339 	{ 172, 512, 0xd96394b4b082200d, 0x00001cfc8619b7e6 },	/* 2.404 */
340 	{ 173, 512, 0xb612a7735b1c8cbc, 0x00001d303acdd585 },	/* 2.205 */
341 	{ 174, 512, 0x28e7430fe5875fe1, 0x00001d7ed5b3697d },	/* 2.359 */
342 	{ 175, 512, 0x5038e89efdd981b9, 0x00001dc40ec35c59 },	/* 2.158 */
343 	{ 176, 512, 0x075fd78f1d14db7c, 0x00001e31c83b4a2b },	/* 2.614 */
344 	{ 177, 512, 0xc50fafdb5021be15, 0x00001e7cdac82fbc },	/* 2.239 */
345 	{ 178, 512, 0xe6dc7572ce7b91c7, 0x00001edd8bb454fc },	/* 2.493 */
346 	{ 179, 512, 0x21f7843e7beda537, 0x00001f3a8e019d6c },	/* 2.327 */
347 	{ 180, 512, 0xc83385e20b43ec82, 0x00001f70735ec137 },	/* 2.231 */
348 	{ 181, 512, 0xca818217dddb21fd, 0x0000201ca44c5a3c },	/* 2.237 */
349 	{ 182, 512, 0xe6035defea48f933, 0x00002038e3346658 },	/* 2.691 */
350 	{ 183, 512, 0x47262a4f953dac5a, 0x000020c2e554314e },	/* 2.170 */
351 	{ 184, 512, 0xe24c7246260873ea, 0x000021197e618d64 },	/* 2.600 */
352 	{ 185, 512, 0xeef6b57c9b58e9e1, 0x0000217ea48ecddc },	/* 2.391 */
353 	{ 186, 512, 0x2becd3346e386142, 0x000021c496d4a5f9 },	/* 2.677 */
354 	{ 187, 512, 0x63c6207bdf3b40a3, 0x0000220e0f2eec0c },	/* 2.410 */
355 	{ 188, 512, 0x3056ce8989767d4b, 0x0000228eb76cd137 },	/* 2.776 */
356 	{ 189, 512, 0x91af61c307cee780, 0x000022e17e2ea501 },	/* 2.266 */
357 	{ 190, 512, 0xda359da225f6d54f, 0x00002358a2debc19 },	/* 2.717 */
358 	{ 191, 512, 0x0a5f7a2a55607ba0, 0x0000238a79dac18c },	/* 2.474 */
359 	{ 192, 512, 0x27bb75bf5224638a, 0x00002403a58e2351 },	/* 2.673 */
360 	{ 193, 512, 0x1ebfdb94630f5d0f, 0x00002492a10cb339 },	/* 2.420 */
361 	{ 194, 512, 0x6eae5e51d9c5f6fb, 0x000024ce4bf98715 },	/* 2.898 */
362 	{ 195, 512, 0x08d903b4daedc2e0, 0x0000250d1e15886c },	/* 2.363 */
363 	{ 196, 512, 0xc722a2f7fa7cd686, 0x0000258a99ed0c9e },	/* 2.747 */
364 	{ 197, 512, 0x8f71faf0e54e361d, 0x000025dee11976f5 },	/* 2.531 */
365 	{ 198, 512, 0x87f64695c91a54e7, 0x0000264e00a43da0 },	/* 2.707 */
366 	{ 199, 512, 0xc719cbac2c336b92, 0x000026d327277ac1 },	/* 2.315 */
367 	{ 200, 512, 0xe7e647afaf771ade, 0x000027523a5c44bf },	/* 3.012 */
368 	{ 201, 512, 0x12d4b5c38ce8c946, 0x0000273898432545 },	/* 2.378 */
369 	{ 202, 512, 0xf2e0cd4067bdc94a, 0x000027e47bb2c935 },	/* 2.969 */
370 	{ 203, 512, 0x21b79f14d6d947d3, 0x0000281e64977f0d },	/* 2.594 */
371 	{ 204, 512, 0x515093f952f18cd6, 0x0000289691a473fd },	/* 2.763 */
372 	{ 205, 512, 0xd47b160a1b1022c8, 0x00002903e8b52411 },	/* 2.457 */
373 	{ 206, 512, 0xc02fc96684715a16, 0x0000297515608601 },	/* 3.057 */
374 	{ 207, 512, 0xef51e68efba72ed0, 0x000029ef73604804 },	/* 2.590 */
375 	{ 208, 512, 0x9e3be6e5448b4f33, 0x00002a2846ed074b },	/* 3.047 */
376 	{ 209, 512, 0x81d446c6d5fec063, 0x00002a92ca693455 },	/* 2.676 */
377 	{ 210, 512, 0xff215de8224e57d5, 0x00002b2271fe3729 },	/* 2.993 */
378 	{ 211, 512, 0xe2524d9ba8f69796, 0x00002b64b99c3ba2 },	/* 2.457 */
379 	{ 212, 512, 0xf6b28e26097b7e4b, 0x00002bd768b6e068 },	/* 3.182 */
380 	{ 213, 512, 0x893a487f30ce1644, 0x00002c67f722b4b2 },	/* 2.563 */
381 	{ 214, 512, 0x386566c3fc9871df, 0x00002cc1cf8b4037 },	/* 3.025 */
382 	{ 215, 512, 0x1e0ed78edf1f558a, 0x00002d3948d36c7f },	/* 2.730 */
383 	{ 216, 512, 0xe3bc20c31e61f113, 0x00002d6d6b12e025 },	/* 3.036 */
384 	{ 217, 512, 0xd6c3ad2e23021882, 0x00002deff7572241 },	/* 2.722 */
385 	{ 218, 512, 0xb4a9f95cf0f69c5a, 0x00002e67d537aa36 },	/* 3.356 */
386 	{ 219, 512, 0x6e98ed6f6c38e82f, 0x00002e9720626789 },	/* 2.697 */
387 	{ 220, 512, 0x2e01edba33fddac7, 0x00002f407c6b0198 },	/* 2.979 */
388 	{ 221, 512, 0x559d02e1f5f57ccc, 0x00002fb6a5ab4f24 },	/* 2.858 */
389 	{ 222, 512, 0xac18f5a916adcd8e, 0x0000304ae1c5c57e },	/* 3.258 */
390 	{ 223, 512, 0x15789fbaddb86f4b, 0x0000306f6e019c78 },	/* 2.693 */
391 	{ 224, 512, 0xf4a9c36d5bc4c408, 0x000030da40434213 },	/* 3.259 */
392 	{ 225, 512, 0xf640f90fd2727f44, 0x00003189ed37b90c },	/* 2.733 */
393 	{ 226, 512, 0xb5313d390d61884a, 0x000031e152616b37 },	/* 3.235 */
394 	{ 227, 512, 0x4bae6b3ce9160939, 0x0000321f40aeac42 },	/* 2.983 */
395 	{ 228, 512, 0x838c34480f1a66a1, 0x000032f389c0f78e },	/* 3.308 */
396 	{ 229, 512, 0xb1c4a52c8e3d6060, 0x0000330062a40284 },	/* 2.715 */
397 	{ 230, 512, 0xe0f1110c6d0ed822, 0x0000338be435644f },	/* 3.540 */
398 	{ 231, 512, 0x9f1a8ccdcea68d4b, 0x000034045a4e97e1 },	/* 2.779 */
399 	{ 232, 512, 0x3261ed62223f3099, 0x000034702cfc401c },	/* 3.084 */
400 	{ 233, 512, 0xf2191e2311022d65, 0x00003509dd19c9fc },	/* 2.987 */
401 	{ 234, 512, 0xf102a395c2033abc, 0x000035654dc96fae },	/* 3.341 */
402 	{ 235, 512, 0x11fe378f027906b6, 0x000035b5193b0264 },	/* 2.793 */
403 	{ 236, 512, 0xf777f2c026b337aa, 0x000036704f5d9297 },	/* 3.518 */
404 	{ 237, 512, 0x1b04e9c2ee143f32, 0x000036dfbb7af218 },	/* 2.962 */
405 	{ 238, 512, 0x2fcec95266f9352c, 0x00003785c8df24a9 },	/* 3.196 */
406 	{ 239, 512, 0xfe2b0e47e427dd85, 0x000037cbdf5da729 },	/* 2.914 */
407 	{ 240, 512, 0x72b49bf2225f6c6d, 0x0000382227c15855 },	/* 3.408 */
408 	{ 241, 512, 0x50486b43df7df9c7, 0x0000389b88be6453 },	/* 2.903 */
409 	{ 242, 512, 0x5192a3e53181c8ab, 0x000038ddf3d67263 },	/* 3.778 */
410 	{ 243, 512, 0xe9f5d8365296fd5e, 0x0000399f1c6c9e9c },	/* 3.026 */
411 	{ 244, 512, 0xc740263f0301efa8, 0x00003a147146512d },	/* 3.347 */
412 	{ 245, 512, 0x23cd0f2b5671e67d, 0x00003ab10bcc0d9d },	/* 3.212 */
413 	{ 246, 512, 0x002ccc7e5cd41390, 0x00003ad6cd14a6c0 },	/* 3.482 */
414 	{ 247, 512, 0x9aafb3c02544b31b, 0x00003b8cb8779fb0 },	/* 3.146 */
415 	{ 248, 512, 0x72ba07a78b121999, 0x00003c24142a5a3f },	/* 3.626 */
416 	{ 249, 512, 0x3d784aa58edfc7b4, 0x00003cd084817d99 },	/* 2.952 */
417 	{ 250, 512, 0xaab750424d8004af, 0x00003d506a8e098e },	/* 3.463 */
418 	{ 251, 512, 0x84403fcf8e6b5ca2, 0x00003d4c54c2aec4 },	/* 3.131 */
419 	{ 252, 512, 0x71eb7455ec98e207, 0x00003e655715cf2c },	/* 3.538 */
420 	{ 253, 512, 0xd752b4f19301595b, 0x00003ecd7b2ca5ac },	/* 2.974 */
421 	{ 254, 512, 0xc4674129750499de, 0x00003e99e86d3e95 },	/* 3.843 */
422 	{ 255, 512, 0x9772baff5cd12ef5, 0x00003f895c019841 },	/* 3.088 */
423 };
424 
425 /*
426  * Verify the map is valid. Each device index must appear exactly
427  * once in every row, and the permutation array checksum must match.
428  */
429 static int
430 verify_perms(uint8_t *perms, uint64_t children, uint64_t nperms,
431     uint64_t checksum)
432 {
433 	int countssz = sizeof (uint16_t) * children;
434 	uint16_t *counts = kmem_zalloc(countssz, KM_SLEEP);
435 
436 	for (int i = 0; i < nperms; i++) {
437 		for (int j = 0; j < children; j++) {
438 			uint8_t val = perms[(i * children) + j];
439 
440 			if (val >= children || counts[val] != i) {
441 				kmem_free(counts, countssz);
442 				return (EINVAL);
443 			}
444 
445 			counts[val]++;
446 		}
447 	}
448 
449 	if (checksum != 0) {
450 		int permssz = sizeof (uint8_t) * children * nperms;
451 		zio_cksum_t cksum;
452 
453 		fletcher_4_native_varsize(perms, permssz, &cksum);
454 
455 		if (checksum != cksum.zc_word[0]) {
456 			kmem_free(counts, countssz);
457 			return (ECKSUM);
458 		}
459 	}
460 
461 	kmem_free(counts, countssz);
462 
463 	return (0);
464 }
465 
466 /*
467  * Generate the permutation array for the draid_map_t.  These maps control
468  * the placement of all data in a dRAID.  Therefore it's critical that the
469  * seed always generates the same mapping.  We provide our own pseudo-random
470  * number generator for this purpose.
471  */
472 int
473 vdev_draid_generate_perms(const draid_map_t *map, uint8_t **permsp)
474 {
475 	VERIFY3U(map->dm_children, >=, VDEV_DRAID_MIN_CHILDREN);
476 	VERIFY3U(map->dm_children, <=, VDEV_DRAID_MAX_CHILDREN);
477 	VERIFY3U(map->dm_seed, !=, 0);
478 	VERIFY3U(map->dm_nperms, !=, 0);
479 	VERIFY3P(map->dm_perms, ==, NULL);
480 
481 #ifdef _KERNEL
482 	/*
483 	 * The kernel code always provides both a map_seed and checksum.
484 	 * Only the tests/zfs-tests/cmd/draid/draid.c utility will provide
485 	 * a zero checksum when generating new candidate maps.
486 	 */
487 	VERIFY3U(map->dm_checksum, !=, 0);
488 #endif
489 	uint64_t children = map->dm_children;
490 	uint64_t nperms = map->dm_nperms;
491 	int rowsz = sizeof (uint8_t) * children;
492 	int permssz = rowsz * nperms;
493 	uint8_t *perms;
494 
495 	/* Allocate the permutation array */
496 	perms = vmem_alloc(permssz, KM_SLEEP);
497 
498 	/* Setup an initial row with a known pattern */
499 	uint8_t *initial_row = kmem_alloc(rowsz, KM_SLEEP);
500 	for (int i = 0; i < children; i++)
501 		initial_row[i] = i;
502 
503 	uint64_t draid_seed[2] = { VDEV_DRAID_SEED, map->dm_seed };
504 	uint8_t *current_row, *previous_row = initial_row;
505 
506 	/*
507 	 * Perform a Fisher-Yates shuffle of each row using the previous
508 	 * row as the starting point.  An initial_row with known pattern
509 	 * is used as the input for the first row.
510 	 */
511 	for (int i = 0; i < nperms; i++) {
512 		current_row = &perms[i * children];
513 		memcpy(current_row, previous_row, rowsz);
514 
515 		for (int j = children - 1; j > 0; j--) {
516 			uint64_t k = vdev_draid_rand(draid_seed) % (j + 1);
517 			uint8_t val = current_row[j];
518 			current_row[j] = current_row[k];
519 			current_row[k] = val;
520 		}
521 
522 		previous_row = current_row;
523 	}
524 
525 	kmem_free(initial_row, rowsz);
526 
527 	int error = verify_perms(perms, children, nperms, map->dm_checksum);
528 	if (error) {
529 		vmem_free(perms, permssz);
530 		return (error);
531 	}
532 
533 	*permsp = perms;
534 
535 	return (0);
536 }
537 
538 /*
539  * Lookup the fixed draid_map_t for the requested number of children.
540  */
541 int
542 vdev_draid_lookup_map(uint64_t children, const draid_map_t **mapp)
543 {
544 	for (int i = 0; i <= VDEV_DRAID_MAX_MAPS; i++) {
545 		if (draid_maps[i].dm_children == children) {
546 			*mapp = &draid_maps[i];
547 			return (0);
548 		}
549 	}
550 
551 	return (ENOENT);
552 }
553 
554 /*
555  * Lookup the permutation array and iteration id for the provided offset.
556  */
557 static void
558 vdev_draid_get_perm(vdev_draid_config_t *vdc, uint64_t pindex,
559     uint8_t **base, uint64_t *iter)
560 {
561 	uint64_t ncols = vdc->vdc_children;
562 	uint64_t poff = pindex % (vdc->vdc_nperms * ncols);
563 
564 	*base = vdc->vdc_perms + (poff / ncols) * ncols;
565 	*iter = poff % ncols;
566 }
567 
568 static inline uint64_t
569 vdev_draid_permute_id(vdev_draid_config_t *vdc,
570     uint8_t *base, uint64_t iter, uint64_t index)
571 {
572 	return ((base[index] + iter) % vdc->vdc_children);
573 }
574 
575 /*
576  * Return the asize which is the psize rounded up to a full group width.
577  * i.e. vdev_draid_psize_to_asize().
578  */
579 static uint64_t
580 vdev_draid_asize(vdev_t *vd, uint64_t psize)
581 {
582 	vdev_draid_config_t *vdc = vd->vdev_tsd;
583 	uint64_t ashift = vd->vdev_ashift;
584 
585 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
586 
587 	uint64_t rows = ((psize - 1) / (vdc->vdc_ndata << ashift)) + 1;
588 	uint64_t asize = (rows * vdc->vdc_groupwidth) << ashift;
589 
590 	ASSERT3U(asize, !=, 0);
591 	ASSERT3U(asize % (vdc->vdc_groupwidth), ==, 0);
592 
593 	return (asize);
594 }
595 
596 /*
597  * Deflate the asize to the psize, this includes stripping parity.
598  */
599 uint64_t
600 vdev_draid_asize_to_psize(vdev_t *vd, uint64_t asize)
601 {
602 	vdev_draid_config_t *vdc = vd->vdev_tsd;
603 
604 	ASSERT0(asize % vdc->vdc_groupwidth);
605 
606 	return ((asize / vdc->vdc_groupwidth) * vdc->vdc_ndata);
607 }
608 
609 /*
610  * Convert a logical offset to the corresponding group number.
611  */
612 static uint64_t
613 vdev_draid_offset_to_group(vdev_t *vd, uint64_t offset)
614 {
615 	vdev_draid_config_t *vdc = vd->vdev_tsd;
616 
617 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
618 
619 	return (offset / vdc->vdc_groupsz);
620 }
621 
622 /*
623  * Convert a group number to the logical starting offset for that group.
624  */
625 static uint64_t
626 vdev_draid_group_to_offset(vdev_t *vd, uint64_t group)
627 {
628 	vdev_draid_config_t *vdc = vd->vdev_tsd;
629 
630 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
631 
632 	return (group * vdc->vdc_groupsz);
633 }
634 
635 /*
636  * Full stripe writes.  When writing, all columns (D+P) are required.  Parity
637  * is calculated over all the columns, including empty zero filled sectors,
638  * and each is written to disk.  While only the data columns are needed for
639  * a normal read, all of the columns are required for reconstruction when
640  * performing a sequential resilver.
641  *
642  * For "big columns" it's sufficient to map the correct range of the zio ABD.
643  * Partial columns require allocating a gang ABD in order to zero fill the
644  * empty sectors.  When the column is empty a zero filled sector must be
645  * mapped.  In all cases the data ABDs must be the same size as the parity
646  * ABDs (e.g. rc->rc_size == parity_size).
647  */
648 static void
649 vdev_draid_map_alloc_write(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
650 {
651 	uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
652 	uint64_t parity_size = rr->rr_col[0].rc_size;
653 	uint64_t abd_off = abd_offset;
654 
655 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
656 	ASSERT3U(parity_size, ==, abd_get_size(rr->rr_col[0].rc_abd));
657 
658 	for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
659 		raidz_col_t *rc = &rr->rr_col[c];
660 
661 		if (rc->rc_size == 0) {
662 			/* empty data column (small write), add a skip sector */
663 			ASSERT3U(skip_size, ==, parity_size);
664 			rc->rc_abd = abd_get_zeros(skip_size);
665 		} else if (rc->rc_size == parity_size) {
666 			/* this is a "big column" */
667 			rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
668 			    zio->io_abd, abd_off, rc->rc_size);
669 		} else {
670 			/* short data column, add a skip sector */
671 			ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
672 			rc->rc_abd = abd_alloc_gang();
673 			abd_gang_add(rc->rc_abd, abd_get_offset_size(
674 			    zio->io_abd, abd_off, rc->rc_size), B_TRUE);
675 			abd_gang_add(rc->rc_abd, abd_get_zeros(skip_size),
676 			    B_TRUE);
677 		}
678 
679 		ASSERT3U(abd_get_size(rc->rc_abd), ==, parity_size);
680 
681 		abd_off += rc->rc_size;
682 		rc->rc_size = parity_size;
683 	}
684 
685 	IMPLY(abd_offset != 0, abd_off == zio->io_size);
686 }
687 
688 /*
689  * Scrub/resilver reads.  In order to store the contents of the skip sectors
690  * an additional ABD is allocated.  The columns are handled in the same way
691  * as a full stripe write except instead of using the zero ABD the newly
692  * allocated skip ABD is used to back the skip sectors.  In all cases the
693  * data ABD must be the same size as the parity ABDs.
694  */
695 static void
696 vdev_draid_map_alloc_scrub(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
697 {
698 	uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
699 	uint64_t parity_size = rr->rr_col[0].rc_size;
700 	uint64_t abd_off = abd_offset;
701 	uint64_t skip_off = 0;
702 
703 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
704 	ASSERT3P(rr->rr_abd_empty, ==, NULL);
705 
706 	if (rr->rr_nempty > 0) {
707 		rr->rr_abd_empty = abd_alloc_linear(rr->rr_nempty * skip_size,
708 		    B_FALSE);
709 	}
710 
711 	for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
712 		raidz_col_t *rc = &rr->rr_col[c];
713 
714 		if (rc->rc_size == 0) {
715 			/* empty data column (small read), add a skip sector */
716 			ASSERT3U(skip_size, ==, parity_size);
717 			ASSERT3U(rr->rr_nempty, !=, 0);
718 			rc->rc_abd = abd_get_offset_size(rr->rr_abd_empty,
719 			    skip_off, skip_size);
720 			skip_off += skip_size;
721 		} else if (rc->rc_size == parity_size) {
722 			/* this is a "big column" */
723 			rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
724 			    zio->io_abd, abd_off, rc->rc_size);
725 		} else {
726 			/* short data column, add a skip sector */
727 			ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
728 			ASSERT3U(rr->rr_nempty, !=, 0);
729 			rc->rc_abd = abd_alloc_gang();
730 			abd_gang_add(rc->rc_abd, abd_get_offset_size(
731 			    zio->io_abd, abd_off, rc->rc_size), B_TRUE);
732 			abd_gang_add(rc->rc_abd, abd_get_offset_size(
733 			    rr->rr_abd_empty, skip_off, skip_size), B_TRUE);
734 			skip_off += skip_size;
735 		}
736 
737 		uint64_t abd_size = abd_get_size(rc->rc_abd);
738 		ASSERT3U(abd_size, ==, abd_get_size(rr->rr_col[0].rc_abd));
739 
740 		/*
741 		 * Increase rc_size so the skip ABD is included in subsequent
742 		 * parity calculations.
743 		 */
744 		abd_off += rc->rc_size;
745 		rc->rc_size = abd_size;
746 	}
747 
748 	IMPLY(abd_offset != 0, abd_off == zio->io_size);
749 	ASSERT3U(skip_off, ==, rr->rr_nempty * skip_size);
750 }
751 
752 /*
753  * Normal reads.  In this common case only the columns containing data
754  * are read in to the zio ABDs.  Neither the parity columns or empty skip
755  * sectors are read unless the checksum fails verification.  In which case
756  * vdev_raidz_read_all() will call vdev_draid_map_alloc_empty() to expand
757  * the raid map in order to allow reconstruction using the parity data and
758  * skip sectors.
759  */
760 static void
761 vdev_draid_map_alloc_read(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
762 {
763 	uint64_t abd_off = abd_offset;
764 
765 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
766 
767 	for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
768 		raidz_col_t *rc = &rr->rr_col[c];
769 
770 		if (rc->rc_size > 0) {
771 			rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
772 			    zio->io_abd, abd_off, rc->rc_size);
773 			abd_off += rc->rc_size;
774 		}
775 	}
776 
777 	IMPLY(abd_offset != 0, abd_off == zio->io_size);
778 }
779 
780 /*
781  * Converts a normal "read" raidz_row_t to a "scrub" raidz_row_t. The key
782  * difference is that an ABD is allocated to back skip sectors so they may
783  * be read in to memory, verified, and repaired if needed.
784  */
785 void
786 vdev_draid_map_alloc_empty(zio_t *zio, raidz_row_t *rr)
787 {
788 	uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
789 	uint64_t parity_size = rr->rr_col[0].rc_size;
790 	uint64_t skip_off = 0;
791 
792 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
793 	ASSERT3P(rr->rr_abd_empty, ==, NULL);
794 
795 	if (rr->rr_nempty > 0) {
796 		rr->rr_abd_empty = abd_alloc_linear(rr->rr_nempty * skip_size,
797 		    B_FALSE);
798 	}
799 
800 	for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
801 		raidz_col_t *rc = &rr->rr_col[c];
802 
803 		if (rc->rc_size == 0) {
804 			/* empty data column (small read), add a skip sector */
805 			ASSERT3U(skip_size, ==, parity_size);
806 			ASSERT3U(rr->rr_nempty, !=, 0);
807 			ASSERT3P(rc->rc_abd, ==, NULL);
808 			rc->rc_abd = abd_get_offset_size(rr->rr_abd_empty,
809 			    skip_off, skip_size);
810 			skip_off += skip_size;
811 		} else if (rc->rc_size == parity_size) {
812 			/* this is a "big column", nothing to add */
813 			ASSERT3P(rc->rc_abd, !=, NULL);
814 		} else {
815 			/* short data column, add a skip sector */
816 			ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
817 			ASSERT3U(rr->rr_nempty, !=, 0);
818 			ASSERT3P(rc->rc_abd, !=, NULL);
819 			ASSERT(!abd_is_gang(rc->rc_abd));
820 			abd_t *read_abd = rc->rc_abd;
821 			rc->rc_abd = abd_alloc_gang();
822 			abd_gang_add(rc->rc_abd, read_abd, B_TRUE);
823 			abd_gang_add(rc->rc_abd, abd_get_offset_size(
824 			    rr->rr_abd_empty, skip_off, skip_size), B_TRUE);
825 			skip_off += skip_size;
826 		}
827 
828 		/*
829 		 * Increase rc_size so the empty ABD is included in subsequent
830 		 * parity calculations.
831 		 */
832 		rc->rc_size = parity_size;
833 	}
834 
835 	ASSERT3U(skip_off, ==, rr->rr_nempty * skip_size);
836 }
837 
838 /*
839  * Given a logical address within a dRAID configuration, return the physical
840  * address on the first drive in the group that this address maps to
841  * (at position 'start' in permutation number 'perm').
842  */
843 static uint64_t
844 vdev_draid_logical_to_physical(vdev_t *vd, uint64_t logical_offset,
845     uint64_t *perm, uint64_t *start)
846 {
847 	vdev_draid_config_t *vdc = vd->vdev_tsd;
848 
849 	/* b is the dRAID (parent) sector offset. */
850 	uint64_t ashift = vd->vdev_top->vdev_ashift;
851 	uint64_t b_offset = logical_offset >> ashift;
852 
853 	/*
854 	 * The height of a row in units of the vdev's minimum sector size.
855 	 * This is the amount of data written to each disk of each group
856 	 * in a given permutation.
857 	 */
858 	uint64_t rowheight_sectors = VDEV_DRAID_ROWHEIGHT >> ashift;
859 
860 	/*
861 	 * We cycle through a disk permutation every groupsz * ngroups chunk
862 	 * of address space. Note that ngroups * groupsz must be a multiple
863 	 * of the number of data drives (ndisks) in order to guarantee
864 	 * alignment. So, for example, if our row height is 16MB, our group
865 	 * size is 10, and there are 13 data drives in the draid, then ngroups
866 	 * will be 13, we will change permutation every 2.08GB and each
867 	 * disk will have 160MB of data per chunk.
868 	 */
869 	uint64_t groupwidth = vdc->vdc_groupwidth;
870 	uint64_t ngroups = vdc->vdc_ngroups;
871 	uint64_t ndisks = vdc->vdc_ndisks;
872 
873 	/*
874 	 * groupstart is where the group this IO will land in "starts" in
875 	 * the permutation array.
876 	 */
877 	uint64_t group = logical_offset / vdc->vdc_groupsz;
878 	uint64_t groupstart = (group * groupwidth) % ndisks;
879 	ASSERT3U(groupstart + groupwidth, <=, ndisks + groupstart);
880 	*start = groupstart;
881 
882 	/* b_offset is the sector offset within a group chunk */
883 	b_offset = b_offset % (rowheight_sectors * groupwidth);
884 	ASSERT0(b_offset % groupwidth);
885 
886 	/*
887 	 * Find the starting byte offset on each child vdev:
888 	 * - within a permutation there are ngroups groups spread over the
889 	 *   rows, where each row covers a slice portion of the disk
890 	 * - each permutation has (groupwidth * ngroups) / ndisks rows
891 	 * - so each permutation covers rows * slice portion of the disk
892 	 * - so we need to find the row where this IO group target begins
893 	 */
894 	*perm = group / ngroups;
895 	uint64_t row = (*perm * ((groupwidth * ngroups) / ndisks)) +
896 	    (((group % ngroups) * groupwidth) / ndisks);
897 
898 	return (((rowheight_sectors * row) +
899 	    (b_offset / groupwidth)) << ashift);
900 }
901 
902 static uint64_t
903 vdev_draid_map_alloc_row(zio_t *zio, raidz_row_t **rrp, uint64_t io_offset,
904     uint64_t abd_offset, uint64_t abd_size)
905 {
906 	vdev_t *vd = zio->io_vd;
907 	vdev_draid_config_t *vdc = vd->vdev_tsd;
908 	uint64_t ashift = vd->vdev_top->vdev_ashift;
909 	uint64_t io_size = abd_size;
910 	uint64_t io_asize = vdev_draid_asize(vd, io_size);
911 	uint64_t group = vdev_draid_offset_to_group(vd, io_offset);
912 	uint64_t start_offset = vdev_draid_group_to_offset(vd, group + 1);
913 
914 	/*
915 	 * Limit the io_size to the space remaining in the group.  A second
916 	 * row in the raidz_map_t is created for the remainder.
917 	 */
918 	if (io_offset + io_asize > start_offset) {
919 		io_size = vdev_draid_asize_to_psize(vd,
920 		    start_offset - io_offset);
921 	}
922 
923 	/*
924 	 * At most a block may span the logical end of one group and the start
925 	 * of the next group. Therefore, at the end of a group the io_size must
926 	 * span the group width evenly and the remainder must be aligned to the
927 	 * start of the next group.
928 	 */
929 	IMPLY(abd_offset == 0 && io_size < zio->io_size,
930 	    (io_asize >> ashift) % vdc->vdc_groupwidth == 0);
931 	IMPLY(abd_offset != 0,
932 	    vdev_draid_group_to_offset(vd, group) == io_offset);
933 
934 	/* Lookup starting byte offset on each child vdev */
935 	uint64_t groupstart, perm;
936 	uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
937 	    io_offset, &perm, &groupstart);
938 
939 	/*
940 	 * If there is less than groupwidth drives available after the group
941 	 * start, the group is going to wrap onto the next row. 'wrap' is the
942 	 * group disk number that starts on the next row.
943 	 */
944 	uint64_t ndisks = vdc->vdc_ndisks;
945 	uint64_t groupwidth = vdc->vdc_groupwidth;
946 	uint64_t wrap = groupwidth;
947 
948 	if (groupstart + groupwidth > ndisks)
949 		wrap = ndisks - groupstart;
950 
951 	/* The io size in units of the vdev's minimum sector size. */
952 	const uint64_t psize = io_size >> ashift;
953 
954 	/*
955 	 * "Quotient": The number of data sectors for this stripe on all but
956 	 * the "big column" child vdevs that also contain "remainder" data.
957 	 */
958 	uint64_t q = psize / vdc->vdc_ndata;
959 
960 	/*
961 	 * "Remainder": The number of partial stripe data sectors in this I/O.
962 	 * This will add a sector to some, but not all, child vdevs.
963 	 */
964 	uint64_t r = psize - q * vdc->vdc_ndata;
965 
966 	/* The number of "big columns" - those which contain remainder data. */
967 	uint64_t bc = (r == 0 ? 0 : r + vdc->vdc_nparity);
968 	ASSERT3U(bc, <, groupwidth);
969 
970 	/* The total number of data and parity sectors for this I/O. */
971 	uint64_t tot = psize + (vdc->vdc_nparity * (q + (r == 0 ? 0 : 1)));
972 
973 	raidz_row_t *rr;
974 	rr = kmem_alloc(offsetof(raidz_row_t, rr_col[groupwidth]), KM_SLEEP);
975 	rr->rr_cols = groupwidth;
976 	rr->rr_scols = groupwidth;
977 	rr->rr_bigcols = bc;
978 	rr->rr_missingdata = 0;
979 	rr->rr_missingparity = 0;
980 	rr->rr_firstdatacol = vdc->vdc_nparity;
981 	rr->rr_abd_empty = NULL;
982 #ifdef ZFS_DEBUG
983 	rr->rr_offset = io_offset;
984 	rr->rr_size = io_size;
985 #endif
986 	*rrp = rr;
987 
988 	uint8_t *base;
989 	uint64_t iter, asize = 0;
990 	vdev_draid_get_perm(vdc, perm, &base, &iter);
991 	for (uint64_t i = 0; i < groupwidth; i++) {
992 		raidz_col_t *rc = &rr->rr_col[i];
993 		uint64_t c = (groupstart + i) % ndisks;
994 
995 		/* increment the offset if we wrap to the next row */
996 		if (i == wrap)
997 			physical_offset += VDEV_DRAID_ROWHEIGHT;
998 
999 		rc->rc_devidx = vdev_draid_permute_id(vdc, base, iter, c);
1000 		rc->rc_offset = physical_offset;
1001 		rc->rc_abd = NULL;
1002 		rc->rc_orig_data = NULL;
1003 		rc->rc_error = 0;
1004 		rc->rc_tried = 0;
1005 		rc->rc_skipped = 0;
1006 		rc->rc_repair = 0;
1007 		rc->rc_need_orig_restore = B_FALSE;
1008 
1009 		if (q == 0 && i >= bc)
1010 			rc->rc_size = 0;
1011 		else if (i < bc)
1012 			rc->rc_size = (q + 1) << ashift;
1013 		else
1014 			rc->rc_size = q << ashift;
1015 
1016 		asize += rc->rc_size;
1017 	}
1018 
1019 	ASSERT3U(asize, ==, tot << ashift);
1020 	rr->rr_nempty = roundup(tot, groupwidth) - tot;
1021 	IMPLY(bc > 0, rr->rr_nempty == groupwidth - bc);
1022 
1023 	/* Allocate buffers for the parity columns */
1024 	for (uint64_t c = 0; c < rr->rr_firstdatacol; c++) {
1025 		raidz_col_t *rc = &rr->rr_col[c];
1026 		rc->rc_abd = abd_alloc_linear(rc->rc_size, B_FALSE);
1027 	}
1028 
1029 	/*
1030 	 * Map buffers for data columns and allocate/map buffers for skip
1031 	 * sectors.  There are three distinct cases for dRAID which are
1032 	 * required to support sequential rebuild.
1033 	 */
1034 	if (zio->io_type == ZIO_TYPE_WRITE) {
1035 		vdev_draid_map_alloc_write(zio, abd_offset, rr);
1036 	} else if ((rr->rr_nempty > 0) &&
1037 	    (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
1038 		vdev_draid_map_alloc_scrub(zio, abd_offset, rr);
1039 	} else {
1040 		ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
1041 		vdev_draid_map_alloc_read(zio, abd_offset, rr);
1042 	}
1043 
1044 	return (io_size);
1045 }
1046 
1047 /*
1048  * Allocate the raidz mapping to be applied to the dRAID I/O.  The parity
1049  * calculations for dRAID are identical to raidz however there are a few
1050  * differences in the layout.
1051  *
1052  * - dRAID always allocates a full stripe width. Any extra sectors due
1053  *   this padding are zero filled and written to disk. They will be read
1054  *   back during a scrub or repair operation since they are included in
1055  *   the parity calculation. This property enables sequential resilvering.
1056  *
1057  * - When the block at the logical offset spans redundancy groups then two
1058  *   rows are allocated in the raidz_map_t. One row resides at the end of
1059  *   the first group and the other at the start of the following group.
1060  */
1061 static raidz_map_t *
1062 vdev_draid_map_alloc(zio_t *zio)
1063 {
1064 	raidz_row_t *rr[2];
1065 	uint64_t abd_offset = 0;
1066 	uint64_t abd_size = zio->io_size;
1067 	uint64_t io_offset = zio->io_offset;
1068 	uint64_t size;
1069 	int nrows = 1;
1070 
1071 	size = vdev_draid_map_alloc_row(zio, &rr[0], io_offset,
1072 	    abd_offset, abd_size);
1073 	if (size < abd_size) {
1074 		vdev_t *vd = zio->io_vd;
1075 
1076 		io_offset += vdev_draid_asize(vd, size);
1077 		abd_offset += size;
1078 		abd_size -= size;
1079 		nrows++;
1080 
1081 		ASSERT3U(io_offset, ==, vdev_draid_group_to_offset(
1082 		    vd, vdev_draid_offset_to_group(vd, io_offset)));
1083 		ASSERT3U(abd_offset, <, zio->io_size);
1084 		ASSERT3U(abd_size, !=, 0);
1085 
1086 		size = vdev_draid_map_alloc_row(zio, &rr[1],
1087 		    io_offset, abd_offset, abd_size);
1088 		VERIFY3U(size, ==, abd_size);
1089 	}
1090 
1091 	raidz_map_t *rm;
1092 	rm = kmem_zalloc(offsetof(raidz_map_t, rm_row[nrows]), KM_SLEEP);
1093 	rm->rm_ops = vdev_raidz_math_get_ops();
1094 	rm->rm_nrows = nrows;
1095 	rm->rm_row[0] = rr[0];
1096 	if (nrows == 2)
1097 		rm->rm_row[1] = rr[1];
1098 
1099 	return (rm);
1100 }
1101 
1102 /*
1103  * Given an offset into a dRAID return the next group width aligned offset
1104  * which can be used to start an allocation.
1105  */
1106 static uint64_t
1107 vdev_draid_get_astart(vdev_t *vd, const uint64_t start)
1108 {
1109 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1110 
1111 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1112 
1113 	return (roundup(start, vdc->vdc_groupwidth << vd->vdev_ashift));
1114 }
1115 
1116 /*
1117  * Allocatable space for dRAID is (children - nspares) * sizeof(smallest child)
1118  * rounded down to the last full slice.  So each child must provide at least
1119  * 1 / (children - nspares) of its asize.
1120  */
1121 static uint64_t
1122 vdev_draid_min_asize(vdev_t *vd)
1123 {
1124 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1125 
1126 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1127 
1128 	return ((vd->vdev_min_asize + vdc->vdc_ndisks - 1) / (vdc->vdc_ndisks));
1129 }
1130 
1131 /*
1132  * When using dRAID the minimum allocation size is determined by the number
1133  * of data disks in the redundancy group.  Full stripes are always used.
1134  */
1135 static uint64_t
1136 vdev_draid_min_alloc(vdev_t *vd)
1137 {
1138 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1139 
1140 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1141 
1142 	return (vdc->vdc_ndata << vd->vdev_ashift);
1143 }
1144 
1145 /*
1146  * Returns true if the txg range does not exist on any leaf vdev.
1147  *
1148  * A dRAID spare does not fit into the DTL model. While it has child vdevs
1149  * there is no redundancy among them, and the effective child vdev is
1150  * determined by offset. Essentially we do a vdev_dtl_reassess() on the
1151  * fly by replacing a dRAID spare with the child vdev under the offset.
1152  * Note that it is a recursive process because the child vdev can be
1153  * another dRAID spare and so on.
1154  */
1155 boolean_t
1156 vdev_draid_missing(vdev_t *vd, uint64_t physical_offset, uint64_t txg,
1157     uint64_t size)
1158 {
1159 	if (vd->vdev_ops == &vdev_spare_ops ||
1160 	    vd->vdev_ops == &vdev_replacing_ops) {
1161 		/*
1162 		 * Check all of the readable children, if any child
1163 		 * contains the txg range the data it is not missing.
1164 		 */
1165 		for (int c = 0; c < vd->vdev_children; c++) {
1166 			vdev_t *cvd = vd->vdev_child[c];
1167 
1168 			if (!vdev_readable(cvd))
1169 				continue;
1170 
1171 			if (!vdev_draid_missing(cvd, physical_offset,
1172 			    txg, size))
1173 				return (B_FALSE);
1174 		}
1175 
1176 		return (B_TRUE);
1177 	}
1178 
1179 	if (vd->vdev_ops == &vdev_draid_spare_ops) {
1180 		/*
1181 		 * When sequentially resilvering we don't have a proper
1182 		 * txg range so instead we must presume all txgs are
1183 		 * missing on this vdev until the resilver completes.
1184 		 */
1185 		if (vd->vdev_rebuild_txg != 0)
1186 			return (B_TRUE);
1187 
1188 		/*
1189 		 * DTL_MISSING is set for all prior txgs when a resilver
1190 		 * is started in spa_vdev_attach().
1191 		 */
1192 		if (vdev_dtl_contains(vd, DTL_MISSING, txg, size))
1193 			return (B_TRUE);
1194 
1195 		/*
1196 		 * Consult the DTL on the relevant vdev. Either a vdev
1197 		 * leaf or spare/replace mirror child may be returned so
1198 		 * we must recursively call vdev_draid_missing_impl().
1199 		 */
1200 		vd = vdev_draid_spare_get_child(vd, physical_offset);
1201 		if (vd == NULL)
1202 			return (B_TRUE);
1203 
1204 		return (vdev_draid_missing(vd, physical_offset,
1205 		    txg, size));
1206 	}
1207 
1208 	return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
1209 }
1210 
1211 /*
1212  * Returns true if the txg is only partially replicated on the leaf vdevs.
1213  */
1214 static boolean_t
1215 vdev_draid_partial(vdev_t *vd, uint64_t physical_offset, uint64_t txg,
1216     uint64_t size)
1217 {
1218 	if (vd->vdev_ops == &vdev_spare_ops ||
1219 	    vd->vdev_ops == &vdev_replacing_ops) {
1220 		/*
1221 		 * Check all of the readable children, if any child is
1222 		 * missing the txg range then it is partially replicated.
1223 		 */
1224 		for (int c = 0; c < vd->vdev_children; c++) {
1225 			vdev_t *cvd = vd->vdev_child[c];
1226 
1227 			if (!vdev_readable(cvd))
1228 				continue;
1229 
1230 			if (vdev_draid_partial(cvd, physical_offset, txg, size))
1231 				return (B_TRUE);
1232 		}
1233 
1234 		return (B_FALSE);
1235 	}
1236 
1237 	if (vd->vdev_ops == &vdev_draid_spare_ops) {
1238 		/*
1239 		 * When sequentially resilvering we don't have a proper
1240 		 * txg range so instead we must presume all txgs are
1241 		 * missing on this vdev until the resilver completes.
1242 		 */
1243 		if (vd->vdev_rebuild_txg != 0)
1244 			return (B_TRUE);
1245 
1246 		/*
1247 		 * DTL_MISSING is set for all prior txgs when a resilver
1248 		 * is started in spa_vdev_attach().
1249 		 */
1250 		if (vdev_dtl_contains(vd, DTL_MISSING, txg, size))
1251 			return (B_TRUE);
1252 
1253 		/*
1254 		 * Consult the DTL on the relevant vdev. Either a vdev
1255 		 * leaf or spare/replace mirror child may be returned so
1256 		 * we must recursively call vdev_draid_missing_impl().
1257 		 */
1258 		vd = vdev_draid_spare_get_child(vd, physical_offset);
1259 		if (vd == NULL)
1260 			return (B_TRUE);
1261 
1262 		return (vdev_draid_partial(vd, physical_offset, txg, size));
1263 	}
1264 
1265 	return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
1266 }
1267 
1268 /*
1269  * Determine if the vdev is readable at the given offset.
1270  */
1271 boolean_t
1272 vdev_draid_readable(vdev_t *vd, uint64_t physical_offset)
1273 {
1274 	if (vd->vdev_ops == &vdev_draid_spare_ops) {
1275 		vd = vdev_draid_spare_get_child(vd, physical_offset);
1276 		if (vd == NULL)
1277 			return (B_FALSE);
1278 	}
1279 
1280 	if (vd->vdev_ops == &vdev_spare_ops ||
1281 	    vd->vdev_ops == &vdev_replacing_ops) {
1282 
1283 		for (int c = 0; c < vd->vdev_children; c++) {
1284 			vdev_t *cvd = vd->vdev_child[c];
1285 
1286 			if (!vdev_readable(cvd))
1287 				continue;
1288 
1289 			if (vdev_draid_readable(cvd, physical_offset))
1290 				return (B_TRUE);
1291 		}
1292 
1293 		return (B_FALSE);
1294 	}
1295 
1296 	return (vdev_readable(vd));
1297 }
1298 
1299 /*
1300  * Returns the first distributed spare found under the provided vdev tree.
1301  */
1302 static vdev_t *
1303 vdev_draid_find_spare(vdev_t *vd)
1304 {
1305 	if (vd->vdev_ops == &vdev_draid_spare_ops)
1306 		return (vd);
1307 
1308 	for (int c = 0; c < vd->vdev_children; c++) {
1309 		vdev_t *svd = vdev_draid_find_spare(vd->vdev_child[c]);
1310 		if (svd != NULL)
1311 			return (svd);
1312 	}
1313 
1314 	return (NULL);
1315 }
1316 
1317 /*
1318  * Returns B_TRUE if the passed in vdev is currently "faulted".
1319  * Faulted, in this context, means that the vdev represents a
1320  * replacing or sparing vdev tree.
1321  */
1322 static boolean_t
1323 vdev_draid_faulted(vdev_t *vd, uint64_t physical_offset)
1324 {
1325 	if (vd->vdev_ops == &vdev_draid_spare_ops) {
1326 		vd = vdev_draid_spare_get_child(vd, physical_offset);
1327 		if (vd == NULL)
1328 			return (B_FALSE);
1329 
1330 		/*
1331 		 * After resolving the distributed spare to a leaf vdev
1332 		 * check the parent to determine if it's "faulted".
1333 		 */
1334 		vd = vd->vdev_parent;
1335 	}
1336 
1337 	return (vd->vdev_ops == &vdev_replacing_ops ||
1338 	    vd->vdev_ops == &vdev_spare_ops);
1339 }
1340 
1341 /*
1342  * Determine if the dRAID block at the logical offset is degraded.
1343  * Used by sequential resilver.
1344  */
1345 static boolean_t
1346 vdev_draid_group_degraded(vdev_t *vd, uint64_t offset)
1347 {
1348 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1349 
1350 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1351 	ASSERT3U(vdev_draid_get_astart(vd, offset), ==, offset);
1352 
1353 	uint64_t groupstart, perm;
1354 	uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
1355 	    offset, &perm, &groupstart);
1356 
1357 	uint8_t *base;
1358 	uint64_t iter;
1359 	vdev_draid_get_perm(vdc, perm, &base, &iter);
1360 
1361 	for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
1362 		uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
1363 		uint64_t cid = vdev_draid_permute_id(vdc, base, iter, c);
1364 		vdev_t *cvd = vd->vdev_child[cid];
1365 
1366 		/* Group contains a faulted vdev. */
1367 		if (vdev_draid_faulted(cvd, physical_offset))
1368 			return (B_TRUE);
1369 
1370 		/*
1371 		 * Always check groups with active distributed spares
1372 		 * because any vdev failure in the pool will affect them.
1373 		 */
1374 		if (vdev_draid_find_spare(cvd) != NULL)
1375 			return (B_TRUE);
1376 	}
1377 
1378 	return (B_FALSE);
1379 }
1380 
1381 /*
1382  * Determine if the txg is missing.  Used by healing resilver.
1383  */
1384 static boolean_t
1385 vdev_draid_group_missing(vdev_t *vd, uint64_t offset, uint64_t txg,
1386     uint64_t size)
1387 {
1388 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1389 
1390 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1391 	ASSERT3U(vdev_draid_get_astart(vd, offset), ==, offset);
1392 
1393 	uint64_t groupstart, perm;
1394 	uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
1395 	    offset, &perm, &groupstart);
1396 
1397 	uint8_t *base;
1398 	uint64_t iter;
1399 	vdev_draid_get_perm(vdc, perm, &base, &iter);
1400 
1401 	for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
1402 		uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
1403 		uint64_t cid = vdev_draid_permute_id(vdc, base, iter, c);
1404 		vdev_t *cvd = vd->vdev_child[cid];
1405 
1406 		/* Transaction group is known to be partially replicated. */
1407 		if (vdev_draid_partial(cvd, physical_offset, txg, size))
1408 			return (B_TRUE);
1409 
1410 		/*
1411 		 * Always check groups with active distributed spares
1412 		 * because any vdev failure in the pool will affect them.
1413 		 */
1414 		if (vdev_draid_find_spare(cvd) != NULL)
1415 			return (B_TRUE);
1416 	}
1417 
1418 	return (B_FALSE);
1419 }
1420 
1421 /*
1422  * Find the smallest child asize and largest sector size to calculate the
1423  * available capacity.  Distributed spares are ignored since their capacity
1424  * is also based of the minimum child size in the top-level dRAID.
1425  */
1426 static void
1427 vdev_draid_calculate_asize(vdev_t *vd, uint64_t *asizep, uint64_t *max_asizep,
1428     uint64_t *logical_ashiftp, uint64_t *physical_ashiftp)
1429 {
1430 	uint64_t logical_ashift = 0, physical_ashift = 0;
1431 	uint64_t asize = 0, max_asize = 0;
1432 
1433 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1434 
1435 	for (int c = 0; c < vd->vdev_children; c++) {
1436 		vdev_t *cvd = vd->vdev_child[c];
1437 
1438 		if (cvd->vdev_ops == &vdev_draid_spare_ops)
1439 			continue;
1440 
1441 		asize = MIN(asize - 1, cvd->vdev_asize - 1) + 1;
1442 		max_asize = MIN(max_asize - 1, cvd->vdev_max_asize - 1) + 1;
1443 		logical_ashift = MAX(logical_ashift, cvd->vdev_ashift);
1444 		physical_ashift = MAX(physical_ashift,
1445 		    cvd->vdev_physical_ashift);
1446 	}
1447 
1448 	*asizep = asize;
1449 	*max_asizep = max_asize;
1450 	*logical_ashiftp = logical_ashift;
1451 	*physical_ashiftp = physical_ashift;
1452 }
1453 
1454 /*
1455  * Open spare vdevs.
1456  */
1457 static boolean_t
1458 vdev_draid_open_spares(vdev_t *vd)
1459 {
1460 	return (vd->vdev_ops == &vdev_draid_spare_ops ||
1461 	    vd->vdev_ops == &vdev_replacing_ops ||
1462 	    vd->vdev_ops == &vdev_spare_ops);
1463 }
1464 
1465 /*
1466  * Open all children, excluding spares.
1467  */
1468 static boolean_t
1469 vdev_draid_open_children(vdev_t *vd)
1470 {
1471 	return (!vdev_draid_open_spares(vd));
1472 }
1473 
1474 /*
1475  * Open a top-level dRAID vdev.
1476  */
1477 static int
1478 vdev_draid_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
1479     uint64_t *logical_ashift, uint64_t *physical_ashift)
1480 {
1481 	vdev_draid_config_t *vdc =  vd->vdev_tsd;
1482 	uint64_t nparity = vdc->vdc_nparity;
1483 	int open_errors = 0;
1484 
1485 	if (nparity > VDEV_DRAID_MAXPARITY ||
1486 	    vd->vdev_children < nparity + 1) {
1487 		vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
1488 		return (SET_ERROR(EINVAL));
1489 	}
1490 
1491 	/*
1492 	 * First open the normal children then the distributed spares.  This
1493 	 * ordering is important to ensure the distributed spares calculate
1494 	 * the correct psize in the event that the dRAID vdevs were expanded.
1495 	 */
1496 	vdev_open_children_subset(vd, vdev_draid_open_children);
1497 	vdev_open_children_subset(vd, vdev_draid_open_spares);
1498 
1499 	/* Verify enough of the children are available to continue. */
1500 	for (int c = 0; c < vd->vdev_children; c++) {
1501 		if (vd->vdev_child[c]->vdev_open_error != 0) {
1502 			if ((++open_errors) > nparity) {
1503 				vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
1504 				return (SET_ERROR(ENXIO));
1505 			}
1506 		}
1507 	}
1508 
1509 	/*
1510 	 * Allocatable capacity is the sum of the space on all children less
1511 	 * the number of distributed spares rounded down to last full row
1512 	 * and then to the last full group. An additional 32MB of scratch
1513 	 * space is reserved at the end of each child for use by the dRAID
1514 	 * expansion feature.
1515 	 */
1516 	uint64_t child_asize, child_max_asize;
1517 	vdev_draid_calculate_asize(vd, &child_asize, &child_max_asize,
1518 	    logical_ashift, physical_ashift);
1519 
1520 	/*
1521 	 * Should be unreachable since the minimum child size is 64MB, but
1522 	 * we want to make sure an underflow absolutely cannot occur here.
1523 	 */
1524 	if (child_asize < VDEV_DRAID_REFLOW_RESERVE ||
1525 	    child_max_asize < VDEV_DRAID_REFLOW_RESERVE) {
1526 		return (SET_ERROR(ENXIO));
1527 	}
1528 
1529 	child_asize = ((child_asize - VDEV_DRAID_REFLOW_RESERVE) /
1530 	    VDEV_DRAID_ROWHEIGHT) * VDEV_DRAID_ROWHEIGHT;
1531 	child_max_asize = ((child_max_asize - VDEV_DRAID_REFLOW_RESERVE) /
1532 	    VDEV_DRAID_ROWHEIGHT) * VDEV_DRAID_ROWHEIGHT;
1533 
1534 	*asize = (((child_asize * vdc->vdc_ndisks) / vdc->vdc_groupsz) *
1535 	    vdc->vdc_groupsz);
1536 	*max_asize = (((child_max_asize * vdc->vdc_ndisks) / vdc->vdc_groupsz) *
1537 	    vdc->vdc_groupsz);
1538 
1539 	return (0);
1540 }
1541 
1542 /*
1543  * Close a top-level dRAID vdev.
1544  */
1545 static void
1546 vdev_draid_close(vdev_t *vd)
1547 {
1548 	for (int c = 0; c < vd->vdev_children; c++) {
1549 		if (vd->vdev_child[c] != NULL)
1550 			vdev_close(vd->vdev_child[c]);
1551 	}
1552 }
1553 
1554 /*
1555  * Return the maximum asize for a rebuild zio in the provided range
1556  * given the following constraints.  A dRAID chunks may not:
1557  *
1558  * - Exceed the maximum allowed block size (SPA_MAXBLOCKSIZE), or
1559  * - Span dRAID redundancy groups.
1560  */
1561 static uint64_t
1562 vdev_draid_rebuild_asize(vdev_t *vd, uint64_t start, uint64_t asize,
1563     uint64_t max_segment)
1564 {
1565 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1566 
1567 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1568 
1569 	uint64_t ashift = vd->vdev_ashift;
1570 	uint64_t ndata = vdc->vdc_ndata;
1571 	uint64_t psize = MIN(P2ROUNDUP(max_segment * ndata, 1 << ashift),
1572 	    SPA_MAXBLOCKSIZE);
1573 
1574 	ASSERT3U(vdev_draid_get_astart(vd, start), ==, start);
1575 	ASSERT3U(asize % (vdc->vdc_groupwidth << ashift), ==, 0);
1576 
1577 	/* Chunks must evenly span all data columns in the group. */
1578 	psize = (((psize >> ashift) / ndata) * ndata) << ashift;
1579 	uint64_t chunk_size = MIN(asize, vdev_psize_to_asize(vd, psize));
1580 
1581 	/* Reduce the chunk size to the group space remaining. */
1582 	uint64_t group = vdev_draid_offset_to_group(vd, start);
1583 	uint64_t left = vdev_draid_group_to_offset(vd, group + 1) - start;
1584 	chunk_size = MIN(chunk_size, left);
1585 
1586 	ASSERT3U(chunk_size % (vdc->vdc_groupwidth << ashift), ==, 0);
1587 	ASSERT3U(vdev_draid_offset_to_group(vd, start), ==,
1588 	    vdev_draid_offset_to_group(vd, start + chunk_size - 1));
1589 
1590 	return (chunk_size);
1591 }
1592 
1593 /*
1594  * Align the start of the metaslab to the group width and slightly reduce
1595  * its size to a multiple of the group width.  Since full stripe writes are
1596  * required by dRAID this space is unallocable.  Furthermore, aligning the
1597  * metaslab start is important for vdev initialize and TRIM which both operate
1598  * on metaslab boundaries which vdev_xlate() expects to be aligned.
1599  */
1600 static void
1601 vdev_draid_metaslab_init(vdev_t *vd, uint64_t *ms_start, uint64_t *ms_size)
1602 {
1603 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1604 
1605 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1606 
1607 	uint64_t sz = vdc->vdc_groupwidth << vd->vdev_ashift;
1608 	uint64_t astart = vdev_draid_get_astart(vd, *ms_start);
1609 	uint64_t asize = ((*ms_size - (astart - *ms_start)) / sz) * sz;
1610 
1611 	*ms_start = astart;
1612 	*ms_size = asize;
1613 
1614 	ASSERT0(*ms_start % sz);
1615 	ASSERT0(*ms_size % sz);
1616 }
1617 
1618 /*
1619  * Add virtual dRAID spares to the list of valid spares. In order to accomplish
1620  * this the existing array must be freed and reallocated with the additional
1621  * entries.
1622  */
1623 int
1624 vdev_draid_spare_create(nvlist_t *nvroot, vdev_t *vd, uint64_t *ndraidp,
1625     uint64_t next_vdev_id)
1626 {
1627 	uint64_t draid_nspares = 0;
1628 	uint64_t ndraid = 0;
1629 	int error;
1630 
1631 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1632 		vdev_t *cvd = vd->vdev_child[i];
1633 
1634 		if (cvd->vdev_ops == &vdev_draid_ops) {
1635 			vdev_draid_config_t *vdc = cvd->vdev_tsd;
1636 			draid_nspares += vdc->vdc_nspares;
1637 			ndraid++;
1638 		}
1639 	}
1640 
1641 	if (draid_nspares == 0) {
1642 		*ndraidp = ndraid;
1643 		return (0);
1644 	}
1645 
1646 	nvlist_t **old_spares, **new_spares;
1647 	uint_t old_nspares;
1648 	error = nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1649 	    &old_spares, &old_nspares);
1650 	if (error)
1651 		old_nspares = 0;
1652 
1653 	/* Allocate memory and copy of the existing spares. */
1654 	new_spares = kmem_alloc(sizeof (nvlist_t *) *
1655 	    (draid_nspares + old_nspares), KM_SLEEP);
1656 	for (uint_t i = 0; i < old_nspares; i++)
1657 		new_spares[i] = fnvlist_dup(old_spares[i]);
1658 
1659 	/* Add new distributed spares to ZPOOL_CONFIG_SPARES. */
1660 	uint64_t n = old_nspares;
1661 	for (uint64_t vdev_id = 0; vdev_id < vd->vdev_children; vdev_id++) {
1662 		vdev_t *cvd = vd->vdev_child[vdev_id];
1663 		char path[64];
1664 
1665 		if (cvd->vdev_ops != &vdev_draid_ops)
1666 			continue;
1667 
1668 		vdev_draid_config_t *vdc = cvd->vdev_tsd;
1669 		uint64_t nspares = vdc->vdc_nspares;
1670 		uint64_t nparity = vdc->vdc_nparity;
1671 
1672 		for (uint64_t spare_id = 0; spare_id < nspares; spare_id++) {
1673 			bzero(path, sizeof (path));
1674 			(void) snprintf(path, sizeof (path) - 1,
1675 			    "%s%llu-%llu-%llu", VDEV_TYPE_DRAID,
1676 			    (u_longlong_t)nparity,
1677 			    (u_longlong_t)next_vdev_id + vdev_id,
1678 			    (u_longlong_t)spare_id);
1679 
1680 			nvlist_t *spare = fnvlist_alloc();
1681 			fnvlist_add_string(spare, ZPOOL_CONFIG_PATH, path);
1682 			fnvlist_add_string(spare, ZPOOL_CONFIG_TYPE,
1683 			    VDEV_TYPE_DRAID_SPARE);
1684 			fnvlist_add_uint64(spare, ZPOOL_CONFIG_TOP_GUID,
1685 			    cvd->vdev_guid);
1686 			fnvlist_add_uint64(spare, ZPOOL_CONFIG_SPARE_ID,
1687 			    spare_id);
1688 			fnvlist_add_uint64(spare, ZPOOL_CONFIG_IS_LOG, 0);
1689 			fnvlist_add_uint64(spare, ZPOOL_CONFIG_IS_SPARE, 1);
1690 			fnvlist_add_uint64(spare, ZPOOL_CONFIG_WHOLE_DISK, 1);
1691 			fnvlist_add_uint64(spare, ZPOOL_CONFIG_ASHIFT,
1692 			    cvd->vdev_ashift);
1693 
1694 			new_spares[n] = spare;
1695 			n++;
1696 		}
1697 	}
1698 
1699 	if (n > 0) {
1700 		(void) nvlist_remove_all(nvroot, ZPOOL_CONFIG_SPARES);
1701 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1702 		    new_spares, n);
1703 	}
1704 
1705 	for (int i = 0; i < n; i++)
1706 		nvlist_free(new_spares[i]);
1707 
1708 	kmem_free(new_spares, sizeof (*new_spares) * n);
1709 	*ndraidp = ndraid;
1710 
1711 	return (0);
1712 }
1713 
1714 /*
1715  * Determine if any portion of the provided block resides on a child vdev
1716  * with a dirty DTL and therefore needs to be resilvered.
1717  */
1718 static boolean_t
1719 vdev_draid_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
1720     uint64_t phys_birth)
1721 {
1722 	uint64_t offset = DVA_GET_OFFSET(dva);
1723 	uint64_t asize = vdev_draid_asize(vd, psize);
1724 
1725 	if (phys_birth == TXG_UNKNOWN) {
1726 		/*
1727 		 * Sequential resilver.  There is no meaningful phys_birth
1728 		 * for this block, we can only determine if block resides
1729 		 * in a degraded group in which case it must be resilvered.
1730 		 */
1731 		ASSERT3U(vdev_draid_offset_to_group(vd, offset), ==,
1732 		    vdev_draid_offset_to_group(vd, offset + asize - 1));
1733 
1734 		return (vdev_draid_group_degraded(vd, offset));
1735 	} else {
1736 		/*
1737 		 * Healing resilver.  TXGs not in DTL_PARTIAL are intact,
1738 		 * as are blocks in non-degraded groups.
1739 		 */
1740 		if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
1741 			return (B_FALSE);
1742 
1743 		if (vdev_draid_group_missing(vd, offset, phys_birth, 1))
1744 			return (B_TRUE);
1745 
1746 		/* The block may span groups in which case check both. */
1747 		if (vdev_draid_offset_to_group(vd, offset) !=
1748 		    vdev_draid_offset_to_group(vd, offset + asize - 1)) {
1749 			if (vdev_draid_group_missing(vd,
1750 			    offset + asize, phys_birth, 1))
1751 				return (B_TRUE);
1752 		}
1753 
1754 		return (B_FALSE);
1755 	}
1756 }
1757 
1758 static boolean_t
1759 vdev_draid_rebuilding(vdev_t *vd)
1760 {
1761 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_rebuild_txg)
1762 		return (B_TRUE);
1763 
1764 	for (int i = 0; i < vd->vdev_children; i++) {
1765 		if (vdev_draid_rebuilding(vd->vdev_child[i])) {
1766 			return (B_TRUE);
1767 		}
1768 	}
1769 
1770 	return (B_FALSE);
1771 }
1772 
1773 static void
1774 vdev_draid_io_verify(vdev_t *vd, raidz_row_t *rr, int col)
1775 {
1776 #ifdef ZFS_DEBUG
1777 	range_seg64_t logical_rs, physical_rs, remain_rs;
1778 	logical_rs.rs_start = rr->rr_offset;
1779 	logical_rs.rs_end = logical_rs.rs_start +
1780 	    vdev_draid_asize(vd, rr->rr_size);
1781 
1782 	raidz_col_t *rc = &rr->rr_col[col];
1783 	vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
1784 
1785 	vdev_xlate(cvd, &logical_rs, &physical_rs, &remain_rs);
1786 	ASSERT(vdev_xlate_is_empty(&remain_rs));
1787 	ASSERT3U(rc->rc_offset, ==, physical_rs.rs_start);
1788 	ASSERT3U(rc->rc_offset, <, physical_rs.rs_end);
1789 	ASSERT3U(rc->rc_offset + rc->rc_size, ==, physical_rs.rs_end);
1790 #endif
1791 }
1792 
1793 /*
1794  * For write operations:
1795  * 1. Generate the parity data
1796  * 2. Create child zio write operations to each column's vdev, for both
1797  *    data and parity.  A gang ABD is allocated by vdev_draid_map_alloc()
1798  *    if a skip sector needs to be added to a column.
1799  */
1800 static void
1801 vdev_draid_io_start_write(zio_t *zio, raidz_row_t *rr)
1802 {
1803 	vdev_t *vd = zio->io_vd;
1804 	raidz_map_t *rm = zio->io_vsd;
1805 
1806 	vdev_raidz_generate_parity_row(rm, rr);
1807 
1808 	for (int c = 0; c < rr->rr_cols; c++) {
1809 		raidz_col_t *rc = &rr->rr_col[c];
1810 
1811 		/*
1812 		 * Empty columns are zero filled and included in the parity
1813 		 * calculation and therefore must be written.
1814 		 */
1815 		ASSERT3U(rc->rc_size, !=, 0);
1816 
1817 		/* Verify physical to logical translation */
1818 		vdev_draid_io_verify(vd, rr, c);
1819 
1820 		zio_nowait(zio_vdev_child_io(zio, NULL,
1821 		    vd->vdev_child[rc->rc_devidx], rc->rc_offset,
1822 		    rc->rc_abd, rc->rc_size, zio->io_type, zio->io_priority,
1823 		    0, vdev_raidz_child_done, rc));
1824 	}
1825 }
1826 
1827 /*
1828  * For read operations:
1829  * 1. The vdev_draid_map_alloc() function will create a minimal raidz
1830  *    mapping for the read based on the zio->io_flags.  There are two
1831  *    possible mappings either 1) a normal read, or 2) a scrub/resilver.
1832  * 2. Create the zio read operations.  This will include all parity
1833  *    columns and skip sectors for a scrub/resilver.
1834  */
1835 static void
1836 vdev_draid_io_start_read(zio_t *zio, raidz_row_t *rr)
1837 {
1838 	vdev_t *vd = zio->io_vd;
1839 
1840 	/* Sequential rebuild must do IO at redundancy group boundary. */
1841 	IMPLY(zio->io_priority == ZIO_PRIORITY_REBUILD, rr->rr_nempty == 0);
1842 
1843 	/*
1844 	 * Iterate over the columns in reverse order so that we hit the parity
1845 	 * last.  Any errors along the way will force us to read the parity.
1846 	 * For scrub/resilver IOs which verify skip sectors, a gang ABD will
1847 	 * have been allocated to store them and rc->rc_size is increased.
1848 	 */
1849 	for (int c = rr->rr_cols - 1; c >= 0; c--) {
1850 		raidz_col_t *rc = &rr->rr_col[c];
1851 		vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
1852 
1853 		if (!vdev_draid_readable(cvd, rc->rc_offset)) {
1854 			if (c >= rr->rr_firstdatacol)
1855 				rr->rr_missingdata++;
1856 			else
1857 				rr->rr_missingparity++;
1858 			rc->rc_error = SET_ERROR(ENXIO);
1859 			rc->rc_tried = 1;
1860 			rc->rc_skipped = 1;
1861 			continue;
1862 		}
1863 
1864 		if (vdev_draid_missing(cvd, rc->rc_offset, zio->io_txg, 1)) {
1865 			if (c >= rr->rr_firstdatacol)
1866 				rr->rr_missingdata++;
1867 			else
1868 				rr->rr_missingparity++;
1869 			rc->rc_error = SET_ERROR(ESTALE);
1870 			rc->rc_skipped = 1;
1871 			continue;
1872 		}
1873 
1874 		/*
1875 		 * Empty columns may be read during vdev_draid_io_done().
1876 		 * Only skip them after the readable and missing checks
1877 		 * verify they are available.
1878 		 */
1879 		if (rc->rc_size == 0) {
1880 			rc->rc_skipped = 1;
1881 			continue;
1882 		}
1883 
1884 		if (zio->io_flags & ZIO_FLAG_RESILVER) {
1885 			vdev_t *svd;
1886 
1887 			/*
1888 			 * If this child is a distributed spare then the
1889 			 * offset might reside on the vdev being replaced.
1890 			 * In which case this data must be written to the
1891 			 * new device.  Failure to do so would result in
1892 			 * checksum errors when the old device is detached
1893 			 * and the pool is scrubbed.
1894 			 */
1895 			if ((svd = vdev_draid_find_spare(cvd)) != NULL) {
1896 				svd = vdev_draid_spare_get_child(svd,
1897 				    rc->rc_offset);
1898 				if (svd && (svd->vdev_ops == &vdev_spare_ops ||
1899 				    svd->vdev_ops == &vdev_replacing_ops)) {
1900 					rc->rc_repair = 1;
1901 				}
1902 			}
1903 
1904 			/*
1905 			 * Always issue a repair IO to this child when its
1906 			 * a spare or replacing vdev with an active rebuild.
1907 			 */
1908 			if ((cvd->vdev_ops == &vdev_spare_ops ||
1909 			    cvd->vdev_ops == &vdev_replacing_ops) &&
1910 			    vdev_draid_rebuilding(cvd)) {
1911 				rc->rc_repair = 1;
1912 			}
1913 		}
1914 	}
1915 
1916 	/*
1917 	 * Either a parity or data column is missing this means a repair
1918 	 * may be attempted by vdev_draid_io_done().  Expand the raid map
1919 	 * to read in empty columns which are needed along with the parity
1920 	 * during reconstruction.
1921 	 */
1922 	if ((rr->rr_missingdata > 0 || rr->rr_missingparity > 0) &&
1923 	    rr->rr_nempty > 0 && rr->rr_abd_empty == NULL) {
1924 		vdev_draid_map_alloc_empty(zio, rr);
1925 	}
1926 
1927 	for (int c = rr->rr_cols - 1; c >= 0; c--) {
1928 		raidz_col_t *rc = &rr->rr_col[c];
1929 		vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
1930 
1931 		if (rc->rc_error || rc->rc_size == 0)
1932 			continue;
1933 
1934 		if (c >= rr->rr_firstdatacol || rr->rr_missingdata > 0 ||
1935 		    (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
1936 			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
1937 			    rc->rc_offset, rc->rc_abd, rc->rc_size,
1938 			    zio->io_type, zio->io_priority, 0,
1939 			    vdev_raidz_child_done, rc));
1940 		}
1941 	}
1942 }
1943 
1944 /*
1945  * Start an IO operation to a dRAID vdev.
1946  */
1947 static void
1948 vdev_draid_io_start(zio_t *zio)
1949 {
1950 	vdev_t *vd __maybe_unused = zio->io_vd;
1951 
1952 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1953 	ASSERT3U(zio->io_offset, ==, vdev_draid_get_astart(vd, zio->io_offset));
1954 
1955 	raidz_map_t *rm = vdev_draid_map_alloc(zio);
1956 	zio->io_vsd = rm;
1957 	zio->io_vsd_ops = &vdev_raidz_vsd_ops;
1958 
1959 	if (zio->io_type == ZIO_TYPE_WRITE) {
1960 		for (int i = 0; i < rm->rm_nrows; i++) {
1961 			vdev_draid_io_start_write(zio, rm->rm_row[i]);
1962 		}
1963 	} else {
1964 		ASSERT(zio->io_type == ZIO_TYPE_READ);
1965 
1966 		for (int i = 0; i < rm->rm_nrows; i++) {
1967 			vdev_draid_io_start_read(zio, rm->rm_row[i]);
1968 		}
1969 	}
1970 
1971 	zio_execute(zio);
1972 }
1973 
1974 /*
1975  * Complete an IO operation on a dRAID vdev.  The raidz logic can be applied
1976  * to dRAID since the layout is fully described by the raidz_map_t.
1977  */
1978 static void
1979 vdev_draid_io_done(zio_t *zio)
1980 {
1981 	vdev_raidz_io_done(zio);
1982 }
1983 
1984 static void
1985 vdev_draid_state_change(vdev_t *vd, int faulted, int degraded)
1986 {
1987 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1988 	ASSERT(vd->vdev_ops == &vdev_draid_ops);
1989 
1990 	if (faulted > vdc->vdc_nparity)
1991 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1992 		    VDEV_AUX_NO_REPLICAS);
1993 	else if (degraded + faulted != 0)
1994 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
1995 	else
1996 		vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
1997 }
1998 
1999 static void
2000 vdev_draid_xlate(vdev_t *cvd, const range_seg64_t *logical_rs,
2001     range_seg64_t *physical_rs, range_seg64_t *remain_rs)
2002 {
2003 	vdev_t *raidvd = cvd->vdev_parent;
2004 	ASSERT(raidvd->vdev_ops == &vdev_draid_ops);
2005 
2006 	vdev_draid_config_t *vdc = raidvd->vdev_tsd;
2007 	uint64_t ashift = raidvd->vdev_top->vdev_ashift;
2008 
2009 	/* Make sure the offsets are block-aligned */
2010 	ASSERT0(logical_rs->rs_start % (1 << ashift));
2011 	ASSERT0(logical_rs->rs_end % (1 << ashift));
2012 
2013 	uint64_t logical_start = logical_rs->rs_start;
2014 	uint64_t logical_end = logical_rs->rs_end;
2015 
2016 	/*
2017 	 * Unaligned ranges must be skipped. All metaslabs are correctly
2018 	 * aligned so this should not happen, but this case is handled in
2019 	 * case it's needed by future callers.
2020 	 */
2021 	uint64_t astart = vdev_draid_get_astart(raidvd, logical_start);
2022 	if (astart != logical_start) {
2023 		physical_rs->rs_start = logical_start;
2024 		physical_rs->rs_end = logical_start;
2025 		remain_rs->rs_start = MIN(astart, logical_end);
2026 		remain_rs->rs_end = logical_end;
2027 		return;
2028 	}
2029 
2030 	/*
2031 	 * Unlike with mirrors and raidz a dRAID logical range can map
2032 	 * to multiple non-contiguous physical ranges. This is handled by
2033 	 * limiting the size of the logical range to a single group and
2034 	 * setting the remain argument such that it describes the remaining
2035 	 * unmapped logical range. This is stricter than absolutely
2036 	 * necessary but helps simplify the logic below.
2037 	 */
2038 	uint64_t group = vdev_draid_offset_to_group(raidvd, logical_start);
2039 	uint64_t nextstart = vdev_draid_group_to_offset(raidvd, group + 1);
2040 	if (logical_end > nextstart)
2041 		logical_end = nextstart;
2042 
2043 	/* Find the starting offset for each vdev in the group */
2044 	uint64_t perm, groupstart;
2045 	uint64_t start = vdev_draid_logical_to_physical(raidvd,
2046 	    logical_start, &perm, &groupstart);
2047 	uint64_t end = start;
2048 
2049 	uint8_t *base;
2050 	uint64_t iter, id;
2051 	vdev_draid_get_perm(vdc, perm, &base, &iter);
2052 
2053 	/*
2054 	 * Check if the passed child falls within the group.  If it does
2055 	 * update the start and end to reflect the physical range.
2056 	 * Otherwise, leave them unmodified which will result in an empty
2057 	 * (zero-length) physical range being returned.
2058 	 */
2059 	for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
2060 		uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
2061 
2062 		if (c == 0 && i != 0) {
2063 			/* the group wrapped, increment the start */
2064 			start += VDEV_DRAID_ROWHEIGHT;
2065 			end = start;
2066 		}
2067 
2068 		id = vdev_draid_permute_id(vdc, base, iter, c);
2069 		if (id == cvd->vdev_id) {
2070 			uint64_t b_size = (logical_end >> ashift) -
2071 			    (logical_start >> ashift);
2072 			ASSERT3U(b_size, >, 0);
2073 			end = start + ((((b_size - 1) /
2074 			    vdc->vdc_groupwidth) + 1) << ashift);
2075 			break;
2076 		}
2077 	}
2078 	physical_rs->rs_start = start;
2079 	physical_rs->rs_end = end;
2080 
2081 	/*
2082 	 * Only top-level vdevs are allowed to set remain_rs because
2083 	 * when .vdev_op_xlate() is called for their children the full
2084 	 * logical range is not provided by vdev_xlate().
2085 	 */
2086 	remain_rs->rs_start = logical_end;
2087 	remain_rs->rs_end = logical_rs->rs_end;
2088 
2089 	ASSERT3U(physical_rs->rs_start, <=, logical_start);
2090 	ASSERT3U(physical_rs->rs_end - physical_rs->rs_start, <=,
2091 	    logical_end - logical_start);
2092 }
2093 
2094 /*
2095  * Add dRAID specific fields to the config nvlist.
2096  */
2097 static void
2098 vdev_draid_config_generate(vdev_t *vd, nvlist_t *nv)
2099 {
2100 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
2101 	vdev_draid_config_t *vdc = vd->vdev_tsd;
2102 
2103 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vdc->vdc_nparity);
2104 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, vdc->vdc_ndata);
2105 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, vdc->vdc_nspares);
2106 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, vdc->vdc_ngroups);
2107 }
2108 
2109 /*
2110  * Initialize private dRAID specific fields from the nvlist.
2111  */
2112 static int
2113 vdev_draid_init(spa_t *spa, nvlist_t *nv, void **tsd)
2114 {
2115 	uint64_t ndata, nparity, nspares, ngroups;
2116 	int error;
2117 
2118 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, &ndata))
2119 		return (SET_ERROR(EINVAL));
2120 
2121 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &nparity) ||
2122 	    nparity == 0 || nparity > VDEV_DRAID_MAXPARITY) {
2123 		return (SET_ERROR(EINVAL));
2124 	}
2125 
2126 	uint_t children;
2127 	nvlist_t **child;
2128 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2129 	    &child, &children) != 0 || children == 0 ||
2130 	    children > VDEV_DRAID_MAX_CHILDREN) {
2131 		return (SET_ERROR(EINVAL));
2132 	}
2133 
2134 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, &nspares) ||
2135 	    nspares > 100 || nspares > (children - (ndata + nparity))) {
2136 		return (SET_ERROR(EINVAL));
2137 	}
2138 
2139 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, &ngroups) ||
2140 	    ngroups == 0 || ngroups > VDEV_DRAID_MAX_CHILDREN) {
2141 		return (SET_ERROR(EINVAL));
2142 	}
2143 
2144 	/*
2145 	 * Validate the minimum number of children exist per group for the
2146 	 * specified parity level (draid1 >= 2, draid2 >= 3, draid3 >= 4).
2147 	 */
2148 	if (children < (ndata + nparity + nspares))
2149 		return (SET_ERROR(EINVAL));
2150 
2151 	/*
2152 	 * Create the dRAID configuration using the pool nvlist configuration
2153 	 * and the fixed mapping for the correct number of children.
2154 	 */
2155 	vdev_draid_config_t *vdc;
2156 	const draid_map_t *map;
2157 
2158 	error = vdev_draid_lookup_map(children, &map);
2159 	if (error)
2160 		return (SET_ERROR(EINVAL));
2161 
2162 	vdc = kmem_zalloc(sizeof (*vdc), KM_SLEEP);
2163 	vdc->vdc_ndata = ndata;
2164 	vdc->vdc_nparity = nparity;
2165 	vdc->vdc_nspares = nspares;
2166 	vdc->vdc_children = children;
2167 	vdc->vdc_ngroups = ngroups;
2168 	vdc->vdc_nperms = map->dm_nperms;
2169 
2170 	error = vdev_draid_generate_perms(map, &vdc->vdc_perms);
2171 	if (error) {
2172 		kmem_free(vdc, sizeof (*vdc));
2173 		return (SET_ERROR(EINVAL));
2174 	}
2175 
2176 	/*
2177 	 * Derived constants.
2178 	 */
2179 	vdc->vdc_groupwidth = vdc->vdc_ndata + vdc->vdc_nparity;
2180 	vdc->vdc_ndisks = vdc->vdc_children - vdc->vdc_nspares;
2181 	vdc->vdc_groupsz = vdc->vdc_groupwidth * VDEV_DRAID_ROWHEIGHT;
2182 	vdc->vdc_devslicesz = (vdc->vdc_groupsz * vdc->vdc_ngroups) /
2183 	    vdc->vdc_ndisks;
2184 
2185 	ASSERT3U(vdc->vdc_groupwidth, >=, 2);
2186 	ASSERT3U(vdc->vdc_groupwidth, <=, vdc->vdc_ndisks);
2187 	ASSERT3U(vdc->vdc_groupsz, >=, 2 * VDEV_DRAID_ROWHEIGHT);
2188 	ASSERT3U(vdc->vdc_devslicesz, >=, VDEV_DRAID_ROWHEIGHT);
2189 	ASSERT3U(vdc->vdc_devslicesz % VDEV_DRAID_ROWHEIGHT, ==, 0);
2190 	ASSERT3U((vdc->vdc_groupwidth * vdc->vdc_ngroups) %
2191 	    vdc->vdc_ndisks, ==, 0);
2192 
2193 	*tsd = vdc;
2194 
2195 	return (0);
2196 }
2197 
2198 static void
2199 vdev_draid_fini(vdev_t *vd)
2200 {
2201 	vdev_draid_config_t *vdc = vd->vdev_tsd;
2202 
2203 	vmem_free(vdc->vdc_perms, sizeof (uint8_t) *
2204 	    vdc->vdc_children * vdc->vdc_nperms);
2205 	kmem_free(vdc, sizeof (*vdc));
2206 }
2207 
2208 static uint64_t
2209 vdev_draid_nparity(vdev_t *vd)
2210 {
2211 	vdev_draid_config_t *vdc = vd->vdev_tsd;
2212 
2213 	return (vdc->vdc_nparity);
2214 }
2215 
2216 static uint64_t
2217 vdev_draid_ndisks(vdev_t *vd)
2218 {
2219 	vdev_draid_config_t *vdc = vd->vdev_tsd;
2220 
2221 	return (vdc->vdc_ndisks);
2222 }
2223 
2224 vdev_ops_t vdev_draid_ops = {
2225 	.vdev_op_init = vdev_draid_init,
2226 	.vdev_op_fini = vdev_draid_fini,
2227 	.vdev_op_open = vdev_draid_open,
2228 	.vdev_op_close = vdev_draid_close,
2229 	.vdev_op_asize = vdev_draid_asize,
2230 	.vdev_op_min_asize = vdev_draid_min_asize,
2231 	.vdev_op_min_alloc = vdev_draid_min_alloc,
2232 	.vdev_op_io_start = vdev_draid_io_start,
2233 	.vdev_op_io_done = vdev_draid_io_done,
2234 	.vdev_op_state_change = vdev_draid_state_change,
2235 	.vdev_op_need_resilver = vdev_draid_need_resilver,
2236 	.vdev_op_hold = NULL,
2237 	.vdev_op_rele = NULL,
2238 	.vdev_op_remap = NULL,
2239 	.vdev_op_xlate = vdev_draid_xlate,
2240 	.vdev_op_rebuild_asize = vdev_draid_rebuild_asize,
2241 	.vdev_op_metaslab_init = vdev_draid_metaslab_init,
2242 	.vdev_op_config_generate = vdev_draid_config_generate,
2243 	.vdev_op_nparity = vdev_draid_nparity,
2244 	.vdev_op_ndisks = vdev_draid_ndisks,
2245 	.vdev_op_type = VDEV_TYPE_DRAID,
2246 	.vdev_op_leaf = B_FALSE,
2247 };
2248 
2249 
2250 /*
2251  * A dRAID distributed spare is a virtual leaf vdev which is included in the
2252  * parent dRAID configuration.  The last N columns of the dRAID permutation
2253  * table are used to determine on which dRAID children a specific offset
2254  * should be written.  These spare leaf vdevs can only be used to replace
2255  * faulted children in the same dRAID configuration.
2256  */
2257 
2258 /*
2259  * Distributed spare state.  All fields are set when the distributed spare is
2260  * first opened and are immutable.
2261  */
2262 typedef struct {
2263 	vdev_t *vds_draid_vdev;		/* top-level parent dRAID vdev */
2264 	uint64_t vds_top_guid;		/* top-level parent dRAID guid */
2265 	uint64_t vds_spare_id;		/* spare id (0 - vdc->vdc_nspares-1) */
2266 } vdev_draid_spare_t;
2267 
2268 /*
2269  * Returns the parent dRAID vdev to which the distributed spare belongs.
2270  * This may be safely called even when the vdev is not open.
2271  */
2272 vdev_t *
2273 vdev_draid_spare_get_parent(vdev_t *vd)
2274 {
2275 	vdev_draid_spare_t *vds = vd->vdev_tsd;
2276 
2277 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
2278 
2279 	if (vds->vds_draid_vdev != NULL)
2280 		return (vds->vds_draid_vdev);
2281 
2282 	return (vdev_lookup_by_guid(vd->vdev_spa->spa_root_vdev,
2283 	    vds->vds_top_guid));
2284 }
2285 
2286 /*
2287  * A dRAID space is active when it's the child of a vdev using the
2288  * vdev_spare_ops, vdev_replacing_ops or vdev_draid_ops.
2289  */
2290 static boolean_t
2291 vdev_draid_spare_is_active(vdev_t *vd)
2292 {
2293 	vdev_t *pvd = vd->vdev_parent;
2294 
2295 	if (pvd != NULL && (pvd->vdev_ops == &vdev_spare_ops ||
2296 	    pvd->vdev_ops == &vdev_replacing_ops ||
2297 	    pvd->vdev_ops == &vdev_draid_ops)) {
2298 		return (B_TRUE);
2299 	} else {
2300 		return (B_FALSE);
2301 	}
2302 }
2303 
2304 /*
2305  * Given a dRAID distribute spare vdev, returns the physical child vdev
2306  * on which the provided offset resides.  This may involve recursing through
2307  * multiple layers of distributed spares.  Note that offset is relative to
2308  * this vdev.
2309  */
2310 vdev_t *
2311 vdev_draid_spare_get_child(vdev_t *vd, uint64_t physical_offset)
2312 {
2313 	vdev_draid_spare_t *vds = vd->vdev_tsd;
2314 
2315 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
2316 
2317 	/* The vdev is closed */
2318 	if (vds->vds_draid_vdev == NULL)
2319 		return (NULL);
2320 
2321 	vdev_t *tvd = vds->vds_draid_vdev;
2322 	vdev_draid_config_t *vdc = tvd->vdev_tsd;
2323 
2324 	ASSERT3P(tvd->vdev_ops, ==, &vdev_draid_ops);
2325 	ASSERT3U(vds->vds_spare_id, <, vdc->vdc_nspares);
2326 
2327 	uint8_t *base;
2328 	uint64_t iter;
2329 	uint64_t perm = physical_offset / vdc->vdc_devslicesz;
2330 
2331 	vdev_draid_get_perm(vdc, perm, &base, &iter);
2332 
2333 	uint64_t cid = vdev_draid_permute_id(vdc, base, iter,
2334 	    (tvd->vdev_children - 1) - vds->vds_spare_id);
2335 	vdev_t *cvd = tvd->vdev_child[cid];
2336 
2337 	if (cvd->vdev_ops == &vdev_draid_spare_ops)
2338 		return (vdev_draid_spare_get_child(cvd, physical_offset));
2339 
2340 	return (cvd);
2341 }
2342 
2343 /* ARGSUSED */
2344 static void
2345 vdev_draid_spare_close(vdev_t *vd)
2346 {
2347 	vdev_draid_spare_t *vds = vd->vdev_tsd;
2348 	vds->vds_draid_vdev = NULL;
2349 }
2350 
2351 /*
2352  * Opening a dRAID spare device is done by looking up the associated dRAID
2353  * top-level vdev guid from the spare configuration.
2354  */
2355 static int
2356 vdev_draid_spare_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
2357     uint64_t *logical_ashift, uint64_t *physical_ashift)
2358 {
2359 	vdev_draid_spare_t *vds = vd->vdev_tsd;
2360 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2361 	uint64_t asize, max_asize;
2362 
2363 	vdev_t *tvd = vdev_lookup_by_guid(rvd, vds->vds_top_guid);
2364 	if (tvd == NULL) {
2365 		/*
2366 		 * When spa_vdev_add() is labeling new spares the
2367 		 * associated dRAID is not attached to the root vdev
2368 		 * nor does this spare have a parent.  Simulate a valid
2369 		 * device in order to allow the label to be initialized
2370 		 * and the distributed spare added to the configuration.
2371 		 */
2372 		if (vd->vdev_parent == NULL) {
2373 			*psize = *max_psize = SPA_MINDEVSIZE;
2374 			*logical_ashift = *physical_ashift = ASHIFT_MIN;
2375 			return (0);
2376 		}
2377 
2378 		return (SET_ERROR(EINVAL));
2379 	}
2380 
2381 	vdev_draid_config_t *vdc = tvd->vdev_tsd;
2382 	if (tvd->vdev_ops != &vdev_draid_ops || vdc == NULL)
2383 		return (SET_ERROR(EINVAL));
2384 
2385 	if (vds->vds_spare_id >= vdc->vdc_nspares)
2386 		return (SET_ERROR(EINVAL));
2387 
2388 	/*
2389 	 * Neither tvd->vdev_asize or tvd->vdev_max_asize can be used here
2390 	 * because the caller may be vdev_draid_open() in which case the
2391 	 * values are stale as they haven't yet been updated by vdev_open().
2392 	 * To avoid this always recalculate the dRAID asize and max_asize.
2393 	 */
2394 	vdev_draid_calculate_asize(tvd, &asize, &max_asize,
2395 	    logical_ashift, physical_ashift);
2396 
2397 	*psize = asize + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2398 	*max_psize = max_asize + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2399 
2400 	vds->vds_draid_vdev = tvd;
2401 
2402 	return (0);
2403 }
2404 
2405 /*
2406  * Completed distributed spare IO.  Store the result in the parent zio
2407  * as if it had performed the operation itself.  Only the first error is
2408  * preserved if there are multiple errors.
2409  */
2410 static void
2411 vdev_draid_spare_child_done(zio_t *zio)
2412 {
2413 	zio_t *pio = zio->io_private;
2414 
2415 	/*
2416 	 * IOs are issued to non-writable vdevs in order to keep their
2417 	 * DTLs accurate.  However, we don't want to propagate the
2418 	 * error in to the distributed spare's DTL.  When resilvering
2419 	 * vdev_draid_need_resilver() will consult the relevant DTL
2420 	 * to determine if the data is missing and must be repaired.
2421 	 */
2422 	if (!vdev_writeable(zio->io_vd))
2423 		return;
2424 
2425 	if (pio->io_error == 0)
2426 		pio->io_error = zio->io_error;
2427 }
2428 
2429 /*
2430  * Returns a valid label nvlist for the distributed spare vdev.  This is
2431  * used to bypass the IO pipeline to avoid the complexity of constructing
2432  * a complete label with valid checksum to return when read.
2433  */
2434 nvlist_t *
2435 vdev_draid_read_config_spare(vdev_t *vd)
2436 {
2437 	spa_t *spa = vd->vdev_spa;
2438 	spa_aux_vdev_t *sav = &spa->spa_spares;
2439 	uint64_t guid = vd->vdev_guid;
2440 
2441 	nvlist_t *nv = fnvlist_alloc();
2442 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
2443 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
2444 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_VERSION, spa_version(spa));
2445 	fnvlist_add_string(nv, ZPOOL_CONFIG_POOL_NAME, spa_name(spa));
2446 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_GUID, spa_guid(spa));
2447 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
2448 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_TOP_GUID, vd->vdev_top->vdev_guid);
2449 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_STATE,
2450 	    vdev_draid_spare_is_active(vd) ?
2451 	    POOL_STATE_ACTIVE : POOL_STATE_SPARE);
2452 
2453 	/* Set the vdev guid based on the vdev list in sav_count. */
2454 	for (int i = 0; i < sav->sav_count; i++) {
2455 		if (sav->sav_vdevs[i]->vdev_ops == &vdev_draid_spare_ops &&
2456 		    strcmp(sav->sav_vdevs[i]->vdev_path, vd->vdev_path) == 0) {
2457 			guid = sav->sav_vdevs[i]->vdev_guid;
2458 			break;
2459 		}
2460 	}
2461 
2462 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, guid);
2463 
2464 	return (nv);
2465 }
2466 
2467 /*
2468  * Handle any ioctl requested of the distributed spare.  Only flushes
2469  * are supported in which case all children must be flushed.
2470  */
2471 static int
2472 vdev_draid_spare_ioctl(zio_t *zio)
2473 {
2474 	vdev_t *vd = zio->io_vd;
2475 	int error = 0;
2476 
2477 	if (zio->io_cmd == DKIOCFLUSHWRITECACHE) {
2478 		for (int c = 0; c < vd->vdev_children; c++) {
2479 			zio_nowait(zio_vdev_child_io(zio, NULL,
2480 			    vd->vdev_child[c], zio->io_offset, zio->io_abd,
2481 			    zio->io_size, zio->io_type, zio->io_priority, 0,
2482 			    vdev_draid_spare_child_done, zio));
2483 		}
2484 	} else {
2485 		error = SET_ERROR(ENOTSUP);
2486 	}
2487 
2488 	return (error);
2489 }
2490 
2491 /*
2492  * Initiate an IO to the distributed spare.  For normal IOs this entails using
2493  * the zio->io_offset and permutation table to calculate which child dRAID vdev
2494  * is responsible for the data.  Then passing along the zio to that child to
2495  * perform the actual IO.  The label ranges are not stored on disk and require
2496  * some special handling which is described below.
2497  */
2498 static void
2499 vdev_draid_spare_io_start(zio_t *zio)
2500 {
2501 	vdev_t *cvd = NULL, *vd = zio->io_vd;
2502 	vdev_draid_spare_t *vds = vd->vdev_tsd;
2503 	uint64_t offset = zio->io_offset - VDEV_LABEL_START_SIZE;
2504 
2505 	/*
2506 	 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
2507 	 * Nothing to be done here but return failure.
2508 	 */
2509 	if (vds == NULL) {
2510 		zio->io_error = ENXIO;
2511 		zio_interrupt(zio);
2512 		return;
2513 	}
2514 
2515 	switch (zio->io_type) {
2516 	case ZIO_TYPE_IOCTL:
2517 		zio->io_error = vdev_draid_spare_ioctl(zio);
2518 		break;
2519 
2520 	case ZIO_TYPE_WRITE:
2521 		if (VDEV_OFFSET_IS_LABEL(vd, zio->io_offset)) {
2522 			/*
2523 			 * Accept probe IOs and config writers to simulate the
2524 			 * existence of an on disk label.  vdev_label_sync(),
2525 			 * vdev_uberblock_sync() and vdev_copy_uberblocks()
2526 			 * skip the distributed spares.  This only leaves
2527 			 * vdev_label_init() which is allowed to succeed to
2528 			 * avoid adding special cases the function.
2529 			 */
2530 			if (zio->io_flags & ZIO_FLAG_PROBE ||
2531 			    zio->io_flags & ZIO_FLAG_CONFIG_WRITER) {
2532 				zio->io_error = 0;
2533 			} else {
2534 				zio->io_error = SET_ERROR(EIO);
2535 			}
2536 		} else {
2537 			cvd = vdev_draid_spare_get_child(vd, offset);
2538 
2539 			if (cvd == NULL) {
2540 				zio->io_error = SET_ERROR(ENXIO);
2541 			} else {
2542 				zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2543 				    offset, zio->io_abd, zio->io_size,
2544 				    zio->io_type, zio->io_priority, 0,
2545 				    vdev_draid_spare_child_done, zio));
2546 			}
2547 		}
2548 		break;
2549 
2550 	case ZIO_TYPE_READ:
2551 		if (VDEV_OFFSET_IS_LABEL(vd, zio->io_offset)) {
2552 			/*
2553 			 * Accept probe IOs to simulate the existence of a
2554 			 * label.  vdev_label_read_config() bypasses the
2555 			 * pipeline to read the label configuration and
2556 			 * vdev_uberblock_load() skips distributed spares
2557 			 * when attempting to locate the best uberblock.
2558 			 */
2559 			if (zio->io_flags & ZIO_FLAG_PROBE) {
2560 				zio->io_error = 0;
2561 			} else {
2562 				zio->io_error = SET_ERROR(EIO);
2563 			}
2564 		} else {
2565 			cvd = vdev_draid_spare_get_child(vd, offset);
2566 
2567 			if (cvd == NULL || !vdev_readable(cvd)) {
2568 				zio->io_error = SET_ERROR(ENXIO);
2569 			} else {
2570 				zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2571 				    offset, zio->io_abd, zio->io_size,
2572 				    zio->io_type, zio->io_priority, 0,
2573 				    vdev_draid_spare_child_done, zio));
2574 			}
2575 		}
2576 		break;
2577 
2578 	case ZIO_TYPE_TRIM:
2579 		/* The vdev label ranges are never trimmed */
2580 		ASSERT0(VDEV_OFFSET_IS_LABEL(vd, zio->io_offset));
2581 
2582 		cvd = vdev_draid_spare_get_child(vd, offset);
2583 
2584 		if (cvd == NULL || !cvd->vdev_has_trim) {
2585 			zio->io_error = SET_ERROR(ENXIO);
2586 		} else {
2587 			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2588 			    offset, zio->io_abd, zio->io_size,
2589 			    zio->io_type, zio->io_priority, 0,
2590 			    vdev_draid_spare_child_done, zio));
2591 		}
2592 		break;
2593 
2594 	default:
2595 		zio->io_error = SET_ERROR(ENOTSUP);
2596 		break;
2597 	}
2598 
2599 	zio_execute(zio);
2600 }
2601 
2602 /* ARGSUSED */
2603 static void
2604 vdev_draid_spare_io_done(zio_t *zio)
2605 {
2606 }
2607 
2608 /*
2609  * Lookup the full spare config in spa->spa_spares.sav_config and
2610  * return the top_guid and spare_id for the named spare.
2611  */
2612 static int
2613 vdev_draid_spare_lookup(spa_t *spa, nvlist_t *nv, uint64_t *top_guidp,
2614     uint64_t *spare_idp)
2615 {
2616 	nvlist_t **spares;
2617 	uint_t nspares;
2618 	int error;
2619 
2620 	if ((spa->spa_spares.sav_config == NULL) ||
2621 	    (nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2622 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)) {
2623 		return (SET_ERROR(ENOENT));
2624 	}
2625 
2626 	char *spare_name;
2627 	error = nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &spare_name);
2628 	if (error != 0)
2629 		return (SET_ERROR(EINVAL));
2630 
2631 	for (int i = 0; i < nspares; i++) {
2632 		nvlist_t *spare = spares[i];
2633 		uint64_t top_guid, spare_id;
2634 		char *type, *path;
2635 
2636 		/* Skip non-distributed spares */
2637 		error = nvlist_lookup_string(spare, ZPOOL_CONFIG_TYPE, &type);
2638 		if (error != 0 || strcmp(type, VDEV_TYPE_DRAID_SPARE) != 0)
2639 			continue;
2640 
2641 		/* Skip spares with the wrong name */
2642 		error = nvlist_lookup_string(spare, ZPOOL_CONFIG_PATH, &path);
2643 		if (error != 0 || strcmp(path, spare_name) != 0)
2644 			continue;
2645 
2646 		/* Found the matching spare */
2647 		error = nvlist_lookup_uint64(spare,
2648 		    ZPOOL_CONFIG_TOP_GUID, &top_guid);
2649 		if (error == 0) {
2650 			error = nvlist_lookup_uint64(spare,
2651 			    ZPOOL_CONFIG_SPARE_ID, &spare_id);
2652 		}
2653 
2654 		if (error != 0) {
2655 			return (SET_ERROR(EINVAL));
2656 		} else {
2657 			*top_guidp = top_guid;
2658 			*spare_idp = spare_id;
2659 			return (0);
2660 		}
2661 	}
2662 
2663 	return (SET_ERROR(ENOENT));
2664 }
2665 
2666 /*
2667  * Initialize private dRAID spare specific fields from the nvlist.
2668  */
2669 static int
2670 vdev_draid_spare_init(spa_t *spa, nvlist_t *nv, void **tsd)
2671 {
2672 	vdev_draid_spare_t *vds;
2673 	uint64_t top_guid = 0;
2674 	uint64_t spare_id;
2675 
2676 	/*
2677 	 * In the normal case check the list of spares stored in the spa
2678 	 * to lookup the top_guid and spare_id for provided spare config.
2679 	 * When creating a new pool or adding vdevs the spare list is not
2680 	 * yet populated and the values are provided in the passed config.
2681 	 */
2682 	if (vdev_draid_spare_lookup(spa, nv, &top_guid, &spare_id) != 0) {
2683 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_TOP_GUID,
2684 		    &top_guid) != 0)
2685 			return (SET_ERROR(EINVAL));
2686 
2687 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_SPARE_ID,
2688 		    &spare_id) != 0)
2689 			return (SET_ERROR(EINVAL));
2690 	}
2691 
2692 	vds = kmem_alloc(sizeof (vdev_draid_spare_t), KM_SLEEP);
2693 	vds->vds_draid_vdev = NULL;
2694 	vds->vds_top_guid = top_guid;
2695 	vds->vds_spare_id = spare_id;
2696 
2697 	*tsd = vds;
2698 
2699 	return (0);
2700 }
2701 
2702 static void
2703 vdev_draid_spare_fini(vdev_t *vd)
2704 {
2705 	kmem_free(vd->vdev_tsd, sizeof (vdev_draid_spare_t));
2706 }
2707 
2708 static void
2709 vdev_draid_spare_config_generate(vdev_t *vd, nvlist_t *nv)
2710 {
2711 	vdev_draid_spare_t *vds = vd->vdev_tsd;
2712 
2713 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
2714 
2715 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_TOP_GUID, vds->vds_top_guid);
2716 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_SPARE_ID, vds->vds_spare_id);
2717 }
2718 
2719 vdev_ops_t vdev_draid_spare_ops = {
2720 	.vdev_op_init = vdev_draid_spare_init,
2721 	.vdev_op_fini = vdev_draid_spare_fini,
2722 	.vdev_op_open = vdev_draid_spare_open,
2723 	.vdev_op_close = vdev_draid_spare_close,
2724 	.vdev_op_asize = vdev_default_asize,
2725 	.vdev_op_min_asize = vdev_default_min_asize,
2726 	.vdev_op_min_alloc = NULL,
2727 	.vdev_op_io_start = vdev_draid_spare_io_start,
2728 	.vdev_op_io_done = vdev_draid_spare_io_done,
2729 	.vdev_op_state_change = NULL,
2730 	.vdev_op_need_resilver = NULL,
2731 	.vdev_op_hold = NULL,
2732 	.vdev_op_rele = NULL,
2733 	.vdev_op_remap = NULL,
2734 	.vdev_op_xlate = vdev_default_xlate,
2735 	.vdev_op_rebuild_asize = NULL,
2736 	.vdev_op_metaslab_init = NULL,
2737 	.vdev_op_config_generate = vdev_draid_spare_config_generate,
2738 	.vdev_op_nparity = NULL,
2739 	.vdev_op_ndisks = NULL,
2740 	.vdev_op_type = VDEV_TYPE_DRAID_SPARE,
2741 	.vdev_op_leaf = B_TRUE,
2742 };
2743