1*7877fdebSMatt Macy /* 2*7877fdebSMatt Macy * CDDL HEADER START 3*7877fdebSMatt Macy * 4*7877fdebSMatt Macy * The contents of this file are subject to the terms of the 5*7877fdebSMatt Macy * Common Development and Distribution License (the "License"). 6*7877fdebSMatt Macy * You may not use this file except in compliance with the License. 7*7877fdebSMatt Macy * 8*7877fdebSMatt Macy * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9*7877fdebSMatt Macy * or http://www.opensolaris.org/os/licensing. 10*7877fdebSMatt Macy * See the License for the specific language governing permissions 11*7877fdebSMatt Macy * and limitations under the License. 12*7877fdebSMatt Macy * 13*7877fdebSMatt Macy * When distributing Covered Code, include this CDDL HEADER in each 14*7877fdebSMatt Macy * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15*7877fdebSMatt Macy * If applicable, add the following below this CDDL HEADER, with the 16*7877fdebSMatt Macy * fields enclosed by brackets "[]" replaced with your own identifying 17*7877fdebSMatt Macy * information: Portions Copyright [yyyy] [name of copyright owner] 18*7877fdebSMatt Macy * 19*7877fdebSMatt Macy * CDDL HEADER END 20*7877fdebSMatt Macy */ 21*7877fdebSMatt Macy /* 22*7877fdebSMatt Macy * Copyright (c) 2018 Intel Corporation. 23*7877fdebSMatt Macy * Copyright (c) 2020 by Lawrence Livermore National Security, LLC. 24*7877fdebSMatt Macy */ 25*7877fdebSMatt Macy 26*7877fdebSMatt Macy #include <sys/zfs_context.h> 27*7877fdebSMatt Macy #include <sys/spa.h> 28*7877fdebSMatt Macy #include <sys/spa_impl.h> 29*7877fdebSMatt Macy #include <sys/vdev_impl.h> 30*7877fdebSMatt Macy #include <sys/vdev_draid.h> 31*7877fdebSMatt Macy #include <sys/vdev_raidz.h> 32*7877fdebSMatt Macy #include <sys/vdev_rebuild.h> 33*7877fdebSMatt Macy #include <sys/abd.h> 34*7877fdebSMatt Macy #include <sys/zio.h> 35*7877fdebSMatt Macy #include <sys/nvpair.h> 36*7877fdebSMatt Macy #include <sys/zio_checksum.h> 37*7877fdebSMatt Macy #include <sys/fs/zfs.h> 38*7877fdebSMatt Macy #include <sys/fm/fs/zfs.h> 39*7877fdebSMatt Macy #include <zfs_fletcher.h> 40*7877fdebSMatt Macy 41*7877fdebSMatt Macy #ifdef ZFS_DEBUG 42*7877fdebSMatt Macy #include <sys/vdev.h> /* For vdev_xlate() in vdev_draid_io_verify() */ 43*7877fdebSMatt Macy #endif 44*7877fdebSMatt Macy 45*7877fdebSMatt Macy /* 46*7877fdebSMatt Macy * dRAID is a distributed spare implementation for ZFS. A dRAID vdev is 47*7877fdebSMatt Macy * comprised of multiple raidz redundancy groups which are spread over the 48*7877fdebSMatt Macy * dRAID children. To ensure an even distribution, and avoid hot spots, a 49*7877fdebSMatt Macy * permutation mapping is applied to the order of the dRAID children. 50*7877fdebSMatt Macy * This mixing effectively distributes the parity columns evenly over all 51*7877fdebSMatt Macy * of the disks in the dRAID. 52*7877fdebSMatt Macy * 53*7877fdebSMatt Macy * This is beneficial because it means when resilvering all of the disks 54*7877fdebSMatt Macy * can participate thereby increasing the available IOPs and bandwidth. 55*7877fdebSMatt Macy * Furthermore, by reserving a small fraction of each child's total capacity 56*7877fdebSMatt Macy * virtual distributed spare disks can be created. These spares similarly 57*7877fdebSMatt Macy * benefit from the performance gains of spanning all of the children. The 58*7877fdebSMatt Macy * consequence of which is that resilvering to a distributed spare can 59*7877fdebSMatt Macy * substantially reduce the time required to restore full parity to pool 60*7877fdebSMatt Macy * with a failed disks. 61*7877fdebSMatt Macy * 62*7877fdebSMatt Macy * === dRAID group layout === 63*7877fdebSMatt Macy * 64*7877fdebSMatt Macy * First, let's define a "row" in the configuration to be a 16M chunk from 65*7877fdebSMatt Macy * each physical drive at the same offset. This is the minimum allowable 66*7877fdebSMatt Macy * size since it must be possible to store a full 16M block when there is 67*7877fdebSMatt Macy * only a single data column. Next, we define a "group" to be a set of 68*7877fdebSMatt Macy * sequential disks containing both the parity and data columns. We allow 69*7877fdebSMatt Macy * groups to span multiple rows in order to align any group size to any 70*7877fdebSMatt Macy * number of physical drives. Finally, a "slice" is comprised of the rows 71*7877fdebSMatt Macy * which contain the target number of groups. The permutation mappings 72*7877fdebSMatt Macy * are applied in a round robin fashion to each slice. 73*7877fdebSMatt Macy * 74*7877fdebSMatt Macy * Given D+P drives in a group (including parity drives) and C-S physical 75*7877fdebSMatt Macy * drives (not including the spare drives), we can distribute the groups 76*7877fdebSMatt Macy * across R rows without remainder by selecting the least common multiple 77*7877fdebSMatt Macy * of D+P and C-S as the number of groups; i.e. ngroups = LCM(D+P, C-S). 78*7877fdebSMatt Macy * 79*7877fdebSMatt Macy * In the example below, there are C=14 physical drives in the configuration 80*7877fdebSMatt Macy * with S=2 drives worth of spare capacity. Each group has a width of 9 81*7877fdebSMatt Macy * which includes D=8 data and P=1 parity drive. There are 4 groups and 82*7877fdebSMatt Macy * 3 rows per slice. Each group has a size of 144M (16M * 9) and a slice 83*7877fdebSMatt Macy * size is 576M (144M * 4). When allocating from a dRAID each group is 84*7877fdebSMatt Macy * filled before moving on to the next as show in slice0 below. 85*7877fdebSMatt Macy * 86*7877fdebSMatt Macy * data disks (8 data + 1 parity) spares (2) 87*7877fdebSMatt Macy * +===+===+===+===+===+===+===+===+===+===+===+===+===+===+ 88*7877fdebSMatt Macy * ^ | 2 | 6 | 1 | 11| 4 | 0 | 7 | 10| 8 | 9 | 13| 5 | 12| 3 | device map 0 89*7877fdebSMatt Macy * | +===+===+===+===+===+===+===+===+===+===+===+===+===+===+ 90*7877fdebSMatt Macy * | | group 0 | group 1..| | 91*7877fdebSMatt Macy * | +-----------------------------------+-----------+-------| 92*7877fdebSMatt Macy * | | 0 1 2 3 4 5 6 7 8 | 36 37 38| | r 93*7877fdebSMatt Macy * | | 9 10 11 12 13 14 15 16 17| 45 46 47| | o 94*7877fdebSMatt Macy * | | 18 19 20 21 22 23 24 25 26| 54 55 56| | w 95*7877fdebSMatt Macy * | 27 28 29 30 31 32 33 34 35| 63 64 65| | 0 96*7877fdebSMatt Macy * s +-----------------------+-----------------------+-------+ 97*7877fdebSMatt Macy * l | ..group 1 | group 2.. | | 98*7877fdebSMatt Macy * i +-----------------------+-----------------------+-------+ 99*7877fdebSMatt Macy * c | 39 40 41 42 43 44| 72 73 74 75 76 77| | r 100*7877fdebSMatt Macy * e | 48 49 50 51 52 53| 81 82 83 84 85 86| | o 101*7877fdebSMatt Macy * 0 | 57 58 59 60 61 62| 90 91 92 93 94 95| | w 102*7877fdebSMatt Macy * | 66 67 68 69 70 71| 99 100 101 102 103 104| | 1 103*7877fdebSMatt Macy * | +-----------+-----------+-----------------------+-------+ 104*7877fdebSMatt Macy * | |..group 2 | group 3 | | 105*7877fdebSMatt Macy * | +-----------+-----------+-----------------------+-------+ 106*7877fdebSMatt Macy * | | 78 79 80|108 109 110 111 112 113 114 115 116| | r 107*7877fdebSMatt Macy * | | 87 88 89|117 118 119 120 121 122 123 124 125| | o 108*7877fdebSMatt Macy * | | 96 97 98|126 127 128 129 130 131 132 133 134| | w 109*7877fdebSMatt Macy * v |105 106 107|135 136 137 138 139 140 141 142 143| | 2 110*7877fdebSMatt Macy * +===+===+===+===+===+===+===+===+===+===+===+===+===+===+ 111*7877fdebSMatt Macy * | 9 | 11| 12| 2 | 4 | 1 | 3 | 0 | 10| 13| 8 | 5 | 6 | 7 | device map 1 112*7877fdebSMatt Macy * s +===+===+===+===+===+===+===+===+===+===+===+===+===+===+ 113*7877fdebSMatt Macy * l | group 4 | group 5..| | row 3 114*7877fdebSMatt Macy * i +-----------------------+-----------+-----------+-------| 115*7877fdebSMatt Macy * c | ..group 5 | group 6.. | | row 4 116*7877fdebSMatt Macy * e +-----------+-----------+-----------------------+-------+ 117*7877fdebSMatt Macy * 1 |..group 6 | group 7 | | row 5 118*7877fdebSMatt Macy * +===+===+===+===+===+===+===+===+===+===+===+===+===+===+ 119*7877fdebSMatt Macy * | 3 | 5 | 10| 8 | 6 | 11| 12| 0 | 2 | 4 | 7 | 1 | 9 | 13| device map 2 120*7877fdebSMatt Macy * s +===+===+===+===+===+===+===+===+===+===+===+===+===+===+ 121*7877fdebSMatt Macy * l | group 8 | group 9..| | row 6 122*7877fdebSMatt Macy * i +-----------------------------------------------+-------| 123*7877fdebSMatt Macy * c | ..group 9 | group 10.. | | row 7 124*7877fdebSMatt Macy * e +-----------------------+-----------------------+-------+ 125*7877fdebSMatt Macy * 2 |..group 10 | group 11 | | row 8 126*7877fdebSMatt Macy * +-----------+-----------------------------------+-------+ 127*7877fdebSMatt Macy * 128*7877fdebSMatt Macy * This layout has several advantages over requiring that each row contain 129*7877fdebSMatt Macy * a whole number of groups. 130*7877fdebSMatt Macy * 131*7877fdebSMatt Macy * 1. The group count is not a relevant parameter when defining a dRAID 132*7877fdebSMatt Macy * layout. Only the group width is needed, and *all* groups will have 133*7877fdebSMatt Macy * the desired size. 134*7877fdebSMatt Macy * 135*7877fdebSMatt Macy * 2. All possible group widths (<= physical disk count) can be supported. 136*7877fdebSMatt Macy * 137*7877fdebSMatt Macy * 3. The logic within vdev_draid.c is simplified when the group width is 138*7877fdebSMatt Macy * the same for all groups (although some of the logic around computing 139*7877fdebSMatt Macy * permutation numbers and drive offsets is more complicated). 140*7877fdebSMatt Macy * 141*7877fdebSMatt Macy * N.B. The following array describes all valid dRAID permutation maps. 142*7877fdebSMatt Macy * Each row is used to generate a permutation map for a different number 143*7877fdebSMatt Macy * of children from a unique seed. The seeds were generated and carefully 144*7877fdebSMatt Macy * evaluated by the 'draid' utility in order to provide balanced mappings. 145*7877fdebSMatt Macy * In addition to the seed a checksum of the in-memory mapping is stored 146*7877fdebSMatt Macy * for verification. 147*7877fdebSMatt Macy * 148*7877fdebSMatt Macy * The imbalance ratio of a given failure (e.g. 5 disks wide, child 3 failed, 149*7877fdebSMatt Macy * with a given permutation map) is the ratio of the amounts of I/O that will 150*7877fdebSMatt Macy * be sent to the least and most busy disks when resilvering. The average 151*7877fdebSMatt Macy * imbalance ratio (of a given number of disks and permutation map) is the 152*7877fdebSMatt Macy * average of the ratios of all possible single and double disk failures. 153*7877fdebSMatt Macy * 154*7877fdebSMatt Macy * In order to achieve a low imbalance ratio the number of permutations in 155*7877fdebSMatt Macy * the mapping must be significantly larger than the number of children. 156*7877fdebSMatt Macy * For dRAID the number of permutations has been limited to 512 to minimize 157*7877fdebSMatt Macy * the map size. This does result in a gradually increasing imbalance ratio 158*7877fdebSMatt Macy * as seen in the table below. Increasing the number of permutations for 159*7877fdebSMatt Macy * larger child counts would reduce the imbalance ratio. However, in practice 160*7877fdebSMatt Macy * when there are a large number of children each child is responsible for 161*7877fdebSMatt Macy * fewer total IOs so it's less of a concern. 162*7877fdebSMatt Macy * 163*7877fdebSMatt Macy * Note these values are hard coded and must never be changed. Existing 164*7877fdebSMatt Macy * pools depend on the same mapping always being generated in order to 165*7877fdebSMatt Macy * read and write from the correct locations. Any change would make 166*7877fdebSMatt Macy * existing pools completely inaccessible. 167*7877fdebSMatt Macy */ 168*7877fdebSMatt Macy static const draid_map_t draid_maps[VDEV_DRAID_MAX_MAPS] = { 169*7877fdebSMatt Macy { 2, 256, 0x89ef3dabbcc7de37, 0x00000000433d433d }, /* 1.000 */ 170*7877fdebSMatt Macy { 3, 256, 0x89a57f3de98121b4, 0x00000000bcd8b7b5 }, /* 1.000 */ 171*7877fdebSMatt Macy { 4, 256, 0xc9ea9ec82340c885, 0x00000001819d7c69 }, /* 1.000 */ 172*7877fdebSMatt Macy { 5, 256, 0xf46733b7f4d47dfd, 0x00000002a1648d74 }, /* 1.010 */ 173*7877fdebSMatt Macy { 6, 256, 0x88c3c62d8585b362, 0x00000003d3b0c2c4 }, /* 1.031 */ 174*7877fdebSMatt Macy { 7, 256, 0x3a65d809b4d1b9d5, 0x000000055c4183ee }, /* 1.043 */ 175*7877fdebSMatt Macy { 8, 256, 0xe98930e3c5d2e90a, 0x00000006edfb0329 }, /* 1.059 */ 176*7877fdebSMatt Macy { 9, 256, 0x5a5430036b982ccb, 0x00000008ceaf6934 }, /* 1.056 */ 177*7877fdebSMatt Macy { 10, 256, 0x92bf389e9eadac74, 0x0000000b26668c09 }, /* 1.072 */ 178*7877fdebSMatt Macy { 11, 256, 0x74ccebf1dcf3ae80, 0x0000000dd691358c }, /* 1.083 */ 179*7877fdebSMatt Macy { 12, 256, 0x8847e41a1a9f5671, 0x00000010a0c63c8e }, /* 1.097 */ 180*7877fdebSMatt Macy { 13, 256, 0x7481b56debf0e637, 0x0000001424121fe4 }, /* 1.100 */ 181*7877fdebSMatt Macy { 14, 256, 0x559b8c44065f8967, 0x00000016ab2ff079 }, /* 1.121 */ 182*7877fdebSMatt Macy { 15, 256, 0x34c49545a2ee7f01, 0x0000001a6028efd6 }, /* 1.103 */ 183*7877fdebSMatt Macy { 16, 256, 0xb85f4fa81a7698f7, 0x0000001e95ff5e66 }, /* 1.111 */ 184*7877fdebSMatt Macy { 17, 256, 0x6353e47b7e47aba0, 0x00000021a81fa0fe }, /* 1.133 */ 185*7877fdebSMatt Macy { 18, 256, 0xaa549746b1cbb81c, 0x00000026f02494c9 }, /* 1.131 */ 186*7877fdebSMatt Macy { 19, 256, 0x892e343f2f31d690, 0x00000029eb392835 }, /* 1.130 */ 187*7877fdebSMatt Macy { 20, 256, 0x76914824db98cc3f, 0x0000003004f31a7c }, /* 1.141 */ 188*7877fdebSMatt Macy { 21, 256, 0x4b3cbabf9cfb1d0f, 0x00000036363a2408 }, /* 1.139 */ 189*7877fdebSMatt Macy { 22, 256, 0xf45c77abb4f035d4, 0x00000038dd0f3e84 }, /* 1.150 */ 190*7877fdebSMatt Macy { 23, 256, 0x5e18bd7f3fd4baf4, 0x0000003f0660391f }, /* 1.174 */ 191*7877fdebSMatt Macy { 24, 256, 0xa7b3a4d285d6503b, 0x000000443dfc9ff6 }, /* 1.168 */ 192*7877fdebSMatt Macy { 25, 256, 0x56ac7dd967521f5a, 0x0000004b03a87eb7 }, /* 1.180 */ 193*7877fdebSMatt Macy { 26, 256, 0x3a42dfda4eb880f7, 0x000000522c719bba }, /* 1.226 */ 194*7877fdebSMatt Macy { 27, 256, 0xd200d2fc6b54bf60, 0x0000005760b4fdf5 }, /* 1.228 */ 195*7877fdebSMatt Macy { 28, 256, 0xc52605bbd486c546, 0x0000005e00d8f74c }, /* 1.217 */ 196*7877fdebSMatt Macy { 29, 256, 0xc761779e63cd762f, 0x00000067be3cd85c }, /* 1.239 */ 197*7877fdebSMatt Macy { 30, 256, 0xca577b1e07f85ca5, 0x0000006f5517f3e4 }, /* 1.238 */ 198*7877fdebSMatt Macy { 31, 256, 0xfd50a593c518b3d4, 0x0000007370e7778f }, /* 1.273 */ 199*7877fdebSMatt Macy { 32, 512, 0xc6c87ba5b042650b, 0x000000f7eb08a156 }, /* 1.191 */ 200*7877fdebSMatt Macy { 33, 512, 0xc3880d0c9d458304, 0x0000010734b5d160 }, /* 1.199 */ 201*7877fdebSMatt Macy { 34, 512, 0xe920927e4d8b2c97, 0x00000118c1edbce0 }, /* 1.195 */ 202*7877fdebSMatt Macy { 35, 512, 0x8da7fcda87bde316, 0x0000012a3e9f9110 }, /* 1.201 */ 203*7877fdebSMatt Macy { 36, 512, 0xcf09937491514a29, 0x0000013bd6a24bef }, /* 1.194 */ 204*7877fdebSMatt Macy { 37, 512, 0x9b5abbf345cbd7cc, 0x0000014b9d90fac3 }, /* 1.237 */ 205*7877fdebSMatt Macy { 38, 512, 0x506312a44668d6a9, 0x0000015e1b5f6148 }, /* 1.242 */ 206*7877fdebSMatt Macy { 39, 512, 0x71659ede62b4755f, 0x00000173ef029bcd }, /* 1.231 */ 207*7877fdebSMatt Macy { 40, 512, 0xa7fde73fb74cf2d7, 0x000001866fb72748 }, /* 1.233 */ 208*7877fdebSMatt Macy { 41, 512, 0x19e8b461a1dea1d3, 0x000001a046f76b23 }, /* 1.271 */ 209*7877fdebSMatt Macy { 42, 512, 0x031c9b868cc3e976, 0x000001afa64c49d3 }, /* 1.263 */ 210*7877fdebSMatt Macy { 43, 512, 0xbaa5125faa781854, 0x000001c76789e278 }, /* 1.270 */ 211*7877fdebSMatt Macy { 44, 512, 0x4ed55052550d721b, 0x000001d800ccd8eb }, /* 1.281 */ 212*7877fdebSMatt Macy { 45, 512, 0x0fd63ddbdff90677, 0x000001f08ad59ed2 }, /* 1.282 */ 213*7877fdebSMatt Macy { 46, 512, 0x36d66546de7fdd6f, 0x000002016f09574b }, /* 1.286 */ 214*7877fdebSMatt Macy { 47, 512, 0x99f997e7eafb69d7, 0x0000021e42e47cb6 }, /* 1.329 */ 215*7877fdebSMatt Macy { 48, 512, 0xbecd9c2571312c5d, 0x000002320fe2872b }, /* 1.286 */ 216*7877fdebSMatt Macy { 49, 512, 0xd97371329e488a32, 0x0000024cd73f2ca7 }, /* 1.322 */ 217*7877fdebSMatt Macy { 50, 512, 0x30e9b136670749ee, 0x000002681c83b0e0 }, /* 1.335 */ 218*7877fdebSMatt Macy { 51, 512, 0x11ad6bc8f47aaeb4, 0x0000027e9261b5d5 }, /* 1.305 */ 219*7877fdebSMatt Macy { 52, 512, 0x68e445300af432c1, 0x0000029aa0eb7dbf }, /* 1.330 */ 220*7877fdebSMatt Macy { 53, 512, 0x910fb561657ea98c, 0x000002b3dca04853 }, /* 1.365 */ 221*7877fdebSMatt Macy { 54, 512, 0xd619693d8ce5e7a5, 0x000002cc280e9c97 }, /* 1.334 */ 222*7877fdebSMatt Macy { 55, 512, 0x24e281f564dbb60a, 0x000002e9fa842713 }, /* 1.364 */ 223*7877fdebSMatt Macy { 56, 512, 0x947a7d3bdaab44c5, 0x000003046680f72e }, /* 1.374 */ 224*7877fdebSMatt Macy { 57, 512, 0x2d44fec9c093e0de, 0x00000324198ba810 }, /* 1.363 */ 225*7877fdebSMatt Macy { 58, 512, 0x87743c272d29bb4c, 0x0000033ec48c9ac9 }, /* 1.401 */ 226*7877fdebSMatt Macy { 59, 512, 0x96aa3b6f67f5d923, 0x0000034faead902c }, /* 1.392 */ 227*7877fdebSMatt Macy { 60, 512, 0x94a4f1faf520b0d3, 0x0000037d713ab005 }, /* 1.360 */ 228*7877fdebSMatt Macy { 61, 512, 0xb13ed3a272f711a2, 0x00000397368f3cbd }, /* 1.396 */ 229*7877fdebSMatt Macy { 62, 512, 0x3b1b11805fa4a64a, 0x000003b8a5e2840c }, /* 1.453 */ 230*7877fdebSMatt Macy { 63, 512, 0x4c74caad9172ba71, 0x000003d4be280290 }, /* 1.437 */ 231*7877fdebSMatt Macy { 64, 512, 0x035ff643923dd29e, 0x000003fad6c355e1 }, /* 1.402 */ 232*7877fdebSMatt Macy { 65, 512, 0x768e9171b11abd3c, 0x0000040eb07fed20 }, /* 1.459 */ 233*7877fdebSMatt Macy { 66, 512, 0x75880e6f78a13ddd, 0x000004433d6acf14 }, /* 1.423 */ 234*7877fdebSMatt Macy { 67, 512, 0x910b9714f698a877, 0x00000451ea65d5db }, /* 1.447 */ 235*7877fdebSMatt Macy { 68, 512, 0x87f5db6f9fdcf5c7, 0x000004732169e3f7 }, /* 1.450 */ 236*7877fdebSMatt Macy { 69, 512, 0x836d4968fbaa3706, 0x000004954068a380 }, /* 1.455 */ 237*7877fdebSMatt Macy { 70, 512, 0xc567d73a036421ab, 0x000004bd7cb7bd3d }, /* 1.463 */ 238*7877fdebSMatt Macy { 71, 512, 0x619df40f240b8fed, 0x000004e376c2e972 }, /* 1.463 */ 239*7877fdebSMatt Macy { 72, 512, 0x42763a680d5bed8e, 0x000005084275c680 }, /* 1.452 */ 240*7877fdebSMatt Macy { 73, 512, 0x5866f064b3230431, 0x0000052906f2c9ab }, /* 1.498 */ 241*7877fdebSMatt Macy { 74, 512, 0x9fa08548b1621a44, 0x0000054708019247 }, /* 1.526 */ 242*7877fdebSMatt Macy { 75, 512, 0xb6053078ce0fc303, 0x00000572cc5c72b0 }, /* 1.491 */ 243*7877fdebSMatt Macy { 76, 512, 0x4a7aad7bf3890923, 0x0000058e987bc8e9 }, /* 1.470 */ 244*7877fdebSMatt Macy { 77, 512, 0xe165613fd75b5a53, 0x000005c20473a211 }, /* 1.527 */ 245*7877fdebSMatt Macy { 78, 512, 0x3ff154ac878163a6, 0x000005d659194bf3 }, /* 1.509 */ 246*7877fdebSMatt Macy { 79, 512, 0x24b93ade0aa8a532, 0x0000060a201c4f8e }, /* 1.569 */ 247*7877fdebSMatt Macy { 80, 512, 0xc18e2d14cd9bb554, 0x0000062c55cfe48c }, /* 1.555 */ 248*7877fdebSMatt Macy { 81, 512, 0x98cc78302feb58b6, 0x0000066656a07194 }, /* 1.509 */ 249*7877fdebSMatt Macy { 82, 512, 0xc6c5fd5a2abc0543, 0x0000067cff94fbf8 }, /* 1.596 */ 250*7877fdebSMatt Macy { 83, 512, 0xa7962f514acbba21, 0x000006ab7b5afa2e }, /* 1.568 */ 251*7877fdebSMatt Macy { 84, 512, 0xba02545069ddc6dc, 0x000006d19861364f }, /* 1.541 */ 252*7877fdebSMatt Macy { 85, 512, 0x447c73192c35073e, 0x000006fce315ce35 }, /* 1.623 */ 253*7877fdebSMatt Macy { 86, 512, 0x48beef9e2d42b0c2, 0x00000720a8e38b6b }, /* 1.620 */ 254*7877fdebSMatt Macy { 87, 512, 0x4874cf98541a35e0, 0x00000758382a2273 }, /* 1.597 */ 255*7877fdebSMatt Macy { 88, 512, 0xad4cf8333a31127a, 0x00000781e1651b1b }, /* 1.575 */ 256*7877fdebSMatt Macy { 89, 512, 0x47ae4859d57888c1, 0x000007b27edbe5bc }, /* 1.627 */ 257*7877fdebSMatt Macy { 90, 512, 0x06f7723cfe5d1891, 0x000007dc2a96d8eb }, /* 1.596 */ 258*7877fdebSMatt Macy { 91, 512, 0xd4e44218d660576d, 0x0000080ac46f02d5 }, /* 1.622 */ 259*7877fdebSMatt Macy { 92, 512, 0x7066702b0d5be1f2, 0x00000832c96d154e }, /* 1.695 */ 260*7877fdebSMatt Macy { 93, 512, 0x011209b4f9e11fb9, 0x0000085eefda104c }, /* 1.605 */ 261*7877fdebSMatt Macy { 94, 512, 0x47ffba30a0b35708, 0x00000899badc32dc }, /* 1.625 */ 262*7877fdebSMatt Macy { 95, 512, 0x1a95a6ac4538aaa8, 0x000008b6b69a42b2 }, /* 1.687 */ 263*7877fdebSMatt Macy { 96, 512, 0xbda2b239bb2008eb, 0x000008f22d2de38a }, /* 1.621 */ 264*7877fdebSMatt Macy { 97, 512, 0x7ffa0bea90355c6c, 0x0000092e5b23b816 }, /* 1.699 */ 265*7877fdebSMatt Macy { 98, 512, 0x1d56ba34be426795, 0x0000094f482e5d1b }, /* 1.688 */ 266*7877fdebSMatt Macy { 99, 512, 0x0aa89d45c502e93d, 0x00000977d94a98ce }, /* 1.642 */ 267*7877fdebSMatt Macy { 100, 512, 0x54369449f6857774, 0x000009c06c9b34cc }, /* 1.683 */ 268*7877fdebSMatt Macy { 101, 512, 0xf7d4dd8445b46765, 0x000009e5dc542259 }, /* 1.755 */ 269*7877fdebSMatt Macy { 102, 512, 0xfa8866312f169469, 0x00000a16b54eae93 }, /* 1.692 */ 270*7877fdebSMatt Macy { 103, 512, 0xd8a5aea08aef3ff9, 0x00000a381d2cbfe7 }, /* 1.747 */ 271*7877fdebSMatt Macy { 104, 512, 0x66bcd2c3d5f9ef0e, 0x00000a8191817be7 }, /* 1.751 */ 272*7877fdebSMatt Macy { 105, 512, 0x3fb13a47a012ec81, 0x00000ab562b9a254 }, /* 1.751 */ 273*7877fdebSMatt Macy { 106, 512, 0x43100f01c9e5e3ca, 0x00000aeee84c185f }, /* 1.726 */ 274*7877fdebSMatt Macy { 107, 512, 0xca09c50ccee2d054, 0x00000b1c359c047d }, /* 1.788 */ 275*7877fdebSMatt Macy { 108, 512, 0xd7176732ac503f9b, 0x00000b578bc52a73 }, /* 1.740 */ 276*7877fdebSMatt Macy { 109, 512, 0xed206e51f8d9422d, 0x00000b8083e0d960 }, /* 1.780 */ 277*7877fdebSMatt Macy { 110, 512, 0x17ead5dc6ba0dcd6, 0x00000bcfb1a32ca8 }, /* 1.836 */ 278*7877fdebSMatt Macy { 111, 512, 0x5f1dc21e38a969eb, 0x00000c0171becdd6 }, /* 1.778 */ 279*7877fdebSMatt Macy { 112, 512, 0xddaa973de33ec528, 0x00000c3edaba4b95 }, /* 1.831 */ 280*7877fdebSMatt Macy { 113, 512, 0x2a5eccd7735a3630, 0x00000c630664e7df }, /* 1.825 */ 281*7877fdebSMatt Macy { 114, 512, 0xafcccee5c0b71446, 0x00000cb65392f6e4 }, /* 1.826 */ 282*7877fdebSMatt Macy { 115, 512, 0x8fa30c5e7b147e27, 0x00000cd4db391e55 }, /* 1.843 */ 283*7877fdebSMatt Macy { 116, 512, 0x5afe0711fdfafd82, 0x00000d08cb4ec35d }, /* 1.826 */ 284*7877fdebSMatt Macy { 117, 512, 0x533a6090238afd4c, 0x00000d336f115d1b }, /* 1.803 */ 285*7877fdebSMatt Macy { 118, 512, 0x90cf11b595e39a84, 0x00000d8e041c2048 }, /* 1.857 */ 286*7877fdebSMatt Macy { 119, 512, 0x0d61a3b809444009, 0x00000dcb798afe35 }, /* 1.877 */ 287*7877fdebSMatt Macy { 120, 512, 0x7f34da0f54b0d114, 0x00000df3922664e1 }, /* 1.849 */ 288*7877fdebSMatt Macy { 121, 512, 0xa52258d5b72f6551, 0x00000e4d37a9872d }, /* 1.867 */ 289*7877fdebSMatt Macy { 122, 512, 0xc1de54d7672878db, 0x00000e6583a94cf6 }, /* 1.978 */ 290*7877fdebSMatt Macy { 123, 512, 0x1d03354316a414ab, 0x00000ebffc50308d }, /* 1.947 */ 291*7877fdebSMatt Macy { 124, 512, 0xcebdcc377665412c, 0x00000edee1997cea }, /* 1.865 */ 292*7877fdebSMatt Macy { 125, 512, 0x4ddd4c04b1a12344, 0x00000f21d64b373f }, /* 1.881 */ 293*7877fdebSMatt Macy { 126, 512, 0x64fc8f94e3973658, 0x00000f8f87a8896b }, /* 1.882 */ 294*7877fdebSMatt Macy { 127, 512, 0x68765f78034a334e, 0x00000fb8fe62197e }, /* 1.867 */ 295*7877fdebSMatt Macy { 128, 512, 0xaf36b871a303e816, 0x00000fec6f3afb1e }, /* 1.972 */ 296*7877fdebSMatt Macy { 129, 512, 0x2a4cbf73866c3a28, 0x00001027febfe4e5 }, /* 1.896 */ 297*7877fdebSMatt Macy { 130, 512, 0x9cb128aacdcd3b2f, 0x0000106aa8ac569d }, /* 1.965 */ 298*7877fdebSMatt Macy { 131, 512, 0x5511d41c55869124, 0x000010bbd755ddf1 }, /* 1.963 */ 299*7877fdebSMatt Macy { 132, 512, 0x42f92461937f284a, 0x000010fb8bceb3b5 }, /* 1.925 */ 300*7877fdebSMatt Macy { 133, 512, 0xe2d89a1cf6f1f287, 0x0000114cf5331e34 }, /* 1.862 */ 301*7877fdebSMatt Macy { 134, 512, 0xdc631a038956200e, 0x0000116428d2adc5 }, /* 2.042 */ 302*7877fdebSMatt Macy { 135, 512, 0xb2e5ac222cd236be, 0x000011ca88e4d4d2 }, /* 1.935 */ 303*7877fdebSMatt Macy { 136, 512, 0xbc7d8236655d88e7, 0x000011e39cb94e66 }, /* 2.005 */ 304*7877fdebSMatt Macy { 137, 512, 0x073e02d88d2d8e75, 0x0000123136c7933c }, /* 2.041 */ 305*7877fdebSMatt Macy { 138, 512, 0x3ddb9c3873166be0, 0x00001280e4ec6d52 }, /* 1.997 */ 306*7877fdebSMatt Macy { 139, 512, 0x7d3b1a845420e1b5, 0x000012c2e7cd6a44 }, /* 1.996 */ 307*7877fdebSMatt Macy { 140, 512, 0x60102308aa7b2a6c, 0x000012fc490e6c7d }, /* 2.053 */ 308*7877fdebSMatt Macy { 141, 512, 0xdb22bb2f9eb894aa, 0x00001343f5a85a1a }, /* 1.971 */ 309*7877fdebSMatt Macy { 142, 512, 0xd853f879a13b1606, 0x000013bb7d5f9048 }, /* 2.018 */ 310*7877fdebSMatt Macy { 143, 512, 0x001620a03f804b1d, 0x000013e74cc794fd }, /* 1.961 */ 311*7877fdebSMatt Macy { 144, 512, 0xfdb52dda76fbf667, 0x00001442d2f22480 }, /* 2.046 */ 312*7877fdebSMatt Macy { 145, 512, 0xa9160110f66e24ff, 0x0000144b899f9dbb }, /* 1.968 */ 313*7877fdebSMatt Macy { 146, 512, 0x77306a30379ae03b, 0x000014cb98eb1f81 }, /* 2.143 */ 314*7877fdebSMatt Macy { 147, 512, 0x14f5985d2752319d, 0x000014feab821fc9 }, /* 2.064 */ 315*7877fdebSMatt Macy { 148, 512, 0xa4b8ff11de7863f8, 0x0000154a0e60b9c9 }, /* 2.023 */ 316*7877fdebSMatt Macy { 149, 512, 0x44b345426455c1b3, 0x000015999c3c569c }, /* 2.136 */ 317*7877fdebSMatt Macy { 150, 512, 0x272677826049b46c, 0x000015c9697f4b92 }, /* 2.063 */ 318*7877fdebSMatt Macy { 151, 512, 0x2f9216e2cd74fe40, 0x0000162b1f7bbd39 }, /* 1.974 */ 319*7877fdebSMatt Macy { 152, 512, 0x706ae3e763ad8771, 0x00001661371c55e1 }, /* 2.210 */ 320*7877fdebSMatt Macy { 153, 512, 0xf7fd345307c2480e, 0x000016e251f28b6a }, /* 2.006 */ 321*7877fdebSMatt Macy { 154, 512, 0x6e94e3d26b3139eb, 0x000016f2429bb8c6 }, /* 2.193 */ 322*7877fdebSMatt Macy { 155, 512, 0x5458bbfbb781fcba, 0x0000173efdeca1b9 }, /* 2.163 */ 323*7877fdebSMatt Macy { 156, 512, 0xa80e2afeccd93b33, 0x000017bfdcb78adc }, /* 2.046 */ 324*7877fdebSMatt Macy { 157, 512, 0x1e4ccbb22796cf9d, 0x00001826fdcc39c9 }, /* 2.084 */ 325*7877fdebSMatt Macy { 158, 512, 0x8fba4b676aaa3663, 0x00001841a1379480 }, /* 2.264 */ 326*7877fdebSMatt Macy { 159, 512, 0xf82b843814b315fa, 0x000018886e19b8a3 }, /* 2.074 */ 327*7877fdebSMatt Macy { 160, 512, 0x7f21e920ecf753a3, 0x0000191812ca0ea7 }, /* 2.282 */ 328*7877fdebSMatt Macy { 161, 512, 0x48bb8ea2c4caa620, 0x0000192f310faccf }, /* 2.148 */ 329*7877fdebSMatt Macy { 162, 512, 0x5cdb652b4952c91b, 0x0000199e1d7437c7 }, /* 2.355 */ 330*7877fdebSMatt Macy { 163, 512, 0x6ac1ba6f78c06cd4, 0x000019cd11f82c70 }, /* 2.164 */ 331*7877fdebSMatt Macy { 164, 512, 0x9faf5f9ca2669a56, 0x00001a18d5431f6a }, /* 2.393 */ 332*7877fdebSMatt Macy { 165, 512, 0xaa57e9383eb01194, 0x00001a9e7d253d85 }, /* 2.178 */ 333*7877fdebSMatt Macy { 166, 512, 0x896967bf495c34d2, 0x00001afb8319b9fc }, /* 2.334 */ 334*7877fdebSMatt Macy { 167, 512, 0xdfad5f05de225f1b, 0x00001b3a59c3093b }, /* 2.266 */ 335*7877fdebSMatt Macy { 168, 512, 0xfd299a99f9f2abdd, 0x00001bb6f1a10799 }, /* 2.304 */ 336*7877fdebSMatt Macy { 169, 512, 0xdda239e798fe9fd4, 0x00001bfae0c9692d }, /* 2.218 */ 337*7877fdebSMatt Macy { 170, 512, 0x5fca670414a32c3e, 0x00001c22129dbcff }, /* 2.377 */ 338*7877fdebSMatt Macy { 171, 512, 0x1bb8934314b087de, 0x00001c955db36cd0 }, /* 2.155 */ 339*7877fdebSMatt Macy { 172, 512, 0xd96394b4b082200d, 0x00001cfc8619b7e6 }, /* 2.404 */ 340*7877fdebSMatt Macy { 173, 512, 0xb612a7735b1c8cbc, 0x00001d303acdd585 }, /* 2.205 */ 341*7877fdebSMatt Macy { 174, 512, 0x28e7430fe5875fe1, 0x00001d7ed5b3697d }, /* 2.359 */ 342*7877fdebSMatt Macy { 175, 512, 0x5038e89efdd981b9, 0x00001dc40ec35c59 }, /* 2.158 */ 343*7877fdebSMatt Macy { 176, 512, 0x075fd78f1d14db7c, 0x00001e31c83b4a2b }, /* 2.614 */ 344*7877fdebSMatt Macy { 177, 512, 0xc50fafdb5021be15, 0x00001e7cdac82fbc }, /* 2.239 */ 345*7877fdebSMatt Macy { 178, 512, 0xe6dc7572ce7b91c7, 0x00001edd8bb454fc }, /* 2.493 */ 346*7877fdebSMatt Macy { 179, 512, 0x21f7843e7beda537, 0x00001f3a8e019d6c }, /* 2.327 */ 347*7877fdebSMatt Macy { 180, 512, 0xc83385e20b43ec82, 0x00001f70735ec137 }, /* 2.231 */ 348*7877fdebSMatt Macy { 181, 512, 0xca818217dddb21fd, 0x0000201ca44c5a3c }, /* 2.237 */ 349*7877fdebSMatt Macy { 182, 512, 0xe6035defea48f933, 0x00002038e3346658 }, /* 2.691 */ 350*7877fdebSMatt Macy { 183, 512, 0x47262a4f953dac5a, 0x000020c2e554314e }, /* 2.170 */ 351*7877fdebSMatt Macy { 184, 512, 0xe24c7246260873ea, 0x000021197e618d64 }, /* 2.600 */ 352*7877fdebSMatt Macy { 185, 512, 0xeef6b57c9b58e9e1, 0x0000217ea48ecddc }, /* 2.391 */ 353*7877fdebSMatt Macy { 186, 512, 0x2becd3346e386142, 0x000021c496d4a5f9 }, /* 2.677 */ 354*7877fdebSMatt Macy { 187, 512, 0x63c6207bdf3b40a3, 0x0000220e0f2eec0c }, /* 2.410 */ 355*7877fdebSMatt Macy { 188, 512, 0x3056ce8989767d4b, 0x0000228eb76cd137 }, /* 2.776 */ 356*7877fdebSMatt Macy { 189, 512, 0x91af61c307cee780, 0x000022e17e2ea501 }, /* 2.266 */ 357*7877fdebSMatt Macy { 190, 512, 0xda359da225f6d54f, 0x00002358a2debc19 }, /* 2.717 */ 358*7877fdebSMatt Macy { 191, 512, 0x0a5f7a2a55607ba0, 0x0000238a79dac18c }, /* 2.474 */ 359*7877fdebSMatt Macy { 192, 512, 0x27bb75bf5224638a, 0x00002403a58e2351 }, /* 2.673 */ 360*7877fdebSMatt Macy { 193, 512, 0x1ebfdb94630f5d0f, 0x00002492a10cb339 }, /* 2.420 */ 361*7877fdebSMatt Macy { 194, 512, 0x6eae5e51d9c5f6fb, 0x000024ce4bf98715 }, /* 2.898 */ 362*7877fdebSMatt Macy { 195, 512, 0x08d903b4daedc2e0, 0x0000250d1e15886c }, /* 2.363 */ 363*7877fdebSMatt Macy { 196, 512, 0xc722a2f7fa7cd686, 0x0000258a99ed0c9e }, /* 2.747 */ 364*7877fdebSMatt Macy { 197, 512, 0x8f71faf0e54e361d, 0x000025dee11976f5 }, /* 2.531 */ 365*7877fdebSMatt Macy { 198, 512, 0x87f64695c91a54e7, 0x0000264e00a43da0 }, /* 2.707 */ 366*7877fdebSMatt Macy { 199, 512, 0xc719cbac2c336b92, 0x000026d327277ac1 }, /* 2.315 */ 367*7877fdebSMatt Macy { 200, 512, 0xe7e647afaf771ade, 0x000027523a5c44bf }, /* 3.012 */ 368*7877fdebSMatt Macy { 201, 512, 0x12d4b5c38ce8c946, 0x0000273898432545 }, /* 2.378 */ 369*7877fdebSMatt Macy { 202, 512, 0xf2e0cd4067bdc94a, 0x000027e47bb2c935 }, /* 2.969 */ 370*7877fdebSMatt Macy { 203, 512, 0x21b79f14d6d947d3, 0x0000281e64977f0d }, /* 2.594 */ 371*7877fdebSMatt Macy { 204, 512, 0x515093f952f18cd6, 0x0000289691a473fd }, /* 2.763 */ 372*7877fdebSMatt Macy { 205, 512, 0xd47b160a1b1022c8, 0x00002903e8b52411 }, /* 2.457 */ 373*7877fdebSMatt Macy { 206, 512, 0xc02fc96684715a16, 0x0000297515608601 }, /* 3.057 */ 374*7877fdebSMatt Macy { 207, 512, 0xef51e68efba72ed0, 0x000029ef73604804 }, /* 2.590 */ 375*7877fdebSMatt Macy { 208, 512, 0x9e3be6e5448b4f33, 0x00002a2846ed074b }, /* 3.047 */ 376*7877fdebSMatt Macy { 209, 512, 0x81d446c6d5fec063, 0x00002a92ca693455 }, /* 2.676 */ 377*7877fdebSMatt Macy { 210, 512, 0xff215de8224e57d5, 0x00002b2271fe3729 }, /* 2.993 */ 378*7877fdebSMatt Macy { 211, 512, 0xe2524d9ba8f69796, 0x00002b64b99c3ba2 }, /* 2.457 */ 379*7877fdebSMatt Macy { 212, 512, 0xf6b28e26097b7e4b, 0x00002bd768b6e068 }, /* 3.182 */ 380*7877fdebSMatt Macy { 213, 512, 0x893a487f30ce1644, 0x00002c67f722b4b2 }, /* 2.563 */ 381*7877fdebSMatt Macy { 214, 512, 0x386566c3fc9871df, 0x00002cc1cf8b4037 }, /* 3.025 */ 382*7877fdebSMatt Macy { 215, 512, 0x1e0ed78edf1f558a, 0x00002d3948d36c7f }, /* 2.730 */ 383*7877fdebSMatt Macy { 216, 512, 0xe3bc20c31e61f113, 0x00002d6d6b12e025 }, /* 3.036 */ 384*7877fdebSMatt Macy { 217, 512, 0xd6c3ad2e23021882, 0x00002deff7572241 }, /* 2.722 */ 385*7877fdebSMatt Macy { 218, 512, 0xb4a9f95cf0f69c5a, 0x00002e67d537aa36 }, /* 3.356 */ 386*7877fdebSMatt Macy { 219, 512, 0x6e98ed6f6c38e82f, 0x00002e9720626789 }, /* 2.697 */ 387*7877fdebSMatt Macy { 220, 512, 0x2e01edba33fddac7, 0x00002f407c6b0198 }, /* 2.979 */ 388*7877fdebSMatt Macy { 221, 512, 0x559d02e1f5f57ccc, 0x00002fb6a5ab4f24 }, /* 2.858 */ 389*7877fdebSMatt Macy { 222, 512, 0xac18f5a916adcd8e, 0x0000304ae1c5c57e }, /* 3.258 */ 390*7877fdebSMatt Macy { 223, 512, 0x15789fbaddb86f4b, 0x0000306f6e019c78 }, /* 2.693 */ 391*7877fdebSMatt Macy { 224, 512, 0xf4a9c36d5bc4c408, 0x000030da40434213 }, /* 3.259 */ 392*7877fdebSMatt Macy { 225, 512, 0xf640f90fd2727f44, 0x00003189ed37b90c }, /* 2.733 */ 393*7877fdebSMatt Macy { 226, 512, 0xb5313d390d61884a, 0x000031e152616b37 }, /* 3.235 */ 394*7877fdebSMatt Macy { 227, 512, 0x4bae6b3ce9160939, 0x0000321f40aeac42 }, /* 2.983 */ 395*7877fdebSMatt Macy { 228, 512, 0x838c34480f1a66a1, 0x000032f389c0f78e }, /* 3.308 */ 396*7877fdebSMatt Macy { 229, 512, 0xb1c4a52c8e3d6060, 0x0000330062a40284 }, /* 2.715 */ 397*7877fdebSMatt Macy { 230, 512, 0xe0f1110c6d0ed822, 0x0000338be435644f }, /* 3.540 */ 398*7877fdebSMatt Macy { 231, 512, 0x9f1a8ccdcea68d4b, 0x000034045a4e97e1 }, /* 2.779 */ 399*7877fdebSMatt Macy { 232, 512, 0x3261ed62223f3099, 0x000034702cfc401c }, /* 3.084 */ 400*7877fdebSMatt Macy { 233, 512, 0xf2191e2311022d65, 0x00003509dd19c9fc }, /* 2.987 */ 401*7877fdebSMatt Macy { 234, 512, 0xf102a395c2033abc, 0x000035654dc96fae }, /* 3.341 */ 402*7877fdebSMatt Macy { 235, 512, 0x11fe378f027906b6, 0x000035b5193b0264 }, /* 2.793 */ 403*7877fdebSMatt Macy { 236, 512, 0xf777f2c026b337aa, 0x000036704f5d9297 }, /* 3.518 */ 404*7877fdebSMatt Macy { 237, 512, 0x1b04e9c2ee143f32, 0x000036dfbb7af218 }, /* 2.962 */ 405*7877fdebSMatt Macy { 238, 512, 0x2fcec95266f9352c, 0x00003785c8df24a9 }, /* 3.196 */ 406*7877fdebSMatt Macy { 239, 512, 0xfe2b0e47e427dd85, 0x000037cbdf5da729 }, /* 2.914 */ 407*7877fdebSMatt Macy { 240, 512, 0x72b49bf2225f6c6d, 0x0000382227c15855 }, /* 3.408 */ 408*7877fdebSMatt Macy { 241, 512, 0x50486b43df7df9c7, 0x0000389b88be6453 }, /* 2.903 */ 409*7877fdebSMatt Macy { 242, 512, 0x5192a3e53181c8ab, 0x000038ddf3d67263 }, /* 3.778 */ 410*7877fdebSMatt Macy { 243, 512, 0xe9f5d8365296fd5e, 0x0000399f1c6c9e9c }, /* 3.026 */ 411*7877fdebSMatt Macy { 244, 512, 0xc740263f0301efa8, 0x00003a147146512d }, /* 3.347 */ 412*7877fdebSMatt Macy { 245, 512, 0x23cd0f2b5671e67d, 0x00003ab10bcc0d9d }, /* 3.212 */ 413*7877fdebSMatt Macy { 246, 512, 0x002ccc7e5cd41390, 0x00003ad6cd14a6c0 }, /* 3.482 */ 414*7877fdebSMatt Macy { 247, 512, 0x9aafb3c02544b31b, 0x00003b8cb8779fb0 }, /* 3.146 */ 415*7877fdebSMatt Macy { 248, 512, 0x72ba07a78b121999, 0x00003c24142a5a3f }, /* 3.626 */ 416*7877fdebSMatt Macy { 249, 512, 0x3d784aa58edfc7b4, 0x00003cd084817d99 }, /* 2.952 */ 417*7877fdebSMatt Macy { 250, 512, 0xaab750424d8004af, 0x00003d506a8e098e }, /* 3.463 */ 418*7877fdebSMatt Macy { 251, 512, 0x84403fcf8e6b5ca2, 0x00003d4c54c2aec4 }, /* 3.131 */ 419*7877fdebSMatt Macy { 252, 512, 0x71eb7455ec98e207, 0x00003e655715cf2c }, /* 3.538 */ 420*7877fdebSMatt Macy { 253, 512, 0xd752b4f19301595b, 0x00003ecd7b2ca5ac }, /* 2.974 */ 421*7877fdebSMatt Macy { 254, 512, 0xc4674129750499de, 0x00003e99e86d3e95 }, /* 3.843 */ 422*7877fdebSMatt Macy { 255, 512, 0x9772baff5cd12ef5, 0x00003f895c019841 }, /* 3.088 */ 423*7877fdebSMatt Macy }; 424*7877fdebSMatt Macy 425*7877fdebSMatt Macy /* 426*7877fdebSMatt Macy * Verify the map is valid. Each device index must appear exactly 427*7877fdebSMatt Macy * once in every row, and the permutation array checksum must match. 428*7877fdebSMatt Macy */ 429*7877fdebSMatt Macy static int 430*7877fdebSMatt Macy verify_perms(uint8_t *perms, uint64_t children, uint64_t nperms, 431*7877fdebSMatt Macy uint64_t checksum) 432*7877fdebSMatt Macy { 433*7877fdebSMatt Macy int countssz = sizeof (uint16_t) * children; 434*7877fdebSMatt Macy uint16_t *counts = kmem_zalloc(countssz, KM_SLEEP); 435*7877fdebSMatt Macy 436*7877fdebSMatt Macy for (int i = 0; i < nperms; i++) { 437*7877fdebSMatt Macy for (int j = 0; j < children; j++) { 438*7877fdebSMatt Macy uint8_t val = perms[(i * children) + j]; 439*7877fdebSMatt Macy 440*7877fdebSMatt Macy if (val >= children || counts[val] != i) { 441*7877fdebSMatt Macy kmem_free(counts, countssz); 442*7877fdebSMatt Macy return (EINVAL); 443*7877fdebSMatt Macy } 444*7877fdebSMatt Macy 445*7877fdebSMatt Macy counts[val]++; 446*7877fdebSMatt Macy } 447*7877fdebSMatt Macy } 448*7877fdebSMatt Macy 449*7877fdebSMatt Macy if (checksum != 0) { 450*7877fdebSMatt Macy int permssz = sizeof (uint8_t) * children * nperms; 451*7877fdebSMatt Macy zio_cksum_t cksum; 452*7877fdebSMatt Macy 453*7877fdebSMatt Macy fletcher_4_native_varsize(perms, permssz, &cksum); 454*7877fdebSMatt Macy 455*7877fdebSMatt Macy if (checksum != cksum.zc_word[0]) { 456*7877fdebSMatt Macy kmem_free(counts, countssz); 457*7877fdebSMatt Macy return (ECKSUM); 458*7877fdebSMatt Macy } 459*7877fdebSMatt Macy } 460*7877fdebSMatt Macy 461*7877fdebSMatt Macy kmem_free(counts, countssz); 462*7877fdebSMatt Macy 463*7877fdebSMatt Macy return (0); 464*7877fdebSMatt Macy } 465*7877fdebSMatt Macy 466*7877fdebSMatt Macy /* 467*7877fdebSMatt Macy * Generate the permutation array for the draid_map_t. These maps control 468*7877fdebSMatt Macy * the placement of all data in a dRAID. Therefore it's critical that the 469*7877fdebSMatt Macy * seed always generates the same mapping. We provide our own pseudo-random 470*7877fdebSMatt Macy * number generator for this purpose. 471*7877fdebSMatt Macy */ 472*7877fdebSMatt Macy int 473*7877fdebSMatt Macy vdev_draid_generate_perms(const draid_map_t *map, uint8_t **permsp) 474*7877fdebSMatt Macy { 475*7877fdebSMatt Macy VERIFY3U(map->dm_children, >=, VDEV_DRAID_MIN_CHILDREN); 476*7877fdebSMatt Macy VERIFY3U(map->dm_children, <=, VDEV_DRAID_MAX_CHILDREN); 477*7877fdebSMatt Macy VERIFY3U(map->dm_seed, !=, 0); 478*7877fdebSMatt Macy VERIFY3U(map->dm_nperms, !=, 0); 479*7877fdebSMatt Macy VERIFY3P(map->dm_perms, ==, NULL); 480*7877fdebSMatt Macy 481*7877fdebSMatt Macy #ifdef _KERNEL 482*7877fdebSMatt Macy /* 483*7877fdebSMatt Macy * The kernel code always provides both a map_seed and checksum. 484*7877fdebSMatt Macy * Only the tests/zfs-tests/cmd/draid/draid.c utility will provide 485*7877fdebSMatt Macy * a zero checksum when generating new candidate maps. 486*7877fdebSMatt Macy */ 487*7877fdebSMatt Macy VERIFY3U(map->dm_checksum, !=, 0); 488*7877fdebSMatt Macy #endif 489*7877fdebSMatt Macy uint64_t children = map->dm_children; 490*7877fdebSMatt Macy uint64_t nperms = map->dm_nperms; 491*7877fdebSMatt Macy int rowsz = sizeof (uint8_t) * children; 492*7877fdebSMatt Macy int permssz = rowsz * nperms; 493*7877fdebSMatt Macy uint8_t *perms; 494*7877fdebSMatt Macy 495*7877fdebSMatt Macy /* Allocate the permutation array */ 496*7877fdebSMatt Macy perms = vmem_alloc(permssz, KM_SLEEP); 497*7877fdebSMatt Macy 498*7877fdebSMatt Macy /* Setup an initial row with a known pattern */ 499*7877fdebSMatt Macy uint8_t *initial_row = kmem_alloc(rowsz, KM_SLEEP); 500*7877fdebSMatt Macy for (int i = 0; i < children; i++) 501*7877fdebSMatt Macy initial_row[i] = i; 502*7877fdebSMatt Macy 503*7877fdebSMatt Macy uint64_t draid_seed[2] = { VDEV_DRAID_SEED, map->dm_seed }; 504*7877fdebSMatt Macy uint8_t *current_row, *previous_row = initial_row; 505*7877fdebSMatt Macy 506*7877fdebSMatt Macy /* 507*7877fdebSMatt Macy * Perform a Fisher-Yates shuffle of each row using the previous 508*7877fdebSMatt Macy * row as the starting point. An initial_row with known pattern 509*7877fdebSMatt Macy * is used as the input for the first row. 510*7877fdebSMatt Macy */ 511*7877fdebSMatt Macy for (int i = 0; i < nperms; i++) { 512*7877fdebSMatt Macy current_row = &perms[i * children]; 513*7877fdebSMatt Macy memcpy(current_row, previous_row, rowsz); 514*7877fdebSMatt Macy 515*7877fdebSMatt Macy for (int j = children - 1; j > 0; j--) { 516*7877fdebSMatt Macy uint64_t k = vdev_draid_rand(draid_seed) % (j + 1); 517*7877fdebSMatt Macy uint8_t val = current_row[j]; 518*7877fdebSMatt Macy current_row[j] = current_row[k]; 519*7877fdebSMatt Macy current_row[k] = val; 520*7877fdebSMatt Macy } 521*7877fdebSMatt Macy 522*7877fdebSMatt Macy previous_row = current_row; 523*7877fdebSMatt Macy } 524*7877fdebSMatt Macy 525*7877fdebSMatt Macy kmem_free(initial_row, rowsz); 526*7877fdebSMatt Macy 527*7877fdebSMatt Macy int error = verify_perms(perms, children, nperms, map->dm_checksum); 528*7877fdebSMatt Macy if (error) { 529*7877fdebSMatt Macy vmem_free(perms, permssz); 530*7877fdebSMatt Macy return (error); 531*7877fdebSMatt Macy } 532*7877fdebSMatt Macy 533*7877fdebSMatt Macy *permsp = perms; 534*7877fdebSMatt Macy 535*7877fdebSMatt Macy return (0); 536*7877fdebSMatt Macy } 537*7877fdebSMatt Macy 538*7877fdebSMatt Macy /* 539*7877fdebSMatt Macy * Lookup the fixed draid_map_t for the requested number of children. 540*7877fdebSMatt Macy */ 541*7877fdebSMatt Macy int 542*7877fdebSMatt Macy vdev_draid_lookup_map(uint64_t children, const draid_map_t **mapp) 543*7877fdebSMatt Macy { 544*7877fdebSMatt Macy for (int i = 0; i <= VDEV_DRAID_MAX_MAPS; i++) { 545*7877fdebSMatt Macy if (draid_maps[i].dm_children == children) { 546*7877fdebSMatt Macy *mapp = &draid_maps[i]; 547*7877fdebSMatt Macy return (0); 548*7877fdebSMatt Macy } 549*7877fdebSMatt Macy } 550*7877fdebSMatt Macy 551*7877fdebSMatt Macy return (ENOENT); 552*7877fdebSMatt Macy } 553*7877fdebSMatt Macy 554*7877fdebSMatt Macy /* 555*7877fdebSMatt Macy * Lookup the permutation array and iteration id for the provided offset. 556*7877fdebSMatt Macy */ 557*7877fdebSMatt Macy static void 558*7877fdebSMatt Macy vdev_draid_get_perm(vdev_draid_config_t *vdc, uint64_t pindex, 559*7877fdebSMatt Macy uint8_t **base, uint64_t *iter) 560*7877fdebSMatt Macy { 561*7877fdebSMatt Macy uint64_t ncols = vdc->vdc_children; 562*7877fdebSMatt Macy uint64_t poff = pindex % (vdc->vdc_nperms * ncols); 563*7877fdebSMatt Macy 564*7877fdebSMatt Macy *base = vdc->vdc_perms + (poff / ncols) * ncols; 565*7877fdebSMatt Macy *iter = poff % ncols; 566*7877fdebSMatt Macy } 567*7877fdebSMatt Macy 568*7877fdebSMatt Macy static inline uint64_t 569*7877fdebSMatt Macy vdev_draid_permute_id(vdev_draid_config_t *vdc, 570*7877fdebSMatt Macy uint8_t *base, uint64_t iter, uint64_t index) 571*7877fdebSMatt Macy { 572*7877fdebSMatt Macy return ((base[index] + iter) % vdc->vdc_children); 573*7877fdebSMatt Macy } 574*7877fdebSMatt Macy 575*7877fdebSMatt Macy /* 576*7877fdebSMatt Macy * Return the asize which is the psize rounded up to a full group width. 577*7877fdebSMatt Macy * i.e. vdev_draid_psize_to_asize(). 578*7877fdebSMatt Macy */ 579*7877fdebSMatt Macy static uint64_t 580*7877fdebSMatt Macy vdev_draid_asize(vdev_t *vd, uint64_t psize) 581*7877fdebSMatt Macy { 582*7877fdebSMatt Macy vdev_draid_config_t *vdc = vd->vdev_tsd; 583*7877fdebSMatt Macy uint64_t ashift = vd->vdev_ashift; 584*7877fdebSMatt Macy 585*7877fdebSMatt Macy ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops); 586*7877fdebSMatt Macy 587*7877fdebSMatt Macy uint64_t rows = ((psize - 1) / (vdc->vdc_ndata << ashift)) + 1; 588*7877fdebSMatt Macy uint64_t asize = (rows * vdc->vdc_groupwidth) << ashift; 589*7877fdebSMatt Macy 590*7877fdebSMatt Macy ASSERT3U(asize, !=, 0); 591*7877fdebSMatt Macy ASSERT3U(asize % (vdc->vdc_groupwidth), ==, 0); 592*7877fdebSMatt Macy 593*7877fdebSMatt Macy return (asize); 594*7877fdebSMatt Macy } 595*7877fdebSMatt Macy 596*7877fdebSMatt Macy /* 597*7877fdebSMatt Macy * Deflate the asize to the psize, this includes stripping parity. 598*7877fdebSMatt Macy */ 599*7877fdebSMatt Macy uint64_t 600*7877fdebSMatt Macy vdev_draid_asize_to_psize(vdev_t *vd, uint64_t asize) 601*7877fdebSMatt Macy { 602*7877fdebSMatt Macy vdev_draid_config_t *vdc = vd->vdev_tsd; 603*7877fdebSMatt Macy 604*7877fdebSMatt Macy ASSERT0(asize % vdc->vdc_groupwidth); 605*7877fdebSMatt Macy 606*7877fdebSMatt Macy return ((asize / vdc->vdc_groupwidth) * vdc->vdc_ndata); 607*7877fdebSMatt Macy } 608*7877fdebSMatt Macy 609*7877fdebSMatt Macy /* 610*7877fdebSMatt Macy * Convert a logical offset to the corresponding group number. 611*7877fdebSMatt Macy */ 612*7877fdebSMatt Macy static uint64_t 613*7877fdebSMatt Macy vdev_draid_offset_to_group(vdev_t *vd, uint64_t offset) 614*7877fdebSMatt Macy { 615*7877fdebSMatt Macy vdev_draid_config_t *vdc = vd->vdev_tsd; 616*7877fdebSMatt Macy 617*7877fdebSMatt Macy ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops); 618*7877fdebSMatt Macy 619*7877fdebSMatt Macy return (offset / vdc->vdc_groupsz); 620*7877fdebSMatt Macy } 621*7877fdebSMatt Macy 622*7877fdebSMatt Macy /* 623*7877fdebSMatt Macy * Convert a group number to the logical starting offset for that group. 624*7877fdebSMatt Macy */ 625*7877fdebSMatt Macy static uint64_t 626*7877fdebSMatt Macy vdev_draid_group_to_offset(vdev_t *vd, uint64_t group) 627*7877fdebSMatt Macy { 628*7877fdebSMatt Macy vdev_draid_config_t *vdc = vd->vdev_tsd; 629*7877fdebSMatt Macy 630*7877fdebSMatt Macy ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops); 631*7877fdebSMatt Macy 632*7877fdebSMatt Macy return (group * vdc->vdc_groupsz); 633*7877fdebSMatt Macy } 634*7877fdebSMatt Macy 635*7877fdebSMatt Macy 636*7877fdebSMatt Macy static void 637*7877fdebSMatt Macy vdev_draid_map_free_vsd(zio_t *zio) 638*7877fdebSMatt Macy { 639*7877fdebSMatt Macy raidz_map_t *rm = zio->io_vsd; 640*7877fdebSMatt Macy 641*7877fdebSMatt Macy ASSERT0(rm->rm_freed); 642*7877fdebSMatt Macy rm->rm_freed = B_TRUE; 643*7877fdebSMatt Macy 644*7877fdebSMatt Macy if (rm->rm_reports == 0) { 645*7877fdebSMatt Macy vdev_raidz_map_free(rm); 646*7877fdebSMatt Macy } 647*7877fdebSMatt Macy } 648*7877fdebSMatt Macy 649*7877fdebSMatt Macy /*ARGSUSED*/ 650*7877fdebSMatt Macy static void 651*7877fdebSMatt Macy vdev_draid_cksum_free(void *arg, size_t ignored) 652*7877fdebSMatt Macy { 653*7877fdebSMatt Macy raidz_map_t *rm = arg; 654*7877fdebSMatt Macy 655*7877fdebSMatt Macy ASSERT3U(rm->rm_reports, >, 0); 656*7877fdebSMatt Macy 657*7877fdebSMatt Macy if (--rm->rm_reports == 0 && rm->rm_freed) 658*7877fdebSMatt Macy vdev_raidz_map_free(rm); 659*7877fdebSMatt Macy } 660*7877fdebSMatt Macy 661*7877fdebSMatt Macy static void 662*7877fdebSMatt Macy vdev_draid_cksum_finish(zio_cksum_report_t *zcr, const abd_t *good_data) 663*7877fdebSMatt Macy { 664*7877fdebSMatt Macy raidz_map_t *rm = zcr->zcr_cbdata; 665*7877fdebSMatt Macy const size_t c = zcr->zcr_cbinfo; 666*7877fdebSMatt Macy uint64_t skip_size = zcr->zcr_sector; 667*7877fdebSMatt Macy uint64_t parity_size; 668*7877fdebSMatt Macy size_t x, offset, size; 669*7877fdebSMatt Macy 670*7877fdebSMatt Macy if (good_data == NULL) { 671*7877fdebSMatt Macy zfs_ereport_finish_checksum(zcr, NULL, NULL, B_FALSE); 672*7877fdebSMatt Macy return; 673*7877fdebSMatt Macy } 674*7877fdebSMatt Macy 675*7877fdebSMatt Macy /* 676*7877fdebSMatt Macy * Detailed cksum reporting is currently only supported for single 677*7877fdebSMatt Macy * row draid mappings, this covers the vast majority of zios. Only 678*7877fdebSMatt Macy * a dRAID zio which spans groups will have multiple rows. 679*7877fdebSMatt Macy */ 680*7877fdebSMatt Macy if (rm->rm_nrows != 1) { 681*7877fdebSMatt Macy zfs_ereport_finish_checksum(zcr, NULL, NULL, B_FALSE); 682*7877fdebSMatt Macy return; 683*7877fdebSMatt Macy } 684*7877fdebSMatt Macy 685*7877fdebSMatt Macy raidz_row_t *rr = rm->rm_row[0]; 686*7877fdebSMatt Macy const abd_t *good = NULL; 687*7877fdebSMatt Macy const abd_t *bad = rr->rr_col[c].rc_abd; 688*7877fdebSMatt Macy 689*7877fdebSMatt Macy if (c < rr->rr_firstdatacol) { 690*7877fdebSMatt Macy /* 691*7877fdebSMatt Macy * The first time through, calculate the parity blocks for 692*7877fdebSMatt Macy * the good data (this relies on the fact that the good 693*7877fdebSMatt Macy * data never changes for a given logical zio) 694*7877fdebSMatt Macy */ 695*7877fdebSMatt Macy if (rr->rr_col[0].rc_gdata == NULL) { 696*7877fdebSMatt Macy abd_t *bad_parity[VDEV_DRAID_MAXPARITY]; 697*7877fdebSMatt Macy 698*7877fdebSMatt Macy /* 699*7877fdebSMatt Macy * Set up the rr_col[]s to generate the parity for 700*7877fdebSMatt Macy * good_data, first saving the parity bufs and 701*7877fdebSMatt Macy * replacing them with buffers to hold the result. 702*7877fdebSMatt Macy */ 703*7877fdebSMatt Macy for (x = 0; x < rr->rr_firstdatacol; x++) { 704*7877fdebSMatt Macy bad_parity[x] = rr->rr_col[x].rc_abd; 705*7877fdebSMatt Macy rr->rr_col[x].rc_abd = rr->rr_col[x].rc_gdata = 706*7877fdebSMatt Macy abd_alloc_sametype(rr->rr_col[x].rc_abd, 707*7877fdebSMatt Macy rr->rr_col[x].rc_size); 708*7877fdebSMatt Macy } 709*7877fdebSMatt Macy 710*7877fdebSMatt Macy /* 711*7877fdebSMatt Macy * Fill in the data columns from good_data being 712*7877fdebSMatt Macy * careful to pad short columns and empty columns 713*7877fdebSMatt Macy * with a skip sector. 714*7877fdebSMatt Macy */ 715*7877fdebSMatt Macy uint64_t good_size = abd_get_size((abd_t *)good_data); 716*7877fdebSMatt Macy 717*7877fdebSMatt Macy offset = 0; 718*7877fdebSMatt Macy for (; x < rr->rr_cols; x++) { 719*7877fdebSMatt Macy abd_put(rr->rr_col[x].rc_abd); 720*7877fdebSMatt Macy 721*7877fdebSMatt Macy if (offset == good_size) { 722*7877fdebSMatt Macy /* empty data column (small write) */ 723*7877fdebSMatt Macy rr->rr_col[x].rc_abd = 724*7877fdebSMatt Macy abd_get_zeros(skip_size); 725*7877fdebSMatt Macy } else if (x < rr->rr_bigcols) { 726*7877fdebSMatt Macy /* this is a "big column" */ 727*7877fdebSMatt Macy size = rr->rr_col[x].rc_size; 728*7877fdebSMatt Macy rr->rr_col[x].rc_abd = 729*7877fdebSMatt Macy abd_get_offset_size( 730*7877fdebSMatt Macy (abd_t *)good_data, offset, size); 731*7877fdebSMatt Macy offset += size; 732*7877fdebSMatt Macy } else { 733*7877fdebSMatt Macy /* short data column, add skip sector */ 734*7877fdebSMatt Macy size = rr->rr_col[x].rc_size -skip_size; 735*7877fdebSMatt Macy rr->rr_col[x].rc_abd = abd_alloc( 736*7877fdebSMatt Macy rr->rr_col[x].rc_size, B_TRUE); 737*7877fdebSMatt Macy abd_copy_off(rr->rr_col[x].rc_abd, 738*7877fdebSMatt Macy (abd_t *)good_data, 0, offset, 739*7877fdebSMatt Macy size); 740*7877fdebSMatt Macy abd_zero_off(rr->rr_col[x].rc_abd, 741*7877fdebSMatt Macy size, skip_size); 742*7877fdebSMatt Macy offset += size; 743*7877fdebSMatt Macy } 744*7877fdebSMatt Macy } 745*7877fdebSMatt Macy 746*7877fdebSMatt Macy /* 747*7877fdebSMatt Macy * Construct the parity from the good data. 748*7877fdebSMatt Macy */ 749*7877fdebSMatt Macy vdev_raidz_generate_parity_row(rm, rr); 750*7877fdebSMatt Macy 751*7877fdebSMatt Macy /* restore everything back to its original state */ 752*7877fdebSMatt Macy for (x = 0; x < rr->rr_firstdatacol; x++) 753*7877fdebSMatt Macy rr->rr_col[x].rc_abd = bad_parity[x]; 754*7877fdebSMatt Macy 755*7877fdebSMatt Macy offset = 0; 756*7877fdebSMatt Macy for (x = rr->rr_firstdatacol; x < rr->rr_cols; x++) { 757*7877fdebSMatt Macy if (offset == good_size || x < rr->rr_bigcols) 758*7877fdebSMatt Macy abd_put(rr->rr_col[x].rc_abd); 759*7877fdebSMatt Macy else 760*7877fdebSMatt Macy abd_free(rr->rr_col[x].rc_abd); 761*7877fdebSMatt Macy 762*7877fdebSMatt Macy rr->rr_col[x].rc_abd = abd_get_offset_size( 763*7877fdebSMatt Macy rr->rr_abd_copy, offset, 764*7877fdebSMatt Macy rr->rr_col[x].rc_size); 765*7877fdebSMatt Macy offset += rr->rr_col[x].rc_size; 766*7877fdebSMatt Macy } 767*7877fdebSMatt Macy } 768*7877fdebSMatt Macy 769*7877fdebSMatt Macy ASSERT3P(rr->rr_col[c].rc_gdata, !=, NULL); 770*7877fdebSMatt Macy good = abd_get_offset_size(rr->rr_col[c].rc_gdata, 0, 771*7877fdebSMatt Macy rr->rr_col[c].rc_size); 772*7877fdebSMatt Macy } else { 773*7877fdebSMatt Macy /* adjust good_data to point at the start of our column */ 774*7877fdebSMatt Macy parity_size = size = rr->rr_col[0].rc_size; 775*7877fdebSMatt Macy if (c >= rr->rr_bigcols) { 776*7877fdebSMatt Macy size -= skip_size; 777*7877fdebSMatt Macy zcr->zcr_length = size; 778*7877fdebSMatt Macy } 779*7877fdebSMatt Macy 780*7877fdebSMatt Macy /* empty column */ 781*7877fdebSMatt Macy if (size == 0) { 782*7877fdebSMatt Macy zfs_ereport_finish_checksum(zcr, NULL, NULL, B_TRUE); 783*7877fdebSMatt Macy return; 784*7877fdebSMatt Macy } 785*7877fdebSMatt Macy 786*7877fdebSMatt Macy offset = 0; 787*7877fdebSMatt Macy for (x = rr->rr_firstdatacol; x < c; x++) { 788*7877fdebSMatt Macy if (x < rr->rr_bigcols) { 789*7877fdebSMatt Macy offset += parity_size; 790*7877fdebSMatt Macy } else { 791*7877fdebSMatt Macy offset += parity_size - skip_size; 792*7877fdebSMatt Macy } 793*7877fdebSMatt Macy } 794*7877fdebSMatt Macy 795*7877fdebSMatt Macy good = abd_get_offset_size((abd_t *)good_data, offset, size); 796*7877fdebSMatt Macy } 797*7877fdebSMatt Macy 798*7877fdebSMatt Macy /* we drop the ereport if it ends up that the data was good */ 799*7877fdebSMatt Macy zfs_ereport_finish_checksum(zcr, good, bad, B_TRUE); 800*7877fdebSMatt Macy abd_put((abd_t *)good); 801*7877fdebSMatt Macy } 802*7877fdebSMatt Macy 803*7877fdebSMatt Macy /* 804*7877fdebSMatt Macy * Invoked indirectly by zfs_ereport_start_checksum(), called 805*7877fdebSMatt Macy * below when our read operation fails completely. The main point 806*7877fdebSMatt Macy * is to keep a copy of everything we read from disk, so that at 807*7877fdebSMatt Macy * vdev_draid_cksum_finish() time we can compare it with the good data. 808*7877fdebSMatt Macy */ 809*7877fdebSMatt Macy static void 810*7877fdebSMatt Macy vdev_draid_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *arg) 811*7877fdebSMatt Macy { 812*7877fdebSMatt Macy size_t c = (size_t)(uintptr_t)arg; 813*7877fdebSMatt Macy raidz_map_t *rm = zio->io_vsd; 814*7877fdebSMatt Macy 815*7877fdebSMatt Macy /* set up the report and bump the refcount */ 816*7877fdebSMatt Macy zcr->zcr_cbdata = rm; 817*7877fdebSMatt Macy zcr->zcr_cbinfo = c; 818*7877fdebSMatt Macy zcr->zcr_finish = vdev_draid_cksum_finish; 819*7877fdebSMatt Macy zcr->zcr_free = vdev_draid_cksum_free; 820*7877fdebSMatt Macy 821*7877fdebSMatt Macy rm->rm_reports++; 822*7877fdebSMatt Macy ASSERT3U(rm->rm_reports, >, 0); 823*7877fdebSMatt Macy 824*7877fdebSMatt Macy if (rm->rm_row[0]->rr_abd_copy != NULL) 825*7877fdebSMatt Macy return; 826*7877fdebSMatt Macy 827*7877fdebSMatt Macy /* 828*7877fdebSMatt Macy * It's the first time we're called for this raidz_map_t, so we need 829*7877fdebSMatt Macy * to copy the data aside; there's no guarantee that our zio's buffer 830*7877fdebSMatt Macy * won't be re-used for something else. 831*7877fdebSMatt Macy * 832*7877fdebSMatt Macy * Our parity data is already in separate buffers, so there's no need 833*7877fdebSMatt Macy * to copy them. Furthermore, all columns should have been expanded 834*7877fdebSMatt Macy * by vdev_draid_map_alloc_empty() when attempting reconstruction. 835*7877fdebSMatt Macy */ 836*7877fdebSMatt Macy for (int i = 0; i < rm->rm_nrows; i++) { 837*7877fdebSMatt Macy raidz_row_t *rr = rm->rm_row[i]; 838*7877fdebSMatt Macy size_t offset = 0; 839*7877fdebSMatt Macy size_t size = 0; 840*7877fdebSMatt Macy 841*7877fdebSMatt Macy for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 842*7877fdebSMatt Macy ASSERT3U(rr->rr_col[c].rc_size, ==, 843*7877fdebSMatt Macy rr->rr_col[0].rc_size); 844*7877fdebSMatt Macy size += rr->rr_col[c].rc_size; 845*7877fdebSMatt Macy } 846*7877fdebSMatt Macy 847*7877fdebSMatt Macy rr->rr_abd_copy = abd_alloc_for_io(size, B_FALSE); 848*7877fdebSMatt Macy 849*7877fdebSMatt Macy for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 850*7877fdebSMatt Macy raidz_col_t *col = &rr->rr_col[c]; 851*7877fdebSMatt Macy abd_t *tmp = abd_get_offset_size(rr->rr_abd_copy, 852*7877fdebSMatt Macy offset, col->rc_size); 853*7877fdebSMatt Macy 854*7877fdebSMatt Macy abd_copy(tmp, col->rc_abd, col->rc_size); 855*7877fdebSMatt Macy 856*7877fdebSMatt Macy if (abd_is_gang(col->rc_abd)) 857*7877fdebSMatt Macy abd_free(col->rc_abd); 858*7877fdebSMatt Macy else 859*7877fdebSMatt Macy abd_put(col->rc_abd); 860*7877fdebSMatt Macy 861*7877fdebSMatt Macy col->rc_abd = tmp; 862*7877fdebSMatt Macy offset += col->rc_size; 863*7877fdebSMatt Macy } 864*7877fdebSMatt Macy ASSERT3U(offset, ==, size); 865*7877fdebSMatt Macy } 866*7877fdebSMatt Macy } 867*7877fdebSMatt Macy 868*7877fdebSMatt Macy const zio_vsd_ops_t vdev_draid_vsd_ops = { 869*7877fdebSMatt Macy .vsd_free = vdev_draid_map_free_vsd, 870*7877fdebSMatt Macy .vsd_cksum_report = vdev_draid_cksum_report 871*7877fdebSMatt Macy }; 872*7877fdebSMatt Macy 873*7877fdebSMatt Macy /* 874*7877fdebSMatt Macy * Full stripe writes. When writing, all columns (D+P) are required. Parity 875*7877fdebSMatt Macy * is calculated over all the columns, including empty zero filled sectors, 876*7877fdebSMatt Macy * and each is written to disk. While only the data columns are needed for 877*7877fdebSMatt Macy * a normal read, all of the columns are required for reconstruction when 878*7877fdebSMatt Macy * performing a sequential resilver. 879*7877fdebSMatt Macy * 880*7877fdebSMatt Macy * For "big columns" it's sufficient to map the correct range of the zio ABD. 881*7877fdebSMatt Macy * Partial columns require allocating a gang ABD in order to zero fill the 882*7877fdebSMatt Macy * empty sectors. When the column is empty a zero filled sector must be 883*7877fdebSMatt Macy * mapped. In all cases the data ABDs must be the same size as the parity 884*7877fdebSMatt Macy * ABDs (e.g. rc->rc_size == parity_size). 885*7877fdebSMatt Macy */ 886*7877fdebSMatt Macy static void 887*7877fdebSMatt Macy vdev_draid_map_alloc_write(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr) 888*7877fdebSMatt Macy { 889*7877fdebSMatt Macy uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift; 890*7877fdebSMatt Macy uint64_t parity_size = rr->rr_col[0].rc_size; 891*7877fdebSMatt Macy uint64_t abd_off = abd_offset; 892*7877fdebSMatt Macy 893*7877fdebSMatt Macy ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 894*7877fdebSMatt Macy ASSERT3U(parity_size, ==, abd_get_size(rr->rr_col[0].rc_abd)); 895*7877fdebSMatt Macy 896*7877fdebSMatt Macy for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 897*7877fdebSMatt Macy raidz_col_t *rc = &rr->rr_col[c]; 898*7877fdebSMatt Macy 899*7877fdebSMatt Macy if (rc->rc_size == 0) { 900*7877fdebSMatt Macy /* empty data column (small write), add a skip sector */ 901*7877fdebSMatt Macy ASSERT3U(skip_size, ==, parity_size); 902*7877fdebSMatt Macy rc->rc_abd = abd_get_zeros(skip_size); 903*7877fdebSMatt Macy } else if (rc->rc_size == parity_size) { 904*7877fdebSMatt Macy /* this is a "big column" */ 905*7877fdebSMatt Macy rc->rc_abd = abd_get_offset_size(zio->io_abd, 906*7877fdebSMatt Macy abd_off, rc->rc_size); 907*7877fdebSMatt Macy } else { 908*7877fdebSMatt Macy /* short data column, add a skip sector */ 909*7877fdebSMatt Macy ASSERT3U(rc->rc_size + skip_size, ==, parity_size); 910*7877fdebSMatt Macy rc->rc_abd = abd_alloc_gang_abd(); 911*7877fdebSMatt Macy abd_gang_add(rc->rc_abd, abd_get_offset_size( 912*7877fdebSMatt Macy zio->io_abd, abd_off, rc->rc_size), B_TRUE); 913*7877fdebSMatt Macy abd_gang_add(rc->rc_abd, abd_get_zeros(skip_size), 914*7877fdebSMatt Macy B_TRUE); 915*7877fdebSMatt Macy } 916*7877fdebSMatt Macy 917*7877fdebSMatt Macy ASSERT3U(abd_get_size(rc->rc_abd), ==, parity_size); 918*7877fdebSMatt Macy 919*7877fdebSMatt Macy abd_off += rc->rc_size; 920*7877fdebSMatt Macy rc->rc_size = parity_size; 921*7877fdebSMatt Macy } 922*7877fdebSMatt Macy 923*7877fdebSMatt Macy IMPLY(abd_offset != 0, abd_off == zio->io_size); 924*7877fdebSMatt Macy } 925*7877fdebSMatt Macy 926*7877fdebSMatt Macy /* 927*7877fdebSMatt Macy * Scrub/resilver reads. In order to store the contents of the skip sectors 928*7877fdebSMatt Macy * an additional ABD is allocated. The columns are handled in the same way 929*7877fdebSMatt Macy * as a full stripe write except instead of using the zero ABD the newly 930*7877fdebSMatt Macy * allocated skip ABD is used to back the skip sectors. In all cases the 931*7877fdebSMatt Macy * data ABD must be the same size as the parity ABDs. 932*7877fdebSMatt Macy */ 933*7877fdebSMatt Macy static void 934*7877fdebSMatt Macy vdev_draid_map_alloc_scrub(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr) 935*7877fdebSMatt Macy { 936*7877fdebSMatt Macy uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift; 937*7877fdebSMatt Macy uint64_t parity_size = rr->rr_col[0].rc_size; 938*7877fdebSMatt Macy uint64_t abd_off = abd_offset; 939*7877fdebSMatt Macy uint64_t skip_off = 0; 940*7877fdebSMatt Macy 941*7877fdebSMatt Macy ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ); 942*7877fdebSMatt Macy ASSERT3P(rr->rr_abd_empty, ==, NULL); 943*7877fdebSMatt Macy 944*7877fdebSMatt Macy if (rr->rr_nempty > 0) { 945*7877fdebSMatt Macy rr->rr_abd_empty = abd_alloc_linear(rr->rr_nempty * skip_size, 946*7877fdebSMatt Macy B_FALSE); 947*7877fdebSMatt Macy } 948*7877fdebSMatt Macy 949*7877fdebSMatt Macy for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 950*7877fdebSMatt Macy raidz_col_t *rc = &rr->rr_col[c]; 951*7877fdebSMatt Macy 952*7877fdebSMatt Macy if (rc->rc_size == 0) { 953*7877fdebSMatt Macy /* empty data column (small read), add a skip sector */ 954*7877fdebSMatt Macy ASSERT3U(skip_size, ==, parity_size); 955*7877fdebSMatt Macy ASSERT3U(rr->rr_nempty, !=, 0); 956*7877fdebSMatt Macy rc->rc_abd = abd_get_offset_size(rr->rr_abd_empty, 957*7877fdebSMatt Macy skip_off, skip_size); 958*7877fdebSMatt Macy skip_off += skip_size; 959*7877fdebSMatt Macy } else if (rc->rc_size == parity_size) { 960*7877fdebSMatt Macy /* this is a "big column" */ 961*7877fdebSMatt Macy rc->rc_abd = abd_get_offset_size(zio->io_abd, 962*7877fdebSMatt Macy abd_off, rc->rc_size); 963*7877fdebSMatt Macy } else { 964*7877fdebSMatt Macy /* short data column, add a skip sector */ 965*7877fdebSMatt Macy ASSERT3U(rc->rc_size + skip_size, ==, parity_size); 966*7877fdebSMatt Macy ASSERT3U(rr->rr_nempty, !=, 0); 967*7877fdebSMatt Macy rc->rc_abd = abd_alloc_gang_abd(); 968*7877fdebSMatt Macy abd_gang_add(rc->rc_abd, abd_get_offset_size( 969*7877fdebSMatt Macy zio->io_abd, abd_off, rc->rc_size), B_TRUE); 970*7877fdebSMatt Macy abd_gang_add(rc->rc_abd, abd_get_offset_size( 971*7877fdebSMatt Macy rr->rr_abd_empty, skip_off, skip_size), B_TRUE); 972*7877fdebSMatt Macy skip_off += skip_size; 973*7877fdebSMatt Macy } 974*7877fdebSMatt Macy 975*7877fdebSMatt Macy uint64_t abd_size = abd_get_size(rc->rc_abd); 976*7877fdebSMatt Macy ASSERT3U(abd_size, ==, abd_get_size(rr->rr_col[0].rc_abd)); 977*7877fdebSMatt Macy 978*7877fdebSMatt Macy /* 979*7877fdebSMatt Macy * Increase rc_size so the skip ABD is included in subsequent 980*7877fdebSMatt Macy * parity calculations. 981*7877fdebSMatt Macy */ 982*7877fdebSMatt Macy abd_off += rc->rc_size; 983*7877fdebSMatt Macy rc->rc_size = abd_size; 984*7877fdebSMatt Macy } 985*7877fdebSMatt Macy 986*7877fdebSMatt Macy IMPLY(abd_offset != 0, abd_off == zio->io_size); 987*7877fdebSMatt Macy ASSERT3U(skip_off, ==, rr->rr_nempty * skip_size); 988*7877fdebSMatt Macy } 989*7877fdebSMatt Macy 990*7877fdebSMatt Macy /* 991*7877fdebSMatt Macy * Normal reads. In this common case only the columns containing data 992*7877fdebSMatt Macy * are read in to the zio ABDs. Neither the parity columns or empty skip 993*7877fdebSMatt Macy * sectors are read unless the checksum fails verification. In which case 994*7877fdebSMatt Macy * vdev_raidz_read_all() will call vdev_draid_map_alloc_empty() to expand 995*7877fdebSMatt Macy * the raid map in order to allow reconstruction using the parity data and 996*7877fdebSMatt Macy * skip sectors. 997*7877fdebSMatt Macy */ 998*7877fdebSMatt Macy static void 999*7877fdebSMatt Macy vdev_draid_map_alloc_read(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr) 1000*7877fdebSMatt Macy { 1001*7877fdebSMatt Macy uint64_t abd_off = abd_offset; 1002*7877fdebSMatt Macy 1003*7877fdebSMatt Macy ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ); 1004*7877fdebSMatt Macy 1005*7877fdebSMatt Macy for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 1006*7877fdebSMatt Macy raidz_col_t *rc = &rr->rr_col[c]; 1007*7877fdebSMatt Macy 1008*7877fdebSMatt Macy if (rc->rc_size > 0) { 1009*7877fdebSMatt Macy rc->rc_abd = abd_get_offset_size(zio->io_abd, 1010*7877fdebSMatt Macy abd_off, rc->rc_size); 1011*7877fdebSMatt Macy abd_off += rc->rc_size; 1012*7877fdebSMatt Macy } 1013*7877fdebSMatt Macy } 1014*7877fdebSMatt Macy 1015*7877fdebSMatt Macy IMPLY(abd_offset != 0, abd_off == zio->io_size); 1016*7877fdebSMatt Macy } 1017*7877fdebSMatt Macy 1018*7877fdebSMatt Macy /* 1019*7877fdebSMatt Macy * Converts a normal "read" raidz_row_t to a "scrub" raidz_row_t. The key 1020*7877fdebSMatt Macy * difference is that an ABD is allocated to back skip sectors so they may 1021*7877fdebSMatt Macy * be read in to memory, verified, and repaired if needed. 1022*7877fdebSMatt Macy */ 1023*7877fdebSMatt Macy void 1024*7877fdebSMatt Macy vdev_draid_map_alloc_empty(zio_t *zio, raidz_row_t *rr) 1025*7877fdebSMatt Macy { 1026*7877fdebSMatt Macy uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift; 1027*7877fdebSMatt Macy uint64_t parity_size = rr->rr_col[0].rc_size; 1028*7877fdebSMatt Macy uint64_t skip_off = 0; 1029*7877fdebSMatt Macy 1030*7877fdebSMatt Macy ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ); 1031*7877fdebSMatt Macy ASSERT3P(rr->rr_abd_empty, ==, NULL); 1032*7877fdebSMatt Macy 1033*7877fdebSMatt Macy if (rr->rr_nempty > 0) { 1034*7877fdebSMatt Macy rr->rr_abd_empty = abd_alloc_linear(rr->rr_nempty * skip_size, 1035*7877fdebSMatt Macy B_FALSE); 1036*7877fdebSMatt Macy } 1037*7877fdebSMatt Macy 1038*7877fdebSMatt Macy for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) { 1039*7877fdebSMatt Macy raidz_col_t *rc = &rr->rr_col[c]; 1040*7877fdebSMatt Macy 1041*7877fdebSMatt Macy if (rc->rc_size == 0) { 1042*7877fdebSMatt Macy /* empty data column (small read), add a skip sector */ 1043*7877fdebSMatt Macy ASSERT3U(skip_size, ==, parity_size); 1044*7877fdebSMatt Macy ASSERT3U(rr->rr_nempty, !=, 0); 1045*7877fdebSMatt Macy ASSERT3P(rc->rc_abd, ==, NULL); 1046*7877fdebSMatt Macy rc->rc_abd = abd_get_offset_size(rr->rr_abd_empty, 1047*7877fdebSMatt Macy skip_off, skip_size); 1048*7877fdebSMatt Macy skip_off += skip_size; 1049*7877fdebSMatt Macy } else if (rc->rc_size == parity_size) { 1050*7877fdebSMatt Macy /* this is a "big column", nothing to add */ 1051*7877fdebSMatt Macy ASSERT3P(rc->rc_abd, !=, NULL); 1052*7877fdebSMatt Macy } else { 1053*7877fdebSMatt Macy /* short data column, add a skip sector */ 1054*7877fdebSMatt Macy ASSERT3U(rc->rc_size + skip_size, ==, parity_size); 1055*7877fdebSMatt Macy ASSERT3U(rr->rr_nempty, !=, 0); 1056*7877fdebSMatt Macy ASSERT3P(rc->rc_abd, !=, NULL); 1057*7877fdebSMatt Macy ASSERT(!abd_is_gang(rc->rc_abd)); 1058*7877fdebSMatt Macy abd_t *read_abd = rc->rc_abd; 1059*7877fdebSMatt Macy rc->rc_abd = abd_alloc_gang_abd(); 1060*7877fdebSMatt Macy abd_gang_add(rc->rc_abd, read_abd, B_TRUE); 1061*7877fdebSMatt Macy abd_gang_add(rc->rc_abd, abd_get_offset_size( 1062*7877fdebSMatt Macy rr->rr_abd_empty, skip_off, skip_size), B_TRUE); 1063*7877fdebSMatt Macy skip_off += skip_size; 1064*7877fdebSMatt Macy } 1065*7877fdebSMatt Macy 1066*7877fdebSMatt Macy /* 1067*7877fdebSMatt Macy * Increase rc_size so the empty ABD is included in subsequent 1068*7877fdebSMatt Macy * parity calculations. 1069*7877fdebSMatt Macy */ 1070*7877fdebSMatt Macy rc->rc_size = parity_size; 1071*7877fdebSMatt Macy } 1072*7877fdebSMatt Macy 1073*7877fdebSMatt Macy ASSERT3U(skip_off, ==, rr->rr_nempty * skip_size); 1074*7877fdebSMatt Macy } 1075*7877fdebSMatt Macy 1076*7877fdebSMatt Macy /* 1077*7877fdebSMatt Macy * Given a logical address within a dRAID configuration, return the physical 1078*7877fdebSMatt Macy * address on the first drive in the group that this address maps to 1079*7877fdebSMatt Macy * (at position 'start' in permutation number 'perm'). 1080*7877fdebSMatt Macy */ 1081*7877fdebSMatt Macy static uint64_t 1082*7877fdebSMatt Macy vdev_draid_logical_to_physical(vdev_t *vd, uint64_t logical_offset, 1083*7877fdebSMatt Macy uint64_t *perm, uint64_t *start) 1084*7877fdebSMatt Macy { 1085*7877fdebSMatt Macy vdev_draid_config_t *vdc = vd->vdev_tsd; 1086*7877fdebSMatt Macy 1087*7877fdebSMatt Macy /* b is the dRAID (parent) sector offset. */ 1088*7877fdebSMatt Macy uint64_t ashift = vd->vdev_top->vdev_ashift; 1089*7877fdebSMatt Macy uint64_t b_offset = logical_offset >> ashift; 1090*7877fdebSMatt Macy 1091*7877fdebSMatt Macy /* 1092*7877fdebSMatt Macy * The height of a row in units of the vdev's minimum sector size. 1093*7877fdebSMatt Macy * This is the amount of data written to each disk of each group 1094*7877fdebSMatt Macy * in a given permutation. 1095*7877fdebSMatt Macy */ 1096*7877fdebSMatt Macy uint64_t rowheight_sectors = VDEV_DRAID_ROWHEIGHT >> ashift; 1097*7877fdebSMatt Macy 1098*7877fdebSMatt Macy /* 1099*7877fdebSMatt Macy * We cycle through a disk permutation every groupsz * ngroups chunk 1100*7877fdebSMatt Macy * of address space. Note that ngroups * groupsz must be a multiple 1101*7877fdebSMatt Macy * of the number of data drives (ndisks) in order to guarantee 1102*7877fdebSMatt Macy * alignment. So, for example, if our row height is 16MB, our group 1103*7877fdebSMatt Macy * size is 10, and there are 13 data drives in the draid, then ngroups 1104*7877fdebSMatt Macy * will be 13, we will change permutation every 2.08GB and each 1105*7877fdebSMatt Macy * disk will have 160MB of data per chunk. 1106*7877fdebSMatt Macy */ 1107*7877fdebSMatt Macy uint64_t groupwidth = vdc->vdc_groupwidth; 1108*7877fdebSMatt Macy uint64_t ngroups = vdc->vdc_ngroups; 1109*7877fdebSMatt Macy uint64_t ndisks = vdc->vdc_ndisks; 1110*7877fdebSMatt Macy 1111*7877fdebSMatt Macy /* 1112*7877fdebSMatt Macy * groupstart is where the group this IO will land in "starts" in 1113*7877fdebSMatt Macy * the permutation array. 1114*7877fdebSMatt Macy */ 1115*7877fdebSMatt Macy uint64_t group = logical_offset / vdc->vdc_groupsz; 1116*7877fdebSMatt Macy uint64_t groupstart = (group * groupwidth) % ndisks; 1117*7877fdebSMatt Macy ASSERT3U(groupstart + groupwidth, <=, ndisks + groupstart); 1118*7877fdebSMatt Macy *start = groupstart; 1119*7877fdebSMatt Macy 1120*7877fdebSMatt Macy /* b_offset is the sector offset within a group chunk */ 1121*7877fdebSMatt Macy b_offset = b_offset % (rowheight_sectors * groupwidth); 1122*7877fdebSMatt Macy ASSERT0(b_offset % groupwidth); 1123*7877fdebSMatt Macy 1124*7877fdebSMatt Macy /* 1125*7877fdebSMatt Macy * Find the starting byte offset on each child vdev: 1126*7877fdebSMatt Macy * - within a permutation there are ngroups groups spread over the 1127*7877fdebSMatt Macy * rows, where each row covers a slice portion of the disk 1128*7877fdebSMatt Macy * - each permutation has (groupwidth * ngroups) / ndisks rows 1129*7877fdebSMatt Macy * - so each permutation covers rows * slice portion of the disk 1130*7877fdebSMatt Macy * - so we need to find the row where this IO group target begins 1131*7877fdebSMatt Macy */ 1132*7877fdebSMatt Macy *perm = group / ngroups; 1133*7877fdebSMatt Macy uint64_t row = (*perm * ((groupwidth * ngroups) / ndisks)) + 1134*7877fdebSMatt Macy (((group % ngroups) * groupwidth) / ndisks); 1135*7877fdebSMatt Macy 1136*7877fdebSMatt Macy return (((rowheight_sectors * row) + 1137*7877fdebSMatt Macy (b_offset / groupwidth)) << ashift); 1138*7877fdebSMatt Macy } 1139*7877fdebSMatt Macy 1140*7877fdebSMatt Macy static uint64_t 1141*7877fdebSMatt Macy vdev_draid_map_alloc_row(zio_t *zio, raidz_row_t **rrp, uint64_t io_offset, 1142*7877fdebSMatt Macy uint64_t abd_offset, uint64_t abd_size) 1143*7877fdebSMatt Macy { 1144*7877fdebSMatt Macy vdev_t *vd = zio->io_vd; 1145*7877fdebSMatt Macy vdev_draid_config_t *vdc = vd->vdev_tsd; 1146*7877fdebSMatt Macy uint64_t ashift = vd->vdev_top->vdev_ashift; 1147*7877fdebSMatt Macy uint64_t io_size = abd_size; 1148*7877fdebSMatt Macy uint64_t io_asize = vdev_draid_asize(vd, io_size); 1149*7877fdebSMatt Macy uint64_t group = vdev_draid_offset_to_group(vd, io_offset); 1150*7877fdebSMatt Macy uint64_t start_offset = vdev_draid_group_to_offset(vd, group + 1); 1151*7877fdebSMatt Macy 1152*7877fdebSMatt Macy /* 1153*7877fdebSMatt Macy * Limit the io_size to the space remaining in the group. A second 1154*7877fdebSMatt Macy * row in the raidz_map_t is created for the remainder. 1155*7877fdebSMatt Macy */ 1156*7877fdebSMatt Macy if (io_offset + io_asize > start_offset) { 1157*7877fdebSMatt Macy io_size = vdev_draid_asize_to_psize(vd, 1158*7877fdebSMatt Macy start_offset - io_offset); 1159*7877fdebSMatt Macy } 1160*7877fdebSMatt Macy 1161*7877fdebSMatt Macy /* 1162*7877fdebSMatt Macy * At most a block may span the logical end of one group and the start 1163*7877fdebSMatt Macy * of the next group. Therefore, at the end of a group the io_size must 1164*7877fdebSMatt Macy * span the group width evenly and the remainder must be aligned to the 1165*7877fdebSMatt Macy * start of the next group. 1166*7877fdebSMatt Macy */ 1167*7877fdebSMatt Macy IMPLY(abd_offset == 0 && io_size < zio->io_size, 1168*7877fdebSMatt Macy (io_asize >> ashift) % vdc->vdc_groupwidth == 0); 1169*7877fdebSMatt Macy IMPLY(abd_offset != 0, 1170*7877fdebSMatt Macy vdev_draid_group_to_offset(vd, group) == io_offset); 1171*7877fdebSMatt Macy 1172*7877fdebSMatt Macy /* Lookup starting byte offset on each child vdev */ 1173*7877fdebSMatt Macy uint64_t groupstart, perm; 1174*7877fdebSMatt Macy uint64_t physical_offset = vdev_draid_logical_to_physical(vd, 1175*7877fdebSMatt Macy io_offset, &perm, &groupstart); 1176*7877fdebSMatt Macy 1177*7877fdebSMatt Macy /* 1178*7877fdebSMatt Macy * If there is less than groupwidth drives available after the group 1179*7877fdebSMatt Macy * start, the group is going to wrap onto the next row. 'wrap' is the 1180*7877fdebSMatt Macy * group disk number that starts on the next row. 1181*7877fdebSMatt Macy */ 1182*7877fdebSMatt Macy uint64_t ndisks = vdc->vdc_ndisks; 1183*7877fdebSMatt Macy uint64_t groupwidth = vdc->vdc_groupwidth; 1184*7877fdebSMatt Macy uint64_t wrap = groupwidth; 1185*7877fdebSMatt Macy 1186*7877fdebSMatt Macy if (groupstart + groupwidth > ndisks) 1187*7877fdebSMatt Macy wrap = ndisks - groupstart; 1188*7877fdebSMatt Macy 1189*7877fdebSMatt Macy /* The io size in units of the vdev's minimum sector size. */ 1190*7877fdebSMatt Macy const uint64_t psize = io_size >> ashift; 1191*7877fdebSMatt Macy 1192*7877fdebSMatt Macy /* 1193*7877fdebSMatt Macy * "Quotient": The number of data sectors for this stripe on all but 1194*7877fdebSMatt Macy * the "big column" child vdevs that also contain "remainder" data. 1195*7877fdebSMatt Macy */ 1196*7877fdebSMatt Macy uint64_t q = psize / vdc->vdc_ndata; 1197*7877fdebSMatt Macy 1198*7877fdebSMatt Macy /* 1199*7877fdebSMatt Macy * "Remainder": The number of partial stripe data sectors in this I/O. 1200*7877fdebSMatt Macy * This will add a sector to some, but not all, child vdevs. 1201*7877fdebSMatt Macy */ 1202*7877fdebSMatt Macy uint64_t r = psize - q * vdc->vdc_ndata; 1203*7877fdebSMatt Macy 1204*7877fdebSMatt Macy /* The number of "big columns" - those which contain remainder data. */ 1205*7877fdebSMatt Macy uint64_t bc = (r == 0 ? 0 : r + vdc->vdc_nparity); 1206*7877fdebSMatt Macy ASSERT3U(bc, <, groupwidth); 1207*7877fdebSMatt Macy 1208*7877fdebSMatt Macy /* The total number of data and parity sectors for this I/O. */ 1209*7877fdebSMatt Macy uint64_t tot = psize + (vdc->vdc_nparity * (q + (r == 0 ? 0 : 1))); 1210*7877fdebSMatt Macy 1211*7877fdebSMatt Macy raidz_row_t *rr; 1212*7877fdebSMatt Macy rr = kmem_alloc(offsetof(raidz_row_t, rr_col[groupwidth]), KM_SLEEP); 1213*7877fdebSMatt Macy rr->rr_cols = groupwidth; 1214*7877fdebSMatt Macy rr->rr_scols = groupwidth; 1215*7877fdebSMatt Macy rr->rr_bigcols = bc; 1216*7877fdebSMatt Macy rr->rr_missingdata = 0; 1217*7877fdebSMatt Macy rr->rr_missingparity = 0; 1218*7877fdebSMatt Macy rr->rr_firstdatacol = vdc->vdc_nparity; 1219*7877fdebSMatt Macy rr->rr_abd_copy = NULL; 1220*7877fdebSMatt Macy rr->rr_abd_empty = NULL; 1221*7877fdebSMatt Macy #ifdef ZFS_DEBUG 1222*7877fdebSMatt Macy rr->rr_offset = io_offset; 1223*7877fdebSMatt Macy rr->rr_size = io_size; 1224*7877fdebSMatt Macy #endif 1225*7877fdebSMatt Macy *rrp = rr; 1226*7877fdebSMatt Macy 1227*7877fdebSMatt Macy uint8_t *base; 1228*7877fdebSMatt Macy uint64_t iter, asize = 0; 1229*7877fdebSMatt Macy vdev_draid_get_perm(vdc, perm, &base, &iter); 1230*7877fdebSMatt Macy for (uint64_t i = 0; i < groupwidth; i++) { 1231*7877fdebSMatt Macy raidz_col_t *rc = &rr->rr_col[i]; 1232*7877fdebSMatt Macy uint64_t c = (groupstart + i) % ndisks; 1233*7877fdebSMatt Macy 1234*7877fdebSMatt Macy /* increment the offset if we wrap to the next row */ 1235*7877fdebSMatt Macy if (i == wrap) 1236*7877fdebSMatt Macy physical_offset += VDEV_DRAID_ROWHEIGHT; 1237*7877fdebSMatt Macy 1238*7877fdebSMatt Macy rc->rc_devidx = vdev_draid_permute_id(vdc, base, iter, c); 1239*7877fdebSMatt Macy rc->rc_offset = physical_offset; 1240*7877fdebSMatt Macy rc->rc_abd = NULL; 1241*7877fdebSMatt Macy rc->rc_gdata = NULL; 1242*7877fdebSMatt Macy rc->rc_orig_data = NULL; 1243*7877fdebSMatt Macy rc->rc_error = 0; 1244*7877fdebSMatt Macy rc->rc_tried = 0; 1245*7877fdebSMatt Macy rc->rc_skipped = 0; 1246*7877fdebSMatt Macy rc->rc_repair = 0; 1247*7877fdebSMatt Macy rc->rc_need_orig_restore = B_FALSE; 1248*7877fdebSMatt Macy 1249*7877fdebSMatt Macy if (q == 0 && i >= bc) 1250*7877fdebSMatt Macy rc->rc_size = 0; 1251*7877fdebSMatt Macy else if (i < bc) 1252*7877fdebSMatt Macy rc->rc_size = (q + 1) << ashift; 1253*7877fdebSMatt Macy else 1254*7877fdebSMatt Macy rc->rc_size = q << ashift; 1255*7877fdebSMatt Macy 1256*7877fdebSMatt Macy asize += rc->rc_size; 1257*7877fdebSMatt Macy } 1258*7877fdebSMatt Macy 1259*7877fdebSMatt Macy ASSERT3U(asize, ==, tot << ashift); 1260*7877fdebSMatt Macy rr->rr_nempty = roundup(tot, groupwidth) - tot; 1261*7877fdebSMatt Macy IMPLY(bc > 0, rr->rr_nempty == groupwidth - bc); 1262*7877fdebSMatt Macy 1263*7877fdebSMatt Macy /* Allocate buffers for the parity columns */ 1264*7877fdebSMatt Macy for (uint64_t c = 0; c < rr->rr_firstdatacol; c++) { 1265*7877fdebSMatt Macy raidz_col_t *rc = &rr->rr_col[c]; 1266*7877fdebSMatt Macy rc->rc_abd = abd_alloc_linear(rc->rc_size, B_FALSE); 1267*7877fdebSMatt Macy } 1268*7877fdebSMatt Macy 1269*7877fdebSMatt Macy /* 1270*7877fdebSMatt Macy * Map buffers for data columns and allocate/map buffers for skip 1271*7877fdebSMatt Macy * sectors. There are three distinct cases for dRAID which are 1272*7877fdebSMatt Macy * required to support sequential rebuild. 1273*7877fdebSMatt Macy */ 1274*7877fdebSMatt Macy if (zio->io_type == ZIO_TYPE_WRITE) { 1275*7877fdebSMatt Macy vdev_draid_map_alloc_write(zio, abd_offset, rr); 1276*7877fdebSMatt Macy } else if ((rr->rr_nempty > 0) && 1277*7877fdebSMatt Macy (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) { 1278*7877fdebSMatt Macy vdev_draid_map_alloc_scrub(zio, abd_offset, rr); 1279*7877fdebSMatt Macy } else { 1280*7877fdebSMatt Macy ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ); 1281*7877fdebSMatt Macy vdev_draid_map_alloc_read(zio, abd_offset, rr); 1282*7877fdebSMatt Macy } 1283*7877fdebSMatt Macy 1284*7877fdebSMatt Macy return (io_size); 1285*7877fdebSMatt Macy } 1286*7877fdebSMatt Macy 1287*7877fdebSMatt Macy /* 1288*7877fdebSMatt Macy * Allocate the raidz mapping to be applied to the dRAID I/O. The parity 1289*7877fdebSMatt Macy * calculations for dRAID are identical to raidz however there are a few 1290*7877fdebSMatt Macy * differences in the layout. 1291*7877fdebSMatt Macy * 1292*7877fdebSMatt Macy * - dRAID always allocates a full stripe width. Any extra sectors due 1293*7877fdebSMatt Macy * this padding are zero filled and written to disk. They will be read 1294*7877fdebSMatt Macy * back during a scrub or repair operation since they are included in 1295*7877fdebSMatt Macy * the parity calculation. This property enables sequential resilvering. 1296*7877fdebSMatt Macy * 1297*7877fdebSMatt Macy * - When the block at the logical offset spans redundancy groups then two 1298*7877fdebSMatt Macy * rows are allocated in the raidz_map_t. One row resides at the end of 1299*7877fdebSMatt Macy * the first group and the other at the start of the following group. 1300*7877fdebSMatt Macy */ 1301*7877fdebSMatt Macy static raidz_map_t * 1302*7877fdebSMatt Macy vdev_draid_map_alloc(zio_t *zio) 1303*7877fdebSMatt Macy { 1304*7877fdebSMatt Macy raidz_row_t *rr[2]; 1305*7877fdebSMatt Macy uint64_t abd_offset = 0; 1306*7877fdebSMatt Macy uint64_t abd_size = zio->io_size; 1307*7877fdebSMatt Macy uint64_t io_offset = zio->io_offset; 1308*7877fdebSMatt Macy uint64_t size; 1309*7877fdebSMatt Macy int nrows = 1; 1310*7877fdebSMatt Macy 1311*7877fdebSMatt Macy size = vdev_draid_map_alloc_row(zio, &rr[0], io_offset, 1312*7877fdebSMatt Macy abd_offset, abd_size); 1313*7877fdebSMatt Macy if (size < abd_size) { 1314*7877fdebSMatt Macy vdev_t *vd = zio->io_vd; 1315*7877fdebSMatt Macy 1316*7877fdebSMatt Macy io_offset += vdev_draid_asize(vd, size); 1317*7877fdebSMatt Macy abd_offset += size; 1318*7877fdebSMatt Macy abd_size -= size; 1319*7877fdebSMatt Macy nrows++; 1320*7877fdebSMatt Macy 1321*7877fdebSMatt Macy ASSERT3U(io_offset, ==, vdev_draid_group_to_offset( 1322*7877fdebSMatt Macy vd, vdev_draid_offset_to_group(vd, io_offset))); 1323*7877fdebSMatt Macy ASSERT3U(abd_offset, <, zio->io_size); 1324*7877fdebSMatt Macy ASSERT3U(abd_size, !=, 0); 1325*7877fdebSMatt Macy 1326*7877fdebSMatt Macy size = vdev_draid_map_alloc_row(zio, &rr[1], 1327*7877fdebSMatt Macy io_offset, abd_offset, abd_size); 1328*7877fdebSMatt Macy VERIFY3U(size, ==, abd_size); 1329*7877fdebSMatt Macy } 1330*7877fdebSMatt Macy 1331*7877fdebSMatt Macy raidz_map_t *rm; 1332*7877fdebSMatt Macy rm = kmem_zalloc(offsetof(raidz_map_t, rm_row[nrows]), KM_SLEEP); 1333*7877fdebSMatt Macy rm->rm_ops = vdev_raidz_math_get_ops(); 1334*7877fdebSMatt Macy rm->rm_nrows = nrows; 1335*7877fdebSMatt Macy rm->rm_row[0] = rr[0]; 1336*7877fdebSMatt Macy if (nrows == 2) 1337*7877fdebSMatt Macy rm->rm_row[1] = rr[1]; 1338*7877fdebSMatt Macy 1339*7877fdebSMatt Macy zio->io_vsd = rm; 1340*7877fdebSMatt Macy zio->io_vsd_ops = &vdev_draid_vsd_ops; 1341*7877fdebSMatt Macy 1342*7877fdebSMatt Macy return (rm); 1343*7877fdebSMatt Macy } 1344*7877fdebSMatt Macy 1345*7877fdebSMatt Macy /* 1346*7877fdebSMatt Macy * Given an offset into a dRAID return the next group width aligned offset 1347*7877fdebSMatt Macy * which can be used to start an allocation. 1348*7877fdebSMatt Macy */ 1349*7877fdebSMatt Macy static uint64_t 1350*7877fdebSMatt Macy vdev_draid_get_astart(vdev_t *vd, const uint64_t start) 1351*7877fdebSMatt Macy { 1352*7877fdebSMatt Macy vdev_draid_config_t *vdc = vd->vdev_tsd; 1353*7877fdebSMatt Macy 1354*7877fdebSMatt Macy ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops); 1355*7877fdebSMatt Macy 1356*7877fdebSMatt Macy return (roundup(start, vdc->vdc_groupwidth << vd->vdev_ashift)); 1357*7877fdebSMatt Macy } 1358*7877fdebSMatt Macy 1359*7877fdebSMatt Macy /* 1360*7877fdebSMatt Macy * Allocatable space for dRAID is (children - nspares) * sizeof(smallest child) 1361*7877fdebSMatt Macy * rounded down to the last full slice. So each child must provide at least 1362*7877fdebSMatt Macy * 1 / (children - nspares) of its asize. 1363*7877fdebSMatt Macy */ 1364*7877fdebSMatt Macy static uint64_t 1365*7877fdebSMatt Macy vdev_draid_min_asize(vdev_t *vd) 1366*7877fdebSMatt Macy { 1367*7877fdebSMatt Macy vdev_draid_config_t *vdc = vd->vdev_tsd; 1368*7877fdebSMatt Macy 1369*7877fdebSMatt Macy ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops); 1370*7877fdebSMatt Macy 1371*7877fdebSMatt Macy return ((vd->vdev_min_asize + vdc->vdc_ndisks - 1) / (vdc->vdc_ndisks)); 1372*7877fdebSMatt Macy } 1373*7877fdebSMatt Macy 1374*7877fdebSMatt Macy /* 1375*7877fdebSMatt Macy * When using dRAID the minimum allocation size is determined by the number 1376*7877fdebSMatt Macy * of data disks in the redundancy group. Full stripes are always used. 1377*7877fdebSMatt Macy */ 1378*7877fdebSMatt Macy static uint64_t 1379*7877fdebSMatt Macy vdev_draid_min_alloc(vdev_t *vd) 1380*7877fdebSMatt Macy { 1381*7877fdebSMatt Macy vdev_draid_config_t *vdc = vd->vdev_tsd; 1382*7877fdebSMatt Macy 1383*7877fdebSMatt Macy ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops); 1384*7877fdebSMatt Macy 1385*7877fdebSMatt Macy return (vdc->vdc_ndata << vd->vdev_ashift); 1386*7877fdebSMatt Macy } 1387*7877fdebSMatt Macy 1388*7877fdebSMatt Macy /* 1389*7877fdebSMatt Macy * Returns true if the txg range does not exist on any leaf vdev. 1390*7877fdebSMatt Macy * 1391*7877fdebSMatt Macy * A dRAID spare does not fit into the DTL model. While it has child vdevs 1392*7877fdebSMatt Macy * there is no redundancy among them, and the effective child vdev is 1393*7877fdebSMatt Macy * determined by offset. Essentially we do a vdev_dtl_reassess() on the 1394*7877fdebSMatt Macy * fly by replacing a dRAID spare with the child vdev under the offset. 1395*7877fdebSMatt Macy * Note that it is a recursive process because the child vdev can be 1396*7877fdebSMatt Macy * another dRAID spare and so on. 1397*7877fdebSMatt Macy */ 1398*7877fdebSMatt Macy boolean_t 1399*7877fdebSMatt Macy vdev_draid_missing(vdev_t *vd, uint64_t physical_offset, uint64_t txg, 1400*7877fdebSMatt Macy uint64_t size) 1401*7877fdebSMatt Macy { 1402*7877fdebSMatt Macy if (vd->vdev_ops == &vdev_spare_ops || 1403*7877fdebSMatt Macy vd->vdev_ops == &vdev_replacing_ops) { 1404*7877fdebSMatt Macy /* 1405*7877fdebSMatt Macy * Check all of the readable children, if any child 1406*7877fdebSMatt Macy * contains the txg range the data it is not missing. 1407*7877fdebSMatt Macy */ 1408*7877fdebSMatt Macy for (int c = 0; c < vd->vdev_children; c++) { 1409*7877fdebSMatt Macy vdev_t *cvd = vd->vdev_child[c]; 1410*7877fdebSMatt Macy 1411*7877fdebSMatt Macy if (!vdev_readable(cvd)) 1412*7877fdebSMatt Macy continue; 1413*7877fdebSMatt Macy 1414*7877fdebSMatt Macy if (!vdev_draid_missing(cvd, physical_offset, 1415*7877fdebSMatt Macy txg, size)) 1416*7877fdebSMatt Macy return (B_FALSE); 1417*7877fdebSMatt Macy } 1418*7877fdebSMatt Macy 1419*7877fdebSMatt Macy return (B_TRUE); 1420*7877fdebSMatt Macy } 1421*7877fdebSMatt Macy 1422*7877fdebSMatt Macy if (vd->vdev_ops == &vdev_draid_spare_ops) { 1423*7877fdebSMatt Macy /* 1424*7877fdebSMatt Macy * When sequentially resilvering we don't have a proper 1425*7877fdebSMatt Macy * txg range so instead we must presume all txgs are 1426*7877fdebSMatt Macy * missing on this vdev until the resilver completes. 1427*7877fdebSMatt Macy */ 1428*7877fdebSMatt Macy if (vd->vdev_rebuild_txg != 0) 1429*7877fdebSMatt Macy return (B_TRUE); 1430*7877fdebSMatt Macy 1431*7877fdebSMatt Macy /* 1432*7877fdebSMatt Macy * DTL_MISSING is set for all prior txgs when a resilver 1433*7877fdebSMatt Macy * is started in spa_vdev_attach(). 1434*7877fdebSMatt Macy */ 1435*7877fdebSMatt Macy if (vdev_dtl_contains(vd, DTL_MISSING, txg, size)) 1436*7877fdebSMatt Macy return (B_TRUE); 1437*7877fdebSMatt Macy 1438*7877fdebSMatt Macy /* 1439*7877fdebSMatt Macy * Consult the DTL on the relevant vdev. Either a vdev 1440*7877fdebSMatt Macy * leaf or spare/replace mirror child may be returned so 1441*7877fdebSMatt Macy * we must recursively call vdev_draid_missing_impl(). 1442*7877fdebSMatt Macy */ 1443*7877fdebSMatt Macy vd = vdev_draid_spare_get_child(vd, physical_offset); 1444*7877fdebSMatt Macy if (vd == NULL) 1445*7877fdebSMatt Macy return (B_TRUE); 1446*7877fdebSMatt Macy 1447*7877fdebSMatt Macy return (vdev_draid_missing(vd, physical_offset, 1448*7877fdebSMatt Macy txg, size)); 1449*7877fdebSMatt Macy } 1450*7877fdebSMatt Macy 1451*7877fdebSMatt Macy return (vdev_dtl_contains(vd, DTL_MISSING, txg, size)); 1452*7877fdebSMatt Macy } 1453*7877fdebSMatt Macy 1454*7877fdebSMatt Macy /* 1455*7877fdebSMatt Macy * Returns true if the txg is only partially replicated on the leaf vdevs. 1456*7877fdebSMatt Macy */ 1457*7877fdebSMatt Macy static boolean_t 1458*7877fdebSMatt Macy vdev_draid_partial(vdev_t *vd, uint64_t physical_offset, uint64_t txg, 1459*7877fdebSMatt Macy uint64_t size) 1460*7877fdebSMatt Macy { 1461*7877fdebSMatt Macy if (vd->vdev_ops == &vdev_spare_ops || 1462*7877fdebSMatt Macy vd->vdev_ops == &vdev_replacing_ops) { 1463*7877fdebSMatt Macy /* 1464*7877fdebSMatt Macy * Check all of the readable children, if any child is 1465*7877fdebSMatt Macy * missing the txg range then it is partially replicated. 1466*7877fdebSMatt Macy */ 1467*7877fdebSMatt Macy for (int c = 0; c < vd->vdev_children; c++) { 1468*7877fdebSMatt Macy vdev_t *cvd = vd->vdev_child[c]; 1469*7877fdebSMatt Macy 1470*7877fdebSMatt Macy if (!vdev_readable(cvd)) 1471*7877fdebSMatt Macy continue; 1472*7877fdebSMatt Macy 1473*7877fdebSMatt Macy if (vdev_draid_partial(cvd, physical_offset, txg, size)) 1474*7877fdebSMatt Macy return (B_TRUE); 1475*7877fdebSMatt Macy } 1476*7877fdebSMatt Macy 1477*7877fdebSMatt Macy return (B_FALSE); 1478*7877fdebSMatt Macy } 1479*7877fdebSMatt Macy 1480*7877fdebSMatt Macy if (vd->vdev_ops == &vdev_draid_spare_ops) { 1481*7877fdebSMatt Macy /* 1482*7877fdebSMatt Macy * When sequentially resilvering we don't have a proper 1483*7877fdebSMatt Macy * txg range so instead we must presume all txgs are 1484*7877fdebSMatt Macy * missing on this vdev until the resilver completes. 1485*7877fdebSMatt Macy */ 1486*7877fdebSMatt Macy if (vd->vdev_rebuild_txg != 0) 1487*7877fdebSMatt Macy return (B_TRUE); 1488*7877fdebSMatt Macy 1489*7877fdebSMatt Macy /* 1490*7877fdebSMatt Macy * DTL_MISSING is set for all prior txgs when a resilver 1491*7877fdebSMatt Macy * is started in spa_vdev_attach(). 1492*7877fdebSMatt Macy */ 1493*7877fdebSMatt Macy if (vdev_dtl_contains(vd, DTL_MISSING, txg, size)) 1494*7877fdebSMatt Macy return (B_TRUE); 1495*7877fdebSMatt Macy 1496*7877fdebSMatt Macy /* 1497*7877fdebSMatt Macy * Consult the DTL on the relevant vdev. Either a vdev 1498*7877fdebSMatt Macy * leaf or spare/replace mirror child may be returned so 1499*7877fdebSMatt Macy * we must recursively call vdev_draid_missing_impl(). 1500*7877fdebSMatt Macy */ 1501*7877fdebSMatt Macy vd = vdev_draid_spare_get_child(vd, physical_offset); 1502*7877fdebSMatt Macy if (vd == NULL) 1503*7877fdebSMatt Macy return (B_TRUE); 1504*7877fdebSMatt Macy 1505*7877fdebSMatt Macy return (vdev_draid_partial(vd, physical_offset, txg, size)); 1506*7877fdebSMatt Macy } 1507*7877fdebSMatt Macy 1508*7877fdebSMatt Macy return (vdev_dtl_contains(vd, DTL_MISSING, txg, size)); 1509*7877fdebSMatt Macy } 1510*7877fdebSMatt Macy 1511*7877fdebSMatt Macy /* 1512*7877fdebSMatt Macy * Determine if the vdev is readable at the given offset. 1513*7877fdebSMatt Macy */ 1514*7877fdebSMatt Macy boolean_t 1515*7877fdebSMatt Macy vdev_draid_readable(vdev_t *vd, uint64_t physical_offset) 1516*7877fdebSMatt Macy { 1517*7877fdebSMatt Macy if (vd->vdev_ops == &vdev_draid_spare_ops) { 1518*7877fdebSMatt Macy vd = vdev_draid_spare_get_child(vd, physical_offset); 1519*7877fdebSMatt Macy if (vd == NULL) 1520*7877fdebSMatt Macy return (B_FALSE); 1521*7877fdebSMatt Macy } 1522*7877fdebSMatt Macy 1523*7877fdebSMatt Macy if (vd->vdev_ops == &vdev_spare_ops || 1524*7877fdebSMatt Macy vd->vdev_ops == &vdev_replacing_ops) { 1525*7877fdebSMatt Macy 1526*7877fdebSMatt Macy for (int c = 0; c < vd->vdev_children; c++) { 1527*7877fdebSMatt Macy vdev_t *cvd = vd->vdev_child[c]; 1528*7877fdebSMatt Macy 1529*7877fdebSMatt Macy if (!vdev_readable(cvd)) 1530*7877fdebSMatt Macy continue; 1531*7877fdebSMatt Macy 1532*7877fdebSMatt Macy if (vdev_draid_readable(cvd, physical_offset)) 1533*7877fdebSMatt Macy return (B_TRUE); 1534*7877fdebSMatt Macy } 1535*7877fdebSMatt Macy 1536*7877fdebSMatt Macy return (B_FALSE); 1537*7877fdebSMatt Macy } 1538*7877fdebSMatt Macy 1539*7877fdebSMatt Macy return (vdev_readable(vd)); 1540*7877fdebSMatt Macy } 1541*7877fdebSMatt Macy 1542*7877fdebSMatt Macy /* 1543*7877fdebSMatt Macy * Returns the first distributed spare found under the provided vdev tree. 1544*7877fdebSMatt Macy */ 1545*7877fdebSMatt Macy static vdev_t * 1546*7877fdebSMatt Macy vdev_draid_find_spare(vdev_t *vd) 1547*7877fdebSMatt Macy { 1548*7877fdebSMatt Macy if (vd->vdev_ops == &vdev_draid_spare_ops) 1549*7877fdebSMatt Macy return (vd); 1550*7877fdebSMatt Macy 1551*7877fdebSMatt Macy for (int c = 0; c < vd->vdev_children; c++) { 1552*7877fdebSMatt Macy vdev_t *svd = vdev_draid_find_spare(vd->vdev_child[c]); 1553*7877fdebSMatt Macy if (svd != NULL) 1554*7877fdebSMatt Macy return (svd); 1555*7877fdebSMatt Macy } 1556*7877fdebSMatt Macy 1557*7877fdebSMatt Macy return (NULL); 1558*7877fdebSMatt Macy } 1559*7877fdebSMatt Macy 1560*7877fdebSMatt Macy /* 1561*7877fdebSMatt Macy * Returns B_TRUE if the passed in vdev is currently "faulted". 1562*7877fdebSMatt Macy * Faulted, in this context, means that the vdev represents a 1563*7877fdebSMatt Macy * replacing or sparing vdev tree. 1564*7877fdebSMatt Macy */ 1565*7877fdebSMatt Macy static boolean_t 1566*7877fdebSMatt Macy vdev_draid_faulted(vdev_t *vd, uint64_t physical_offset) 1567*7877fdebSMatt Macy { 1568*7877fdebSMatt Macy if (vd->vdev_ops == &vdev_draid_spare_ops) { 1569*7877fdebSMatt Macy vd = vdev_draid_spare_get_child(vd, physical_offset); 1570*7877fdebSMatt Macy if (vd == NULL) 1571*7877fdebSMatt Macy return (B_FALSE); 1572*7877fdebSMatt Macy 1573*7877fdebSMatt Macy /* 1574*7877fdebSMatt Macy * After resolving the distributed spare to a leaf vdev 1575*7877fdebSMatt Macy * check the parent to determine if it's "faulted". 1576*7877fdebSMatt Macy */ 1577*7877fdebSMatt Macy vd = vd->vdev_parent; 1578*7877fdebSMatt Macy } 1579*7877fdebSMatt Macy 1580*7877fdebSMatt Macy return (vd->vdev_ops == &vdev_replacing_ops || 1581*7877fdebSMatt Macy vd->vdev_ops == &vdev_spare_ops); 1582*7877fdebSMatt Macy } 1583*7877fdebSMatt Macy 1584*7877fdebSMatt Macy /* 1585*7877fdebSMatt Macy * Determine if the dRAID block at the logical offset is degraded. 1586*7877fdebSMatt Macy * Used by sequential resilver. 1587*7877fdebSMatt Macy */ 1588*7877fdebSMatt Macy static boolean_t 1589*7877fdebSMatt Macy vdev_draid_group_degraded(vdev_t *vd, uint64_t offset) 1590*7877fdebSMatt Macy { 1591*7877fdebSMatt Macy vdev_draid_config_t *vdc = vd->vdev_tsd; 1592*7877fdebSMatt Macy 1593*7877fdebSMatt Macy ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops); 1594*7877fdebSMatt Macy ASSERT3U(vdev_draid_get_astart(vd, offset), ==, offset); 1595*7877fdebSMatt Macy 1596*7877fdebSMatt Macy uint64_t groupstart, perm; 1597*7877fdebSMatt Macy uint64_t physical_offset = vdev_draid_logical_to_physical(vd, 1598*7877fdebSMatt Macy offset, &perm, &groupstart); 1599*7877fdebSMatt Macy 1600*7877fdebSMatt Macy uint8_t *base; 1601*7877fdebSMatt Macy uint64_t iter; 1602*7877fdebSMatt Macy vdev_draid_get_perm(vdc, perm, &base, &iter); 1603*7877fdebSMatt Macy 1604*7877fdebSMatt Macy for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) { 1605*7877fdebSMatt Macy uint64_t c = (groupstart + i) % vdc->vdc_ndisks; 1606*7877fdebSMatt Macy uint64_t cid = vdev_draid_permute_id(vdc, base, iter, c); 1607*7877fdebSMatt Macy vdev_t *cvd = vd->vdev_child[cid]; 1608*7877fdebSMatt Macy 1609*7877fdebSMatt Macy /* Group contains a faulted vdev. */ 1610*7877fdebSMatt Macy if (vdev_draid_faulted(cvd, physical_offset)) 1611*7877fdebSMatt Macy return (B_TRUE); 1612*7877fdebSMatt Macy 1613*7877fdebSMatt Macy /* 1614*7877fdebSMatt Macy * Always check groups with active distributed spares 1615*7877fdebSMatt Macy * because any vdev failure in the pool will affect them. 1616*7877fdebSMatt Macy */ 1617*7877fdebSMatt Macy if (vdev_draid_find_spare(cvd) != NULL) 1618*7877fdebSMatt Macy return (B_TRUE); 1619*7877fdebSMatt Macy } 1620*7877fdebSMatt Macy 1621*7877fdebSMatt Macy return (B_FALSE); 1622*7877fdebSMatt Macy } 1623*7877fdebSMatt Macy 1624*7877fdebSMatt Macy /* 1625*7877fdebSMatt Macy * Determine if the txg is missing. Used by healing resilver. 1626*7877fdebSMatt Macy */ 1627*7877fdebSMatt Macy static boolean_t 1628*7877fdebSMatt Macy vdev_draid_group_missing(vdev_t *vd, uint64_t offset, uint64_t txg, 1629*7877fdebSMatt Macy uint64_t size) 1630*7877fdebSMatt Macy { 1631*7877fdebSMatt Macy vdev_draid_config_t *vdc = vd->vdev_tsd; 1632*7877fdebSMatt Macy 1633*7877fdebSMatt Macy ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops); 1634*7877fdebSMatt Macy ASSERT3U(vdev_draid_get_astart(vd, offset), ==, offset); 1635*7877fdebSMatt Macy 1636*7877fdebSMatt Macy uint64_t groupstart, perm; 1637*7877fdebSMatt Macy uint64_t physical_offset = vdev_draid_logical_to_physical(vd, 1638*7877fdebSMatt Macy offset, &perm, &groupstart); 1639*7877fdebSMatt Macy 1640*7877fdebSMatt Macy uint8_t *base; 1641*7877fdebSMatt Macy uint64_t iter; 1642*7877fdebSMatt Macy vdev_draid_get_perm(vdc, perm, &base, &iter); 1643*7877fdebSMatt Macy 1644*7877fdebSMatt Macy for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) { 1645*7877fdebSMatt Macy uint64_t c = (groupstart + i) % vdc->vdc_ndisks; 1646*7877fdebSMatt Macy uint64_t cid = vdev_draid_permute_id(vdc, base, iter, c); 1647*7877fdebSMatt Macy vdev_t *cvd = vd->vdev_child[cid]; 1648*7877fdebSMatt Macy 1649*7877fdebSMatt Macy /* Transaction group is known to be partially replicated. */ 1650*7877fdebSMatt Macy if (vdev_draid_partial(cvd, physical_offset, txg, size)) 1651*7877fdebSMatt Macy return (B_TRUE); 1652*7877fdebSMatt Macy 1653*7877fdebSMatt Macy /* 1654*7877fdebSMatt Macy * Always check groups with active distributed spares 1655*7877fdebSMatt Macy * because any vdev failure in the pool will affect them. 1656*7877fdebSMatt Macy */ 1657*7877fdebSMatt Macy if (vdev_draid_find_spare(cvd) != NULL) 1658*7877fdebSMatt Macy return (B_TRUE); 1659*7877fdebSMatt Macy } 1660*7877fdebSMatt Macy 1661*7877fdebSMatt Macy return (B_FALSE); 1662*7877fdebSMatt Macy } 1663*7877fdebSMatt Macy 1664*7877fdebSMatt Macy /* 1665*7877fdebSMatt Macy * Find the smallest child asize and largest sector size to calculate the 1666*7877fdebSMatt Macy * available capacity. Distributed spares are ignored since their capacity 1667*7877fdebSMatt Macy * is also based of the minimum child size in the top-level dRAID. 1668*7877fdebSMatt Macy */ 1669*7877fdebSMatt Macy static void 1670*7877fdebSMatt Macy vdev_draid_calculate_asize(vdev_t *vd, uint64_t *asizep, uint64_t *max_asizep, 1671*7877fdebSMatt Macy uint64_t *logical_ashiftp, uint64_t *physical_ashiftp) 1672*7877fdebSMatt Macy { 1673*7877fdebSMatt Macy uint64_t logical_ashift = 0, physical_ashift = 0; 1674*7877fdebSMatt Macy uint64_t asize = 0, max_asize = 0; 1675*7877fdebSMatt Macy 1676*7877fdebSMatt Macy ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops); 1677*7877fdebSMatt Macy 1678*7877fdebSMatt Macy for (int c = 0; c < vd->vdev_children; c++) { 1679*7877fdebSMatt Macy vdev_t *cvd = vd->vdev_child[c]; 1680*7877fdebSMatt Macy 1681*7877fdebSMatt Macy if (cvd->vdev_ops == &vdev_draid_spare_ops) 1682*7877fdebSMatt Macy continue; 1683*7877fdebSMatt Macy 1684*7877fdebSMatt Macy asize = MIN(asize - 1, cvd->vdev_asize - 1) + 1; 1685*7877fdebSMatt Macy max_asize = MIN(max_asize - 1, cvd->vdev_max_asize - 1) + 1; 1686*7877fdebSMatt Macy logical_ashift = MAX(logical_ashift, cvd->vdev_ashift); 1687*7877fdebSMatt Macy physical_ashift = MAX(physical_ashift, 1688*7877fdebSMatt Macy cvd->vdev_physical_ashift); 1689*7877fdebSMatt Macy } 1690*7877fdebSMatt Macy 1691*7877fdebSMatt Macy *asizep = asize; 1692*7877fdebSMatt Macy *max_asizep = max_asize; 1693*7877fdebSMatt Macy *logical_ashiftp = logical_ashift; 1694*7877fdebSMatt Macy *physical_ashiftp = physical_ashift; 1695*7877fdebSMatt Macy } 1696*7877fdebSMatt Macy 1697*7877fdebSMatt Macy /* 1698*7877fdebSMatt Macy * Open spare vdevs. 1699*7877fdebSMatt Macy */ 1700*7877fdebSMatt Macy static boolean_t 1701*7877fdebSMatt Macy vdev_draid_open_spares(vdev_t *vd) 1702*7877fdebSMatt Macy { 1703*7877fdebSMatt Macy return (vd->vdev_ops == &vdev_draid_spare_ops || 1704*7877fdebSMatt Macy vd->vdev_ops == &vdev_replacing_ops || 1705*7877fdebSMatt Macy vd->vdev_ops == &vdev_spare_ops); 1706*7877fdebSMatt Macy } 1707*7877fdebSMatt Macy 1708*7877fdebSMatt Macy /* 1709*7877fdebSMatt Macy * Open all children, excluding spares. 1710*7877fdebSMatt Macy */ 1711*7877fdebSMatt Macy static boolean_t 1712*7877fdebSMatt Macy vdev_draid_open_children(vdev_t *vd) 1713*7877fdebSMatt Macy { 1714*7877fdebSMatt Macy return (!vdev_draid_open_spares(vd)); 1715*7877fdebSMatt Macy } 1716*7877fdebSMatt Macy 1717*7877fdebSMatt Macy /* 1718*7877fdebSMatt Macy * Open a top-level dRAID vdev. 1719*7877fdebSMatt Macy */ 1720*7877fdebSMatt Macy static int 1721*7877fdebSMatt Macy vdev_draid_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize, 1722*7877fdebSMatt Macy uint64_t *logical_ashift, uint64_t *physical_ashift) 1723*7877fdebSMatt Macy { 1724*7877fdebSMatt Macy vdev_draid_config_t *vdc = vd->vdev_tsd; 1725*7877fdebSMatt Macy uint64_t nparity = vdc->vdc_nparity; 1726*7877fdebSMatt Macy int open_errors = 0; 1727*7877fdebSMatt Macy 1728*7877fdebSMatt Macy if (nparity > VDEV_DRAID_MAXPARITY || 1729*7877fdebSMatt Macy vd->vdev_children < nparity + 1) { 1730*7877fdebSMatt Macy vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 1731*7877fdebSMatt Macy return (SET_ERROR(EINVAL)); 1732*7877fdebSMatt Macy } 1733*7877fdebSMatt Macy 1734*7877fdebSMatt Macy /* 1735*7877fdebSMatt Macy * First open the normal children then the distributed spares. This 1736*7877fdebSMatt Macy * ordering is important to ensure the distributed spares calculate 1737*7877fdebSMatt Macy * the correct psize in the event that the dRAID vdevs were expanded. 1738*7877fdebSMatt Macy */ 1739*7877fdebSMatt Macy vdev_open_children_subset(vd, vdev_draid_open_children); 1740*7877fdebSMatt Macy vdev_open_children_subset(vd, vdev_draid_open_spares); 1741*7877fdebSMatt Macy 1742*7877fdebSMatt Macy /* Verify enough of the children are available to continue. */ 1743*7877fdebSMatt Macy for (int c = 0; c < vd->vdev_children; c++) { 1744*7877fdebSMatt Macy if (vd->vdev_child[c]->vdev_open_error != 0) { 1745*7877fdebSMatt Macy if ((++open_errors) > nparity) { 1746*7877fdebSMatt Macy vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS; 1747*7877fdebSMatt Macy return (SET_ERROR(ENXIO)); 1748*7877fdebSMatt Macy } 1749*7877fdebSMatt Macy } 1750*7877fdebSMatt Macy } 1751*7877fdebSMatt Macy 1752*7877fdebSMatt Macy /* 1753*7877fdebSMatt Macy * Allocatable capacity is the sum of the space on all children less 1754*7877fdebSMatt Macy * the number of distributed spares rounded down to last full row 1755*7877fdebSMatt Macy * and then to the last full group. An additional 32MB of scratch 1756*7877fdebSMatt Macy * space is reserved at the end of each child for use by the dRAID 1757*7877fdebSMatt Macy * expansion feature. 1758*7877fdebSMatt Macy */ 1759*7877fdebSMatt Macy uint64_t child_asize, child_max_asize; 1760*7877fdebSMatt Macy vdev_draid_calculate_asize(vd, &child_asize, &child_max_asize, 1761*7877fdebSMatt Macy logical_ashift, physical_ashift); 1762*7877fdebSMatt Macy 1763*7877fdebSMatt Macy /* 1764*7877fdebSMatt Macy * Should be unreachable since the minimum child size is 64MB, but 1765*7877fdebSMatt Macy * we want to make sure an underflow absolutely cannot occur here. 1766*7877fdebSMatt Macy */ 1767*7877fdebSMatt Macy if (child_asize < VDEV_DRAID_REFLOW_RESERVE || 1768*7877fdebSMatt Macy child_max_asize < VDEV_DRAID_REFLOW_RESERVE) { 1769*7877fdebSMatt Macy return (SET_ERROR(ENXIO)); 1770*7877fdebSMatt Macy } 1771*7877fdebSMatt Macy 1772*7877fdebSMatt Macy child_asize = ((child_asize - VDEV_DRAID_REFLOW_RESERVE) / 1773*7877fdebSMatt Macy VDEV_DRAID_ROWHEIGHT) * VDEV_DRAID_ROWHEIGHT; 1774*7877fdebSMatt Macy child_max_asize = ((child_max_asize - VDEV_DRAID_REFLOW_RESERVE) / 1775*7877fdebSMatt Macy VDEV_DRAID_ROWHEIGHT) * VDEV_DRAID_ROWHEIGHT; 1776*7877fdebSMatt Macy 1777*7877fdebSMatt Macy *asize = (((child_asize * vdc->vdc_ndisks) / vdc->vdc_groupsz) * 1778*7877fdebSMatt Macy vdc->vdc_groupsz); 1779*7877fdebSMatt Macy *max_asize = (((child_max_asize * vdc->vdc_ndisks) / vdc->vdc_groupsz) * 1780*7877fdebSMatt Macy vdc->vdc_groupsz); 1781*7877fdebSMatt Macy 1782*7877fdebSMatt Macy return (0); 1783*7877fdebSMatt Macy } 1784*7877fdebSMatt Macy 1785*7877fdebSMatt Macy /* 1786*7877fdebSMatt Macy * Close a top-level dRAID vdev. 1787*7877fdebSMatt Macy */ 1788*7877fdebSMatt Macy static void 1789*7877fdebSMatt Macy vdev_draid_close(vdev_t *vd) 1790*7877fdebSMatt Macy { 1791*7877fdebSMatt Macy for (int c = 0; c < vd->vdev_children; c++) { 1792*7877fdebSMatt Macy if (vd->vdev_child[c] != NULL) 1793*7877fdebSMatt Macy vdev_close(vd->vdev_child[c]); 1794*7877fdebSMatt Macy } 1795*7877fdebSMatt Macy } 1796*7877fdebSMatt Macy 1797*7877fdebSMatt Macy /* 1798*7877fdebSMatt Macy * Return the maximum asize for a rebuild zio in the provided range 1799*7877fdebSMatt Macy * given the following constraints. A dRAID chunks may not: 1800*7877fdebSMatt Macy * 1801*7877fdebSMatt Macy * - Exceed the maximum allowed block size (SPA_MAXBLOCKSIZE), or 1802*7877fdebSMatt Macy * - Span dRAID redundancy groups. 1803*7877fdebSMatt Macy */ 1804*7877fdebSMatt Macy static uint64_t 1805*7877fdebSMatt Macy vdev_draid_rebuild_asize(vdev_t *vd, uint64_t start, uint64_t asize, 1806*7877fdebSMatt Macy uint64_t max_segment) 1807*7877fdebSMatt Macy { 1808*7877fdebSMatt Macy vdev_draid_config_t *vdc = vd->vdev_tsd; 1809*7877fdebSMatt Macy 1810*7877fdebSMatt Macy ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops); 1811*7877fdebSMatt Macy 1812*7877fdebSMatt Macy uint64_t ashift = vd->vdev_ashift; 1813*7877fdebSMatt Macy uint64_t ndata = vdc->vdc_ndata; 1814*7877fdebSMatt Macy uint64_t psize = MIN(P2ROUNDUP(max_segment * ndata, 1 << ashift), 1815*7877fdebSMatt Macy SPA_MAXBLOCKSIZE); 1816*7877fdebSMatt Macy 1817*7877fdebSMatt Macy ASSERT3U(vdev_draid_get_astart(vd, start), ==, start); 1818*7877fdebSMatt Macy ASSERT3U(asize % (vdc->vdc_groupwidth << ashift), ==, 0); 1819*7877fdebSMatt Macy 1820*7877fdebSMatt Macy /* Chunks must evenly span all data columns in the group. */ 1821*7877fdebSMatt Macy psize = (((psize >> ashift) / ndata) * ndata) << ashift; 1822*7877fdebSMatt Macy uint64_t chunk_size = MIN(asize, vdev_psize_to_asize(vd, psize)); 1823*7877fdebSMatt Macy 1824*7877fdebSMatt Macy /* Reduce the chunk size to the group space remaining. */ 1825*7877fdebSMatt Macy uint64_t group = vdev_draid_offset_to_group(vd, start); 1826*7877fdebSMatt Macy uint64_t left = vdev_draid_group_to_offset(vd, group + 1) - start; 1827*7877fdebSMatt Macy chunk_size = MIN(chunk_size, left); 1828*7877fdebSMatt Macy 1829*7877fdebSMatt Macy ASSERT3U(chunk_size % (vdc->vdc_groupwidth << ashift), ==, 0); 1830*7877fdebSMatt Macy ASSERT3U(vdev_draid_offset_to_group(vd, start), ==, 1831*7877fdebSMatt Macy vdev_draid_offset_to_group(vd, start + chunk_size - 1)); 1832*7877fdebSMatt Macy 1833*7877fdebSMatt Macy return (chunk_size); 1834*7877fdebSMatt Macy } 1835*7877fdebSMatt Macy 1836*7877fdebSMatt Macy /* 1837*7877fdebSMatt Macy * Align the start of the metaslab to the group width and slightly reduce 1838*7877fdebSMatt Macy * its size to a multiple of the group width. Since full stripe writes are 1839*7877fdebSMatt Macy * required by dRAID this space is unallocable. Furthermore, aligning the 1840*7877fdebSMatt Macy * metaslab start is important for vdev initialize and TRIM which both operate 1841*7877fdebSMatt Macy * on metaslab boundaries which vdev_xlate() expects to be aligned. 1842*7877fdebSMatt Macy */ 1843*7877fdebSMatt Macy static void 1844*7877fdebSMatt Macy vdev_draid_metaslab_init(vdev_t *vd, uint64_t *ms_start, uint64_t *ms_size) 1845*7877fdebSMatt Macy { 1846*7877fdebSMatt Macy vdev_draid_config_t *vdc = vd->vdev_tsd; 1847*7877fdebSMatt Macy 1848*7877fdebSMatt Macy ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops); 1849*7877fdebSMatt Macy 1850*7877fdebSMatt Macy uint64_t sz = vdc->vdc_groupwidth << vd->vdev_ashift; 1851*7877fdebSMatt Macy uint64_t astart = vdev_draid_get_astart(vd, *ms_start); 1852*7877fdebSMatt Macy uint64_t asize = ((*ms_size - (astart - *ms_start)) / sz) * sz; 1853*7877fdebSMatt Macy 1854*7877fdebSMatt Macy *ms_start = astart; 1855*7877fdebSMatt Macy *ms_size = asize; 1856*7877fdebSMatt Macy 1857*7877fdebSMatt Macy ASSERT0(*ms_start % sz); 1858*7877fdebSMatt Macy ASSERT0(*ms_size % sz); 1859*7877fdebSMatt Macy } 1860*7877fdebSMatt Macy 1861*7877fdebSMatt Macy /* 1862*7877fdebSMatt Macy * Add virtual dRAID spares to the list of valid spares. In order to accomplish 1863*7877fdebSMatt Macy * this the existing array must be freed and reallocated with the additional 1864*7877fdebSMatt Macy * entries. 1865*7877fdebSMatt Macy */ 1866*7877fdebSMatt Macy int 1867*7877fdebSMatt Macy vdev_draid_spare_create(nvlist_t *nvroot, vdev_t *vd, uint64_t *ndraidp, 1868*7877fdebSMatt Macy uint64_t next_vdev_id) 1869*7877fdebSMatt Macy { 1870*7877fdebSMatt Macy uint64_t draid_nspares = 0; 1871*7877fdebSMatt Macy uint64_t ndraid = 0; 1872*7877fdebSMatt Macy int error; 1873*7877fdebSMatt Macy 1874*7877fdebSMatt Macy for (uint64_t i = 0; i < vd->vdev_children; i++) { 1875*7877fdebSMatt Macy vdev_t *cvd = vd->vdev_child[i]; 1876*7877fdebSMatt Macy 1877*7877fdebSMatt Macy if (cvd->vdev_ops == &vdev_draid_ops) { 1878*7877fdebSMatt Macy vdev_draid_config_t *vdc = cvd->vdev_tsd; 1879*7877fdebSMatt Macy draid_nspares += vdc->vdc_nspares; 1880*7877fdebSMatt Macy ndraid++; 1881*7877fdebSMatt Macy } 1882*7877fdebSMatt Macy } 1883*7877fdebSMatt Macy 1884*7877fdebSMatt Macy if (draid_nspares == 0) { 1885*7877fdebSMatt Macy *ndraidp = ndraid; 1886*7877fdebSMatt Macy return (0); 1887*7877fdebSMatt Macy } 1888*7877fdebSMatt Macy 1889*7877fdebSMatt Macy nvlist_t **old_spares, **new_spares; 1890*7877fdebSMatt Macy uint_t old_nspares; 1891*7877fdebSMatt Macy error = nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 1892*7877fdebSMatt Macy &old_spares, &old_nspares); 1893*7877fdebSMatt Macy if (error) 1894*7877fdebSMatt Macy old_nspares = 0; 1895*7877fdebSMatt Macy 1896*7877fdebSMatt Macy /* Allocate memory and copy of the existing spares. */ 1897*7877fdebSMatt Macy new_spares = kmem_alloc(sizeof (nvlist_t *) * 1898*7877fdebSMatt Macy (draid_nspares + old_nspares), KM_SLEEP); 1899*7877fdebSMatt Macy for (uint_t i = 0; i < old_nspares; i++) 1900*7877fdebSMatt Macy new_spares[i] = fnvlist_dup(old_spares[i]); 1901*7877fdebSMatt Macy 1902*7877fdebSMatt Macy /* Add new distributed spares to ZPOOL_CONFIG_SPARES. */ 1903*7877fdebSMatt Macy uint64_t n = old_nspares; 1904*7877fdebSMatt Macy for (uint64_t vdev_id = 0; vdev_id < vd->vdev_children; vdev_id++) { 1905*7877fdebSMatt Macy vdev_t *cvd = vd->vdev_child[vdev_id]; 1906*7877fdebSMatt Macy char path[64]; 1907*7877fdebSMatt Macy 1908*7877fdebSMatt Macy if (cvd->vdev_ops != &vdev_draid_ops) 1909*7877fdebSMatt Macy continue; 1910*7877fdebSMatt Macy 1911*7877fdebSMatt Macy vdev_draid_config_t *vdc = cvd->vdev_tsd; 1912*7877fdebSMatt Macy uint64_t nspares = vdc->vdc_nspares; 1913*7877fdebSMatt Macy uint64_t nparity = vdc->vdc_nparity; 1914*7877fdebSMatt Macy 1915*7877fdebSMatt Macy for (uint64_t spare_id = 0; spare_id < nspares; spare_id++) { 1916*7877fdebSMatt Macy bzero(path, sizeof (path)); 1917*7877fdebSMatt Macy (void) snprintf(path, sizeof (path) - 1, 1918*7877fdebSMatt Macy "%s%llu-%llu-%llu", VDEV_TYPE_DRAID, 1919*7877fdebSMatt Macy (u_longlong_t)nparity, 1920*7877fdebSMatt Macy (u_longlong_t)next_vdev_id + vdev_id, 1921*7877fdebSMatt Macy (u_longlong_t)spare_id); 1922*7877fdebSMatt Macy 1923*7877fdebSMatt Macy nvlist_t *spare = fnvlist_alloc(); 1924*7877fdebSMatt Macy fnvlist_add_string(spare, ZPOOL_CONFIG_PATH, path); 1925*7877fdebSMatt Macy fnvlist_add_string(spare, ZPOOL_CONFIG_TYPE, 1926*7877fdebSMatt Macy VDEV_TYPE_DRAID_SPARE); 1927*7877fdebSMatt Macy fnvlist_add_uint64(spare, ZPOOL_CONFIG_TOP_GUID, 1928*7877fdebSMatt Macy cvd->vdev_guid); 1929*7877fdebSMatt Macy fnvlist_add_uint64(spare, ZPOOL_CONFIG_SPARE_ID, 1930*7877fdebSMatt Macy spare_id); 1931*7877fdebSMatt Macy fnvlist_add_uint64(spare, ZPOOL_CONFIG_IS_LOG, 0); 1932*7877fdebSMatt Macy fnvlist_add_uint64(spare, ZPOOL_CONFIG_IS_SPARE, 1); 1933*7877fdebSMatt Macy fnvlist_add_uint64(spare, ZPOOL_CONFIG_WHOLE_DISK, 1); 1934*7877fdebSMatt Macy fnvlist_add_uint64(spare, ZPOOL_CONFIG_ASHIFT, 1935*7877fdebSMatt Macy cvd->vdev_ashift); 1936*7877fdebSMatt Macy 1937*7877fdebSMatt Macy new_spares[n] = spare; 1938*7877fdebSMatt Macy n++; 1939*7877fdebSMatt Macy } 1940*7877fdebSMatt Macy } 1941*7877fdebSMatt Macy 1942*7877fdebSMatt Macy if (n > 0) { 1943*7877fdebSMatt Macy (void) nvlist_remove_all(nvroot, ZPOOL_CONFIG_SPARES); 1944*7877fdebSMatt Macy fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 1945*7877fdebSMatt Macy new_spares, n); 1946*7877fdebSMatt Macy } 1947*7877fdebSMatt Macy 1948*7877fdebSMatt Macy for (int i = 0; i < n; i++) 1949*7877fdebSMatt Macy nvlist_free(new_spares[i]); 1950*7877fdebSMatt Macy 1951*7877fdebSMatt Macy kmem_free(new_spares, sizeof (*new_spares) * n); 1952*7877fdebSMatt Macy *ndraidp = ndraid; 1953*7877fdebSMatt Macy 1954*7877fdebSMatt Macy return (0); 1955*7877fdebSMatt Macy } 1956*7877fdebSMatt Macy 1957*7877fdebSMatt Macy /* 1958*7877fdebSMatt Macy * Determine if any portion of the provided block resides on a child vdev 1959*7877fdebSMatt Macy * with a dirty DTL and therefore needs to be resilvered. 1960*7877fdebSMatt Macy */ 1961*7877fdebSMatt Macy static boolean_t 1962*7877fdebSMatt Macy vdev_draid_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 1963*7877fdebSMatt Macy uint64_t phys_birth) 1964*7877fdebSMatt Macy { 1965*7877fdebSMatt Macy uint64_t offset = DVA_GET_OFFSET(dva); 1966*7877fdebSMatt Macy uint64_t asize = vdev_draid_asize(vd, psize); 1967*7877fdebSMatt Macy 1968*7877fdebSMatt Macy if (phys_birth == TXG_UNKNOWN) { 1969*7877fdebSMatt Macy /* 1970*7877fdebSMatt Macy * Sequential resilver. There is no meaningful phys_birth 1971*7877fdebSMatt Macy * for this block, we can only determine if block resides 1972*7877fdebSMatt Macy * in a degraded group in which case it must be resilvered. 1973*7877fdebSMatt Macy */ 1974*7877fdebSMatt Macy ASSERT3U(vdev_draid_offset_to_group(vd, offset), ==, 1975*7877fdebSMatt Macy vdev_draid_offset_to_group(vd, offset + asize - 1)); 1976*7877fdebSMatt Macy 1977*7877fdebSMatt Macy return (vdev_draid_group_degraded(vd, offset)); 1978*7877fdebSMatt Macy } else { 1979*7877fdebSMatt Macy /* 1980*7877fdebSMatt Macy * Healing resilver. TXGs not in DTL_PARTIAL are intact, 1981*7877fdebSMatt Macy * as are blocks in non-degraded groups. 1982*7877fdebSMatt Macy */ 1983*7877fdebSMatt Macy if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)) 1984*7877fdebSMatt Macy return (B_FALSE); 1985*7877fdebSMatt Macy 1986*7877fdebSMatt Macy if (vdev_draid_group_missing(vd, offset, phys_birth, 1)) 1987*7877fdebSMatt Macy return (B_TRUE); 1988*7877fdebSMatt Macy 1989*7877fdebSMatt Macy /* The block may span groups in which case check both. */ 1990*7877fdebSMatt Macy if (vdev_draid_offset_to_group(vd, offset) != 1991*7877fdebSMatt Macy vdev_draid_offset_to_group(vd, offset + asize - 1)) { 1992*7877fdebSMatt Macy if (vdev_draid_group_missing(vd, 1993*7877fdebSMatt Macy offset + asize, phys_birth, 1)) 1994*7877fdebSMatt Macy return (B_TRUE); 1995*7877fdebSMatt Macy } 1996*7877fdebSMatt Macy 1997*7877fdebSMatt Macy return (B_FALSE); 1998*7877fdebSMatt Macy } 1999*7877fdebSMatt Macy } 2000*7877fdebSMatt Macy 2001*7877fdebSMatt Macy static boolean_t 2002*7877fdebSMatt Macy vdev_draid_rebuilding(vdev_t *vd) 2003*7877fdebSMatt Macy { 2004*7877fdebSMatt Macy if (vd->vdev_ops->vdev_op_leaf && vd->vdev_rebuild_txg) 2005*7877fdebSMatt Macy return (B_TRUE); 2006*7877fdebSMatt Macy 2007*7877fdebSMatt Macy for (int i = 0; i < vd->vdev_children; i++) { 2008*7877fdebSMatt Macy if (vdev_draid_rebuilding(vd->vdev_child[i])) { 2009*7877fdebSMatt Macy return (B_TRUE); 2010*7877fdebSMatt Macy } 2011*7877fdebSMatt Macy } 2012*7877fdebSMatt Macy 2013*7877fdebSMatt Macy return (B_FALSE); 2014*7877fdebSMatt Macy } 2015*7877fdebSMatt Macy 2016*7877fdebSMatt Macy static void 2017*7877fdebSMatt Macy vdev_draid_io_verify(vdev_t *vd, raidz_row_t *rr, int col) 2018*7877fdebSMatt Macy { 2019*7877fdebSMatt Macy #ifdef ZFS_DEBUG 2020*7877fdebSMatt Macy range_seg64_t logical_rs, physical_rs, remain_rs; 2021*7877fdebSMatt Macy logical_rs.rs_start = rr->rr_offset; 2022*7877fdebSMatt Macy logical_rs.rs_end = logical_rs.rs_start + 2023*7877fdebSMatt Macy vdev_draid_asize(vd, rr->rr_size); 2024*7877fdebSMatt Macy 2025*7877fdebSMatt Macy raidz_col_t *rc = &rr->rr_col[col]; 2026*7877fdebSMatt Macy vdev_t *cvd = vd->vdev_child[rc->rc_devidx]; 2027*7877fdebSMatt Macy 2028*7877fdebSMatt Macy vdev_xlate(cvd, &logical_rs, &physical_rs, &remain_rs); 2029*7877fdebSMatt Macy ASSERT(vdev_xlate_is_empty(&remain_rs)); 2030*7877fdebSMatt Macy ASSERT3U(rc->rc_offset, ==, physical_rs.rs_start); 2031*7877fdebSMatt Macy ASSERT3U(rc->rc_offset, <, physical_rs.rs_end); 2032*7877fdebSMatt Macy ASSERT3U(rc->rc_offset + rc->rc_size, ==, physical_rs.rs_end); 2033*7877fdebSMatt Macy #endif 2034*7877fdebSMatt Macy } 2035*7877fdebSMatt Macy 2036*7877fdebSMatt Macy /* 2037*7877fdebSMatt Macy * For write operations: 2038*7877fdebSMatt Macy * 1. Generate the parity data 2039*7877fdebSMatt Macy * 2. Create child zio write operations to each column's vdev, for both 2040*7877fdebSMatt Macy * data and parity. A gang ABD is allocated by vdev_draid_map_alloc() 2041*7877fdebSMatt Macy * if a skip sector needs to be added to a column. 2042*7877fdebSMatt Macy */ 2043*7877fdebSMatt Macy static void 2044*7877fdebSMatt Macy vdev_draid_io_start_write(zio_t *zio, raidz_row_t *rr) 2045*7877fdebSMatt Macy { 2046*7877fdebSMatt Macy vdev_t *vd = zio->io_vd; 2047*7877fdebSMatt Macy raidz_map_t *rm = zio->io_vsd; 2048*7877fdebSMatt Macy 2049*7877fdebSMatt Macy vdev_raidz_generate_parity_row(rm, rr); 2050*7877fdebSMatt Macy 2051*7877fdebSMatt Macy for (int c = 0; c < rr->rr_cols; c++) { 2052*7877fdebSMatt Macy raidz_col_t *rc = &rr->rr_col[c]; 2053*7877fdebSMatt Macy 2054*7877fdebSMatt Macy /* 2055*7877fdebSMatt Macy * Empty columns are zero filled and included in the parity 2056*7877fdebSMatt Macy * calculation and therefore must be written. 2057*7877fdebSMatt Macy */ 2058*7877fdebSMatt Macy ASSERT3U(rc->rc_size, !=, 0); 2059*7877fdebSMatt Macy 2060*7877fdebSMatt Macy /* Verify physical to logical translation */ 2061*7877fdebSMatt Macy vdev_draid_io_verify(vd, rr, c); 2062*7877fdebSMatt Macy 2063*7877fdebSMatt Macy zio_nowait(zio_vdev_child_io(zio, NULL, 2064*7877fdebSMatt Macy vd->vdev_child[rc->rc_devidx], rc->rc_offset, 2065*7877fdebSMatt Macy rc->rc_abd, rc->rc_size, zio->io_type, zio->io_priority, 2066*7877fdebSMatt Macy 0, vdev_raidz_child_done, rc)); 2067*7877fdebSMatt Macy } 2068*7877fdebSMatt Macy } 2069*7877fdebSMatt Macy 2070*7877fdebSMatt Macy /* 2071*7877fdebSMatt Macy * For read operations: 2072*7877fdebSMatt Macy * 1. The vdev_draid_map_alloc() function will create a minimal raidz 2073*7877fdebSMatt Macy * mapping for the read based on the zio->io_flags. There are two 2074*7877fdebSMatt Macy * possible mappings either 1) a normal read, or 2) a scrub/resilver. 2075*7877fdebSMatt Macy * 2. Create the zio read operations. This will include all parity 2076*7877fdebSMatt Macy * columns and skip sectors for a scrub/resilver. 2077*7877fdebSMatt Macy */ 2078*7877fdebSMatt Macy static void 2079*7877fdebSMatt Macy vdev_draid_io_start_read(zio_t *zio, raidz_row_t *rr) 2080*7877fdebSMatt Macy { 2081*7877fdebSMatt Macy vdev_t *vd = zio->io_vd; 2082*7877fdebSMatt Macy 2083*7877fdebSMatt Macy /* Sequential rebuild must do IO at redundancy group boundary. */ 2084*7877fdebSMatt Macy IMPLY(zio->io_priority == ZIO_PRIORITY_REBUILD, rr->rr_nempty == 0); 2085*7877fdebSMatt Macy 2086*7877fdebSMatt Macy /* 2087*7877fdebSMatt Macy * Iterate over the columns in reverse order so that we hit the parity 2088*7877fdebSMatt Macy * last. Any errors along the way will force us to read the parity. 2089*7877fdebSMatt Macy * For scrub/resilver IOs which verify skip sectors, a gang ABD will 2090*7877fdebSMatt Macy * have been allocated to store them and rc->rc_size is increased. 2091*7877fdebSMatt Macy */ 2092*7877fdebSMatt Macy for (int c = rr->rr_cols - 1; c >= 0; c--) { 2093*7877fdebSMatt Macy raidz_col_t *rc = &rr->rr_col[c]; 2094*7877fdebSMatt Macy vdev_t *cvd = vd->vdev_child[rc->rc_devidx]; 2095*7877fdebSMatt Macy 2096*7877fdebSMatt Macy if (!vdev_draid_readable(cvd, rc->rc_offset)) { 2097*7877fdebSMatt Macy if (c >= rr->rr_firstdatacol) 2098*7877fdebSMatt Macy rr->rr_missingdata++; 2099*7877fdebSMatt Macy else 2100*7877fdebSMatt Macy rr->rr_missingparity++; 2101*7877fdebSMatt Macy rc->rc_error = SET_ERROR(ENXIO); 2102*7877fdebSMatt Macy rc->rc_tried = 1; 2103*7877fdebSMatt Macy rc->rc_skipped = 1; 2104*7877fdebSMatt Macy continue; 2105*7877fdebSMatt Macy } 2106*7877fdebSMatt Macy 2107*7877fdebSMatt Macy if (vdev_draid_missing(cvd, rc->rc_offset, zio->io_txg, 1)) { 2108*7877fdebSMatt Macy if (c >= rr->rr_firstdatacol) 2109*7877fdebSMatt Macy rr->rr_missingdata++; 2110*7877fdebSMatt Macy else 2111*7877fdebSMatt Macy rr->rr_missingparity++; 2112*7877fdebSMatt Macy rc->rc_error = SET_ERROR(ESTALE); 2113*7877fdebSMatt Macy rc->rc_skipped = 1; 2114*7877fdebSMatt Macy continue; 2115*7877fdebSMatt Macy } 2116*7877fdebSMatt Macy 2117*7877fdebSMatt Macy /* 2118*7877fdebSMatt Macy * Empty columns may be read during vdev_draid_io_done(). 2119*7877fdebSMatt Macy * Only skip them after the readable and missing checks 2120*7877fdebSMatt Macy * verify they are available. 2121*7877fdebSMatt Macy */ 2122*7877fdebSMatt Macy if (rc->rc_size == 0) { 2123*7877fdebSMatt Macy rc->rc_skipped = 1; 2124*7877fdebSMatt Macy continue; 2125*7877fdebSMatt Macy } 2126*7877fdebSMatt Macy 2127*7877fdebSMatt Macy if (zio->io_flags & ZIO_FLAG_RESILVER) { 2128*7877fdebSMatt Macy vdev_t *svd; 2129*7877fdebSMatt Macy 2130*7877fdebSMatt Macy /* 2131*7877fdebSMatt Macy * If this child is a distributed spare then the 2132*7877fdebSMatt Macy * offset might reside on the vdev being replaced. 2133*7877fdebSMatt Macy * In which case this data must be written to the 2134*7877fdebSMatt Macy * new device. Failure to do so would result in 2135*7877fdebSMatt Macy * checksum errors when the old device is detached 2136*7877fdebSMatt Macy * and the pool is scrubbed. 2137*7877fdebSMatt Macy */ 2138*7877fdebSMatt Macy if ((svd = vdev_draid_find_spare(cvd)) != NULL) { 2139*7877fdebSMatt Macy svd = vdev_draid_spare_get_child(svd, 2140*7877fdebSMatt Macy rc->rc_offset); 2141*7877fdebSMatt Macy if (svd && (svd->vdev_ops == &vdev_spare_ops || 2142*7877fdebSMatt Macy svd->vdev_ops == &vdev_replacing_ops)) { 2143*7877fdebSMatt Macy rc->rc_repair = 1; 2144*7877fdebSMatt Macy } 2145*7877fdebSMatt Macy } 2146*7877fdebSMatt Macy 2147*7877fdebSMatt Macy /* 2148*7877fdebSMatt Macy * Always issue a repair IO to this child when its 2149*7877fdebSMatt Macy * a spare or replacing vdev with an active rebuild. 2150*7877fdebSMatt Macy */ 2151*7877fdebSMatt Macy if ((cvd->vdev_ops == &vdev_spare_ops || 2152*7877fdebSMatt Macy cvd->vdev_ops == &vdev_replacing_ops) && 2153*7877fdebSMatt Macy vdev_draid_rebuilding(cvd)) { 2154*7877fdebSMatt Macy rc->rc_repair = 1; 2155*7877fdebSMatt Macy } 2156*7877fdebSMatt Macy } 2157*7877fdebSMatt Macy } 2158*7877fdebSMatt Macy 2159*7877fdebSMatt Macy /* 2160*7877fdebSMatt Macy * Either a parity or data column is missing this means a repair 2161*7877fdebSMatt Macy * may be attempted by vdev_draid_io_done(). Expand the raid map 2162*7877fdebSMatt Macy * to read in empty columns which are needed along with the parity 2163*7877fdebSMatt Macy * during reconstruction. 2164*7877fdebSMatt Macy */ 2165*7877fdebSMatt Macy if ((rr->rr_missingdata > 0 || rr->rr_missingparity > 0) && 2166*7877fdebSMatt Macy rr->rr_nempty > 0 && rr->rr_abd_empty == NULL) { 2167*7877fdebSMatt Macy vdev_draid_map_alloc_empty(zio, rr); 2168*7877fdebSMatt Macy } 2169*7877fdebSMatt Macy 2170*7877fdebSMatt Macy for (int c = rr->rr_cols - 1; c >= 0; c--) { 2171*7877fdebSMatt Macy raidz_col_t *rc = &rr->rr_col[c]; 2172*7877fdebSMatt Macy vdev_t *cvd = vd->vdev_child[rc->rc_devidx]; 2173*7877fdebSMatt Macy 2174*7877fdebSMatt Macy if (rc->rc_error || rc->rc_size == 0) 2175*7877fdebSMatt Macy continue; 2176*7877fdebSMatt Macy 2177*7877fdebSMatt Macy if (c >= rr->rr_firstdatacol || rr->rr_missingdata > 0 || 2178*7877fdebSMatt Macy (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) { 2179*7877fdebSMatt Macy zio_nowait(zio_vdev_child_io(zio, NULL, cvd, 2180*7877fdebSMatt Macy rc->rc_offset, rc->rc_abd, rc->rc_size, 2181*7877fdebSMatt Macy zio->io_type, zio->io_priority, 0, 2182*7877fdebSMatt Macy vdev_raidz_child_done, rc)); 2183*7877fdebSMatt Macy } 2184*7877fdebSMatt Macy } 2185*7877fdebSMatt Macy } 2186*7877fdebSMatt Macy 2187*7877fdebSMatt Macy /* 2188*7877fdebSMatt Macy * Start an IO operation to a dRAID vdev. 2189*7877fdebSMatt Macy */ 2190*7877fdebSMatt Macy static void 2191*7877fdebSMatt Macy vdev_draid_io_start(zio_t *zio) 2192*7877fdebSMatt Macy { 2193*7877fdebSMatt Macy vdev_t *vd __maybe_unused = zio->io_vd; 2194*7877fdebSMatt Macy raidz_map_t *rm; 2195*7877fdebSMatt Macy 2196*7877fdebSMatt Macy ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops); 2197*7877fdebSMatt Macy ASSERT3U(zio->io_offset, ==, vdev_draid_get_astart(vd, zio->io_offset)); 2198*7877fdebSMatt Macy 2199*7877fdebSMatt Macy rm = vdev_draid_map_alloc(zio); 2200*7877fdebSMatt Macy 2201*7877fdebSMatt Macy if (zio->io_type == ZIO_TYPE_WRITE) { 2202*7877fdebSMatt Macy for (int i = 0; i < rm->rm_nrows; i++) { 2203*7877fdebSMatt Macy vdev_draid_io_start_write(zio, rm->rm_row[i]); 2204*7877fdebSMatt Macy } 2205*7877fdebSMatt Macy } else { 2206*7877fdebSMatt Macy ASSERT(zio->io_type == ZIO_TYPE_READ); 2207*7877fdebSMatt Macy 2208*7877fdebSMatt Macy for (int i = 0; i < rm->rm_nrows; i++) { 2209*7877fdebSMatt Macy vdev_draid_io_start_read(zio, rm->rm_row[i]); 2210*7877fdebSMatt Macy } 2211*7877fdebSMatt Macy } 2212*7877fdebSMatt Macy 2213*7877fdebSMatt Macy zio_execute(zio); 2214*7877fdebSMatt Macy } 2215*7877fdebSMatt Macy 2216*7877fdebSMatt Macy /* 2217*7877fdebSMatt Macy * Complete an IO operation on a dRAID vdev. The raidz logic can be applied 2218*7877fdebSMatt Macy * to dRAID since the layout is fully described by the raidz_map_t. 2219*7877fdebSMatt Macy */ 2220*7877fdebSMatt Macy static void 2221*7877fdebSMatt Macy vdev_draid_io_done(zio_t *zio) 2222*7877fdebSMatt Macy { 2223*7877fdebSMatt Macy vdev_raidz_io_done(zio); 2224*7877fdebSMatt Macy } 2225*7877fdebSMatt Macy 2226*7877fdebSMatt Macy static void 2227*7877fdebSMatt Macy vdev_draid_state_change(vdev_t *vd, int faulted, int degraded) 2228*7877fdebSMatt Macy { 2229*7877fdebSMatt Macy vdev_draid_config_t *vdc = vd->vdev_tsd; 2230*7877fdebSMatt Macy ASSERT(vd->vdev_ops == &vdev_draid_ops); 2231*7877fdebSMatt Macy 2232*7877fdebSMatt Macy if (faulted > vdc->vdc_nparity) 2233*7877fdebSMatt Macy vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2234*7877fdebSMatt Macy VDEV_AUX_NO_REPLICAS); 2235*7877fdebSMatt Macy else if (degraded + faulted != 0) 2236*7877fdebSMatt Macy vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE); 2237*7877fdebSMatt Macy else 2238*7877fdebSMatt Macy vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE); 2239*7877fdebSMatt Macy } 2240*7877fdebSMatt Macy 2241*7877fdebSMatt Macy static void 2242*7877fdebSMatt Macy vdev_draid_xlate(vdev_t *cvd, const range_seg64_t *logical_rs, 2243*7877fdebSMatt Macy range_seg64_t *physical_rs, range_seg64_t *remain_rs) 2244*7877fdebSMatt Macy { 2245*7877fdebSMatt Macy vdev_t *raidvd = cvd->vdev_parent; 2246*7877fdebSMatt Macy ASSERT(raidvd->vdev_ops == &vdev_draid_ops); 2247*7877fdebSMatt Macy 2248*7877fdebSMatt Macy vdev_draid_config_t *vdc = raidvd->vdev_tsd; 2249*7877fdebSMatt Macy uint64_t ashift = raidvd->vdev_top->vdev_ashift; 2250*7877fdebSMatt Macy 2251*7877fdebSMatt Macy /* Make sure the offsets are block-aligned */ 2252*7877fdebSMatt Macy ASSERT0(logical_rs->rs_start % (1 << ashift)); 2253*7877fdebSMatt Macy ASSERT0(logical_rs->rs_end % (1 << ashift)); 2254*7877fdebSMatt Macy 2255*7877fdebSMatt Macy uint64_t logical_start = logical_rs->rs_start; 2256*7877fdebSMatt Macy uint64_t logical_end = logical_rs->rs_end; 2257*7877fdebSMatt Macy 2258*7877fdebSMatt Macy /* 2259*7877fdebSMatt Macy * Unaligned ranges must be skipped. All metaslabs are correctly 2260*7877fdebSMatt Macy * aligned so this should not happen, but this case is handled in 2261*7877fdebSMatt Macy * case it's needed by future callers. 2262*7877fdebSMatt Macy */ 2263*7877fdebSMatt Macy uint64_t astart = vdev_draid_get_astart(raidvd, logical_start); 2264*7877fdebSMatt Macy if (astart != logical_start) { 2265*7877fdebSMatt Macy physical_rs->rs_start = logical_start; 2266*7877fdebSMatt Macy physical_rs->rs_end = logical_start; 2267*7877fdebSMatt Macy remain_rs->rs_start = MIN(astart, logical_end); 2268*7877fdebSMatt Macy remain_rs->rs_end = logical_end; 2269*7877fdebSMatt Macy return; 2270*7877fdebSMatt Macy } 2271*7877fdebSMatt Macy 2272*7877fdebSMatt Macy /* 2273*7877fdebSMatt Macy * Unlike with mirrors and raidz a dRAID logical range can map 2274*7877fdebSMatt Macy * to multiple non-contiguous physical ranges. This is handled by 2275*7877fdebSMatt Macy * limiting the size of the logical range to a single group and 2276*7877fdebSMatt Macy * setting the remain argument such that it describes the remaining 2277*7877fdebSMatt Macy * unmapped logical range. This is stricter than absolutely 2278*7877fdebSMatt Macy * necessary but helps simplify the logic below. 2279*7877fdebSMatt Macy */ 2280*7877fdebSMatt Macy uint64_t group = vdev_draid_offset_to_group(raidvd, logical_start); 2281*7877fdebSMatt Macy uint64_t nextstart = vdev_draid_group_to_offset(raidvd, group + 1); 2282*7877fdebSMatt Macy if (logical_end > nextstart) 2283*7877fdebSMatt Macy logical_end = nextstart; 2284*7877fdebSMatt Macy 2285*7877fdebSMatt Macy /* Find the starting offset for each vdev in the group */ 2286*7877fdebSMatt Macy uint64_t perm, groupstart; 2287*7877fdebSMatt Macy uint64_t start = vdev_draid_logical_to_physical(raidvd, 2288*7877fdebSMatt Macy logical_start, &perm, &groupstart); 2289*7877fdebSMatt Macy uint64_t end = start; 2290*7877fdebSMatt Macy 2291*7877fdebSMatt Macy uint8_t *base; 2292*7877fdebSMatt Macy uint64_t iter, id; 2293*7877fdebSMatt Macy vdev_draid_get_perm(vdc, perm, &base, &iter); 2294*7877fdebSMatt Macy 2295*7877fdebSMatt Macy /* 2296*7877fdebSMatt Macy * Check if the passed child falls within the group. If it does 2297*7877fdebSMatt Macy * update the start and end to reflect the physical range. 2298*7877fdebSMatt Macy * Otherwise, leave them unmodified which will result in an empty 2299*7877fdebSMatt Macy * (zero-length) physical range being returned. 2300*7877fdebSMatt Macy */ 2301*7877fdebSMatt Macy for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) { 2302*7877fdebSMatt Macy uint64_t c = (groupstart + i) % vdc->vdc_ndisks; 2303*7877fdebSMatt Macy 2304*7877fdebSMatt Macy if (c == 0 && i != 0) { 2305*7877fdebSMatt Macy /* the group wrapped, increment the start */ 2306*7877fdebSMatt Macy start += VDEV_DRAID_ROWHEIGHT; 2307*7877fdebSMatt Macy end = start; 2308*7877fdebSMatt Macy } 2309*7877fdebSMatt Macy 2310*7877fdebSMatt Macy id = vdev_draid_permute_id(vdc, base, iter, c); 2311*7877fdebSMatt Macy if (id == cvd->vdev_id) { 2312*7877fdebSMatt Macy uint64_t b_size = (logical_end >> ashift) - 2313*7877fdebSMatt Macy (logical_start >> ashift); 2314*7877fdebSMatt Macy ASSERT3U(b_size, >, 0); 2315*7877fdebSMatt Macy end = start + ((((b_size - 1) / 2316*7877fdebSMatt Macy vdc->vdc_groupwidth) + 1) << ashift); 2317*7877fdebSMatt Macy break; 2318*7877fdebSMatt Macy } 2319*7877fdebSMatt Macy } 2320*7877fdebSMatt Macy physical_rs->rs_start = start; 2321*7877fdebSMatt Macy physical_rs->rs_end = end; 2322*7877fdebSMatt Macy 2323*7877fdebSMatt Macy /* 2324*7877fdebSMatt Macy * Only top-level vdevs are allowed to set remain_rs because 2325*7877fdebSMatt Macy * when .vdev_op_xlate() is called for their children the full 2326*7877fdebSMatt Macy * logical range is not provided by vdev_xlate(). 2327*7877fdebSMatt Macy */ 2328*7877fdebSMatt Macy remain_rs->rs_start = logical_end; 2329*7877fdebSMatt Macy remain_rs->rs_end = logical_rs->rs_end; 2330*7877fdebSMatt Macy 2331*7877fdebSMatt Macy ASSERT3U(physical_rs->rs_start, <=, logical_start); 2332*7877fdebSMatt Macy ASSERT3U(physical_rs->rs_end - physical_rs->rs_start, <=, 2333*7877fdebSMatt Macy logical_end - logical_start); 2334*7877fdebSMatt Macy } 2335*7877fdebSMatt Macy 2336*7877fdebSMatt Macy /* 2337*7877fdebSMatt Macy * Add dRAID specific fields to the config nvlist. 2338*7877fdebSMatt Macy */ 2339*7877fdebSMatt Macy static void 2340*7877fdebSMatt Macy vdev_draid_config_generate(vdev_t *vd, nvlist_t *nv) 2341*7877fdebSMatt Macy { 2342*7877fdebSMatt Macy ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops); 2343*7877fdebSMatt Macy vdev_draid_config_t *vdc = vd->vdev_tsd; 2344*7877fdebSMatt Macy 2345*7877fdebSMatt Macy fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vdc->vdc_nparity); 2346*7877fdebSMatt Macy fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, vdc->vdc_ndata); 2347*7877fdebSMatt Macy fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, vdc->vdc_nspares); 2348*7877fdebSMatt Macy fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, vdc->vdc_ngroups); 2349*7877fdebSMatt Macy } 2350*7877fdebSMatt Macy 2351*7877fdebSMatt Macy /* 2352*7877fdebSMatt Macy * Initialize private dRAID specific fields from the nvlist. 2353*7877fdebSMatt Macy */ 2354*7877fdebSMatt Macy static int 2355*7877fdebSMatt Macy vdev_draid_init(spa_t *spa, nvlist_t *nv, void **tsd) 2356*7877fdebSMatt Macy { 2357*7877fdebSMatt Macy uint64_t ndata, nparity, nspares, ngroups; 2358*7877fdebSMatt Macy int error; 2359*7877fdebSMatt Macy 2360*7877fdebSMatt Macy if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, &ndata)) 2361*7877fdebSMatt Macy return (SET_ERROR(EINVAL)); 2362*7877fdebSMatt Macy 2363*7877fdebSMatt Macy if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &nparity) || 2364*7877fdebSMatt Macy nparity == 0 || nparity > VDEV_DRAID_MAXPARITY) { 2365*7877fdebSMatt Macy return (SET_ERROR(EINVAL)); 2366*7877fdebSMatt Macy } 2367*7877fdebSMatt Macy 2368*7877fdebSMatt Macy uint_t children; 2369*7877fdebSMatt Macy nvlist_t **child; 2370*7877fdebSMatt Macy if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 2371*7877fdebSMatt Macy &child, &children) != 0 || children == 0 || 2372*7877fdebSMatt Macy children > VDEV_DRAID_MAX_CHILDREN) { 2373*7877fdebSMatt Macy return (SET_ERROR(EINVAL)); 2374*7877fdebSMatt Macy } 2375*7877fdebSMatt Macy 2376*7877fdebSMatt Macy if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, &nspares) || 2377*7877fdebSMatt Macy nspares > 100 || nspares > (children - (ndata + nparity))) { 2378*7877fdebSMatt Macy return (SET_ERROR(EINVAL)); 2379*7877fdebSMatt Macy } 2380*7877fdebSMatt Macy 2381*7877fdebSMatt Macy if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, &ngroups) || 2382*7877fdebSMatt Macy ngroups == 0 || ngroups > VDEV_DRAID_MAX_CHILDREN) { 2383*7877fdebSMatt Macy return (SET_ERROR(EINVAL)); 2384*7877fdebSMatt Macy } 2385*7877fdebSMatt Macy 2386*7877fdebSMatt Macy /* 2387*7877fdebSMatt Macy * Validate the minimum number of children exist per group for the 2388*7877fdebSMatt Macy * specified parity level (draid1 >= 2, draid2 >= 3, draid3 >= 4). 2389*7877fdebSMatt Macy */ 2390*7877fdebSMatt Macy if (children < (ndata + nparity + nspares)) 2391*7877fdebSMatt Macy return (SET_ERROR(EINVAL)); 2392*7877fdebSMatt Macy 2393*7877fdebSMatt Macy /* 2394*7877fdebSMatt Macy * Create the dRAID configuration using the pool nvlist configuration 2395*7877fdebSMatt Macy * and the fixed mapping for the correct number of children. 2396*7877fdebSMatt Macy */ 2397*7877fdebSMatt Macy vdev_draid_config_t *vdc; 2398*7877fdebSMatt Macy const draid_map_t *map; 2399*7877fdebSMatt Macy 2400*7877fdebSMatt Macy error = vdev_draid_lookup_map(children, &map); 2401*7877fdebSMatt Macy if (error) 2402*7877fdebSMatt Macy return (SET_ERROR(EINVAL)); 2403*7877fdebSMatt Macy 2404*7877fdebSMatt Macy vdc = kmem_zalloc(sizeof (*vdc), KM_SLEEP); 2405*7877fdebSMatt Macy vdc->vdc_ndata = ndata; 2406*7877fdebSMatt Macy vdc->vdc_nparity = nparity; 2407*7877fdebSMatt Macy vdc->vdc_nspares = nspares; 2408*7877fdebSMatt Macy vdc->vdc_children = children; 2409*7877fdebSMatt Macy vdc->vdc_ngroups = ngroups; 2410*7877fdebSMatt Macy vdc->vdc_nperms = map->dm_nperms; 2411*7877fdebSMatt Macy 2412*7877fdebSMatt Macy error = vdev_draid_generate_perms(map, &vdc->vdc_perms); 2413*7877fdebSMatt Macy if (error) { 2414*7877fdebSMatt Macy kmem_free(vdc, sizeof (*vdc)); 2415*7877fdebSMatt Macy return (SET_ERROR(EINVAL)); 2416*7877fdebSMatt Macy } 2417*7877fdebSMatt Macy 2418*7877fdebSMatt Macy /* 2419*7877fdebSMatt Macy * Derived constants. 2420*7877fdebSMatt Macy */ 2421*7877fdebSMatt Macy vdc->vdc_groupwidth = vdc->vdc_ndata + vdc->vdc_nparity; 2422*7877fdebSMatt Macy vdc->vdc_ndisks = vdc->vdc_children - vdc->vdc_nspares; 2423*7877fdebSMatt Macy vdc->vdc_groupsz = vdc->vdc_groupwidth * VDEV_DRAID_ROWHEIGHT; 2424*7877fdebSMatt Macy vdc->vdc_devslicesz = (vdc->vdc_groupsz * vdc->vdc_ngroups) / 2425*7877fdebSMatt Macy vdc->vdc_ndisks; 2426*7877fdebSMatt Macy 2427*7877fdebSMatt Macy ASSERT3U(vdc->vdc_groupwidth, >=, 2); 2428*7877fdebSMatt Macy ASSERT3U(vdc->vdc_groupwidth, <=, vdc->vdc_ndisks); 2429*7877fdebSMatt Macy ASSERT3U(vdc->vdc_groupsz, >=, 2 * VDEV_DRAID_ROWHEIGHT); 2430*7877fdebSMatt Macy ASSERT3U(vdc->vdc_devslicesz, >=, VDEV_DRAID_ROWHEIGHT); 2431*7877fdebSMatt Macy ASSERT3U(vdc->vdc_devslicesz % VDEV_DRAID_ROWHEIGHT, ==, 0); 2432*7877fdebSMatt Macy ASSERT3U((vdc->vdc_groupwidth * vdc->vdc_ngroups) % 2433*7877fdebSMatt Macy vdc->vdc_ndisks, ==, 0); 2434*7877fdebSMatt Macy 2435*7877fdebSMatt Macy *tsd = vdc; 2436*7877fdebSMatt Macy 2437*7877fdebSMatt Macy return (0); 2438*7877fdebSMatt Macy } 2439*7877fdebSMatt Macy 2440*7877fdebSMatt Macy static void 2441*7877fdebSMatt Macy vdev_draid_fini(vdev_t *vd) 2442*7877fdebSMatt Macy { 2443*7877fdebSMatt Macy vdev_draid_config_t *vdc = vd->vdev_tsd; 2444*7877fdebSMatt Macy 2445*7877fdebSMatt Macy vmem_free(vdc->vdc_perms, sizeof (uint8_t) * 2446*7877fdebSMatt Macy vdc->vdc_children * vdc->vdc_nperms); 2447*7877fdebSMatt Macy kmem_free(vdc, sizeof (*vdc)); 2448*7877fdebSMatt Macy } 2449*7877fdebSMatt Macy 2450*7877fdebSMatt Macy static uint64_t 2451*7877fdebSMatt Macy vdev_draid_nparity(vdev_t *vd) 2452*7877fdebSMatt Macy { 2453*7877fdebSMatt Macy vdev_draid_config_t *vdc = vd->vdev_tsd; 2454*7877fdebSMatt Macy 2455*7877fdebSMatt Macy return (vdc->vdc_nparity); 2456*7877fdebSMatt Macy } 2457*7877fdebSMatt Macy 2458*7877fdebSMatt Macy static uint64_t 2459*7877fdebSMatt Macy vdev_draid_ndisks(vdev_t *vd) 2460*7877fdebSMatt Macy { 2461*7877fdebSMatt Macy vdev_draid_config_t *vdc = vd->vdev_tsd; 2462*7877fdebSMatt Macy 2463*7877fdebSMatt Macy return (vdc->vdc_ndisks); 2464*7877fdebSMatt Macy } 2465*7877fdebSMatt Macy 2466*7877fdebSMatt Macy vdev_ops_t vdev_draid_ops = { 2467*7877fdebSMatt Macy .vdev_op_init = vdev_draid_init, 2468*7877fdebSMatt Macy .vdev_op_fini = vdev_draid_fini, 2469*7877fdebSMatt Macy .vdev_op_open = vdev_draid_open, 2470*7877fdebSMatt Macy .vdev_op_close = vdev_draid_close, 2471*7877fdebSMatt Macy .vdev_op_asize = vdev_draid_asize, 2472*7877fdebSMatt Macy .vdev_op_min_asize = vdev_draid_min_asize, 2473*7877fdebSMatt Macy .vdev_op_min_alloc = vdev_draid_min_alloc, 2474*7877fdebSMatt Macy .vdev_op_io_start = vdev_draid_io_start, 2475*7877fdebSMatt Macy .vdev_op_io_done = vdev_draid_io_done, 2476*7877fdebSMatt Macy .vdev_op_state_change = vdev_draid_state_change, 2477*7877fdebSMatt Macy .vdev_op_need_resilver = vdev_draid_need_resilver, 2478*7877fdebSMatt Macy .vdev_op_hold = NULL, 2479*7877fdebSMatt Macy .vdev_op_rele = NULL, 2480*7877fdebSMatt Macy .vdev_op_remap = NULL, 2481*7877fdebSMatt Macy .vdev_op_xlate = vdev_draid_xlate, 2482*7877fdebSMatt Macy .vdev_op_rebuild_asize = vdev_draid_rebuild_asize, 2483*7877fdebSMatt Macy .vdev_op_metaslab_init = vdev_draid_metaslab_init, 2484*7877fdebSMatt Macy .vdev_op_config_generate = vdev_draid_config_generate, 2485*7877fdebSMatt Macy .vdev_op_nparity = vdev_draid_nparity, 2486*7877fdebSMatt Macy .vdev_op_ndisks = vdev_draid_ndisks, 2487*7877fdebSMatt Macy .vdev_op_type = VDEV_TYPE_DRAID, 2488*7877fdebSMatt Macy .vdev_op_leaf = B_FALSE, 2489*7877fdebSMatt Macy }; 2490*7877fdebSMatt Macy 2491*7877fdebSMatt Macy 2492*7877fdebSMatt Macy /* 2493*7877fdebSMatt Macy * A dRAID distributed spare is a virtual leaf vdev which is included in the 2494*7877fdebSMatt Macy * parent dRAID configuration. The last N columns of the dRAID permutation 2495*7877fdebSMatt Macy * table are used to determine on which dRAID children a specific offset 2496*7877fdebSMatt Macy * should be written. These spare leaf vdevs can only be used to replace 2497*7877fdebSMatt Macy * faulted children in the same dRAID configuration. 2498*7877fdebSMatt Macy */ 2499*7877fdebSMatt Macy 2500*7877fdebSMatt Macy /* 2501*7877fdebSMatt Macy * Distributed spare state. All fields are set when the distributed spare is 2502*7877fdebSMatt Macy * first opened and are immutable. 2503*7877fdebSMatt Macy */ 2504*7877fdebSMatt Macy typedef struct { 2505*7877fdebSMatt Macy vdev_t *vds_draid_vdev; /* top-level parent dRAID vdev */ 2506*7877fdebSMatt Macy uint64_t vds_top_guid; /* top-level parent dRAID guid */ 2507*7877fdebSMatt Macy uint64_t vds_spare_id; /* spare id (0 - vdc->vdc_nspares-1) */ 2508*7877fdebSMatt Macy } vdev_draid_spare_t; 2509*7877fdebSMatt Macy 2510*7877fdebSMatt Macy /* 2511*7877fdebSMatt Macy * Returns the parent dRAID vdev to which the distributed spare belongs. 2512*7877fdebSMatt Macy * This may be safely called even when the vdev is not open. 2513*7877fdebSMatt Macy */ 2514*7877fdebSMatt Macy vdev_t * 2515*7877fdebSMatt Macy vdev_draid_spare_get_parent(vdev_t *vd) 2516*7877fdebSMatt Macy { 2517*7877fdebSMatt Macy vdev_draid_spare_t *vds = vd->vdev_tsd; 2518*7877fdebSMatt Macy 2519*7877fdebSMatt Macy ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops); 2520*7877fdebSMatt Macy 2521*7877fdebSMatt Macy if (vds->vds_draid_vdev != NULL) 2522*7877fdebSMatt Macy return (vds->vds_draid_vdev); 2523*7877fdebSMatt Macy 2524*7877fdebSMatt Macy return (vdev_lookup_by_guid(vd->vdev_spa->spa_root_vdev, 2525*7877fdebSMatt Macy vds->vds_top_guid)); 2526*7877fdebSMatt Macy } 2527*7877fdebSMatt Macy 2528*7877fdebSMatt Macy /* 2529*7877fdebSMatt Macy * A dRAID space is active when it's the child of a vdev using the 2530*7877fdebSMatt Macy * vdev_spare_ops, vdev_replacing_ops or vdev_draid_ops. 2531*7877fdebSMatt Macy */ 2532*7877fdebSMatt Macy static boolean_t 2533*7877fdebSMatt Macy vdev_draid_spare_is_active(vdev_t *vd) 2534*7877fdebSMatt Macy { 2535*7877fdebSMatt Macy vdev_t *pvd = vd->vdev_parent; 2536*7877fdebSMatt Macy 2537*7877fdebSMatt Macy if (pvd != NULL && (pvd->vdev_ops == &vdev_spare_ops || 2538*7877fdebSMatt Macy pvd->vdev_ops == &vdev_replacing_ops || 2539*7877fdebSMatt Macy pvd->vdev_ops == &vdev_draid_ops)) { 2540*7877fdebSMatt Macy return (B_TRUE); 2541*7877fdebSMatt Macy } else { 2542*7877fdebSMatt Macy return (B_FALSE); 2543*7877fdebSMatt Macy } 2544*7877fdebSMatt Macy } 2545*7877fdebSMatt Macy 2546*7877fdebSMatt Macy /* 2547*7877fdebSMatt Macy * Given a dRAID distribute spare vdev, returns the physical child vdev 2548*7877fdebSMatt Macy * on which the provided offset resides. This may involve recursing through 2549*7877fdebSMatt Macy * multiple layers of distributed spares. Note that offset is relative to 2550*7877fdebSMatt Macy * this vdev. 2551*7877fdebSMatt Macy */ 2552*7877fdebSMatt Macy vdev_t * 2553*7877fdebSMatt Macy vdev_draid_spare_get_child(vdev_t *vd, uint64_t physical_offset) 2554*7877fdebSMatt Macy { 2555*7877fdebSMatt Macy vdev_draid_spare_t *vds = vd->vdev_tsd; 2556*7877fdebSMatt Macy 2557*7877fdebSMatt Macy ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops); 2558*7877fdebSMatt Macy 2559*7877fdebSMatt Macy /* The vdev is closed */ 2560*7877fdebSMatt Macy if (vds->vds_draid_vdev == NULL) 2561*7877fdebSMatt Macy return (NULL); 2562*7877fdebSMatt Macy 2563*7877fdebSMatt Macy vdev_t *tvd = vds->vds_draid_vdev; 2564*7877fdebSMatt Macy vdev_draid_config_t *vdc = tvd->vdev_tsd; 2565*7877fdebSMatt Macy 2566*7877fdebSMatt Macy ASSERT3P(tvd->vdev_ops, ==, &vdev_draid_ops); 2567*7877fdebSMatt Macy ASSERT3U(vds->vds_spare_id, <, vdc->vdc_nspares); 2568*7877fdebSMatt Macy 2569*7877fdebSMatt Macy uint8_t *base; 2570*7877fdebSMatt Macy uint64_t iter; 2571*7877fdebSMatt Macy uint64_t perm = physical_offset / vdc->vdc_devslicesz; 2572*7877fdebSMatt Macy 2573*7877fdebSMatt Macy vdev_draid_get_perm(vdc, perm, &base, &iter); 2574*7877fdebSMatt Macy 2575*7877fdebSMatt Macy uint64_t cid = vdev_draid_permute_id(vdc, base, iter, 2576*7877fdebSMatt Macy (tvd->vdev_children - 1) - vds->vds_spare_id); 2577*7877fdebSMatt Macy vdev_t *cvd = tvd->vdev_child[cid]; 2578*7877fdebSMatt Macy 2579*7877fdebSMatt Macy if (cvd->vdev_ops == &vdev_draid_spare_ops) 2580*7877fdebSMatt Macy return (vdev_draid_spare_get_child(cvd, physical_offset)); 2581*7877fdebSMatt Macy 2582*7877fdebSMatt Macy return (cvd); 2583*7877fdebSMatt Macy } 2584*7877fdebSMatt Macy 2585*7877fdebSMatt Macy /* ARGSUSED */ 2586*7877fdebSMatt Macy static void 2587*7877fdebSMatt Macy vdev_draid_spare_close(vdev_t *vd) 2588*7877fdebSMatt Macy { 2589*7877fdebSMatt Macy vdev_draid_spare_t *vds = vd->vdev_tsd; 2590*7877fdebSMatt Macy vds->vds_draid_vdev = NULL; 2591*7877fdebSMatt Macy } 2592*7877fdebSMatt Macy 2593*7877fdebSMatt Macy /* 2594*7877fdebSMatt Macy * Opening a dRAID spare device is done by looking up the associated dRAID 2595*7877fdebSMatt Macy * top-level vdev guid from the spare configuration. 2596*7877fdebSMatt Macy */ 2597*7877fdebSMatt Macy static int 2598*7877fdebSMatt Macy vdev_draid_spare_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize, 2599*7877fdebSMatt Macy uint64_t *logical_ashift, uint64_t *physical_ashift) 2600*7877fdebSMatt Macy { 2601*7877fdebSMatt Macy vdev_draid_spare_t *vds = vd->vdev_tsd; 2602*7877fdebSMatt Macy vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2603*7877fdebSMatt Macy uint64_t asize, max_asize; 2604*7877fdebSMatt Macy 2605*7877fdebSMatt Macy vdev_t *tvd = vdev_lookup_by_guid(rvd, vds->vds_top_guid); 2606*7877fdebSMatt Macy if (tvd == NULL) { 2607*7877fdebSMatt Macy /* 2608*7877fdebSMatt Macy * When spa_vdev_add() is labeling new spares the 2609*7877fdebSMatt Macy * associated dRAID is not attached to the root vdev 2610*7877fdebSMatt Macy * nor does this spare have a parent. Simulate a valid 2611*7877fdebSMatt Macy * device in order to allow the label to be initialized 2612*7877fdebSMatt Macy * and the distributed spare added to the configuration. 2613*7877fdebSMatt Macy */ 2614*7877fdebSMatt Macy if (vd->vdev_parent == NULL) { 2615*7877fdebSMatt Macy *psize = *max_psize = SPA_MINDEVSIZE; 2616*7877fdebSMatt Macy *logical_ashift = *physical_ashift = ASHIFT_MIN; 2617*7877fdebSMatt Macy return (0); 2618*7877fdebSMatt Macy } 2619*7877fdebSMatt Macy 2620*7877fdebSMatt Macy return (SET_ERROR(EINVAL)); 2621*7877fdebSMatt Macy } 2622*7877fdebSMatt Macy 2623*7877fdebSMatt Macy vdev_draid_config_t *vdc = tvd->vdev_tsd; 2624*7877fdebSMatt Macy if (tvd->vdev_ops != &vdev_draid_ops || vdc == NULL) 2625*7877fdebSMatt Macy return (SET_ERROR(EINVAL)); 2626*7877fdebSMatt Macy 2627*7877fdebSMatt Macy if (vds->vds_spare_id >= vdc->vdc_nspares) 2628*7877fdebSMatt Macy return (SET_ERROR(EINVAL)); 2629*7877fdebSMatt Macy 2630*7877fdebSMatt Macy /* 2631*7877fdebSMatt Macy * Neither tvd->vdev_asize or tvd->vdev_max_asize can be used here 2632*7877fdebSMatt Macy * because the caller may be vdev_draid_open() in which case the 2633*7877fdebSMatt Macy * values are stale as they haven't yet been updated by vdev_open(). 2634*7877fdebSMatt Macy * To avoid this always recalculate the dRAID asize and max_asize. 2635*7877fdebSMatt Macy */ 2636*7877fdebSMatt Macy vdev_draid_calculate_asize(tvd, &asize, &max_asize, 2637*7877fdebSMatt Macy logical_ashift, physical_ashift); 2638*7877fdebSMatt Macy 2639*7877fdebSMatt Macy *psize = asize + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2640*7877fdebSMatt Macy *max_psize = max_asize + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2641*7877fdebSMatt Macy 2642*7877fdebSMatt Macy vds->vds_draid_vdev = tvd; 2643*7877fdebSMatt Macy 2644*7877fdebSMatt Macy return (0); 2645*7877fdebSMatt Macy } 2646*7877fdebSMatt Macy 2647*7877fdebSMatt Macy /* 2648*7877fdebSMatt Macy * Completed distributed spare IO. Store the result in the parent zio 2649*7877fdebSMatt Macy * as if it had performed the operation itself. Only the first error is 2650*7877fdebSMatt Macy * preserved if there are multiple errors. 2651*7877fdebSMatt Macy */ 2652*7877fdebSMatt Macy static void 2653*7877fdebSMatt Macy vdev_draid_spare_child_done(zio_t *zio) 2654*7877fdebSMatt Macy { 2655*7877fdebSMatt Macy zio_t *pio = zio->io_private; 2656*7877fdebSMatt Macy 2657*7877fdebSMatt Macy /* 2658*7877fdebSMatt Macy * IOs are issued to non-writable vdevs in order to keep their 2659*7877fdebSMatt Macy * DTLs accurate. However, we don't want to propagate the 2660*7877fdebSMatt Macy * error in to the distributed spare's DTL. When resilvering 2661*7877fdebSMatt Macy * vdev_draid_need_resilver() will consult the relevant DTL 2662*7877fdebSMatt Macy * to determine if the data is missing and must be repaired. 2663*7877fdebSMatt Macy */ 2664*7877fdebSMatt Macy if (!vdev_writeable(zio->io_vd)) 2665*7877fdebSMatt Macy return; 2666*7877fdebSMatt Macy 2667*7877fdebSMatt Macy if (pio->io_error == 0) 2668*7877fdebSMatt Macy pio->io_error = zio->io_error; 2669*7877fdebSMatt Macy } 2670*7877fdebSMatt Macy 2671*7877fdebSMatt Macy /* 2672*7877fdebSMatt Macy * Returns a valid label nvlist for the distributed spare vdev. This is 2673*7877fdebSMatt Macy * used to bypass the IO pipeline to avoid the complexity of constructing 2674*7877fdebSMatt Macy * a complete label with valid checksum to return when read. 2675*7877fdebSMatt Macy */ 2676*7877fdebSMatt Macy nvlist_t * 2677*7877fdebSMatt Macy vdev_draid_read_config_spare(vdev_t *vd) 2678*7877fdebSMatt Macy { 2679*7877fdebSMatt Macy spa_t *spa = vd->vdev_spa; 2680*7877fdebSMatt Macy spa_aux_vdev_t *sav = &spa->spa_spares; 2681*7877fdebSMatt Macy uint64_t guid = vd->vdev_guid; 2682*7877fdebSMatt Macy 2683*7877fdebSMatt Macy nvlist_t *nv = fnvlist_alloc(); 2684*7877fdebSMatt Macy fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1); 2685*7877fdebSMatt Macy fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg); 2686*7877fdebSMatt Macy fnvlist_add_uint64(nv, ZPOOL_CONFIG_VERSION, spa_version(spa)); 2687*7877fdebSMatt Macy fnvlist_add_string(nv, ZPOOL_CONFIG_POOL_NAME, spa_name(spa)); 2688*7877fdebSMatt Macy fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_GUID, spa_guid(spa)); 2689*7877fdebSMatt Macy fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg); 2690*7877fdebSMatt Macy fnvlist_add_uint64(nv, ZPOOL_CONFIG_TOP_GUID, vd->vdev_top->vdev_guid); 2691*7877fdebSMatt Macy fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_STATE, 2692*7877fdebSMatt Macy vdev_draid_spare_is_active(vd) ? 2693*7877fdebSMatt Macy POOL_STATE_ACTIVE : POOL_STATE_SPARE); 2694*7877fdebSMatt Macy 2695*7877fdebSMatt Macy /* Set the vdev guid based on the vdev list in sav_count. */ 2696*7877fdebSMatt Macy for (int i = 0; i < sav->sav_count; i++) { 2697*7877fdebSMatt Macy if (sav->sav_vdevs[i]->vdev_ops == &vdev_draid_spare_ops && 2698*7877fdebSMatt Macy strcmp(sav->sav_vdevs[i]->vdev_path, vd->vdev_path) == 0) { 2699*7877fdebSMatt Macy guid = sav->sav_vdevs[i]->vdev_guid; 2700*7877fdebSMatt Macy break; 2701*7877fdebSMatt Macy } 2702*7877fdebSMatt Macy } 2703*7877fdebSMatt Macy 2704*7877fdebSMatt Macy fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, guid); 2705*7877fdebSMatt Macy 2706*7877fdebSMatt Macy return (nv); 2707*7877fdebSMatt Macy } 2708*7877fdebSMatt Macy 2709*7877fdebSMatt Macy /* 2710*7877fdebSMatt Macy * Handle any ioctl requested of the distributed spare. Only flushes 2711*7877fdebSMatt Macy * are supported in which case all children must be flushed. 2712*7877fdebSMatt Macy */ 2713*7877fdebSMatt Macy static int 2714*7877fdebSMatt Macy vdev_draid_spare_ioctl(zio_t *zio) 2715*7877fdebSMatt Macy { 2716*7877fdebSMatt Macy vdev_t *vd = zio->io_vd; 2717*7877fdebSMatt Macy int error = 0; 2718*7877fdebSMatt Macy 2719*7877fdebSMatt Macy if (zio->io_cmd == DKIOCFLUSHWRITECACHE) { 2720*7877fdebSMatt Macy for (int c = 0; c < vd->vdev_children; c++) { 2721*7877fdebSMatt Macy zio_nowait(zio_vdev_child_io(zio, NULL, 2722*7877fdebSMatt Macy vd->vdev_child[c], zio->io_offset, zio->io_abd, 2723*7877fdebSMatt Macy zio->io_size, zio->io_type, zio->io_priority, 0, 2724*7877fdebSMatt Macy vdev_draid_spare_child_done, zio)); 2725*7877fdebSMatt Macy } 2726*7877fdebSMatt Macy } else { 2727*7877fdebSMatt Macy error = SET_ERROR(ENOTSUP); 2728*7877fdebSMatt Macy } 2729*7877fdebSMatt Macy 2730*7877fdebSMatt Macy return (error); 2731*7877fdebSMatt Macy } 2732*7877fdebSMatt Macy 2733*7877fdebSMatt Macy /* 2734*7877fdebSMatt Macy * Initiate an IO to the distributed spare. For normal IOs this entails using 2735*7877fdebSMatt Macy * the zio->io_offset and permutation table to calculate which child dRAID vdev 2736*7877fdebSMatt Macy * is responsible for the data. Then passing along the zio to that child to 2737*7877fdebSMatt Macy * perform the actual IO. The label ranges are not stored on disk and require 2738*7877fdebSMatt Macy * some special handling which is described below. 2739*7877fdebSMatt Macy */ 2740*7877fdebSMatt Macy static void 2741*7877fdebSMatt Macy vdev_draid_spare_io_start(zio_t *zio) 2742*7877fdebSMatt Macy { 2743*7877fdebSMatt Macy vdev_t *cvd = NULL, *vd = zio->io_vd; 2744*7877fdebSMatt Macy vdev_draid_spare_t *vds = vd->vdev_tsd; 2745*7877fdebSMatt Macy uint64_t offset = zio->io_offset - VDEV_LABEL_START_SIZE; 2746*7877fdebSMatt Macy 2747*7877fdebSMatt Macy /* 2748*7877fdebSMatt Macy * If the vdev is closed, it's likely in the REMOVED or FAULTED state. 2749*7877fdebSMatt Macy * Nothing to be done here but return failure. 2750*7877fdebSMatt Macy */ 2751*7877fdebSMatt Macy if (vds == NULL) { 2752*7877fdebSMatt Macy zio->io_error = ENXIO; 2753*7877fdebSMatt Macy zio_interrupt(zio); 2754*7877fdebSMatt Macy return; 2755*7877fdebSMatt Macy } 2756*7877fdebSMatt Macy 2757*7877fdebSMatt Macy switch (zio->io_type) { 2758*7877fdebSMatt Macy case ZIO_TYPE_IOCTL: 2759*7877fdebSMatt Macy zio->io_error = vdev_draid_spare_ioctl(zio); 2760*7877fdebSMatt Macy break; 2761*7877fdebSMatt Macy 2762*7877fdebSMatt Macy case ZIO_TYPE_WRITE: 2763*7877fdebSMatt Macy if (VDEV_OFFSET_IS_LABEL(vd, zio->io_offset)) { 2764*7877fdebSMatt Macy /* 2765*7877fdebSMatt Macy * Accept probe IOs and config writers to simulate the 2766*7877fdebSMatt Macy * existence of an on disk label. vdev_label_sync(), 2767*7877fdebSMatt Macy * vdev_uberblock_sync() and vdev_copy_uberblocks() 2768*7877fdebSMatt Macy * skip the distributed spares. This only leaves 2769*7877fdebSMatt Macy * vdev_label_init() which is allowed to succeed to 2770*7877fdebSMatt Macy * avoid adding special cases the function. 2771*7877fdebSMatt Macy */ 2772*7877fdebSMatt Macy if (zio->io_flags & ZIO_FLAG_PROBE || 2773*7877fdebSMatt Macy zio->io_flags & ZIO_FLAG_CONFIG_WRITER) { 2774*7877fdebSMatt Macy zio->io_error = 0; 2775*7877fdebSMatt Macy } else { 2776*7877fdebSMatt Macy zio->io_error = SET_ERROR(EIO); 2777*7877fdebSMatt Macy } 2778*7877fdebSMatt Macy } else { 2779*7877fdebSMatt Macy cvd = vdev_draid_spare_get_child(vd, offset); 2780*7877fdebSMatt Macy 2781*7877fdebSMatt Macy if (cvd == NULL) { 2782*7877fdebSMatt Macy zio->io_error = SET_ERROR(ENXIO); 2783*7877fdebSMatt Macy } else { 2784*7877fdebSMatt Macy zio_nowait(zio_vdev_child_io(zio, NULL, cvd, 2785*7877fdebSMatt Macy offset, zio->io_abd, zio->io_size, 2786*7877fdebSMatt Macy zio->io_type, zio->io_priority, 0, 2787*7877fdebSMatt Macy vdev_draid_spare_child_done, zio)); 2788*7877fdebSMatt Macy } 2789*7877fdebSMatt Macy } 2790*7877fdebSMatt Macy break; 2791*7877fdebSMatt Macy 2792*7877fdebSMatt Macy case ZIO_TYPE_READ: 2793*7877fdebSMatt Macy if (VDEV_OFFSET_IS_LABEL(vd, zio->io_offset)) { 2794*7877fdebSMatt Macy /* 2795*7877fdebSMatt Macy * Accept probe IOs to simulate the existence of a 2796*7877fdebSMatt Macy * label. vdev_label_read_config() bypasses the 2797*7877fdebSMatt Macy * pipeline to read the label configuration and 2798*7877fdebSMatt Macy * vdev_uberblock_load() skips distributed spares 2799*7877fdebSMatt Macy * when attempting to locate the best uberblock. 2800*7877fdebSMatt Macy */ 2801*7877fdebSMatt Macy if (zio->io_flags & ZIO_FLAG_PROBE) { 2802*7877fdebSMatt Macy zio->io_error = 0; 2803*7877fdebSMatt Macy } else { 2804*7877fdebSMatt Macy zio->io_error = SET_ERROR(EIO); 2805*7877fdebSMatt Macy } 2806*7877fdebSMatt Macy } else { 2807*7877fdebSMatt Macy cvd = vdev_draid_spare_get_child(vd, offset); 2808*7877fdebSMatt Macy 2809*7877fdebSMatt Macy if (cvd == NULL || !vdev_readable(cvd)) { 2810*7877fdebSMatt Macy zio->io_error = SET_ERROR(ENXIO); 2811*7877fdebSMatt Macy } else { 2812*7877fdebSMatt Macy zio_nowait(zio_vdev_child_io(zio, NULL, cvd, 2813*7877fdebSMatt Macy offset, zio->io_abd, zio->io_size, 2814*7877fdebSMatt Macy zio->io_type, zio->io_priority, 0, 2815*7877fdebSMatt Macy vdev_draid_spare_child_done, zio)); 2816*7877fdebSMatt Macy } 2817*7877fdebSMatt Macy } 2818*7877fdebSMatt Macy break; 2819*7877fdebSMatt Macy 2820*7877fdebSMatt Macy case ZIO_TYPE_TRIM: 2821*7877fdebSMatt Macy /* The vdev label ranges are never trimmed */ 2822*7877fdebSMatt Macy ASSERT0(VDEV_OFFSET_IS_LABEL(vd, zio->io_offset)); 2823*7877fdebSMatt Macy 2824*7877fdebSMatt Macy cvd = vdev_draid_spare_get_child(vd, offset); 2825*7877fdebSMatt Macy 2826*7877fdebSMatt Macy if (cvd == NULL || !cvd->vdev_has_trim) { 2827*7877fdebSMatt Macy zio->io_error = SET_ERROR(ENXIO); 2828*7877fdebSMatt Macy } else { 2829*7877fdebSMatt Macy zio_nowait(zio_vdev_child_io(zio, NULL, cvd, 2830*7877fdebSMatt Macy offset, zio->io_abd, zio->io_size, 2831*7877fdebSMatt Macy zio->io_type, zio->io_priority, 0, 2832*7877fdebSMatt Macy vdev_draid_spare_child_done, zio)); 2833*7877fdebSMatt Macy } 2834*7877fdebSMatt Macy break; 2835*7877fdebSMatt Macy 2836*7877fdebSMatt Macy default: 2837*7877fdebSMatt Macy zio->io_error = SET_ERROR(ENOTSUP); 2838*7877fdebSMatt Macy break; 2839*7877fdebSMatt Macy } 2840*7877fdebSMatt Macy 2841*7877fdebSMatt Macy zio_execute(zio); 2842*7877fdebSMatt Macy } 2843*7877fdebSMatt Macy 2844*7877fdebSMatt Macy /* ARGSUSED */ 2845*7877fdebSMatt Macy static void 2846*7877fdebSMatt Macy vdev_draid_spare_io_done(zio_t *zio) 2847*7877fdebSMatt Macy { 2848*7877fdebSMatt Macy } 2849*7877fdebSMatt Macy 2850*7877fdebSMatt Macy /* 2851*7877fdebSMatt Macy * Lookup the full spare config in spa->spa_spares.sav_config and 2852*7877fdebSMatt Macy * return the top_guid and spare_id for the named spare. 2853*7877fdebSMatt Macy */ 2854*7877fdebSMatt Macy static int 2855*7877fdebSMatt Macy vdev_draid_spare_lookup(spa_t *spa, nvlist_t *nv, uint64_t *top_guidp, 2856*7877fdebSMatt Macy uint64_t *spare_idp) 2857*7877fdebSMatt Macy { 2858*7877fdebSMatt Macy nvlist_t **spares; 2859*7877fdebSMatt Macy uint_t nspares; 2860*7877fdebSMatt Macy int error; 2861*7877fdebSMatt Macy 2862*7877fdebSMatt Macy if ((spa->spa_spares.sav_config == NULL) || 2863*7877fdebSMatt Macy (nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2864*7877fdebSMatt Macy ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)) { 2865*7877fdebSMatt Macy return (SET_ERROR(ENOENT)); 2866*7877fdebSMatt Macy } 2867*7877fdebSMatt Macy 2868*7877fdebSMatt Macy char *spare_name; 2869*7877fdebSMatt Macy error = nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &spare_name); 2870*7877fdebSMatt Macy if (error != 0) 2871*7877fdebSMatt Macy return (SET_ERROR(EINVAL)); 2872*7877fdebSMatt Macy 2873*7877fdebSMatt Macy for (int i = 0; i < nspares; i++) { 2874*7877fdebSMatt Macy nvlist_t *spare = spares[i]; 2875*7877fdebSMatt Macy uint64_t top_guid, spare_id; 2876*7877fdebSMatt Macy char *type, *path; 2877*7877fdebSMatt Macy 2878*7877fdebSMatt Macy /* Skip non-distributed spares */ 2879*7877fdebSMatt Macy error = nvlist_lookup_string(spare, ZPOOL_CONFIG_TYPE, &type); 2880*7877fdebSMatt Macy if (error != 0 || strcmp(type, VDEV_TYPE_DRAID_SPARE) != 0) 2881*7877fdebSMatt Macy continue; 2882*7877fdebSMatt Macy 2883*7877fdebSMatt Macy /* Skip spares with the wrong name */ 2884*7877fdebSMatt Macy error = nvlist_lookup_string(spare, ZPOOL_CONFIG_PATH, &path); 2885*7877fdebSMatt Macy if (error != 0 || strcmp(path, spare_name) != 0) 2886*7877fdebSMatt Macy continue; 2887*7877fdebSMatt Macy 2888*7877fdebSMatt Macy /* Found the matching spare */ 2889*7877fdebSMatt Macy error = nvlist_lookup_uint64(spare, 2890*7877fdebSMatt Macy ZPOOL_CONFIG_TOP_GUID, &top_guid); 2891*7877fdebSMatt Macy if (error == 0) { 2892*7877fdebSMatt Macy error = nvlist_lookup_uint64(spare, 2893*7877fdebSMatt Macy ZPOOL_CONFIG_SPARE_ID, &spare_id); 2894*7877fdebSMatt Macy } 2895*7877fdebSMatt Macy 2896*7877fdebSMatt Macy if (error != 0) { 2897*7877fdebSMatt Macy return (SET_ERROR(EINVAL)); 2898*7877fdebSMatt Macy } else { 2899*7877fdebSMatt Macy *top_guidp = top_guid; 2900*7877fdebSMatt Macy *spare_idp = spare_id; 2901*7877fdebSMatt Macy return (0); 2902*7877fdebSMatt Macy } 2903*7877fdebSMatt Macy } 2904*7877fdebSMatt Macy 2905*7877fdebSMatt Macy return (SET_ERROR(ENOENT)); 2906*7877fdebSMatt Macy } 2907*7877fdebSMatt Macy 2908*7877fdebSMatt Macy /* 2909*7877fdebSMatt Macy * Initialize private dRAID spare specific fields from the nvlist. 2910*7877fdebSMatt Macy */ 2911*7877fdebSMatt Macy static int 2912*7877fdebSMatt Macy vdev_draid_spare_init(spa_t *spa, nvlist_t *nv, void **tsd) 2913*7877fdebSMatt Macy { 2914*7877fdebSMatt Macy vdev_draid_spare_t *vds; 2915*7877fdebSMatt Macy uint64_t top_guid = 0; 2916*7877fdebSMatt Macy uint64_t spare_id; 2917*7877fdebSMatt Macy 2918*7877fdebSMatt Macy /* 2919*7877fdebSMatt Macy * In the normal case check the list of spares stored in the spa 2920*7877fdebSMatt Macy * to lookup the top_guid and spare_id for provided spare config. 2921*7877fdebSMatt Macy * When creating a new pool or adding vdevs the spare list is not 2922*7877fdebSMatt Macy * yet populated and the values are provided in the passed config. 2923*7877fdebSMatt Macy */ 2924*7877fdebSMatt Macy if (vdev_draid_spare_lookup(spa, nv, &top_guid, &spare_id) != 0) { 2925*7877fdebSMatt Macy if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_TOP_GUID, 2926*7877fdebSMatt Macy &top_guid) != 0) 2927*7877fdebSMatt Macy return (SET_ERROR(EINVAL)); 2928*7877fdebSMatt Macy 2929*7877fdebSMatt Macy if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_SPARE_ID, 2930*7877fdebSMatt Macy &spare_id) != 0) 2931*7877fdebSMatt Macy return (SET_ERROR(EINVAL)); 2932*7877fdebSMatt Macy } 2933*7877fdebSMatt Macy 2934*7877fdebSMatt Macy vds = kmem_alloc(sizeof (vdev_draid_spare_t), KM_SLEEP); 2935*7877fdebSMatt Macy vds->vds_draid_vdev = NULL; 2936*7877fdebSMatt Macy vds->vds_top_guid = top_guid; 2937*7877fdebSMatt Macy vds->vds_spare_id = spare_id; 2938*7877fdebSMatt Macy 2939*7877fdebSMatt Macy *tsd = vds; 2940*7877fdebSMatt Macy 2941*7877fdebSMatt Macy return (0); 2942*7877fdebSMatt Macy } 2943*7877fdebSMatt Macy 2944*7877fdebSMatt Macy static void 2945*7877fdebSMatt Macy vdev_draid_spare_fini(vdev_t *vd) 2946*7877fdebSMatt Macy { 2947*7877fdebSMatt Macy kmem_free(vd->vdev_tsd, sizeof (vdev_draid_spare_t)); 2948*7877fdebSMatt Macy } 2949*7877fdebSMatt Macy 2950*7877fdebSMatt Macy static void 2951*7877fdebSMatt Macy vdev_draid_spare_config_generate(vdev_t *vd, nvlist_t *nv) 2952*7877fdebSMatt Macy { 2953*7877fdebSMatt Macy vdev_draid_spare_t *vds = vd->vdev_tsd; 2954*7877fdebSMatt Macy 2955*7877fdebSMatt Macy ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops); 2956*7877fdebSMatt Macy 2957*7877fdebSMatt Macy fnvlist_add_uint64(nv, ZPOOL_CONFIG_TOP_GUID, vds->vds_top_guid); 2958*7877fdebSMatt Macy fnvlist_add_uint64(nv, ZPOOL_CONFIG_SPARE_ID, vds->vds_spare_id); 2959*7877fdebSMatt Macy } 2960*7877fdebSMatt Macy 2961*7877fdebSMatt Macy vdev_ops_t vdev_draid_spare_ops = { 2962*7877fdebSMatt Macy .vdev_op_init = vdev_draid_spare_init, 2963*7877fdebSMatt Macy .vdev_op_fini = vdev_draid_spare_fini, 2964*7877fdebSMatt Macy .vdev_op_open = vdev_draid_spare_open, 2965*7877fdebSMatt Macy .vdev_op_close = vdev_draid_spare_close, 2966*7877fdebSMatt Macy .vdev_op_asize = vdev_default_asize, 2967*7877fdebSMatt Macy .vdev_op_min_asize = vdev_default_min_asize, 2968*7877fdebSMatt Macy .vdev_op_min_alloc = NULL, 2969*7877fdebSMatt Macy .vdev_op_io_start = vdev_draid_spare_io_start, 2970*7877fdebSMatt Macy .vdev_op_io_done = vdev_draid_spare_io_done, 2971*7877fdebSMatt Macy .vdev_op_state_change = NULL, 2972*7877fdebSMatt Macy .vdev_op_need_resilver = NULL, 2973*7877fdebSMatt Macy .vdev_op_hold = NULL, 2974*7877fdebSMatt Macy .vdev_op_rele = NULL, 2975*7877fdebSMatt Macy .vdev_op_remap = NULL, 2976*7877fdebSMatt Macy .vdev_op_xlate = vdev_default_xlate, 2977*7877fdebSMatt Macy .vdev_op_rebuild_asize = NULL, 2978*7877fdebSMatt Macy .vdev_op_metaslab_init = NULL, 2979*7877fdebSMatt Macy .vdev_op_config_generate = vdev_draid_spare_config_generate, 2980*7877fdebSMatt Macy .vdev_op_nparity = NULL, 2981*7877fdebSMatt Macy .vdev_op_ndisks = NULL, 2982*7877fdebSMatt Macy .vdev_op_type = VDEV_TYPE_DRAID_SPARE, 2983*7877fdebSMatt Macy .vdev_op_leaf = B_TRUE, 2984*7877fdebSMatt Macy }; 2985