1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 * Copyright 2017 Joyent, Inc. 29 * Copyright (c) 2017, Intel Corporation. 30 * Copyright (c) 2019, Datto Inc. All rights reserved. 31 * Copyright (c) 2021, Klara Inc. 32 * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP. 33 */ 34 35 #include <sys/zfs_context.h> 36 #include <sys/fm/fs/zfs.h> 37 #include <sys/spa.h> 38 #include <sys/spa_impl.h> 39 #include <sys/bpobj.h> 40 #include <sys/dmu.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_dir.h> 43 #include <sys/vdev_impl.h> 44 #include <sys/vdev_rebuild.h> 45 #include <sys/vdev_draid.h> 46 #include <sys/uberblock_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/space_map.h> 50 #include <sys/space_reftree.h> 51 #include <sys/zio.h> 52 #include <sys/zap.h> 53 #include <sys/fs/zfs.h> 54 #include <sys/arc.h> 55 #include <sys/zil.h> 56 #include <sys/dsl_scan.h> 57 #include <sys/vdev_raidz.h> 58 #include <sys/abd.h> 59 #include <sys/vdev_initialize.h> 60 #include <sys/vdev_trim.h> 61 #include <sys/vdev_raidz.h> 62 #include <sys/zvol.h> 63 #include <sys/zfs_ratelimit.h> 64 #include "zfs_prop.h" 65 66 /* 67 * One metaslab from each (normal-class) vdev is used by the ZIL. These are 68 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are 69 * part of the spa_embedded_log_class. The metaslab with the most free space 70 * in each vdev is selected for this purpose when the pool is opened (or a 71 * vdev is added). See vdev_metaslab_init(). 72 * 73 * Log blocks can be allocated from the following locations. Each one is tried 74 * in order until the allocation succeeds: 75 * 1. dedicated log vdevs, aka "slog" (spa_log_class) 76 * 2. embedded slog metaslabs (spa_embedded_log_class) 77 * 3. other metaslabs in normal vdevs (spa_normal_class) 78 * 79 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer 80 * than this number of metaslabs in the vdev. This ensures that we don't set 81 * aside an unreasonable amount of space for the ZIL. If set to less than 82 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced 83 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab. 84 */ 85 static uint_t zfs_embedded_slog_min_ms = 64; 86 87 /* default target for number of metaslabs per top-level vdev */ 88 static uint_t zfs_vdev_default_ms_count = 200; 89 90 /* minimum number of metaslabs per top-level vdev */ 91 static uint_t zfs_vdev_min_ms_count = 16; 92 93 /* practical upper limit of total metaslabs per top-level vdev */ 94 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17; 95 96 /* lower limit for metaslab size (512M) */ 97 static uint_t zfs_vdev_default_ms_shift = 29; 98 99 /* upper limit for metaslab size (16G) */ 100 static uint_t zfs_vdev_max_ms_shift = 34; 101 102 int vdev_validate_skip = B_FALSE; 103 104 /* 105 * Since the DTL space map of a vdev is not expected to have a lot of 106 * entries, we default its block size to 4K. 107 */ 108 int zfs_vdev_dtl_sm_blksz = (1 << 12); 109 110 /* 111 * Rate limit slow IO (delay) events to this many per second. 112 */ 113 static unsigned int zfs_slow_io_events_per_second = 20; 114 115 /* 116 * Rate limit deadman "hung IO" events to this many per second. 117 */ 118 static unsigned int zfs_deadman_events_per_second = 1; 119 120 /* 121 * Rate limit checksum events after this many checksum errors per second. 122 */ 123 static unsigned int zfs_checksum_events_per_second = 20; 124 125 /* 126 * Ignore errors during scrub/resilver. Allows to work around resilver 127 * upon import when there are pool errors. 128 */ 129 static int zfs_scan_ignore_errors = 0; 130 131 /* 132 * vdev-wide space maps that have lots of entries written to them at 133 * the end of each transaction can benefit from a higher I/O bandwidth 134 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. 135 */ 136 int zfs_vdev_standard_sm_blksz = (1 << 17); 137 138 /* 139 * Tunable parameter for debugging or performance analysis. Setting this 140 * will cause pool corruption on power loss if a volatile out-of-order 141 * write cache is enabled. 142 */ 143 int zfs_nocacheflush = 0; 144 145 /* 146 * Maximum and minimum ashift values that can be automatically set based on 147 * vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX 148 * is higher than the maximum value, it is intentionally limited here to not 149 * excessively impact pool space efficiency. Higher ashift values may still 150 * be forced by vdev logical ashift or by user via ashift property, but won't 151 * be set automatically as a performance optimization. 152 */ 153 uint_t zfs_vdev_max_auto_ashift = 14; 154 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN; 155 156 void 157 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) 158 { 159 va_list adx; 160 char buf[256]; 161 162 va_start(adx, fmt); 163 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 164 va_end(adx); 165 166 if (vd->vdev_path != NULL) { 167 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, 168 vd->vdev_path, buf); 169 } else { 170 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", 171 vd->vdev_ops->vdev_op_type, 172 (u_longlong_t)vd->vdev_id, 173 (u_longlong_t)vd->vdev_guid, buf); 174 } 175 } 176 177 void 178 vdev_dbgmsg_print_tree(vdev_t *vd, int indent) 179 { 180 char state[20]; 181 182 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { 183 zfs_dbgmsg("%*svdev %llu: %s", indent, "", 184 (u_longlong_t)vd->vdev_id, 185 vd->vdev_ops->vdev_op_type); 186 return; 187 } 188 189 switch (vd->vdev_state) { 190 case VDEV_STATE_UNKNOWN: 191 (void) snprintf(state, sizeof (state), "unknown"); 192 break; 193 case VDEV_STATE_CLOSED: 194 (void) snprintf(state, sizeof (state), "closed"); 195 break; 196 case VDEV_STATE_OFFLINE: 197 (void) snprintf(state, sizeof (state), "offline"); 198 break; 199 case VDEV_STATE_REMOVED: 200 (void) snprintf(state, sizeof (state), "removed"); 201 break; 202 case VDEV_STATE_CANT_OPEN: 203 (void) snprintf(state, sizeof (state), "can't open"); 204 break; 205 case VDEV_STATE_FAULTED: 206 (void) snprintf(state, sizeof (state), "faulted"); 207 break; 208 case VDEV_STATE_DEGRADED: 209 (void) snprintf(state, sizeof (state), "degraded"); 210 break; 211 case VDEV_STATE_HEALTHY: 212 (void) snprintf(state, sizeof (state), "healthy"); 213 break; 214 default: 215 (void) snprintf(state, sizeof (state), "<state %u>", 216 (uint_t)vd->vdev_state); 217 } 218 219 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, 220 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, 221 vd->vdev_islog ? " (log)" : "", 222 (u_longlong_t)vd->vdev_guid, 223 vd->vdev_path ? vd->vdev_path : "N/A", state); 224 225 for (uint64_t i = 0; i < vd->vdev_children; i++) 226 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); 227 } 228 229 /* 230 * Virtual device management. 231 */ 232 233 static vdev_ops_t *const vdev_ops_table[] = { 234 &vdev_root_ops, 235 &vdev_raidz_ops, 236 &vdev_draid_ops, 237 &vdev_draid_spare_ops, 238 &vdev_mirror_ops, 239 &vdev_replacing_ops, 240 &vdev_spare_ops, 241 &vdev_disk_ops, 242 &vdev_file_ops, 243 &vdev_missing_ops, 244 &vdev_hole_ops, 245 &vdev_indirect_ops, 246 NULL 247 }; 248 249 /* 250 * Given a vdev type, return the appropriate ops vector. 251 */ 252 static vdev_ops_t * 253 vdev_getops(const char *type) 254 { 255 vdev_ops_t *ops, *const *opspp; 256 257 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 258 if (strcmp(ops->vdev_op_type, type) == 0) 259 break; 260 261 return (ops); 262 } 263 264 /* 265 * Given a vdev and a metaslab class, find which metaslab group we're 266 * interested in. All vdevs may belong to two different metaslab classes. 267 * Dedicated slog devices use only the primary metaslab group, rather than a 268 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL. 269 */ 270 metaslab_group_t * 271 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc) 272 { 273 if (mc == spa_embedded_log_class(vd->vdev_spa) && 274 vd->vdev_log_mg != NULL) 275 return (vd->vdev_log_mg); 276 else 277 return (vd->vdev_mg); 278 } 279 280 void 281 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 282 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 283 { 284 (void) vd, (void) remain_rs; 285 286 physical_rs->rs_start = logical_rs->rs_start; 287 physical_rs->rs_end = logical_rs->rs_end; 288 } 289 290 /* 291 * Derive the enumerated allocation bias from string input. 292 * String origin is either the per-vdev zap or zpool(8). 293 */ 294 static vdev_alloc_bias_t 295 vdev_derive_alloc_bias(const char *bias) 296 { 297 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 298 299 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0) 300 alloc_bias = VDEV_BIAS_LOG; 301 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) 302 alloc_bias = VDEV_BIAS_SPECIAL; 303 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) 304 alloc_bias = VDEV_BIAS_DEDUP; 305 306 return (alloc_bias); 307 } 308 309 /* 310 * Default asize function: return the MAX of psize with the asize of 311 * all children. This is what's used by anything other than RAID-Z. 312 */ 313 uint64_t 314 vdev_default_asize(vdev_t *vd, uint64_t psize, uint64_t txg) 315 { 316 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 317 uint64_t csize; 318 319 for (int c = 0; c < vd->vdev_children; c++) { 320 csize = vdev_psize_to_asize_txg(vd->vdev_child[c], psize, txg); 321 asize = MAX(asize, csize); 322 } 323 324 return (asize); 325 } 326 327 uint64_t 328 vdev_default_min_asize(vdev_t *vd) 329 { 330 return (vd->vdev_min_asize); 331 } 332 333 /* 334 * Get the minimum allocatable size. We define the allocatable size as 335 * the vdev's asize rounded to the nearest metaslab. This allows us to 336 * replace or attach devices which don't have the same physical size but 337 * can still satisfy the same number of allocations. 338 */ 339 uint64_t 340 vdev_get_min_asize(vdev_t *vd) 341 { 342 vdev_t *pvd = vd->vdev_parent; 343 344 /* 345 * If our parent is NULL (inactive spare or cache) or is the root, 346 * just return our own asize. 347 */ 348 if (pvd == NULL) 349 return (vd->vdev_asize); 350 351 /* 352 * The top-level vdev just returns the allocatable size rounded 353 * to the nearest metaslab. 354 */ 355 if (vd == vd->vdev_top) 356 return (P2ALIGN_TYPED(vd->vdev_asize, 1ULL << vd->vdev_ms_shift, 357 uint64_t)); 358 359 return (pvd->vdev_ops->vdev_op_min_asize(pvd)); 360 } 361 362 void 363 vdev_set_min_asize(vdev_t *vd) 364 { 365 vd->vdev_min_asize = vdev_get_min_asize(vd); 366 367 for (int c = 0; c < vd->vdev_children; c++) 368 vdev_set_min_asize(vd->vdev_child[c]); 369 } 370 371 /* 372 * Get the minimal allocation size for the top-level vdev. 373 */ 374 uint64_t 375 vdev_get_min_alloc(vdev_t *vd) 376 { 377 uint64_t min_alloc = 1ULL << vd->vdev_ashift; 378 379 if (vd->vdev_ops->vdev_op_min_alloc != NULL) 380 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd); 381 382 return (min_alloc); 383 } 384 385 /* 386 * Get the parity level for a top-level vdev. 387 */ 388 uint64_t 389 vdev_get_nparity(vdev_t *vd) 390 { 391 uint64_t nparity = 0; 392 393 if (vd->vdev_ops->vdev_op_nparity != NULL) 394 nparity = vd->vdev_ops->vdev_op_nparity(vd); 395 396 return (nparity); 397 } 398 399 static int 400 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value) 401 { 402 spa_t *spa = vd->vdev_spa; 403 objset_t *mos = spa->spa_meta_objset; 404 uint64_t objid; 405 int err; 406 407 if (vd->vdev_root_zap != 0) { 408 objid = vd->vdev_root_zap; 409 } else if (vd->vdev_top_zap != 0) { 410 objid = vd->vdev_top_zap; 411 } else if (vd->vdev_leaf_zap != 0) { 412 objid = vd->vdev_leaf_zap; 413 } else { 414 return (EINVAL); 415 } 416 417 err = zap_lookup(mos, objid, vdev_prop_to_name(prop), 418 sizeof (uint64_t), 1, value); 419 420 if (err == ENOENT) 421 *value = vdev_prop_default_numeric(prop); 422 423 return (err); 424 } 425 426 /* 427 * Get the number of data disks for a top-level vdev. 428 */ 429 uint64_t 430 vdev_get_ndisks(vdev_t *vd) 431 { 432 uint64_t ndisks = 1; 433 434 if (vd->vdev_ops->vdev_op_ndisks != NULL) 435 ndisks = vd->vdev_ops->vdev_op_ndisks(vd); 436 437 return (ndisks); 438 } 439 440 vdev_t * 441 vdev_lookup_top(spa_t *spa, uint64_t vdev) 442 { 443 vdev_t *rvd = spa->spa_root_vdev; 444 445 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 446 447 if (vdev < rvd->vdev_children) { 448 ASSERT(rvd->vdev_child[vdev] != NULL); 449 return (rvd->vdev_child[vdev]); 450 } 451 452 return (NULL); 453 } 454 455 vdev_t * 456 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 457 { 458 vdev_t *mvd; 459 460 if (vd->vdev_guid == guid) 461 return (vd); 462 463 for (int c = 0; c < vd->vdev_children; c++) 464 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 465 NULL) 466 return (mvd); 467 468 return (NULL); 469 } 470 471 static int 472 vdev_count_leaves_impl(vdev_t *vd) 473 { 474 int n = 0; 475 476 if (vd->vdev_ops->vdev_op_leaf) 477 return (1); 478 479 for (int c = 0; c < vd->vdev_children; c++) 480 n += vdev_count_leaves_impl(vd->vdev_child[c]); 481 482 return (n); 483 } 484 485 int 486 vdev_count_leaves(spa_t *spa) 487 { 488 int rc; 489 490 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 491 rc = vdev_count_leaves_impl(spa->spa_root_vdev); 492 spa_config_exit(spa, SCL_VDEV, FTAG); 493 494 return (rc); 495 } 496 497 void 498 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 499 { 500 size_t oldsize, newsize; 501 uint64_t id = cvd->vdev_id; 502 vdev_t **newchild; 503 504 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 505 ASSERT(cvd->vdev_parent == NULL); 506 507 cvd->vdev_parent = pvd; 508 509 if (pvd == NULL) 510 return; 511 512 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 513 514 oldsize = pvd->vdev_children * sizeof (vdev_t *); 515 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 516 newsize = pvd->vdev_children * sizeof (vdev_t *); 517 518 newchild = kmem_alloc(newsize, KM_SLEEP); 519 if (pvd->vdev_child != NULL) { 520 memcpy(newchild, pvd->vdev_child, oldsize); 521 kmem_free(pvd->vdev_child, oldsize); 522 } 523 524 pvd->vdev_child = newchild; 525 pvd->vdev_child[id] = cvd; 526 527 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 528 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 529 530 /* 531 * Walk up all ancestors to update guid sum. 532 */ 533 for (; pvd != NULL; pvd = pvd->vdev_parent) 534 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 535 536 if (cvd->vdev_ops->vdev_op_leaf) { 537 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd); 538 cvd->vdev_spa->spa_leaf_list_gen++; 539 } 540 } 541 542 void 543 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 544 { 545 int c; 546 uint_t id = cvd->vdev_id; 547 548 ASSERT(cvd->vdev_parent == pvd); 549 550 if (pvd == NULL) 551 return; 552 553 ASSERT(id < pvd->vdev_children); 554 ASSERT(pvd->vdev_child[id] == cvd); 555 556 pvd->vdev_child[id] = NULL; 557 cvd->vdev_parent = NULL; 558 559 for (c = 0; c < pvd->vdev_children; c++) 560 if (pvd->vdev_child[c]) 561 break; 562 563 if (c == pvd->vdev_children) { 564 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 565 pvd->vdev_child = NULL; 566 pvd->vdev_children = 0; 567 } 568 569 if (cvd->vdev_ops->vdev_op_leaf) { 570 spa_t *spa = cvd->vdev_spa; 571 list_remove(&spa->spa_leaf_list, cvd); 572 spa->spa_leaf_list_gen++; 573 } 574 575 /* 576 * Walk up all ancestors to update guid sum. 577 */ 578 for (; pvd != NULL; pvd = pvd->vdev_parent) 579 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 580 } 581 582 /* 583 * Remove any holes in the child array. 584 */ 585 void 586 vdev_compact_children(vdev_t *pvd) 587 { 588 vdev_t **newchild, *cvd; 589 int oldc = pvd->vdev_children; 590 int newc; 591 592 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 593 594 if (oldc == 0) 595 return; 596 597 for (int c = newc = 0; c < oldc; c++) 598 if (pvd->vdev_child[c]) 599 newc++; 600 601 if (newc > 0) { 602 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP); 603 604 for (int c = newc = 0; c < oldc; c++) { 605 if ((cvd = pvd->vdev_child[c]) != NULL) { 606 newchild[newc] = cvd; 607 cvd->vdev_id = newc++; 608 } 609 } 610 } else { 611 newchild = NULL; 612 } 613 614 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 615 pvd->vdev_child = newchild; 616 pvd->vdev_children = newc; 617 } 618 619 /* 620 * Allocate and minimally initialize a vdev_t. 621 */ 622 vdev_t * 623 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 624 { 625 vdev_t *vd; 626 vdev_indirect_config_t *vic; 627 628 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 629 vic = &vd->vdev_indirect_config; 630 631 if (spa->spa_root_vdev == NULL) { 632 ASSERT(ops == &vdev_root_ops); 633 spa->spa_root_vdev = vd; 634 spa->spa_load_guid = spa_generate_guid(NULL); 635 } 636 637 if (guid == 0 && ops != &vdev_hole_ops) { 638 if (spa->spa_root_vdev == vd) { 639 /* 640 * The root vdev's guid will also be the pool guid, 641 * which must be unique among all pools. 642 */ 643 guid = spa_generate_guid(NULL); 644 } else { 645 /* 646 * Any other vdev's guid must be unique within the pool. 647 */ 648 guid = spa_generate_guid(spa); 649 } 650 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 651 } 652 653 vd->vdev_spa = spa; 654 vd->vdev_id = id; 655 vd->vdev_guid = guid; 656 vd->vdev_guid_sum = guid; 657 vd->vdev_ops = ops; 658 vd->vdev_state = VDEV_STATE_CLOSED; 659 vd->vdev_ishole = (ops == &vdev_hole_ops); 660 vic->vic_prev_indirect_vdev = UINT64_MAX; 661 662 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); 663 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); 664 vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL, 665 0, 0); 666 667 /* 668 * Initialize rate limit structs for events. We rate limit ZIO delay 669 * and checksum events so that we don't overwhelm ZED with thousands 670 * of events when a disk is acting up. 671 */ 672 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second, 673 1); 674 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_deadman_events_per_second, 675 1); 676 zfs_ratelimit_init(&vd->vdev_checksum_rl, 677 &zfs_checksum_events_per_second, 1); 678 679 /* 680 * Default Thresholds for tuning ZED 681 */ 682 vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N); 683 vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T); 684 vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N); 685 vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T); 686 vd->vdev_slow_io_n = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N); 687 vd->vdev_slow_io_t = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T); 688 689 list_link_init(&vd->vdev_config_dirty_node); 690 list_link_init(&vd->vdev_state_dirty_node); 691 list_link_init(&vd->vdev_initialize_node); 692 list_link_init(&vd->vdev_leaf_node); 693 list_link_init(&vd->vdev_trim_node); 694 695 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL); 696 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 697 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 698 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL); 699 700 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); 701 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); 702 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); 703 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); 704 705 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL); 706 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL); 707 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL); 708 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL); 709 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL); 710 cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL); 711 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL); 712 713 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL); 714 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL); 715 716 for (int t = 0; t < DTL_TYPES; t++) { 717 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 718 0); 719 } 720 721 txg_list_create(&vd->vdev_ms_list, spa, 722 offsetof(struct metaslab, ms_txg_node)); 723 txg_list_create(&vd->vdev_dtl_list, spa, 724 offsetof(struct vdev, vdev_dtl_node)); 725 vd->vdev_stat.vs_timestamp = gethrtime(); 726 vdev_queue_init(vd); 727 728 return (vd); 729 } 730 731 /* 732 * Allocate a new vdev. The 'alloctype' is used to control whether we are 733 * creating a new vdev or loading an existing one - the behavior is slightly 734 * different for each case. 735 */ 736 int 737 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 738 int alloctype) 739 { 740 vdev_ops_t *ops; 741 const char *type; 742 uint64_t guid = 0, islog; 743 vdev_t *vd; 744 vdev_indirect_config_t *vic; 745 const char *tmp = NULL; 746 int rc; 747 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 748 boolean_t top_level = (parent && !parent->vdev_parent); 749 750 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 751 752 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 753 return (SET_ERROR(EINVAL)); 754 755 if ((ops = vdev_getops(type)) == NULL) 756 return (SET_ERROR(EINVAL)); 757 758 /* 759 * If this is a load, get the vdev guid from the nvlist. 760 * Otherwise, vdev_alloc_common() will generate one for us. 761 */ 762 if (alloctype == VDEV_ALLOC_LOAD) { 763 uint64_t label_id; 764 765 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 766 label_id != id) 767 return (SET_ERROR(EINVAL)); 768 769 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 770 return (SET_ERROR(EINVAL)); 771 } else if (alloctype == VDEV_ALLOC_SPARE) { 772 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 773 return (SET_ERROR(EINVAL)); 774 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 775 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 776 return (SET_ERROR(EINVAL)); 777 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 778 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 779 return (SET_ERROR(EINVAL)); 780 } 781 782 /* 783 * The first allocated vdev must be of type 'root'. 784 */ 785 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 786 return (SET_ERROR(EINVAL)); 787 788 /* 789 * Determine whether we're a log vdev. 790 */ 791 islog = 0; 792 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 793 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 794 return (SET_ERROR(ENOTSUP)); 795 796 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 797 return (SET_ERROR(ENOTSUP)); 798 799 if (top_level && alloctype == VDEV_ALLOC_ADD) { 800 const char *bias; 801 802 /* 803 * If creating a top-level vdev, check for allocation 804 * classes input. 805 */ 806 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 807 &bias) == 0) { 808 alloc_bias = vdev_derive_alloc_bias(bias); 809 810 /* spa_vdev_add() expects feature to be enabled */ 811 if (spa->spa_load_state != SPA_LOAD_CREATE && 812 !spa_feature_is_enabled(spa, 813 SPA_FEATURE_ALLOCATION_CLASSES)) { 814 return (SET_ERROR(ENOTSUP)); 815 } 816 } 817 818 /* spa_vdev_add() expects feature to be enabled */ 819 if (ops == &vdev_draid_ops && 820 spa->spa_load_state != SPA_LOAD_CREATE && 821 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) { 822 return (SET_ERROR(ENOTSUP)); 823 } 824 } 825 826 /* 827 * Initialize the vdev specific data. This is done before calling 828 * vdev_alloc_common() since it may fail and this simplifies the 829 * error reporting and cleanup code paths. 830 */ 831 void *tsd = NULL; 832 if (ops->vdev_op_init != NULL) { 833 rc = ops->vdev_op_init(spa, nv, &tsd); 834 if (rc != 0) { 835 return (rc); 836 } 837 } 838 839 vd = vdev_alloc_common(spa, id, guid, ops); 840 vd->vdev_tsd = tsd; 841 vd->vdev_islog = islog; 842 843 if (top_level && alloc_bias != VDEV_BIAS_NONE) 844 vd->vdev_alloc_bias = alloc_bias; 845 846 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0) 847 vd->vdev_path = spa_strdup(tmp); 848 849 /* 850 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a 851 * fault on a vdev and want it to persist across imports (like with 852 * zpool offline -f). 853 */ 854 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp); 855 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) { 856 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 857 vd->vdev_faulted = 1; 858 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 859 } 860 861 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0) 862 vd->vdev_devid = spa_strdup(tmp); 863 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0) 864 vd->vdev_physpath = spa_strdup(tmp); 865 866 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 867 &tmp) == 0) 868 vd->vdev_enc_sysfs_path = spa_strdup(tmp); 869 870 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0) 871 vd->vdev_fru = spa_strdup(tmp); 872 873 /* 874 * Set the whole_disk property. If it's not specified, leave the value 875 * as -1. 876 */ 877 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 878 &vd->vdev_wholedisk) != 0) 879 vd->vdev_wholedisk = -1ULL; 880 881 vic = &vd->vdev_indirect_config; 882 883 ASSERT0(vic->vic_mapping_object); 884 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 885 &vic->vic_mapping_object); 886 ASSERT0(vic->vic_births_object); 887 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 888 &vic->vic_births_object); 889 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); 890 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 891 &vic->vic_prev_indirect_vdev); 892 893 /* 894 * Look for the 'not present' flag. This will only be set if the device 895 * was not present at the time of import. 896 */ 897 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 898 &vd->vdev_not_present); 899 900 /* 901 * Get the alignment requirement. Ignore pool ashift for vdev 902 * attach case. 903 */ 904 if (alloctype != VDEV_ALLOC_ATTACH) { 905 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, 906 &vd->vdev_ashift); 907 } else { 908 vd->vdev_attaching = B_TRUE; 909 } 910 911 /* 912 * Retrieve the vdev creation time. 913 */ 914 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 915 &vd->vdev_crtxg); 916 917 if (vd->vdev_ops == &vdev_root_ops && 918 (alloctype == VDEV_ALLOC_LOAD || 919 alloctype == VDEV_ALLOC_SPLIT || 920 alloctype == VDEV_ALLOC_ROOTPOOL)) { 921 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP, 922 &vd->vdev_root_zap); 923 } 924 925 /* 926 * If we're a top-level vdev, try to load the allocation parameters. 927 */ 928 if (top_level && 929 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 930 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 931 &vd->vdev_ms_array); 932 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 933 &vd->vdev_ms_shift); 934 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 935 &vd->vdev_asize); 936 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING, 937 &vd->vdev_noalloc); 938 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 939 &vd->vdev_removing); 940 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 941 &vd->vdev_top_zap); 942 vd->vdev_rz_expanding = nvlist_exists(nv, 943 ZPOOL_CONFIG_RAIDZ_EXPANDING); 944 } else { 945 ASSERT0(vd->vdev_top_zap); 946 } 947 948 if (top_level && alloctype != VDEV_ALLOC_ATTACH) { 949 ASSERT(alloctype == VDEV_ALLOC_LOAD || 950 alloctype == VDEV_ALLOC_ADD || 951 alloctype == VDEV_ALLOC_SPLIT || 952 alloctype == VDEV_ALLOC_ROOTPOOL); 953 /* Note: metaslab_group_create() is now deferred */ 954 } 955 956 if (vd->vdev_ops->vdev_op_leaf && 957 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 958 (void) nvlist_lookup_uint64(nv, 959 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 960 } else { 961 ASSERT0(vd->vdev_leaf_zap); 962 } 963 964 /* 965 * If we're a leaf vdev, try to load the DTL object and other state. 966 */ 967 968 if (vd->vdev_ops->vdev_op_leaf && 969 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 970 alloctype == VDEV_ALLOC_ROOTPOOL)) { 971 if (alloctype == VDEV_ALLOC_LOAD) { 972 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 973 &vd->vdev_dtl_object); 974 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 975 &vd->vdev_unspare); 976 } 977 978 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 979 uint64_t spare = 0; 980 981 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 982 &spare) == 0 && spare) 983 spa_spare_add(vd); 984 } 985 986 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 987 &vd->vdev_offline); 988 989 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 990 &vd->vdev_resilver_txg); 991 992 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 993 &vd->vdev_rebuild_txg); 994 995 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER)) 996 vdev_defer_resilver(vd); 997 998 /* 999 * In general, when importing a pool we want to ignore the 1000 * persistent fault state, as the diagnosis made on another 1001 * system may not be valid in the current context. The only 1002 * exception is if we forced a vdev to a persistently faulted 1003 * state with 'zpool offline -f'. The persistent fault will 1004 * remain across imports until cleared. 1005 * 1006 * Local vdevs will remain in the faulted state. 1007 */ 1008 if (spa_load_state(spa) == SPA_LOAD_OPEN || 1009 spa_load_state(spa) == SPA_LOAD_IMPORT) { 1010 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 1011 &vd->vdev_faulted); 1012 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 1013 &vd->vdev_degraded); 1014 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 1015 &vd->vdev_removed); 1016 1017 if (vd->vdev_faulted || vd->vdev_degraded) { 1018 const char *aux; 1019 1020 vd->vdev_label_aux = 1021 VDEV_AUX_ERR_EXCEEDED; 1022 if (nvlist_lookup_string(nv, 1023 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 1024 strcmp(aux, "external") == 0) 1025 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 1026 else 1027 vd->vdev_faulted = 0ULL; 1028 } 1029 } 1030 } 1031 1032 /* 1033 * Add ourselves to the parent's list of children. 1034 */ 1035 vdev_add_child(parent, vd); 1036 1037 *vdp = vd; 1038 1039 return (0); 1040 } 1041 1042 void 1043 vdev_free(vdev_t *vd) 1044 { 1045 spa_t *spa = vd->vdev_spa; 1046 1047 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 1048 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1049 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); 1050 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL); 1051 1052 /* 1053 * Scan queues are normally destroyed at the end of a scan. If the 1054 * queue exists here, that implies the vdev is being removed while 1055 * the scan is still running. 1056 */ 1057 if (vd->vdev_scan_io_queue != NULL) { 1058 mutex_enter(&vd->vdev_scan_io_queue_lock); 1059 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue); 1060 vd->vdev_scan_io_queue = NULL; 1061 mutex_exit(&vd->vdev_scan_io_queue_lock); 1062 } 1063 1064 /* 1065 * vdev_free() implies closing the vdev first. This is simpler than 1066 * trying to ensure complicated semantics for all callers. 1067 */ 1068 vdev_close(vd); 1069 1070 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 1071 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 1072 1073 /* 1074 * Free all children. 1075 */ 1076 for (int c = 0; c < vd->vdev_children; c++) 1077 vdev_free(vd->vdev_child[c]); 1078 1079 ASSERT(vd->vdev_child == NULL); 1080 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 1081 1082 if (vd->vdev_ops->vdev_op_fini != NULL) 1083 vd->vdev_ops->vdev_op_fini(vd); 1084 1085 /* 1086 * Discard allocation state. 1087 */ 1088 if (vd->vdev_mg != NULL) { 1089 vdev_metaslab_fini(vd); 1090 metaslab_group_destroy(vd->vdev_mg); 1091 vd->vdev_mg = NULL; 1092 } 1093 if (vd->vdev_log_mg != NULL) { 1094 ASSERT0(vd->vdev_ms_count); 1095 metaslab_group_destroy(vd->vdev_log_mg); 1096 vd->vdev_log_mg = NULL; 1097 } 1098 1099 ASSERT0(vd->vdev_stat.vs_space); 1100 ASSERT0(vd->vdev_stat.vs_dspace); 1101 ASSERT0(vd->vdev_stat.vs_alloc); 1102 1103 /* 1104 * Remove this vdev from its parent's child list. 1105 */ 1106 vdev_remove_child(vd->vdev_parent, vd); 1107 1108 ASSERT(vd->vdev_parent == NULL); 1109 ASSERT(!list_link_active(&vd->vdev_leaf_node)); 1110 1111 /* 1112 * Clean up vdev structure. 1113 */ 1114 vdev_queue_fini(vd); 1115 1116 if (vd->vdev_path) 1117 spa_strfree(vd->vdev_path); 1118 if (vd->vdev_devid) 1119 spa_strfree(vd->vdev_devid); 1120 if (vd->vdev_physpath) 1121 spa_strfree(vd->vdev_physpath); 1122 1123 if (vd->vdev_enc_sysfs_path) 1124 spa_strfree(vd->vdev_enc_sysfs_path); 1125 1126 if (vd->vdev_fru) 1127 spa_strfree(vd->vdev_fru); 1128 1129 if (vd->vdev_isspare) 1130 spa_spare_remove(vd); 1131 if (vd->vdev_isl2cache) 1132 spa_l2cache_remove(vd); 1133 1134 txg_list_destroy(&vd->vdev_ms_list); 1135 txg_list_destroy(&vd->vdev_dtl_list); 1136 1137 mutex_enter(&vd->vdev_dtl_lock); 1138 space_map_close(vd->vdev_dtl_sm); 1139 for (int t = 0; t < DTL_TYPES; t++) { 1140 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 1141 range_tree_destroy(vd->vdev_dtl[t]); 1142 } 1143 mutex_exit(&vd->vdev_dtl_lock); 1144 1145 EQUIV(vd->vdev_indirect_births != NULL, 1146 vd->vdev_indirect_mapping != NULL); 1147 if (vd->vdev_indirect_births != NULL) { 1148 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 1149 vdev_indirect_births_close(vd->vdev_indirect_births); 1150 } 1151 1152 if (vd->vdev_obsolete_sm != NULL) { 1153 ASSERT(vd->vdev_removing || 1154 vd->vdev_ops == &vdev_indirect_ops); 1155 space_map_close(vd->vdev_obsolete_sm); 1156 vd->vdev_obsolete_sm = NULL; 1157 } 1158 range_tree_destroy(vd->vdev_obsolete_segments); 1159 rw_destroy(&vd->vdev_indirect_rwlock); 1160 mutex_destroy(&vd->vdev_obsolete_lock); 1161 1162 mutex_destroy(&vd->vdev_dtl_lock); 1163 mutex_destroy(&vd->vdev_stat_lock); 1164 mutex_destroy(&vd->vdev_probe_lock); 1165 mutex_destroy(&vd->vdev_scan_io_queue_lock); 1166 1167 mutex_destroy(&vd->vdev_initialize_lock); 1168 mutex_destroy(&vd->vdev_initialize_io_lock); 1169 cv_destroy(&vd->vdev_initialize_io_cv); 1170 cv_destroy(&vd->vdev_initialize_cv); 1171 1172 mutex_destroy(&vd->vdev_trim_lock); 1173 mutex_destroy(&vd->vdev_autotrim_lock); 1174 mutex_destroy(&vd->vdev_trim_io_lock); 1175 cv_destroy(&vd->vdev_trim_cv); 1176 cv_destroy(&vd->vdev_autotrim_cv); 1177 cv_destroy(&vd->vdev_autotrim_kick_cv); 1178 cv_destroy(&vd->vdev_trim_io_cv); 1179 1180 mutex_destroy(&vd->vdev_rebuild_lock); 1181 cv_destroy(&vd->vdev_rebuild_cv); 1182 1183 zfs_ratelimit_fini(&vd->vdev_delay_rl); 1184 zfs_ratelimit_fini(&vd->vdev_deadman_rl); 1185 zfs_ratelimit_fini(&vd->vdev_checksum_rl); 1186 1187 if (vd == spa->spa_root_vdev) 1188 spa->spa_root_vdev = NULL; 1189 1190 kmem_free(vd, sizeof (vdev_t)); 1191 } 1192 1193 /* 1194 * Transfer top-level vdev state from svd to tvd. 1195 */ 1196 static void 1197 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 1198 { 1199 spa_t *spa = svd->vdev_spa; 1200 metaslab_t *msp; 1201 vdev_t *vd; 1202 int t; 1203 1204 ASSERT(tvd == tvd->vdev_top); 1205 1206 tvd->vdev_ms_array = svd->vdev_ms_array; 1207 tvd->vdev_ms_shift = svd->vdev_ms_shift; 1208 tvd->vdev_ms_count = svd->vdev_ms_count; 1209 tvd->vdev_top_zap = svd->vdev_top_zap; 1210 1211 svd->vdev_ms_array = 0; 1212 svd->vdev_ms_shift = 0; 1213 svd->vdev_ms_count = 0; 1214 svd->vdev_top_zap = 0; 1215 1216 if (tvd->vdev_mg) 1217 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 1218 if (tvd->vdev_log_mg) 1219 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg); 1220 tvd->vdev_mg = svd->vdev_mg; 1221 tvd->vdev_log_mg = svd->vdev_log_mg; 1222 tvd->vdev_ms = svd->vdev_ms; 1223 1224 svd->vdev_mg = NULL; 1225 svd->vdev_log_mg = NULL; 1226 svd->vdev_ms = NULL; 1227 1228 if (tvd->vdev_mg != NULL) 1229 tvd->vdev_mg->mg_vd = tvd; 1230 if (tvd->vdev_log_mg != NULL) 1231 tvd->vdev_log_mg->mg_vd = tvd; 1232 1233 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; 1234 svd->vdev_checkpoint_sm = NULL; 1235 1236 tvd->vdev_alloc_bias = svd->vdev_alloc_bias; 1237 svd->vdev_alloc_bias = VDEV_BIAS_NONE; 1238 1239 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 1240 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 1241 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 1242 1243 svd->vdev_stat.vs_alloc = 0; 1244 svd->vdev_stat.vs_space = 0; 1245 svd->vdev_stat.vs_dspace = 0; 1246 1247 /* 1248 * State which may be set on a top-level vdev that's in the 1249 * process of being removed. 1250 */ 1251 ASSERT0(tvd->vdev_indirect_config.vic_births_object); 1252 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); 1253 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); 1254 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL); 1255 ASSERT3P(tvd->vdev_indirect_births, ==, NULL); 1256 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL); 1257 ASSERT0(tvd->vdev_noalloc); 1258 ASSERT0(tvd->vdev_removing); 1259 ASSERT0(tvd->vdev_rebuilding); 1260 tvd->vdev_noalloc = svd->vdev_noalloc; 1261 tvd->vdev_removing = svd->vdev_removing; 1262 tvd->vdev_rebuilding = svd->vdev_rebuilding; 1263 tvd->vdev_rebuild_config = svd->vdev_rebuild_config; 1264 tvd->vdev_indirect_config = svd->vdev_indirect_config; 1265 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; 1266 tvd->vdev_indirect_births = svd->vdev_indirect_births; 1267 range_tree_swap(&svd->vdev_obsolete_segments, 1268 &tvd->vdev_obsolete_segments); 1269 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; 1270 svd->vdev_indirect_config.vic_mapping_object = 0; 1271 svd->vdev_indirect_config.vic_births_object = 0; 1272 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; 1273 svd->vdev_indirect_mapping = NULL; 1274 svd->vdev_indirect_births = NULL; 1275 svd->vdev_obsolete_sm = NULL; 1276 svd->vdev_noalloc = 0; 1277 svd->vdev_removing = 0; 1278 svd->vdev_rebuilding = 0; 1279 1280 for (t = 0; t < TXG_SIZE; t++) { 1281 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 1282 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 1283 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 1284 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 1285 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 1286 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 1287 } 1288 1289 if (list_link_active(&svd->vdev_config_dirty_node)) { 1290 vdev_config_clean(svd); 1291 vdev_config_dirty(tvd); 1292 } 1293 1294 if (list_link_active(&svd->vdev_state_dirty_node)) { 1295 vdev_state_clean(svd); 1296 vdev_state_dirty(tvd); 1297 } 1298 1299 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 1300 svd->vdev_deflate_ratio = 0; 1301 1302 tvd->vdev_islog = svd->vdev_islog; 1303 svd->vdev_islog = 0; 1304 1305 dsl_scan_io_queue_vdev_xfer(svd, tvd); 1306 } 1307 1308 static void 1309 vdev_top_update(vdev_t *tvd, vdev_t *vd) 1310 { 1311 if (vd == NULL) 1312 return; 1313 1314 vd->vdev_top = tvd; 1315 1316 for (int c = 0; c < vd->vdev_children; c++) 1317 vdev_top_update(tvd, vd->vdev_child[c]); 1318 } 1319 1320 /* 1321 * Add a mirror/replacing vdev above an existing vdev. There is no need to 1322 * call .vdev_op_init() since mirror/replacing vdevs do not have private state. 1323 */ 1324 vdev_t * 1325 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 1326 { 1327 spa_t *spa = cvd->vdev_spa; 1328 vdev_t *pvd = cvd->vdev_parent; 1329 vdev_t *mvd; 1330 1331 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1332 1333 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 1334 1335 mvd->vdev_asize = cvd->vdev_asize; 1336 mvd->vdev_min_asize = cvd->vdev_min_asize; 1337 mvd->vdev_max_asize = cvd->vdev_max_asize; 1338 mvd->vdev_psize = cvd->vdev_psize; 1339 mvd->vdev_ashift = cvd->vdev_ashift; 1340 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift; 1341 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift; 1342 mvd->vdev_state = cvd->vdev_state; 1343 mvd->vdev_crtxg = cvd->vdev_crtxg; 1344 1345 vdev_remove_child(pvd, cvd); 1346 vdev_add_child(pvd, mvd); 1347 cvd->vdev_id = mvd->vdev_children; 1348 vdev_add_child(mvd, cvd); 1349 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1350 1351 if (mvd == mvd->vdev_top) 1352 vdev_top_transfer(cvd, mvd); 1353 1354 return (mvd); 1355 } 1356 1357 /* 1358 * Remove a 1-way mirror/replacing vdev from the tree. 1359 */ 1360 void 1361 vdev_remove_parent(vdev_t *cvd) 1362 { 1363 vdev_t *mvd = cvd->vdev_parent; 1364 vdev_t *pvd = mvd->vdev_parent; 1365 1366 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1367 1368 ASSERT(mvd->vdev_children == 1); 1369 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 1370 mvd->vdev_ops == &vdev_replacing_ops || 1371 mvd->vdev_ops == &vdev_spare_ops); 1372 cvd->vdev_ashift = mvd->vdev_ashift; 1373 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift; 1374 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift; 1375 vdev_remove_child(mvd, cvd); 1376 vdev_remove_child(pvd, mvd); 1377 1378 /* 1379 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 1380 * Otherwise, we could have detached an offline device, and when we 1381 * go to import the pool we'll think we have two top-level vdevs, 1382 * instead of a different version of the same top-level vdev. 1383 */ 1384 if (mvd->vdev_top == mvd) { 1385 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 1386 cvd->vdev_orig_guid = cvd->vdev_guid; 1387 cvd->vdev_guid += guid_delta; 1388 cvd->vdev_guid_sum += guid_delta; 1389 1390 /* 1391 * If pool not set for autoexpand, we need to also preserve 1392 * mvd's asize to prevent automatic expansion of cvd. 1393 * Otherwise if we are adjusting the mirror by attaching and 1394 * detaching children of non-uniform sizes, the mirror could 1395 * autoexpand, unexpectedly requiring larger devices to 1396 * re-establish the mirror. 1397 */ 1398 if (!cvd->vdev_spa->spa_autoexpand) 1399 cvd->vdev_asize = mvd->vdev_asize; 1400 } 1401 cvd->vdev_id = mvd->vdev_id; 1402 vdev_add_child(pvd, cvd); 1403 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1404 1405 if (cvd == cvd->vdev_top) 1406 vdev_top_transfer(mvd, cvd); 1407 1408 ASSERT(mvd->vdev_children == 0); 1409 vdev_free(mvd); 1410 } 1411 1412 /* 1413 * Choose GCD for spa_gcd_alloc. 1414 */ 1415 static uint64_t 1416 vdev_gcd(uint64_t a, uint64_t b) 1417 { 1418 while (b != 0) { 1419 uint64_t t = b; 1420 b = a % b; 1421 a = t; 1422 } 1423 return (a); 1424 } 1425 1426 /* 1427 * Set spa_min_alloc and spa_gcd_alloc. 1428 */ 1429 static void 1430 vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc) 1431 { 1432 if (min_alloc < spa->spa_min_alloc) 1433 spa->spa_min_alloc = min_alloc; 1434 if (spa->spa_gcd_alloc == INT_MAX) { 1435 spa->spa_gcd_alloc = min_alloc; 1436 } else { 1437 spa->spa_gcd_alloc = vdev_gcd(min_alloc, 1438 spa->spa_gcd_alloc); 1439 } 1440 } 1441 1442 void 1443 vdev_metaslab_group_create(vdev_t *vd) 1444 { 1445 spa_t *spa = vd->vdev_spa; 1446 1447 /* 1448 * metaslab_group_create was delayed until allocation bias was available 1449 */ 1450 if (vd->vdev_mg == NULL) { 1451 metaslab_class_t *mc; 1452 1453 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE) 1454 vd->vdev_alloc_bias = VDEV_BIAS_LOG; 1455 1456 ASSERT3U(vd->vdev_islog, ==, 1457 (vd->vdev_alloc_bias == VDEV_BIAS_LOG)); 1458 1459 switch (vd->vdev_alloc_bias) { 1460 case VDEV_BIAS_LOG: 1461 mc = spa_log_class(spa); 1462 break; 1463 case VDEV_BIAS_SPECIAL: 1464 mc = spa_special_class(spa); 1465 break; 1466 case VDEV_BIAS_DEDUP: 1467 mc = spa_dedup_class(spa); 1468 break; 1469 default: 1470 mc = spa_normal_class(spa); 1471 } 1472 1473 vd->vdev_mg = metaslab_group_create(mc, vd, 1474 spa->spa_alloc_count); 1475 1476 if (!vd->vdev_islog) { 1477 vd->vdev_log_mg = metaslab_group_create( 1478 spa_embedded_log_class(spa), vd, 1); 1479 } 1480 1481 /* 1482 * The spa ashift min/max only apply for the normal metaslab 1483 * class. Class destination is late binding so ashift boundary 1484 * setting had to wait until now. 1485 */ 1486 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1487 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) { 1488 if (vd->vdev_ashift > spa->spa_max_ashift) 1489 spa->spa_max_ashift = vd->vdev_ashift; 1490 if (vd->vdev_ashift < spa->spa_min_ashift) 1491 spa->spa_min_ashift = vd->vdev_ashift; 1492 1493 uint64_t min_alloc = vdev_get_min_alloc(vd); 1494 vdev_spa_set_alloc(spa, min_alloc); 1495 } 1496 } 1497 } 1498 1499 int 1500 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 1501 { 1502 spa_t *spa = vd->vdev_spa; 1503 uint64_t oldc = vd->vdev_ms_count; 1504 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 1505 metaslab_t **mspp; 1506 int error; 1507 boolean_t expanding = (oldc != 0); 1508 1509 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1510 1511 /* 1512 * This vdev is not being allocated from yet or is a hole. 1513 */ 1514 if (vd->vdev_ms_shift == 0) 1515 return (0); 1516 1517 ASSERT(!vd->vdev_ishole); 1518 1519 ASSERT(oldc <= newc); 1520 1521 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 1522 1523 if (expanding) { 1524 memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp)); 1525 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 1526 } 1527 1528 vd->vdev_ms = mspp; 1529 vd->vdev_ms_count = newc; 1530 1531 for (uint64_t m = oldc; m < newc; m++) { 1532 uint64_t object = 0; 1533 /* 1534 * vdev_ms_array may be 0 if we are creating the "fake" 1535 * metaslabs for an indirect vdev for zdb's leak detection. 1536 * See zdb_leak_init(). 1537 */ 1538 if (txg == 0 && vd->vdev_ms_array != 0) { 1539 error = dmu_read(spa->spa_meta_objset, 1540 vd->vdev_ms_array, 1541 m * sizeof (uint64_t), sizeof (uint64_t), &object, 1542 DMU_READ_PREFETCH); 1543 if (error != 0) { 1544 vdev_dbgmsg(vd, "unable to read the metaslab " 1545 "array [error=%d]", error); 1546 return (error); 1547 } 1548 } 1549 1550 error = metaslab_init(vd->vdev_mg, m, object, txg, 1551 &(vd->vdev_ms[m])); 1552 if (error != 0) { 1553 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", 1554 error); 1555 return (error); 1556 } 1557 } 1558 1559 /* 1560 * Find the emptiest metaslab on the vdev and mark it for use for 1561 * embedded slog by moving it from the regular to the log metaslab 1562 * group. 1563 */ 1564 if (vd->vdev_mg->mg_class == spa_normal_class(spa) && 1565 vd->vdev_ms_count > zfs_embedded_slog_min_ms && 1566 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) { 1567 uint64_t slog_msid = 0; 1568 uint64_t smallest = UINT64_MAX; 1569 1570 /* 1571 * Note, we only search the new metaslabs, because the old 1572 * (pre-existing) ones may be active (e.g. have non-empty 1573 * range_tree's), and we don't move them to the new 1574 * metaslab_t. 1575 */ 1576 for (uint64_t m = oldc; m < newc; m++) { 1577 uint64_t alloc = 1578 space_map_allocated(vd->vdev_ms[m]->ms_sm); 1579 if (alloc < smallest) { 1580 slog_msid = m; 1581 smallest = alloc; 1582 } 1583 } 1584 metaslab_t *slog_ms = vd->vdev_ms[slog_msid]; 1585 /* 1586 * The metaslab was marked as dirty at the end of 1587 * metaslab_init(). Remove it from the dirty list so that we 1588 * can uninitialize and reinitialize it to the new class. 1589 */ 1590 if (txg != 0) { 1591 (void) txg_list_remove_this(&vd->vdev_ms_list, 1592 slog_ms, txg); 1593 } 1594 uint64_t sm_obj = space_map_object(slog_ms->ms_sm); 1595 metaslab_fini(slog_ms); 1596 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg, 1597 &vd->vdev_ms[slog_msid])); 1598 } 1599 1600 if (txg == 0) 1601 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 1602 1603 /* 1604 * If the vdev is marked as non-allocating then don't 1605 * activate the metaslabs since we want to ensure that 1606 * no allocations are performed on this device. 1607 */ 1608 if (vd->vdev_noalloc) { 1609 /* track non-allocating vdev space */ 1610 spa->spa_nonallocating_dspace += spa_deflate(spa) ? 1611 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; 1612 } else if (!expanding) { 1613 metaslab_group_activate(vd->vdev_mg); 1614 if (vd->vdev_log_mg != NULL) 1615 metaslab_group_activate(vd->vdev_log_mg); 1616 } 1617 1618 if (txg == 0) 1619 spa_config_exit(spa, SCL_ALLOC, FTAG); 1620 1621 return (0); 1622 } 1623 1624 void 1625 vdev_metaslab_fini(vdev_t *vd) 1626 { 1627 if (vd->vdev_checkpoint_sm != NULL) { 1628 ASSERT(spa_feature_is_active(vd->vdev_spa, 1629 SPA_FEATURE_POOL_CHECKPOINT)); 1630 space_map_close(vd->vdev_checkpoint_sm); 1631 /* 1632 * Even though we close the space map, we need to set its 1633 * pointer to NULL. The reason is that vdev_metaslab_fini() 1634 * may be called multiple times for certain operations 1635 * (i.e. when destroying a pool) so we need to ensure that 1636 * this clause never executes twice. This logic is similar 1637 * to the one used for the vdev_ms clause below. 1638 */ 1639 vd->vdev_checkpoint_sm = NULL; 1640 } 1641 1642 if (vd->vdev_ms != NULL) { 1643 metaslab_group_t *mg = vd->vdev_mg; 1644 1645 metaslab_group_passivate(mg); 1646 if (vd->vdev_log_mg != NULL) { 1647 ASSERT(!vd->vdev_islog); 1648 metaslab_group_passivate(vd->vdev_log_mg); 1649 } 1650 1651 uint64_t count = vd->vdev_ms_count; 1652 for (uint64_t m = 0; m < count; m++) { 1653 metaslab_t *msp = vd->vdev_ms[m]; 1654 if (msp != NULL) 1655 metaslab_fini(msp); 1656 } 1657 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1658 vd->vdev_ms = NULL; 1659 vd->vdev_ms_count = 0; 1660 1661 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 1662 ASSERT0(mg->mg_histogram[i]); 1663 if (vd->vdev_log_mg != NULL) 1664 ASSERT0(vd->vdev_log_mg->mg_histogram[i]); 1665 } 1666 } 1667 ASSERT0(vd->vdev_ms_count); 1668 } 1669 1670 typedef struct vdev_probe_stats { 1671 boolean_t vps_readable; 1672 boolean_t vps_writeable; 1673 boolean_t vps_zio_done_probe; 1674 int vps_flags; 1675 } vdev_probe_stats_t; 1676 1677 static void 1678 vdev_probe_done(zio_t *zio) 1679 { 1680 spa_t *spa = zio->io_spa; 1681 vdev_t *vd = zio->io_vd; 1682 vdev_probe_stats_t *vps = zio->io_private; 1683 1684 ASSERT(vd->vdev_probe_zio != NULL); 1685 1686 if (zio->io_type == ZIO_TYPE_READ) { 1687 if (zio->io_error == 0) 1688 vps->vps_readable = 1; 1689 if (zio->io_error == 0 && spa_writeable(spa)) { 1690 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1691 zio->io_offset, zio->io_size, zio->io_abd, 1692 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1693 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1694 } else { 1695 abd_free(zio->io_abd); 1696 } 1697 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1698 if (zio->io_error == 0) 1699 vps->vps_writeable = 1; 1700 abd_free(zio->io_abd); 1701 } else if (zio->io_type == ZIO_TYPE_NULL) { 1702 zio_t *pio; 1703 zio_link_t *zl; 1704 1705 vd->vdev_cant_read |= !vps->vps_readable; 1706 vd->vdev_cant_write |= !vps->vps_writeable; 1707 vdev_dbgmsg(vd, "probe done, cant_read=%u cant_write=%u", 1708 vd->vdev_cant_read, vd->vdev_cant_write); 1709 1710 if (vdev_readable(vd) && 1711 (vdev_writeable(vd) || !spa_writeable(spa))) { 1712 zio->io_error = 0; 1713 } else { 1714 ASSERT(zio->io_error != 0); 1715 vdev_dbgmsg(vd, "failed probe"); 1716 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1717 spa, vd, NULL, NULL, 0); 1718 zio->io_error = SET_ERROR(ENXIO); 1719 1720 /* 1721 * If this probe was initiated from zio pipeline, then 1722 * change the state in a spa_async_request. Probes that 1723 * were initiated from a vdev_open can change the state 1724 * as part of the open call. 1725 */ 1726 if (vps->vps_zio_done_probe) { 1727 vd->vdev_fault_wanted = B_TRUE; 1728 spa_async_request(spa, SPA_ASYNC_FAULT_VDEV); 1729 } 1730 } 1731 1732 mutex_enter(&vd->vdev_probe_lock); 1733 ASSERT(vd->vdev_probe_zio == zio); 1734 vd->vdev_probe_zio = NULL; 1735 mutex_exit(&vd->vdev_probe_lock); 1736 1737 zl = NULL; 1738 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1739 if (!vdev_accessible(vd, pio)) 1740 pio->io_error = SET_ERROR(ENXIO); 1741 1742 kmem_free(vps, sizeof (*vps)); 1743 } 1744 } 1745 1746 /* 1747 * Determine whether this device is accessible. 1748 * 1749 * Read and write to several known locations: the pad regions of each 1750 * vdev label but the first, which we leave alone in case it contains 1751 * a VTOC. 1752 */ 1753 zio_t * 1754 vdev_probe(vdev_t *vd, zio_t *zio) 1755 { 1756 spa_t *spa = vd->vdev_spa; 1757 vdev_probe_stats_t *vps = NULL; 1758 zio_t *pio; 1759 1760 ASSERT(vd->vdev_ops->vdev_op_leaf); 1761 1762 /* 1763 * Don't probe the probe. 1764 */ 1765 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1766 return (NULL); 1767 1768 /* 1769 * To prevent 'probe storms' when a device fails, we create 1770 * just one probe i/o at a time. All zios that want to probe 1771 * this vdev will become parents of the probe io. 1772 */ 1773 mutex_enter(&vd->vdev_probe_lock); 1774 1775 if ((pio = vd->vdev_probe_zio) == NULL) { 1776 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1777 1778 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1779 ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD; 1780 vps->vps_zio_done_probe = (zio != NULL); 1781 1782 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1783 /* 1784 * vdev_cant_read and vdev_cant_write can only 1785 * transition from TRUE to FALSE when we have the 1786 * SCL_ZIO lock as writer; otherwise they can only 1787 * transition from FALSE to TRUE. This ensures that 1788 * any zio looking at these values can assume that 1789 * failures persist for the life of the I/O. That's 1790 * important because when a device has intermittent 1791 * connectivity problems, we want to ensure that 1792 * they're ascribed to the device (ENXIO) and not 1793 * the zio (EIO). 1794 * 1795 * Since we hold SCL_ZIO as writer here, clear both 1796 * values so the probe can reevaluate from first 1797 * principles. 1798 */ 1799 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1800 vd->vdev_cant_read = B_FALSE; 1801 vd->vdev_cant_write = B_FALSE; 1802 } 1803 1804 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1805 vdev_probe_done, vps, 1806 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1807 } 1808 1809 if (zio != NULL) 1810 zio_add_child(zio, pio); 1811 1812 mutex_exit(&vd->vdev_probe_lock); 1813 1814 if (vps == NULL) { 1815 ASSERT(zio != NULL); 1816 return (NULL); 1817 } 1818 1819 for (int l = 1; l < VDEV_LABELS; l++) { 1820 zio_nowait(zio_read_phys(pio, vd, 1821 vdev_label_offset(vd->vdev_psize, l, 1822 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE, 1823 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1824 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1825 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1826 } 1827 1828 if (zio == NULL) 1829 return (pio); 1830 1831 zio_nowait(pio); 1832 return (NULL); 1833 } 1834 1835 static void 1836 vdev_load_child(void *arg) 1837 { 1838 vdev_t *vd = arg; 1839 1840 vd->vdev_load_error = vdev_load(vd); 1841 } 1842 1843 static void 1844 vdev_open_child(void *arg) 1845 { 1846 vdev_t *vd = arg; 1847 1848 vd->vdev_open_thread = curthread; 1849 vd->vdev_open_error = vdev_open(vd); 1850 vd->vdev_open_thread = NULL; 1851 } 1852 1853 static boolean_t 1854 vdev_uses_zvols(vdev_t *vd) 1855 { 1856 #ifdef _KERNEL 1857 if (zvol_is_zvol(vd->vdev_path)) 1858 return (B_TRUE); 1859 #endif 1860 1861 for (int c = 0; c < vd->vdev_children; c++) 1862 if (vdev_uses_zvols(vd->vdev_child[c])) 1863 return (B_TRUE); 1864 1865 return (B_FALSE); 1866 } 1867 1868 /* 1869 * Returns B_TRUE if the passed child should be opened. 1870 */ 1871 static boolean_t 1872 vdev_default_open_children_func(vdev_t *vd) 1873 { 1874 (void) vd; 1875 return (B_TRUE); 1876 } 1877 1878 /* 1879 * Open the requested child vdevs. If any of the leaf vdevs are using 1880 * a ZFS volume then do the opens in a single thread. This avoids a 1881 * deadlock when the current thread is holding the spa_namespace_lock. 1882 */ 1883 static void 1884 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func) 1885 { 1886 int children = vd->vdev_children; 1887 1888 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri, 1889 children, children, TASKQ_PREPOPULATE); 1890 vd->vdev_nonrot = B_TRUE; 1891 1892 for (int c = 0; c < children; c++) { 1893 vdev_t *cvd = vd->vdev_child[c]; 1894 1895 if (open_func(cvd) == B_FALSE) 1896 continue; 1897 1898 if (tq == NULL || vdev_uses_zvols(vd)) { 1899 cvd->vdev_open_error = vdev_open(cvd); 1900 } else { 1901 VERIFY(taskq_dispatch(tq, vdev_open_child, 1902 cvd, TQ_SLEEP) != TASKQID_INVALID); 1903 } 1904 1905 vd->vdev_nonrot &= cvd->vdev_nonrot; 1906 } 1907 1908 if (tq != NULL) { 1909 taskq_wait(tq); 1910 taskq_destroy(tq); 1911 } 1912 } 1913 1914 /* 1915 * Open all child vdevs. 1916 */ 1917 void 1918 vdev_open_children(vdev_t *vd) 1919 { 1920 vdev_open_children_impl(vd, vdev_default_open_children_func); 1921 } 1922 1923 /* 1924 * Conditionally open a subset of child vdevs. 1925 */ 1926 void 1927 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func) 1928 { 1929 vdev_open_children_impl(vd, open_func); 1930 } 1931 1932 /* 1933 * Compute the raidz-deflation ratio. Note, we hard-code 128k (1 << 17) 1934 * because it is the "typical" blocksize. Even though SPA_MAXBLOCKSIZE 1935 * changed, this algorithm can not change, otherwise it would inconsistently 1936 * account for existing bp's. We also hard-code txg 0 for the same reason 1937 * since expanded RAIDZ vdevs can use a different asize for different birth 1938 * txg's. 1939 */ 1940 static void 1941 vdev_set_deflate_ratio(vdev_t *vd) 1942 { 1943 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { 1944 vd->vdev_deflate_ratio = (1 << 17) / 1945 (vdev_psize_to_asize_txg(vd, 1 << 17, 0) >> 1946 SPA_MINBLOCKSHIFT); 1947 } 1948 } 1949 1950 /* 1951 * Choose the best of two ashifts, preferring one between logical ashift 1952 * (absolute minimum) and administrator defined maximum, otherwise take 1953 * the biggest of the two. 1954 */ 1955 uint64_t 1956 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b) 1957 { 1958 if (a > logical && a <= zfs_vdev_max_auto_ashift) { 1959 if (b <= logical || b > zfs_vdev_max_auto_ashift) 1960 return (a); 1961 else 1962 return (MAX(a, b)); 1963 } else if (b <= logical || b > zfs_vdev_max_auto_ashift) 1964 return (MAX(a, b)); 1965 return (b); 1966 } 1967 1968 /* 1969 * Maximize performance by inflating the configured ashift for top level 1970 * vdevs to be as close to the physical ashift as possible while maintaining 1971 * administrator defined limits and ensuring it doesn't go below the 1972 * logical ashift. 1973 */ 1974 static void 1975 vdev_ashift_optimize(vdev_t *vd) 1976 { 1977 ASSERT(vd == vd->vdev_top); 1978 1979 if (vd->vdev_ashift < vd->vdev_physical_ashift && 1980 vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) { 1981 vd->vdev_ashift = MIN( 1982 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift), 1983 MAX(zfs_vdev_min_auto_ashift, 1984 vd->vdev_physical_ashift)); 1985 } else { 1986 /* 1987 * If the logical and physical ashifts are the same, then 1988 * we ensure that the top-level vdev's ashift is not smaller 1989 * than our minimum ashift value. For the unusual case 1990 * where logical ashift > physical ashift, we can't cap 1991 * the calculated ashift based on max ashift as that 1992 * would cause failures. 1993 * We still check if we need to increase it to match 1994 * the min ashift. 1995 */ 1996 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift, 1997 vd->vdev_ashift); 1998 } 1999 } 2000 2001 /* 2002 * Prepare a virtual device for access. 2003 */ 2004 int 2005 vdev_open(vdev_t *vd) 2006 { 2007 spa_t *spa = vd->vdev_spa; 2008 int error; 2009 uint64_t osize = 0; 2010 uint64_t max_osize = 0; 2011 uint64_t asize, max_asize, psize; 2012 uint64_t logical_ashift = 0; 2013 uint64_t physical_ashift = 0; 2014 2015 ASSERT(vd->vdev_open_thread == curthread || 2016 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2017 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 2018 vd->vdev_state == VDEV_STATE_CANT_OPEN || 2019 vd->vdev_state == VDEV_STATE_OFFLINE); 2020 2021 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2022 vd->vdev_cant_read = B_FALSE; 2023 vd->vdev_cant_write = B_FALSE; 2024 vd->vdev_min_asize = vdev_get_min_asize(vd); 2025 2026 /* 2027 * If this vdev is not removed, check its fault status. If it's 2028 * faulted, bail out of the open. 2029 */ 2030 if (!vd->vdev_removed && vd->vdev_faulted) { 2031 ASSERT(vd->vdev_children == 0); 2032 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 2033 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 2034 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2035 vd->vdev_label_aux); 2036 return (SET_ERROR(ENXIO)); 2037 } else if (vd->vdev_offline) { 2038 ASSERT(vd->vdev_children == 0); 2039 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 2040 return (SET_ERROR(ENXIO)); 2041 } 2042 2043 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, 2044 &logical_ashift, &physical_ashift); 2045 2046 /* Keep the device in removed state if unplugged */ 2047 if (error == ENOENT && vd->vdev_removed) { 2048 vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED, 2049 VDEV_AUX_NONE); 2050 return (error); 2051 } 2052 2053 /* 2054 * Physical volume size should never be larger than its max size, unless 2055 * the disk has shrunk while we were reading it or the device is buggy 2056 * or damaged: either way it's not safe for use, bail out of the open. 2057 */ 2058 if (osize > max_osize) { 2059 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2060 VDEV_AUX_OPEN_FAILED); 2061 return (SET_ERROR(ENXIO)); 2062 } 2063 2064 /* 2065 * Reset the vdev_reopening flag so that we actually close 2066 * the vdev on error. 2067 */ 2068 vd->vdev_reopening = B_FALSE; 2069 if (zio_injection_enabled && error == 0) 2070 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO)); 2071 2072 if (error) { 2073 if (vd->vdev_removed && 2074 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 2075 vd->vdev_removed = B_FALSE; 2076 2077 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { 2078 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, 2079 vd->vdev_stat.vs_aux); 2080 } else { 2081 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2082 vd->vdev_stat.vs_aux); 2083 } 2084 return (error); 2085 } 2086 2087 vd->vdev_removed = B_FALSE; 2088 2089 /* 2090 * Recheck the faulted flag now that we have confirmed that 2091 * the vdev is accessible. If we're faulted, bail. 2092 */ 2093 if (vd->vdev_faulted) { 2094 ASSERT(vd->vdev_children == 0); 2095 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 2096 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 2097 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2098 vd->vdev_label_aux); 2099 return (SET_ERROR(ENXIO)); 2100 } 2101 2102 if (vd->vdev_degraded) { 2103 ASSERT(vd->vdev_children == 0); 2104 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 2105 VDEV_AUX_ERR_EXCEEDED); 2106 } else { 2107 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 2108 } 2109 2110 /* 2111 * For hole or missing vdevs we just return success. 2112 */ 2113 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 2114 return (0); 2115 2116 for (int c = 0; c < vd->vdev_children; c++) { 2117 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 2118 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 2119 VDEV_AUX_NONE); 2120 break; 2121 } 2122 } 2123 2124 osize = P2ALIGN_TYPED(osize, sizeof (vdev_label_t), uint64_t); 2125 max_osize = P2ALIGN_TYPED(max_osize, sizeof (vdev_label_t), uint64_t); 2126 2127 if (vd->vdev_children == 0) { 2128 if (osize < SPA_MINDEVSIZE) { 2129 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2130 VDEV_AUX_TOO_SMALL); 2131 return (SET_ERROR(EOVERFLOW)); 2132 } 2133 psize = osize; 2134 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 2135 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 2136 VDEV_LABEL_END_SIZE); 2137 } else { 2138 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 2139 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 2140 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2141 VDEV_AUX_TOO_SMALL); 2142 return (SET_ERROR(EOVERFLOW)); 2143 } 2144 psize = 0; 2145 asize = osize; 2146 max_asize = max_osize; 2147 } 2148 2149 /* 2150 * If the vdev was expanded, record this so that we can re-create the 2151 * uberblock rings in labels {2,3}, during the next sync. 2152 */ 2153 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0)) 2154 vd->vdev_copy_uberblocks = B_TRUE; 2155 2156 vd->vdev_psize = psize; 2157 2158 /* 2159 * Make sure the allocatable size hasn't shrunk too much. 2160 */ 2161 if (asize < vd->vdev_min_asize) { 2162 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2163 VDEV_AUX_BAD_LABEL); 2164 return (SET_ERROR(EINVAL)); 2165 } 2166 2167 /* 2168 * We can always set the logical/physical ashift members since 2169 * their values are only used to calculate the vdev_ashift when 2170 * the device is first added to the config. These values should 2171 * not be used for anything else since they may change whenever 2172 * the device is reopened and we don't store them in the label. 2173 */ 2174 vd->vdev_physical_ashift = 2175 MAX(physical_ashift, vd->vdev_physical_ashift); 2176 vd->vdev_logical_ashift = MAX(logical_ashift, 2177 vd->vdev_logical_ashift); 2178 2179 if (vd->vdev_asize == 0) { 2180 /* 2181 * This is the first-ever open, so use the computed values. 2182 * For compatibility, a different ashift can be requested. 2183 */ 2184 vd->vdev_asize = asize; 2185 vd->vdev_max_asize = max_asize; 2186 2187 /* 2188 * If the vdev_ashift was not overridden at creation time, 2189 * then set it the logical ashift and optimize the ashift. 2190 */ 2191 if (vd->vdev_ashift == 0) { 2192 vd->vdev_ashift = vd->vdev_logical_ashift; 2193 2194 if (vd->vdev_logical_ashift > ASHIFT_MAX) { 2195 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2196 VDEV_AUX_ASHIFT_TOO_BIG); 2197 return (SET_ERROR(EDOM)); 2198 } 2199 2200 if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE) 2201 vdev_ashift_optimize(vd); 2202 vd->vdev_attaching = B_FALSE; 2203 } 2204 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN || 2205 vd->vdev_ashift > ASHIFT_MAX)) { 2206 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2207 VDEV_AUX_BAD_ASHIFT); 2208 return (SET_ERROR(EDOM)); 2209 } 2210 } else { 2211 /* 2212 * Make sure the alignment required hasn't increased. 2213 */ 2214 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift && 2215 vd->vdev_ops->vdev_op_leaf) { 2216 (void) zfs_ereport_post( 2217 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT, 2218 spa, vd, NULL, NULL, 0); 2219 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2220 VDEV_AUX_BAD_LABEL); 2221 return (SET_ERROR(EDOM)); 2222 } 2223 vd->vdev_max_asize = max_asize; 2224 } 2225 2226 /* 2227 * If all children are healthy we update asize if either: 2228 * The asize has increased, due to a device expansion caused by dynamic 2229 * LUN growth or vdev replacement, and automatic expansion is enabled; 2230 * making the additional space available. 2231 * 2232 * The asize has decreased, due to a device shrink usually caused by a 2233 * vdev replace with a smaller device. This ensures that calculations 2234 * based of max_asize and asize e.g. esize are always valid. It's safe 2235 * to do this as we've already validated that asize is greater than 2236 * vdev_min_asize. 2237 */ 2238 if (vd->vdev_state == VDEV_STATE_HEALTHY && 2239 ((asize > vd->vdev_asize && 2240 (vd->vdev_expanding || spa->spa_autoexpand)) || 2241 (asize < vd->vdev_asize))) 2242 vd->vdev_asize = asize; 2243 2244 vdev_set_min_asize(vd); 2245 2246 /* 2247 * Ensure we can issue some IO before declaring the 2248 * vdev open for business. 2249 */ 2250 if (vd->vdev_ops->vdev_op_leaf && 2251 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 2252 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2253 VDEV_AUX_ERR_EXCEEDED); 2254 return (error); 2255 } 2256 2257 /* 2258 * Track the minimum allocation size. 2259 */ 2260 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 2261 vd->vdev_islog == 0 && vd->vdev_aux == NULL) { 2262 uint64_t min_alloc = vdev_get_min_alloc(vd); 2263 vdev_spa_set_alloc(spa, min_alloc); 2264 } 2265 2266 /* 2267 * If this is a leaf vdev, assess whether a resilver is needed. 2268 * But don't do this if we are doing a reopen for a scrub, since 2269 * this would just restart the scrub we are already doing. 2270 */ 2271 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen) 2272 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd); 2273 2274 return (0); 2275 } 2276 2277 static void 2278 vdev_validate_child(void *arg) 2279 { 2280 vdev_t *vd = arg; 2281 2282 vd->vdev_validate_thread = curthread; 2283 vd->vdev_validate_error = vdev_validate(vd); 2284 vd->vdev_validate_thread = NULL; 2285 } 2286 2287 /* 2288 * Called once the vdevs are all opened, this routine validates the label 2289 * contents. This needs to be done before vdev_load() so that we don't 2290 * inadvertently do repair I/Os to the wrong device. 2291 * 2292 * This function will only return failure if one of the vdevs indicates that it 2293 * has since been destroyed or exported. This is only possible if 2294 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 2295 * will be updated but the function will return 0. 2296 */ 2297 int 2298 vdev_validate(vdev_t *vd) 2299 { 2300 spa_t *spa = vd->vdev_spa; 2301 taskq_t *tq = NULL; 2302 nvlist_t *label; 2303 uint64_t guid = 0, aux_guid = 0, top_guid; 2304 uint64_t state; 2305 nvlist_t *nvl; 2306 uint64_t txg; 2307 int children = vd->vdev_children; 2308 2309 if (vdev_validate_skip) 2310 return (0); 2311 2312 if (children > 0) { 2313 tq = taskq_create("vdev_validate", children, minclsyspri, 2314 children, children, TASKQ_PREPOPULATE); 2315 } 2316 2317 for (uint64_t c = 0; c < children; c++) { 2318 vdev_t *cvd = vd->vdev_child[c]; 2319 2320 if (tq == NULL || vdev_uses_zvols(cvd)) { 2321 vdev_validate_child(cvd); 2322 } else { 2323 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd, 2324 TQ_SLEEP) != TASKQID_INVALID); 2325 } 2326 } 2327 if (tq != NULL) { 2328 taskq_wait(tq); 2329 taskq_destroy(tq); 2330 } 2331 for (int c = 0; c < children; c++) { 2332 int error = vd->vdev_child[c]->vdev_validate_error; 2333 2334 if (error != 0) 2335 return (SET_ERROR(EBADF)); 2336 } 2337 2338 2339 /* 2340 * If the device has already failed, or was marked offline, don't do 2341 * any further validation. Otherwise, label I/O will fail and we will 2342 * overwrite the previous state. 2343 */ 2344 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) 2345 return (0); 2346 2347 /* 2348 * If we are performing an extreme rewind, we allow for a label that 2349 * was modified at a point after the current txg. 2350 * If config lock is not held do not check for the txg. spa_sync could 2351 * be updating the vdev's label before updating spa_last_synced_txg. 2352 */ 2353 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || 2354 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) 2355 txg = UINT64_MAX; 2356 else 2357 txg = spa_last_synced_txg(spa); 2358 2359 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 2360 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2361 VDEV_AUX_BAD_LABEL); 2362 vdev_dbgmsg(vd, "vdev_validate: failed reading config for " 2363 "txg %llu", (u_longlong_t)txg); 2364 return (0); 2365 } 2366 2367 /* 2368 * Determine if this vdev has been split off into another 2369 * pool. If so, then refuse to open it. 2370 */ 2371 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 2372 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 2373 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2374 VDEV_AUX_SPLIT_POOL); 2375 nvlist_free(label); 2376 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); 2377 return (0); 2378 } 2379 2380 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { 2381 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2382 VDEV_AUX_CORRUPT_DATA); 2383 nvlist_free(label); 2384 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2385 ZPOOL_CONFIG_POOL_GUID); 2386 return (0); 2387 } 2388 2389 /* 2390 * If config is not trusted then ignore the spa guid check. This is 2391 * necessary because if the machine crashed during a re-guid the new 2392 * guid might have been written to all of the vdev labels, but not the 2393 * cached config. The check will be performed again once we have the 2394 * trusted config from the MOS. 2395 */ 2396 if (spa->spa_trust_config && guid != spa_guid(spa)) { 2397 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2398 VDEV_AUX_CORRUPT_DATA); 2399 nvlist_free(label); 2400 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " 2401 "match config (%llu != %llu)", (u_longlong_t)guid, 2402 (u_longlong_t)spa_guid(spa)); 2403 return (0); 2404 } 2405 2406 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 2407 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 2408 &aux_guid) != 0) 2409 aux_guid = 0; 2410 2411 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { 2412 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2413 VDEV_AUX_CORRUPT_DATA); 2414 nvlist_free(label); 2415 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2416 ZPOOL_CONFIG_GUID); 2417 return (0); 2418 } 2419 2420 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) 2421 != 0) { 2422 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2423 VDEV_AUX_CORRUPT_DATA); 2424 nvlist_free(label); 2425 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2426 ZPOOL_CONFIG_TOP_GUID); 2427 return (0); 2428 } 2429 2430 /* 2431 * If this vdev just became a top-level vdev because its sibling was 2432 * detached, it will have adopted the parent's vdev guid -- but the 2433 * label may or may not be on disk yet. Fortunately, either version 2434 * of the label will have the same top guid, so if we're a top-level 2435 * vdev, we can safely compare to that instead. 2436 * However, if the config comes from a cachefile that failed to update 2437 * after the detach, a top-level vdev will appear as a non top-level 2438 * vdev in the config. Also relax the constraints if we perform an 2439 * extreme rewind. 2440 * 2441 * If we split this vdev off instead, then we also check the 2442 * original pool's guid. We don't want to consider the vdev 2443 * corrupt if it is partway through a split operation. 2444 */ 2445 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { 2446 boolean_t mismatch = B_FALSE; 2447 if (spa->spa_trust_config && !spa->spa_extreme_rewind) { 2448 if (vd != vd->vdev_top || vd->vdev_guid != top_guid) 2449 mismatch = B_TRUE; 2450 } else { 2451 if (vd->vdev_guid != top_guid && 2452 vd->vdev_top->vdev_guid != guid) 2453 mismatch = B_TRUE; 2454 } 2455 2456 if (mismatch) { 2457 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2458 VDEV_AUX_CORRUPT_DATA); 2459 nvlist_free(label); 2460 vdev_dbgmsg(vd, "vdev_validate: config guid " 2461 "doesn't match label guid"); 2462 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", 2463 (u_longlong_t)vd->vdev_guid, 2464 (u_longlong_t)vd->vdev_top->vdev_guid); 2465 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " 2466 "aux_guid %llu", (u_longlong_t)guid, 2467 (u_longlong_t)top_guid, (u_longlong_t)aux_guid); 2468 return (0); 2469 } 2470 } 2471 2472 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 2473 &state) != 0) { 2474 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2475 VDEV_AUX_CORRUPT_DATA); 2476 nvlist_free(label); 2477 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2478 ZPOOL_CONFIG_POOL_STATE); 2479 return (0); 2480 } 2481 2482 nvlist_free(label); 2483 2484 /* 2485 * If this is a verbatim import, no need to check the 2486 * state of the pool. 2487 */ 2488 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 2489 spa_load_state(spa) == SPA_LOAD_OPEN && 2490 state != POOL_STATE_ACTIVE) { 2491 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " 2492 "for spa %s", (u_longlong_t)state, spa->spa_name); 2493 return (SET_ERROR(EBADF)); 2494 } 2495 2496 /* 2497 * If we were able to open and validate a vdev that was 2498 * previously marked permanently unavailable, clear that state 2499 * now. 2500 */ 2501 if (vd->vdev_not_present) 2502 vd->vdev_not_present = 0; 2503 2504 return (0); 2505 } 2506 2507 static void 2508 vdev_update_path(const char *prefix, char *svd, char **dvd, uint64_t guid) 2509 { 2510 if (svd != NULL && *dvd != NULL) { 2511 if (strcmp(svd, *dvd) != 0) { 2512 zfs_dbgmsg("vdev_copy_path: vdev %llu: %s changed " 2513 "from '%s' to '%s'", (u_longlong_t)guid, prefix, 2514 *dvd, svd); 2515 spa_strfree(*dvd); 2516 *dvd = spa_strdup(svd); 2517 } 2518 } else if (svd != NULL) { 2519 *dvd = spa_strdup(svd); 2520 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", 2521 (u_longlong_t)guid, *dvd); 2522 } 2523 } 2524 2525 static void 2526 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) 2527 { 2528 char *old, *new; 2529 2530 vdev_update_path("vdev_path", svd->vdev_path, &dvd->vdev_path, 2531 dvd->vdev_guid); 2532 2533 vdev_update_path("vdev_devid", svd->vdev_devid, &dvd->vdev_devid, 2534 dvd->vdev_guid); 2535 2536 vdev_update_path("vdev_physpath", svd->vdev_physpath, 2537 &dvd->vdev_physpath, dvd->vdev_guid); 2538 2539 /* 2540 * Our enclosure sysfs path may have changed between imports 2541 */ 2542 old = dvd->vdev_enc_sysfs_path; 2543 new = svd->vdev_enc_sysfs_path; 2544 if ((old != NULL && new == NULL) || 2545 (old == NULL && new != NULL) || 2546 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) { 2547 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path " 2548 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2549 old, new); 2550 2551 if (dvd->vdev_enc_sysfs_path) 2552 spa_strfree(dvd->vdev_enc_sysfs_path); 2553 2554 if (svd->vdev_enc_sysfs_path) { 2555 dvd->vdev_enc_sysfs_path = spa_strdup( 2556 svd->vdev_enc_sysfs_path); 2557 } else { 2558 dvd->vdev_enc_sysfs_path = NULL; 2559 } 2560 } 2561 } 2562 2563 /* 2564 * Recursively copy vdev paths from one vdev to another. Source and destination 2565 * vdev trees must have same geometry otherwise return error. Intended to copy 2566 * paths from userland config into MOS config. 2567 */ 2568 int 2569 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) 2570 { 2571 if ((svd->vdev_ops == &vdev_missing_ops) || 2572 (svd->vdev_ishole && dvd->vdev_ishole) || 2573 (dvd->vdev_ops == &vdev_indirect_ops)) 2574 return (0); 2575 2576 if (svd->vdev_ops != dvd->vdev_ops) { 2577 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", 2578 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); 2579 return (SET_ERROR(EINVAL)); 2580 } 2581 2582 if (svd->vdev_guid != dvd->vdev_guid) { 2583 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " 2584 "%llu)", (u_longlong_t)svd->vdev_guid, 2585 (u_longlong_t)dvd->vdev_guid); 2586 return (SET_ERROR(EINVAL)); 2587 } 2588 2589 if (svd->vdev_children != dvd->vdev_children) { 2590 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " 2591 "%llu != %llu", (u_longlong_t)svd->vdev_children, 2592 (u_longlong_t)dvd->vdev_children); 2593 return (SET_ERROR(EINVAL)); 2594 } 2595 2596 for (uint64_t i = 0; i < svd->vdev_children; i++) { 2597 int error = vdev_copy_path_strict(svd->vdev_child[i], 2598 dvd->vdev_child[i]); 2599 if (error != 0) 2600 return (error); 2601 } 2602 2603 if (svd->vdev_ops->vdev_op_leaf) 2604 vdev_copy_path_impl(svd, dvd); 2605 2606 return (0); 2607 } 2608 2609 static void 2610 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) 2611 { 2612 ASSERT(stvd->vdev_top == stvd); 2613 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); 2614 2615 for (uint64_t i = 0; i < dvd->vdev_children; i++) { 2616 vdev_copy_path_search(stvd, dvd->vdev_child[i]); 2617 } 2618 2619 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) 2620 return; 2621 2622 /* 2623 * The idea here is that while a vdev can shift positions within 2624 * a top vdev (when replacing, attaching mirror, etc.) it cannot 2625 * step outside of it. 2626 */ 2627 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); 2628 2629 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) 2630 return; 2631 2632 ASSERT(vd->vdev_ops->vdev_op_leaf); 2633 2634 vdev_copy_path_impl(vd, dvd); 2635 } 2636 2637 /* 2638 * Recursively copy vdev paths from one root vdev to another. Source and 2639 * destination vdev trees may differ in geometry. For each destination leaf 2640 * vdev, search a vdev with the same guid and top vdev id in the source. 2641 * Intended to copy paths from userland config into MOS config. 2642 */ 2643 void 2644 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) 2645 { 2646 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); 2647 ASSERT(srvd->vdev_ops == &vdev_root_ops); 2648 ASSERT(drvd->vdev_ops == &vdev_root_ops); 2649 2650 for (uint64_t i = 0; i < children; i++) { 2651 vdev_copy_path_search(srvd->vdev_child[i], 2652 drvd->vdev_child[i]); 2653 } 2654 } 2655 2656 /* 2657 * Close a virtual device. 2658 */ 2659 void 2660 vdev_close(vdev_t *vd) 2661 { 2662 vdev_t *pvd = vd->vdev_parent; 2663 spa_t *spa __maybe_unused = vd->vdev_spa; 2664 2665 ASSERT(vd != NULL); 2666 ASSERT(vd->vdev_open_thread == curthread || 2667 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2668 2669 /* 2670 * If our parent is reopening, then we are as well, unless we are 2671 * going offline. 2672 */ 2673 if (pvd != NULL && pvd->vdev_reopening) 2674 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 2675 2676 vd->vdev_ops->vdev_op_close(vd); 2677 2678 /* 2679 * We record the previous state before we close it, so that if we are 2680 * doing a reopen(), we don't generate FMA ereports if we notice that 2681 * it's still faulted. 2682 */ 2683 vd->vdev_prevstate = vd->vdev_state; 2684 2685 if (vd->vdev_offline) 2686 vd->vdev_state = VDEV_STATE_OFFLINE; 2687 else 2688 vd->vdev_state = VDEV_STATE_CLOSED; 2689 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2690 } 2691 2692 void 2693 vdev_hold(vdev_t *vd) 2694 { 2695 spa_t *spa = vd->vdev_spa; 2696 2697 ASSERT(spa_is_root(spa)); 2698 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 2699 return; 2700 2701 for (int c = 0; c < vd->vdev_children; c++) 2702 vdev_hold(vd->vdev_child[c]); 2703 2704 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL) 2705 vd->vdev_ops->vdev_op_hold(vd); 2706 } 2707 2708 void 2709 vdev_rele(vdev_t *vd) 2710 { 2711 ASSERT(spa_is_root(vd->vdev_spa)); 2712 for (int c = 0; c < vd->vdev_children; c++) 2713 vdev_rele(vd->vdev_child[c]); 2714 2715 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL) 2716 vd->vdev_ops->vdev_op_rele(vd); 2717 } 2718 2719 /* 2720 * Reopen all interior vdevs and any unopened leaves. We don't actually 2721 * reopen leaf vdevs which had previously been opened as they might deadlock 2722 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 2723 * If the leaf has never been opened then open it, as usual. 2724 */ 2725 void 2726 vdev_reopen(vdev_t *vd) 2727 { 2728 spa_t *spa = vd->vdev_spa; 2729 2730 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2731 2732 /* set the reopening flag unless we're taking the vdev offline */ 2733 vd->vdev_reopening = !vd->vdev_offline; 2734 vdev_close(vd); 2735 (void) vdev_open(vd); 2736 2737 /* 2738 * Call vdev_validate() here to make sure we have the same device. 2739 * Otherwise, a device with an invalid label could be successfully 2740 * opened in response to vdev_reopen(). 2741 */ 2742 if (vd->vdev_aux) { 2743 (void) vdev_validate_aux(vd); 2744 if (vdev_readable(vd) && vdev_writeable(vd) && 2745 vd->vdev_aux == &spa->spa_l2cache) { 2746 /* 2747 * In case the vdev is present we should evict all ARC 2748 * buffers and pointers to log blocks and reclaim their 2749 * space before restoring its contents to L2ARC. 2750 */ 2751 if (l2arc_vdev_present(vd)) { 2752 l2arc_rebuild_vdev(vd, B_TRUE); 2753 } else { 2754 l2arc_add_vdev(spa, vd); 2755 } 2756 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 2757 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 2758 } 2759 } else { 2760 (void) vdev_validate(vd); 2761 } 2762 2763 /* 2764 * Recheck if resilver is still needed and cancel any 2765 * scheduled resilver if resilver is unneeded. 2766 */ 2767 if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) && 2768 spa->spa_async_tasks & SPA_ASYNC_RESILVER) { 2769 mutex_enter(&spa->spa_async_lock); 2770 spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER; 2771 mutex_exit(&spa->spa_async_lock); 2772 } 2773 2774 /* 2775 * Reassess parent vdev's health. 2776 */ 2777 vdev_propagate_state(vd); 2778 } 2779 2780 int 2781 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 2782 { 2783 int error; 2784 2785 /* 2786 * Normally, partial opens (e.g. of a mirror) are allowed. 2787 * For a create, however, we want to fail the request if 2788 * there are any components we can't open. 2789 */ 2790 error = vdev_open(vd); 2791 2792 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 2793 vdev_close(vd); 2794 return (error ? error : SET_ERROR(ENXIO)); 2795 } 2796 2797 /* 2798 * Recursively load DTLs and initialize all labels. 2799 */ 2800 if ((error = vdev_dtl_load(vd)) != 0 || 2801 (error = vdev_label_init(vd, txg, isreplacing ? 2802 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 2803 vdev_close(vd); 2804 return (error); 2805 } 2806 2807 return (0); 2808 } 2809 2810 void 2811 vdev_metaslab_set_size(vdev_t *vd) 2812 { 2813 uint64_t asize = vd->vdev_asize; 2814 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; 2815 uint64_t ms_shift; 2816 2817 /* 2818 * There are two dimensions to the metaslab sizing calculation: 2819 * the size of the metaslab and the count of metaslabs per vdev. 2820 * 2821 * The default values used below are a good balance between memory 2822 * usage (larger metaslab size means more memory needed for loaded 2823 * metaslabs; more metaslabs means more memory needed for the 2824 * metaslab_t structs), metaslab load time (larger metaslabs take 2825 * longer to load), and metaslab sync time (more metaslabs means 2826 * more time spent syncing all of them). 2827 * 2828 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. 2829 * The range of the dimensions are as follows: 2830 * 2831 * 2^29 <= ms_size <= 2^34 2832 * 16 <= ms_count <= 131,072 2833 * 2834 * On the lower end of vdev sizes, we aim for metaslabs sizes of 2835 * at least 512MB (2^29) to minimize fragmentation effects when 2836 * testing with smaller devices. However, the count constraint 2837 * of at least 16 metaslabs will override this minimum size goal. 2838 * 2839 * On the upper end of vdev sizes, we aim for a maximum metaslab 2840 * size of 16GB. However, we will cap the total count to 2^17 2841 * metaslabs to keep our memory footprint in check and let the 2842 * metaslab size grow from there if that limit is hit. 2843 * 2844 * The net effect of applying above constrains is summarized below. 2845 * 2846 * vdev size metaslab count 2847 * --------------|----------------- 2848 * < 8GB ~16 2849 * 8GB - 100GB one per 512MB 2850 * 100GB - 3TB ~200 2851 * 3TB - 2PB one per 16GB 2852 * > 2PB ~131,072 2853 * -------------------------------- 2854 * 2855 * Finally, note that all of the above calculate the initial 2856 * number of metaslabs. Expanding a top-level vdev will result 2857 * in additional metaslabs being allocated making it possible 2858 * to exceed the zfs_vdev_ms_count_limit. 2859 */ 2860 2861 if (ms_count < zfs_vdev_min_ms_count) 2862 ms_shift = highbit64(asize / zfs_vdev_min_ms_count); 2863 else if (ms_count > zfs_vdev_default_ms_count) 2864 ms_shift = highbit64(asize / zfs_vdev_default_ms_count); 2865 else 2866 ms_shift = zfs_vdev_default_ms_shift; 2867 2868 if (ms_shift < SPA_MAXBLOCKSHIFT) { 2869 ms_shift = SPA_MAXBLOCKSHIFT; 2870 } else if (ms_shift > zfs_vdev_max_ms_shift) { 2871 ms_shift = zfs_vdev_max_ms_shift; 2872 /* cap the total count to constrain memory footprint */ 2873 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) 2874 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); 2875 } 2876 2877 vd->vdev_ms_shift = ms_shift; 2878 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); 2879 } 2880 2881 void 2882 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 2883 { 2884 ASSERT(vd == vd->vdev_top); 2885 /* indirect vdevs don't have metaslabs or dtls */ 2886 ASSERT(vdev_is_concrete(vd) || flags == 0); 2887 ASSERT(ISP2(flags)); 2888 ASSERT(spa_writeable(vd->vdev_spa)); 2889 2890 if (flags & VDD_METASLAB) 2891 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 2892 2893 if (flags & VDD_DTL) 2894 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 2895 2896 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 2897 } 2898 2899 void 2900 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 2901 { 2902 for (int c = 0; c < vd->vdev_children; c++) 2903 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 2904 2905 if (vd->vdev_ops->vdev_op_leaf) 2906 vdev_dirty(vd->vdev_top, flags, vd, txg); 2907 } 2908 2909 /* 2910 * DTLs. 2911 * 2912 * A vdev's DTL (dirty time log) is the set of transaction groups for which 2913 * the vdev has less than perfect replication. There are four kinds of DTL: 2914 * 2915 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 2916 * 2917 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 2918 * 2919 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 2920 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 2921 * txgs that was scrubbed. 2922 * 2923 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 2924 * persistent errors or just some device being offline. 2925 * Unlike the other three, the DTL_OUTAGE map is not generally 2926 * maintained; it's only computed when needed, typically to 2927 * determine whether a device can be detached. 2928 * 2929 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 2930 * either has the data or it doesn't. 2931 * 2932 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 2933 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 2934 * if any child is less than fully replicated, then so is its parent. 2935 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 2936 * comprising only those txgs which appear in 'maxfaults' or more children; 2937 * those are the txgs we don't have enough replication to read. For example, 2938 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 2939 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 2940 * two child DTL_MISSING maps. 2941 * 2942 * It should be clear from the above that to compute the DTLs and outage maps 2943 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 2944 * Therefore, that is all we keep on disk. When loading the pool, or after 2945 * a configuration change, we generate all other DTLs from first principles. 2946 */ 2947 void 2948 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2949 { 2950 range_tree_t *rt = vd->vdev_dtl[t]; 2951 2952 ASSERT(t < DTL_TYPES); 2953 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2954 ASSERT(spa_writeable(vd->vdev_spa)); 2955 2956 mutex_enter(&vd->vdev_dtl_lock); 2957 if (!range_tree_contains(rt, txg, size)) 2958 range_tree_add(rt, txg, size); 2959 mutex_exit(&vd->vdev_dtl_lock); 2960 } 2961 2962 boolean_t 2963 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2964 { 2965 range_tree_t *rt = vd->vdev_dtl[t]; 2966 boolean_t dirty = B_FALSE; 2967 2968 ASSERT(t < DTL_TYPES); 2969 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2970 2971 /* 2972 * While we are loading the pool, the DTLs have not been loaded yet. 2973 * This isn't a problem but it can result in devices being tried 2974 * which are known to not have the data. In which case, the import 2975 * is relying on the checksum to ensure that we get the right data. 2976 * Note that while importing we are only reading the MOS, which is 2977 * always checksummed. 2978 */ 2979 mutex_enter(&vd->vdev_dtl_lock); 2980 if (!range_tree_is_empty(rt)) 2981 dirty = range_tree_contains(rt, txg, size); 2982 mutex_exit(&vd->vdev_dtl_lock); 2983 2984 return (dirty); 2985 } 2986 2987 boolean_t 2988 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 2989 { 2990 range_tree_t *rt = vd->vdev_dtl[t]; 2991 boolean_t empty; 2992 2993 mutex_enter(&vd->vdev_dtl_lock); 2994 empty = range_tree_is_empty(rt); 2995 mutex_exit(&vd->vdev_dtl_lock); 2996 2997 return (empty); 2998 } 2999 3000 /* 3001 * Check if the txg falls within the range which must be 3002 * resilvered. DVAs outside this range can always be skipped. 3003 */ 3004 boolean_t 3005 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 3006 uint64_t phys_birth) 3007 { 3008 (void) dva, (void) psize; 3009 3010 /* Set by sequential resilver. */ 3011 if (phys_birth == TXG_UNKNOWN) 3012 return (B_TRUE); 3013 3014 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)); 3015 } 3016 3017 /* 3018 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered. 3019 */ 3020 boolean_t 3021 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 3022 uint64_t phys_birth) 3023 { 3024 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 3025 3026 if (vd->vdev_ops->vdev_op_need_resilver == NULL || 3027 vd->vdev_ops->vdev_op_leaf) 3028 return (B_TRUE); 3029 3030 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize, 3031 phys_birth)); 3032 } 3033 3034 /* 3035 * Returns the lowest txg in the DTL range. 3036 */ 3037 static uint64_t 3038 vdev_dtl_min(vdev_t *vd) 3039 { 3040 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 3041 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 3042 ASSERT0(vd->vdev_children); 3043 3044 return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1); 3045 } 3046 3047 /* 3048 * Returns the highest txg in the DTL. 3049 */ 3050 static uint64_t 3051 vdev_dtl_max(vdev_t *vd) 3052 { 3053 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 3054 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 3055 ASSERT0(vd->vdev_children); 3056 3057 return (range_tree_max(vd->vdev_dtl[DTL_MISSING])); 3058 } 3059 3060 /* 3061 * Determine if a resilvering vdev should remove any DTL entries from 3062 * its range. If the vdev was resilvering for the entire duration of the 3063 * scan then it should excise that range from its DTLs. Otherwise, this 3064 * vdev is considered partially resilvered and should leave its DTL 3065 * entries intact. The comment in vdev_dtl_reassess() describes how we 3066 * excise the DTLs. 3067 */ 3068 static boolean_t 3069 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done) 3070 { 3071 ASSERT0(vd->vdev_children); 3072 3073 if (vd->vdev_state < VDEV_STATE_DEGRADED) 3074 return (B_FALSE); 3075 3076 if (vd->vdev_resilver_deferred) 3077 return (B_FALSE); 3078 3079 if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) 3080 return (B_TRUE); 3081 3082 if (rebuild_done) { 3083 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3084 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 3085 3086 /* Rebuild not initiated by attach */ 3087 if (vd->vdev_rebuild_txg == 0) 3088 return (B_TRUE); 3089 3090 /* 3091 * When a rebuild completes without error then all missing data 3092 * up to the rebuild max txg has been reconstructed and the DTL 3093 * is eligible for excision. 3094 */ 3095 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE && 3096 vdev_dtl_max(vd) <= vrp->vrp_max_txg) { 3097 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd)); 3098 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg); 3099 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg); 3100 return (B_TRUE); 3101 } 3102 } else { 3103 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 3104 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys; 3105 3106 /* Resilver not initiated by attach */ 3107 if (vd->vdev_resilver_txg == 0) 3108 return (B_TRUE); 3109 3110 /* 3111 * When a resilver is initiated the scan will assign the 3112 * scn_max_txg value to the highest txg value that exists 3113 * in all DTLs. If this device's max DTL is not part of this 3114 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg] 3115 * then it is not eligible for excision. 3116 */ 3117 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 3118 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd)); 3119 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg); 3120 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg); 3121 return (B_TRUE); 3122 } 3123 } 3124 3125 return (B_FALSE); 3126 } 3127 3128 /* 3129 * Reassess DTLs after a config change or scrub completion. If txg == 0 no 3130 * write operations will be issued to the pool. 3131 */ 3132 void 3133 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, 3134 boolean_t scrub_done, boolean_t rebuild_done) 3135 { 3136 spa_t *spa = vd->vdev_spa; 3137 avl_tree_t reftree; 3138 int minref; 3139 3140 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 3141 3142 for (int c = 0; c < vd->vdev_children; c++) 3143 vdev_dtl_reassess(vd->vdev_child[c], txg, 3144 scrub_txg, scrub_done, rebuild_done); 3145 3146 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) 3147 return; 3148 3149 if (vd->vdev_ops->vdev_op_leaf) { 3150 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 3151 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3152 boolean_t check_excise = B_FALSE; 3153 boolean_t wasempty = B_TRUE; 3154 3155 mutex_enter(&vd->vdev_dtl_lock); 3156 3157 /* 3158 * If requested, pretend the scan or rebuild completed cleanly. 3159 */ 3160 if (zfs_scan_ignore_errors) { 3161 if (scn != NULL) 3162 scn->scn_phys.scn_errors = 0; 3163 if (vr != NULL) 3164 vr->vr_rebuild_phys.vrp_errors = 0; 3165 } 3166 3167 if (scrub_txg != 0 && 3168 !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3169 wasempty = B_FALSE; 3170 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d " 3171 "dtl:%llu/%llu errors:%llu", 3172 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg, 3173 (u_longlong_t)scrub_txg, spa->spa_scrub_started, 3174 (u_longlong_t)vdev_dtl_min(vd), 3175 (u_longlong_t)vdev_dtl_max(vd), 3176 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0)); 3177 } 3178 3179 /* 3180 * If we've completed a scrub/resilver or a rebuild cleanly 3181 * then determine if this vdev should remove any DTLs. We 3182 * only want to excise regions on vdevs that were available 3183 * during the entire duration of this scan. 3184 */ 3185 if (rebuild_done && 3186 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) { 3187 check_excise = B_TRUE; 3188 } else { 3189 if (spa->spa_scrub_started || 3190 (scn != NULL && scn->scn_phys.scn_errors == 0)) { 3191 check_excise = B_TRUE; 3192 } 3193 } 3194 3195 if (scrub_txg && check_excise && 3196 vdev_dtl_should_excise(vd, rebuild_done)) { 3197 /* 3198 * We completed a scrub, resilver or rebuild up to 3199 * scrub_txg. If we did it without rebooting, then 3200 * the scrub dtl will be valid, so excise the old 3201 * region and fold in the scrub dtl. Otherwise, 3202 * leave the dtl as-is if there was an error. 3203 * 3204 * There's little trick here: to excise the beginning 3205 * of the DTL_MISSING map, we put it into a reference 3206 * tree and then add a segment with refcnt -1 that 3207 * covers the range [0, scrub_txg). This means 3208 * that each txg in that range has refcnt -1 or 0. 3209 * We then add DTL_SCRUB with a refcnt of 2, so that 3210 * entries in the range [0, scrub_txg) will have a 3211 * positive refcnt -- either 1 or 2. We then convert 3212 * the reference tree into the new DTL_MISSING map. 3213 */ 3214 space_reftree_create(&reftree); 3215 space_reftree_add_map(&reftree, 3216 vd->vdev_dtl[DTL_MISSING], 1); 3217 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 3218 space_reftree_add_map(&reftree, 3219 vd->vdev_dtl[DTL_SCRUB], 2); 3220 space_reftree_generate_map(&reftree, 3221 vd->vdev_dtl[DTL_MISSING], 1); 3222 space_reftree_destroy(&reftree); 3223 3224 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3225 zfs_dbgmsg("update DTL_MISSING:%llu/%llu", 3226 (u_longlong_t)vdev_dtl_min(vd), 3227 (u_longlong_t)vdev_dtl_max(vd)); 3228 } else if (!wasempty) { 3229 zfs_dbgmsg("DTL_MISSING is now empty"); 3230 } 3231 } 3232 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 3233 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3234 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 3235 if (scrub_done) 3236 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 3237 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 3238 if (!vdev_readable(vd)) 3239 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 3240 else 3241 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3242 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 3243 3244 /* 3245 * If the vdev was resilvering or rebuilding and no longer 3246 * has any DTLs then reset the appropriate flag and dirty 3247 * the top level so that we persist the change. 3248 */ 3249 if (txg != 0 && 3250 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3251 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) { 3252 if (vd->vdev_rebuild_txg != 0) { 3253 vd->vdev_rebuild_txg = 0; 3254 vdev_config_dirty(vd->vdev_top); 3255 } else if (vd->vdev_resilver_txg != 0) { 3256 vd->vdev_resilver_txg = 0; 3257 vdev_config_dirty(vd->vdev_top); 3258 } 3259 } 3260 3261 mutex_exit(&vd->vdev_dtl_lock); 3262 3263 if (txg != 0) 3264 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 3265 } else { 3266 mutex_enter(&vd->vdev_dtl_lock); 3267 for (int t = 0; t < DTL_TYPES; t++) { 3268 /* account for child's outage in parent's missing map */ 3269 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 3270 if (t == DTL_SCRUB) { 3271 /* leaf vdevs only */ 3272 continue; 3273 } 3274 if (t == DTL_PARTIAL) { 3275 /* i.e. non-zero */ 3276 minref = 1; 3277 } else if (vdev_get_nparity(vd) != 0) { 3278 /* RAIDZ, DRAID */ 3279 minref = vdev_get_nparity(vd) + 1; 3280 } else { 3281 /* any kind of mirror */ 3282 minref = vd->vdev_children; 3283 } 3284 space_reftree_create(&reftree); 3285 for (int c = 0; c < vd->vdev_children; c++) { 3286 vdev_t *cvd = vd->vdev_child[c]; 3287 mutex_enter(&cvd->vdev_dtl_lock); 3288 space_reftree_add_map(&reftree, 3289 cvd->vdev_dtl[s], 1); 3290 mutex_exit(&cvd->vdev_dtl_lock); 3291 } 3292 space_reftree_generate_map(&reftree, 3293 vd->vdev_dtl[t], minref); 3294 space_reftree_destroy(&reftree); 3295 } 3296 mutex_exit(&vd->vdev_dtl_lock); 3297 } 3298 3299 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) { 3300 raidz_dtl_reassessed(vd); 3301 } 3302 } 3303 3304 /* 3305 * Iterate over all the vdevs except spare, and post kobj events 3306 */ 3307 void 3308 vdev_post_kobj_evt(vdev_t *vd) 3309 { 3310 if (vd->vdev_ops->vdev_op_kobj_evt_post && 3311 vd->vdev_kobj_flag == B_FALSE) { 3312 vd->vdev_kobj_flag = B_TRUE; 3313 vd->vdev_ops->vdev_op_kobj_evt_post(vd); 3314 } 3315 3316 for (int c = 0; c < vd->vdev_children; c++) 3317 vdev_post_kobj_evt(vd->vdev_child[c]); 3318 } 3319 3320 /* 3321 * Iterate over all the vdevs except spare, and clear kobj events 3322 */ 3323 void 3324 vdev_clear_kobj_evt(vdev_t *vd) 3325 { 3326 vd->vdev_kobj_flag = B_FALSE; 3327 3328 for (int c = 0; c < vd->vdev_children; c++) 3329 vdev_clear_kobj_evt(vd->vdev_child[c]); 3330 } 3331 3332 int 3333 vdev_dtl_load(vdev_t *vd) 3334 { 3335 spa_t *spa = vd->vdev_spa; 3336 objset_t *mos = spa->spa_meta_objset; 3337 range_tree_t *rt; 3338 int error = 0; 3339 3340 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 3341 ASSERT(vdev_is_concrete(vd)); 3342 3343 /* 3344 * If the dtl cannot be sync'd there is no need to open it. 3345 */ 3346 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps) 3347 return (0); 3348 3349 error = space_map_open(&vd->vdev_dtl_sm, mos, 3350 vd->vdev_dtl_object, 0, -1ULL, 0); 3351 if (error) 3352 return (error); 3353 ASSERT(vd->vdev_dtl_sm != NULL); 3354 3355 rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3356 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC); 3357 if (error == 0) { 3358 mutex_enter(&vd->vdev_dtl_lock); 3359 range_tree_walk(rt, range_tree_add, 3360 vd->vdev_dtl[DTL_MISSING]); 3361 mutex_exit(&vd->vdev_dtl_lock); 3362 } 3363 3364 range_tree_vacate(rt, NULL, NULL); 3365 range_tree_destroy(rt); 3366 3367 return (error); 3368 } 3369 3370 for (int c = 0; c < vd->vdev_children; c++) { 3371 error = vdev_dtl_load(vd->vdev_child[c]); 3372 if (error != 0) 3373 break; 3374 } 3375 3376 return (error); 3377 } 3378 3379 static void 3380 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx) 3381 { 3382 spa_t *spa = vd->vdev_spa; 3383 objset_t *mos = spa->spa_meta_objset; 3384 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 3385 const char *string; 3386 3387 ASSERT(alloc_bias != VDEV_BIAS_NONE); 3388 3389 string = 3390 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG : 3391 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL : 3392 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL; 3393 3394 ASSERT(string != NULL); 3395 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, 3396 1, strlen(string) + 1, string, tx)); 3397 3398 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) { 3399 spa_activate_allocation_classes(spa, tx); 3400 } 3401 } 3402 3403 void 3404 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 3405 { 3406 spa_t *spa = vd->vdev_spa; 3407 3408 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 3409 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3410 zapobj, tx)); 3411 } 3412 3413 uint64_t 3414 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 3415 { 3416 spa_t *spa = vd->vdev_spa; 3417 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 3418 DMU_OT_NONE, 0, tx); 3419 3420 ASSERT(zap != 0); 3421 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3422 zap, tx)); 3423 3424 return (zap); 3425 } 3426 3427 void 3428 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 3429 { 3430 if (vd->vdev_ops != &vdev_hole_ops && 3431 vd->vdev_ops != &vdev_missing_ops && 3432 vd->vdev_ops != &vdev_root_ops && 3433 !vd->vdev_top->vdev_removing) { 3434 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 3435 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 3436 } 3437 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 3438 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 3439 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE) 3440 vdev_zap_allocation_data(vd, tx); 3441 } 3442 } 3443 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 && 3444 spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) { 3445 if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) 3446 spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx); 3447 vd->vdev_root_zap = vdev_create_link_zap(vd, tx); 3448 } 3449 3450 for (uint64_t i = 0; i < vd->vdev_children; i++) { 3451 vdev_construct_zaps(vd->vdev_child[i], tx); 3452 } 3453 } 3454 3455 static void 3456 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 3457 { 3458 spa_t *spa = vd->vdev_spa; 3459 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 3460 objset_t *mos = spa->spa_meta_objset; 3461 range_tree_t *rtsync; 3462 dmu_tx_t *tx; 3463 uint64_t object = space_map_object(vd->vdev_dtl_sm); 3464 3465 ASSERT(vdev_is_concrete(vd)); 3466 ASSERT(vd->vdev_ops->vdev_op_leaf); 3467 3468 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3469 3470 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 3471 mutex_enter(&vd->vdev_dtl_lock); 3472 space_map_free(vd->vdev_dtl_sm, tx); 3473 space_map_close(vd->vdev_dtl_sm); 3474 vd->vdev_dtl_sm = NULL; 3475 mutex_exit(&vd->vdev_dtl_lock); 3476 3477 /* 3478 * We only destroy the leaf ZAP for detached leaves or for 3479 * removed log devices. Removed data devices handle leaf ZAP 3480 * cleanup later, once cancellation is no longer possible. 3481 */ 3482 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 3483 vd->vdev_top->vdev_islog)) { 3484 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 3485 vd->vdev_leaf_zap = 0; 3486 } 3487 3488 dmu_tx_commit(tx); 3489 return; 3490 } 3491 3492 if (vd->vdev_dtl_sm == NULL) { 3493 uint64_t new_object; 3494 3495 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx); 3496 VERIFY3U(new_object, !=, 0); 3497 3498 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 3499 0, -1ULL, 0)); 3500 ASSERT(vd->vdev_dtl_sm != NULL); 3501 } 3502 3503 rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3504 3505 mutex_enter(&vd->vdev_dtl_lock); 3506 range_tree_walk(rt, range_tree_add, rtsync); 3507 mutex_exit(&vd->vdev_dtl_lock); 3508 3509 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx); 3510 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); 3511 range_tree_vacate(rtsync, NULL, NULL); 3512 3513 range_tree_destroy(rtsync); 3514 3515 /* 3516 * If the object for the space map has changed then dirty 3517 * the top level so that we update the config. 3518 */ 3519 if (object != space_map_object(vd->vdev_dtl_sm)) { 3520 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " 3521 "new object %llu", (u_longlong_t)txg, spa_name(spa), 3522 (u_longlong_t)object, 3523 (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); 3524 vdev_config_dirty(vd->vdev_top); 3525 } 3526 3527 dmu_tx_commit(tx); 3528 } 3529 3530 /* 3531 * Determine whether the specified vdev can be offlined/detached/removed 3532 * without losing data. 3533 */ 3534 boolean_t 3535 vdev_dtl_required(vdev_t *vd) 3536 { 3537 spa_t *spa = vd->vdev_spa; 3538 vdev_t *tvd = vd->vdev_top; 3539 uint8_t cant_read = vd->vdev_cant_read; 3540 boolean_t required; 3541 3542 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3543 3544 if (vd == spa->spa_root_vdev || vd == tvd) 3545 return (B_TRUE); 3546 3547 /* 3548 * Temporarily mark the device as unreadable, and then determine 3549 * whether this results in any DTL outages in the top-level vdev. 3550 * If not, we can safely offline/detach/remove the device. 3551 */ 3552 vd->vdev_cant_read = B_TRUE; 3553 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3554 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 3555 vd->vdev_cant_read = cant_read; 3556 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3557 3558 if (!required && zio_injection_enabled) { 3559 required = !!zio_handle_device_injection(vd, NULL, 3560 SET_ERROR(ECHILD)); 3561 } 3562 3563 return (required); 3564 } 3565 3566 /* 3567 * Determine if resilver is needed, and if so the txg range. 3568 */ 3569 boolean_t 3570 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 3571 { 3572 boolean_t needed = B_FALSE; 3573 uint64_t thismin = UINT64_MAX; 3574 uint64_t thismax = 0; 3575 3576 if (vd->vdev_children == 0) { 3577 mutex_enter(&vd->vdev_dtl_lock); 3578 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3579 vdev_writeable(vd)) { 3580 3581 thismin = vdev_dtl_min(vd); 3582 thismax = vdev_dtl_max(vd); 3583 needed = B_TRUE; 3584 } 3585 mutex_exit(&vd->vdev_dtl_lock); 3586 } else { 3587 for (int c = 0; c < vd->vdev_children; c++) { 3588 vdev_t *cvd = vd->vdev_child[c]; 3589 uint64_t cmin, cmax; 3590 3591 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 3592 thismin = MIN(thismin, cmin); 3593 thismax = MAX(thismax, cmax); 3594 needed = B_TRUE; 3595 } 3596 } 3597 } 3598 3599 if (needed && minp) { 3600 *minp = thismin; 3601 *maxp = thismax; 3602 } 3603 return (needed); 3604 } 3605 3606 /* 3607 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj 3608 * will contain either the checkpoint spacemap object or zero if none exists. 3609 * All other errors are returned to the caller. 3610 */ 3611 int 3612 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj) 3613 { 3614 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 3615 3616 if (vd->vdev_top_zap == 0) { 3617 *sm_obj = 0; 3618 return (0); 3619 } 3620 3621 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, 3622 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj); 3623 if (error == ENOENT) { 3624 *sm_obj = 0; 3625 error = 0; 3626 } 3627 3628 return (error); 3629 } 3630 3631 int 3632 vdev_load(vdev_t *vd) 3633 { 3634 int children = vd->vdev_children; 3635 int error = 0; 3636 taskq_t *tq = NULL; 3637 3638 /* 3639 * It's only worthwhile to use the taskq for the root vdev, because the 3640 * slow part is metaslab_init, and that only happens for top-level 3641 * vdevs. 3642 */ 3643 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) { 3644 tq = taskq_create("vdev_load", children, minclsyspri, 3645 children, children, TASKQ_PREPOPULATE); 3646 } 3647 3648 /* 3649 * Recursively load all children. 3650 */ 3651 for (int c = 0; c < vd->vdev_children; c++) { 3652 vdev_t *cvd = vd->vdev_child[c]; 3653 3654 if (tq == NULL || vdev_uses_zvols(cvd)) { 3655 cvd->vdev_load_error = vdev_load(cvd); 3656 } else { 3657 VERIFY(taskq_dispatch(tq, vdev_load_child, 3658 cvd, TQ_SLEEP) != TASKQID_INVALID); 3659 } 3660 } 3661 3662 if (tq != NULL) { 3663 taskq_wait(tq); 3664 taskq_destroy(tq); 3665 } 3666 3667 for (int c = 0; c < vd->vdev_children; c++) { 3668 int error = vd->vdev_child[c]->vdev_load_error; 3669 3670 if (error != 0) 3671 return (error); 3672 } 3673 3674 vdev_set_deflate_ratio(vd); 3675 3676 if (vd->vdev_ops == &vdev_raidz_ops) { 3677 error = vdev_raidz_load(vd); 3678 if (error != 0) 3679 return (error); 3680 } 3681 3682 /* 3683 * On spa_load path, grab the allocation bias from our zap 3684 */ 3685 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3686 spa_t *spa = vd->vdev_spa; 3687 char bias_str[64]; 3688 3689 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3690 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str), 3691 bias_str); 3692 if (error == 0) { 3693 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE); 3694 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str); 3695 } else if (error != ENOENT) { 3696 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3697 VDEV_AUX_CORRUPT_DATA); 3698 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) " 3699 "failed [error=%d]", 3700 (u_longlong_t)vd->vdev_top_zap, error); 3701 return (error); 3702 } 3703 } 3704 3705 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3706 spa_t *spa = vd->vdev_spa; 3707 uint64_t failfast; 3708 3709 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3710 vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast), 3711 1, &failfast); 3712 if (error == 0) { 3713 vd->vdev_failfast = failfast & 1; 3714 } else if (error == ENOENT) { 3715 vd->vdev_failfast = vdev_prop_default_numeric( 3716 VDEV_PROP_FAILFAST); 3717 } else { 3718 vdev_dbgmsg(vd, 3719 "vdev_load: zap_lookup(top_zap=%llu) " 3720 "failed [error=%d]", 3721 (u_longlong_t)vd->vdev_top_zap, error); 3722 } 3723 } 3724 3725 /* 3726 * Load any rebuild state from the top-level vdev zap. 3727 */ 3728 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3729 error = vdev_rebuild_load(vd); 3730 if (error && error != ENOTSUP) { 3731 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3732 VDEV_AUX_CORRUPT_DATA); 3733 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load " 3734 "failed [error=%d]", error); 3735 return (error); 3736 } 3737 } 3738 3739 if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) { 3740 uint64_t zapobj; 3741 3742 if (vd->vdev_top_zap != 0) 3743 zapobj = vd->vdev_top_zap; 3744 else 3745 zapobj = vd->vdev_leaf_zap; 3746 3747 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N, 3748 &vd->vdev_checksum_n); 3749 if (error && error != ENOENT) 3750 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3751 "failed [error=%d]", (u_longlong_t)zapobj, error); 3752 3753 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T, 3754 &vd->vdev_checksum_t); 3755 if (error && error != ENOENT) 3756 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3757 "failed [error=%d]", (u_longlong_t)zapobj, error); 3758 3759 error = vdev_prop_get_int(vd, VDEV_PROP_IO_N, 3760 &vd->vdev_io_n); 3761 if (error && error != ENOENT) 3762 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3763 "failed [error=%d]", (u_longlong_t)zapobj, error); 3764 3765 error = vdev_prop_get_int(vd, VDEV_PROP_IO_T, 3766 &vd->vdev_io_t); 3767 if (error && error != ENOENT) 3768 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3769 "failed [error=%d]", (u_longlong_t)zapobj, error); 3770 3771 error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_N, 3772 &vd->vdev_slow_io_n); 3773 if (error && error != ENOENT) 3774 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3775 "failed [error=%d]", (u_longlong_t)zapobj, error); 3776 3777 error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_T, 3778 &vd->vdev_slow_io_t); 3779 if (error && error != ENOENT) 3780 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3781 "failed [error=%d]", (u_longlong_t)zapobj, error); 3782 } 3783 3784 /* 3785 * If this is a top-level vdev, initialize its metaslabs. 3786 */ 3787 if (vd == vd->vdev_top && vdev_is_concrete(vd)) { 3788 vdev_metaslab_group_create(vd); 3789 3790 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { 3791 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3792 VDEV_AUX_CORRUPT_DATA); 3793 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " 3794 "asize=%llu", (u_longlong_t)vd->vdev_ashift, 3795 (u_longlong_t)vd->vdev_asize); 3796 return (SET_ERROR(ENXIO)); 3797 } 3798 3799 error = vdev_metaslab_init(vd, 0); 3800 if (error != 0) { 3801 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " 3802 "[error=%d]", error); 3803 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3804 VDEV_AUX_CORRUPT_DATA); 3805 return (error); 3806 } 3807 3808 uint64_t checkpoint_sm_obj; 3809 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj); 3810 if (error == 0 && checkpoint_sm_obj != 0) { 3811 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3812 ASSERT(vd->vdev_asize != 0); 3813 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL); 3814 3815 error = space_map_open(&vd->vdev_checkpoint_sm, 3816 mos, checkpoint_sm_obj, 0, vd->vdev_asize, 3817 vd->vdev_ashift); 3818 if (error != 0) { 3819 vdev_dbgmsg(vd, "vdev_load: space_map_open " 3820 "failed for checkpoint spacemap (obj %llu) " 3821 "[error=%d]", 3822 (u_longlong_t)checkpoint_sm_obj, error); 3823 return (error); 3824 } 3825 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 3826 3827 /* 3828 * Since the checkpoint_sm contains free entries 3829 * exclusively we can use space_map_allocated() to 3830 * indicate the cumulative checkpointed space that 3831 * has been freed. 3832 */ 3833 vd->vdev_stat.vs_checkpoint_space = 3834 -space_map_allocated(vd->vdev_checkpoint_sm); 3835 vd->vdev_spa->spa_checkpoint_info.sci_dspace += 3836 vd->vdev_stat.vs_checkpoint_space; 3837 } else if (error != 0) { 3838 vdev_dbgmsg(vd, "vdev_load: failed to retrieve " 3839 "checkpoint space map object from vdev ZAP " 3840 "[error=%d]", error); 3841 return (error); 3842 } 3843 } 3844 3845 /* 3846 * If this is a leaf vdev, load its DTL. 3847 */ 3848 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { 3849 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3850 VDEV_AUX_CORRUPT_DATA); 3851 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " 3852 "[error=%d]", error); 3853 return (error); 3854 } 3855 3856 uint64_t obsolete_sm_object; 3857 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object); 3858 if (error == 0 && obsolete_sm_object != 0) { 3859 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3860 ASSERT(vd->vdev_asize != 0); 3861 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 3862 3863 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, 3864 obsolete_sm_object, 0, vd->vdev_asize, 0))) { 3865 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3866 VDEV_AUX_CORRUPT_DATA); 3867 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " 3868 "obsolete spacemap (obj %llu) [error=%d]", 3869 (u_longlong_t)obsolete_sm_object, error); 3870 return (error); 3871 } 3872 } else if (error != 0) { 3873 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete " 3874 "space map object from vdev ZAP [error=%d]", error); 3875 return (error); 3876 } 3877 3878 return (0); 3879 } 3880 3881 /* 3882 * The special vdev case is used for hot spares and l2cache devices. Its 3883 * sole purpose it to set the vdev state for the associated vdev. To do this, 3884 * we make sure that we can open the underlying device, then try to read the 3885 * label, and make sure that the label is sane and that it hasn't been 3886 * repurposed to another pool. 3887 */ 3888 int 3889 vdev_validate_aux(vdev_t *vd) 3890 { 3891 nvlist_t *label; 3892 uint64_t guid, version; 3893 uint64_t state; 3894 3895 if (!vdev_readable(vd)) 3896 return (0); 3897 3898 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 3899 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3900 VDEV_AUX_CORRUPT_DATA); 3901 return (-1); 3902 } 3903 3904 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 3905 !SPA_VERSION_IS_SUPPORTED(version) || 3906 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 3907 guid != vd->vdev_guid || 3908 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 3909 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3910 VDEV_AUX_CORRUPT_DATA); 3911 nvlist_free(label); 3912 return (-1); 3913 } 3914 3915 /* 3916 * We don't actually check the pool state here. If it's in fact in 3917 * use by another pool, we update this fact on the fly when requested. 3918 */ 3919 nvlist_free(label); 3920 return (0); 3921 } 3922 3923 static void 3924 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx) 3925 { 3926 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3927 3928 if (vd->vdev_top_zap == 0) 3929 return; 3930 3931 uint64_t object = 0; 3932 int err = zap_lookup(mos, vd->vdev_top_zap, 3933 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object); 3934 if (err == ENOENT) 3935 return; 3936 VERIFY0(err); 3937 3938 VERIFY0(dmu_object_free(mos, object, tx)); 3939 VERIFY0(zap_remove(mos, vd->vdev_top_zap, 3940 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx)); 3941 } 3942 3943 /* 3944 * Free the objects used to store this vdev's spacemaps, and the array 3945 * that points to them. 3946 */ 3947 void 3948 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) 3949 { 3950 if (vd->vdev_ms_array == 0) 3951 return; 3952 3953 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3954 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; 3955 size_t array_bytes = array_count * sizeof (uint64_t); 3956 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); 3957 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, 3958 array_bytes, smobj_array, 0)); 3959 3960 for (uint64_t i = 0; i < array_count; i++) { 3961 uint64_t smobj = smobj_array[i]; 3962 if (smobj == 0) 3963 continue; 3964 3965 space_map_free_obj(mos, smobj, tx); 3966 } 3967 3968 kmem_free(smobj_array, array_bytes); 3969 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); 3970 vdev_destroy_ms_flush_data(vd, tx); 3971 vd->vdev_ms_array = 0; 3972 } 3973 3974 static void 3975 vdev_remove_empty_log(vdev_t *vd, uint64_t txg) 3976 { 3977 spa_t *spa = vd->vdev_spa; 3978 3979 ASSERT(vd->vdev_islog); 3980 ASSERT(vd == vd->vdev_top); 3981 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 3982 3983 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 3984 3985 vdev_destroy_spacemaps(vd, tx); 3986 if (vd->vdev_top_zap != 0) { 3987 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 3988 vd->vdev_top_zap = 0; 3989 } 3990 3991 dmu_tx_commit(tx); 3992 } 3993 3994 void 3995 vdev_sync_done(vdev_t *vd, uint64_t txg) 3996 { 3997 metaslab_t *msp; 3998 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 3999 4000 ASSERT(vdev_is_concrete(vd)); 4001 4002 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 4003 != NULL) 4004 metaslab_sync_done(msp, txg); 4005 4006 if (reassess) { 4007 metaslab_sync_reassess(vd->vdev_mg); 4008 if (vd->vdev_log_mg != NULL) 4009 metaslab_sync_reassess(vd->vdev_log_mg); 4010 } 4011 } 4012 4013 void 4014 vdev_sync(vdev_t *vd, uint64_t txg) 4015 { 4016 spa_t *spa = vd->vdev_spa; 4017 vdev_t *lvd; 4018 metaslab_t *msp; 4019 4020 ASSERT3U(txg, ==, spa->spa_syncing_txg); 4021 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 4022 if (range_tree_space(vd->vdev_obsolete_segments) > 0) { 4023 ASSERT(vd->vdev_removing || 4024 vd->vdev_ops == &vdev_indirect_ops); 4025 4026 vdev_indirect_sync_obsolete(vd, tx); 4027 4028 /* 4029 * If the vdev is indirect, it can't have dirty 4030 * metaslabs or DTLs. 4031 */ 4032 if (vd->vdev_ops == &vdev_indirect_ops) { 4033 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); 4034 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); 4035 dmu_tx_commit(tx); 4036 return; 4037 } 4038 } 4039 4040 ASSERT(vdev_is_concrete(vd)); 4041 4042 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && 4043 !vd->vdev_removing) { 4044 ASSERT(vd == vd->vdev_top); 4045 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 4046 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 4047 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 4048 ASSERT(vd->vdev_ms_array != 0); 4049 vdev_config_dirty(vd); 4050 } 4051 4052 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 4053 metaslab_sync(msp, txg); 4054 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 4055 } 4056 4057 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 4058 vdev_dtl_sync(lvd, txg); 4059 4060 /* 4061 * If this is an empty log device being removed, destroy the 4062 * metadata associated with it. 4063 */ 4064 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 4065 vdev_remove_empty_log(vd, txg); 4066 4067 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 4068 dmu_tx_commit(tx); 4069 } 4070 4071 /* 4072 * Return the amount of space that should be (or was) allocated for the given 4073 * psize (compressed block size) in the given TXG. Note that for expanded 4074 * RAIDZ vdevs, the size allocated for older BP's may be larger. See 4075 * vdev_raidz_asize(). 4076 */ 4077 uint64_t 4078 vdev_psize_to_asize_txg(vdev_t *vd, uint64_t psize, uint64_t txg) 4079 { 4080 return (vd->vdev_ops->vdev_op_asize(vd, psize, txg)); 4081 } 4082 4083 uint64_t 4084 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 4085 { 4086 return (vdev_psize_to_asize_txg(vd, psize, 0)); 4087 } 4088 4089 /* 4090 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 4091 * not be opened, and no I/O is attempted. 4092 */ 4093 int 4094 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 4095 { 4096 vdev_t *vd, *tvd; 4097 4098 spa_vdev_state_enter(spa, SCL_NONE); 4099 4100 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4101 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4102 4103 if (!vd->vdev_ops->vdev_op_leaf) 4104 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4105 4106 tvd = vd->vdev_top; 4107 4108 /* 4109 * If user did a 'zpool offline -f' then make the fault persist across 4110 * reboots. 4111 */ 4112 if (aux == VDEV_AUX_EXTERNAL_PERSIST) { 4113 /* 4114 * There are two kinds of forced faults: temporary and 4115 * persistent. Temporary faults go away at pool import, while 4116 * persistent faults stay set. Both types of faults can be 4117 * cleared with a zpool clear. 4118 * 4119 * We tell if a vdev is persistently faulted by looking at the 4120 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at 4121 * import then it's a persistent fault. Otherwise, it's 4122 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external" 4123 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This 4124 * tells vdev_config_generate() (which gets run later) to set 4125 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist. 4126 */ 4127 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 4128 vd->vdev_tmpoffline = B_FALSE; 4129 aux = VDEV_AUX_EXTERNAL; 4130 } else { 4131 vd->vdev_tmpoffline = B_TRUE; 4132 } 4133 4134 /* 4135 * We don't directly use the aux state here, but if we do a 4136 * vdev_reopen(), we need this value to be present to remember why we 4137 * were faulted. 4138 */ 4139 vd->vdev_label_aux = aux; 4140 4141 /* 4142 * Faulted state takes precedence over degraded. 4143 */ 4144 vd->vdev_delayed_close = B_FALSE; 4145 vd->vdev_faulted = 1ULL; 4146 vd->vdev_degraded = 0ULL; 4147 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 4148 4149 /* 4150 * If this device has the only valid copy of the data, then 4151 * back off and simply mark the vdev as degraded instead. 4152 */ 4153 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 4154 vd->vdev_degraded = 1ULL; 4155 vd->vdev_faulted = 0ULL; 4156 4157 /* 4158 * If we reopen the device and it's not dead, only then do we 4159 * mark it degraded. 4160 */ 4161 vdev_reopen(tvd); 4162 4163 if (vdev_readable(vd)) 4164 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 4165 } 4166 4167 return (spa_vdev_state_exit(spa, vd, 0)); 4168 } 4169 4170 /* 4171 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 4172 * user that something is wrong. The vdev continues to operate as normal as far 4173 * as I/O is concerned. 4174 */ 4175 int 4176 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 4177 { 4178 vdev_t *vd; 4179 4180 spa_vdev_state_enter(spa, SCL_NONE); 4181 4182 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4183 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4184 4185 if (!vd->vdev_ops->vdev_op_leaf) 4186 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4187 4188 /* 4189 * If the vdev is already faulted, then don't do anything. 4190 */ 4191 if (vd->vdev_faulted || vd->vdev_degraded) 4192 return (spa_vdev_state_exit(spa, NULL, 0)); 4193 4194 vd->vdev_degraded = 1ULL; 4195 if (!vdev_is_dead(vd)) 4196 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 4197 aux); 4198 4199 return (spa_vdev_state_exit(spa, vd, 0)); 4200 } 4201 4202 int 4203 vdev_remove_wanted(spa_t *spa, uint64_t guid) 4204 { 4205 vdev_t *vd; 4206 4207 spa_vdev_state_enter(spa, SCL_NONE); 4208 4209 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4210 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4211 4212 /* 4213 * If the vdev is already removed, or expanding which can trigger 4214 * repartition add/remove events, then don't do anything. 4215 */ 4216 if (vd->vdev_removed || vd->vdev_expanding) 4217 return (spa_vdev_state_exit(spa, NULL, 0)); 4218 4219 /* 4220 * Confirm the vdev has been removed, otherwise don't do anything. 4221 */ 4222 if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL))) 4223 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST))); 4224 4225 vd->vdev_remove_wanted = B_TRUE; 4226 spa_async_request(spa, SPA_ASYNC_REMOVE); 4227 4228 return (spa_vdev_state_exit(spa, vd, 0)); 4229 } 4230 4231 4232 /* 4233 * Online the given vdev. 4234 * 4235 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 4236 * spare device should be detached when the device finishes resilvering. 4237 * Second, the online should be treated like a 'test' online case, so no FMA 4238 * events are generated if the device fails to open. 4239 */ 4240 int 4241 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 4242 { 4243 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 4244 boolean_t wasoffline; 4245 vdev_state_t oldstate; 4246 4247 spa_vdev_state_enter(spa, SCL_NONE); 4248 4249 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4250 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4251 4252 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 4253 oldstate = vd->vdev_state; 4254 4255 tvd = vd->vdev_top; 4256 vd->vdev_offline = B_FALSE; 4257 vd->vdev_tmpoffline = B_FALSE; 4258 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 4259 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 4260 4261 /* XXX - L2ARC 1.0 does not support expansion */ 4262 if (!vd->vdev_aux) { 4263 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4264 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) || 4265 spa->spa_autoexpand); 4266 vd->vdev_expansion_time = gethrestime_sec(); 4267 } 4268 4269 vdev_reopen(tvd); 4270 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 4271 4272 if (!vd->vdev_aux) { 4273 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4274 pvd->vdev_expanding = B_FALSE; 4275 } 4276 4277 if (newstate) 4278 *newstate = vd->vdev_state; 4279 if ((flags & ZFS_ONLINE_UNSPARE) && 4280 !vdev_is_dead(vd) && vd->vdev_parent && 4281 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4282 vd->vdev_parent->vdev_child[0] == vd) 4283 vd->vdev_unspare = B_TRUE; 4284 4285 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 4286 4287 /* XXX - L2ARC 1.0 does not support expansion */ 4288 if (vd->vdev_aux) 4289 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 4290 spa->spa_ccw_fail_time = 0; 4291 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 4292 } 4293 4294 /* Restart initializing if necessary */ 4295 mutex_enter(&vd->vdev_initialize_lock); 4296 if (vdev_writeable(vd) && 4297 vd->vdev_initialize_thread == NULL && 4298 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { 4299 (void) vdev_initialize(vd); 4300 } 4301 mutex_exit(&vd->vdev_initialize_lock); 4302 4303 /* 4304 * Restart trimming if necessary. We do not restart trimming for cache 4305 * devices here. This is triggered by l2arc_rebuild_vdev() 4306 * asynchronously for the whole device or in l2arc_evict() as it evicts 4307 * space for upcoming writes. 4308 */ 4309 mutex_enter(&vd->vdev_trim_lock); 4310 if (vdev_writeable(vd) && !vd->vdev_isl2cache && 4311 vd->vdev_trim_thread == NULL && 4312 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) { 4313 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial, 4314 vd->vdev_trim_secure); 4315 } 4316 mutex_exit(&vd->vdev_trim_lock); 4317 4318 if (wasoffline || 4319 (oldstate < VDEV_STATE_DEGRADED && 4320 vd->vdev_state >= VDEV_STATE_DEGRADED)) { 4321 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 4322 4323 /* 4324 * Asynchronously detach spare vdev if resilver or 4325 * rebuild is not required 4326 */ 4327 if (vd->vdev_unspare && 4328 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4329 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) && 4330 !vdev_rebuild_active(tvd)) 4331 spa_async_request(spa, SPA_ASYNC_DETACH_SPARE); 4332 } 4333 return (spa_vdev_state_exit(spa, vd, 0)); 4334 } 4335 4336 static int 4337 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 4338 { 4339 vdev_t *vd, *tvd; 4340 int error = 0; 4341 uint64_t generation; 4342 metaslab_group_t *mg; 4343 4344 top: 4345 spa_vdev_state_enter(spa, SCL_ALLOC); 4346 4347 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4348 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4349 4350 if (!vd->vdev_ops->vdev_op_leaf) 4351 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4352 4353 if (vd->vdev_ops == &vdev_draid_spare_ops) 4354 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4355 4356 tvd = vd->vdev_top; 4357 mg = tvd->vdev_mg; 4358 generation = spa->spa_config_generation + 1; 4359 4360 /* 4361 * If the device isn't already offline, try to offline it. 4362 */ 4363 if (!vd->vdev_offline) { 4364 /* 4365 * If this device has the only valid copy of some data, 4366 * don't allow it to be offlined. Log devices are always 4367 * expendable. 4368 */ 4369 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4370 vdev_dtl_required(vd)) 4371 return (spa_vdev_state_exit(spa, NULL, 4372 SET_ERROR(EBUSY))); 4373 4374 /* 4375 * If the top-level is a slog and it has had allocations 4376 * then proceed. We check that the vdev's metaslab group 4377 * is not NULL since it's possible that we may have just 4378 * added this vdev but not yet initialized its metaslabs. 4379 */ 4380 if (tvd->vdev_islog && mg != NULL) { 4381 /* 4382 * Prevent any future allocations. 4383 */ 4384 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 4385 metaslab_group_passivate(mg); 4386 (void) spa_vdev_state_exit(spa, vd, 0); 4387 4388 error = spa_reset_logs(spa); 4389 4390 /* 4391 * If the log device was successfully reset but has 4392 * checkpointed data, do not offline it. 4393 */ 4394 if (error == 0 && 4395 tvd->vdev_checkpoint_sm != NULL) { 4396 ASSERT3U(space_map_allocated( 4397 tvd->vdev_checkpoint_sm), !=, 0); 4398 error = ZFS_ERR_CHECKPOINT_EXISTS; 4399 } 4400 4401 spa_vdev_state_enter(spa, SCL_ALLOC); 4402 4403 /* 4404 * Check to see if the config has changed. 4405 */ 4406 if (error || generation != spa->spa_config_generation) { 4407 metaslab_group_activate(mg); 4408 if (error) 4409 return (spa_vdev_state_exit(spa, 4410 vd, error)); 4411 (void) spa_vdev_state_exit(spa, vd, 0); 4412 goto top; 4413 } 4414 ASSERT0(tvd->vdev_stat.vs_alloc); 4415 } 4416 4417 /* 4418 * Offline this device and reopen its top-level vdev. 4419 * If the top-level vdev is a log device then just offline 4420 * it. Otherwise, if this action results in the top-level 4421 * vdev becoming unusable, undo it and fail the request. 4422 */ 4423 vd->vdev_offline = B_TRUE; 4424 vdev_reopen(tvd); 4425 4426 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4427 vdev_is_dead(tvd)) { 4428 vd->vdev_offline = B_FALSE; 4429 vdev_reopen(tvd); 4430 return (spa_vdev_state_exit(spa, NULL, 4431 SET_ERROR(EBUSY))); 4432 } 4433 4434 /* 4435 * Add the device back into the metaslab rotor so that 4436 * once we online the device it's open for business. 4437 */ 4438 if (tvd->vdev_islog && mg != NULL) 4439 metaslab_group_activate(mg); 4440 } 4441 4442 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 4443 4444 return (spa_vdev_state_exit(spa, vd, 0)); 4445 } 4446 4447 int 4448 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 4449 { 4450 int error; 4451 4452 mutex_enter(&spa->spa_vdev_top_lock); 4453 error = vdev_offline_locked(spa, guid, flags); 4454 mutex_exit(&spa->spa_vdev_top_lock); 4455 4456 return (error); 4457 } 4458 4459 /* 4460 * Clear the error counts associated with this vdev. Unlike vdev_online() and 4461 * vdev_offline(), we assume the spa config is locked. We also clear all 4462 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 4463 */ 4464 void 4465 vdev_clear(spa_t *spa, vdev_t *vd) 4466 { 4467 vdev_t *rvd = spa->spa_root_vdev; 4468 4469 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 4470 4471 if (vd == NULL) 4472 vd = rvd; 4473 4474 vd->vdev_stat.vs_read_errors = 0; 4475 vd->vdev_stat.vs_write_errors = 0; 4476 vd->vdev_stat.vs_checksum_errors = 0; 4477 vd->vdev_stat.vs_slow_ios = 0; 4478 4479 for (int c = 0; c < vd->vdev_children; c++) 4480 vdev_clear(spa, vd->vdev_child[c]); 4481 4482 /* 4483 * It makes no sense to "clear" an indirect or removed vdev. 4484 */ 4485 if (!vdev_is_concrete(vd) || vd->vdev_removed) 4486 return; 4487 4488 /* 4489 * If we're in the FAULTED state or have experienced failed I/O, then 4490 * clear the persistent state and attempt to reopen the device. We 4491 * also mark the vdev config dirty, so that the new faulted state is 4492 * written out to disk. 4493 */ 4494 if (vd->vdev_faulted || vd->vdev_degraded || 4495 !vdev_readable(vd) || !vdev_writeable(vd)) { 4496 /* 4497 * When reopening in response to a clear event, it may be due to 4498 * a fmadm repair request. In this case, if the device is 4499 * still broken, we want to still post the ereport again. 4500 */ 4501 vd->vdev_forcefault = B_TRUE; 4502 4503 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 4504 vd->vdev_cant_read = B_FALSE; 4505 vd->vdev_cant_write = B_FALSE; 4506 vd->vdev_stat.vs_aux = 0; 4507 4508 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 4509 4510 vd->vdev_forcefault = B_FALSE; 4511 4512 if (vd != rvd && vdev_writeable(vd->vdev_top)) 4513 vdev_state_dirty(vd->vdev_top); 4514 4515 /* If a resilver isn't required, check if vdevs can be culled */ 4516 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) && 4517 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4518 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool)) 4519 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4520 4521 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 4522 } 4523 4524 /* 4525 * When clearing a FMA-diagnosed fault, we always want to 4526 * unspare the device, as we assume that the original spare was 4527 * done in response to the FMA fault. 4528 */ 4529 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 4530 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4531 vd->vdev_parent->vdev_child[0] == vd) 4532 vd->vdev_unspare = B_TRUE; 4533 4534 /* Clear recent error events cache (i.e. duplicate events tracking) */ 4535 zfs_ereport_clear(spa, vd); 4536 } 4537 4538 boolean_t 4539 vdev_is_dead(vdev_t *vd) 4540 { 4541 /* 4542 * Holes and missing devices are always considered "dead". 4543 * This simplifies the code since we don't have to check for 4544 * these types of devices in the various code paths. 4545 * Instead we rely on the fact that we skip over dead devices 4546 * before issuing I/O to them. 4547 */ 4548 return (vd->vdev_state < VDEV_STATE_DEGRADED || 4549 vd->vdev_ops == &vdev_hole_ops || 4550 vd->vdev_ops == &vdev_missing_ops); 4551 } 4552 4553 boolean_t 4554 vdev_readable(vdev_t *vd) 4555 { 4556 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 4557 } 4558 4559 boolean_t 4560 vdev_writeable(vdev_t *vd) 4561 { 4562 return (!vdev_is_dead(vd) && !vd->vdev_cant_write && 4563 vdev_is_concrete(vd)); 4564 } 4565 4566 boolean_t 4567 vdev_allocatable(vdev_t *vd) 4568 { 4569 uint64_t state = vd->vdev_state; 4570 4571 /* 4572 * We currently allow allocations from vdevs which may be in the 4573 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 4574 * fails to reopen then we'll catch it later when we're holding 4575 * the proper locks. Note that we have to get the vdev state 4576 * in a local variable because although it changes atomically, 4577 * we're asking two separate questions about it. 4578 */ 4579 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 4580 !vd->vdev_cant_write && vdev_is_concrete(vd) && 4581 vd->vdev_mg->mg_initialized); 4582 } 4583 4584 boolean_t 4585 vdev_accessible(vdev_t *vd, zio_t *zio) 4586 { 4587 ASSERT(zio->io_vd == vd); 4588 4589 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 4590 return (B_FALSE); 4591 4592 if (zio->io_type == ZIO_TYPE_READ) 4593 return (!vd->vdev_cant_read); 4594 4595 if (zio->io_type == ZIO_TYPE_WRITE) 4596 return (!vd->vdev_cant_write); 4597 4598 return (B_TRUE); 4599 } 4600 4601 static void 4602 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs) 4603 { 4604 /* 4605 * Exclude the dRAID spare when aggregating to avoid double counting 4606 * the ops and bytes. These IOs are counted by the physical leaves. 4607 */ 4608 if (cvd->vdev_ops == &vdev_draid_spare_ops) 4609 return; 4610 4611 for (int t = 0; t < VS_ZIO_TYPES; t++) { 4612 vs->vs_ops[t] += cvs->vs_ops[t]; 4613 vs->vs_bytes[t] += cvs->vs_bytes[t]; 4614 } 4615 4616 cvs->vs_scan_removing = cvd->vdev_removing; 4617 } 4618 4619 /* 4620 * Get extended stats 4621 */ 4622 static void 4623 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx) 4624 { 4625 (void) cvd; 4626 4627 int t, b; 4628 for (t = 0; t < ZIO_TYPES; t++) { 4629 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++) 4630 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b]; 4631 4632 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) { 4633 vsx->vsx_total_histo[t][b] += 4634 cvsx->vsx_total_histo[t][b]; 4635 } 4636 } 4637 4638 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4639 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) { 4640 vsx->vsx_queue_histo[t][b] += 4641 cvsx->vsx_queue_histo[t][b]; 4642 } 4643 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t]; 4644 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t]; 4645 4646 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++) 4647 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b]; 4648 4649 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++) 4650 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b]; 4651 } 4652 4653 } 4654 4655 boolean_t 4656 vdev_is_spacemap_addressable(vdev_t *vd) 4657 { 4658 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) 4659 return (B_TRUE); 4660 4661 /* 4662 * If double-word space map entries are not enabled we assume 4663 * 47 bits of the space map entry are dedicated to the entry's 4664 * offset (see SM_OFFSET_BITS in space_map.h). We then use that 4665 * to calculate the maximum address that can be described by a 4666 * space map entry for the given device. 4667 */ 4668 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; 4669 4670 if (shift >= 63) /* detect potential overflow */ 4671 return (B_TRUE); 4672 4673 return (vd->vdev_asize < (1ULL << shift)); 4674 } 4675 4676 /* 4677 * Get statistics for the given vdev. 4678 */ 4679 static void 4680 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4681 { 4682 int t; 4683 /* 4684 * If we're getting stats on the root vdev, aggregate the I/O counts 4685 * over all top-level vdevs (i.e. the direct children of the root). 4686 */ 4687 if (!vd->vdev_ops->vdev_op_leaf) { 4688 if (vs) { 4689 memset(vs->vs_ops, 0, sizeof (vs->vs_ops)); 4690 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes)); 4691 } 4692 if (vsx) 4693 memset(vsx, 0, sizeof (*vsx)); 4694 4695 for (int c = 0; c < vd->vdev_children; c++) { 4696 vdev_t *cvd = vd->vdev_child[c]; 4697 vdev_stat_t *cvs = &cvd->vdev_stat; 4698 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex; 4699 4700 vdev_get_stats_ex_impl(cvd, cvs, cvsx); 4701 if (vs) 4702 vdev_get_child_stat(cvd, vs, cvs); 4703 if (vsx) 4704 vdev_get_child_stat_ex(cvd, vsx, cvsx); 4705 } 4706 } else { 4707 /* 4708 * We're a leaf. Just copy our ZIO active queue stats in. The 4709 * other leaf stats are updated in vdev_stat_update(). 4710 */ 4711 if (!vsx) 4712 return; 4713 4714 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex)); 4715 4716 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4717 vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t]; 4718 vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t); 4719 } 4720 } 4721 } 4722 4723 void 4724 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4725 { 4726 vdev_t *tvd = vd->vdev_top; 4727 mutex_enter(&vd->vdev_stat_lock); 4728 if (vs) { 4729 memcpy(vs, &vd->vdev_stat, sizeof (*vs)); 4730 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 4731 vs->vs_state = vd->vdev_state; 4732 vs->vs_rsize = vdev_get_min_asize(vd); 4733 4734 if (vd->vdev_ops->vdev_op_leaf) { 4735 vs->vs_pspace = vd->vdev_psize; 4736 vs->vs_rsize += VDEV_LABEL_START_SIZE + 4737 VDEV_LABEL_END_SIZE; 4738 /* 4739 * Report initializing progress. Since we don't 4740 * have the initializing locks held, this is only 4741 * an estimate (although a fairly accurate one). 4742 */ 4743 vs->vs_initialize_bytes_done = 4744 vd->vdev_initialize_bytes_done; 4745 vs->vs_initialize_bytes_est = 4746 vd->vdev_initialize_bytes_est; 4747 vs->vs_initialize_state = vd->vdev_initialize_state; 4748 vs->vs_initialize_action_time = 4749 vd->vdev_initialize_action_time; 4750 4751 /* 4752 * Report manual TRIM progress. Since we don't have 4753 * the manual TRIM locks held, this is only an 4754 * estimate (although fairly accurate one). 4755 */ 4756 vs->vs_trim_notsup = !vd->vdev_has_trim; 4757 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done; 4758 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est; 4759 vs->vs_trim_state = vd->vdev_trim_state; 4760 vs->vs_trim_action_time = vd->vdev_trim_action_time; 4761 4762 /* Set when there is a deferred resilver. */ 4763 vs->vs_resilver_deferred = vd->vdev_resilver_deferred; 4764 } 4765 4766 /* 4767 * Report expandable space on top-level, non-auxiliary devices 4768 * only. The expandable space is reported in terms of metaslab 4769 * sized units since that determines how much space the pool 4770 * can expand. 4771 */ 4772 if (vd->vdev_aux == NULL && tvd != NULL) { 4773 vs->vs_esize = P2ALIGN_TYPED( 4774 vd->vdev_max_asize - vd->vdev_asize, 4775 1ULL << tvd->vdev_ms_shift, uint64_t); 4776 } 4777 4778 vs->vs_configured_ashift = vd->vdev_top != NULL 4779 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift; 4780 vs->vs_logical_ashift = vd->vdev_logical_ashift; 4781 if (vd->vdev_physical_ashift <= ASHIFT_MAX) 4782 vs->vs_physical_ashift = vd->vdev_physical_ashift; 4783 else 4784 vs->vs_physical_ashift = 0; 4785 4786 /* 4787 * Report fragmentation and rebuild progress for top-level, 4788 * non-auxiliary, concrete devices. 4789 */ 4790 if (vd->vdev_aux == NULL && vd == vd->vdev_top && 4791 vdev_is_concrete(vd)) { 4792 /* 4793 * The vdev fragmentation rating doesn't take into 4794 * account the embedded slog metaslab (vdev_log_mg). 4795 * Since it's only one metaslab, it would have a tiny 4796 * impact on the overall fragmentation. 4797 */ 4798 vs->vs_fragmentation = (vd->vdev_mg != NULL) ? 4799 vd->vdev_mg->mg_fragmentation : 0; 4800 } 4801 vs->vs_noalloc = MAX(vd->vdev_noalloc, 4802 tvd ? tvd->vdev_noalloc : 0); 4803 } 4804 4805 vdev_get_stats_ex_impl(vd, vs, vsx); 4806 mutex_exit(&vd->vdev_stat_lock); 4807 } 4808 4809 void 4810 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 4811 { 4812 return (vdev_get_stats_ex(vd, vs, NULL)); 4813 } 4814 4815 void 4816 vdev_clear_stats(vdev_t *vd) 4817 { 4818 mutex_enter(&vd->vdev_stat_lock); 4819 vd->vdev_stat.vs_space = 0; 4820 vd->vdev_stat.vs_dspace = 0; 4821 vd->vdev_stat.vs_alloc = 0; 4822 mutex_exit(&vd->vdev_stat_lock); 4823 } 4824 4825 void 4826 vdev_scan_stat_init(vdev_t *vd) 4827 { 4828 vdev_stat_t *vs = &vd->vdev_stat; 4829 4830 for (int c = 0; c < vd->vdev_children; c++) 4831 vdev_scan_stat_init(vd->vdev_child[c]); 4832 4833 mutex_enter(&vd->vdev_stat_lock); 4834 vs->vs_scan_processed = 0; 4835 mutex_exit(&vd->vdev_stat_lock); 4836 } 4837 4838 void 4839 vdev_stat_update(zio_t *zio, uint64_t psize) 4840 { 4841 spa_t *spa = zio->io_spa; 4842 vdev_t *rvd = spa->spa_root_vdev; 4843 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 4844 vdev_t *pvd; 4845 uint64_t txg = zio->io_txg; 4846 /* Suppress ASAN false positive */ 4847 #ifdef __SANITIZE_ADDRESS__ 4848 vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL; 4849 vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL; 4850 #else 4851 vdev_stat_t *vs = &vd->vdev_stat; 4852 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex; 4853 #endif 4854 zio_type_t type = zio->io_type; 4855 int flags = zio->io_flags; 4856 4857 /* 4858 * If this i/o is a gang leader, it didn't do any actual work. 4859 */ 4860 if (zio->io_gang_tree) 4861 return; 4862 4863 if (zio->io_error == 0) { 4864 /* 4865 * If this is a root i/o, don't count it -- we've already 4866 * counted the top-level vdevs, and vdev_get_stats() will 4867 * aggregate them when asked. This reduces contention on 4868 * the root vdev_stat_lock and implicitly handles blocks 4869 * that compress away to holes, for which there is no i/o. 4870 * (Holes never create vdev children, so all the counters 4871 * remain zero, which is what we want.) 4872 * 4873 * Note: this only applies to successful i/o (io_error == 0) 4874 * because unlike i/o counts, errors are not additive. 4875 * When reading a ditto block, for example, failure of 4876 * one top-level vdev does not imply a root-level error. 4877 */ 4878 if (vd == rvd) 4879 return; 4880 4881 ASSERT(vd == zio->io_vd); 4882 4883 if (flags & ZIO_FLAG_IO_BYPASS) 4884 return; 4885 4886 mutex_enter(&vd->vdev_stat_lock); 4887 4888 if (flags & ZIO_FLAG_IO_REPAIR) { 4889 /* 4890 * Repair is the result of a resilver issued by the 4891 * scan thread (spa_sync). 4892 */ 4893 if (flags & ZIO_FLAG_SCAN_THREAD) { 4894 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 4895 dsl_scan_phys_t *scn_phys = &scn->scn_phys; 4896 uint64_t *processed = &scn_phys->scn_processed; 4897 4898 if (vd->vdev_ops->vdev_op_leaf) 4899 atomic_add_64(processed, psize); 4900 vs->vs_scan_processed += psize; 4901 } 4902 4903 /* 4904 * Repair is the result of a rebuild issued by the 4905 * rebuild thread (vdev_rebuild_thread). To avoid 4906 * double counting repaired bytes the virtual dRAID 4907 * spare vdev is excluded from the processed bytes. 4908 */ 4909 if (zio->io_priority == ZIO_PRIORITY_REBUILD) { 4910 vdev_t *tvd = vd->vdev_top; 4911 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config; 4912 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 4913 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt; 4914 4915 if (vd->vdev_ops->vdev_op_leaf && 4916 vd->vdev_ops != &vdev_draid_spare_ops) { 4917 atomic_add_64(rebuilt, psize); 4918 } 4919 vs->vs_rebuild_processed += psize; 4920 } 4921 4922 if (flags & ZIO_FLAG_SELF_HEAL) 4923 vs->vs_self_healed += psize; 4924 } 4925 4926 /* 4927 * The bytes/ops/histograms are recorded at the leaf level and 4928 * aggregated into the higher level vdevs in vdev_get_stats(). 4929 */ 4930 if (vd->vdev_ops->vdev_op_leaf && 4931 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) { 4932 zio_type_t vs_type = type; 4933 zio_priority_t priority = zio->io_priority; 4934 4935 /* 4936 * TRIM ops and bytes are reported to user space as 4937 * ZIO_TYPE_FLUSH. This is done to preserve the 4938 * vdev_stat_t structure layout for user space. 4939 */ 4940 if (type == ZIO_TYPE_TRIM) 4941 vs_type = ZIO_TYPE_FLUSH; 4942 4943 /* 4944 * Solely for the purposes of 'zpool iostat -lqrw' 4945 * reporting use the priority to categorize the IO. 4946 * Only the following are reported to user space: 4947 * 4948 * ZIO_PRIORITY_SYNC_READ, 4949 * ZIO_PRIORITY_SYNC_WRITE, 4950 * ZIO_PRIORITY_ASYNC_READ, 4951 * ZIO_PRIORITY_ASYNC_WRITE, 4952 * ZIO_PRIORITY_SCRUB, 4953 * ZIO_PRIORITY_TRIM, 4954 * ZIO_PRIORITY_REBUILD. 4955 */ 4956 if (priority == ZIO_PRIORITY_INITIALIZING) { 4957 ASSERT3U(type, ==, ZIO_TYPE_WRITE); 4958 priority = ZIO_PRIORITY_ASYNC_WRITE; 4959 } else if (priority == ZIO_PRIORITY_REMOVAL) { 4960 priority = ((type == ZIO_TYPE_WRITE) ? 4961 ZIO_PRIORITY_ASYNC_WRITE : 4962 ZIO_PRIORITY_ASYNC_READ); 4963 } 4964 4965 vs->vs_ops[vs_type]++; 4966 vs->vs_bytes[vs_type] += psize; 4967 4968 if (flags & ZIO_FLAG_DELEGATED) { 4969 vsx->vsx_agg_histo[priority] 4970 [RQ_HISTO(zio->io_size)]++; 4971 } else { 4972 vsx->vsx_ind_histo[priority] 4973 [RQ_HISTO(zio->io_size)]++; 4974 } 4975 4976 if (zio->io_delta && zio->io_delay) { 4977 vsx->vsx_queue_histo[priority] 4978 [L_HISTO(zio->io_delta - zio->io_delay)]++; 4979 vsx->vsx_disk_histo[type] 4980 [L_HISTO(zio->io_delay)]++; 4981 vsx->vsx_total_histo[type] 4982 [L_HISTO(zio->io_delta)]++; 4983 } 4984 } 4985 4986 mutex_exit(&vd->vdev_stat_lock); 4987 return; 4988 } 4989 4990 if (flags & ZIO_FLAG_SPECULATIVE) 4991 return; 4992 4993 /* 4994 * If this is an I/O error that is going to be retried, then ignore the 4995 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 4996 * hard errors, when in reality they can happen for any number of 4997 * innocuous reasons (bus resets, MPxIO link failure, etc). 4998 */ 4999 if (zio->io_error == EIO && 5000 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 5001 return; 5002 5003 /* 5004 * Intent logs writes won't propagate their error to the root 5005 * I/O so don't mark these types of failures as pool-level 5006 * errors. 5007 */ 5008 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 5009 return; 5010 5011 if (type == ZIO_TYPE_WRITE && txg != 0 && 5012 (!(flags & ZIO_FLAG_IO_REPAIR) || 5013 (flags & ZIO_FLAG_SCAN_THREAD) || 5014 spa->spa_claiming)) { 5015 /* 5016 * This is either a normal write (not a repair), or it's 5017 * a repair induced by the scrub thread, or it's a repair 5018 * made by zil_claim() during spa_load() in the first txg. 5019 * In the normal case, we commit the DTL change in the same 5020 * txg as the block was born. In the scrub-induced repair 5021 * case, we know that scrubs run in first-pass syncing context, 5022 * so we commit the DTL change in spa_syncing_txg(spa). 5023 * In the zil_claim() case, we commit in spa_first_txg(spa). 5024 * 5025 * We currently do not make DTL entries for failed spontaneous 5026 * self-healing writes triggered by normal (non-scrubbing) 5027 * reads, because we have no transactional context in which to 5028 * do so -- and it's not clear that it'd be desirable anyway. 5029 */ 5030 if (vd->vdev_ops->vdev_op_leaf) { 5031 uint64_t commit_txg = txg; 5032 if (flags & ZIO_FLAG_SCAN_THREAD) { 5033 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 5034 ASSERT(spa_sync_pass(spa) == 1); 5035 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 5036 commit_txg = spa_syncing_txg(spa); 5037 } else if (spa->spa_claiming) { 5038 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 5039 commit_txg = spa_first_txg(spa); 5040 } 5041 ASSERT(commit_txg >= spa_syncing_txg(spa)); 5042 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 5043 return; 5044 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 5045 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 5046 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 5047 } 5048 if (vd != rvd) 5049 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 5050 } 5051 } 5052 5053 int64_t 5054 vdev_deflated_space(vdev_t *vd, int64_t space) 5055 { 5056 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0); 5057 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 5058 5059 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio); 5060 } 5061 5062 /* 5063 * Update the in-core space usage stats for this vdev, its metaslab class, 5064 * and the root vdev. 5065 */ 5066 void 5067 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 5068 int64_t space_delta) 5069 { 5070 (void) defer_delta; 5071 int64_t dspace_delta; 5072 spa_t *spa = vd->vdev_spa; 5073 vdev_t *rvd = spa->spa_root_vdev; 5074 5075 ASSERT(vd == vd->vdev_top); 5076 5077 /* 5078 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 5079 * factor. We must calculate this here and not at the root vdev 5080 * because the root vdev's psize-to-asize is simply the max of its 5081 * children's, thus not accurate enough for us. 5082 */ 5083 dspace_delta = vdev_deflated_space(vd, space_delta); 5084 5085 mutex_enter(&vd->vdev_stat_lock); 5086 /* ensure we won't underflow */ 5087 if (alloc_delta < 0) { 5088 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta); 5089 } 5090 5091 vd->vdev_stat.vs_alloc += alloc_delta; 5092 vd->vdev_stat.vs_space += space_delta; 5093 vd->vdev_stat.vs_dspace += dspace_delta; 5094 mutex_exit(&vd->vdev_stat_lock); 5095 5096 /* every class but log contributes to root space stats */ 5097 if (vd->vdev_mg != NULL && !vd->vdev_islog) { 5098 ASSERT(!vd->vdev_isl2cache); 5099 mutex_enter(&rvd->vdev_stat_lock); 5100 rvd->vdev_stat.vs_alloc += alloc_delta; 5101 rvd->vdev_stat.vs_space += space_delta; 5102 rvd->vdev_stat.vs_dspace += dspace_delta; 5103 mutex_exit(&rvd->vdev_stat_lock); 5104 } 5105 /* Note: metaslab_class_space_update moved to metaslab_space_update */ 5106 } 5107 5108 /* 5109 * Mark a top-level vdev's config as dirty, placing it on the dirty list 5110 * so that it will be written out next time the vdev configuration is synced. 5111 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 5112 */ 5113 void 5114 vdev_config_dirty(vdev_t *vd) 5115 { 5116 spa_t *spa = vd->vdev_spa; 5117 vdev_t *rvd = spa->spa_root_vdev; 5118 int c; 5119 5120 ASSERT(spa_writeable(spa)); 5121 5122 /* 5123 * If this is an aux vdev (as with l2cache and spare devices), then we 5124 * update the vdev config manually and set the sync flag. 5125 */ 5126 if (vd->vdev_aux != NULL) { 5127 spa_aux_vdev_t *sav = vd->vdev_aux; 5128 nvlist_t **aux; 5129 uint_t naux; 5130 5131 for (c = 0; c < sav->sav_count; c++) { 5132 if (sav->sav_vdevs[c] == vd) 5133 break; 5134 } 5135 5136 if (c == sav->sav_count) { 5137 /* 5138 * We're being removed. There's nothing more to do. 5139 */ 5140 ASSERT(sav->sav_sync == B_TRUE); 5141 return; 5142 } 5143 5144 sav->sav_sync = B_TRUE; 5145 5146 if (nvlist_lookup_nvlist_array(sav->sav_config, 5147 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 5148 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 5149 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 5150 } 5151 5152 ASSERT(c < naux); 5153 5154 /* 5155 * Setting the nvlist in the middle if the array is a little 5156 * sketchy, but it will work. 5157 */ 5158 nvlist_free(aux[c]); 5159 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 5160 5161 return; 5162 } 5163 5164 /* 5165 * The dirty list is protected by the SCL_CONFIG lock. The caller 5166 * must either hold SCL_CONFIG as writer, or must be the sync thread 5167 * (which holds SCL_CONFIG as reader). There's only one sync thread, 5168 * so this is sufficient to ensure mutual exclusion. 5169 */ 5170 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 5171 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5172 spa_config_held(spa, SCL_CONFIG, RW_READER))); 5173 5174 if (vd == rvd) { 5175 for (c = 0; c < rvd->vdev_children; c++) 5176 vdev_config_dirty(rvd->vdev_child[c]); 5177 } else { 5178 ASSERT(vd == vd->vdev_top); 5179 5180 if (!list_link_active(&vd->vdev_config_dirty_node) && 5181 vdev_is_concrete(vd)) { 5182 list_insert_head(&spa->spa_config_dirty_list, vd); 5183 } 5184 } 5185 } 5186 5187 void 5188 vdev_config_clean(vdev_t *vd) 5189 { 5190 spa_t *spa = vd->vdev_spa; 5191 5192 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 5193 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5194 spa_config_held(spa, SCL_CONFIG, RW_READER))); 5195 5196 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 5197 list_remove(&spa->spa_config_dirty_list, vd); 5198 } 5199 5200 /* 5201 * Mark a top-level vdev's state as dirty, so that the next pass of 5202 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 5203 * the state changes from larger config changes because they require 5204 * much less locking, and are often needed for administrative actions. 5205 */ 5206 void 5207 vdev_state_dirty(vdev_t *vd) 5208 { 5209 spa_t *spa = vd->vdev_spa; 5210 5211 ASSERT(spa_writeable(spa)); 5212 ASSERT(vd == vd->vdev_top); 5213 5214 /* 5215 * The state list is protected by the SCL_STATE lock. The caller 5216 * must either hold SCL_STATE as writer, or must be the sync thread 5217 * (which holds SCL_STATE as reader). There's only one sync thread, 5218 * so this is sufficient to ensure mutual exclusion. 5219 */ 5220 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 5221 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5222 spa_config_held(spa, SCL_STATE, RW_READER))); 5223 5224 if (!list_link_active(&vd->vdev_state_dirty_node) && 5225 vdev_is_concrete(vd)) 5226 list_insert_head(&spa->spa_state_dirty_list, vd); 5227 } 5228 5229 void 5230 vdev_state_clean(vdev_t *vd) 5231 { 5232 spa_t *spa = vd->vdev_spa; 5233 5234 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 5235 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5236 spa_config_held(spa, SCL_STATE, RW_READER))); 5237 5238 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 5239 list_remove(&spa->spa_state_dirty_list, vd); 5240 } 5241 5242 /* 5243 * Propagate vdev state up from children to parent. 5244 */ 5245 void 5246 vdev_propagate_state(vdev_t *vd) 5247 { 5248 spa_t *spa = vd->vdev_spa; 5249 vdev_t *rvd = spa->spa_root_vdev; 5250 int degraded = 0, faulted = 0; 5251 int corrupted = 0; 5252 vdev_t *child; 5253 5254 if (vd->vdev_children > 0) { 5255 for (int c = 0; c < vd->vdev_children; c++) { 5256 child = vd->vdev_child[c]; 5257 5258 /* 5259 * Don't factor holes or indirect vdevs into the 5260 * decision. 5261 */ 5262 if (!vdev_is_concrete(child)) 5263 continue; 5264 5265 if (!vdev_readable(child) || 5266 (!vdev_writeable(child) && spa_writeable(spa))) { 5267 /* 5268 * Root special: if there is a top-level log 5269 * device, treat the root vdev as if it were 5270 * degraded. 5271 */ 5272 if (child->vdev_islog && vd == rvd) 5273 degraded++; 5274 else 5275 faulted++; 5276 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 5277 degraded++; 5278 } 5279 5280 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 5281 corrupted++; 5282 } 5283 5284 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 5285 5286 /* 5287 * Root special: if there is a top-level vdev that cannot be 5288 * opened due to corrupted metadata, then propagate the root 5289 * vdev's aux state as 'corrupt' rather than 'insufficient 5290 * replicas'. 5291 */ 5292 if (corrupted && vd == rvd && 5293 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 5294 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 5295 VDEV_AUX_CORRUPT_DATA); 5296 } 5297 5298 if (vd->vdev_parent) 5299 vdev_propagate_state(vd->vdev_parent); 5300 } 5301 5302 /* 5303 * Set a vdev's state. If this is during an open, we don't update the parent 5304 * state, because we're in the process of opening children depth-first. 5305 * Otherwise, we propagate the change to the parent. 5306 * 5307 * If this routine places a device in a faulted state, an appropriate ereport is 5308 * generated. 5309 */ 5310 void 5311 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 5312 { 5313 uint64_t save_state; 5314 spa_t *spa = vd->vdev_spa; 5315 5316 if (state == vd->vdev_state) { 5317 /* 5318 * Since vdev_offline() code path is already in an offline 5319 * state we can miss a statechange event to OFFLINE. Check 5320 * the previous state to catch this condition. 5321 */ 5322 if (vd->vdev_ops->vdev_op_leaf && 5323 (state == VDEV_STATE_OFFLINE) && 5324 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) { 5325 /* post an offline state change */ 5326 zfs_post_state_change(spa, vd, vd->vdev_prevstate); 5327 } 5328 vd->vdev_stat.vs_aux = aux; 5329 return; 5330 } 5331 5332 save_state = vd->vdev_state; 5333 5334 vd->vdev_state = state; 5335 vd->vdev_stat.vs_aux = aux; 5336 5337 /* 5338 * If we are setting the vdev state to anything but an open state, then 5339 * always close the underlying device unless the device has requested 5340 * a delayed close (i.e. we're about to remove or fault the device). 5341 * Otherwise, we keep accessible but invalid devices open forever. 5342 * We don't call vdev_close() itself, because that implies some extra 5343 * checks (offline, etc) that we don't want here. This is limited to 5344 * leaf devices, because otherwise closing the device will affect other 5345 * children. 5346 */ 5347 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 5348 vd->vdev_ops->vdev_op_leaf) 5349 vd->vdev_ops->vdev_op_close(vd); 5350 5351 if (vd->vdev_removed && 5352 state == VDEV_STATE_CANT_OPEN && 5353 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 5354 /* 5355 * If the previous state is set to VDEV_STATE_REMOVED, then this 5356 * device was previously marked removed and someone attempted to 5357 * reopen it. If this failed due to a nonexistent device, then 5358 * keep the device in the REMOVED state. We also let this be if 5359 * it is one of our special test online cases, which is only 5360 * attempting to online the device and shouldn't generate an FMA 5361 * fault. 5362 */ 5363 vd->vdev_state = VDEV_STATE_REMOVED; 5364 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 5365 } else if (state == VDEV_STATE_REMOVED) { 5366 vd->vdev_removed = B_TRUE; 5367 } else if (state == VDEV_STATE_CANT_OPEN) { 5368 /* 5369 * If we fail to open a vdev during an import or recovery, we 5370 * mark it as "not available", which signifies that it was 5371 * never there to begin with. Failure to open such a device 5372 * is not considered an error. 5373 */ 5374 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 5375 spa_load_state(spa) == SPA_LOAD_RECOVER) && 5376 vd->vdev_ops->vdev_op_leaf) 5377 vd->vdev_not_present = 1; 5378 5379 /* 5380 * Post the appropriate ereport. If the 'prevstate' field is 5381 * set to something other than VDEV_STATE_UNKNOWN, it indicates 5382 * that this is part of a vdev_reopen(). In this case, we don't 5383 * want to post the ereport if the device was already in the 5384 * CANT_OPEN state beforehand. 5385 * 5386 * If the 'checkremove' flag is set, then this is an attempt to 5387 * online the device in response to an insertion event. If we 5388 * hit this case, then we have detected an insertion event for a 5389 * faulted or offline device that wasn't in the removed state. 5390 * In this scenario, we don't post an ereport because we are 5391 * about to replace the device, or attempt an online with 5392 * vdev_forcefault, which will generate the fault for us. 5393 */ 5394 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 5395 !vd->vdev_not_present && !vd->vdev_checkremove && 5396 vd != spa->spa_root_vdev) { 5397 const char *class; 5398 5399 switch (aux) { 5400 case VDEV_AUX_OPEN_FAILED: 5401 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 5402 break; 5403 case VDEV_AUX_CORRUPT_DATA: 5404 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 5405 break; 5406 case VDEV_AUX_NO_REPLICAS: 5407 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 5408 break; 5409 case VDEV_AUX_BAD_GUID_SUM: 5410 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 5411 break; 5412 case VDEV_AUX_TOO_SMALL: 5413 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 5414 break; 5415 case VDEV_AUX_BAD_LABEL: 5416 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 5417 break; 5418 case VDEV_AUX_BAD_ASHIFT: 5419 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT; 5420 break; 5421 default: 5422 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 5423 } 5424 5425 (void) zfs_ereport_post(class, spa, vd, NULL, NULL, 5426 save_state); 5427 } 5428 5429 /* Erase any notion of persistent removed state */ 5430 vd->vdev_removed = B_FALSE; 5431 } else { 5432 vd->vdev_removed = B_FALSE; 5433 } 5434 5435 /* 5436 * Notify ZED of any significant state-change on a leaf vdev. 5437 * 5438 */ 5439 if (vd->vdev_ops->vdev_op_leaf) { 5440 /* preserve original state from a vdev_reopen() */ 5441 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) && 5442 (vd->vdev_prevstate != vd->vdev_state) && 5443 (save_state <= VDEV_STATE_CLOSED)) 5444 save_state = vd->vdev_prevstate; 5445 5446 /* filter out state change due to initial vdev_open */ 5447 if (save_state > VDEV_STATE_CLOSED) 5448 zfs_post_state_change(spa, vd, save_state); 5449 } 5450 5451 if (!isopen && vd->vdev_parent) 5452 vdev_propagate_state(vd->vdev_parent); 5453 } 5454 5455 boolean_t 5456 vdev_children_are_offline(vdev_t *vd) 5457 { 5458 ASSERT(!vd->vdev_ops->vdev_op_leaf); 5459 5460 for (uint64_t i = 0; i < vd->vdev_children; i++) { 5461 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) 5462 return (B_FALSE); 5463 } 5464 5465 return (B_TRUE); 5466 } 5467 5468 /* 5469 * Check the vdev configuration to ensure that it's capable of supporting 5470 * a root pool. We do not support partial configuration. 5471 */ 5472 boolean_t 5473 vdev_is_bootable(vdev_t *vd) 5474 { 5475 if (!vd->vdev_ops->vdev_op_leaf) { 5476 const char *vdev_type = vd->vdev_ops->vdev_op_type; 5477 5478 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) 5479 return (B_FALSE); 5480 } 5481 5482 for (int c = 0; c < vd->vdev_children; c++) { 5483 if (!vdev_is_bootable(vd->vdev_child[c])) 5484 return (B_FALSE); 5485 } 5486 return (B_TRUE); 5487 } 5488 5489 boolean_t 5490 vdev_is_concrete(vdev_t *vd) 5491 { 5492 vdev_ops_t *ops = vd->vdev_ops; 5493 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || 5494 ops == &vdev_missing_ops || ops == &vdev_root_ops) { 5495 return (B_FALSE); 5496 } else { 5497 return (B_TRUE); 5498 } 5499 } 5500 5501 /* 5502 * Determine if a log device has valid content. If the vdev was 5503 * removed or faulted in the MOS config then we know that 5504 * the content on the log device has already been written to the pool. 5505 */ 5506 boolean_t 5507 vdev_log_state_valid(vdev_t *vd) 5508 { 5509 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 5510 !vd->vdev_removed) 5511 return (B_TRUE); 5512 5513 for (int c = 0; c < vd->vdev_children; c++) 5514 if (vdev_log_state_valid(vd->vdev_child[c])) 5515 return (B_TRUE); 5516 5517 return (B_FALSE); 5518 } 5519 5520 /* 5521 * Expand a vdev if possible. 5522 */ 5523 void 5524 vdev_expand(vdev_t *vd, uint64_t txg) 5525 { 5526 ASSERT(vd->vdev_top == vd); 5527 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5528 ASSERT(vdev_is_concrete(vd)); 5529 5530 vdev_set_deflate_ratio(vd); 5531 5532 if ((vd->vdev_spa->spa_raidz_expand == NULL || 5533 vd->vdev_spa->spa_raidz_expand->vre_vdev_id != vd->vdev_id) && 5534 (vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && 5535 vdev_is_concrete(vd)) { 5536 vdev_metaslab_group_create(vd); 5537 VERIFY(vdev_metaslab_init(vd, txg) == 0); 5538 vdev_config_dirty(vd); 5539 } 5540 } 5541 5542 /* 5543 * Split a vdev. 5544 */ 5545 void 5546 vdev_split(vdev_t *vd) 5547 { 5548 vdev_t *cvd, *pvd = vd->vdev_parent; 5549 5550 VERIFY3U(pvd->vdev_children, >, 1); 5551 5552 vdev_remove_child(pvd, vd); 5553 vdev_compact_children(pvd); 5554 5555 ASSERT3P(pvd->vdev_child, !=, NULL); 5556 5557 cvd = pvd->vdev_child[0]; 5558 if (pvd->vdev_children == 1) { 5559 vdev_remove_parent(cvd); 5560 cvd->vdev_splitting = B_TRUE; 5561 } 5562 vdev_propagate_state(cvd); 5563 } 5564 5565 void 5566 vdev_deadman(vdev_t *vd, const char *tag) 5567 { 5568 for (int c = 0; c < vd->vdev_children; c++) { 5569 vdev_t *cvd = vd->vdev_child[c]; 5570 5571 vdev_deadman(cvd, tag); 5572 } 5573 5574 if (vd->vdev_ops->vdev_op_leaf) { 5575 vdev_queue_t *vq = &vd->vdev_queue; 5576 5577 mutex_enter(&vq->vq_lock); 5578 if (vq->vq_active > 0) { 5579 spa_t *spa = vd->vdev_spa; 5580 zio_t *fio; 5581 uint64_t delta; 5582 5583 zfs_dbgmsg("slow vdev: %s has %u active IOs", 5584 vd->vdev_path, vq->vq_active); 5585 5586 /* 5587 * Look at the head of all the pending queues, 5588 * if any I/O has been outstanding for longer than 5589 * the spa_deadman_synctime invoke the deadman logic. 5590 */ 5591 fio = list_head(&vq->vq_active_list); 5592 delta = gethrtime() - fio->io_timestamp; 5593 if (delta > spa_deadman_synctime(spa)) 5594 zio_deadman(fio, tag); 5595 } 5596 mutex_exit(&vq->vq_lock); 5597 } 5598 } 5599 5600 void 5601 vdev_defer_resilver(vdev_t *vd) 5602 { 5603 ASSERT(vd->vdev_ops->vdev_op_leaf); 5604 5605 vd->vdev_resilver_deferred = B_TRUE; 5606 vd->vdev_spa->spa_resilver_deferred = B_TRUE; 5607 } 5608 5609 /* 5610 * Clears the resilver deferred flag on all leaf devs under vd. Returns 5611 * B_TRUE if we have devices that need to be resilvered and are available to 5612 * accept resilver I/Os. 5613 */ 5614 boolean_t 5615 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx) 5616 { 5617 boolean_t resilver_needed = B_FALSE; 5618 spa_t *spa = vd->vdev_spa; 5619 5620 for (int c = 0; c < vd->vdev_children; c++) { 5621 vdev_t *cvd = vd->vdev_child[c]; 5622 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx); 5623 } 5624 5625 if (vd == spa->spa_root_vdev && 5626 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) { 5627 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 5628 vdev_config_dirty(vd); 5629 spa->spa_resilver_deferred = B_FALSE; 5630 return (resilver_needed); 5631 } 5632 5633 if (!vdev_is_concrete(vd) || vd->vdev_aux || 5634 !vd->vdev_ops->vdev_op_leaf) 5635 return (resilver_needed); 5636 5637 vd->vdev_resilver_deferred = B_FALSE; 5638 5639 return (!vdev_is_dead(vd) && !vd->vdev_offline && 5640 vdev_resilver_needed(vd, NULL, NULL)); 5641 } 5642 5643 boolean_t 5644 vdev_xlate_is_empty(range_seg64_t *rs) 5645 { 5646 return (rs->rs_start == rs->rs_end); 5647 } 5648 5649 /* 5650 * Translate a logical range to the first contiguous physical range for the 5651 * specified vdev_t. This function is initially called with a leaf vdev and 5652 * will walk each parent vdev until it reaches a top-level vdev. Once the 5653 * top-level is reached the physical range is initialized and the recursive 5654 * function begins to unwind. As it unwinds it calls the parent's vdev 5655 * specific translation function to do the real conversion. 5656 */ 5657 void 5658 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 5659 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 5660 { 5661 /* 5662 * Walk up the vdev tree 5663 */ 5664 if (vd != vd->vdev_top) { 5665 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs, 5666 remain_rs); 5667 } else { 5668 /* 5669 * We've reached the top-level vdev, initialize the physical 5670 * range to the logical range and set an empty remaining 5671 * range then start to unwind. 5672 */ 5673 physical_rs->rs_start = logical_rs->rs_start; 5674 physical_rs->rs_end = logical_rs->rs_end; 5675 5676 remain_rs->rs_start = logical_rs->rs_start; 5677 remain_rs->rs_end = logical_rs->rs_start; 5678 5679 return; 5680 } 5681 5682 vdev_t *pvd = vd->vdev_parent; 5683 ASSERT3P(pvd, !=, NULL); 5684 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL); 5685 5686 /* 5687 * As this recursive function unwinds, translate the logical 5688 * range into its physical and any remaining components by calling 5689 * the vdev specific translate function. 5690 */ 5691 range_seg64_t intermediate = { 0 }; 5692 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs); 5693 5694 physical_rs->rs_start = intermediate.rs_start; 5695 physical_rs->rs_end = intermediate.rs_end; 5696 } 5697 5698 void 5699 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs, 5700 vdev_xlate_func_t *func, void *arg) 5701 { 5702 range_seg64_t iter_rs = *logical_rs; 5703 range_seg64_t physical_rs; 5704 range_seg64_t remain_rs; 5705 5706 while (!vdev_xlate_is_empty(&iter_rs)) { 5707 5708 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs); 5709 5710 /* 5711 * With raidz and dRAID, it's possible that the logical range 5712 * does not live on this leaf vdev. Only when there is a non- 5713 * zero physical size call the provided function. 5714 */ 5715 if (!vdev_xlate_is_empty(&physical_rs)) 5716 func(arg, &physical_rs); 5717 5718 iter_rs = remain_rs; 5719 } 5720 } 5721 5722 static char * 5723 vdev_name(vdev_t *vd, char *buf, int buflen) 5724 { 5725 if (vd->vdev_path == NULL) { 5726 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) { 5727 strlcpy(buf, vd->vdev_spa->spa_name, buflen); 5728 } else if (!vd->vdev_ops->vdev_op_leaf) { 5729 snprintf(buf, buflen, "%s-%llu", 5730 vd->vdev_ops->vdev_op_type, 5731 (u_longlong_t)vd->vdev_id); 5732 } 5733 } else { 5734 strlcpy(buf, vd->vdev_path, buflen); 5735 } 5736 return (buf); 5737 } 5738 5739 /* 5740 * Look at the vdev tree and determine whether any devices are currently being 5741 * replaced. 5742 */ 5743 boolean_t 5744 vdev_replace_in_progress(vdev_t *vdev) 5745 { 5746 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0); 5747 5748 if (vdev->vdev_ops == &vdev_replacing_ops) 5749 return (B_TRUE); 5750 5751 /* 5752 * A 'spare' vdev indicates that we have a replace in progress, unless 5753 * it has exactly two children, and the second, the hot spare, has 5754 * finished being resilvered. 5755 */ 5756 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 || 5757 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING))) 5758 return (B_TRUE); 5759 5760 for (int i = 0; i < vdev->vdev_children; i++) { 5761 if (vdev_replace_in_progress(vdev->vdev_child[i])) 5762 return (B_TRUE); 5763 } 5764 5765 return (B_FALSE); 5766 } 5767 5768 /* 5769 * Add a (source=src, propname=propval) list to an nvlist. 5770 */ 5771 static void 5772 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval, 5773 uint64_t intval, zprop_source_t src) 5774 { 5775 nvlist_t *propval; 5776 5777 propval = fnvlist_alloc(); 5778 fnvlist_add_uint64(propval, ZPROP_SOURCE, src); 5779 5780 if (strval != NULL) 5781 fnvlist_add_string(propval, ZPROP_VALUE, strval); 5782 else 5783 fnvlist_add_uint64(propval, ZPROP_VALUE, intval); 5784 5785 fnvlist_add_nvlist(nvl, propname, propval); 5786 nvlist_free(propval); 5787 } 5788 5789 static void 5790 vdev_props_set_sync(void *arg, dmu_tx_t *tx) 5791 { 5792 vdev_t *vd; 5793 nvlist_t *nvp = arg; 5794 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5795 objset_t *mos = spa->spa_meta_objset; 5796 nvpair_t *elem = NULL; 5797 uint64_t vdev_guid; 5798 uint64_t objid; 5799 nvlist_t *nvprops; 5800 5801 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV); 5802 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS); 5803 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE); 5804 5805 /* this vdev could get removed while waiting for this sync task */ 5806 if (vd == NULL) 5807 return; 5808 5809 /* 5810 * Set vdev property values in the vdev props mos object. 5811 */ 5812 if (vd->vdev_root_zap != 0) { 5813 objid = vd->vdev_root_zap; 5814 } else if (vd->vdev_top_zap != 0) { 5815 objid = vd->vdev_top_zap; 5816 } else if (vd->vdev_leaf_zap != 0) { 5817 objid = vd->vdev_leaf_zap; 5818 } else { 5819 panic("unexpected vdev type"); 5820 } 5821 5822 mutex_enter(&spa->spa_props_lock); 5823 5824 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5825 uint64_t intval; 5826 const char *strval; 5827 vdev_prop_t prop; 5828 const char *propname = nvpair_name(elem); 5829 zprop_type_t proptype; 5830 5831 switch (prop = vdev_name_to_prop(propname)) { 5832 case VDEV_PROP_USERPROP: 5833 if (vdev_prop_user(propname)) { 5834 strval = fnvpair_value_string(elem); 5835 if (strlen(strval) == 0) { 5836 /* remove the property if value == "" */ 5837 (void) zap_remove(mos, objid, propname, 5838 tx); 5839 } else { 5840 VERIFY0(zap_update(mos, objid, propname, 5841 1, strlen(strval) + 1, strval, tx)); 5842 } 5843 spa_history_log_internal(spa, "vdev set", tx, 5844 "vdev_guid=%llu: %s=%s", 5845 (u_longlong_t)vdev_guid, nvpair_name(elem), 5846 strval); 5847 } 5848 break; 5849 default: 5850 /* normalize the property name */ 5851 propname = vdev_prop_to_name(prop); 5852 proptype = vdev_prop_get_type(prop); 5853 5854 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5855 ASSERT(proptype == PROP_TYPE_STRING); 5856 strval = fnvpair_value_string(elem); 5857 VERIFY0(zap_update(mos, objid, propname, 5858 1, strlen(strval) + 1, strval, tx)); 5859 spa_history_log_internal(spa, "vdev set", tx, 5860 "vdev_guid=%llu: %s=%s", 5861 (u_longlong_t)vdev_guid, nvpair_name(elem), 5862 strval); 5863 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5864 intval = fnvpair_value_uint64(elem); 5865 5866 if (proptype == PROP_TYPE_INDEX) { 5867 const char *unused; 5868 VERIFY0(vdev_prop_index_to_string( 5869 prop, intval, &unused)); 5870 } 5871 VERIFY0(zap_update(mos, objid, propname, 5872 sizeof (uint64_t), 1, &intval, tx)); 5873 spa_history_log_internal(spa, "vdev set", tx, 5874 "vdev_guid=%llu: %s=%lld", 5875 (u_longlong_t)vdev_guid, 5876 nvpair_name(elem), (longlong_t)intval); 5877 } else { 5878 panic("invalid vdev property type %u", 5879 nvpair_type(elem)); 5880 } 5881 } 5882 5883 } 5884 5885 mutex_exit(&spa->spa_props_lock); 5886 } 5887 5888 int 5889 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 5890 { 5891 spa_t *spa = vd->vdev_spa; 5892 nvpair_t *elem = NULL; 5893 uint64_t vdev_guid; 5894 nvlist_t *nvprops; 5895 int error = 0; 5896 5897 ASSERT(vd != NULL); 5898 5899 /* Check that vdev has a zap we can use */ 5900 if (vd->vdev_root_zap == 0 && 5901 vd->vdev_top_zap == 0 && 5902 vd->vdev_leaf_zap == 0) 5903 return (SET_ERROR(EINVAL)); 5904 5905 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV, 5906 &vdev_guid) != 0) 5907 return (SET_ERROR(EINVAL)); 5908 5909 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS, 5910 &nvprops) != 0) 5911 return (SET_ERROR(EINVAL)); 5912 5913 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL) 5914 return (SET_ERROR(EINVAL)); 5915 5916 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5917 const char *propname = nvpair_name(elem); 5918 vdev_prop_t prop = vdev_name_to_prop(propname); 5919 uint64_t intval = 0; 5920 const char *strval = NULL; 5921 5922 if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) { 5923 error = EINVAL; 5924 goto end; 5925 } 5926 5927 if (vdev_prop_readonly(prop)) { 5928 error = EROFS; 5929 goto end; 5930 } 5931 5932 /* Special Processing */ 5933 switch (prop) { 5934 case VDEV_PROP_PATH: 5935 if (vd->vdev_path == NULL) { 5936 error = EROFS; 5937 break; 5938 } 5939 if (nvpair_value_string(elem, &strval) != 0) { 5940 error = EINVAL; 5941 break; 5942 } 5943 /* New path must start with /dev/ */ 5944 if (strncmp(strval, "/dev/", 5)) { 5945 error = EINVAL; 5946 break; 5947 } 5948 error = spa_vdev_setpath(spa, vdev_guid, strval); 5949 break; 5950 case VDEV_PROP_ALLOCATING: 5951 if (nvpair_value_uint64(elem, &intval) != 0) { 5952 error = EINVAL; 5953 break; 5954 } 5955 if (intval != vd->vdev_noalloc) 5956 break; 5957 if (intval == 0) 5958 error = spa_vdev_noalloc(spa, vdev_guid); 5959 else 5960 error = spa_vdev_alloc(spa, vdev_guid); 5961 break; 5962 case VDEV_PROP_FAILFAST: 5963 if (nvpair_value_uint64(elem, &intval) != 0) { 5964 error = EINVAL; 5965 break; 5966 } 5967 vd->vdev_failfast = intval & 1; 5968 break; 5969 case VDEV_PROP_CHECKSUM_N: 5970 if (nvpair_value_uint64(elem, &intval) != 0) { 5971 error = EINVAL; 5972 break; 5973 } 5974 vd->vdev_checksum_n = intval; 5975 break; 5976 case VDEV_PROP_CHECKSUM_T: 5977 if (nvpair_value_uint64(elem, &intval) != 0) { 5978 error = EINVAL; 5979 break; 5980 } 5981 vd->vdev_checksum_t = intval; 5982 break; 5983 case VDEV_PROP_IO_N: 5984 if (nvpair_value_uint64(elem, &intval) != 0) { 5985 error = EINVAL; 5986 break; 5987 } 5988 vd->vdev_io_n = intval; 5989 break; 5990 case VDEV_PROP_IO_T: 5991 if (nvpair_value_uint64(elem, &intval) != 0) { 5992 error = EINVAL; 5993 break; 5994 } 5995 vd->vdev_io_t = intval; 5996 break; 5997 case VDEV_PROP_SLOW_IO_N: 5998 if (nvpair_value_uint64(elem, &intval) != 0) { 5999 error = EINVAL; 6000 break; 6001 } 6002 vd->vdev_slow_io_n = intval; 6003 break; 6004 case VDEV_PROP_SLOW_IO_T: 6005 if (nvpair_value_uint64(elem, &intval) != 0) { 6006 error = EINVAL; 6007 break; 6008 } 6009 vd->vdev_slow_io_t = intval; 6010 break; 6011 default: 6012 /* Most processing is done in vdev_props_set_sync */ 6013 break; 6014 } 6015 end: 6016 if (error != 0) { 6017 intval = error; 6018 vdev_prop_add_list(outnvl, propname, strval, intval, 0); 6019 return (error); 6020 } 6021 } 6022 6023 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync, 6024 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 6025 } 6026 6027 int 6028 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 6029 { 6030 spa_t *spa = vd->vdev_spa; 6031 objset_t *mos = spa->spa_meta_objset; 6032 int err = 0; 6033 uint64_t objid; 6034 uint64_t vdev_guid; 6035 nvpair_t *elem = NULL; 6036 nvlist_t *nvprops = NULL; 6037 uint64_t intval = 0; 6038 char *strval = NULL; 6039 const char *propname = NULL; 6040 vdev_prop_t prop; 6041 6042 ASSERT(vd != NULL); 6043 ASSERT(mos != NULL); 6044 6045 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV, 6046 &vdev_guid) != 0) 6047 return (SET_ERROR(EINVAL)); 6048 6049 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops); 6050 6051 if (vd->vdev_root_zap != 0) { 6052 objid = vd->vdev_root_zap; 6053 } else if (vd->vdev_top_zap != 0) { 6054 objid = vd->vdev_top_zap; 6055 } else if (vd->vdev_leaf_zap != 0) { 6056 objid = vd->vdev_leaf_zap; 6057 } else { 6058 return (SET_ERROR(EINVAL)); 6059 } 6060 ASSERT(objid != 0); 6061 6062 mutex_enter(&spa->spa_props_lock); 6063 6064 if (nvprops != NULL) { 6065 char namebuf[64] = { 0 }; 6066 6067 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 6068 intval = 0; 6069 strval = NULL; 6070 propname = nvpair_name(elem); 6071 prop = vdev_name_to_prop(propname); 6072 zprop_source_t src = ZPROP_SRC_DEFAULT; 6073 uint64_t integer_size, num_integers; 6074 6075 switch (prop) { 6076 /* Special Read-only Properties */ 6077 case VDEV_PROP_NAME: 6078 strval = vdev_name(vd, namebuf, 6079 sizeof (namebuf)); 6080 if (strval == NULL) 6081 continue; 6082 vdev_prop_add_list(outnvl, propname, strval, 0, 6083 ZPROP_SRC_NONE); 6084 continue; 6085 case VDEV_PROP_CAPACITY: 6086 /* percent used */ 6087 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 : 6088 (vd->vdev_stat.vs_alloc * 100 / 6089 vd->vdev_stat.vs_dspace); 6090 vdev_prop_add_list(outnvl, propname, NULL, 6091 intval, ZPROP_SRC_NONE); 6092 continue; 6093 case VDEV_PROP_STATE: 6094 vdev_prop_add_list(outnvl, propname, NULL, 6095 vd->vdev_state, ZPROP_SRC_NONE); 6096 continue; 6097 case VDEV_PROP_GUID: 6098 vdev_prop_add_list(outnvl, propname, NULL, 6099 vd->vdev_guid, ZPROP_SRC_NONE); 6100 continue; 6101 case VDEV_PROP_ASIZE: 6102 vdev_prop_add_list(outnvl, propname, NULL, 6103 vd->vdev_asize, ZPROP_SRC_NONE); 6104 continue; 6105 case VDEV_PROP_PSIZE: 6106 vdev_prop_add_list(outnvl, propname, NULL, 6107 vd->vdev_psize, ZPROP_SRC_NONE); 6108 continue; 6109 case VDEV_PROP_ASHIFT: 6110 vdev_prop_add_list(outnvl, propname, NULL, 6111 vd->vdev_ashift, ZPROP_SRC_NONE); 6112 continue; 6113 case VDEV_PROP_SIZE: 6114 vdev_prop_add_list(outnvl, propname, NULL, 6115 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE); 6116 continue; 6117 case VDEV_PROP_FREE: 6118 vdev_prop_add_list(outnvl, propname, NULL, 6119 vd->vdev_stat.vs_dspace - 6120 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 6121 continue; 6122 case VDEV_PROP_ALLOCATED: 6123 vdev_prop_add_list(outnvl, propname, NULL, 6124 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 6125 continue; 6126 case VDEV_PROP_EXPANDSZ: 6127 vdev_prop_add_list(outnvl, propname, NULL, 6128 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE); 6129 continue; 6130 case VDEV_PROP_FRAGMENTATION: 6131 vdev_prop_add_list(outnvl, propname, NULL, 6132 vd->vdev_stat.vs_fragmentation, 6133 ZPROP_SRC_NONE); 6134 continue; 6135 case VDEV_PROP_PARITY: 6136 vdev_prop_add_list(outnvl, propname, NULL, 6137 vdev_get_nparity(vd), ZPROP_SRC_NONE); 6138 continue; 6139 case VDEV_PROP_PATH: 6140 if (vd->vdev_path == NULL) 6141 continue; 6142 vdev_prop_add_list(outnvl, propname, 6143 vd->vdev_path, 0, ZPROP_SRC_NONE); 6144 continue; 6145 case VDEV_PROP_DEVID: 6146 if (vd->vdev_devid == NULL) 6147 continue; 6148 vdev_prop_add_list(outnvl, propname, 6149 vd->vdev_devid, 0, ZPROP_SRC_NONE); 6150 continue; 6151 case VDEV_PROP_PHYS_PATH: 6152 if (vd->vdev_physpath == NULL) 6153 continue; 6154 vdev_prop_add_list(outnvl, propname, 6155 vd->vdev_physpath, 0, ZPROP_SRC_NONE); 6156 continue; 6157 case VDEV_PROP_ENC_PATH: 6158 if (vd->vdev_enc_sysfs_path == NULL) 6159 continue; 6160 vdev_prop_add_list(outnvl, propname, 6161 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE); 6162 continue; 6163 case VDEV_PROP_FRU: 6164 if (vd->vdev_fru == NULL) 6165 continue; 6166 vdev_prop_add_list(outnvl, propname, 6167 vd->vdev_fru, 0, ZPROP_SRC_NONE); 6168 continue; 6169 case VDEV_PROP_PARENT: 6170 if (vd->vdev_parent != NULL) { 6171 strval = vdev_name(vd->vdev_parent, 6172 namebuf, sizeof (namebuf)); 6173 vdev_prop_add_list(outnvl, propname, 6174 strval, 0, ZPROP_SRC_NONE); 6175 } 6176 continue; 6177 case VDEV_PROP_CHILDREN: 6178 if (vd->vdev_children > 0) 6179 strval = kmem_zalloc(ZAP_MAXVALUELEN, 6180 KM_SLEEP); 6181 for (uint64_t i = 0; i < vd->vdev_children; 6182 i++) { 6183 const char *vname; 6184 6185 vname = vdev_name(vd->vdev_child[i], 6186 namebuf, sizeof (namebuf)); 6187 if (vname == NULL) 6188 vname = "(unknown)"; 6189 if (strlen(strval) > 0) 6190 strlcat(strval, ",", 6191 ZAP_MAXVALUELEN); 6192 strlcat(strval, vname, ZAP_MAXVALUELEN); 6193 } 6194 if (strval != NULL) { 6195 vdev_prop_add_list(outnvl, propname, 6196 strval, 0, ZPROP_SRC_NONE); 6197 kmem_free(strval, ZAP_MAXVALUELEN); 6198 } 6199 continue; 6200 case VDEV_PROP_NUMCHILDREN: 6201 vdev_prop_add_list(outnvl, propname, NULL, 6202 vd->vdev_children, ZPROP_SRC_NONE); 6203 continue; 6204 case VDEV_PROP_READ_ERRORS: 6205 vdev_prop_add_list(outnvl, propname, NULL, 6206 vd->vdev_stat.vs_read_errors, 6207 ZPROP_SRC_NONE); 6208 continue; 6209 case VDEV_PROP_WRITE_ERRORS: 6210 vdev_prop_add_list(outnvl, propname, NULL, 6211 vd->vdev_stat.vs_write_errors, 6212 ZPROP_SRC_NONE); 6213 continue; 6214 case VDEV_PROP_CHECKSUM_ERRORS: 6215 vdev_prop_add_list(outnvl, propname, NULL, 6216 vd->vdev_stat.vs_checksum_errors, 6217 ZPROP_SRC_NONE); 6218 continue; 6219 case VDEV_PROP_INITIALIZE_ERRORS: 6220 vdev_prop_add_list(outnvl, propname, NULL, 6221 vd->vdev_stat.vs_initialize_errors, 6222 ZPROP_SRC_NONE); 6223 continue; 6224 case VDEV_PROP_OPS_NULL: 6225 vdev_prop_add_list(outnvl, propname, NULL, 6226 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL], 6227 ZPROP_SRC_NONE); 6228 continue; 6229 case VDEV_PROP_OPS_READ: 6230 vdev_prop_add_list(outnvl, propname, NULL, 6231 vd->vdev_stat.vs_ops[ZIO_TYPE_READ], 6232 ZPROP_SRC_NONE); 6233 continue; 6234 case VDEV_PROP_OPS_WRITE: 6235 vdev_prop_add_list(outnvl, propname, NULL, 6236 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE], 6237 ZPROP_SRC_NONE); 6238 continue; 6239 case VDEV_PROP_OPS_FREE: 6240 vdev_prop_add_list(outnvl, propname, NULL, 6241 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE], 6242 ZPROP_SRC_NONE); 6243 continue; 6244 case VDEV_PROP_OPS_CLAIM: 6245 vdev_prop_add_list(outnvl, propname, NULL, 6246 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM], 6247 ZPROP_SRC_NONE); 6248 continue; 6249 case VDEV_PROP_OPS_TRIM: 6250 /* 6251 * TRIM ops and bytes are reported to user 6252 * space as ZIO_TYPE_FLUSH. This is done to 6253 * preserve the vdev_stat_t structure layout 6254 * for user space. 6255 */ 6256 vdev_prop_add_list(outnvl, propname, NULL, 6257 vd->vdev_stat.vs_ops[ZIO_TYPE_FLUSH], 6258 ZPROP_SRC_NONE); 6259 continue; 6260 case VDEV_PROP_BYTES_NULL: 6261 vdev_prop_add_list(outnvl, propname, NULL, 6262 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL], 6263 ZPROP_SRC_NONE); 6264 continue; 6265 case VDEV_PROP_BYTES_READ: 6266 vdev_prop_add_list(outnvl, propname, NULL, 6267 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ], 6268 ZPROP_SRC_NONE); 6269 continue; 6270 case VDEV_PROP_BYTES_WRITE: 6271 vdev_prop_add_list(outnvl, propname, NULL, 6272 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE], 6273 ZPROP_SRC_NONE); 6274 continue; 6275 case VDEV_PROP_BYTES_FREE: 6276 vdev_prop_add_list(outnvl, propname, NULL, 6277 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE], 6278 ZPROP_SRC_NONE); 6279 continue; 6280 case VDEV_PROP_BYTES_CLAIM: 6281 vdev_prop_add_list(outnvl, propname, NULL, 6282 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM], 6283 ZPROP_SRC_NONE); 6284 continue; 6285 case VDEV_PROP_BYTES_TRIM: 6286 /* 6287 * TRIM ops and bytes are reported to user 6288 * space as ZIO_TYPE_FLUSH. This is done to 6289 * preserve the vdev_stat_t structure layout 6290 * for user space. 6291 */ 6292 vdev_prop_add_list(outnvl, propname, NULL, 6293 vd->vdev_stat.vs_bytes[ZIO_TYPE_FLUSH], 6294 ZPROP_SRC_NONE); 6295 continue; 6296 case VDEV_PROP_REMOVING: 6297 vdev_prop_add_list(outnvl, propname, NULL, 6298 vd->vdev_removing, ZPROP_SRC_NONE); 6299 continue; 6300 case VDEV_PROP_RAIDZ_EXPANDING: 6301 /* Only expose this for raidz */ 6302 if (vd->vdev_ops == &vdev_raidz_ops) { 6303 vdev_prop_add_list(outnvl, propname, 6304 NULL, vd->vdev_rz_expanding, 6305 ZPROP_SRC_NONE); 6306 } 6307 continue; 6308 /* Numeric Properites */ 6309 case VDEV_PROP_ALLOCATING: 6310 /* Leaf vdevs cannot have this property */ 6311 if (vd->vdev_mg == NULL && 6312 vd->vdev_top != NULL) { 6313 src = ZPROP_SRC_NONE; 6314 intval = ZPROP_BOOLEAN_NA; 6315 } else { 6316 err = vdev_prop_get_int(vd, prop, 6317 &intval); 6318 if (err && err != ENOENT) 6319 break; 6320 6321 if (intval == 6322 vdev_prop_default_numeric(prop)) 6323 src = ZPROP_SRC_DEFAULT; 6324 else 6325 src = ZPROP_SRC_LOCAL; 6326 } 6327 6328 vdev_prop_add_list(outnvl, propname, NULL, 6329 intval, src); 6330 break; 6331 case VDEV_PROP_FAILFAST: 6332 src = ZPROP_SRC_LOCAL; 6333 strval = NULL; 6334 6335 err = zap_lookup(mos, objid, nvpair_name(elem), 6336 sizeof (uint64_t), 1, &intval); 6337 if (err == ENOENT) { 6338 intval = vdev_prop_default_numeric( 6339 prop); 6340 err = 0; 6341 } else if (err) { 6342 break; 6343 } 6344 if (intval == vdev_prop_default_numeric(prop)) 6345 src = ZPROP_SRC_DEFAULT; 6346 6347 vdev_prop_add_list(outnvl, propname, strval, 6348 intval, src); 6349 break; 6350 case VDEV_PROP_CHECKSUM_N: 6351 case VDEV_PROP_CHECKSUM_T: 6352 case VDEV_PROP_IO_N: 6353 case VDEV_PROP_IO_T: 6354 case VDEV_PROP_SLOW_IO_N: 6355 case VDEV_PROP_SLOW_IO_T: 6356 err = vdev_prop_get_int(vd, prop, &intval); 6357 if (err && err != ENOENT) 6358 break; 6359 6360 if (intval == vdev_prop_default_numeric(prop)) 6361 src = ZPROP_SRC_DEFAULT; 6362 else 6363 src = ZPROP_SRC_LOCAL; 6364 6365 vdev_prop_add_list(outnvl, propname, NULL, 6366 intval, src); 6367 break; 6368 /* Text Properties */ 6369 case VDEV_PROP_COMMENT: 6370 /* Exists in the ZAP below */ 6371 /* FALLTHRU */ 6372 case VDEV_PROP_USERPROP: 6373 /* User Properites */ 6374 src = ZPROP_SRC_LOCAL; 6375 6376 err = zap_length(mos, objid, nvpair_name(elem), 6377 &integer_size, &num_integers); 6378 if (err) 6379 break; 6380 6381 switch (integer_size) { 6382 case 8: 6383 /* User properties cannot be integers */ 6384 err = EINVAL; 6385 break; 6386 case 1: 6387 /* string property */ 6388 strval = kmem_alloc(num_integers, 6389 KM_SLEEP); 6390 err = zap_lookup(mos, objid, 6391 nvpair_name(elem), 1, 6392 num_integers, strval); 6393 if (err) { 6394 kmem_free(strval, 6395 num_integers); 6396 break; 6397 } 6398 vdev_prop_add_list(outnvl, propname, 6399 strval, 0, src); 6400 kmem_free(strval, num_integers); 6401 break; 6402 } 6403 break; 6404 default: 6405 err = ENOENT; 6406 break; 6407 } 6408 if (err) 6409 break; 6410 } 6411 } else { 6412 /* 6413 * Get all properties from the MOS vdev property object. 6414 */ 6415 zap_cursor_t zc; 6416 zap_attribute_t za; 6417 for (zap_cursor_init(&zc, mos, objid); 6418 (err = zap_cursor_retrieve(&zc, &za)) == 0; 6419 zap_cursor_advance(&zc)) { 6420 intval = 0; 6421 strval = NULL; 6422 zprop_source_t src = ZPROP_SRC_DEFAULT; 6423 propname = za.za_name; 6424 6425 switch (za.za_integer_length) { 6426 case 8: 6427 /* We do not allow integer user properties */ 6428 /* This is likely an internal value */ 6429 break; 6430 case 1: 6431 /* string property */ 6432 strval = kmem_alloc(za.za_num_integers, 6433 KM_SLEEP); 6434 err = zap_lookup(mos, objid, za.za_name, 1, 6435 za.za_num_integers, strval); 6436 if (err) { 6437 kmem_free(strval, za.za_num_integers); 6438 break; 6439 } 6440 vdev_prop_add_list(outnvl, propname, strval, 0, 6441 src); 6442 kmem_free(strval, za.za_num_integers); 6443 break; 6444 6445 default: 6446 break; 6447 } 6448 } 6449 zap_cursor_fini(&zc); 6450 } 6451 6452 mutex_exit(&spa->spa_props_lock); 6453 if (err && err != ENOENT) { 6454 return (err); 6455 } 6456 6457 return (0); 6458 } 6459 6460 EXPORT_SYMBOL(vdev_fault); 6461 EXPORT_SYMBOL(vdev_degrade); 6462 EXPORT_SYMBOL(vdev_online); 6463 EXPORT_SYMBOL(vdev_offline); 6464 EXPORT_SYMBOL(vdev_clear); 6465 6466 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW, 6467 "Target number of metaslabs per top-level vdev"); 6468 6469 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW, 6470 "Default lower limit for metaslab size"); 6471 6472 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW, 6473 "Default upper limit for metaslab size"); 6474 6475 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW, 6476 "Minimum number of metaslabs per top-level vdev"); 6477 6478 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW, 6479 "Practical upper limit of total metaslabs per top-level vdev"); 6480 6481 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW, 6482 "Rate limit slow IO (delay) events to this many per second"); 6483 6484 ZFS_MODULE_PARAM(zfs, zfs_, deadman_events_per_second, UINT, ZMOD_RW, 6485 "Rate limit hung IO (deadman) events to this many per second"); 6486 6487 /* BEGIN CSTYLED */ 6488 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW, 6489 "Rate limit checksum events to this many checksum errors per second " 6490 "(do not set below ZED threshold)."); 6491 /* END CSTYLED */ 6492 6493 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW, 6494 "Ignore errors during resilver/scrub"); 6495 6496 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW, 6497 "Bypass vdev_validate()"); 6498 6499 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW, 6500 "Disable cache flushes"); 6501 6502 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW, 6503 "Minimum number of metaslabs required to dedicate one for log blocks"); 6504 6505 /* BEGIN CSTYLED */ 6506 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift, 6507 param_set_min_auto_ashift, param_get_uint, ZMOD_RW, 6508 "Minimum ashift used when creating new top-level vdevs"); 6509 6510 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift, 6511 param_set_max_auto_ashift, param_get_uint, ZMOD_RW, 6512 "Maximum ashift used when optimizing for logical -> physical sector " 6513 "size on new top-level vdevs"); 6514 /* END CSTYLED */ 6515