xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_draid.c (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2018 Intel Corporation.
23  * Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/spa.h>
28 #include <sys/spa_impl.h>
29 #include <sys/vdev_impl.h>
30 #include <sys/vdev_draid.h>
31 #include <sys/vdev_raidz.h>
32 #include <sys/vdev_rebuild.h>
33 #include <sys/abd.h>
34 #include <sys/zio.h>
35 #include <sys/nvpair.h>
36 #include <sys/zio_checksum.h>
37 #include <sys/fs/zfs.h>
38 #include <sys/fm/fs/zfs.h>
39 #include <zfs_fletcher.h>
40 
41 #ifdef ZFS_DEBUG
42 #include <sys/vdev.h>	/* For vdev_xlate() in vdev_draid_io_verify() */
43 #endif
44 
45 /*
46  * dRAID is a distributed spare implementation for ZFS. A dRAID vdev is
47  * comprised of multiple raidz redundancy groups which are spread over the
48  * dRAID children. To ensure an even distribution, and avoid hot spots, a
49  * permutation mapping is applied to the order of the dRAID children.
50  * This mixing effectively distributes the parity columns evenly over all
51  * of the disks in the dRAID.
52  *
53  * This is beneficial because it means when resilvering all of the disks
54  * can participate thereby increasing the available IOPs and bandwidth.
55  * Furthermore, by reserving a small fraction of each child's total capacity
56  * virtual distributed spare disks can be created. These spares similarly
57  * benefit from the performance gains of spanning all of the children. The
58  * consequence of which is that resilvering to a distributed spare can
59  * substantially reduce the time required to restore full parity to pool
60  * with a failed disks.
61  *
62  * === dRAID group layout ===
63  *
64  * First, let's define a "row" in the configuration to be a 16M chunk from
65  * each physical drive at the same offset. This is the minimum allowable
66  * size since it must be possible to store a full 16M block when there is
67  * only a single data column. Next, we define a "group" to be a set of
68  * sequential disks containing both the parity and data columns. We allow
69  * groups to span multiple rows in order to align any group size to any
70  * number of physical drives. Finally, a "slice" is comprised of the rows
71  * which contain the target number of groups. The permutation mappings
72  * are applied in a round robin fashion to each slice.
73  *
74  * Given D+P drives in a group (including parity drives) and C-S physical
75  * drives (not including the spare drives), we can distribute the groups
76  * across R rows without remainder by selecting the least common multiple
77  * of D+P and C-S as the number of groups; i.e. ngroups = LCM(D+P, C-S).
78  *
79  * In the example below, there are C=14 physical drives in the configuration
80  * with S=2 drives worth of spare capacity. Each group has a width of 9
81  * which includes D=8 data and P=1 parity drive. There are 4 groups and
82  * 3 rows per slice.  Each group has a size of 144M (16M * 9) and a slice
83  * size is 576M (144M * 4). When allocating from a dRAID each group is
84  * filled before moving on to the next as show in slice0 below.
85  *
86  *             data disks (8 data + 1 parity)          spares (2)
87  *     +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
88  *  ^  | 2 | 6 | 1 | 11| 4 | 0 | 7 | 10| 8 | 9 | 13| 5 | 12| 3 | device map 0
89  *  |  +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
90  *  |  |              group 0              |  group 1..|       |
91  *  |  +-----------------------------------+-----------+-------|
92  *  |  | 0   1   2   3   4   5   6   7   8 | 36  37  38|       |  r
93  *  |  | 9   10  11  12  13  14  15  16  17| 45  46  47|       |  o
94  *  |  | 18  19  20  21  22  23  24  25  26| 54  55  56|       |  w
95  *     | 27  28  29  30  31  32  33  34  35| 63  64  65|       |  0
96  *  s  +-----------------------+-----------------------+-------+
97  *  l  |       ..group 1       |        group 2..      |       |
98  *  i  +-----------------------+-----------------------+-------+
99  *  c  | 39  40  41  42  43  44| 72  73  74  75  76  77|       |  r
100  *  e  | 48  49  50  51  52  53| 81  82  83  84  85  86|       |  o
101  *  0  | 57  58  59  60  61  62| 90  91  92  93  94  95|       |  w
102  *     | 66  67  68  69  70  71| 99 100 101 102 103 104|       |  1
103  *  |  +-----------+-----------+-----------------------+-------+
104  *  |  |..group 2  |            group 3                |       |
105  *  |  +-----------+-----------+-----------------------+-------+
106  *  |  | 78  79  80|108 109 110 111 112 113 114 115 116|       |  r
107  *  |  | 87  88  89|117 118 119 120 121 122 123 124 125|       |  o
108  *  |  | 96  97  98|126 127 128 129 130 131 132 133 134|       |  w
109  *  v  |105 106 107|135 136 137 138 139 140 141 142 143|       |  2
110  *     +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
111  *     | 9 | 11| 12| 2 | 4 | 1 | 3 | 0 | 10| 13| 8 | 5 | 6 | 7 | device map 1
112  *  s  +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
113  *  l  |              group 4              |  group 5..|       | row 3
114  *  i  +-----------------------+-----------+-----------+-------|
115  *  c  |       ..group 5       |        group 6..      |       | row 4
116  *  e  +-----------+-----------+-----------------------+-------+
117  *  1  |..group 6  |            group 7                |       | row 5
118  *     +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
119  *     | 3 | 5 | 10| 8 | 6 | 11| 12| 0 | 2 | 4 | 7 | 1 | 9 | 13| device map 2
120  *  s  +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
121  *  l  |              group 8              |  group 9..|       | row 6
122  *  i  +-----------------------------------------------+-------|
123  *  c  |       ..group 9       |        group 10..     |       | row 7
124  *  e  +-----------------------+-----------------------+-------+
125  *  2  |..group 10 |            group 11               |       | row 8
126  *     +-----------+-----------------------------------+-------+
127  *
128  * This layout has several advantages over requiring that each row contain
129  * a whole number of groups.
130  *
131  * 1. The group count is not a relevant parameter when defining a dRAID
132  *    layout. Only the group width is needed, and *all* groups will have
133  *    the desired size.
134  *
135  * 2. All possible group widths (<= physical disk count) can be supported.
136  *
137  * 3. The logic within vdev_draid.c is simplified when the group width is
138  *    the same for all groups (although some of the logic around computing
139  *    permutation numbers and drive offsets is more complicated).
140  *
141  * N.B. The following array describes all valid dRAID permutation maps.
142  * Each row is used to generate a permutation map for a different number
143  * of children from a unique seed. The seeds were generated and carefully
144  * evaluated by the 'draid' utility in order to provide balanced mappings.
145  * In addition to the seed a checksum of the in-memory mapping is stored
146  * for verification.
147  *
148  * The imbalance ratio of a given failure (e.g. 5 disks wide, child 3 failed,
149  * with a given permutation map) is the ratio of the amounts of I/O that will
150  * be sent to the least and most busy disks when resilvering. The average
151  * imbalance ratio (of a given number of disks and permutation map) is the
152  * average of the ratios of all possible single and double disk failures.
153  *
154  * In order to achieve a low imbalance ratio the number of permutations in
155  * the mapping must be significantly larger than the number of children.
156  * For dRAID the number of permutations has been limited to 512 to minimize
157  * the map size. This does result in a gradually increasing imbalance ratio
158  * as seen in the table below. Increasing the number of permutations for
159  * larger child counts would reduce the imbalance ratio. However, in practice
160  * when there are a large number of children each child is responsible for
161  * fewer total IOs so it's less of a concern.
162  *
163  * Note these values are hard coded and must never be changed.  Existing
164  * pools depend on the same mapping always being generated in order to
165  * read and write from the correct locations.  Any change would make
166  * existing pools completely inaccessible.
167  */
168 static const draid_map_t draid_maps[VDEV_DRAID_MAX_MAPS] = {
169 	{   2, 256, 0x89ef3dabbcc7de37, 0x00000000433d433d },	/* 1.000 */
170 	{   3, 256, 0x89a57f3de98121b4, 0x00000000bcd8b7b5 },	/* 1.000 */
171 	{   4, 256, 0xc9ea9ec82340c885, 0x00000001819d7c69 },	/* 1.000 */
172 	{   5, 256, 0xf46733b7f4d47dfd, 0x00000002a1648d74 },	/* 1.010 */
173 	{   6, 256, 0x88c3c62d8585b362, 0x00000003d3b0c2c4 },	/* 1.031 */
174 	{   7, 256, 0x3a65d809b4d1b9d5, 0x000000055c4183ee },	/* 1.043 */
175 	{   8, 256, 0xe98930e3c5d2e90a, 0x00000006edfb0329 },	/* 1.059 */
176 	{   9, 256, 0x5a5430036b982ccb, 0x00000008ceaf6934 },	/* 1.056 */
177 	{  10, 256, 0x92bf389e9eadac74, 0x0000000b26668c09 },	/* 1.072 */
178 	{  11, 256, 0x74ccebf1dcf3ae80, 0x0000000dd691358c },	/* 1.083 */
179 	{  12, 256, 0x8847e41a1a9f5671, 0x00000010a0c63c8e },	/* 1.097 */
180 	{  13, 256, 0x7481b56debf0e637, 0x0000001424121fe4 },	/* 1.100 */
181 	{  14, 256, 0x559b8c44065f8967, 0x00000016ab2ff079 },	/* 1.121 */
182 	{  15, 256, 0x34c49545a2ee7f01, 0x0000001a6028efd6 },	/* 1.103 */
183 	{  16, 256, 0xb85f4fa81a7698f7, 0x0000001e95ff5e66 },	/* 1.111 */
184 	{  17, 256, 0x6353e47b7e47aba0, 0x00000021a81fa0fe },	/* 1.133 */
185 	{  18, 256, 0xaa549746b1cbb81c, 0x00000026f02494c9 },	/* 1.131 */
186 	{  19, 256, 0x892e343f2f31d690, 0x00000029eb392835 },	/* 1.130 */
187 	{  20, 256, 0x76914824db98cc3f, 0x0000003004f31a7c },	/* 1.141 */
188 	{  21, 256, 0x4b3cbabf9cfb1d0f, 0x00000036363a2408 },	/* 1.139 */
189 	{  22, 256, 0xf45c77abb4f035d4, 0x00000038dd0f3e84 },	/* 1.150 */
190 	{  23, 256, 0x5e18bd7f3fd4baf4, 0x0000003f0660391f },	/* 1.174 */
191 	{  24, 256, 0xa7b3a4d285d6503b, 0x000000443dfc9ff6 },	/* 1.168 */
192 	{  25, 256, 0x56ac7dd967521f5a, 0x0000004b03a87eb7 },	/* 1.180 */
193 	{  26, 256, 0x3a42dfda4eb880f7, 0x000000522c719bba },	/* 1.226 */
194 	{  27, 256, 0xd200d2fc6b54bf60, 0x0000005760b4fdf5 },	/* 1.228 */
195 	{  28, 256, 0xc52605bbd486c546, 0x0000005e00d8f74c },	/* 1.217 */
196 	{  29, 256, 0xc761779e63cd762f, 0x00000067be3cd85c },	/* 1.239 */
197 	{  30, 256, 0xca577b1e07f85ca5, 0x0000006f5517f3e4 },	/* 1.238 */
198 	{  31, 256, 0xfd50a593c518b3d4, 0x0000007370e7778f },	/* 1.273 */
199 	{  32, 512, 0xc6c87ba5b042650b, 0x000000f7eb08a156 },	/* 1.191 */
200 	{  33, 512, 0xc3880d0c9d458304, 0x0000010734b5d160 },	/* 1.199 */
201 	{  34, 512, 0xe920927e4d8b2c97, 0x00000118c1edbce0 },	/* 1.195 */
202 	{  35, 512, 0x8da7fcda87bde316, 0x0000012a3e9f9110 },	/* 1.201 */
203 	{  36, 512, 0xcf09937491514a29, 0x0000013bd6a24bef },	/* 1.194 */
204 	{  37, 512, 0x9b5abbf345cbd7cc, 0x0000014b9d90fac3 },	/* 1.237 */
205 	{  38, 512, 0x506312a44668d6a9, 0x0000015e1b5f6148 },	/* 1.242 */
206 	{  39, 512, 0x71659ede62b4755f, 0x00000173ef029bcd },	/* 1.231 */
207 	{  40, 512, 0xa7fde73fb74cf2d7, 0x000001866fb72748 },	/* 1.233 */
208 	{  41, 512, 0x19e8b461a1dea1d3, 0x000001a046f76b23 },	/* 1.271 */
209 	{  42, 512, 0x031c9b868cc3e976, 0x000001afa64c49d3 },	/* 1.263 */
210 	{  43, 512, 0xbaa5125faa781854, 0x000001c76789e278 },	/* 1.270 */
211 	{  44, 512, 0x4ed55052550d721b, 0x000001d800ccd8eb },	/* 1.281 */
212 	{  45, 512, 0x0fd63ddbdff90677, 0x000001f08ad59ed2 },	/* 1.282 */
213 	{  46, 512, 0x36d66546de7fdd6f, 0x000002016f09574b },	/* 1.286 */
214 	{  47, 512, 0x99f997e7eafb69d7, 0x0000021e42e47cb6 },	/* 1.329 */
215 	{  48, 512, 0xbecd9c2571312c5d, 0x000002320fe2872b },	/* 1.286 */
216 	{  49, 512, 0xd97371329e488a32, 0x0000024cd73f2ca7 },	/* 1.322 */
217 	{  50, 512, 0x30e9b136670749ee, 0x000002681c83b0e0 },	/* 1.335 */
218 	{  51, 512, 0x11ad6bc8f47aaeb4, 0x0000027e9261b5d5 },	/* 1.305 */
219 	{  52, 512, 0x68e445300af432c1, 0x0000029aa0eb7dbf },	/* 1.330 */
220 	{  53, 512, 0x910fb561657ea98c, 0x000002b3dca04853 },	/* 1.365 */
221 	{  54, 512, 0xd619693d8ce5e7a5, 0x000002cc280e9c97 },	/* 1.334 */
222 	{  55, 512, 0x24e281f564dbb60a, 0x000002e9fa842713 },	/* 1.364 */
223 	{  56, 512, 0x947a7d3bdaab44c5, 0x000003046680f72e },	/* 1.374 */
224 	{  57, 512, 0x2d44fec9c093e0de, 0x00000324198ba810 },	/* 1.363 */
225 	{  58, 512, 0x87743c272d29bb4c, 0x0000033ec48c9ac9 },	/* 1.401 */
226 	{  59, 512, 0x96aa3b6f67f5d923, 0x0000034faead902c },	/* 1.392 */
227 	{  60, 512, 0x94a4f1faf520b0d3, 0x0000037d713ab005 },	/* 1.360 */
228 	{  61, 512, 0xb13ed3a272f711a2, 0x00000397368f3cbd },	/* 1.396 */
229 	{  62, 512, 0x3b1b11805fa4a64a, 0x000003b8a5e2840c },	/* 1.453 */
230 	{  63, 512, 0x4c74caad9172ba71, 0x000003d4be280290 },	/* 1.437 */
231 	{  64, 512, 0x035ff643923dd29e, 0x000003fad6c355e1 },	/* 1.402 */
232 	{  65, 512, 0x768e9171b11abd3c, 0x0000040eb07fed20 },	/* 1.459 */
233 	{  66, 512, 0x75880e6f78a13ddd, 0x000004433d6acf14 },	/* 1.423 */
234 	{  67, 512, 0x910b9714f698a877, 0x00000451ea65d5db },	/* 1.447 */
235 	{  68, 512, 0x87f5db6f9fdcf5c7, 0x000004732169e3f7 },	/* 1.450 */
236 	{  69, 512, 0x836d4968fbaa3706, 0x000004954068a380 },	/* 1.455 */
237 	{  70, 512, 0xc567d73a036421ab, 0x000004bd7cb7bd3d },	/* 1.463 */
238 	{  71, 512, 0x619df40f240b8fed, 0x000004e376c2e972 },	/* 1.463 */
239 	{  72, 512, 0x42763a680d5bed8e, 0x000005084275c680 },	/* 1.452 */
240 	{  73, 512, 0x5866f064b3230431, 0x0000052906f2c9ab },	/* 1.498 */
241 	{  74, 512, 0x9fa08548b1621a44, 0x0000054708019247 },	/* 1.526 */
242 	{  75, 512, 0xb6053078ce0fc303, 0x00000572cc5c72b0 },	/* 1.491 */
243 	{  76, 512, 0x4a7aad7bf3890923, 0x0000058e987bc8e9 },	/* 1.470 */
244 	{  77, 512, 0xe165613fd75b5a53, 0x000005c20473a211 },	/* 1.527 */
245 	{  78, 512, 0x3ff154ac878163a6, 0x000005d659194bf3 },	/* 1.509 */
246 	{  79, 512, 0x24b93ade0aa8a532, 0x0000060a201c4f8e },	/* 1.569 */
247 	{  80, 512, 0xc18e2d14cd9bb554, 0x0000062c55cfe48c },	/* 1.555 */
248 	{  81, 512, 0x98cc78302feb58b6, 0x0000066656a07194 },	/* 1.509 */
249 	{  82, 512, 0xc6c5fd5a2abc0543, 0x0000067cff94fbf8 },	/* 1.596 */
250 	{  83, 512, 0xa7962f514acbba21, 0x000006ab7b5afa2e },	/* 1.568 */
251 	{  84, 512, 0xba02545069ddc6dc, 0x000006d19861364f },	/* 1.541 */
252 	{  85, 512, 0x447c73192c35073e, 0x000006fce315ce35 },	/* 1.623 */
253 	{  86, 512, 0x48beef9e2d42b0c2, 0x00000720a8e38b6b },	/* 1.620 */
254 	{  87, 512, 0x4874cf98541a35e0, 0x00000758382a2273 },	/* 1.597 */
255 	{  88, 512, 0xad4cf8333a31127a, 0x00000781e1651b1b },	/* 1.575 */
256 	{  89, 512, 0x47ae4859d57888c1, 0x000007b27edbe5bc },	/* 1.627 */
257 	{  90, 512, 0x06f7723cfe5d1891, 0x000007dc2a96d8eb },	/* 1.596 */
258 	{  91, 512, 0xd4e44218d660576d, 0x0000080ac46f02d5 },	/* 1.622 */
259 	{  92, 512, 0x7066702b0d5be1f2, 0x00000832c96d154e },	/* 1.695 */
260 	{  93, 512, 0x011209b4f9e11fb9, 0x0000085eefda104c },	/* 1.605 */
261 	{  94, 512, 0x47ffba30a0b35708, 0x00000899badc32dc },	/* 1.625 */
262 	{  95, 512, 0x1a95a6ac4538aaa8, 0x000008b6b69a42b2 },	/* 1.687 */
263 	{  96, 512, 0xbda2b239bb2008eb, 0x000008f22d2de38a },	/* 1.621 */
264 	{  97, 512, 0x7ffa0bea90355c6c, 0x0000092e5b23b816 },	/* 1.699 */
265 	{  98, 512, 0x1d56ba34be426795, 0x0000094f482e5d1b },	/* 1.688 */
266 	{  99, 512, 0x0aa89d45c502e93d, 0x00000977d94a98ce },	/* 1.642 */
267 	{ 100, 512, 0x54369449f6857774, 0x000009c06c9b34cc },	/* 1.683 */
268 	{ 101, 512, 0xf7d4dd8445b46765, 0x000009e5dc542259 },	/* 1.755 */
269 	{ 102, 512, 0xfa8866312f169469, 0x00000a16b54eae93 },	/* 1.692 */
270 	{ 103, 512, 0xd8a5aea08aef3ff9, 0x00000a381d2cbfe7 },	/* 1.747 */
271 	{ 104, 512, 0x66bcd2c3d5f9ef0e, 0x00000a8191817be7 },	/* 1.751 */
272 	{ 105, 512, 0x3fb13a47a012ec81, 0x00000ab562b9a254 },	/* 1.751 */
273 	{ 106, 512, 0x43100f01c9e5e3ca, 0x00000aeee84c185f },	/* 1.726 */
274 	{ 107, 512, 0xca09c50ccee2d054, 0x00000b1c359c047d },	/* 1.788 */
275 	{ 108, 512, 0xd7176732ac503f9b, 0x00000b578bc52a73 },	/* 1.740 */
276 	{ 109, 512, 0xed206e51f8d9422d, 0x00000b8083e0d960 },	/* 1.780 */
277 	{ 110, 512, 0x17ead5dc6ba0dcd6, 0x00000bcfb1a32ca8 },	/* 1.836 */
278 	{ 111, 512, 0x5f1dc21e38a969eb, 0x00000c0171becdd6 },	/* 1.778 */
279 	{ 112, 512, 0xddaa973de33ec528, 0x00000c3edaba4b95 },	/* 1.831 */
280 	{ 113, 512, 0x2a5eccd7735a3630, 0x00000c630664e7df },	/* 1.825 */
281 	{ 114, 512, 0xafcccee5c0b71446, 0x00000cb65392f6e4 },	/* 1.826 */
282 	{ 115, 512, 0x8fa30c5e7b147e27, 0x00000cd4db391e55 },	/* 1.843 */
283 	{ 116, 512, 0x5afe0711fdfafd82, 0x00000d08cb4ec35d },	/* 1.826 */
284 	{ 117, 512, 0x533a6090238afd4c, 0x00000d336f115d1b },	/* 1.803 */
285 	{ 118, 512, 0x90cf11b595e39a84, 0x00000d8e041c2048 },	/* 1.857 */
286 	{ 119, 512, 0x0d61a3b809444009, 0x00000dcb798afe35 },	/* 1.877 */
287 	{ 120, 512, 0x7f34da0f54b0d114, 0x00000df3922664e1 },	/* 1.849 */
288 	{ 121, 512, 0xa52258d5b72f6551, 0x00000e4d37a9872d },	/* 1.867 */
289 	{ 122, 512, 0xc1de54d7672878db, 0x00000e6583a94cf6 },	/* 1.978 */
290 	{ 123, 512, 0x1d03354316a414ab, 0x00000ebffc50308d },	/* 1.947 */
291 	{ 124, 512, 0xcebdcc377665412c, 0x00000edee1997cea },	/* 1.865 */
292 	{ 125, 512, 0x4ddd4c04b1a12344, 0x00000f21d64b373f },	/* 1.881 */
293 	{ 126, 512, 0x64fc8f94e3973658, 0x00000f8f87a8896b },	/* 1.882 */
294 	{ 127, 512, 0x68765f78034a334e, 0x00000fb8fe62197e },	/* 1.867 */
295 	{ 128, 512, 0xaf36b871a303e816, 0x00000fec6f3afb1e },	/* 1.972 */
296 	{ 129, 512, 0x2a4cbf73866c3a28, 0x00001027febfe4e5 },	/* 1.896 */
297 	{ 130, 512, 0x9cb128aacdcd3b2f, 0x0000106aa8ac569d },	/* 1.965 */
298 	{ 131, 512, 0x5511d41c55869124, 0x000010bbd755ddf1 },	/* 1.963 */
299 	{ 132, 512, 0x42f92461937f284a, 0x000010fb8bceb3b5 },	/* 1.925 */
300 	{ 133, 512, 0xe2d89a1cf6f1f287, 0x0000114cf5331e34 },	/* 1.862 */
301 	{ 134, 512, 0xdc631a038956200e, 0x0000116428d2adc5 },	/* 2.042 */
302 	{ 135, 512, 0xb2e5ac222cd236be, 0x000011ca88e4d4d2 },	/* 1.935 */
303 	{ 136, 512, 0xbc7d8236655d88e7, 0x000011e39cb94e66 },	/* 2.005 */
304 	{ 137, 512, 0x073e02d88d2d8e75, 0x0000123136c7933c },	/* 2.041 */
305 	{ 138, 512, 0x3ddb9c3873166be0, 0x00001280e4ec6d52 },	/* 1.997 */
306 	{ 139, 512, 0x7d3b1a845420e1b5, 0x000012c2e7cd6a44 },	/* 1.996 */
307 	{ 140, 512, 0x60102308aa7b2a6c, 0x000012fc490e6c7d },	/* 2.053 */
308 	{ 141, 512, 0xdb22bb2f9eb894aa, 0x00001343f5a85a1a },	/* 1.971 */
309 	{ 142, 512, 0xd853f879a13b1606, 0x000013bb7d5f9048 },	/* 2.018 */
310 	{ 143, 512, 0x001620a03f804b1d, 0x000013e74cc794fd },	/* 1.961 */
311 	{ 144, 512, 0xfdb52dda76fbf667, 0x00001442d2f22480 },	/* 2.046 */
312 	{ 145, 512, 0xa9160110f66e24ff, 0x0000144b899f9dbb },	/* 1.968 */
313 	{ 146, 512, 0x77306a30379ae03b, 0x000014cb98eb1f81 },	/* 2.143 */
314 	{ 147, 512, 0x14f5985d2752319d, 0x000014feab821fc9 },	/* 2.064 */
315 	{ 148, 512, 0xa4b8ff11de7863f8, 0x0000154a0e60b9c9 },	/* 2.023 */
316 	{ 149, 512, 0x44b345426455c1b3, 0x000015999c3c569c },	/* 2.136 */
317 	{ 150, 512, 0x272677826049b46c, 0x000015c9697f4b92 },	/* 2.063 */
318 	{ 151, 512, 0x2f9216e2cd74fe40, 0x0000162b1f7bbd39 },	/* 1.974 */
319 	{ 152, 512, 0x706ae3e763ad8771, 0x00001661371c55e1 },	/* 2.210 */
320 	{ 153, 512, 0xf7fd345307c2480e, 0x000016e251f28b6a },	/* 2.006 */
321 	{ 154, 512, 0x6e94e3d26b3139eb, 0x000016f2429bb8c6 },	/* 2.193 */
322 	{ 155, 512, 0x5458bbfbb781fcba, 0x0000173efdeca1b9 },	/* 2.163 */
323 	{ 156, 512, 0xa80e2afeccd93b33, 0x000017bfdcb78adc },	/* 2.046 */
324 	{ 157, 512, 0x1e4ccbb22796cf9d, 0x00001826fdcc39c9 },	/* 2.084 */
325 	{ 158, 512, 0x8fba4b676aaa3663, 0x00001841a1379480 },	/* 2.264 */
326 	{ 159, 512, 0xf82b843814b315fa, 0x000018886e19b8a3 },	/* 2.074 */
327 	{ 160, 512, 0x7f21e920ecf753a3, 0x0000191812ca0ea7 },	/* 2.282 */
328 	{ 161, 512, 0x48bb8ea2c4caa620, 0x0000192f310faccf },	/* 2.148 */
329 	{ 162, 512, 0x5cdb652b4952c91b, 0x0000199e1d7437c7 },	/* 2.355 */
330 	{ 163, 512, 0x6ac1ba6f78c06cd4, 0x000019cd11f82c70 },	/* 2.164 */
331 	{ 164, 512, 0x9faf5f9ca2669a56, 0x00001a18d5431f6a },	/* 2.393 */
332 	{ 165, 512, 0xaa57e9383eb01194, 0x00001a9e7d253d85 },	/* 2.178 */
333 	{ 166, 512, 0x896967bf495c34d2, 0x00001afb8319b9fc },	/* 2.334 */
334 	{ 167, 512, 0xdfad5f05de225f1b, 0x00001b3a59c3093b },	/* 2.266 */
335 	{ 168, 512, 0xfd299a99f9f2abdd, 0x00001bb6f1a10799 },	/* 2.304 */
336 	{ 169, 512, 0xdda239e798fe9fd4, 0x00001bfae0c9692d },	/* 2.218 */
337 	{ 170, 512, 0x5fca670414a32c3e, 0x00001c22129dbcff },	/* 2.377 */
338 	{ 171, 512, 0x1bb8934314b087de, 0x00001c955db36cd0 },	/* 2.155 */
339 	{ 172, 512, 0xd96394b4b082200d, 0x00001cfc8619b7e6 },	/* 2.404 */
340 	{ 173, 512, 0xb612a7735b1c8cbc, 0x00001d303acdd585 },	/* 2.205 */
341 	{ 174, 512, 0x28e7430fe5875fe1, 0x00001d7ed5b3697d },	/* 2.359 */
342 	{ 175, 512, 0x5038e89efdd981b9, 0x00001dc40ec35c59 },	/* 2.158 */
343 	{ 176, 512, 0x075fd78f1d14db7c, 0x00001e31c83b4a2b },	/* 2.614 */
344 	{ 177, 512, 0xc50fafdb5021be15, 0x00001e7cdac82fbc },	/* 2.239 */
345 	{ 178, 512, 0xe6dc7572ce7b91c7, 0x00001edd8bb454fc },	/* 2.493 */
346 	{ 179, 512, 0x21f7843e7beda537, 0x00001f3a8e019d6c },	/* 2.327 */
347 	{ 180, 512, 0xc83385e20b43ec82, 0x00001f70735ec137 },	/* 2.231 */
348 	{ 181, 512, 0xca818217dddb21fd, 0x0000201ca44c5a3c },	/* 2.237 */
349 	{ 182, 512, 0xe6035defea48f933, 0x00002038e3346658 },	/* 2.691 */
350 	{ 183, 512, 0x47262a4f953dac5a, 0x000020c2e554314e },	/* 2.170 */
351 	{ 184, 512, 0xe24c7246260873ea, 0x000021197e618d64 },	/* 2.600 */
352 	{ 185, 512, 0xeef6b57c9b58e9e1, 0x0000217ea48ecddc },	/* 2.391 */
353 	{ 186, 512, 0x2becd3346e386142, 0x000021c496d4a5f9 },	/* 2.677 */
354 	{ 187, 512, 0x63c6207bdf3b40a3, 0x0000220e0f2eec0c },	/* 2.410 */
355 	{ 188, 512, 0x3056ce8989767d4b, 0x0000228eb76cd137 },	/* 2.776 */
356 	{ 189, 512, 0x91af61c307cee780, 0x000022e17e2ea501 },	/* 2.266 */
357 	{ 190, 512, 0xda359da225f6d54f, 0x00002358a2debc19 },	/* 2.717 */
358 	{ 191, 512, 0x0a5f7a2a55607ba0, 0x0000238a79dac18c },	/* 2.474 */
359 	{ 192, 512, 0x27bb75bf5224638a, 0x00002403a58e2351 },	/* 2.673 */
360 	{ 193, 512, 0x1ebfdb94630f5d0f, 0x00002492a10cb339 },	/* 2.420 */
361 	{ 194, 512, 0x6eae5e51d9c5f6fb, 0x000024ce4bf98715 },	/* 2.898 */
362 	{ 195, 512, 0x08d903b4daedc2e0, 0x0000250d1e15886c },	/* 2.363 */
363 	{ 196, 512, 0xc722a2f7fa7cd686, 0x0000258a99ed0c9e },	/* 2.747 */
364 	{ 197, 512, 0x8f71faf0e54e361d, 0x000025dee11976f5 },	/* 2.531 */
365 	{ 198, 512, 0x87f64695c91a54e7, 0x0000264e00a43da0 },	/* 2.707 */
366 	{ 199, 512, 0xc719cbac2c336b92, 0x000026d327277ac1 },	/* 2.315 */
367 	{ 200, 512, 0xe7e647afaf771ade, 0x000027523a5c44bf },	/* 3.012 */
368 	{ 201, 512, 0x12d4b5c38ce8c946, 0x0000273898432545 },	/* 2.378 */
369 	{ 202, 512, 0xf2e0cd4067bdc94a, 0x000027e47bb2c935 },	/* 2.969 */
370 	{ 203, 512, 0x21b79f14d6d947d3, 0x0000281e64977f0d },	/* 2.594 */
371 	{ 204, 512, 0x515093f952f18cd6, 0x0000289691a473fd },	/* 2.763 */
372 	{ 205, 512, 0xd47b160a1b1022c8, 0x00002903e8b52411 },	/* 2.457 */
373 	{ 206, 512, 0xc02fc96684715a16, 0x0000297515608601 },	/* 3.057 */
374 	{ 207, 512, 0xef51e68efba72ed0, 0x000029ef73604804 },	/* 2.590 */
375 	{ 208, 512, 0x9e3be6e5448b4f33, 0x00002a2846ed074b },	/* 3.047 */
376 	{ 209, 512, 0x81d446c6d5fec063, 0x00002a92ca693455 },	/* 2.676 */
377 	{ 210, 512, 0xff215de8224e57d5, 0x00002b2271fe3729 },	/* 2.993 */
378 	{ 211, 512, 0xe2524d9ba8f69796, 0x00002b64b99c3ba2 },	/* 2.457 */
379 	{ 212, 512, 0xf6b28e26097b7e4b, 0x00002bd768b6e068 },	/* 3.182 */
380 	{ 213, 512, 0x893a487f30ce1644, 0x00002c67f722b4b2 },	/* 2.563 */
381 	{ 214, 512, 0x386566c3fc9871df, 0x00002cc1cf8b4037 },	/* 3.025 */
382 	{ 215, 512, 0x1e0ed78edf1f558a, 0x00002d3948d36c7f },	/* 2.730 */
383 	{ 216, 512, 0xe3bc20c31e61f113, 0x00002d6d6b12e025 },	/* 3.036 */
384 	{ 217, 512, 0xd6c3ad2e23021882, 0x00002deff7572241 },	/* 2.722 */
385 	{ 218, 512, 0xb4a9f95cf0f69c5a, 0x00002e67d537aa36 },	/* 3.356 */
386 	{ 219, 512, 0x6e98ed6f6c38e82f, 0x00002e9720626789 },	/* 2.697 */
387 	{ 220, 512, 0x2e01edba33fddac7, 0x00002f407c6b0198 },	/* 2.979 */
388 	{ 221, 512, 0x559d02e1f5f57ccc, 0x00002fb6a5ab4f24 },	/* 2.858 */
389 	{ 222, 512, 0xac18f5a916adcd8e, 0x0000304ae1c5c57e },	/* 3.258 */
390 	{ 223, 512, 0x15789fbaddb86f4b, 0x0000306f6e019c78 },	/* 2.693 */
391 	{ 224, 512, 0xf4a9c36d5bc4c408, 0x000030da40434213 },	/* 3.259 */
392 	{ 225, 512, 0xf640f90fd2727f44, 0x00003189ed37b90c },	/* 2.733 */
393 	{ 226, 512, 0xb5313d390d61884a, 0x000031e152616b37 },	/* 3.235 */
394 	{ 227, 512, 0x4bae6b3ce9160939, 0x0000321f40aeac42 },	/* 2.983 */
395 	{ 228, 512, 0x838c34480f1a66a1, 0x000032f389c0f78e },	/* 3.308 */
396 	{ 229, 512, 0xb1c4a52c8e3d6060, 0x0000330062a40284 },	/* 2.715 */
397 	{ 230, 512, 0xe0f1110c6d0ed822, 0x0000338be435644f },	/* 3.540 */
398 	{ 231, 512, 0x9f1a8ccdcea68d4b, 0x000034045a4e97e1 },	/* 2.779 */
399 	{ 232, 512, 0x3261ed62223f3099, 0x000034702cfc401c },	/* 3.084 */
400 	{ 233, 512, 0xf2191e2311022d65, 0x00003509dd19c9fc },	/* 2.987 */
401 	{ 234, 512, 0xf102a395c2033abc, 0x000035654dc96fae },	/* 3.341 */
402 	{ 235, 512, 0x11fe378f027906b6, 0x000035b5193b0264 },	/* 2.793 */
403 	{ 236, 512, 0xf777f2c026b337aa, 0x000036704f5d9297 },	/* 3.518 */
404 	{ 237, 512, 0x1b04e9c2ee143f32, 0x000036dfbb7af218 },	/* 2.962 */
405 	{ 238, 512, 0x2fcec95266f9352c, 0x00003785c8df24a9 },	/* 3.196 */
406 	{ 239, 512, 0xfe2b0e47e427dd85, 0x000037cbdf5da729 },	/* 2.914 */
407 	{ 240, 512, 0x72b49bf2225f6c6d, 0x0000382227c15855 },	/* 3.408 */
408 	{ 241, 512, 0x50486b43df7df9c7, 0x0000389b88be6453 },	/* 2.903 */
409 	{ 242, 512, 0x5192a3e53181c8ab, 0x000038ddf3d67263 },	/* 3.778 */
410 	{ 243, 512, 0xe9f5d8365296fd5e, 0x0000399f1c6c9e9c },	/* 3.026 */
411 	{ 244, 512, 0xc740263f0301efa8, 0x00003a147146512d },	/* 3.347 */
412 	{ 245, 512, 0x23cd0f2b5671e67d, 0x00003ab10bcc0d9d },	/* 3.212 */
413 	{ 246, 512, 0x002ccc7e5cd41390, 0x00003ad6cd14a6c0 },	/* 3.482 */
414 	{ 247, 512, 0x9aafb3c02544b31b, 0x00003b8cb8779fb0 },	/* 3.146 */
415 	{ 248, 512, 0x72ba07a78b121999, 0x00003c24142a5a3f },	/* 3.626 */
416 	{ 249, 512, 0x3d784aa58edfc7b4, 0x00003cd084817d99 },	/* 2.952 */
417 	{ 250, 512, 0xaab750424d8004af, 0x00003d506a8e098e },	/* 3.463 */
418 	{ 251, 512, 0x84403fcf8e6b5ca2, 0x00003d4c54c2aec4 },	/* 3.131 */
419 	{ 252, 512, 0x71eb7455ec98e207, 0x00003e655715cf2c },	/* 3.538 */
420 	{ 253, 512, 0xd752b4f19301595b, 0x00003ecd7b2ca5ac },	/* 2.974 */
421 	{ 254, 512, 0xc4674129750499de, 0x00003e99e86d3e95 },	/* 3.843 */
422 	{ 255, 512, 0x9772baff5cd12ef5, 0x00003f895c019841 },	/* 3.088 */
423 };
424 
425 /*
426  * Verify the map is valid. Each device index must appear exactly
427  * once in every row, and the permutation array checksum must match.
428  */
429 static int
430 verify_perms(uint8_t *perms, uint64_t children, uint64_t nperms,
431     uint64_t checksum)
432 {
433 	int countssz = sizeof (uint16_t) * children;
434 	uint16_t *counts = kmem_zalloc(countssz, KM_SLEEP);
435 
436 	for (int i = 0; i < nperms; i++) {
437 		for (int j = 0; j < children; j++) {
438 			uint8_t val = perms[(i * children) + j];
439 
440 			if (val >= children || counts[val] != i) {
441 				kmem_free(counts, countssz);
442 				return (EINVAL);
443 			}
444 
445 			counts[val]++;
446 		}
447 	}
448 
449 	if (checksum != 0) {
450 		int permssz = sizeof (uint8_t) * children * nperms;
451 		zio_cksum_t cksum;
452 
453 		fletcher_4_native_varsize(perms, permssz, &cksum);
454 
455 		if (checksum != cksum.zc_word[0]) {
456 			kmem_free(counts, countssz);
457 			return (ECKSUM);
458 		}
459 	}
460 
461 	kmem_free(counts, countssz);
462 
463 	return (0);
464 }
465 
466 /*
467  * Generate the permutation array for the draid_map_t.  These maps control
468  * the placement of all data in a dRAID.  Therefore it's critical that the
469  * seed always generates the same mapping.  We provide our own pseudo-random
470  * number generator for this purpose.
471  */
472 int
473 vdev_draid_generate_perms(const draid_map_t *map, uint8_t **permsp)
474 {
475 	VERIFY3U(map->dm_children, >=, VDEV_DRAID_MIN_CHILDREN);
476 	VERIFY3U(map->dm_children, <=, VDEV_DRAID_MAX_CHILDREN);
477 	VERIFY3U(map->dm_seed, !=, 0);
478 	VERIFY3U(map->dm_nperms, !=, 0);
479 	VERIFY3P(map->dm_perms, ==, NULL);
480 
481 #ifdef _KERNEL
482 	/*
483 	 * The kernel code always provides both a map_seed and checksum.
484 	 * Only the tests/zfs-tests/cmd/draid/draid.c utility will provide
485 	 * a zero checksum when generating new candidate maps.
486 	 */
487 	VERIFY3U(map->dm_checksum, !=, 0);
488 #endif
489 	uint64_t children = map->dm_children;
490 	uint64_t nperms = map->dm_nperms;
491 	int rowsz = sizeof (uint8_t) * children;
492 	int permssz = rowsz * nperms;
493 	uint8_t *perms;
494 
495 	/* Allocate the permutation array */
496 	perms = vmem_alloc(permssz, KM_SLEEP);
497 
498 	/* Setup an initial row with a known pattern */
499 	uint8_t *initial_row = kmem_alloc(rowsz, KM_SLEEP);
500 	for (int i = 0; i < children; i++)
501 		initial_row[i] = i;
502 
503 	uint64_t draid_seed[2] = { VDEV_DRAID_SEED, map->dm_seed };
504 	uint8_t *current_row, *previous_row = initial_row;
505 
506 	/*
507 	 * Perform a Fisher-Yates shuffle of each row using the previous
508 	 * row as the starting point.  An initial_row with known pattern
509 	 * is used as the input for the first row.
510 	 */
511 	for (int i = 0; i < nperms; i++) {
512 		current_row = &perms[i * children];
513 		memcpy(current_row, previous_row, rowsz);
514 
515 		for (int j = children - 1; j > 0; j--) {
516 			uint64_t k = vdev_draid_rand(draid_seed) % (j + 1);
517 			uint8_t val = current_row[j];
518 			current_row[j] = current_row[k];
519 			current_row[k] = val;
520 		}
521 
522 		previous_row = current_row;
523 	}
524 
525 	kmem_free(initial_row, rowsz);
526 
527 	int error = verify_perms(perms, children, nperms, map->dm_checksum);
528 	if (error) {
529 		vmem_free(perms, permssz);
530 		return (error);
531 	}
532 
533 	*permsp = perms;
534 
535 	return (0);
536 }
537 
538 /*
539  * Lookup the fixed draid_map_t for the requested number of children.
540  */
541 int
542 vdev_draid_lookup_map(uint64_t children, const draid_map_t **mapp)
543 {
544 	for (int i = 0; i < VDEV_DRAID_MAX_MAPS; i++) {
545 		if (draid_maps[i].dm_children == children) {
546 			*mapp = &draid_maps[i];
547 			return (0);
548 		}
549 	}
550 
551 	return (ENOENT);
552 }
553 
554 /*
555  * Lookup the permutation array and iteration id for the provided offset.
556  */
557 static void
558 vdev_draid_get_perm(vdev_draid_config_t *vdc, uint64_t pindex,
559     uint8_t **base, uint64_t *iter)
560 {
561 	uint64_t ncols = vdc->vdc_children;
562 	uint64_t poff = pindex % (vdc->vdc_nperms * ncols);
563 
564 	*base = vdc->vdc_perms + (poff / ncols) * ncols;
565 	*iter = poff % ncols;
566 }
567 
568 static inline uint64_t
569 vdev_draid_permute_id(vdev_draid_config_t *vdc,
570     uint8_t *base, uint64_t iter, uint64_t index)
571 {
572 	return ((base[index] + iter) % vdc->vdc_children);
573 }
574 
575 /*
576  * Return the asize which is the psize rounded up to a full group width.
577  * i.e. vdev_draid_psize_to_asize().
578  */
579 static uint64_t
580 vdev_draid_asize(vdev_t *vd, uint64_t psize, uint64_t txg)
581 {
582 	(void) txg;
583 	vdev_draid_config_t *vdc = vd->vdev_tsd;
584 	uint64_t ashift = vd->vdev_ashift;
585 
586 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
587 
588 	uint64_t rows = ((psize - 1) / (vdc->vdc_ndata << ashift)) + 1;
589 	uint64_t asize = (rows * vdc->vdc_groupwidth) << ashift;
590 
591 	ASSERT3U(asize, !=, 0);
592 	ASSERT3U(asize % (vdc->vdc_groupwidth), ==, 0);
593 
594 	return (asize);
595 }
596 
597 /*
598  * Deflate the asize to the psize, this includes stripping parity.
599  */
600 uint64_t
601 vdev_draid_asize_to_psize(vdev_t *vd, uint64_t asize)
602 {
603 	vdev_draid_config_t *vdc = vd->vdev_tsd;
604 
605 	ASSERT0(asize % vdc->vdc_groupwidth);
606 
607 	return ((asize / vdc->vdc_groupwidth) * vdc->vdc_ndata);
608 }
609 
610 /*
611  * Convert a logical offset to the corresponding group number.
612  */
613 static uint64_t
614 vdev_draid_offset_to_group(vdev_t *vd, uint64_t offset)
615 {
616 	vdev_draid_config_t *vdc = vd->vdev_tsd;
617 
618 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
619 
620 	return (offset / vdc->vdc_groupsz);
621 }
622 
623 /*
624  * Convert a group number to the logical starting offset for that group.
625  */
626 static uint64_t
627 vdev_draid_group_to_offset(vdev_t *vd, uint64_t group)
628 {
629 	vdev_draid_config_t *vdc = vd->vdev_tsd;
630 
631 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
632 
633 	return (group * vdc->vdc_groupsz);
634 }
635 
636 /*
637  * Full stripe writes.  When writing, all columns (D+P) are required.  Parity
638  * is calculated over all the columns, including empty zero filled sectors,
639  * and each is written to disk.  While only the data columns are needed for
640  * a normal read, all of the columns are required for reconstruction when
641  * performing a sequential resilver.
642  *
643  * For "big columns" it's sufficient to map the correct range of the zio ABD.
644  * Partial columns require allocating a gang ABD in order to zero fill the
645  * empty sectors.  When the column is empty a zero filled sector must be
646  * mapped.  In all cases the data ABDs must be the same size as the parity
647  * ABDs (e.g. rc->rc_size == parity_size).
648  */
649 static void
650 vdev_draid_map_alloc_write(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
651 {
652 	uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
653 	uint64_t parity_size = rr->rr_col[0].rc_size;
654 	uint64_t abd_off = abd_offset;
655 
656 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
657 	ASSERT3U(parity_size, ==, abd_get_size(rr->rr_col[0].rc_abd));
658 
659 	for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
660 		raidz_col_t *rc = &rr->rr_col[c];
661 
662 		if (rc->rc_size == 0) {
663 			/* empty data column (small write), add a skip sector */
664 			ASSERT3U(skip_size, ==, parity_size);
665 			rc->rc_abd = abd_get_zeros(skip_size);
666 		} else if (rc->rc_size == parity_size) {
667 			/* this is a "big column" */
668 			rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
669 			    zio->io_abd, abd_off, rc->rc_size);
670 		} else {
671 			/* short data column, add a skip sector */
672 			ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
673 			rc->rc_abd = abd_alloc_gang();
674 			abd_gang_add(rc->rc_abd, abd_get_offset_size(
675 			    zio->io_abd, abd_off, rc->rc_size), B_TRUE);
676 			abd_gang_add(rc->rc_abd, abd_get_zeros(skip_size),
677 			    B_TRUE);
678 		}
679 
680 		ASSERT3U(abd_get_size(rc->rc_abd), ==, parity_size);
681 
682 		abd_off += rc->rc_size;
683 		rc->rc_size = parity_size;
684 	}
685 
686 	IMPLY(abd_offset != 0, abd_off == zio->io_size);
687 }
688 
689 /*
690  * Scrub/resilver reads.  In order to store the contents of the skip sectors
691  * an additional ABD is allocated.  The columns are handled in the same way
692  * as a full stripe write except instead of using the zero ABD the newly
693  * allocated skip ABD is used to back the skip sectors.  In all cases the
694  * data ABD must be the same size as the parity ABDs.
695  */
696 static void
697 vdev_draid_map_alloc_scrub(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
698 {
699 	uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
700 	uint64_t parity_size = rr->rr_col[0].rc_size;
701 	uint64_t abd_off = abd_offset;
702 	uint64_t skip_off = 0;
703 
704 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
705 	ASSERT3P(rr->rr_abd_empty, ==, NULL);
706 
707 	if (rr->rr_nempty > 0) {
708 		rr->rr_abd_empty = abd_alloc_linear(rr->rr_nempty * skip_size,
709 		    B_FALSE);
710 	}
711 
712 	for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
713 		raidz_col_t *rc = &rr->rr_col[c];
714 
715 		if (rc->rc_size == 0) {
716 			/* empty data column (small read), add a skip sector */
717 			ASSERT3U(skip_size, ==, parity_size);
718 			ASSERT3U(rr->rr_nempty, !=, 0);
719 			rc->rc_abd = abd_get_offset_size(rr->rr_abd_empty,
720 			    skip_off, skip_size);
721 			skip_off += skip_size;
722 		} else if (rc->rc_size == parity_size) {
723 			/* this is a "big column" */
724 			rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
725 			    zio->io_abd, abd_off, rc->rc_size);
726 		} else {
727 			/* short data column, add a skip sector */
728 			ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
729 			ASSERT3U(rr->rr_nempty, !=, 0);
730 			rc->rc_abd = abd_alloc_gang();
731 			abd_gang_add(rc->rc_abd, abd_get_offset_size(
732 			    zio->io_abd, abd_off, rc->rc_size), B_TRUE);
733 			abd_gang_add(rc->rc_abd, abd_get_offset_size(
734 			    rr->rr_abd_empty, skip_off, skip_size), B_TRUE);
735 			skip_off += skip_size;
736 		}
737 
738 		uint64_t abd_size = abd_get_size(rc->rc_abd);
739 		ASSERT3U(abd_size, ==, abd_get_size(rr->rr_col[0].rc_abd));
740 
741 		/*
742 		 * Increase rc_size so the skip ABD is included in subsequent
743 		 * parity calculations.
744 		 */
745 		abd_off += rc->rc_size;
746 		rc->rc_size = abd_size;
747 	}
748 
749 	IMPLY(abd_offset != 0, abd_off == zio->io_size);
750 	ASSERT3U(skip_off, ==, rr->rr_nempty * skip_size);
751 }
752 
753 /*
754  * Normal reads.  In this common case only the columns containing data
755  * are read in to the zio ABDs.  Neither the parity columns or empty skip
756  * sectors are read unless the checksum fails verification.  In which case
757  * vdev_raidz_read_all() will call vdev_draid_map_alloc_empty() to expand
758  * the raid map in order to allow reconstruction using the parity data and
759  * skip sectors.
760  */
761 static void
762 vdev_draid_map_alloc_read(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
763 {
764 	uint64_t abd_off = abd_offset;
765 
766 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
767 
768 	for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
769 		raidz_col_t *rc = &rr->rr_col[c];
770 
771 		if (rc->rc_size > 0) {
772 			rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
773 			    zio->io_abd, abd_off, rc->rc_size);
774 			abd_off += rc->rc_size;
775 		}
776 	}
777 
778 	IMPLY(abd_offset != 0, abd_off == zio->io_size);
779 }
780 
781 /*
782  * Converts a normal "read" raidz_row_t to a "scrub" raidz_row_t. The key
783  * difference is that an ABD is allocated to back skip sectors so they may
784  * be read in to memory, verified, and repaired if needed.
785  */
786 void
787 vdev_draid_map_alloc_empty(zio_t *zio, raidz_row_t *rr)
788 {
789 	uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
790 	uint64_t parity_size = rr->rr_col[0].rc_size;
791 	uint64_t skip_off = 0;
792 
793 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
794 	ASSERT3P(rr->rr_abd_empty, ==, NULL);
795 
796 	if (rr->rr_nempty > 0) {
797 		rr->rr_abd_empty = abd_alloc_linear(rr->rr_nempty * skip_size,
798 		    B_FALSE);
799 	}
800 
801 	for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
802 		raidz_col_t *rc = &rr->rr_col[c];
803 
804 		if (rc->rc_size == 0) {
805 			/* empty data column (small read), add a skip sector */
806 			ASSERT3U(skip_size, ==, parity_size);
807 			ASSERT3U(rr->rr_nempty, !=, 0);
808 			ASSERT3P(rc->rc_abd, ==, NULL);
809 			rc->rc_abd = abd_get_offset_size(rr->rr_abd_empty,
810 			    skip_off, skip_size);
811 			skip_off += skip_size;
812 		} else if (rc->rc_size == parity_size) {
813 			/* this is a "big column", nothing to add */
814 			ASSERT3P(rc->rc_abd, !=, NULL);
815 		} else {
816 			/*
817 			 * short data column, add a skip sector and clear
818 			 * rc_tried to force the entire column to be re-read
819 			 * thereby including the missing skip sector data
820 			 * which is needed for reconstruction.
821 			 */
822 			ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
823 			ASSERT3U(rr->rr_nempty, !=, 0);
824 			ASSERT3P(rc->rc_abd, !=, NULL);
825 			ASSERT(!abd_is_gang(rc->rc_abd));
826 			abd_t *read_abd = rc->rc_abd;
827 			rc->rc_abd = abd_alloc_gang();
828 			abd_gang_add(rc->rc_abd, read_abd, B_TRUE);
829 			abd_gang_add(rc->rc_abd, abd_get_offset_size(
830 			    rr->rr_abd_empty, skip_off, skip_size), B_TRUE);
831 			skip_off += skip_size;
832 			rc->rc_tried = 0;
833 		}
834 
835 		/*
836 		 * Increase rc_size so the empty ABD is included in subsequent
837 		 * parity calculations.
838 		 */
839 		rc->rc_size = parity_size;
840 	}
841 
842 	ASSERT3U(skip_off, ==, rr->rr_nempty * skip_size);
843 }
844 
845 /*
846  * Verify that all empty sectors are zero filled before using them to
847  * calculate parity.  Otherwise, silent corruption in an empty sector will
848  * result in bad parity being generated.  That bad parity will then be
849  * considered authoritative and overwrite the good parity on disk.  This
850  * is possible because the checksum is only calculated over the data,
851  * thus it cannot be used to detect damage in empty sectors.
852  */
853 int
854 vdev_draid_map_verify_empty(zio_t *zio, raidz_row_t *rr)
855 {
856 	uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
857 	uint64_t parity_size = rr->rr_col[0].rc_size;
858 	uint64_t skip_off = parity_size - skip_size;
859 	uint64_t empty_off = 0;
860 	int ret = 0;
861 
862 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
863 	ASSERT3P(rr->rr_abd_empty, !=, NULL);
864 	ASSERT3U(rr->rr_bigcols, >, 0);
865 
866 	void *zero_buf = kmem_zalloc(skip_size, KM_SLEEP);
867 
868 	for (int c = rr->rr_bigcols; c < rr->rr_cols; c++) {
869 		raidz_col_t *rc = &rr->rr_col[c];
870 
871 		ASSERT3P(rc->rc_abd, !=, NULL);
872 		ASSERT3U(rc->rc_size, ==, parity_size);
873 
874 		if (abd_cmp_buf_off(rc->rc_abd, zero_buf, skip_off,
875 		    skip_size) != 0) {
876 			vdev_raidz_checksum_error(zio, rc, rc->rc_abd);
877 			abd_zero_off(rc->rc_abd, skip_off, skip_size);
878 			rc->rc_error = SET_ERROR(ECKSUM);
879 			ret++;
880 		}
881 
882 		empty_off += skip_size;
883 	}
884 
885 	ASSERT3U(empty_off, ==, abd_get_size(rr->rr_abd_empty));
886 
887 	kmem_free(zero_buf, skip_size);
888 
889 	return (ret);
890 }
891 
892 /*
893  * Given a logical address within a dRAID configuration, return the physical
894  * address on the first drive in the group that this address maps to
895  * (at position 'start' in permutation number 'perm').
896  */
897 static uint64_t
898 vdev_draid_logical_to_physical(vdev_t *vd, uint64_t logical_offset,
899     uint64_t *perm, uint64_t *start)
900 {
901 	vdev_draid_config_t *vdc = vd->vdev_tsd;
902 
903 	/* b is the dRAID (parent) sector offset. */
904 	uint64_t ashift = vd->vdev_top->vdev_ashift;
905 	uint64_t b_offset = logical_offset >> ashift;
906 
907 	/*
908 	 * The height of a row in units of the vdev's minimum sector size.
909 	 * This is the amount of data written to each disk of each group
910 	 * in a given permutation.
911 	 */
912 	uint64_t rowheight_sectors = VDEV_DRAID_ROWHEIGHT >> ashift;
913 
914 	/*
915 	 * We cycle through a disk permutation every groupsz * ngroups chunk
916 	 * of address space. Note that ngroups * groupsz must be a multiple
917 	 * of the number of data drives (ndisks) in order to guarantee
918 	 * alignment. So, for example, if our row height is 16MB, our group
919 	 * size is 10, and there are 13 data drives in the draid, then ngroups
920 	 * will be 13, we will change permutation every 2.08GB and each
921 	 * disk will have 160MB of data per chunk.
922 	 */
923 	uint64_t groupwidth = vdc->vdc_groupwidth;
924 	uint64_t ngroups = vdc->vdc_ngroups;
925 	uint64_t ndisks = vdc->vdc_ndisks;
926 
927 	/*
928 	 * groupstart is where the group this IO will land in "starts" in
929 	 * the permutation array.
930 	 */
931 	uint64_t group = logical_offset / vdc->vdc_groupsz;
932 	uint64_t groupstart = (group * groupwidth) % ndisks;
933 	ASSERT3U(groupstart + groupwidth, <=, ndisks + groupstart);
934 	*start = groupstart;
935 
936 	/* b_offset is the sector offset within a group chunk */
937 	b_offset = b_offset % (rowheight_sectors * groupwidth);
938 	ASSERT0(b_offset % groupwidth);
939 
940 	/*
941 	 * Find the starting byte offset on each child vdev:
942 	 * - within a permutation there are ngroups groups spread over the
943 	 *   rows, where each row covers a slice portion of the disk
944 	 * - each permutation has (groupwidth * ngroups) / ndisks rows
945 	 * - so each permutation covers rows * slice portion of the disk
946 	 * - so we need to find the row where this IO group target begins
947 	 */
948 	*perm = group / ngroups;
949 	uint64_t row = (*perm * ((groupwidth * ngroups) / ndisks)) +
950 	    (((group % ngroups) * groupwidth) / ndisks);
951 
952 	return (((rowheight_sectors * row) +
953 	    (b_offset / groupwidth)) << ashift);
954 }
955 
956 static uint64_t
957 vdev_draid_map_alloc_row(zio_t *zio, raidz_row_t **rrp, uint64_t io_offset,
958     uint64_t abd_offset, uint64_t abd_size)
959 {
960 	vdev_t *vd = zio->io_vd;
961 	vdev_draid_config_t *vdc = vd->vdev_tsd;
962 	uint64_t ashift = vd->vdev_top->vdev_ashift;
963 	uint64_t io_size = abd_size;
964 	uint64_t io_asize = vdev_draid_asize(vd, io_size, 0);
965 	uint64_t group = vdev_draid_offset_to_group(vd, io_offset);
966 	uint64_t start_offset = vdev_draid_group_to_offset(vd, group + 1);
967 
968 	/*
969 	 * Limit the io_size to the space remaining in the group.  A second
970 	 * row in the raidz_map_t is created for the remainder.
971 	 */
972 	if (io_offset + io_asize > start_offset) {
973 		io_size = vdev_draid_asize_to_psize(vd,
974 		    start_offset - io_offset);
975 	}
976 
977 	/*
978 	 * At most a block may span the logical end of one group and the start
979 	 * of the next group. Therefore, at the end of a group the io_size must
980 	 * span the group width evenly and the remainder must be aligned to the
981 	 * start of the next group.
982 	 */
983 	IMPLY(abd_offset == 0 && io_size < zio->io_size,
984 	    (io_asize >> ashift) % vdc->vdc_groupwidth == 0);
985 	IMPLY(abd_offset != 0,
986 	    vdev_draid_group_to_offset(vd, group) == io_offset);
987 
988 	/* Lookup starting byte offset on each child vdev */
989 	uint64_t groupstart, perm;
990 	uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
991 	    io_offset, &perm, &groupstart);
992 
993 	/*
994 	 * If there is less than groupwidth drives available after the group
995 	 * start, the group is going to wrap onto the next row. 'wrap' is the
996 	 * group disk number that starts on the next row.
997 	 */
998 	uint64_t ndisks = vdc->vdc_ndisks;
999 	uint64_t groupwidth = vdc->vdc_groupwidth;
1000 	uint64_t wrap = groupwidth;
1001 
1002 	if (groupstart + groupwidth > ndisks)
1003 		wrap = ndisks - groupstart;
1004 
1005 	/* The io size in units of the vdev's minimum sector size. */
1006 	const uint64_t psize = io_size >> ashift;
1007 
1008 	/*
1009 	 * "Quotient": The number of data sectors for this stripe on all but
1010 	 * the "big column" child vdevs that also contain "remainder" data.
1011 	 */
1012 	uint64_t q = psize / vdc->vdc_ndata;
1013 
1014 	/*
1015 	 * "Remainder": The number of partial stripe data sectors in this I/O.
1016 	 * This will add a sector to some, but not all, child vdevs.
1017 	 */
1018 	uint64_t r = psize - q * vdc->vdc_ndata;
1019 
1020 	/* The number of "big columns" - those which contain remainder data. */
1021 	uint64_t bc = (r == 0 ? 0 : r + vdc->vdc_nparity);
1022 	ASSERT3U(bc, <, groupwidth);
1023 
1024 	/* The total number of data and parity sectors for this I/O. */
1025 	uint64_t tot = psize + (vdc->vdc_nparity * (q + (r == 0 ? 0 : 1)));
1026 
1027 	ASSERT3U(vdc->vdc_nparity, >, 0);
1028 
1029 	raidz_row_t *rr = vdev_raidz_row_alloc(groupwidth);
1030 	rr->rr_bigcols = bc;
1031 	rr->rr_firstdatacol = vdc->vdc_nparity;
1032 #ifdef ZFS_DEBUG
1033 	rr->rr_offset = io_offset;
1034 	rr->rr_size = io_size;
1035 #endif
1036 	*rrp = rr;
1037 
1038 	uint8_t *base;
1039 	uint64_t iter, asize = 0;
1040 	vdev_draid_get_perm(vdc, perm, &base, &iter);
1041 	for (uint64_t i = 0; i < groupwidth; i++) {
1042 		raidz_col_t *rc = &rr->rr_col[i];
1043 		uint64_t c = (groupstart + i) % ndisks;
1044 
1045 		/* increment the offset if we wrap to the next row */
1046 		if (i == wrap)
1047 			physical_offset += VDEV_DRAID_ROWHEIGHT;
1048 
1049 		rc->rc_devidx = vdev_draid_permute_id(vdc, base, iter, c);
1050 		rc->rc_offset = physical_offset;
1051 
1052 		if (q == 0 && i >= bc)
1053 			rc->rc_size = 0;
1054 		else if (i < bc)
1055 			rc->rc_size = (q + 1) << ashift;
1056 		else
1057 			rc->rc_size = q << ashift;
1058 
1059 		asize += rc->rc_size;
1060 	}
1061 
1062 	ASSERT3U(asize, ==, tot << ashift);
1063 	rr->rr_nempty = roundup(tot, groupwidth) - tot;
1064 	IMPLY(bc > 0, rr->rr_nempty == groupwidth - bc);
1065 
1066 	/* Allocate buffers for the parity columns */
1067 	for (uint64_t c = 0; c < rr->rr_firstdatacol; c++) {
1068 		raidz_col_t *rc = &rr->rr_col[c];
1069 		rc->rc_abd = abd_alloc_linear(rc->rc_size, B_FALSE);
1070 	}
1071 
1072 	/*
1073 	 * Map buffers for data columns and allocate/map buffers for skip
1074 	 * sectors.  There are three distinct cases for dRAID which are
1075 	 * required to support sequential rebuild.
1076 	 */
1077 	if (zio->io_type == ZIO_TYPE_WRITE) {
1078 		vdev_draid_map_alloc_write(zio, abd_offset, rr);
1079 	} else if ((rr->rr_nempty > 0) &&
1080 	    (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
1081 		vdev_draid_map_alloc_scrub(zio, abd_offset, rr);
1082 	} else {
1083 		ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
1084 		vdev_draid_map_alloc_read(zio, abd_offset, rr);
1085 	}
1086 
1087 	return (io_size);
1088 }
1089 
1090 /*
1091  * Allocate the raidz mapping to be applied to the dRAID I/O.  The parity
1092  * calculations for dRAID are identical to raidz however there are a few
1093  * differences in the layout.
1094  *
1095  * - dRAID always allocates a full stripe width. Any extra sectors due
1096  *   this padding are zero filled and written to disk. They will be read
1097  *   back during a scrub or repair operation since they are included in
1098  *   the parity calculation. This property enables sequential resilvering.
1099  *
1100  * - When the block at the logical offset spans redundancy groups then two
1101  *   rows are allocated in the raidz_map_t. One row resides at the end of
1102  *   the first group and the other at the start of the following group.
1103  */
1104 static raidz_map_t *
1105 vdev_draid_map_alloc(zio_t *zio)
1106 {
1107 	raidz_row_t *rr[2];
1108 	uint64_t abd_offset = 0;
1109 	uint64_t abd_size = zio->io_size;
1110 	uint64_t io_offset = zio->io_offset;
1111 	uint64_t size;
1112 	int nrows = 1;
1113 
1114 	size = vdev_draid_map_alloc_row(zio, &rr[0], io_offset,
1115 	    abd_offset, abd_size);
1116 	if (size < abd_size) {
1117 		vdev_t *vd = zio->io_vd;
1118 
1119 		io_offset += vdev_draid_asize(vd, size, 0);
1120 		abd_offset += size;
1121 		abd_size -= size;
1122 		nrows++;
1123 
1124 		ASSERT3U(io_offset, ==, vdev_draid_group_to_offset(
1125 		    vd, vdev_draid_offset_to_group(vd, io_offset)));
1126 		ASSERT3U(abd_offset, <, zio->io_size);
1127 		ASSERT3U(abd_size, !=, 0);
1128 
1129 		size = vdev_draid_map_alloc_row(zio, &rr[1],
1130 		    io_offset, abd_offset, abd_size);
1131 		VERIFY3U(size, ==, abd_size);
1132 	}
1133 
1134 	raidz_map_t *rm;
1135 	rm = kmem_zalloc(offsetof(raidz_map_t, rm_row[nrows]), KM_SLEEP);
1136 	rm->rm_ops = vdev_raidz_math_get_ops();
1137 	rm->rm_nrows = nrows;
1138 	rm->rm_row[0] = rr[0];
1139 	if (nrows == 2)
1140 		rm->rm_row[1] = rr[1];
1141 	return (rm);
1142 }
1143 
1144 /*
1145  * Given an offset into a dRAID return the next group width aligned offset
1146  * which can be used to start an allocation.
1147  */
1148 static uint64_t
1149 vdev_draid_get_astart(vdev_t *vd, const uint64_t start)
1150 {
1151 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1152 
1153 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1154 
1155 	return (roundup(start, vdc->vdc_groupwidth << vd->vdev_ashift));
1156 }
1157 
1158 /*
1159  * Allocatable space for dRAID is (children - nspares) * sizeof(smallest child)
1160  * rounded down to the last full slice.  So each child must provide at least
1161  * 1 / (children - nspares) of its asize.
1162  */
1163 static uint64_t
1164 vdev_draid_min_asize(vdev_t *vd)
1165 {
1166 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1167 
1168 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1169 
1170 	return (VDEV_DRAID_REFLOW_RESERVE +
1171 	    (vd->vdev_min_asize + vdc->vdc_ndisks - 1) / (vdc->vdc_ndisks));
1172 }
1173 
1174 /*
1175  * When using dRAID the minimum allocation size is determined by the number
1176  * of data disks in the redundancy group.  Full stripes are always used.
1177  */
1178 static uint64_t
1179 vdev_draid_min_alloc(vdev_t *vd)
1180 {
1181 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1182 
1183 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1184 
1185 	return (vdc->vdc_ndata << vd->vdev_ashift);
1186 }
1187 
1188 /*
1189  * Returns true if the txg range does not exist on any leaf vdev.
1190  *
1191  * A dRAID spare does not fit into the DTL model. While it has child vdevs
1192  * there is no redundancy among them, and the effective child vdev is
1193  * determined by offset. Essentially we do a vdev_dtl_reassess() on the
1194  * fly by replacing a dRAID spare with the child vdev under the offset.
1195  * Note that it is a recursive process because the child vdev can be
1196  * another dRAID spare and so on.
1197  */
1198 boolean_t
1199 vdev_draid_missing(vdev_t *vd, uint64_t physical_offset, uint64_t txg,
1200     uint64_t size)
1201 {
1202 	if (vd->vdev_ops == &vdev_spare_ops ||
1203 	    vd->vdev_ops == &vdev_replacing_ops) {
1204 		/*
1205 		 * Check all of the readable children, if any child
1206 		 * contains the txg range the data it is not missing.
1207 		 */
1208 		for (int c = 0; c < vd->vdev_children; c++) {
1209 			vdev_t *cvd = vd->vdev_child[c];
1210 
1211 			if (!vdev_readable(cvd))
1212 				continue;
1213 
1214 			if (!vdev_draid_missing(cvd, physical_offset,
1215 			    txg, size))
1216 				return (B_FALSE);
1217 		}
1218 
1219 		return (B_TRUE);
1220 	}
1221 
1222 	if (vd->vdev_ops == &vdev_draid_spare_ops) {
1223 		/*
1224 		 * When sequentially resilvering we don't have a proper
1225 		 * txg range so instead we must presume all txgs are
1226 		 * missing on this vdev until the resilver completes.
1227 		 */
1228 		if (vd->vdev_rebuild_txg != 0)
1229 			return (B_TRUE);
1230 
1231 		/*
1232 		 * DTL_MISSING is set for all prior txgs when a resilver
1233 		 * is started in spa_vdev_attach().
1234 		 */
1235 		if (vdev_dtl_contains(vd, DTL_MISSING, txg, size))
1236 			return (B_TRUE);
1237 
1238 		/*
1239 		 * Consult the DTL on the relevant vdev. Either a vdev
1240 		 * leaf or spare/replace mirror child may be returned so
1241 		 * we must recursively call vdev_draid_missing_impl().
1242 		 */
1243 		vd = vdev_draid_spare_get_child(vd, physical_offset);
1244 		if (vd == NULL)
1245 			return (B_TRUE);
1246 
1247 		return (vdev_draid_missing(vd, physical_offset,
1248 		    txg, size));
1249 	}
1250 
1251 	return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
1252 }
1253 
1254 /*
1255  * Returns true if the txg is only partially replicated on the leaf vdevs.
1256  */
1257 static boolean_t
1258 vdev_draid_partial(vdev_t *vd, uint64_t physical_offset, uint64_t txg,
1259     uint64_t size)
1260 {
1261 	if (vd->vdev_ops == &vdev_spare_ops ||
1262 	    vd->vdev_ops == &vdev_replacing_ops) {
1263 		/*
1264 		 * Check all of the readable children, if any child is
1265 		 * missing the txg range then it is partially replicated.
1266 		 */
1267 		for (int c = 0; c < vd->vdev_children; c++) {
1268 			vdev_t *cvd = vd->vdev_child[c];
1269 
1270 			if (!vdev_readable(cvd))
1271 				continue;
1272 
1273 			if (vdev_draid_partial(cvd, physical_offset, txg, size))
1274 				return (B_TRUE);
1275 		}
1276 
1277 		return (B_FALSE);
1278 	}
1279 
1280 	if (vd->vdev_ops == &vdev_draid_spare_ops) {
1281 		/*
1282 		 * When sequentially resilvering we don't have a proper
1283 		 * txg range so instead we must presume all txgs are
1284 		 * missing on this vdev until the resilver completes.
1285 		 */
1286 		if (vd->vdev_rebuild_txg != 0)
1287 			return (B_TRUE);
1288 
1289 		/*
1290 		 * DTL_MISSING is set for all prior txgs when a resilver
1291 		 * is started in spa_vdev_attach().
1292 		 */
1293 		if (vdev_dtl_contains(vd, DTL_MISSING, txg, size))
1294 			return (B_TRUE);
1295 
1296 		/*
1297 		 * Consult the DTL on the relevant vdev. Either a vdev
1298 		 * leaf or spare/replace mirror child may be returned so
1299 		 * we must recursively call vdev_draid_missing_impl().
1300 		 */
1301 		vd = vdev_draid_spare_get_child(vd, physical_offset);
1302 		if (vd == NULL)
1303 			return (B_TRUE);
1304 
1305 		return (vdev_draid_partial(vd, physical_offset, txg, size));
1306 	}
1307 
1308 	return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
1309 }
1310 
1311 /*
1312  * Determine if the vdev is readable at the given offset.
1313  */
1314 boolean_t
1315 vdev_draid_readable(vdev_t *vd, uint64_t physical_offset)
1316 {
1317 	if (vd->vdev_ops == &vdev_draid_spare_ops) {
1318 		vd = vdev_draid_spare_get_child(vd, physical_offset);
1319 		if (vd == NULL)
1320 			return (B_FALSE);
1321 	}
1322 
1323 	if (vd->vdev_ops == &vdev_spare_ops ||
1324 	    vd->vdev_ops == &vdev_replacing_ops) {
1325 
1326 		for (int c = 0; c < vd->vdev_children; c++) {
1327 			vdev_t *cvd = vd->vdev_child[c];
1328 
1329 			if (!vdev_readable(cvd))
1330 				continue;
1331 
1332 			if (vdev_draid_readable(cvd, physical_offset))
1333 				return (B_TRUE);
1334 		}
1335 
1336 		return (B_FALSE);
1337 	}
1338 
1339 	return (vdev_readable(vd));
1340 }
1341 
1342 /*
1343  * Returns the first distributed spare found under the provided vdev tree.
1344  */
1345 static vdev_t *
1346 vdev_draid_find_spare(vdev_t *vd)
1347 {
1348 	if (vd->vdev_ops == &vdev_draid_spare_ops)
1349 		return (vd);
1350 
1351 	for (int c = 0; c < vd->vdev_children; c++) {
1352 		vdev_t *svd = vdev_draid_find_spare(vd->vdev_child[c]);
1353 		if (svd != NULL)
1354 			return (svd);
1355 	}
1356 
1357 	return (NULL);
1358 }
1359 
1360 /*
1361  * Returns B_TRUE if the passed in vdev is currently "faulted".
1362  * Faulted, in this context, means that the vdev represents a
1363  * replacing or sparing vdev tree.
1364  */
1365 static boolean_t
1366 vdev_draid_faulted(vdev_t *vd, uint64_t physical_offset)
1367 {
1368 	if (vd->vdev_ops == &vdev_draid_spare_ops) {
1369 		vd = vdev_draid_spare_get_child(vd, physical_offset);
1370 		if (vd == NULL)
1371 			return (B_FALSE);
1372 
1373 		/*
1374 		 * After resolving the distributed spare to a leaf vdev
1375 		 * check the parent to determine if it's "faulted".
1376 		 */
1377 		vd = vd->vdev_parent;
1378 	}
1379 
1380 	return (vd->vdev_ops == &vdev_replacing_ops ||
1381 	    vd->vdev_ops == &vdev_spare_ops);
1382 }
1383 
1384 /*
1385  * Determine if the dRAID block at the logical offset is degraded.
1386  * Used by sequential resilver.
1387  */
1388 static boolean_t
1389 vdev_draid_group_degraded(vdev_t *vd, uint64_t offset)
1390 {
1391 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1392 
1393 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1394 	ASSERT3U(vdev_draid_get_astart(vd, offset), ==, offset);
1395 
1396 	uint64_t groupstart, perm;
1397 	uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
1398 	    offset, &perm, &groupstart);
1399 
1400 	uint8_t *base;
1401 	uint64_t iter;
1402 	vdev_draid_get_perm(vdc, perm, &base, &iter);
1403 
1404 	for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
1405 		uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
1406 		uint64_t cid = vdev_draid_permute_id(vdc, base, iter, c);
1407 		vdev_t *cvd = vd->vdev_child[cid];
1408 
1409 		/* Group contains a faulted vdev. */
1410 		if (vdev_draid_faulted(cvd, physical_offset))
1411 			return (B_TRUE);
1412 
1413 		/*
1414 		 * Always check groups with active distributed spares
1415 		 * because any vdev failure in the pool will affect them.
1416 		 */
1417 		if (vdev_draid_find_spare(cvd) != NULL)
1418 			return (B_TRUE);
1419 	}
1420 
1421 	return (B_FALSE);
1422 }
1423 
1424 /*
1425  * Determine if the txg is missing.  Used by healing resilver.
1426  */
1427 static boolean_t
1428 vdev_draid_group_missing(vdev_t *vd, uint64_t offset, uint64_t txg,
1429     uint64_t size)
1430 {
1431 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1432 
1433 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1434 	ASSERT3U(vdev_draid_get_astart(vd, offset), ==, offset);
1435 
1436 	uint64_t groupstart, perm;
1437 	uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
1438 	    offset, &perm, &groupstart);
1439 
1440 	uint8_t *base;
1441 	uint64_t iter;
1442 	vdev_draid_get_perm(vdc, perm, &base, &iter);
1443 
1444 	for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
1445 		uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
1446 		uint64_t cid = vdev_draid_permute_id(vdc, base, iter, c);
1447 		vdev_t *cvd = vd->vdev_child[cid];
1448 
1449 		/* Transaction group is known to be partially replicated. */
1450 		if (vdev_draid_partial(cvd, physical_offset, txg, size))
1451 			return (B_TRUE);
1452 
1453 		/*
1454 		 * Always check groups with active distributed spares
1455 		 * because any vdev failure in the pool will affect them.
1456 		 */
1457 		if (vdev_draid_find_spare(cvd) != NULL)
1458 			return (B_TRUE);
1459 	}
1460 
1461 	return (B_FALSE);
1462 }
1463 
1464 /*
1465  * Find the smallest child asize and largest sector size to calculate the
1466  * available capacity.  Distributed spares are ignored since their capacity
1467  * is also based of the minimum child size in the top-level dRAID.
1468  */
1469 static void
1470 vdev_draid_calculate_asize(vdev_t *vd, uint64_t *asizep, uint64_t *max_asizep,
1471     uint64_t *logical_ashiftp, uint64_t *physical_ashiftp)
1472 {
1473 	uint64_t logical_ashift = 0, physical_ashift = 0;
1474 	uint64_t asize = 0, max_asize = 0;
1475 
1476 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1477 
1478 	for (int c = 0; c < vd->vdev_children; c++) {
1479 		vdev_t *cvd = vd->vdev_child[c];
1480 
1481 		if (cvd->vdev_ops == &vdev_draid_spare_ops)
1482 			continue;
1483 
1484 		asize = MIN(asize - 1, cvd->vdev_asize - 1) + 1;
1485 		max_asize = MIN(max_asize - 1, cvd->vdev_max_asize - 1) + 1;
1486 		logical_ashift = MAX(logical_ashift, cvd->vdev_ashift);
1487 	}
1488 	for (int c = 0; c < vd->vdev_children; c++) {
1489 		vdev_t *cvd = vd->vdev_child[c];
1490 
1491 		if (cvd->vdev_ops == &vdev_draid_spare_ops)
1492 			continue;
1493 		physical_ashift = vdev_best_ashift(logical_ashift,
1494 		    physical_ashift, cvd->vdev_physical_ashift);
1495 	}
1496 
1497 	*asizep = asize;
1498 	*max_asizep = max_asize;
1499 	*logical_ashiftp = logical_ashift;
1500 	*physical_ashiftp = physical_ashift;
1501 }
1502 
1503 /*
1504  * Open spare vdevs.
1505  */
1506 static boolean_t
1507 vdev_draid_open_spares(vdev_t *vd)
1508 {
1509 	return (vd->vdev_ops == &vdev_draid_spare_ops ||
1510 	    vd->vdev_ops == &vdev_replacing_ops ||
1511 	    vd->vdev_ops == &vdev_spare_ops);
1512 }
1513 
1514 /*
1515  * Open all children, excluding spares.
1516  */
1517 static boolean_t
1518 vdev_draid_open_children(vdev_t *vd)
1519 {
1520 	return (!vdev_draid_open_spares(vd));
1521 }
1522 
1523 /*
1524  * Open a top-level dRAID vdev.
1525  */
1526 static int
1527 vdev_draid_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
1528     uint64_t *logical_ashift, uint64_t *physical_ashift)
1529 {
1530 	vdev_draid_config_t *vdc =  vd->vdev_tsd;
1531 	uint64_t nparity = vdc->vdc_nparity;
1532 	int open_errors = 0;
1533 
1534 	if (nparity > VDEV_DRAID_MAXPARITY ||
1535 	    vd->vdev_children < nparity + 1) {
1536 		vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
1537 		return (SET_ERROR(EINVAL));
1538 	}
1539 
1540 	/*
1541 	 * First open the normal children then the distributed spares.  This
1542 	 * ordering is important to ensure the distributed spares calculate
1543 	 * the correct psize in the event that the dRAID vdevs were expanded.
1544 	 */
1545 	vdev_open_children_subset(vd, vdev_draid_open_children);
1546 	vdev_open_children_subset(vd, vdev_draid_open_spares);
1547 
1548 	/* Verify enough of the children are available to continue. */
1549 	for (int c = 0; c < vd->vdev_children; c++) {
1550 		if (vd->vdev_child[c]->vdev_open_error != 0) {
1551 			if ((++open_errors) > nparity) {
1552 				vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
1553 				return (SET_ERROR(ENXIO));
1554 			}
1555 		}
1556 	}
1557 
1558 	/*
1559 	 * Allocatable capacity is the sum of the space on all children less
1560 	 * the number of distributed spares rounded down to last full row
1561 	 * and then to the last full group. An additional 32MB of scratch
1562 	 * space is reserved at the end of each child for use by the dRAID
1563 	 * expansion feature.
1564 	 */
1565 	uint64_t child_asize, child_max_asize;
1566 	vdev_draid_calculate_asize(vd, &child_asize, &child_max_asize,
1567 	    logical_ashift, physical_ashift);
1568 
1569 	/*
1570 	 * Should be unreachable since the minimum child size is 64MB, but
1571 	 * we want to make sure an underflow absolutely cannot occur here.
1572 	 */
1573 	if (child_asize < VDEV_DRAID_REFLOW_RESERVE ||
1574 	    child_max_asize < VDEV_DRAID_REFLOW_RESERVE) {
1575 		return (SET_ERROR(ENXIO));
1576 	}
1577 
1578 	child_asize = ((child_asize - VDEV_DRAID_REFLOW_RESERVE) /
1579 	    VDEV_DRAID_ROWHEIGHT) * VDEV_DRAID_ROWHEIGHT;
1580 	child_max_asize = ((child_max_asize - VDEV_DRAID_REFLOW_RESERVE) /
1581 	    VDEV_DRAID_ROWHEIGHT) * VDEV_DRAID_ROWHEIGHT;
1582 
1583 	*asize = (((child_asize * vdc->vdc_ndisks) / vdc->vdc_groupsz) *
1584 	    vdc->vdc_groupsz);
1585 	*max_asize = (((child_max_asize * vdc->vdc_ndisks) / vdc->vdc_groupsz) *
1586 	    vdc->vdc_groupsz);
1587 
1588 	return (0);
1589 }
1590 
1591 /*
1592  * Close a top-level dRAID vdev.
1593  */
1594 static void
1595 vdev_draid_close(vdev_t *vd)
1596 {
1597 	for (int c = 0; c < vd->vdev_children; c++) {
1598 		if (vd->vdev_child[c] != NULL)
1599 			vdev_close(vd->vdev_child[c]);
1600 	}
1601 }
1602 
1603 /*
1604  * Return the maximum asize for a rebuild zio in the provided range
1605  * given the following constraints.  A dRAID chunks may not:
1606  *
1607  * - Exceed the maximum allowed block size (SPA_MAXBLOCKSIZE), or
1608  * - Span dRAID redundancy groups.
1609  */
1610 static uint64_t
1611 vdev_draid_rebuild_asize(vdev_t *vd, uint64_t start, uint64_t asize,
1612     uint64_t max_segment)
1613 {
1614 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1615 
1616 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1617 
1618 	uint64_t ashift = vd->vdev_ashift;
1619 	uint64_t ndata = vdc->vdc_ndata;
1620 	uint64_t psize = MIN(P2ROUNDUP(max_segment * ndata, 1 << ashift),
1621 	    SPA_MAXBLOCKSIZE);
1622 
1623 	ASSERT3U(vdev_draid_get_astart(vd, start), ==, start);
1624 	ASSERT3U(asize % (vdc->vdc_groupwidth << ashift), ==, 0);
1625 
1626 	/* Chunks must evenly span all data columns in the group. */
1627 	psize = (((psize >> ashift) / ndata) * ndata) << ashift;
1628 	uint64_t chunk_size = MIN(asize, vdev_psize_to_asize(vd, psize));
1629 
1630 	/* Reduce the chunk size to the group space remaining. */
1631 	uint64_t group = vdev_draid_offset_to_group(vd, start);
1632 	uint64_t left = vdev_draid_group_to_offset(vd, group + 1) - start;
1633 	chunk_size = MIN(chunk_size, left);
1634 
1635 	ASSERT3U(chunk_size % (vdc->vdc_groupwidth << ashift), ==, 0);
1636 	ASSERT3U(vdev_draid_offset_to_group(vd, start), ==,
1637 	    vdev_draid_offset_to_group(vd, start + chunk_size - 1));
1638 
1639 	return (chunk_size);
1640 }
1641 
1642 /*
1643  * Align the start of the metaslab to the group width and slightly reduce
1644  * its size to a multiple of the group width.  Since full stripe writes are
1645  * required by dRAID this space is unallocable.  Furthermore, aligning the
1646  * metaslab start is important for vdev initialize and TRIM which both operate
1647  * on metaslab boundaries which vdev_xlate() expects to be aligned.
1648  */
1649 static void
1650 vdev_draid_metaslab_init(vdev_t *vd, uint64_t *ms_start, uint64_t *ms_size)
1651 {
1652 	vdev_draid_config_t *vdc = vd->vdev_tsd;
1653 
1654 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
1655 
1656 	uint64_t sz = vdc->vdc_groupwidth << vd->vdev_ashift;
1657 	uint64_t astart = vdev_draid_get_astart(vd, *ms_start);
1658 	uint64_t asize = ((*ms_size - (astart - *ms_start)) / sz) * sz;
1659 
1660 	*ms_start = astart;
1661 	*ms_size = asize;
1662 
1663 	ASSERT0(*ms_start % sz);
1664 	ASSERT0(*ms_size % sz);
1665 }
1666 
1667 /*
1668  * Add virtual dRAID spares to the list of valid spares. In order to accomplish
1669  * this the existing array must be freed and reallocated with the additional
1670  * entries.
1671  */
1672 int
1673 vdev_draid_spare_create(nvlist_t *nvroot, vdev_t *vd, uint64_t *ndraidp,
1674     uint64_t next_vdev_id)
1675 {
1676 	uint64_t draid_nspares = 0;
1677 	uint64_t ndraid = 0;
1678 	int error;
1679 
1680 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1681 		vdev_t *cvd = vd->vdev_child[i];
1682 
1683 		if (cvd->vdev_ops == &vdev_draid_ops) {
1684 			vdev_draid_config_t *vdc = cvd->vdev_tsd;
1685 			draid_nspares += vdc->vdc_nspares;
1686 			ndraid++;
1687 		}
1688 	}
1689 
1690 	if (draid_nspares == 0) {
1691 		*ndraidp = ndraid;
1692 		return (0);
1693 	}
1694 
1695 	nvlist_t **old_spares, **new_spares;
1696 	uint_t old_nspares;
1697 	error = nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1698 	    &old_spares, &old_nspares);
1699 	if (error)
1700 		old_nspares = 0;
1701 
1702 	/* Allocate memory and copy of the existing spares. */
1703 	new_spares = kmem_alloc(sizeof (nvlist_t *) *
1704 	    (draid_nspares + old_nspares), KM_SLEEP);
1705 	for (uint_t i = 0; i < old_nspares; i++)
1706 		new_spares[i] = fnvlist_dup(old_spares[i]);
1707 
1708 	/* Add new distributed spares to ZPOOL_CONFIG_SPARES. */
1709 	uint64_t n = old_nspares;
1710 	for (uint64_t vdev_id = 0; vdev_id < vd->vdev_children; vdev_id++) {
1711 		vdev_t *cvd = vd->vdev_child[vdev_id];
1712 		char path[64];
1713 
1714 		if (cvd->vdev_ops != &vdev_draid_ops)
1715 			continue;
1716 
1717 		vdev_draid_config_t *vdc = cvd->vdev_tsd;
1718 		uint64_t nspares = vdc->vdc_nspares;
1719 		uint64_t nparity = vdc->vdc_nparity;
1720 
1721 		for (uint64_t spare_id = 0; spare_id < nspares; spare_id++) {
1722 			memset(path, 0, sizeof (path));
1723 			(void) snprintf(path, sizeof (path) - 1,
1724 			    "%s%llu-%llu-%llu", VDEV_TYPE_DRAID,
1725 			    (u_longlong_t)nparity,
1726 			    (u_longlong_t)next_vdev_id + vdev_id,
1727 			    (u_longlong_t)spare_id);
1728 
1729 			nvlist_t *spare = fnvlist_alloc();
1730 			fnvlist_add_string(spare, ZPOOL_CONFIG_PATH, path);
1731 			fnvlist_add_string(spare, ZPOOL_CONFIG_TYPE,
1732 			    VDEV_TYPE_DRAID_SPARE);
1733 			fnvlist_add_uint64(spare, ZPOOL_CONFIG_TOP_GUID,
1734 			    cvd->vdev_guid);
1735 			fnvlist_add_uint64(spare, ZPOOL_CONFIG_SPARE_ID,
1736 			    spare_id);
1737 			fnvlist_add_uint64(spare, ZPOOL_CONFIG_IS_LOG, 0);
1738 			fnvlist_add_uint64(spare, ZPOOL_CONFIG_IS_SPARE, 1);
1739 			fnvlist_add_uint64(spare, ZPOOL_CONFIG_WHOLE_DISK, 1);
1740 			fnvlist_add_uint64(spare, ZPOOL_CONFIG_ASHIFT,
1741 			    cvd->vdev_ashift);
1742 
1743 			new_spares[n] = spare;
1744 			n++;
1745 		}
1746 	}
1747 
1748 	if (n > 0) {
1749 		(void) nvlist_remove_all(nvroot, ZPOOL_CONFIG_SPARES);
1750 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1751 		    (const nvlist_t **)new_spares, n);
1752 	}
1753 
1754 	for (int i = 0; i < n; i++)
1755 		nvlist_free(new_spares[i]);
1756 
1757 	kmem_free(new_spares, sizeof (*new_spares) * n);
1758 	*ndraidp = ndraid;
1759 
1760 	return (0);
1761 }
1762 
1763 /*
1764  * Determine if any portion of the provided block resides on a child vdev
1765  * with a dirty DTL and therefore needs to be resilvered.
1766  */
1767 static boolean_t
1768 vdev_draid_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
1769     uint64_t phys_birth)
1770 {
1771 	uint64_t offset = DVA_GET_OFFSET(dva);
1772 	uint64_t asize = vdev_draid_asize(vd, psize, 0);
1773 
1774 	if (phys_birth == TXG_UNKNOWN) {
1775 		/*
1776 		 * Sequential resilver.  There is no meaningful phys_birth
1777 		 * for this block, we can only determine if block resides
1778 		 * in a degraded group in which case it must be resilvered.
1779 		 */
1780 		ASSERT3U(vdev_draid_offset_to_group(vd, offset), ==,
1781 		    vdev_draid_offset_to_group(vd, offset + asize - 1));
1782 
1783 		return (vdev_draid_group_degraded(vd, offset));
1784 	} else {
1785 		/*
1786 		 * Healing resilver.  TXGs not in DTL_PARTIAL are intact,
1787 		 * as are blocks in non-degraded groups.
1788 		 */
1789 		if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
1790 			return (B_FALSE);
1791 
1792 		if (vdev_draid_group_missing(vd, offset, phys_birth, 1))
1793 			return (B_TRUE);
1794 
1795 		/* The block may span groups in which case check both. */
1796 		if (vdev_draid_offset_to_group(vd, offset) !=
1797 		    vdev_draid_offset_to_group(vd, offset + asize - 1)) {
1798 			if (vdev_draid_group_missing(vd,
1799 			    offset + asize, phys_birth, 1))
1800 				return (B_TRUE);
1801 		}
1802 
1803 		return (B_FALSE);
1804 	}
1805 }
1806 
1807 static boolean_t
1808 vdev_draid_rebuilding(vdev_t *vd)
1809 {
1810 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_rebuild_txg)
1811 		return (B_TRUE);
1812 
1813 	for (int i = 0; i < vd->vdev_children; i++) {
1814 		if (vdev_draid_rebuilding(vd->vdev_child[i])) {
1815 			return (B_TRUE);
1816 		}
1817 	}
1818 
1819 	return (B_FALSE);
1820 }
1821 
1822 static void
1823 vdev_draid_io_verify(vdev_t *vd, raidz_row_t *rr, int col)
1824 {
1825 #ifdef ZFS_DEBUG
1826 	range_seg64_t logical_rs, physical_rs, remain_rs;
1827 	logical_rs.rs_start = rr->rr_offset;
1828 	logical_rs.rs_end = logical_rs.rs_start +
1829 	    vdev_draid_asize(vd, rr->rr_size, 0);
1830 
1831 	raidz_col_t *rc = &rr->rr_col[col];
1832 	vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
1833 
1834 	vdev_xlate(cvd, &logical_rs, &physical_rs, &remain_rs);
1835 	ASSERT(vdev_xlate_is_empty(&remain_rs));
1836 	ASSERT3U(rc->rc_offset, ==, physical_rs.rs_start);
1837 	ASSERT3U(rc->rc_offset, <, physical_rs.rs_end);
1838 	ASSERT3U(rc->rc_offset + rc->rc_size, ==, physical_rs.rs_end);
1839 #endif
1840 }
1841 
1842 /*
1843  * For write operations:
1844  * 1. Generate the parity data
1845  * 2. Create child zio write operations to each column's vdev, for both
1846  *    data and parity.  A gang ABD is allocated by vdev_draid_map_alloc()
1847  *    if a skip sector needs to be added to a column.
1848  */
1849 static void
1850 vdev_draid_io_start_write(zio_t *zio, raidz_row_t *rr)
1851 {
1852 	vdev_t *vd = zio->io_vd;
1853 	raidz_map_t *rm = zio->io_vsd;
1854 
1855 	vdev_raidz_generate_parity_row(rm, rr);
1856 
1857 	for (int c = 0; c < rr->rr_cols; c++) {
1858 		raidz_col_t *rc = &rr->rr_col[c];
1859 
1860 		/*
1861 		 * Empty columns are zero filled and included in the parity
1862 		 * calculation and therefore must be written.
1863 		 */
1864 		ASSERT3U(rc->rc_size, !=, 0);
1865 
1866 		/* Verify physical to logical translation */
1867 		vdev_draid_io_verify(vd, rr, c);
1868 
1869 		zio_nowait(zio_vdev_child_io(zio, NULL,
1870 		    vd->vdev_child[rc->rc_devidx], rc->rc_offset,
1871 		    rc->rc_abd, rc->rc_size, zio->io_type, zio->io_priority,
1872 		    0, vdev_raidz_child_done, rc));
1873 	}
1874 }
1875 
1876 /*
1877  * For read operations:
1878  * 1. The vdev_draid_map_alloc() function will create a minimal raidz
1879  *    mapping for the read based on the zio->io_flags.  There are two
1880  *    possible mappings either 1) a normal read, or 2) a scrub/resilver.
1881  * 2. Create the zio read operations.  This will include all parity
1882  *    columns and skip sectors for a scrub/resilver.
1883  */
1884 static void
1885 vdev_draid_io_start_read(zio_t *zio, raidz_row_t *rr)
1886 {
1887 	vdev_t *vd = zio->io_vd;
1888 
1889 	/* Sequential rebuild must do IO at redundancy group boundary. */
1890 	IMPLY(zio->io_priority == ZIO_PRIORITY_REBUILD, rr->rr_nempty == 0);
1891 
1892 	/*
1893 	 * Iterate over the columns in reverse order so that we hit the parity
1894 	 * last.  Any errors along the way will force us to read the parity.
1895 	 * For scrub/resilver IOs which verify skip sectors, a gang ABD will
1896 	 * have been allocated to store them and rc->rc_size is increased.
1897 	 */
1898 	for (int c = rr->rr_cols - 1; c >= 0; c--) {
1899 		raidz_col_t *rc = &rr->rr_col[c];
1900 		vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
1901 
1902 		if (!vdev_draid_readable(cvd, rc->rc_offset)) {
1903 			if (c >= rr->rr_firstdatacol)
1904 				rr->rr_missingdata++;
1905 			else
1906 				rr->rr_missingparity++;
1907 			rc->rc_error = SET_ERROR(ENXIO);
1908 			rc->rc_tried = 1;
1909 			rc->rc_skipped = 1;
1910 			continue;
1911 		}
1912 
1913 		if (vdev_draid_missing(cvd, rc->rc_offset, zio->io_txg, 1)) {
1914 			if (c >= rr->rr_firstdatacol)
1915 				rr->rr_missingdata++;
1916 			else
1917 				rr->rr_missingparity++;
1918 			rc->rc_error = SET_ERROR(ESTALE);
1919 			rc->rc_skipped = 1;
1920 			continue;
1921 		}
1922 
1923 		/*
1924 		 * Empty columns may be read during vdev_draid_io_done().
1925 		 * Only skip them after the readable and missing checks
1926 		 * verify they are available.
1927 		 */
1928 		if (rc->rc_size == 0) {
1929 			rc->rc_skipped = 1;
1930 			continue;
1931 		}
1932 
1933 		if (zio->io_flags & ZIO_FLAG_RESILVER) {
1934 			vdev_t *svd;
1935 
1936 			/*
1937 			 * Sequential rebuilds need to always consider the data
1938 			 * on the child being rebuilt to be stale.  This is
1939 			 * important when all columns are available to aid
1940 			 * known reconstruction in identifing which columns
1941 			 * contain incorrect data.
1942 			 *
1943 			 * Furthermore, all repairs need to be constrained to
1944 			 * the devices being rebuilt because without a checksum
1945 			 * we cannot verify the data is actually correct and
1946 			 * performing an incorrect repair could result in
1947 			 * locking in damage and making the data unrecoverable.
1948 			 */
1949 			if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
1950 				if (vdev_draid_rebuilding(cvd)) {
1951 					if (c >= rr->rr_firstdatacol)
1952 						rr->rr_missingdata++;
1953 					else
1954 						rr->rr_missingparity++;
1955 					rc->rc_error = SET_ERROR(ESTALE);
1956 					rc->rc_skipped = 1;
1957 					rc->rc_allow_repair = 1;
1958 					continue;
1959 				} else {
1960 					rc->rc_allow_repair = 0;
1961 				}
1962 			} else {
1963 				rc->rc_allow_repair = 1;
1964 			}
1965 
1966 			/*
1967 			 * If this child is a distributed spare then the
1968 			 * offset might reside on the vdev being replaced.
1969 			 * In which case this data must be written to the
1970 			 * new device.  Failure to do so would result in
1971 			 * checksum errors when the old device is detached
1972 			 * and the pool is scrubbed.
1973 			 */
1974 			if ((svd = vdev_draid_find_spare(cvd)) != NULL) {
1975 				svd = vdev_draid_spare_get_child(svd,
1976 				    rc->rc_offset);
1977 				if (svd && (svd->vdev_ops == &vdev_spare_ops ||
1978 				    svd->vdev_ops == &vdev_replacing_ops)) {
1979 					rc->rc_force_repair = 1;
1980 
1981 					if (vdev_draid_rebuilding(svd))
1982 						rc->rc_allow_repair = 1;
1983 				}
1984 			}
1985 
1986 			/*
1987 			 * Always issue a repair IO to this child when its
1988 			 * a spare or replacing vdev with an active rebuild.
1989 			 */
1990 			if ((cvd->vdev_ops == &vdev_spare_ops ||
1991 			    cvd->vdev_ops == &vdev_replacing_ops) &&
1992 			    vdev_draid_rebuilding(cvd)) {
1993 				rc->rc_force_repair = 1;
1994 				rc->rc_allow_repair = 1;
1995 			}
1996 		}
1997 	}
1998 
1999 	/*
2000 	 * Either a parity or data column is missing this means a repair
2001 	 * may be attempted by vdev_draid_io_done().  Expand the raid map
2002 	 * to read in empty columns which are needed along with the parity
2003 	 * during reconstruction.
2004 	 */
2005 	if ((rr->rr_missingdata > 0 || rr->rr_missingparity > 0) &&
2006 	    rr->rr_nempty > 0 && rr->rr_abd_empty == NULL) {
2007 		vdev_draid_map_alloc_empty(zio, rr);
2008 	}
2009 
2010 	for (int c = rr->rr_cols - 1; c >= 0; c--) {
2011 		raidz_col_t *rc = &rr->rr_col[c];
2012 		vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
2013 
2014 		if (rc->rc_error || rc->rc_size == 0)
2015 			continue;
2016 
2017 		if (c >= rr->rr_firstdatacol || rr->rr_missingdata > 0 ||
2018 		    (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
2019 			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2020 			    rc->rc_offset, rc->rc_abd, rc->rc_size,
2021 			    zio->io_type, zio->io_priority, 0,
2022 			    vdev_raidz_child_done, rc));
2023 		}
2024 	}
2025 }
2026 
2027 /*
2028  * Start an IO operation to a dRAID vdev.
2029  */
2030 static void
2031 vdev_draid_io_start(zio_t *zio)
2032 {
2033 	vdev_t *vd __maybe_unused = zio->io_vd;
2034 
2035 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
2036 	ASSERT3U(zio->io_offset, ==, vdev_draid_get_astart(vd, zio->io_offset));
2037 
2038 	raidz_map_t *rm = vdev_draid_map_alloc(zio);
2039 	zio->io_vsd = rm;
2040 	zio->io_vsd_ops = &vdev_raidz_vsd_ops;
2041 
2042 	if (zio->io_type == ZIO_TYPE_WRITE) {
2043 		for (int i = 0; i < rm->rm_nrows; i++) {
2044 			vdev_draid_io_start_write(zio, rm->rm_row[i]);
2045 		}
2046 	} else {
2047 		ASSERT(zio->io_type == ZIO_TYPE_READ);
2048 
2049 		for (int i = 0; i < rm->rm_nrows; i++) {
2050 			vdev_draid_io_start_read(zio, rm->rm_row[i]);
2051 		}
2052 	}
2053 
2054 	zio_execute(zio);
2055 }
2056 
2057 /*
2058  * Complete an IO operation on a dRAID vdev.  The raidz logic can be applied
2059  * to dRAID since the layout is fully described by the raidz_map_t.
2060  */
2061 static void
2062 vdev_draid_io_done(zio_t *zio)
2063 {
2064 	vdev_raidz_io_done(zio);
2065 }
2066 
2067 static void
2068 vdev_draid_state_change(vdev_t *vd, int faulted, int degraded)
2069 {
2070 	vdev_draid_config_t *vdc = vd->vdev_tsd;
2071 	ASSERT(vd->vdev_ops == &vdev_draid_ops);
2072 
2073 	if (faulted > vdc->vdc_nparity)
2074 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2075 		    VDEV_AUX_NO_REPLICAS);
2076 	else if (degraded + faulted != 0)
2077 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
2078 	else
2079 		vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
2080 }
2081 
2082 static void
2083 vdev_draid_xlate(vdev_t *cvd, const range_seg64_t *logical_rs,
2084     range_seg64_t *physical_rs, range_seg64_t *remain_rs)
2085 {
2086 	vdev_t *raidvd = cvd->vdev_parent;
2087 	ASSERT(raidvd->vdev_ops == &vdev_draid_ops);
2088 
2089 	vdev_draid_config_t *vdc = raidvd->vdev_tsd;
2090 	uint64_t ashift = raidvd->vdev_top->vdev_ashift;
2091 
2092 	/* Make sure the offsets are block-aligned */
2093 	ASSERT0(logical_rs->rs_start % (1 << ashift));
2094 	ASSERT0(logical_rs->rs_end % (1 << ashift));
2095 
2096 	uint64_t logical_start = logical_rs->rs_start;
2097 	uint64_t logical_end = logical_rs->rs_end;
2098 
2099 	/*
2100 	 * Unaligned ranges must be skipped. All metaslabs are correctly
2101 	 * aligned so this should not happen, but this case is handled in
2102 	 * case it's needed by future callers.
2103 	 */
2104 	uint64_t astart = vdev_draid_get_astart(raidvd, logical_start);
2105 	if (astart != logical_start) {
2106 		physical_rs->rs_start = logical_start;
2107 		physical_rs->rs_end = logical_start;
2108 		remain_rs->rs_start = MIN(astart, logical_end);
2109 		remain_rs->rs_end = logical_end;
2110 		return;
2111 	}
2112 
2113 	/*
2114 	 * Unlike with mirrors and raidz a dRAID logical range can map
2115 	 * to multiple non-contiguous physical ranges. This is handled by
2116 	 * limiting the size of the logical range to a single group and
2117 	 * setting the remain argument such that it describes the remaining
2118 	 * unmapped logical range. This is stricter than absolutely
2119 	 * necessary but helps simplify the logic below.
2120 	 */
2121 	uint64_t group = vdev_draid_offset_to_group(raidvd, logical_start);
2122 	uint64_t nextstart = vdev_draid_group_to_offset(raidvd, group + 1);
2123 	if (logical_end > nextstart)
2124 		logical_end = nextstart;
2125 
2126 	/* Find the starting offset for each vdev in the group */
2127 	uint64_t perm, groupstart;
2128 	uint64_t start = vdev_draid_logical_to_physical(raidvd,
2129 	    logical_start, &perm, &groupstart);
2130 	uint64_t end = start;
2131 
2132 	uint8_t *base;
2133 	uint64_t iter, id;
2134 	vdev_draid_get_perm(vdc, perm, &base, &iter);
2135 
2136 	/*
2137 	 * Check if the passed child falls within the group.  If it does
2138 	 * update the start and end to reflect the physical range.
2139 	 * Otherwise, leave them unmodified which will result in an empty
2140 	 * (zero-length) physical range being returned.
2141 	 */
2142 	for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
2143 		uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
2144 
2145 		if (c == 0 && i != 0) {
2146 			/* the group wrapped, increment the start */
2147 			start += VDEV_DRAID_ROWHEIGHT;
2148 			end = start;
2149 		}
2150 
2151 		id = vdev_draid_permute_id(vdc, base, iter, c);
2152 		if (id == cvd->vdev_id) {
2153 			uint64_t b_size = (logical_end >> ashift) -
2154 			    (logical_start >> ashift);
2155 			ASSERT3U(b_size, >, 0);
2156 			end = start + ((((b_size - 1) /
2157 			    vdc->vdc_groupwidth) + 1) << ashift);
2158 			break;
2159 		}
2160 	}
2161 	physical_rs->rs_start = start;
2162 	physical_rs->rs_end = end;
2163 
2164 	/*
2165 	 * Only top-level vdevs are allowed to set remain_rs because
2166 	 * when .vdev_op_xlate() is called for their children the full
2167 	 * logical range is not provided by vdev_xlate().
2168 	 */
2169 	remain_rs->rs_start = logical_end;
2170 	remain_rs->rs_end = logical_rs->rs_end;
2171 
2172 	ASSERT3U(physical_rs->rs_start, <=, logical_start);
2173 	ASSERT3U(physical_rs->rs_end - physical_rs->rs_start, <=,
2174 	    logical_end - logical_start);
2175 }
2176 
2177 /*
2178  * Add dRAID specific fields to the config nvlist.
2179  */
2180 static void
2181 vdev_draid_config_generate(vdev_t *vd, nvlist_t *nv)
2182 {
2183 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
2184 	vdev_draid_config_t *vdc = vd->vdev_tsd;
2185 
2186 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vdc->vdc_nparity);
2187 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, vdc->vdc_ndata);
2188 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, vdc->vdc_nspares);
2189 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, vdc->vdc_ngroups);
2190 }
2191 
2192 /*
2193  * Initialize private dRAID specific fields from the nvlist.
2194  */
2195 static int
2196 vdev_draid_init(spa_t *spa, nvlist_t *nv, void **tsd)
2197 {
2198 	(void) spa;
2199 	uint64_t ndata, nparity, nspares, ngroups;
2200 	int error;
2201 
2202 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, &ndata))
2203 		return (SET_ERROR(EINVAL));
2204 
2205 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &nparity) ||
2206 	    nparity == 0 || nparity > VDEV_DRAID_MAXPARITY) {
2207 		return (SET_ERROR(EINVAL));
2208 	}
2209 
2210 	uint_t children;
2211 	nvlist_t **child;
2212 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2213 	    &child, &children) != 0 || children == 0 ||
2214 	    children > VDEV_DRAID_MAX_CHILDREN) {
2215 		return (SET_ERROR(EINVAL));
2216 	}
2217 
2218 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, &nspares) ||
2219 	    nspares > 100 || nspares > (children - (ndata + nparity))) {
2220 		return (SET_ERROR(EINVAL));
2221 	}
2222 
2223 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, &ngroups) ||
2224 	    ngroups == 0 || ngroups > VDEV_DRAID_MAX_CHILDREN) {
2225 		return (SET_ERROR(EINVAL));
2226 	}
2227 
2228 	/*
2229 	 * Validate the minimum number of children exist per group for the
2230 	 * specified parity level (draid1 >= 2, draid2 >= 3, draid3 >= 4).
2231 	 */
2232 	if (children < (ndata + nparity + nspares))
2233 		return (SET_ERROR(EINVAL));
2234 
2235 	/*
2236 	 * Create the dRAID configuration using the pool nvlist configuration
2237 	 * and the fixed mapping for the correct number of children.
2238 	 */
2239 	vdev_draid_config_t *vdc;
2240 	const draid_map_t *map;
2241 
2242 	error = vdev_draid_lookup_map(children, &map);
2243 	if (error)
2244 		return (SET_ERROR(EINVAL));
2245 
2246 	vdc = kmem_zalloc(sizeof (*vdc), KM_SLEEP);
2247 	vdc->vdc_ndata = ndata;
2248 	vdc->vdc_nparity = nparity;
2249 	vdc->vdc_nspares = nspares;
2250 	vdc->vdc_children = children;
2251 	vdc->vdc_ngroups = ngroups;
2252 	vdc->vdc_nperms = map->dm_nperms;
2253 
2254 	error = vdev_draid_generate_perms(map, &vdc->vdc_perms);
2255 	if (error) {
2256 		kmem_free(vdc, sizeof (*vdc));
2257 		return (SET_ERROR(EINVAL));
2258 	}
2259 
2260 	/*
2261 	 * Derived constants.
2262 	 */
2263 	vdc->vdc_groupwidth = vdc->vdc_ndata + vdc->vdc_nparity;
2264 	vdc->vdc_ndisks = vdc->vdc_children - vdc->vdc_nspares;
2265 	vdc->vdc_groupsz = vdc->vdc_groupwidth * VDEV_DRAID_ROWHEIGHT;
2266 	vdc->vdc_devslicesz = (vdc->vdc_groupsz * vdc->vdc_ngroups) /
2267 	    vdc->vdc_ndisks;
2268 
2269 	ASSERT3U(vdc->vdc_groupwidth, >=, 2);
2270 	ASSERT3U(vdc->vdc_groupwidth, <=, vdc->vdc_ndisks);
2271 	ASSERT3U(vdc->vdc_groupsz, >=, 2 * VDEV_DRAID_ROWHEIGHT);
2272 	ASSERT3U(vdc->vdc_devslicesz, >=, VDEV_DRAID_ROWHEIGHT);
2273 	ASSERT3U(vdc->vdc_devslicesz % VDEV_DRAID_ROWHEIGHT, ==, 0);
2274 	ASSERT3U((vdc->vdc_groupwidth * vdc->vdc_ngroups) %
2275 	    vdc->vdc_ndisks, ==, 0);
2276 
2277 	*tsd = vdc;
2278 
2279 	return (0);
2280 }
2281 
2282 static void
2283 vdev_draid_fini(vdev_t *vd)
2284 {
2285 	vdev_draid_config_t *vdc = vd->vdev_tsd;
2286 
2287 	vmem_free(vdc->vdc_perms, sizeof (uint8_t) *
2288 	    vdc->vdc_children * vdc->vdc_nperms);
2289 	kmem_free(vdc, sizeof (*vdc));
2290 }
2291 
2292 static uint64_t
2293 vdev_draid_nparity(vdev_t *vd)
2294 {
2295 	vdev_draid_config_t *vdc = vd->vdev_tsd;
2296 
2297 	return (vdc->vdc_nparity);
2298 }
2299 
2300 static uint64_t
2301 vdev_draid_ndisks(vdev_t *vd)
2302 {
2303 	vdev_draid_config_t *vdc = vd->vdev_tsd;
2304 
2305 	return (vdc->vdc_ndisks);
2306 }
2307 
2308 vdev_ops_t vdev_draid_ops = {
2309 	.vdev_op_init = vdev_draid_init,
2310 	.vdev_op_fini = vdev_draid_fini,
2311 	.vdev_op_open = vdev_draid_open,
2312 	.vdev_op_close = vdev_draid_close,
2313 	.vdev_op_asize = vdev_draid_asize,
2314 	.vdev_op_min_asize = vdev_draid_min_asize,
2315 	.vdev_op_min_alloc = vdev_draid_min_alloc,
2316 	.vdev_op_io_start = vdev_draid_io_start,
2317 	.vdev_op_io_done = vdev_draid_io_done,
2318 	.vdev_op_state_change = vdev_draid_state_change,
2319 	.vdev_op_need_resilver = vdev_draid_need_resilver,
2320 	.vdev_op_hold = NULL,
2321 	.vdev_op_rele = NULL,
2322 	.vdev_op_remap = NULL,
2323 	.vdev_op_xlate = vdev_draid_xlate,
2324 	.vdev_op_rebuild_asize = vdev_draid_rebuild_asize,
2325 	.vdev_op_metaslab_init = vdev_draid_metaslab_init,
2326 	.vdev_op_config_generate = vdev_draid_config_generate,
2327 	.vdev_op_nparity = vdev_draid_nparity,
2328 	.vdev_op_ndisks = vdev_draid_ndisks,
2329 	.vdev_op_type = VDEV_TYPE_DRAID,
2330 	.vdev_op_leaf = B_FALSE,
2331 };
2332 
2333 
2334 /*
2335  * A dRAID distributed spare is a virtual leaf vdev which is included in the
2336  * parent dRAID configuration.  The last N columns of the dRAID permutation
2337  * table are used to determine on which dRAID children a specific offset
2338  * should be written.  These spare leaf vdevs can only be used to replace
2339  * faulted children in the same dRAID configuration.
2340  */
2341 
2342 /*
2343  * Distributed spare state.  All fields are set when the distributed spare is
2344  * first opened and are immutable.
2345  */
2346 typedef struct {
2347 	vdev_t *vds_draid_vdev;		/* top-level parent dRAID vdev */
2348 	uint64_t vds_top_guid;		/* top-level parent dRAID guid */
2349 	uint64_t vds_spare_id;		/* spare id (0 - vdc->vdc_nspares-1) */
2350 } vdev_draid_spare_t;
2351 
2352 /*
2353  * Returns the parent dRAID vdev to which the distributed spare belongs.
2354  * This may be safely called even when the vdev is not open.
2355  */
2356 vdev_t *
2357 vdev_draid_spare_get_parent(vdev_t *vd)
2358 {
2359 	vdev_draid_spare_t *vds = vd->vdev_tsd;
2360 
2361 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
2362 
2363 	if (vds->vds_draid_vdev != NULL)
2364 		return (vds->vds_draid_vdev);
2365 
2366 	return (vdev_lookup_by_guid(vd->vdev_spa->spa_root_vdev,
2367 	    vds->vds_top_guid));
2368 }
2369 
2370 /*
2371  * A dRAID space is active when it's the child of a vdev using the
2372  * vdev_spare_ops, vdev_replacing_ops or vdev_draid_ops.
2373  */
2374 static boolean_t
2375 vdev_draid_spare_is_active(vdev_t *vd)
2376 {
2377 	vdev_t *pvd = vd->vdev_parent;
2378 
2379 	if (pvd != NULL && (pvd->vdev_ops == &vdev_spare_ops ||
2380 	    pvd->vdev_ops == &vdev_replacing_ops ||
2381 	    pvd->vdev_ops == &vdev_draid_ops)) {
2382 		return (B_TRUE);
2383 	} else {
2384 		return (B_FALSE);
2385 	}
2386 }
2387 
2388 /*
2389  * Given a dRAID distribute spare vdev, returns the physical child vdev
2390  * on which the provided offset resides.  This may involve recursing through
2391  * multiple layers of distributed spares.  Note that offset is relative to
2392  * this vdev.
2393  */
2394 vdev_t *
2395 vdev_draid_spare_get_child(vdev_t *vd, uint64_t physical_offset)
2396 {
2397 	vdev_draid_spare_t *vds = vd->vdev_tsd;
2398 
2399 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
2400 
2401 	/* The vdev is closed */
2402 	if (vds->vds_draid_vdev == NULL)
2403 		return (NULL);
2404 
2405 	vdev_t *tvd = vds->vds_draid_vdev;
2406 	vdev_draid_config_t *vdc = tvd->vdev_tsd;
2407 
2408 	ASSERT3P(tvd->vdev_ops, ==, &vdev_draid_ops);
2409 	ASSERT3U(vds->vds_spare_id, <, vdc->vdc_nspares);
2410 
2411 	uint8_t *base;
2412 	uint64_t iter;
2413 	uint64_t perm = physical_offset / vdc->vdc_devslicesz;
2414 
2415 	vdev_draid_get_perm(vdc, perm, &base, &iter);
2416 
2417 	uint64_t cid = vdev_draid_permute_id(vdc, base, iter,
2418 	    (tvd->vdev_children - 1) - vds->vds_spare_id);
2419 	vdev_t *cvd = tvd->vdev_child[cid];
2420 
2421 	if (cvd->vdev_ops == &vdev_draid_spare_ops)
2422 		return (vdev_draid_spare_get_child(cvd, physical_offset));
2423 
2424 	return (cvd);
2425 }
2426 
2427 static void
2428 vdev_draid_spare_close(vdev_t *vd)
2429 {
2430 	vdev_draid_spare_t *vds = vd->vdev_tsd;
2431 	vds->vds_draid_vdev = NULL;
2432 }
2433 
2434 /*
2435  * Opening a dRAID spare device is done by looking up the associated dRAID
2436  * top-level vdev guid from the spare configuration.
2437  */
2438 static int
2439 vdev_draid_spare_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
2440     uint64_t *logical_ashift, uint64_t *physical_ashift)
2441 {
2442 	vdev_draid_spare_t *vds = vd->vdev_tsd;
2443 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2444 	uint64_t asize, max_asize;
2445 
2446 	vdev_t *tvd = vdev_lookup_by_guid(rvd, vds->vds_top_guid);
2447 	if (tvd == NULL) {
2448 		/*
2449 		 * When spa_vdev_add() is labeling new spares the
2450 		 * associated dRAID is not attached to the root vdev
2451 		 * nor does this spare have a parent.  Simulate a valid
2452 		 * device in order to allow the label to be initialized
2453 		 * and the distributed spare added to the configuration.
2454 		 */
2455 		if (vd->vdev_parent == NULL) {
2456 			*psize = *max_psize = SPA_MINDEVSIZE;
2457 			*logical_ashift = *physical_ashift = ASHIFT_MIN;
2458 			return (0);
2459 		}
2460 
2461 		return (SET_ERROR(EINVAL));
2462 	}
2463 
2464 	vdev_draid_config_t *vdc = tvd->vdev_tsd;
2465 	if (tvd->vdev_ops != &vdev_draid_ops || vdc == NULL)
2466 		return (SET_ERROR(EINVAL));
2467 
2468 	if (vds->vds_spare_id >= vdc->vdc_nspares)
2469 		return (SET_ERROR(EINVAL));
2470 
2471 	/*
2472 	 * Neither tvd->vdev_asize or tvd->vdev_max_asize can be used here
2473 	 * because the caller may be vdev_draid_open() in which case the
2474 	 * values are stale as they haven't yet been updated by vdev_open().
2475 	 * To avoid this always recalculate the dRAID asize and max_asize.
2476 	 */
2477 	vdev_draid_calculate_asize(tvd, &asize, &max_asize,
2478 	    logical_ashift, physical_ashift);
2479 
2480 	*psize = asize + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2481 	*max_psize = max_asize + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2482 
2483 	vds->vds_draid_vdev = tvd;
2484 
2485 	return (0);
2486 }
2487 
2488 /*
2489  * Completed distributed spare IO.  Store the result in the parent zio
2490  * as if it had performed the operation itself.  Only the first error is
2491  * preserved if there are multiple errors.
2492  */
2493 static void
2494 vdev_draid_spare_child_done(zio_t *zio)
2495 {
2496 	zio_t *pio = zio->io_private;
2497 
2498 	/*
2499 	 * IOs are issued to non-writable vdevs in order to keep their
2500 	 * DTLs accurate.  However, we don't want to propagate the
2501 	 * error in to the distributed spare's DTL.  When resilvering
2502 	 * vdev_draid_need_resilver() will consult the relevant DTL
2503 	 * to determine if the data is missing and must be repaired.
2504 	 */
2505 	if (!vdev_writeable(zio->io_vd))
2506 		return;
2507 
2508 	if (pio->io_error == 0)
2509 		pio->io_error = zio->io_error;
2510 }
2511 
2512 /*
2513  * Returns a valid label nvlist for the distributed spare vdev.  This is
2514  * used to bypass the IO pipeline to avoid the complexity of constructing
2515  * a complete label with valid checksum to return when read.
2516  */
2517 nvlist_t *
2518 vdev_draid_read_config_spare(vdev_t *vd)
2519 {
2520 	spa_t *spa = vd->vdev_spa;
2521 	spa_aux_vdev_t *sav = &spa->spa_spares;
2522 	uint64_t guid = vd->vdev_guid;
2523 
2524 	nvlist_t *nv = fnvlist_alloc();
2525 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
2526 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
2527 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_VERSION, spa_version(spa));
2528 	fnvlist_add_string(nv, ZPOOL_CONFIG_POOL_NAME, spa_name(spa));
2529 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_GUID, spa_guid(spa));
2530 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
2531 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_TOP_GUID, vd->vdev_top->vdev_guid);
2532 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_STATE,
2533 	    vdev_draid_spare_is_active(vd) ?
2534 	    POOL_STATE_ACTIVE : POOL_STATE_SPARE);
2535 
2536 	/* Set the vdev guid based on the vdev list in sav_count. */
2537 	for (int i = 0; i < sav->sav_count; i++) {
2538 		if (sav->sav_vdevs[i]->vdev_ops == &vdev_draid_spare_ops &&
2539 		    strcmp(sav->sav_vdevs[i]->vdev_path, vd->vdev_path) == 0) {
2540 			guid = sav->sav_vdevs[i]->vdev_guid;
2541 			break;
2542 		}
2543 	}
2544 
2545 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, guid);
2546 
2547 	return (nv);
2548 }
2549 
2550 /*
2551  * Handle any flush requested of the distributed spare. All children must be
2552  * flushed.
2553  */
2554 static int
2555 vdev_draid_spare_flush(zio_t *zio)
2556 {
2557 	vdev_t *vd = zio->io_vd;
2558 	int error = 0;
2559 
2560 	for (int c = 0; c < vd->vdev_children; c++) {
2561 		zio_nowait(zio_vdev_child_io(zio, NULL,
2562 		    vd->vdev_child[c], zio->io_offset, zio->io_abd,
2563 		    zio->io_size, zio->io_type, zio->io_priority, 0,
2564 		    vdev_draid_spare_child_done, zio));
2565 	}
2566 
2567 	return (error);
2568 }
2569 
2570 /*
2571  * Initiate an IO to the distributed spare.  For normal IOs this entails using
2572  * the zio->io_offset and permutation table to calculate which child dRAID vdev
2573  * is responsible for the data.  Then passing along the zio to that child to
2574  * perform the actual IO.  The label ranges are not stored on disk and require
2575  * some special handling which is described below.
2576  */
2577 static void
2578 vdev_draid_spare_io_start(zio_t *zio)
2579 {
2580 	vdev_t *cvd = NULL, *vd = zio->io_vd;
2581 	vdev_draid_spare_t *vds = vd->vdev_tsd;
2582 	uint64_t offset = zio->io_offset - VDEV_LABEL_START_SIZE;
2583 
2584 	/*
2585 	 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
2586 	 * Nothing to be done here but return failure.
2587 	 */
2588 	if (vds == NULL) {
2589 		zio->io_error = ENXIO;
2590 		zio_interrupt(zio);
2591 		return;
2592 	}
2593 
2594 	switch (zio->io_type) {
2595 	case ZIO_TYPE_FLUSH:
2596 		zio->io_error = vdev_draid_spare_flush(zio);
2597 		break;
2598 
2599 	case ZIO_TYPE_WRITE:
2600 		if (VDEV_OFFSET_IS_LABEL(vd, zio->io_offset)) {
2601 			/*
2602 			 * Accept probe IOs and config writers to simulate the
2603 			 * existence of an on disk label.  vdev_label_sync(),
2604 			 * vdev_uberblock_sync() and vdev_copy_uberblocks()
2605 			 * skip the distributed spares.  This only leaves
2606 			 * vdev_label_init() which is allowed to succeed to
2607 			 * avoid adding special cases the function.
2608 			 */
2609 			if (zio->io_flags & ZIO_FLAG_PROBE ||
2610 			    zio->io_flags & ZIO_FLAG_CONFIG_WRITER) {
2611 				zio->io_error = 0;
2612 			} else {
2613 				zio->io_error = SET_ERROR(EIO);
2614 			}
2615 		} else {
2616 			cvd = vdev_draid_spare_get_child(vd, offset);
2617 
2618 			if (cvd == NULL) {
2619 				zio->io_error = SET_ERROR(ENXIO);
2620 			} else {
2621 				zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2622 				    offset, zio->io_abd, zio->io_size,
2623 				    zio->io_type, zio->io_priority, 0,
2624 				    vdev_draid_spare_child_done, zio));
2625 			}
2626 		}
2627 		break;
2628 
2629 	case ZIO_TYPE_READ:
2630 		if (VDEV_OFFSET_IS_LABEL(vd, zio->io_offset)) {
2631 			/*
2632 			 * Accept probe IOs to simulate the existence of a
2633 			 * label.  vdev_label_read_config() bypasses the
2634 			 * pipeline to read the label configuration and
2635 			 * vdev_uberblock_load() skips distributed spares
2636 			 * when attempting to locate the best uberblock.
2637 			 */
2638 			if (zio->io_flags & ZIO_FLAG_PROBE) {
2639 				zio->io_error = 0;
2640 			} else {
2641 				zio->io_error = SET_ERROR(EIO);
2642 			}
2643 		} else {
2644 			cvd = vdev_draid_spare_get_child(vd, offset);
2645 
2646 			if (cvd == NULL || !vdev_readable(cvd)) {
2647 				zio->io_error = SET_ERROR(ENXIO);
2648 			} else {
2649 				zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2650 				    offset, zio->io_abd, zio->io_size,
2651 				    zio->io_type, zio->io_priority, 0,
2652 				    vdev_draid_spare_child_done, zio));
2653 			}
2654 		}
2655 		break;
2656 
2657 	case ZIO_TYPE_TRIM:
2658 		/* The vdev label ranges are never trimmed */
2659 		ASSERT0(VDEV_OFFSET_IS_LABEL(vd, zio->io_offset));
2660 
2661 		cvd = vdev_draid_spare_get_child(vd, offset);
2662 
2663 		if (cvd == NULL || !cvd->vdev_has_trim) {
2664 			zio->io_error = SET_ERROR(ENXIO);
2665 		} else {
2666 			zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
2667 			    offset, zio->io_abd, zio->io_size,
2668 			    zio->io_type, zio->io_priority, 0,
2669 			    vdev_draid_spare_child_done, zio));
2670 		}
2671 		break;
2672 
2673 	default:
2674 		zio->io_error = SET_ERROR(ENOTSUP);
2675 		break;
2676 	}
2677 
2678 	zio_execute(zio);
2679 }
2680 
2681 static void
2682 vdev_draid_spare_io_done(zio_t *zio)
2683 {
2684 	(void) zio;
2685 }
2686 
2687 /*
2688  * Lookup the full spare config in spa->spa_spares.sav_config and
2689  * return the top_guid and spare_id for the named spare.
2690  */
2691 static int
2692 vdev_draid_spare_lookup(spa_t *spa, nvlist_t *nv, uint64_t *top_guidp,
2693     uint64_t *spare_idp)
2694 {
2695 	nvlist_t **spares;
2696 	uint_t nspares;
2697 	int error;
2698 
2699 	if ((spa->spa_spares.sav_config == NULL) ||
2700 	    (nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2701 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)) {
2702 		return (SET_ERROR(ENOENT));
2703 	}
2704 
2705 	const char *spare_name;
2706 	error = nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &spare_name);
2707 	if (error != 0)
2708 		return (SET_ERROR(EINVAL));
2709 
2710 	for (int i = 0; i < nspares; i++) {
2711 		nvlist_t *spare = spares[i];
2712 		uint64_t top_guid, spare_id;
2713 		const char *type, *path;
2714 
2715 		/* Skip non-distributed spares */
2716 		error = nvlist_lookup_string(spare, ZPOOL_CONFIG_TYPE, &type);
2717 		if (error != 0 || strcmp(type, VDEV_TYPE_DRAID_SPARE) != 0)
2718 			continue;
2719 
2720 		/* Skip spares with the wrong name */
2721 		error = nvlist_lookup_string(spare, ZPOOL_CONFIG_PATH, &path);
2722 		if (error != 0 || strcmp(path, spare_name) != 0)
2723 			continue;
2724 
2725 		/* Found the matching spare */
2726 		error = nvlist_lookup_uint64(spare,
2727 		    ZPOOL_CONFIG_TOP_GUID, &top_guid);
2728 		if (error == 0) {
2729 			error = nvlist_lookup_uint64(spare,
2730 			    ZPOOL_CONFIG_SPARE_ID, &spare_id);
2731 		}
2732 
2733 		if (error != 0) {
2734 			return (SET_ERROR(EINVAL));
2735 		} else {
2736 			*top_guidp = top_guid;
2737 			*spare_idp = spare_id;
2738 			return (0);
2739 		}
2740 	}
2741 
2742 	return (SET_ERROR(ENOENT));
2743 }
2744 
2745 /*
2746  * Initialize private dRAID spare specific fields from the nvlist.
2747  */
2748 static int
2749 vdev_draid_spare_init(spa_t *spa, nvlist_t *nv, void **tsd)
2750 {
2751 	vdev_draid_spare_t *vds;
2752 	uint64_t top_guid = 0;
2753 	uint64_t spare_id;
2754 
2755 	/*
2756 	 * In the normal case check the list of spares stored in the spa
2757 	 * to lookup the top_guid and spare_id for provided spare config.
2758 	 * When creating a new pool or adding vdevs the spare list is not
2759 	 * yet populated and the values are provided in the passed config.
2760 	 */
2761 	if (vdev_draid_spare_lookup(spa, nv, &top_guid, &spare_id) != 0) {
2762 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_TOP_GUID,
2763 		    &top_guid) != 0)
2764 			return (SET_ERROR(EINVAL));
2765 
2766 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_SPARE_ID,
2767 		    &spare_id) != 0)
2768 			return (SET_ERROR(EINVAL));
2769 	}
2770 
2771 	vds = kmem_alloc(sizeof (vdev_draid_spare_t), KM_SLEEP);
2772 	vds->vds_draid_vdev = NULL;
2773 	vds->vds_top_guid = top_guid;
2774 	vds->vds_spare_id = spare_id;
2775 
2776 	*tsd = vds;
2777 
2778 	return (0);
2779 }
2780 
2781 static void
2782 vdev_draid_spare_fini(vdev_t *vd)
2783 {
2784 	kmem_free(vd->vdev_tsd, sizeof (vdev_draid_spare_t));
2785 }
2786 
2787 static void
2788 vdev_draid_spare_config_generate(vdev_t *vd, nvlist_t *nv)
2789 {
2790 	vdev_draid_spare_t *vds = vd->vdev_tsd;
2791 
2792 	ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
2793 
2794 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_TOP_GUID, vds->vds_top_guid);
2795 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_SPARE_ID, vds->vds_spare_id);
2796 }
2797 
2798 vdev_ops_t vdev_draid_spare_ops = {
2799 	.vdev_op_init = vdev_draid_spare_init,
2800 	.vdev_op_fini = vdev_draid_spare_fini,
2801 	.vdev_op_open = vdev_draid_spare_open,
2802 	.vdev_op_close = vdev_draid_spare_close,
2803 	.vdev_op_asize = vdev_default_asize,
2804 	.vdev_op_min_asize = vdev_default_min_asize,
2805 	.vdev_op_min_alloc = NULL,
2806 	.vdev_op_io_start = vdev_draid_spare_io_start,
2807 	.vdev_op_io_done = vdev_draid_spare_io_done,
2808 	.vdev_op_state_change = NULL,
2809 	.vdev_op_need_resilver = NULL,
2810 	.vdev_op_hold = NULL,
2811 	.vdev_op_rele = NULL,
2812 	.vdev_op_remap = NULL,
2813 	.vdev_op_xlate = vdev_default_xlate,
2814 	.vdev_op_rebuild_asize = NULL,
2815 	.vdev_op_metaslab_init = NULL,
2816 	.vdev_op_config_generate = vdev_draid_spare_config_generate,
2817 	.vdev_op_nparity = NULL,
2818 	.vdev_op_ndisks = NULL,
2819 	.vdev_op_type = VDEV_TYPE_DRAID_SPARE,
2820 	.vdev_op_leaf = B_TRUE,
2821 };
2822