1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 26 * Copyright 2017 Nexenta Systems, Inc. 27 * Copyright (c) 2014 Integros [integros.com] 28 * Copyright 2016 Toomas Soome <tsoome@me.com> 29 * Copyright 2017 Joyent, Inc. 30 * Copyright (c) 2017, Intel Corporation. 31 * Copyright (c) 2019, Datto Inc. All rights reserved. 32 * Copyright (c) 2021, Klara Inc. 33 * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP. 34 */ 35 36 #include <sys/zfs_context.h> 37 #include <sys/fm/fs/zfs.h> 38 #include <sys/spa.h> 39 #include <sys/spa_impl.h> 40 #include <sys/bpobj.h> 41 #include <sys/dmu.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/dsl_dir.h> 44 #include <sys/vdev_impl.h> 45 #include <sys/vdev_rebuild.h> 46 #include <sys/vdev_draid.h> 47 #include <sys/uberblock_impl.h> 48 #include <sys/metaslab.h> 49 #include <sys/metaslab_impl.h> 50 #include <sys/space_map.h> 51 #include <sys/space_reftree.h> 52 #include <sys/zio.h> 53 #include <sys/zap.h> 54 #include <sys/fs/zfs.h> 55 #include <sys/arc.h> 56 #include <sys/zil.h> 57 #include <sys/dsl_scan.h> 58 #include <sys/vdev_raidz.h> 59 #include <sys/abd.h> 60 #include <sys/vdev_initialize.h> 61 #include <sys/vdev_trim.h> 62 #include <sys/vdev_raidz.h> 63 #include <sys/zvol.h> 64 #include <sys/zfs_ratelimit.h> 65 #include "zfs_prop.h" 66 67 /* 68 * One metaslab from each (normal-class) vdev is used by the ZIL. These are 69 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are 70 * part of the spa_embedded_log_class. The metaslab with the most free space 71 * in each vdev is selected for this purpose when the pool is opened (or a 72 * vdev is added). See vdev_metaslab_init(). 73 * 74 * Log blocks can be allocated from the following locations. Each one is tried 75 * in order until the allocation succeeds: 76 * 1. dedicated log vdevs, aka "slog" (spa_log_class) 77 * 2. embedded slog metaslabs (spa_embedded_log_class) 78 * 3. other metaslabs in normal vdevs (spa_normal_class) 79 * 80 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer 81 * than this number of metaslabs in the vdev. This ensures that we don't set 82 * aside an unreasonable amount of space for the ZIL. If set to less than 83 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced 84 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab. 85 */ 86 static uint_t zfs_embedded_slog_min_ms = 64; 87 88 /* default target for number of metaslabs per top-level vdev */ 89 static uint_t zfs_vdev_default_ms_count = 200; 90 91 /* minimum number of metaslabs per top-level vdev */ 92 static uint_t zfs_vdev_min_ms_count = 16; 93 94 /* practical upper limit of total metaslabs per top-level vdev */ 95 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17; 96 97 /* lower limit for metaslab size (512M) */ 98 static uint_t zfs_vdev_default_ms_shift = 29; 99 100 /* upper limit for metaslab size (16G) */ 101 static uint_t zfs_vdev_max_ms_shift = 34; 102 103 int vdev_validate_skip = B_FALSE; 104 105 /* 106 * Since the DTL space map of a vdev is not expected to have a lot of 107 * entries, we default its block size to 4K. 108 */ 109 int zfs_vdev_dtl_sm_blksz = (1 << 12); 110 111 /* 112 * Rate limit slow IO (delay) events to this many per second. 113 */ 114 static unsigned int zfs_slow_io_events_per_second = 20; 115 116 /* 117 * Rate limit deadman "hung IO" events to this many per second. 118 */ 119 static unsigned int zfs_deadman_events_per_second = 1; 120 121 /* 122 * Rate limit direct write IO verify failures to this many per scond. 123 */ 124 static unsigned int zfs_dio_write_verify_events_per_second = 20; 125 126 /* 127 * Rate limit checksum events after this many checksum errors per second. 128 */ 129 static unsigned int zfs_checksum_events_per_second = 20; 130 131 /* 132 * Ignore errors during scrub/resilver. Allows to work around resilver 133 * upon import when there are pool errors. 134 */ 135 static int zfs_scan_ignore_errors = 0; 136 137 /* 138 * vdev-wide space maps that have lots of entries written to them at 139 * the end of each transaction can benefit from a higher I/O bandwidth 140 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. 141 */ 142 int zfs_vdev_standard_sm_blksz = (1 << 17); 143 144 /* 145 * Tunable parameter for debugging or performance analysis. Setting this 146 * will cause pool corruption on power loss if a volatile out-of-order 147 * write cache is enabled. 148 */ 149 int zfs_nocacheflush = 0; 150 151 /* 152 * Maximum and minimum ashift values that can be automatically set based on 153 * vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX 154 * is higher than the maximum value, it is intentionally limited here to not 155 * excessively impact pool space efficiency. Higher ashift values may still 156 * be forced by vdev logical ashift or by user via ashift property, but won't 157 * be set automatically as a performance optimization. 158 */ 159 uint_t zfs_vdev_max_auto_ashift = 14; 160 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN; 161 162 /* 163 * VDEV checksum verification for Direct I/O writes. This is neccessary for 164 * Linux, because anonymous pages can not be placed under write protection 165 * during Direct I/O writes. 166 */ 167 #if !defined(__FreeBSD__) 168 uint_t zfs_vdev_direct_write_verify = 1; 169 #else 170 uint_t zfs_vdev_direct_write_verify = 0; 171 #endif 172 173 void 174 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) 175 { 176 va_list adx; 177 char buf[256]; 178 179 va_start(adx, fmt); 180 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 181 va_end(adx); 182 183 if (vd->vdev_path != NULL) { 184 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, 185 vd->vdev_path, buf); 186 } else { 187 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", 188 vd->vdev_ops->vdev_op_type, 189 (u_longlong_t)vd->vdev_id, 190 (u_longlong_t)vd->vdev_guid, buf); 191 } 192 } 193 194 void 195 vdev_dbgmsg_print_tree(vdev_t *vd, int indent) 196 { 197 char state[20]; 198 199 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { 200 zfs_dbgmsg("%*svdev %llu: %s", indent, "", 201 (u_longlong_t)vd->vdev_id, 202 vd->vdev_ops->vdev_op_type); 203 return; 204 } 205 206 switch (vd->vdev_state) { 207 case VDEV_STATE_UNKNOWN: 208 (void) snprintf(state, sizeof (state), "unknown"); 209 break; 210 case VDEV_STATE_CLOSED: 211 (void) snprintf(state, sizeof (state), "closed"); 212 break; 213 case VDEV_STATE_OFFLINE: 214 (void) snprintf(state, sizeof (state), "offline"); 215 break; 216 case VDEV_STATE_REMOVED: 217 (void) snprintf(state, sizeof (state), "removed"); 218 break; 219 case VDEV_STATE_CANT_OPEN: 220 (void) snprintf(state, sizeof (state), "can't open"); 221 break; 222 case VDEV_STATE_FAULTED: 223 (void) snprintf(state, sizeof (state), "faulted"); 224 break; 225 case VDEV_STATE_DEGRADED: 226 (void) snprintf(state, sizeof (state), "degraded"); 227 break; 228 case VDEV_STATE_HEALTHY: 229 (void) snprintf(state, sizeof (state), "healthy"); 230 break; 231 default: 232 (void) snprintf(state, sizeof (state), "<state %u>", 233 (uint_t)vd->vdev_state); 234 } 235 236 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, 237 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, 238 vd->vdev_islog ? " (log)" : "", 239 (u_longlong_t)vd->vdev_guid, 240 vd->vdev_path ? vd->vdev_path : "N/A", state); 241 242 for (uint64_t i = 0; i < vd->vdev_children; i++) 243 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); 244 } 245 246 char * 247 vdev_rt_name(vdev_t *vd, const char *name) 248 { 249 return (kmem_asprintf("{spa=%s vdev_guid=%llu %s}", 250 spa_name(vd->vdev_spa), 251 (u_longlong_t)vd->vdev_guid, 252 name)); 253 } 254 255 static char * 256 vdev_rt_name_dtl(vdev_t *vd, const char *name, vdev_dtl_type_t dtl_type) 257 { 258 return (kmem_asprintf("{spa=%s vdev_guid=%llu %s[%d]}", 259 spa_name(vd->vdev_spa), 260 (u_longlong_t)vd->vdev_guid, 261 name, 262 dtl_type)); 263 } 264 265 /* 266 * Virtual device management. 267 */ 268 269 static vdev_ops_t *const vdev_ops_table[] = { 270 &vdev_root_ops, 271 &vdev_raidz_ops, 272 &vdev_draid_ops, 273 &vdev_draid_spare_ops, 274 &vdev_mirror_ops, 275 &vdev_replacing_ops, 276 &vdev_spare_ops, 277 &vdev_disk_ops, 278 &vdev_file_ops, 279 &vdev_missing_ops, 280 &vdev_hole_ops, 281 &vdev_indirect_ops, 282 NULL 283 }; 284 285 /* 286 * Given a vdev type, return the appropriate ops vector. 287 */ 288 static vdev_ops_t * 289 vdev_getops(const char *type) 290 { 291 vdev_ops_t *ops, *const *opspp; 292 293 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 294 if (strcmp(ops->vdev_op_type, type) == 0) 295 break; 296 297 return (ops); 298 } 299 300 /* 301 * Given a vdev and a metaslab class, find which metaslab group we're 302 * interested in. All vdevs may belong to two different metaslab classes. 303 * Dedicated slog devices use only the primary metaslab group, rather than a 304 * separate log group. For embedded slogs, vdev_log_mg will be non-NULL and 305 * will point to a metaslab group of either embedded_log_class (for normal 306 * vdevs) or special_embedded_log_class (for special vdevs). 307 */ 308 metaslab_group_t * 309 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc) 310 { 311 if ((mc == spa_embedded_log_class(vd->vdev_spa) || 312 mc == spa_special_embedded_log_class(vd->vdev_spa)) && 313 vd->vdev_log_mg != NULL) 314 return (vd->vdev_log_mg); 315 else 316 return (vd->vdev_mg); 317 } 318 319 void 320 vdev_default_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs, 321 zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs) 322 { 323 (void) vd, (void) remain_rs; 324 325 physical_rs->rs_start = logical_rs->rs_start; 326 physical_rs->rs_end = logical_rs->rs_end; 327 } 328 329 /* 330 * Derive the enumerated allocation bias from string input. 331 * String origin is either the per-vdev zap or zpool(8). 332 */ 333 static vdev_alloc_bias_t 334 vdev_derive_alloc_bias(const char *bias) 335 { 336 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 337 338 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0) 339 alloc_bias = VDEV_BIAS_LOG; 340 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) 341 alloc_bias = VDEV_BIAS_SPECIAL; 342 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) 343 alloc_bias = VDEV_BIAS_DEDUP; 344 345 return (alloc_bias); 346 } 347 348 uint64_t 349 vdev_default_psize(vdev_t *vd, uint64_t asize, uint64_t txg) 350 { 351 ASSERT0(asize % (1ULL << vd->vdev_top->vdev_ashift)); 352 uint64_t csize, psize = asize; 353 for (int c = 0; c < vd->vdev_children; c++) { 354 csize = vdev_asize_to_psize_txg(vd->vdev_child[c], asize, txg); 355 psize = MIN(psize, csize); 356 } 357 358 return (psize); 359 } 360 361 /* 362 * Default asize function: return the MAX of psize with the asize of 363 * all children. This is what's used by anything other than RAID-Z. 364 */ 365 uint64_t 366 vdev_default_asize(vdev_t *vd, uint64_t psize, uint64_t txg) 367 { 368 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 369 uint64_t csize; 370 371 for (int c = 0; c < vd->vdev_children; c++) { 372 csize = vdev_psize_to_asize_txg(vd->vdev_child[c], psize, txg); 373 asize = MAX(asize, csize); 374 } 375 376 return (asize); 377 } 378 379 uint64_t 380 vdev_default_min_asize(vdev_t *vd) 381 { 382 return (vd->vdev_min_asize); 383 } 384 385 /* 386 * Get the minimum allocatable size. We define the allocatable size as 387 * the vdev's asize rounded to the nearest metaslab. This allows us to 388 * replace or attach devices which don't have the same physical size but 389 * can still satisfy the same number of allocations. 390 */ 391 uint64_t 392 vdev_get_min_asize(vdev_t *vd) 393 { 394 vdev_t *pvd = vd->vdev_parent; 395 396 /* 397 * If our parent is NULL (inactive spare or cache) or is the root, 398 * just return our own asize. 399 */ 400 if (pvd == NULL) 401 return (vd->vdev_asize); 402 403 /* 404 * The top-level vdev just returns the allocatable size rounded 405 * to the nearest metaslab. 406 */ 407 if (vd == vd->vdev_top) 408 return (P2ALIGN_TYPED(vd->vdev_asize, 1ULL << vd->vdev_ms_shift, 409 uint64_t)); 410 411 return (pvd->vdev_ops->vdev_op_min_asize(pvd)); 412 } 413 414 void 415 vdev_set_min_asize(vdev_t *vd) 416 { 417 vd->vdev_min_asize = vdev_get_min_asize(vd); 418 419 for (int c = 0; c < vd->vdev_children; c++) 420 vdev_set_min_asize(vd->vdev_child[c]); 421 } 422 423 /* 424 * Get the minimal allocation size for the top-level vdev. 425 */ 426 uint64_t 427 vdev_get_min_alloc(vdev_t *vd) 428 { 429 uint64_t min_alloc = 1ULL << vd->vdev_ashift; 430 431 if (vd->vdev_ops->vdev_op_min_alloc != NULL) 432 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd); 433 434 return (min_alloc); 435 } 436 437 /* 438 * Get the parity level for a top-level vdev. 439 */ 440 uint64_t 441 vdev_get_nparity(vdev_t *vd) 442 { 443 uint64_t nparity = 0; 444 445 if (vd->vdev_ops->vdev_op_nparity != NULL) 446 nparity = vd->vdev_ops->vdev_op_nparity(vd); 447 448 return (nparity); 449 } 450 451 static int 452 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value) 453 { 454 spa_t *spa = vd->vdev_spa; 455 objset_t *mos = spa->spa_meta_objset; 456 uint64_t objid; 457 int err; 458 459 if (vd->vdev_root_zap != 0) { 460 objid = vd->vdev_root_zap; 461 } else if (vd->vdev_top_zap != 0) { 462 objid = vd->vdev_top_zap; 463 } else if (vd->vdev_leaf_zap != 0) { 464 objid = vd->vdev_leaf_zap; 465 } else { 466 return (EINVAL); 467 } 468 469 err = zap_lookup(mos, objid, vdev_prop_to_name(prop), 470 sizeof (uint64_t), 1, value); 471 472 if (err == ENOENT) 473 *value = vdev_prop_default_numeric(prop); 474 475 return (err); 476 } 477 478 /* 479 * Get the number of data disks for a top-level vdev. 480 */ 481 uint64_t 482 vdev_get_ndisks(vdev_t *vd) 483 { 484 uint64_t ndisks = 1; 485 486 if (vd->vdev_ops->vdev_op_ndisks != NULL) 487 ndisks = vd->vdev_ops->vdev_op_ndisks(vd); 488 489 return (ndisks); 490 } 491 492 vdev_t * 493 vdev_lookup_top(spa_t *spa, uint64_t vdev) 494 { 495 vdev_t *rvd = spa->spa_root_vdev; 496 497 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 498 499 if (vdev < rvd->vdev_children) { 500 ASSERT(rvd->vdev_child[vdev] != NULL); 501 return (rvd->vdev_child[vdev]); 502 } 503 504 return (NULL); 505 } 506 507 vdev_t * 508 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 509 { 510 vdev_t *mvd; 511 512 if (vd->vdev_guid == guid) 513 return (vd); 514 515 for (int c = 0; c < vd->vdev_children; c++) 516 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 517 NULL) 518 return (mvd); 519 520 return (NULL); 521 } 522 523 static int 524 vdev_count_leaves_impl(vdev_t *vd) 525 { 526 int n = 0; 527 528 if (vd->vdev_ops->vdev_op_leaf) 529 return (1); 530 531 for (int c = 0; c < vd->vdev_children; c++) 532 n += vdev_count_leaves_impl(vd->vdev_child[c]); 533 534 return (n); 535 } 536 537 int 538 vdev_count_leaves(spa_t *spa) 539 { 540 int rc; 541 542 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 543 rc = vdev_count_leaves_impl(spa->spa_root_vdev); 544 spa_config_exit(spa, SCL_VDEV, FTAG); 545 546 return (rc); 547 } 548 549 void 550 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 551 { 552 size_t oldsize, newsize; 553 uint64_t id = cvd->vdev_id; 554 vdev_t **newchild; 555 556 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 557 ASSERT(cvd->vdev_parent == NULL); 558 559 cvd->vdev_parent = pvd; 560 561 if (pvd == NULL) 562 return; 563 564 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 565 566 oldsize = pvd->vdev_children * sizeof (vdev_t *); 567 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 568 newsize = pvd->vdev_children * sizeof (vdev_t *); 569 570 newchild = kmem_alloc(newsize, KM_SLEEP); 571 if (pvd->vdev_child != NULL) { 572 memcpy(newchild, pvd->vdev_child, oldsize); 573 kmem_free(pvd->vdev_child, oldsize); 574 } 575 576 pvd->vdev_child = newchild; 577 pvd->vdev_child[id] = cvd; 578 pvd->vdev_nonrot &= cvd->vdev_nonrot; 579 580 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 581 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 582 583 /* 584 * Walk up all ancestors to update guid sum. 585 */ 586 for (; pvd != NULL; pvd = pvd->vdev_parent) 587 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 588 589 if (cvd->vdev_ops->vdev_op_leaf) { 590 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd); 591 cvd->vdev_spa->spa_leaf_list_gen++; 592 } 593 } 594 595 void 596 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 597 { 598 int c; 599 uint_t id = cvd->vdev_id; 600 601 ASSERT(cvd->vdev_parent == pvd); 602 603 if (pvd == NULL) 604 return; 605 606 ASSERT(id < pvd->vdev_children); 607 ASSERT(pvd->vdev_child[id] == cvd); 608 609 pvd->vdev_child[id] = NULL; 610 cvd->vdev_parent = NULL; 611 612 for (c = 0; c < pvd->vdev_children; c++) 613 if (pvd->vdev_child[c]) 614 break; 615 616 if (c == pvd->vdev_children) { 617 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 618 pvd->vdev_child = NULL; 619 pvd->vdev_children = 0; 620 } 621 622 if (cvd->vdev_ops->vdev_op_leaf) { 623 spa_t *spa = cvd->vdev_spa; 624 list_remove(&spa->spa_leaf_list, cvd); 625 spa->spa_leaf_list_gen++; 626 } 627 628 /* 629 * Walk up all ancestors to update guid sum. 630 */ 631 for (; pvd != NULL; pvd = pvd->vdev_parent) 632 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 633 } 634 635 /* 636 * Remove any holes in the child array. 637 */ 638 void 639 vdev_compact_children(vdev_t *pvd) 640 { 641 vdev_t **newchild, *cvd; 642 int oldc = pvd->vdev_children; 643 int newc; 644 645 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 646 647 if (oldc == 0) 648 return; 649 650 for (int c = newc = 0; c < oldc; c++) 651 if (pvd->vdev_child[c]) 652 newc++; 653 654 if (newc > 0) { 655 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP); 656 657 for (int c = newc = 0; c < oldc; c++) { 658 if ((cvd = pvd->vdev_child[c]) != NULL) { 659 newchild[newc] = cvd; 660 cvd->vdev_id = newc++; 661 } 662 } 663 } else { 664 newchild = NULL; 665 } 666 667 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 668 pvd->vdev_child = newchild; 669 pvd->vdev_children = newc; 670 } 671 672 /* 673 * Allocate and minimally initialize a vdev_t. 674 */ 675 vdev_t * 676 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 677 { 678 vdev_t *vd; 679 vdev_indirect_config_t *vic; 680 681 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 682 vic = &vd->vdev_indirect_config; 683 684 if (spa->spa_root_vdev == NULL) { 685 ASSERT(ops == &vdev_root_ops); 686 spa->spa_root_vdev = vd; 687 spa->spa_load_guid = spa_generate_load_guid(); 688 } 689 690 if (guid == 0 && ops != &vdev_hole_ops) { 691 if (spa->spa_root_vdev == vd) { 692 /* 693 * The root vdev's guid will also be the pool guid, 694 * which must be unique among all pools. 695 */ 696 guid = spa_generate_guid(NULL); 697 } else { 698 /* 699 * Any other vdev's guid must be unique within the pool. 700 */ 701 guid = spa_generate_guid(spa); 702 } 703 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 704 } 705 706 vd->vdev_spa = spa; 707 vd->vdev_id = id; 708 vd->vdev_guid = guid; 709 vd->vdev_guid_sum = guid; 710 vd->vdev_ops = ops; 711 vd->vdev_state = VDEV_STATE_CLOSED; 712 vd->vdev_ishole = (ops == &vdev_hole_ops); 713 vic->vic_prev_indirect_vdev = UINT64_MAX; 714 715 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); 716 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); 717 vd->vdev_obsolete_segments = zfs_range_tree_create_flags( 718 NULL, ZFS_RANGE_SEG64, NULL, 0, 0, 719 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "vdev_obsolete_segments")); 720 721 /* 722 * Initialize rate limit structs for events. We rate limit ZIO delay 723 * and checksum events so that we don't overwhelm ZED with thousands 724 * of events when a disk is acting up. 725 */ 726 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second, 727 1); 728 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_deadman_events_per_second, 729 1); 730 zfs_ratelimit_init(&vd->vdev_dio_verify_rl, 731 &zfs_dio_write_verify_events_per_second, 1); 732 zfs_ratelimit_init(&vd->vdev_checksum_rl, 733 &zfs_checksum_events_per_second, 1); 734 735 /* 736 * Default Thresholds for tuning ZED 737 */ 738 vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N); 739 vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T); 740 vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N); 741 vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T); 742 vd->vdev_slow_io_n = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N); 743 vd->vdev_slow_io_t = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T); 744 745 list_link_init(&vd->vdev_config_dirty_node); 746 list_link_init(&vd->vdev_state_dirty_node); 747 list_link_init(&vd->vdev_initialize_node); 748 list_link_init(&vd->vdev_leaf_node); 749 list_link_init(&vd->vdev_trim_node); 750 751 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL); 752 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 753 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 754 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL); 755 756 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); 757 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); 758 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); 759 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); 760 761 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL); 762 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL); 763 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL); 764 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL); 765 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL); 766 cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL); 767 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL); 768 769 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL); 770 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL); 771 772 for (int t = 0; t < DTL_TYPES; t++) { 773 vd->vdev_dtl[t] = zfs_range_tree_create_flags( 774 NULL, ZFS_RANGE_SEG64, NULL, 0, 0, 775 ZFS_RT_F_DYN_NAME, vdev_rt_name_dtl(vd, "vdev_dtl", t)); 776 } 777 778 txg_list_create(&vd->vdev_ms_list, spa, 779 offsetof(struct metaslab, ms_txg_node)); 780 txg_list_create(&vd->vdev_dtl_list, spa, 781 offsetof(struct vdev, vdev_dtl_node)); 782 vd->vdev_stat.vs_timestamp = gethrtime(); 783 vdev_queue_init(vd); 784 785 return (vd); 786 } 787 788 /* 789 * Allocate a new vdev. The 'alloctype' is used to control whether we are 790 * creating a new vdev or loading an existing one - the behavior is slightly 791 * different for each case. 792 */ 793 int 794 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 795 int alloctype) 796 { 797 vdev_ops_t *ops; 798 const char *type; 799 uint64_t guid = 0, islog; 800 vdev_t *vd; 801 vdev_indirect_config_t *vic; 802 const char *tmp = NULL; 803 int rc; 804 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 805 boolean_t top_level = (parent && !parent->vdev_parent); 806 807 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 808 809 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 810 return (SET_ERROR(EINVAL)); 811 812 if ((ops = vdev_getops(type)) == NULL) 813 return (SET_ERROR(EINVAL)); 814 815 /* 816 * If this is a load, get the vdev guid from the nvlist. 817 * Otherwise, vdev_alloc_common() will generate one for us. 818 */ 819 if (alloctype == VDEV_ALLOC_LOAD) { 820 uint64_t label_id; 821 822 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 823 label_id != id) 824 return (SET_ERROR(EINVAL)); 825 826 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 827 return (SET_ERROR(EINVAL)); 828 } else if (alloctype == VDEV_ALLOC_SPARE) { 829 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 830 return (SET_ERROR(EINVAL)); 831 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 832 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 833 return (SET_ERROR(EINVAL)); 834 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 835 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 836 return (SET_ERROR(EINVAL)); 837 } 838 839 /* 840 * The first allocated vdev must be of type 'root'. 841 */ 842 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 843 return (SET_ERROR(EINVAL)); 844 845 /* 846 * Determine whether we're a log vdev. 847 */ 848 islog = 0; 849 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 850 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 851 return (SET_ERROR(ENOTSUP)); 852 853 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 854 return (SET_ERROR(ENOTSUP)); 855 856 if (top_level && alloctype == VDEV_ALLOC_ADD) { 857 const char *bias; 858 859 /* 860 * If creating a top-level vdev, check for allocation 861 * classes input. 862 */ 863 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 864 &bias) == 0) { 865 alloc_bias = vdev_derive_alloc_bias(bias); 866 867 /* spa_vdev_add() expects feature to be enabled */ 868 if (spa->spa_load_state != SPA_LOAD_CREATE && 869 !spa_feature_is_enabled(spa, 870 SPA_FEATURE_ALLOCATION_CLASSES)) { 871 return (SET_ERROR(ENOTSUP)); 872 } 873 } 874 875 /* spa_vdev_add() expects feature to be enabled */ 876 if (ops == &vdev_draid_ops && 877 spa->spa_load_state != SPA_LOAD_CREATE && 878 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) { 879 return (SET_ERROR(ENOTSUP)); 880 } 881 } 882 883 /* 884 * Initialize the vdev specific data. This is done before calling 885 * vdev_alloc_common() since it may fail and this simplifies the 886 * error reporting and cleanup code paths. 887 */ 888 void *tsd = NULL; 889 if (ops->vdev_op_init != NULL) { 890 rc = ops->vdev_op_init(spa, nv, &tsd); 891 if (rc != 0) { 892 return (rc); 893 } 894 } 895 896 vd = vdev_alloc_common(spa, id, guid, ops); 897 vd->vdev_tsd = tsd; 898 vd->vdev_islog = islog; 899 900 if (top_level && alloc_bias != VDEV_BIAS_NONE) 901 vd->vdev_alloc_bias = alloc_bias; 902 903 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0) 904 vd->vdev_path = spa_strdup(tmp); 905 906 /* 907 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a 908 * fault on a vdev and want it to persist across imports (like with 909 * zpool offline -f). 910 */ 911 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp); 912 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) { 913 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 914 vd->vdev_faulted = 1; 915 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 916 } 917 918 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0) 919 vd->vdev_devid = spa_strdup(tmp); 920 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0) 921 vd->vdev_physpath = spa_strdup(tmp); 922 923 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 924 &tmp) == 0) 925 vd->vdev_enc_sysfs_path = spa_strdup(tmp); 926 927 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0) 928 vd->vdev_fru = spa_strdup(tmp); 929 930 /* 931 * Set the whole_disk property. If it's not specified, leave the value 932 * as -1. 933 */ 934 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 935 &vd->vdev_wholedisk) != 0) 936 vd->vdev_wholedisk = -1ULL; 937 938 vic = &vd->vdev_indirect_config; 939 940 ASSERT0(vic->vic_mapping_object); 941 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 942 &vic->vic_mapping_object); 943 ASSERT0(vic->vic_births_object); 944 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 945 &vic->vic_births_object); 946 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); 947 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 948 &vic->vic_prev_indirect_vdev); 949 950 /* 951 * Look for the 'not present' flag. This will only be set if the device 952 * was not present at the time of import. 953 */ 954 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 955 &vd->vdev_not_present); 956 957 /* 958 * Get the alignment requirement. Ignore pool ashift for vdev 959 * attach case. 960 */ 961 if (alloctype != VDEV_ALLOC_ATTACH) { 962 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, 963 &vd->vdev_ashift); 964 } else { 965 vd->vdev_attaching = B_TRUE; 966 } 967 968 /* 969 * Retrieve the vdev creation time. 970 */ 971 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 972 &vd->vdev_crtxg); 973 974 if (vd->vdev_ops == &vdev_root_ops && 975 (alloctype == VDEV_ALLOC_LOAD || 976 alloctype == VDEV_ALLOC_SPLIT || 977 alloctype == VDEV_ALLOC_ROOTPOOL)) { 978 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP, 979 &vd->vdev_root_zap); 980 } 981 982 /* 983 * If we're a top-level vdev, try to load the allocation parameters. 984 */ 985 if (top_level && 986 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 987 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 988 &vd->vdev_ms_array); 989 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 990 &vd->vdev_ms_shift); 991 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 992 &vd->vdev_asize); 993 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING, 994 &vd->vdev_noalloc); 995 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 996 &vd->vdev_removing); 997 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 998 &vd->vdev_top_zap); 999 vd->vdev_rz_expanding = nvlist_exists(nv, 1000 ZPOOL_CONFIG_RAIDZ_EXPANDING); 1001 } else { 1002 ASSERT0(vd->vdev_top_zap); 1003 } 1004 1005 if (top_level && alloctype != VDEV_ALLOC_ATTACH) { 1006 ASSERT(alloctype == VDEV_ALLOC_LOAD || 1007 alloctype == VDEV_ALLOC_ADD || 1008 alloctype == VDEV_ALLOC_SPLIT || 1009 alloctype == VDEV_ALLOC_ROOTPOOL); 1010 /* Note: metaslab_group_create() is now deferred */ 1011 } 1012 1013 if (vd->vdev_ops->vdev_op_leaf && 1014 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 1015 (void) nvlist_lookup_uint64(nv, 1016 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 1017 } else { 1018 ASSERT0(vd->vdev_leaf_zap); 1019 } 1020 1021 /* 1022 * If we're a leaf vdev, try to load the DTL object and other state. 1023 */ 1024 1025 if (vd->vdev_ops->vdev_op_leaf && 1026 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 1027 alloctype == VDEV_ALLOC_ROOTPOOL)) { 1028 if (alloctype == VDEV_ALLOC_LOAD) { 1029 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 1030 &vd->vdev_dtl_object); 1031 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 1032 &vd->vdev_unspare); 1033 } 1034 1035 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 1036 uint64_t spare = 0; 1037 1038 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1039 &spare) == 0 && spare) 1040 spa_spare_add(vd); 1041 } 1042 1043 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 1044 &vd->vdev_offline); 1045 1046 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 1047 &vd->vdev_resilver_txg); 1048 1049 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 1050 &vd->vdev_rebuild_txg); 1051 1052 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER)) 1053 vdev_defer_resilver(vd); 1054 1055 /* 1056 * In general, when importing a pool we want to ignore the 1057 * persistent fault state, as the diagnosis made on another 1058 * system may not be valid in the current context. The only 1059 * exception is if we forced a vdev to a persistently faulted 1060 * state with 'zpool offline -f'. The persistent fault will 1061 * remain across imports until cleared. 1062 * 1063 * Local vdevs will remain in the faulted state. 1064 */ 1065 if (spa_load_state(spa) == SPA_LOAD_OPEN || 1066 spa_load_state(spa) == SPA_LOAD_IMPORT) { 1067 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 1068 &vd->vdev_faulted); 1069 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 1070 &vd->vdev_degraded); 1071 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 1072 &vd->vdev_removed); 1073 1074 if (vd->vdev_faulted || vd->vdev_degraded) { 1075 const char *aux; 1076 1077 vd->vdev_label_aux = 1078 VDEV_AUX_ERR_EXCEEDED; 1079 if (nvlist_lookup_string(nv, 1080 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 1081 strcmp(aux, "external") == 0) 1082 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 1083 else 1084 vd->vdev_faulted = 0ULL; 1085 } 1086 } 1087 } 1088 1089 /* 1090 * Add ourselves to the parent's list of children. 1091 */ 1092 vdev_add_child(parent, vd); 1093 1094 *vdp = vd; 1095 1096 return (0); 1097 } 1098 1099 void 1100 vdev_free(vdev_t *vd) 1101 { 1102 spa_t *spa = vd->vdev_spa; 1103 1104 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 1105 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1106 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); 1107 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL); 1108 1109 /* 1110 * Scan queues are normally destroyed at the end of a scan. If the 1111 * queue exists here, that implies the vdev is being removed while 1112 * the scan is still running. 1113 */ 1114 if (vd->vdev_scan_io_queue != NULL) { 1115 mutex_enter(&vd->vdev_scan_io_queue_lock); 1116 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue); 1117 vd->vdev_scan_io_queue = NULL; 1118 mutex_exit(&vd->vdev_scan_io_queue_lock); 1119 } 1120 1121 /* 1122 * vdev_free() implies closing the vdev first. This is simpler than 1123 * trying to ensure complicated semantics for all callers. 1124 */ 1125 vdev_close(vd); 1126 1127 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 1128 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 1129 1130 /* 1131 * Free all children. 1132 */ 1133 for (int c = 0; c < vd->vdev_children; c++) 1134 vdev_free(vd->vdev_child[c]); 1135 1136 ASSERT(vd->vdev_child == NULL); 1137 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 1138 1139 if (vd->vdev_ops->vdev_op_fini != NULL) 1140 vd->vdev_ops->vdev_op_fini(vd); 1141 1142 /* 1143 * Discard allocation state. 1144 */ 1145 if (vd->vdev_mg != NULL) { 1146 vdev_metaslab_fini(vd); 1147 metaslab_group_destroy(vd->vdev_mg); 1148 vd->vdev_mg = NULL; 1149 } 1150 if (vd->vdev_log_mg != NULL) { 1151 ASSERT0(vd->vdev_ms_count); 1152 metaslab_group_destroy(vd->vdev_log_mg); 1153 vd->vdev_log_mg = NULL; 1154 } 1155 1156 ASSERT0(vd->vdev_stat.vs_space); 1157 ASSERT0(vd->vdev_stat.vs_dspace); 1158 ASSERT0(vd->vdev_stat.vs_alloc); 1159 1160 /* 1161 * Remove this vdev from its parent's child list. 1162 */ 1163 vdev_remove_child(vd->vdev_parent, vd); 1164 1165 ASSERT(vd->vdev_parent == NULL); 1166 ASSERT(!list_link_active(&vd->vdev_leaf_node)); 1167 1168 /* 1169 * Clean up vdev structure. 1170 */ 1171 vdev_queue_fini(vd); 1172 1173 if (vd->vdev_path) 1174 spa_strfree(vd->vdev_path); 1175 if (vd->vdev_devid) 1176 spa_strfree(vd->vdev_devid); 1177 if (vd->vdev_physpath) 1178 spa_strfree(vd->vdev_physpath); 1179 1180 if (vd->vdev_enc_sysfs_path) 1181 spa_strfree(vd->vdev_enc_sysfs_path); 1182 1183 if (vd->vdev_fru) 1184 spa_strfree(vd->vdev_fru); 1185 1186 if (vd->vdev_isspare) 1187 spa_spare_remove(vd); 1188 if (vd->vdev_isl2cache) 1189 spa_l2cache_remove(vd); 1190 1191 txg_list_destroy(&vd->vdev_ms_list); 1192 txg_list_destroy(&vd->vdev_dtl_list); 1193 1194 mutex_enter(&vd->vdev_dtl_lock); 1195 space_map_close(vd->vdev_dtl_sm); 1196 for (int t = 0; t < DTL_TYPES; t++) { 1197 zfs_range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 1198 zfs_range_tree_destroy(vd->vdev_dtl[t]); 1199 } 1200 mutex_exit(&vd->vdev_dtl_lock); 1201 1202 EQUIV(vd->vdev_indirect_births != NULL, 1203 vd->vdev_indirect_mapping != NULL); 1204 if (vd->vdev_indirect_births != NULL) { 1205 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 1206 vdev_indirect_births_close(vd->vdev_indirect_births); 1207 } 1208 1209 if (vd->vdev_obsolete_sm != NULL) { 1210 ASSERT(vd->vdev_removing || 1211 vd->vdev_ops == &vdev_indirect_ops); 1212 space_map_close(vd->vdev_obsolete_sm); 1213 vd->vdev_obsolete_sm = NULL; 1214 } 1215 zfs_range_tree_destroy(vd->vdev_obsolete_segments); 1216 rw_destroy(&vd->vdev_indirect_rwlock); 1217 mutex_destroy(&vd->vdev_obsolete_lock); 1218 1219 mutex_destroy(&vd->vdev_dtl_lock); 1220 mutex_destroy(&vd->vdev_stat_lock); 1221 mutex_destroy(&vd->vdev_probe_lock); 1222 mutex_destroy(&vd->vdev_scan_io_queue_lock); 1223 1224 mutex_destroy(&vd->vdev_initialize_lock); 1225 mutex_destroy(&vd->vdev_initialize_io_lock); 1226 cv_destroy(&vd->vdev_initialize_io_cv); 1227 cv_destroy(&vd->vdev_initialize_cv); 1228 1229 mutex_destroy(&vd->vdev_trim_lock); 1230 mutex_destroy(&vd->vdev_autotrim_lock); 1231 mutex_destroy(&vd->vdev_trim_io_lock); 1232 cv_destroy(&vd->vdev_trim_cv); 1233 cv_destroy(&vd->vdev_autotrim_cv); 1234 cv_destroy(&vd->vdev_autotrim_kick_cv); 1235 cv_destroy(&vd->vdev_trim_io_cv); 1236 1237 mutex_destroy(&vd->vdev_rebuild_lock); 1238 cv_destroy(&vd->vdev_rebuild_cv); 1239 1240 zfs_ratelimit_fini(&vd->vdev_delay_rl); 1241 zfs_ratelimit_fini(&vd->vdev_deadman_rl); 1242 zfs_ratelimit_fini(&vd->vdev_dio_verify_rl); 1243 zfs_ratelimit_fini(&vd->vdev_checksum_rl); 1244 1245 if (vd == spa->spa_root_vdev) 1246 spa->spa_root_vdev = NULL; 1247 1248 kmem_free(vd, sizeof (vdev_t)); 1249 } 1250 1251 /* 1252 * Transfer top-level vdev state from svd to tvd. 1253 */ 1254 static void 1255 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 1256 { 1257 spa_t *spa = svd->vdev_spa; 1258 metaslab_t *msp; 1259 vdev_t *vd; 1260 int t; 1261 1262 ASSERT(tvd == tvd->vdev_top); 1263 1264 tvd->vdev_ms_array = svd->vdev_ms_array; 1265 tvd->vdev_ms_shift = svd->vdev_ms_shift; 1266 tvd->vdev_ms_count = svd->vdev_ms_count; 1267 tvd->vdev_top_zap = svd->vdev_top_zap; 1268 1269 svd->vdev_ms_array = 0; 1270 svd->vdev_ms_shift = 0; 1271 svd->vdev_ms_count = 0; 1272 svd->vdev_top_zap = 0; 1273 1274 if (tvd->vdev_mg) 1275 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 1276 if (tvd->vdev_log_mg) 1277 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg); 1278 tvd->vdev_mg = svd->vdev_mg; 1279 tvd->vdev_log_mg = svd->vdev_log_mg; 1280 tvd->vdev_ms = svd->vdev_ms; 1281 1282 svd->vdev_mg = NULL; 1283 svd->vdev_log_mg = NULL; 1284 svd->vdev_ms = NULL; 1285 1286 if (tvd->vdev_mg != NULL) 1287 tvd->vdev_mg->mg_vd = tvd; 1288 if (tvd->vdev_log_mg != NULL) 1289 tvd->vdev_log_mg->mg_vd = tvd; 1290 1291 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; 1292 svd->vdev_checkpoint_sm = NULL; 1293 1294 tvd->vdev_alloc_bias = svd->vdev_alloc_bias; 1295 svd->vdev_alloc_bias = VDEV_BIAS_NONE; 1296 1297 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 1298 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 1299 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 1300 1301 svd->vdev_stat.vs_alloc = 0; 1302 svd->vdev_stat.vs_space = 0; 1303 svd->vdev_stat.vs_dspace = 0; 1304 1305 /* 1306 * State which may be set on a top-level vdev that's in the 1307 * process of being removed. 1308 */ 1309 ASSERT0(tvd->vdev_indirect_config.vic_births_object); 1310 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); 1311 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); 1312 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL); 1313 ASSERT3P(tvd->vdev_indirect_births, ==, NULL); 1314 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL); 1315 ASSERT0(tvd->vdev_noalloc); 1316 ASSERT0(tvd->vdev_removing); 1317 ASSERT0(tvd->vdev_rebuilding); 1318 tvd->vdev_noalloc = svd->vdev_noalloc; 1319 tvd->vdev_removing = svd->vdev_removing; 1320 tvd->vdev_rebuilding = svd->vdev_rebuilding; 1321 tvd->vdev_rebuild_config = svd->vdev_rebuild_config; 1322 tvd->vdev_indirect_config = svd->vdev_indirect_config; 1323 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; 1324 tvd->vdev_indirect_births = svd->vdev_indirect_births; 1325 zfs_range_tree_swap(&svd->vdev_obsolete_segments, 1326 &tvd->vdev_obsolete_segments); 1327 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; 1328 svd->vdev_indirect_config.vic_mapping_object = 0; 1329 svd->vdev_indirect_config.vic_births_object = 0; 1330 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; 1331 svd->vdev_indirect_mapping = NULL; 1332 svd->vdev_indirect_births = NULL; 1333 svd->vdev_obsolete_sm = NULL; 1334 svd->vdev_noalloc = 0; 1335 svd->vdev_removing = 0; 1336 svd->vdev_rebuilding = 0; 1337 1338 for (t = 0; t < TXG_SIZE; t++) { 1339 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 1340 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 1341 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 1342 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 1343 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 1344 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 1345 } 1346 1347 if (list_link_active(&svd->vdev_config_dirty_node)) { 1348 vdev_config_clean(svd); 1349 vdev_config_dirty(tvd); 1350 } 1351 1352 if (list_link_active(&svd->vdev_state_dirty_node)) { 1353 vdev_state_clean(svd); 1354 vdev_state_dirty(tvd); 1355 } 1356 1357 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 1358 svd->vdev_deflate_ratio = 0; 1359 1360 tvd->vdev_islog = svd->vdev_islog; 1361 svd->vdev_islog = 0; 1362 1363 dsl_scan_io_queue_vdev_xfer(svd, tvd); 1364 } 1365 1366 static void 1367 vdev_top_update(vdev_t *tvd, vdev_t *vd) 1368 { 1369 if (vd == NULL) 1370 return; 1371 1372 vd->vdev_top = tvd; 1373 1374 for (int c = 0; c < vd->vdev_children; c++) 1375 vdev_top_update(tvd, vd->vdev_child[c]); 1376 } 1377 1378 /* 1379 * Add a mirror/replacing vdev above an existing vdev. There is no need to 1380 * call .vdev_op_init() since mirror/replacing vdevs do not have private state. 1381 */ 1382 vdev_t * 1383 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 1384 { 1385 spa_t *spa = cvd->vdev_spa; 1386 vdev_t *pvd = cvd->vdev_parent; 1387 vdev_t *mvd; 1388 1389 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1390 1391 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 1392 1393 mvd->vdev_asize = cvd->vdev_asize; 1394 mvd->vdev_min_asize = cvd->vdev_min_asize; 1395 mvd->vdev_max_asize = cvd->vdev_max_asize; 1396 mvd->vdev_psize = cvd->vdev_psize; 1397 mvd->vdev_ashift = cvd->vdev_ashift; 1398 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift; 1399 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift; 1400 mvd->vdev_state = cvd->vdev_state; 1401 mvd->vdev_crtxg = cvd->vdev_crtxg; 1402 mvd->vdev_nonrot = cvd->vdev_nonrot; 1403 1404 vdev_remove_child(pvd, cvd); 1405 vdev_add_child(pvd, mvd); 1406 cvd->vdev_id = mvd->vdev_children; 1407 vdev_add_child(mvd, cvd); 1408 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1409 1410 if (mvd == mvd->vdev_top) 1411 vdev_top_transfer(cvd, mvd); 1412 1413 return (mvd); 1414 } 1415 1416 /* 1417 * Remove a 1-way mirror/replacing vdev from the tree. 1418 */ 1419 void 1420 vdev_remove_parent(vdev_t *cvd) 1421 { 1422 vdev_t *mvd = cvd->vdev_parent; 1423 vdev_t *pvd = mvd->vdev_parent; 1424 1425 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1426 1427 ASSERT(mvd->vdev_children == 1); 1428 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 1429 mvd->vdev_ops == &vdev_replacing_ops || 1430 mvd->vdev_ops == &vdev_spare_ops); 1431 cvd->vdev_ashift = mvd->vdev_ashift; 1432 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift; 1433 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift; 1434 vdev_remove_child(mvd, cvd); 1435 vdev_remove_child(pvd, mvd); 1436 1437 /* 1438 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 1439 * Otherwise, we could have detached an offline device, and when we 1440 * go to import the pool we'll think we have two top-level vdevs, 1441 * instead of a different version of the same top-level vdev. 1442 */ 1443 if (mvd->vdev_top == mvd) { 1444 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 1445 cvd->vdev_orig_guid = cvd->vdev_guid; 1446 cvd->vdev_guid += guid_delta; 1447 cvd->vdev_guid_sum += guid_delta; 1448 1449 /* 1450 * If pool not set for autoexpand, we need to also preserve 1451 * mvd's asize to prevent automatic expansion of cvd. 1452 * Otherwise if we are adjusting the mirror by attaching and 1453 * detaching children of non-uniform sizes, the mirror could 1454 * autoexpand, unexpectedly requiring larger devices to 1455 * re-establish the mirror. 1456 */ 1457 if (!cvd->vdev_spa->spa_autoexpand) 1458 cvd->vdev_asize = mvd->vdev_asize; 1459 } 1460 cvd->vdev_id = mvd->vdev_id; 1461 vdev_add_child(pvd, cvd); 1462 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1463 1464 if (cvd == cvd->vdev_top) 1465 vdev_top_transfer(mvd, cvd); 1466 1467 ASSERT(mvd->vdev_children == 0); 1468 vdev_free(mvd); 1469 } 1470 1471 /* 1472 * Choose GCD for spa_gcd_alloc. 1473 */ 1474 static uint64_t 1475 vdev_gcd(uint64_t a, uint64_t b) 1476 { 1477 while (b != 0) { 1478 uint64_t t = b; 1479 b = a % b; 1480 a = t; 1481 } 1482 return (a); 1483 } 1484 1485 /* 1486 * Set spa_min_alloc and spa_gcd_alloc. 1487 */ 1488 static void 1489 vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc) 1490 { 1491 if (min_alloc < spa->spa_min_alloc) 1492 spa->spa_min_alloc = min_alloc; 1493 if (spa->spa_gcd_alloc == INT_MAX) { 1494 spa->spa_gcd_alloc = min_alloc; 1495 } else { 1496 spa->spa_gcd_alloc = vdev_gcd(min_alloc, 1497 spa->spa_gcd_alloc); 1498 } 1499 } 1500 1501 void 1502 vdev_metaslab_group_create(vdev_t *vd) 1503 { 1504 spa_t *spa = vd->vdev_spa; 1505 1506 /* 1507 * metaslab_group_create was delayed until allocation bias was available 1508 */ 1509 if (vd->vdev_mg == NULL) { 1510 metaslab_class_t *mc; 1511 1512 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE) 1513 vd->vdev_alloc_bias = VDEV_BIAS_LOG; 1514 1515 ASSERT3U(vd->vdev_islog, ==, 1516 (vd->vdev_alloc_bias == VDEV_BIAS_LOG)); 1517 1518 switch (vd->vdev_alloc_bias) { 1519 case VDEV_BIAS_LOG: 1520 mc = spa_log_class(spa); 1521 break; 1522 case VDEV_BIAS_SPECIAL: 1523 mc = spa_special_class(spa); 1524 break; 1525 case VDEV_BIAS_DEDUP: 1526 mc = spa_dedup_class(spa); 1527 break; 1528 default: 1529 mc = spa_normal_class(spa); 1530 } 1531 1532 vd->vdev_mg = metaslab_group_create(mc, vd); 1533 1534 if (!vd->vdev_islog) { 1535 if (mc == spa_special_class(spa)) { 1536 vd->vdev_log_mg = metaslab_group_create( 1537 spa_special_embedded_log_class(spa), vd); 1538 } else { 1539 vd->vdev_log_mg = metaslab_group_create( 1540 spa_embedded_log_class(spa), vd); 1541 } 1542 } 1543 1544 /* 1545 * The spa ashift min/max only apply for the normal metaslab 1546 * class. Class destination is late binding so ashift boundary 1547 * setting had to wait until now. 1548 */ 1549 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1550 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) { 1551 if (vd->vdev_ashift > spa->spa_max_ashift) 1552 spa->spa_max_ashift = vd->vdev_ashift; 1553 if (vd->vdev_ashift < spa->spa_min_ashift) 1554 spa->spa_min_ashift = vd->vdev_ashift; 1555 1556 uint64_t min_alloc = vdev_get_min_alloc(vd); 1557 vdev_spa_set_alloc(spa, min_alloc); 1558 } 1559 } 1560 } 1561 1562 void 1563 vdev_update_nonallocating_space(vdev_t *vd, boolean_t add) 1564 { 1565 spa_t *spa = vd->vdev_spa; 1566 1567 if (vd->vdev_mg->mg_class != spa_normal_class(spa)) 1568 return; 1569 1570 uint64_t raw_space = metaslab_group_get_space(vd->vdev_mg); 1571 uint64_t dspace = spa_deflate(spa) ? 1572 vdev_deflated_space(vd, raw_space) : raw_space; 1573 if (add) { 1574 spa->spa_nonallocating_dspace += dspace; 1575 } else { 1576 ASSERT3U(spa->spa_nonallocating_dspace, >=, dspace); 1577 spa->spa_nonallocating_dspace -= dspace; 1578 } 1579 } 1580 1581 int 1582 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 1583 { 1584 spa_t *spa = vd->vdev_spa; 1585 uint64_t oldc = vd->vdev_ms_count; 1586 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 1587 metaslab_t **mspp; 1588 int error; 1589 boolean_t expanding = (oldc != 0); 1590 1591 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1592 1593 /* 1594 * This vdev is not being allocated from yet or is a hole. 1595 */ 1596 if (vd->vdev_ms_shift == 0) 1597 return (0); 1598 1599 ASSERT(!vd->vdev_ishole); 1600 1601 ASSERT(oldc <= newc); 1602 1603 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 1604 1605 if (expanding) { 1606 memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp)); 1607 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 1608 } 1609 1610 vd->vdev_ms = mspp; 1611 vd->vdev_ms_count = newc; 1612 1613 /* 1614 * Weighting algorithms can depend on the number of metaslabs in the 1615 * vdev. In order to ensure that all weights are correct at all times, 1616 * we need to recalculate here. 1617 */ 1618 for (uint64_t m = 0; m < oldc; m++) { 1619 metaslab_t *msp = vd->vdev_ms[m]; 1620 mutex_enter(&msp->ms_lock); 1621 metaslab_recalculate_weight_and_sort(msp); 1622 mutex_exit(&msp->ms_lock); 1623 } 1624 1625 for (uint64_t m = oldc; m < newc; m++) { 1626 uint64_t object = 0; 1627 /* 1628 * vdev_ms_array may be 0 if we are creating the "fake" 1629 * metaslabs for an indirect vdev for zdb's leak detection. 1630 * See zdb_leak_init(). 1631 */ 1632 if (txg == 0 && vd->vdev_ms_array != 0) { 1633 error = dmu_read(spa->spa_meta_objset, 1634 vd->vdev_ms_array, 1635 m * sizeof (uint64_t), sizeof (uint64_t), &object, 1636 DMU_READ_PREFETCH); 1637 if (error != 0) { 1638 vdev_dbgmsg(vd, "unable to read the metaslab " 1639 "array [error=%d]", error); 1640 return (error); 1641 } 1642 } 1643 1644 error = metaslab_init(vd->vdev_mg, m, object, txg, 1645 &(vd->vdev_ms[m])); 1646 if (error != 0) { 1647 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", 1648 error); 1649 return (error); 1650 } 1651 } 1652 1653 /* 1654 * Find the emptiest metaslab on the vdev and mark it for use for 1655 * embedded slog by moving it from the regular to the log metaslab 1656 * group. This works for normal and special vdevs. 1657 */ 1658 if ((vd->vdev_mg->mg_class == spa_normal_class(spa) || 1659 vd->vdev_mg->mg_class == spa_special_class(spa)) && 1660 vd->vdev_ms_count > zfs_embedded_slog_min_ms && 1661 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) { 1662 uint64_t slog_msid = 0; 1663 uint64_t smallest = UINT64_MAX; 1664 1665 /* 1666 * Note, we only search the new metaslabs, because the old 1667 * (pre-existing) ones may be active (e.g. have non-empty 1668 * range_tree's), and we don't move them to the new 1669 * metaslab_t. 1670 */ 1671 for (uint64_t m = oldc; m < newc; m++) { 1672 uint64_t alloc = 1673 space_map_allocated(vd->vdev_ms[m]->ms_sm); 1674 if (alloc < smallest) { 1675 slog_msid = m; 1676 smallest = alloc; 1677 } 1678 } 1679 metaslab_t *slog_ms = vd->vdev_ms[slog_msid]; 1680 /* 1681 * The metaslab was marked as dirty at the end of 1682 * metaslab_init(). Remove it from the dirty list so that we 1683 * can uninitialize and reinitialize it to the new class. 1684 */ 1685 if (txg != 0) { 1686 (void) txg_list_remove_this(&vd->vdev_ms_list, 1687 slog_ms, txg); 1688 } 1689 uint64_t sm_obj = space_map_object(slog_ms->ms_sm); 1690 metaslab_fini(slog_ms); 1691 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg, 1692 &vd->vdev_ms[slog_msid])); 1693 } 1694 1695 if (txg == 0) 1696 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 1697 1698 /* 1699 * If the vdev is marked as non-allocating then don't 1700 * activate the metaslabs since we want to ensure that 1701 * no allocations are performed on this device. 1702 */ 1703 if (vd->vdev_noalloc) { 1704 /* track non-allocating vdev space */ 1705 vdev_update_nonallocating_space(vd, B_TRUE); 1706 } else if (!expanding) { 1707 metaslab_group_activate(vd->vdev_mg); 1708 if (vd->vdev_log_mg != NULL) 1709 metaslab_group_activate(vd->vdev_log_mg); 1710 } 1711 1712 if (txg == 0) 1713 spa_config_exit(spa, SCL_ALLOC, FTAG); 1714 1715 return (0); 1716 } 1717 1718 void 1719 vdev_metaslab_fini(vdev_t *vd) 1720 { 1721 if (vd->vdev_checkpoint_sm != NULL) { 1722 ASSERT(spa_feature_is_active(vd->vdev_spa, 1723 SPA_FEATURE_POOL_CHECKPOINT)); 1724 space_map_close(vd->vdev_checkpoint_sm); 1725 /* 1726 * Even though we close the space map, we need to set its 1727 * pointer to NULL. The reason is that vdev_metaslab_fini() 1728 * may be called multiple times for certain operations 1729 * (i.e. when destroying a pool) so we need to ensure that 1730 * this clause never executes twice. This logic is similar 1731 * to the one used for the vdev_ms clause below. 1732 */ 1733 vd->vdev_checkpoint_sm = NULL; 1734 } 1735 1736 if (vd->vdev_ms != NULL) { 1737 metaslab_group_t *mg = vd->vdev_mg; 1738 1739 metaslab_group_passivate(mg); 1740 if (vd->vdev_log_mg != NULL) { 1741 ASSERT(!vd->vdev_islog); 1742 metaslab_group_passivate(vd->vdev_log_mg); 1743 } 1744 1745 uint64_t count = vd->vdev_ms_count; 1746 for (uint64_t m = 0; m < count; m++) { 1747 metaslab_t *msp = vd->vdev_ms[m]; 1748 if (msp != NULL) 1749 metaslab_fini(msp); 1750 } 1751 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1752 vd->vdev_ms = NULL; 1753 vd->vdev_ms_count = 0; 1754 1755 for (int i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) { 1756 ASSERT0(mg->mg_histogram[i]); 1757 if (vd->vdev_log_mg != NULL) 1758 ASSERT0(vd->vdev_log_mg->mg_histogram[i]); 1759 } 1760 } 1761 ASSERT0(vd->vdev_ms_count); 1762 } 1763 1764 typedef struct vdev_probe_stats { 1765 boolean_t vps_readable; 1766 boolean_t vps_writeable; 1767 boolean_t vps_zio_done_probe; 1768 int vps_flags; 1769 } vdev_probe_stats_t; 1770 1771 static void 1772 vdev_probe_done(zio_t *zio) 1773 { 1774 spa_t *spa = zio->io_spa; 1775 vdev_t *vd = zio->io_vd; 1776 vdev_probe_stats_t *vps = zio->io_private; 1777 1778 ASSERT(vd->vdev_probe_zio != NULL); 1779 1780 if (zio->io_type == ZIO_TYPE_READ) { 1781 if (zio->io_error == 0) 1782 vps->vps_readable = 1; 1783 if (zio->io_error == 0 && spa_writeable(spa)) { 1784 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1785 zio->io_offset, zio->io_size, zio->io_abd, 1786 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1787 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1788 } else { 1789 abd_free(zio->io_abd); 1790 } 1791 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1792 if (zio->io_error == 0) 1793 vps->vps_writeable = 1; 1794 abd_free(zio->io_abd); 1795 } else if (zio->io_type == ZIO_TYPE_NULL) { 1796 zio_t *pio; 1797 zio_link_t *zl; 1798 1799 vd->vdev_cant_read |= !vps->vps_readable; 1800 vd->vdev_cant_write |= !vps->vps_writeable; 1801 vdev_dbgmsg(vd, "probe done, cant_read=%u cant_write=%u", 1802 vd->vdev_cant_read, vd->vdev_cant_write); 1803 1804 if (vdev_readable(vd) && 1805 (vdev_writeable(vd) || !spa_writeable(spa))) { 1806 zio->io_error = 0; 1807 } else { 1808 ASSERT(zio->io_error != 0); 1809 vdev_dbgmsg(vd, "failed probe"); 1810 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1811 spa, vd, NULL, NULL, 0); 1812 zio->io_error = SET_ERROR(ENXIO); 1813 1814 /* 1815 * If this probe was initiated from zio pipeline, then 1816 * change the state in a spa_async_request. Probes that 1817 * were initiated from a vdev_open can change the state 1818 * as part of the open call. 1819 * Skip fault injection if this vdev is already removed 1820 * or a removal is pending. 1821 */ 1822 if (vps->vps_zio_done_probe && 1823 !vd->vdev_remove_wanted && !vd->vdev_removed) { 1824 vd->vdev_fault_wanted = B_TRUE; 1825 spa_async_request(spa, SPA_ASYNC_FAULT_VDEV); 1826 } 1827 } 1828 1829 mutex_enter(&vd->vdev_probe_lock); 1830 ASSERT(vd->vdev_probe_zio == zio); 1831 vd->vdev_probe_zio = NULL; 1832 mutex_exit(&vd->vdev_probe_lock); 1833 1834 zl = NULL; 1835 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1836 if (!vdev_accessible(vd, pio)) 1837 pio->io_error = SET_ERROR(ENXIO); 1838 1839 kmem_free(vps, sizeof (*vps)); 1840 } 1841 } 1842 1843 /* 1844 * Determine whether this device is accessible. 1845 * 1846 * Read and write to several known locations: the pad regions of each 1847 * vdev label but the first, which we leave alone in case it contains 1848 * a VTOC. 1849 */ 1850 zio_t * 1851 vdev_probe(vdev_t *vd, zio_t *zio) 1852 { 1853 spa_t *spa = vd->vdev_spa; 1854 vdev_probe_stats_t *vps = NULL; 1855 zio_t *pio; 1856 1857 ASSERT(vd->vdev_ops->vdev_op_leaf); 1858 1859 /* 1860 * Don't probe the probe. 1861 */ 1862 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1863 return (NULL); 1864 1865 /* 1866 * To prevent 'probe storms' when a device fails, we create 1867 * just one probe i/o at a time. All zios that want to probe 1868 * this vdev will become parents of the probe io. 1869 */ 1870 mutex_enter(&vd->vdev_probe_lock); 1871 1872 if ((pio = vd->vdev_probe_zio) == NULL) { 1873 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1874 1875 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1876 ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD; 1877 vps->vps_zio_done_probe = (zio != NULL); 1878 1879 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1880 /* 1881 * vdev_cant_read and vdev_cant_write can only 1882 * transition from TRUE to FALSE when we have the 1883 * SCL_ZIO lock as writer; otherwise they can only 1884 * transition from FALSE to TRUE. This ensures that 1885 * any zio looking at these values can assume that 1886 * failures persist for the life of the I/O. That's 1887 * important because when a device has intermittent 1888 * connectivity problems, we want to ensure that 1889 * they're ascribed to the device (ENXIO) and not 1890 * the zio (EIO). 1891 * 1892 * Since we hold SCL_ZIO as writer here, clear both 1893 * values so the probe can reevaluate from first 1894 * principles. 1895 */ 1896 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1897 vd->vdev_cant_read = B_FALSE; 1898 vd->vdev_cant_write = B_FALSE; 1899 } 1900 1901 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1902 vdev_probe_done, vps, 1903 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1904 } 1905 1906 if (zio != NULL) 1907 zio_add_child(zio, pio); 1908 1909 mutex_exit(&vd->vdev_probe_lock); 1910 1911 if (vps == NULL) { 1912 ASSERT(zio != NULL); 1913 return (NULL); 1914 } 1915 1916 for (int l = 1; l < VDEV_LABELS; l++) { 1917 zio_nowait(zio_read_phys(pio, vd, 1918 vdev_label_offset(vd->vdev_psize, l, 1919 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE, 1920 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1921 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1922 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1923 } 1924 1925 if (zio == NULL) 1926 return (pio); 1927 1928 zio_nowait(pio); 1929 return (NULL); 1930 } 1931 1932 static void 1933 vdev_load_child(void *arg) 1934 { 1935 vdev_t *vd = arg; 1936 1937 vd->vdev_load_error = vdev_load(vd); 1938 } 1939 1940 static void 1941 vdev_open_child(void *arg) 1942 { 1943 vdev_t *vd = arg; 1944 1945 vd->vdev_open_thread = curthread; 1946 vd->vdev_open_error = vdev_open(vd); 1947 vd->vdev_open_thread = NULL; 1948 } 1949 1950 static boolean_t 1951 vdev_uses_zvols(vdev_t *vd) 1952 { 1953 #ifdef _KERNEL 1954 if (zvol_is_zvol(vd->vdev_path)) 1955 return (B_TRUE); 1956 #endif 1957 1958 for (int c = 0; c < vd->vdev_children; c++) 1959 if (vdev_uses_zvols(vd->vdev_child[c])) 1960 return (B_TRUE); 1961 1962 return (B_FALSE); 1963 } 1964 1965 /* 1966 * Returns B_TRUE if the passed child should be opened. 1967 */ 1968 static boolean_t 1969 vdev_default_open_children_func(vdev_t *vd) 1970 { 1971 (void) vd; 1972 return (B_TRUE); 1973 } 1974 1975 /* 1976 * Open the requested child vdevs. If any of the leaf vdevs are using 1977 * a ZFS volume then do the opens in a single thread. This avoids a 1978 * deadlock when the current thread is holding the spa_namespace_lock. 1979 */ 1980 static void 1981 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func) 1982 { 1983 int children = vd->vdev_children; 1984 1985 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri, 1986 children, children, TASKQ_PREPOPULATE); 1987 vd->vdev_nonrot = B_TRUE; 1988 1989 for (int c = 0; c < children; c++) { 1990 vdev_t *cvd = vd->vdev_child[c]; 1991 1992 if (open_func(cvd) == B_FALSE) 1993 continue; 1994 1995 if (tq == NULL || vdev_uses_zvols(vd)) { 1996 cvd->vdev_open_error = vdev_open(cvd); 1997 } else { 1998 VERIFY(taskq_dispatch(tq, vdev_open_child, 1999 cvd, TQ_SLEEP) != TASKQID_INVALID); 2000 } 2001 } 2002 2003 if (tq != NULL) 2004 taskq_wait(tq); 2005 for (int c = 0; c < children; c++) { 2006 vdev_t *cvd = vd->vdev_child[c]; 2007 2008 if (open_func(cvd) == B_FALSE || 2009 cvd->vdev_state <= VDEV_STATE_FAULTED) 2010 continue; 2011 vd->vdev_nonrot &= cvd->vdev_nonrot; 2012 } 2013 2014 if (tq != NULL) 2015 taskq_destroy(tq); 2016 } 2017 2018 /* 2019 * Open all child vdevs. 2020 */ 2021 void 2022 vdev_open_children(vdev_t *vd) 2023 { 2024 vdev_open_children_impl(vd, vdev_default_open_children_func); 2025 } 2026 2027 /* 2028 * Conditionally open a subset of child vdevs. 2029 */ 2030 void 2031 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func) 2032 { 2033 vdev_open_children_impl(vd, open_func); 2034 } 2035 2036 /* 2037 * Compute the raidz-deflation ratio. Note, we hard-code 128k (1 << 17) 2038 * because it is the "typical" blocksize. Even though SPA_MAXBLOCKSIZE 2039 * changed, this algorithm can not change, otherwise it would inconsistently 2040 * account for existing bp's. We also hard-code txg 0 for the same reason 2041 * since expanded RAIDZ vdevs can use a different asize for different birth 2042 * txg's. 2043 */ 2044 static void 2045 vdev_set_deflate_ratio(vdev_t *vd) 2046 { 2047 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { 2048 vd->vdev_deflate_ratio = (1 << 17) / 2049 (vdev_psize_to_asize_txg(vd, 1 << 17, 0) >> 2050 SPA_MINBLOCKSHIFT); 2051 } 2052 } 2053 2054 /* 2055 * Choose the best of two ashifts, preferring one between logical ashift 2056 * (absolute minimum) and administrator defined maximum, otherwise take 2057 * the biggest of the two. 2058 */ 2059 uint64_t 2060 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b) 2061 { 2062 if (a > logical && a <= zfs_vdev_max_auto_ashift) { 2063 if (b <= logical || b > zfs_vdev_max_auto_ashift) 2064 return (a); 2065 else 2066 return (MAX(a, b)); 2067 } else if (b <= logical || b > zfs_vdev_max_auto_ashift) 2068 return (MAX(a, b)); 2069 return (b); 2070 } 2071 2072 /* 2073 * Maximize performance by inflating the configured ashift for top level 2074 * vdevs to be as close to the physical ashift as possible while maintaining 2075 * administrator defined limits and ensuring it doesn't go below the 2076 * logical ashift. 2077 */ 2078 static void 2079 vdev_ashift_optimize(vdev_t *vd) 2080 { 2081 ASSERT(vd == vd->vdev_top); 2082 2083 if (vd->vdev_ashift < vd->vdev_physical_ashift && 2084 vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) { 2085 vd->vdev_ashift = MIN( 2086 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift), 2087 MAX(zfs_vdev_min_auto_ashift, 2088 vd->vdev_physical_ashift)); 2089 } else { 2090 /* 2091 * If the logical and physical ashifts are the same, then 2092 * we ensure that the top-level vdev's ashift is not smaller 2093 * than our minimum ashift value. For the unusual case 2094 * where logical ashift > physical ashift, we can't cap 2095 * the calculated ashift based on max ashift as that 2096 * would cause failures. 2097 * We still check if we need to increase it to match 2098 * the min ashift. 2099 */ 2100 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift, 2101 vd->vdev_ashift); 2102 } 2103 } 2104 2105 /* 2106 * Prepare a virtual device for access. 2107 */ 2108 int 2109 vdev_open(vdev_t *vd) 2110 { 2111 spa_t *spa = vd->vdev_spa; 2112 int error; 2113 uint64_t osize = 0; 2114 uint64_t max_osize = 0; 2115 uint64_t asize, max_asize, psize; 2116 uint64_t logical_ashift = 0; 2117 uint64_t physical_ashift = 0; 2118 2119 ASSERT(vd->vdev_open_thread == curthread || 2120 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2121 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 2122 vd->vdev_state == VDEV_STATE_CANT_OPEN || 2123 vd->vdev_state == VDEV_STATE_OFFLINE); 2124 2125 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2126 vd->vdev_cant_read = B_FALSE; 2127 vd->vdev_cant_write = B_FALSE; 2128 vd->vdev_fault_wanted = B_FALSE; 2129 vd->vdev_remove_wanted = B_FALSE; 2130 vd->vdev_min_asize = vdev_get_min_asize(vd); 2131 2132 /* 2133 * If this vdev is not removed, check its fault status. If it's 2134 * faulted, bail out of the open. 2135 */ 2136 if (!vd->vdev_removed && vd->vdev_faulted) { 2137 ASSERT(vd->vdev_children == 0); 2138 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 2139 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 2140 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2141 vd->vdev_label_aux); 2142 return (SET_ERROR(ENXIO)); 2143 } else if (vd->vdev_offline) { 2144 ASSERT(vd->vdev_children == 0); 2145 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 2146 return (SET_ERROR(ENXIO)); 2147 } 2148 2149 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, 2150 &logical_ashift, &physical_ashift); 2151 2152 /* Keep the device in removed state if unplugged */ 2153 if (error == ENOENT && vd->vdev_removed) { 2154 vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED, 2155 VDEV_AUX_NONE); 2156 return (error); 2157 } 2158 2159 /* 2160 * Physical volume size should never be larger than its max size, unless 2161 * the disk has shrunk while we were reading it or the device is buggy 2162 * or damaged: either way it's not safe for use, bail out of the open. 2163 */ 2164 if (osize > max_osize) { 2165 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2166 VDEV_AUX_OPEN_FAILED); 2167 return (SET_ERROR(ENXIO)); 2168 } 2169 2170 /* 2171 * Reset the vdev_reopening flag so that we actually close 2172 * the vdev on error. 2173 */ 2174 vd->vdev_reopening = B_FALSE; 2175 if (zio_injection_enabled && error == 0) 2176 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO)); 2177 2178 if (error) { 2179 if (vd->vdev_removed && 2180 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 2181 vd->vdev_removed = B_FALSE; 2182 2183 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { 2184 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, 2185 vd->vdev_stat.vs_aux); 2186 } else { 2187 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2188 vd->vdev_stat.vs_aux); 2189 } 2190 return (error); 2191 } 2192 2193 vd->vdev_removed = B_FALSE; 2194 2195 /* 2196 * Recheck the faulted flag now that we have confirmed that 2197 * the vdev is accessible. If we're faulted, bail. 2198 */ 2199 if (vd->vdev_faulted) { 2200 ASSERT(vd->vdev_children == 0); 2201 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 2202 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 2203 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2204 vd->vdev_label_aux); 2205 return (SET_ERROR(ENXIO)); 2206 } 2207 2208 if (vd->vdev_degraded) { 2209 ASSERT(vd->vdev_children == 0); 2210 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 2211 VDEV_AUX_ERR_EXCEEDED); 2212 } else { 2213 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 2214 } 2215 2216 /* 2217 * For hole or missing vdevs we just return success. 2218 */ 2219 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 2220 return (0); 2221 2222 for (int c = 0; c < vd->vdev_children; c++) { 2223 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 2224 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 2225 VDEV_AUX_NONE); 2226 break; 2227 } 2228 } 2229 2230 osize = P2ALIGN_TYPED(osize, sizeof (vdev_label_t), uint64_t); 2231 max_osize = P2ALIGN_TYPED(max_osize, sizeof (vdev_label_t), uint64_t); 2232 2233 if (vd->vdev_children == 0) { 2234 if (osize < SPA_MINDEVSIZE) { 2235 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2236 VDEV_AUX_TOO_SMALL); 2237 return (SET_ERROR(EOVERFLOW)); 2238 } 2239 psize = osize; 2240 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 2241 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 2242 VDEV_LABEL_END_SIZE); 2243 } else { 2244 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 2245 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 2246 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2247 VDEV_AUX_TOO_SMALL); 2248 return (SET_ERROR(EOVERFLOW)); 2249 } 2250 psize = 0; 2251 asize = osize; 2252 max_asize = max_osize; 2253 } 2254 2255 /* 2256 * If the vdev was expanded, record this so that we can re-create the 2257 * uberblock rings in labels {2,3}, during the next sync. 2258 */ 2259 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0)) 2260 vd->vdev_copy_uberblocks = B_TRUE; 2261 2262 vd->vdev_psize = psize; 2263 2264 /* 2265 * Make sure the allocatable size hasn't shrunk too much. 2266 */ 2267 if (asize < vd->vdev_min_asize) { 2268 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2269 VDEV_AUX_BAD_LABEL); 2270 return (SET_ERROR(EINVAL)); 2271 } 2272 2273 /* 2274 * We can always set the logical/physical ashift members since 2275 * their values are only used to calculate the vdev_ashift when 2276 * the device is first added to the config. These values should 2277 * not be used for anything else since they may change whenever 2278 * the device is reopened and we don't store them in the label. 2279 */ 2280 vd->vdev_physical_ashift = 2281 MAX(physical_ashift, vd->vdev_physical_ashift); 2282 vd->vdev_logical_ashift = MAX(logical_ashift, 2283 vd->vdev_logical_ashift); 2284 2285 if (vd->vdev_asize == 0) { 2286 /* 2287 * This is the first-ever open, so use the computed values. 2288 * For compatibility, a different ashift can be requested. 2289 */ 2290 vd->vdev_asize = asize; 2291 vd->vdev_max_asize = max_asize; 2292 2293 /* 2294 * If the vdev_ashift was not overridden at creation time 2295 * (0) or the override value is impossible for the device, 2296 * then set it the logical ashift and optimize the ashift. 2297 */ 2298 if (vd->vdev_ashift < vd->vdev_logical_ashift) { 2299 vd->vdev_ashift = vd->vdev_logical_ashift; 2300 2301 if (vd->vdev_logical_ashift > ASHIFT_MAX) { 2302 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2303 VDEV_AUX_ASHIFT_TOO_BIG); 2304 return (SET_ERROR(EDOM)); 2305 } 2306 2307 if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE) 2308 vdev_ashift_optimize(vd); 2309 vd->vdev_attaching = B_FALSE; 2310 } 2311 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN || 2312 vd->vdev_ashift > ASHIFT_MAX)) { 2313 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2314 VDEV_AUX_BAD_ASHIFT); 2315 return (SET_ERROR(EDOM)); 2316 } 2317 } else { 2318 /* 2319 * Make sure the alignment required hasn't increased. 2320 */ 2321 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift && 2322 vd->vdev_ops->vdev_op_leaf) { 2323 (void) zfs_ereport_post( 2324 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT, 2325 spa, vd, NULL, NULL, 0); 2326 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2327 VDEV_AUX_BAD_LABEL); 2328 return (SET_ERROR(EDOM)); 2329 } 2330 vd->vdev_max_asize = max_asize; 2331 } 2332 2333 /* 2334 * If all children are healthy we update asize if either: 2335 * The asize has increased, due to a device expansion caused by dynamic 2336 * LUN growth or vdev replacement, and automatic expansion is enabled; 2337 * making the additional space available. 2338 * 2339 * The asize has decreased, due to a device shrink usually caused by a 2340 * vdev replace with a smaller device. This ensures that calculations 2341 * based of max_asize and asize e.g. esize are always valid. It's safe 2342 * to do this as we've already validated that asize is greater than 2343 * vdev_min_asize. 2344 */ 2345 if (vd->vdev_state == VDEV_STATE_HEALTHY && 2346 ((asize > vd->vdev_asize && 2347 (vd->vdev_expanding || spa->spa_autoexpand)) || 2348 (asize < vd->vdev_asize))) 2349 vd->vdev_asize = asize; 2350 2351 vdev_set_min_asize(vd); 2352 2353 /* 2354 * Ensure we can issue some IO before declaring the 2355 * vdev open for business. 2356 */ 2357 if (vd->vdev_ops->vdev_op_leaf && 2358 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 2359 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2360 VDEV_AUX_ERR_EXCEEDED); 2361 return (error); 2362 } 2363 2364 /* 2365 * Track the minimum allocation size. 2366 */ 2367 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 2368 vd->vdev_islog == 0 && vd->vdev_aux == NULL) { 2369 uint64_t min_alloc = vdev_get_min_alloc(vd); 2370 vdev_spa_set_alloc(spa, min_alloc); 2371 } 2372 2373 /* 2374 * If this is a leaf vdev, assess whether a resilver is needed. 2375 * But don't do this if we are doing a reopen for a scrub, since 2376 * this would just restart the scrub we are already doing. 2377 */ 2378 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen) 2379 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd); 2380 2381 return (0); 2382 } 2383 2384 static void 2385 vdev_validate_child(void *arg) 2386 { 2387 vdev_t *vd = arg; 2388 2389 vd->vdev_validate_thread = curthread; 2390 vd->vdev_validate_error = vdev_validate(vd); 2391 vd->vdev_validate_thread = NULL; 2392 } 2393 2394 /* 2395 * Called once the vdevs are all opened, this routine validates the label 2396 * contents. This needs to be done before vdev_load() so that we don't 2397 * inadvertently do repair I/Os to the wrong device. 2398 * 2399 * This function will only return failure if one of the vdevs indicates that it 2400 * has since been destroyed or exported. This is only possible if 2401 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 2402 * will be updated but the function will return 0. 2403 */ 2404 int 2405 vdev_validate(vdev_t *vd) 2406 { 2407 spa_t *spa = vd->vdev_spa; 2408 taskq_t *tq = NULL; 2409 nvlist_t *label; 2410 uint64_t guid = 0, aux_guid = 0, top_guid; 2411 uint64_t state; 2412 nvlist_t *nvl; 2413 uint64_t txg; 2414 int children = vd->vdev_children; 2415 2416 if (vdev_validate_skip) 2417 return (0); 2418 2419 if (children > 0) { 2420 tq = taskq_create("vdev_validate", children, minclsyspri, 2421 children, children, TASKQ_PREPOPULATE); 2422 } 2423 2424 for (uint64_t c = 0; c < children; c++) { 2425 vdev_t *cvd = vd->vdev_child[c]; 2426 2427 if (tq == NULL || vdev_uses_zvols(cvd)) { 2428 vdev_validate_child(cvd); 2429 } else { 2430 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd, 2431 TQ_SLEEP) != TASKQID_INVALID); 2432 } 2433 } 2434 if (tq != NULL) { 2435 taskq_wait(tq); 2436 taskq_destroy(tq); 2437 } 2438 for (int c = 0; c < children; c++) { 2439 int error = vd->vdev_child[c]->vdev_validate_error; 2440 2441 if (error != 0) 2442 return (SET_ERROR(EBADF)); 2443 } 2444 2445 2446 /* 2447 * If the device has already failed, or was marked offline, don't do 2448 * any further validation. Otherwise, label I/O will fail and we will 2449 * overwrite the previous state. 2450 */ 2451 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) 2452 return (0); 2453 2454 /* 2455 * If we are performing an extreme rewind, we allow for a label that 2456 * was modified at a point after the current txg. 2457 * If config lock is not held do not check for the txg. spa_sync could 2458 * be updating the vdev's label before updating spa_last_synced_txg. 2459 */ 2460 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || 2461 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) 2462 txg = UINT64_MAX; 2463 else 2464 txg = spa_last_synced_txg(spa); 2465 2466 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 2467 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2468 VDEV_AUX_BAD_LABEL); 2469 vdev_dbgmsg(vd, "vdev_validate: failed reading config for " 2470 "txg %llu", (u_longlong_t)txg); 2471 return (0); 2472 } 2473 2474 /* 2475 * Determine if this vdev has been split off into another 2476 * pool. If so, then refuse to open it. 2477 */ 2478 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 2479 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 2480 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2481 VDEV_AUX_SPLIT_POOL); 2482 nvlist_free(label); 2483 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); 2484 return (0); 2485 } 2486 2487 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { 2488 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2489 VDEV_AUX_CORRUPT_DATA); 2490 nvlist_free(label); 2491 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2492 ZPOOL_CONFIG_POOL_GUID); 2493 return (0); 2494 } 2495 2496 /* 2497 * If config is not trusted then ignore the spa guid check. This is 2498 * necessary because if the machine crashed during a re-guid the new 2499 * guid might have been written to all of the vdev labels, but not the 2500 * cached config. The check will be performed again once we have the 2501 * trusted config from the MOS. 2502 */ 2503 if (spa->spa_trust_config && guid != spa_guid(spa)) { 2504 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2505 VDEV_AUX_CORRUPT_DATA); 2506 nvlist_free(label); 2507 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " 2508 "match config (%llu != %llu)", (u_longlong_t)guid, 2509 (u_longlong_t)spa_guid(spa)); 2510 return (0); 2511 } 2512 2513 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 2514 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 2515 &aux_guid) != 0) 2516 aux_guid = 0; 2517 2518 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { 2519 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2520 VDEV_AUX_CORRUPT_DATA); 2521 nvlist_free(label); 2522 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2523 ZPOOL_CONFIG_GUID); 2524 return (0); 2525 } 2526 2527 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) 2528 != 0) { 2529 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2530 VDEV_AUX_CORRUPT_DATA); 2531 nvlist_free(label); 2532 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2533 ZPOOL_CONFIG_TOP_GUID); 2534 return (0); 2535 } 2536 2537 /* 2538 * If this vdev just became a top-level vdev because its sibling was 2539 * detached, it will have adopted the parent's vdev guid -- but the 2540 * label may or may not be on disk yet. Fortunately, either version 2541 * of the label will have the same top guid, so if we're a top-level 2542 * vdev, we can safely compare to that instead. 2543 * However, if the config comes from a cachefile that failed to update 2544 * after the detach, a top-level vdev will appear as a non top-level 2545 * vdev in the config. Also relax the constraints if we perform an 2546 * extreme rewind. 2547 * 2548 * If we split this vdev off instead, then we also check the 2549 * original pool's guid. We don't want to consider the vdev 2550 * corrupt if it is partway through a split operation. 2551 */ 2552 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { 2553 boolean_t mismatch = B_FALSE; 2554 if (spa->spa_trust_config && !spa->spa_extreme_rewind) { 2555 if (vd != vd->vdev_top || vd->vdev_guid != top_guid) 2556 mismatch = B_TRUE; 2557 } else { 2558 if (vd->vdev_guid != top_guid && 2559 vd->vdev_top->vdev_guid != guid) 2560 mismatch = B_TRUE; 2561 } 2562 2563 if (mismatch) { 2564 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2565 VDEV_AUX_CORRUPT_DATA); 2566 nvlist_free(label); 2567 vdev_dbgmsg(vd, "vdev_validate: config guid " 2568 "doesn't match label guid"); 2569 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", 2570 (u_longlong_t)vd->vdev_guid, 2571 (u_longlong_t)vd->vdev_top->vdev_guid); 2572 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " 2573 "aux_guid %llu", (u_longlong_t)guid, 2574 (u_longlong_t)top_guid, (u_longlong_t)aux_guid); 2575 return (0); 2576 } 2577 } 2578 2579 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 2580 &state) != 0) { 2581 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2582 VDEV_AUX_CORRUPT_DATA); 2583 nvlist_free(label); 2584 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2585 ZPOOL_CONFIG_POOL_STATE); 2586 return (0); 2587 } 2588 2589 nvlist_free(label); 2590 2591 /* 2592 * If this is a verbatim import, no need to check the 2593 * state of the pool. 2594 */ 2595 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 2596 spa_load_state(spa) == SPA_LOAD_OPEN && 2597 state != POOL_STATE_ACTIVE) { 2598 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " 2599 "for spa %s", (u_longlong_t)state, spa->spa_name); 2600 return (SET_ERROR(EBADF)); 2601 } 2602 2603 /* 2604 * If we were able to open and validate a vdev that was 2605 * previously marked permanently unavailable, clear that state 2606 * now. 2607 */ 2608 if (vd->vdev_not_present) 2609 vd->vdev_not_present = 0; 2610 2611 return (0); 2612 } 2613 2614 static void 2615 vdev_update_path(const char *prefix, char *svd, char **dvd, uint64_t guid) 2616 { 2617 if (svd != NULL && *dvd != NULL) { 2618 if (strcmp(svd, *dvd) != 0) { 2619 zfs_dbgmsg("vdev_copy_path: vdev %llu: %s changed " 2620 "from '%s' to '%s'", (u_longlong_t)guid, prefix, 2621 *dvd, svd); 2622 spa_strfree(*dvd); 2623 *dvd = spa_strdup(svd); 2624 } 2625 } else if (svd != NULL) { 2626 *dvd = spa_strdup(svd); 2627 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", 2628 (u_longlong_t)guid, *dvd); 2629 } 2630 } 2631 2632 static void 2633 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) 2634 { 2635 char *old, *new; 2636 2637 vdev_update_path("vdev_path", svd->vdev_path, &dvd->vdev_path, 2638 dvd->vdev_guid); 2639 2640 vdev_update_path("vdev_devid", svd->vdev_devid, &dvd->vdev_devid, 2641 dvd->vdev_guid); 2642 2643 vdev_update_path("vdev_physpath", svd->vdev_physpath, 2644 &dvd->vdev_physpath, dvd->vdev_guid); 2645 2646 /* 2647 * Our enclosure sysfs path may have changed between imports 2648 */ 2649 old = dvd->vdev_enc_sysfs_path; 2650 new = svd->vdev_enc_sysfs_path; 2651 if ((old != NULL && new == NULL) || 2652 (old == NULL && new != NULL) || 2653 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) { 2654 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path " 2655 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2656 old, new); 2657 2658 if (dvd->vdev_enc_sysfs_path) 2659 spa_strfree(dvd->vdev_enc_sysfs_path); 2660 2661 if (svd->vdev_enc_sysfs_path) { 2662 dvd->vdev_enc_sysfs_path = spa_strdup( 2663 svd->vdev_enc_sysfs_path); 2664 } else { 2665 dvd->vdev_enc_sysfs_path = NULL; 2666 } 2667 } 2668 } 2669 2670 /* 2671 * Recursively copy vdev paths from one vdev to another. Source and destination 2672 * vdev trees must have same geometry otherwise return error. Intended to copy 2673 * paths from userland config into MOS config. 2674 */ 2675 int 2676 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) 2677 { 2678 if ((svd->vdev_ops == &vdev_missing_ops) || 2679 (svd->vdev_ishole && dvd->vdev_ishole) || 2680 (dvd->vdev_ops == &vdev_indirect_ops)) 2681 return (0); 2682 2683 if (svd->vdev_ops != dvd->vdev_ops) { 2684 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", 2685 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); 2686 return (SET_ERROR(EINVAL)); 2687 } 2688 2689 if (svd->vdev_guid != dvd->vdev_guid) { 2690 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " 2691 "%llu)", (u_longlong_t)svd->vdev_guid, 2692 (u_longlong_t)dvd->vdev_guid); 2693 return (SET_ERROR(EINVAL)); 2694 } 2695 2696 if (svd->vdev_children != dvd->vdev_children) { 2697 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " 2698 "%llu != %llu", (u_longlong_t)svd->vdev_children, 2699 (u_longlong_t)dvd->vdev_children); 2700 return (SET_ERROR(EINVAL)); 2701 } 2702 2703 for (uint64_t i = 0; i < svd->vdev_children; i++) { 2704 int error = vdev_copy_path_strict(svd->vdev_child[i], 2705 dvd->vdev_child[i]); 2706 if (error != 0) 2707 return (error); 2708 } 2709 2710 if (svd->vdev_ops->vdev_op_leaf) 2711 vdev_copy_path_impl(svd, dvd); 2712 2713 return (0); 2714 } 2715 2716 static void 2717 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) 2718 { 2719 ASSERT(stvd->vdev_top == stvd); 2720 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); 2721 2722 for (uint64_t i = 0; i < dvd->vdev_children; i++) { 2723 vdev_copy_path_search(stvd, dvd->vdev_child[i]); 2724 } 2725 2726 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) 2727 return; 2728 2729 /* 2730 * The idea here is that while a vdev can shift positions within 2731 * a top vdev (when replacing, attaching mirror, etc.) it cannot 2732 * step outside of it. 2733 */ 2734 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); 2735 2736 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) 2737 return; 2738 2739 ASSERT(vd->vdev_ops->vdev_op_leaf); 2740 2741 vdev_copy_path_impl(vd, dvd); 2742 } 2743 2744 /* 2745 * Recursively copy vdev paths from one root vdev to another. Source and 2746 * destination vdev trees may differ in geometry. For each destination leaf 2747 * vdev, search a vdev with the same guid and top vdev id in the source. 2748 * Intended to copy paths from userland config into MOS config. 2749 */ 2750 void 2751 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) 2752 { 2753 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); 2754 ASSERT(srvd->vdev_ops == &vdev_root_ops); 2755 ASSERT(drvd->vdev_ops == &vdev_root_ops); 2756 2757 for (uint64_t i = 0; i < children; i++) { 2758 vdev_copy_path_search(srvd->vdev_child[i], 2759 drvd->vdev_child[i]); 2760 } 2761 } 2762 2763 /* 2764 * Close a virtual device. 2765 */ 2766 void 2767 vdev_close(vdev_t *vd) 2768 { 2769 vdev_t *pvd = vd->vdev_parent; 2770 spa_t *spa __maybe_unused = vd->vdev_spa; 2771 2772 ASSERT(vd != NULL); 2773 ASSERT(vd->vdev_open_thread == curthread || 2774 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2775 2776 /* 2777 * If our parent is reopening, then we are as well, unless we are 2778 * going offline. 2779 */ 2780 if (pvd != NULL && pvd->vdev_reopening) 2781 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 2782 2783 vd->vdev_ops->vdev_op_close(vd); 2784 2785 /* 2786 * We record the previous state before we close it, so that if we are 2787 * doing a reopen(), we don't generate FMA ereports if we notice that 2788 * it's still faulted. 2789 */ 2790 vd->vdev_prevstate = vd->vdev_state; 2791 2792 if (vd->vdev_offline) 2793 vd->vdev_state = VDEV_STATE_OFFLINE; 2794 else 2795 vd->vdev_state = VDEV_STATE_CLOSED; 2796 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2797 } 2798 2799 void 2800 vdev_hold(vdev_t *vd) 2801 { 2802 spa_t *spa = vd->vdev_spa; 2803 2804 ASSERT(spa_is_root(spa)); 2805 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 2806 return; 2807 2808 for (int c = 0; c < vd->vdev_children; c++) 2809 vdev_hold(vd->vdev_child[c]); 2810 2811 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL) 2812 vd->vdev_ops->vdev_op_hold(vd); 2813 } 2814 2815 void 2816 vdev_rele(vdev_t *vd) 2817 { 2818 ASSERT(spa_is_root(vd->vdev_spa)); 2819 for (int c = 0; c < vd->vdev_children; c++) 2820 vdev_rele(vd->vdev_child[c]); 2821 2822 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL) 2823 vd->vdev_ops->vdev_op_rele(vd); 2824 } 2825 2826 /* 2827 * Reopen all interior vdevs and any unopened leaves. We don't actually 2828 * reopen leaf vdevs which had previously been opened as they might deadlock 2829 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 2830 * If the leaf has never been opened then open it, as usual. 2831 */ 2832 void 2833 vdev_reopen(vdev_t *vd) 2834 { 2835 spa_t *spa = vd->vdev_spa; 2836 2837 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2838 2839 /* set the reopening flag unless we're taking the vdev offline */ 2840 vd->vdev_reopening = !vd->vdev_offline; 2841 vdev_close(vd); 2842 (void) vdev_open(vd); 2843 2844 /* 2845 * Call vdev_validate() here to make sure we have the same device. 2846 * Otherwise, a device with an invalid label could be successfully 2847 * opened in response to vdev_reopen(). 2848 */ 2849 if (vd->vdev_aux) { 2850 (void) vdev_validate_aux(vd); 2851 if (vdev_readable(vd) && vdev_writeable(vd) && 2852 vd->vdev_aux == &spa->spa_l2cache) { 2853 /* 2854 * In case the vdev is present we should evict all ARC 2855 * buffers and pointers to log blocks and reclaim their 2856 * space before restoring its contents to L2ARC. 2857 */ 2858 if (l2arc_vdev_present(vd)) { 2859 l2arc_rebuild_vdev(vd, B_TRUE); 2860 } else { 2861 l2arc_add_vdev(spa, vd); 2862 } 2863 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 2864 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 2865 } 2866 } else { 2867 (void) vdev_validate(vd); 2868 } 2869 2870 /* 2871 * Recheck if resilver is still needed and cancel any 2872 * scheduled resilver if resilver is unneeded. 2873 */ 2874 if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) && 2875 spa->spa_async_tasks & SPA_ASYNC_RESILVER) { 2876 mutex_enter(&spa->spa_async_lock); 2877 spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER; 2878 mutex_exit(&spa->spa_async_lock); 2879 } 2880 2881 /* 2882 * Reassess parent vdev's health. 2883 */ 2884 vdev_propagate_state(vd); 2885 } 2886 2887 int 2888 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 2889 { 2890 int error; 2891 2892 /* 2893 * Normally, partial opens (e.g. of a mirror) are allowed. 2894 * For a create, however, we want to fail the request if 2895 * there are any components we can't open. 2896 */ 2897 error = vdev_open(vd); 2898 2899 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 2900 vdev_close(vd); 2901 return (error ? error : SET_ERROR(ENXIO)); 2902 } 2903 2904 /* 2905 * Recursively load DTLs and initialize all labels. 2906 */ 2907 if ((error = vdev_dtl_load(vd)) != 0 || 2908 (error = vdev_label_init(vd, txg, isreplacing ? 2909 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 2910 vdev_close(vd); 2911 return (error); 2912 } 2913 2914 return (0); 2915 } 2916 2917 void 2918 vdev_metaslab_set_size(vdev_t *vd) 2919 { 2920 uint64_t asize = vd->vdev_asize; 2921 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; 2922 uint64_t ms_shift; 2923 2924 /* 2925 * There are two dimensions to the metaslab sizing calculation: 2926 * the size of the metaslab and the count of metaslabs per vdev. 2927 * 2928 * The default values used below are a good balance between memory 2929 * usage (larger metaslab size means more memory needed for loaded 2930 * metaslabs; more metaslabs means more memory needed for the 2931 * metaslab_t structs), metaslab load time (larger metaslabs take 2932 * longer to load), and metaslab sync time (more metaslabs means 2933 * more time spent syncing all of them). 2934 * 2935 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. 2936 * The range of the dimensions are as follows: 2937 * 2938 * 2^29 <= ms_size <= 2^34 2939 * 16 <= ms_count <= 131,072 2940 * 2941 * On the lower end of vdev sizes, we aim for metaslabs sizes of 2942 * at least 512MB (2^29) to minimize fragmentation effects when 2943 * testing with smaller devices. However, the count constraint 2944 * of at least 16 metaslabs will override this minimum size goal. 2945 * 2946 * On the upper end of vdev sizes, we aim for a maximum metaslab 2947 * size of 16GB. However, we will cap the total count to 2^17 2948 * metaslabs to keep our memory footprint in check and let the 2949 * metaslab size grow from there if that limit is hit. 2950 * 2951 * The net effect of applying above constrains is summarized below. 2952 * 2953 * vdev size metaslab count 2954 * --------------|----------------- 2955 * < 8GB ~16 2956 * 8GB - 100GB one per 512MB 2957 * 100GB - 3TB ~200 2958 * 3TB - 2PB one per 16GB 2959 * > 2PB ~131,072 2960 * -------------------------------- 2961 * 2962 * Finally, note that all of the above calculate the initial 2963 * number of metaslabs. Expanding a top-level vdev will result 2964 * in additional metaslabs being allocated making it possible 2965 * to exceed the zfs_vdev_ms_count_limit. 2966 */ 2967 2968 if (ms_count < zfs_vdev_min_ms_count) 2969 ms_shift = highbit64(asize / zfs_vdev_min_ms_count); 2970 else if (ms_count > zfs_vdev_default_ms_count) 2971 ms_shift = highbit64(asize / zfs_vdev_default_ms_count); 2972 else 2973 ms_shift = zfs_vdev_default_ms_shift; 2974 2975 if (ms_shift < SPA_MAXBLOCKSHIFT) { 2976 ms_shift = SPA_MAXBLOCKSHIFT; 2977 } else if (ms_shift > zfs_vdev_max_ms_shift) { 2978 ms_shift = zfs_vdev_max_ms_shift; 2979 /* cap the total count to constrain memory footprint */ 2980 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) 2981 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); 2982 } 2983 2984 vd->vdev_ms_shift = ms_shift; 2985 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); 2986 } 2987 2988 void 2989 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 2990 { 2991 ASSERT(vd == vd->vdev_top); 2992 /* indirect vdevs don't have metaslabs or dtls */ 2993 ASSERT(vdev_is_concrete(vd) || flags == 0); 2994 ASSERT(ISP2(flags)); 2995 ASSERT(spa_writeable(vd->vdev_spa)); 2996 2997 if (flags & VDD_METASLAB) 2998 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 2999 3000 if (flags & VDD_DTL) 3001 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 3002 3003 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 3004 } 3005 3006 void 3007 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 3008 { 3009 for (int c = 0; c < vd->vdev_children; c++) 3010 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 3011 3012 if (vd->vdev_ops->vdev_op_leaf) 3013 vdev_dirty(vd->vdev_top, flags, vd, txg); 3014 } 3015 3016 /* 3017 * DTLs. 3018 * 3019 * A vdev's DTL (dirty time log) is the set of transaction groups for which 3020 * the vdev has less than perfect replication. There are four kinds of DTL: 3021 * 3022 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 3023 * 3024 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 3025 * 3026 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 3027 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 3028 * txgs that was scrubbed. 3029 * 3030 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 3031 * persistent errors or just some device being offline. 3032 * Unlike the other three, the DTL_OUTAGE map is not generally 3033 * maintained; it's only computed when needed, typically to 3034 * determine whether a device can be detached. 3035 * 3036 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 3037 * either has the data or it doesn't. 3038 * 3039 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 3040 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 3041 * if any child is less than fully replicated, then so is its parent. 3042 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 3043 * comprising only those txgs which appear in 'maxfaults' or more children; 3044 * those are the txgs we don't have enough replication to read. For example, 3045 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 3046 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 3047 * two child DTL_MISSING maps. 3048 * 3049 * It should be clear from the above that to compute the DTLs and outage maps 3050 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 3051 * Therefore, that is all we keep on disk. When loading the pool, or after 3052 * a configuration change, we generate all other DTLs from first principles. 3053 */ 3054 void 3055 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 3056 { 3057 zfs_range_tree_t *rt = vd->vdev_dtl[t]; 3058 3059 ASSERT(t < DTL_TYPES); 3060 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 3061 ASSERT(spa_writeable(vd->vdev_spa)); 3062 3063 mutex_enter(&vd->vdev_dtl_lock); 3064 if (!zfs_range_tree_contains(rt, txg, size)) 3065 zfs_range_tree_add(rt, txg, size); 3066 mutex_exit(&vd->vdev_dtl_lock); 3067 } 3068 3069 boolean_t 3070 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 3071 { 3072 zfs_range_tree_t *rt = vd->vdev_dtl[t]; 3073 boolean_t dirty = B_FALSE; 3074 3075 ASSERT(t < DTL_TYPES); 3076 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 3077 3078 /* 3079 * While we are loading the pool, the DTLs have not been loaded yet. 3080 * This isn't a problem but it can result in devices being tried 3081 * which are known to not have the data. In which case, the import 3082 * is relying on the checksum to ensure that we get the right data. 3083 * Note that while importing we are only reading the MOS, which is 3084 * always checksummed. 3085 */ 3086 mutex_enter(&vd->vdev_dtl_lock); 3087 if (!zfs_range_tree_is_empty(rt)) 3088 dirty = zfs_range_tree_contains(rt, txg, size); 3089 mutex_exit(&vd->vdev_dtl_lock); 3090 3091 return (dirty); 3092 } 3093 3094 boolean_t 3095 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 3096 { 3097 zfs_range_tree_t *rt = vd->vdev_dtl[t]; 3098 boolean_t empty; 3099 3100 mutex_enter(&vd->vdev_dtl_lock); 3101 empty = zfs_range_tree_is_empty(rt); 3102 mutex_exit(&vd->vdev_dtl_lock); 3103 3104 return (empty); 3105 } 3106 3107 /* 3108 * Check if the txg falls within the range which must be 3109 * resilvered. DVAs outside this range can always be skipped. 3110 */ 3111 boolean_t 3112 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 3113 uint64_t phys_birth) 3114 { 3115 (void) dva, (void) psize; 3116 3117 /* Set by sequential resilver. */ 3118 if (phys_birth == TXG_UNKNOWN) 3119 return (B_TRUE); 3120 3121 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)); 3122 } 3123 3124 /* 3125 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered. 3126 */ 3127 boolean_t 3128 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 3129 uint64_t phys_birth) 3130 { 3131 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 3132 3133 if (vd->vdev_ops->vdev_op_need_resilver == NULL || 3134 vd->vdev_ops->vdev_op_leaf) 3135 return (B_TRUE); 3136 3137 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize, 3138 phys_birth)); 3139 } 3140 3141 /* 3142 * Returns the lowest txg in the DTL range. 3143 */ 3144 static uint64_t 3145 vdev_dtl_min(vdev_t *vd) 3146 { 3147 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 3148 ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 3149 ASSERT0(vd->vdev_children); 3150 3151 return (zfs_range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1); 3152 } 3153 3154 /* 3155 * Returns the highest txg in the DTL. 3156 */ 3157 static uint64_t 3158 vdev_dtl_max(vdev_t *vd) 3159 { 3160 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 3161 ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 3162 ASSERT0(vd->vdev_children); 3163 3164 return (zfs_range_tree_max(vd->vdev_dtl[DTL_MISSING])); 3165 } 3166 3167 /* 3168 * Determine if a resilvering vdev should remove any DTL entries from 3169 * its range. If the vdev was resilvering for the entire duration of the 3170 * scan then it should excise that range from its DTLs. Otherwise, this 3171 * vdev is considered partially resilvered and should leave its DTL 3172 * entries intact. The comment in vdev_dtl_reassess() describes how we 3173 * excise the DTLs. 3174 */ 3175 static boolean_t 3176 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done) 3177 { 3178 ASSERT0(vd->vdev_children); 3179 3180 if (vd->vdev_state < VDEV_STATE_DEGRADED) 3181 return (B_FALSE); 3182 3183 if (vd->vdev_resilver_deferred) 3184 return (B_FALSE); 3185 3186 if (zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) 3187 return (B_TRUE); 3188 3189 if (rebuild_done) { 3190 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3191 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 3192 3193 /* Rebuild not initiated by attach */ 3194 if (vd->vdev_rebuild_txg == 0) 3195 return (B_TRUE); 3196 3197 /* 3198 * When a rebuild completes without error then all missing data 3199 * up to the rebuild max txg has been reconstructed and the DTL 3200 * is eligible for excision. 3201 */ 3202 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE && 3203 vdev_dtl_max(vd) <= vrp->vrp_max_txg) { 3204 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd)); 3205 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg); 3206 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg); 3207 return (B_TRUE); 3208 } 3209 } else { 3210 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 3211 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys; 3212 3213 /* Resilver not initiated by attach */ 3214 if (vd->vdev_resilver_txg == 0) 3215 return (B_TRUE); 3216 3217 /* 3218 * When a resilver is initiated the scan will assign the 3219 * scn_max_txg value to the highest txg value that exists 3220 * in all DTLs. If this device's max DTL is not part of this 3221 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg] 3222 * then it is not eligible for excision. 3223 */ 3224 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 3225 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd)); 3226 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg); 3227 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg); 3228 return (B_TRUE); 3229 } 3230 } 3231 3232 return (B_FALSE); 3233 } 3234 3235 /* 3236 * Reassess DTLs after a config change or scrub completion. If txg == 0 no 3237 * write operations will be issued to the pool. 3238 */ 3239 static void 3240 vdev_dtl_reassess_impl(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, 3241 boolean_t scrub_done, boolean_t rebuild_done, boolean_t faulting) 3242 { 3243 spa_t *spa = vd->vdev_spa; 3244 avl_tree_t reftree; 3245 int minref; 3246 3247 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 3248 3249 for (int c = 0; c < vd->vdev_children; c++) 3250 vdev_dtl_reassess_impl(vd->vdev_child[c], txg, 3251 scrub_txg, scrub_done, rebuild_done, faulting); 3252 3253 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) 3254 return; 3255 3256 if (vd->vdev_ops->vdev_op_leaf) { 3257 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 3258 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3259 boolean_t check_excise = B_FALSE; 3260 boolean_t wasempty = B_TRUE; 3261 3262 mutex_enter(&vd->vdev_dtl_lock); 3263 3264 /* 3265 * If requested, pretend the scan or rebuild completed cleanly. 3266 */ 3267 if (zfs_scan_ignore_errors) { 3268 if (scn != NULL) 3269 scn->scn_phys.scn_errors = 0; 3270 if (vr != NULL) 3271 vr->vr_rebuild_phys.vrp_errors = 0; 3272 } 3273 3274 if (scrub_txg != 0 && 3275 !zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3276 wasempty = B_FALSE; 3277 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d " 3278 "dtl:%llu/%llu errors:%llu", 3279 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg, 3280 (u_longlong_t)scrub_txg, spa->spa_scrub_started, 3281 (u_longlong_t)vdev_dtl_min(vd), 3282 (u_longlong_t)vdev_dtl_max(vd), 3283 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0)); 3284 } 3285 3286 /* 3287 * If we've completed a scrub/resilver or a rebuild cleanly 3288 * then determine if this vdev should remove any DTLs. We 3289 * only want to excise regions on vdevs that were available 3290 * during the entire duration of this scan. 3291 */ 3292 if (rebuild_done && 3293 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) { 3294 check_excise = B_TRUE; 3295 } else { 3296 if (spa->spa_scrub_started || 3297 (scn != NULL && scn->scn_phys.scn_errors == 0)) { 3298 check_excise = B_TRUE; 3299 } 3300 } 3301 3302 if (scrub_txg && check_excise && 3303 vdev_dtl_should_excise(vd, rebuild_done)) { 3304 /* 3305 * We completed a scrub, resilver or rebuild up to 3306 * scrub_txg. If we did it without rebooting, then 3307 * the scrub dtl will be valid, so excise the old 3308 * region and fold in the scrub dtl. Otherwise, 3309 * leave the dtl as-is if there was an error. 3310 * 3311 * There's little trick here: to excise the beginning 3312 * of the DTL_MISSING map, we put it into a reference 3313 * tree and then add a segment with refcnt -1 that 3314 * covers the range [0, scrub_txg). This means 3315 * that each txg in that range has refcnt -1 or 0. 3316 * We then add DTL_SCRUB with a refcnt of 2, so that 3317 * entries in the range [0, scrub_txg) will have a 3318 * positive refcnt -- either 1 or 2. We then convert 3319 * the reference tree into the new DTL_MISSING map. 3320 */ 3321 space_reftree_create(&reftree); 3322 space_reftree_add_map(&reftree, 3323 vd->vdev_dtl[DTL_MISSING], 1); 3324 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 3325 space_reftree_add_map(&reftree, 3326 vd->vdev_dtl[DTL_SCRUB], 2); 3327 space_reftree_generate_map(&reftree, 3328 vd->vdev_dtl[DTL_MISSING], 1); 3329 space_reftree_destroy(&reftree); 3330 3331 if (!zfs_range_tree_is_empty( 3332 vd->vdev_dtl[DTL_MISSING])) { 3333 zfs_dbgmsg("update DTL_MISSING:%llu/%llu", 3334 (u_longlong_t)vdev_dtl_min(vd), 3335 (u_longlong_t)vdev_dtl_max(vd)); 3336 } else if (!wasempty) { 3337 zfs_dbgmsg("DTL_MISSING is now empty"); 3338 } 3339 } 3340 zfs_range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 3341 zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3342 zfs_range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 3343 if (scrub_done) 3344 zfs_range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, 3345 NULL); 3346 zfs_range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 3347 3348 /* 3349 * For the faulting case, treat members of a replacing vdev 3350 * as if they are not available. It's more likely than not that 3351 * a vdev in a replacing vdev could encounter read errors so 3352 * treat it as not being able to contribute. 3353 */ 3354 if (!vdev_readable(vd) || 3355 (faulting && vd->vdev_parent != NULL && 3356 vd->vdev_parent->vdev_ops == &vdev_replacing_ops)) { 3357 zfs_range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 3358 } else { 3359 zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3360 zfs_range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 3361 } 3362 3363 /* 3364 * If the vdev was resilvering or rebuilding and no longer 3365 * has any DTLs then reset the appropriate flag and dirty 3366 * the top level so that we persist the change. 3367 */ 3368 if (txg != 0 && 3369 zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3370 zfs_range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) { 3371 if (vd->vdev_rebuild_txg != 0) { 3372 vd->vdev_rebuild_txg = 0; 3373 vdev_config_dirty(vd->vdev_top); 3374 } else if (vd->vdev_resilver_txg != 0) { 3375 vd->vdev_resilver_txg = 0; 3376 vdev_config_dirty(vd->vdev_top); 3377 } 3378 } 3379 3380 mutex_exit(&vd->vdev_dtl_lock); 3381 3382 if (txg != 0) 3383 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 3384 } else { 3385 mutex_enter(&vd->vdev_dtl_lock); 3386 for (int t = 0; t < DTL_TYPES; t++) { 3387 /* account for child's outage in parent's missing map */ 3388 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 3389 if (t == DTL_SCRUB) { 3390 /* leaf vdevs only */ 3391 continue; 3392 } 3393 if (t == DTL_PARTIAL) { 3394 /* i.e. non-zero */ 3395 minref = 1; 3396 } else if (vdev_get_nparity(vd) != 0) { 3397 /* RAIDZ, DRAID */ 3398 minref = vdev_get_nparity(vd) + 1; 3399 } else { 3400 /* any kind of mirror */ 3401 minref = vd->vdev_children; 3402 } 3403 space_reftree_create(&reftree); 3404 for (int c = 0; c < vd->vdev_children; c++) { 3405 vdev_t *cvd = vd->vdev_child[c]; 3406 mutex_enter(&cvd->vdev_dtl_lock); 3407 space_reftree_add_map(&reftree, 3408 cvd->vdev_dtl[s], 1); 3409 mutex_exit(&cvd->vdev_dtl_lock); 3410 } 3411 space_reftree_generate_map(&reftree, 3412 vd->vdev_dtl[t], minref); 3413 space_reftree_destroy(&reftree); 3414 } 3415 mutex_exit(&vd->vdev_dtl_lock); 3416 } 3417 3418 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) { 3419 raidz_dtl_reassessed(vd); 3420 } 3421 } 3422 3423 void 3424 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, 3425 boolean_t scrub_done, boolean_t rebuild_done) 3426 { 3427 return (vdev_dtl_reassess_impl(vd, txg, scrub_txg, scrub_done, 3428 rebuild_done, B_FALSE)); 3429 } 3430 3431 /* 3432 * Iterate over all the vdevs except spare, and post kobj events 3433 */ 3434 void 3435 vdev_post_kobj_evt(vdev_t *vd) 3436 { 3437 if (vd->vdev_ops->vdev_op_kobj_evt_post && 3438 vd->vdev_kobj_flag == B_FALSE) { 3439 vd->vdev_kobj_flag = B_TRUE; 3440 vd->vdev_ops->vdev_op_kobj_evt_post(vd); 3441 } 3442 3443 for (int c = 0; c < vd->vdev_children; c++) 3444 vdev_post_kobj_evt(vd->vdev_child[c]); 3445 } 3446 3447 /* 3448 * Iterate over all the vdevs except spare, and clear kobj events 3449 */ 3450 void 3451 vdev_clear_kobj_evt(vdev_t *vd) 3452 { 3453 vd->vdev_kobj_flag = B_FALSE; 3454 3455 for (int c = 0; c < vd->vdev_children; c++) 3456 vdev_clear_kobj_evt(vd->vdev_child[c]); 3457 } 3458 3459 int 3460 vdev_dtl_load(vdev_t *vd) 3461 { 3462 spa_t *spa = vd->vdev_spa; 3463 objset_t *mos = spa->spa_meta_objset; 3464 zfs_range_tree_t *rt; 3465 int error = 0; 3466 3467 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 3468 ASSERT(vdev_is_concrete(vd)); 3469 3470 /* 3471 * If the dtl cannot be sync'd there is no need to open it. 3472 */ 3473 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps) 3474 return (0); 3475 3476 error = space_map_open(&vd->vdev_dtl_sm, mos, 3477 vd->vdev_dtl_object, 0, -1ULL, 0); 3478 if (error) 3479 return (error); 3480 ASSERT(vd->vdev_dtl_sm != NULL); 3481 3482 rt = zfs_range_tree_create_flags( 3483 NULL, ZFS_RANGE_SEG64, NULL, 0, 0, 3484 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "vdev_dtl_load:rt")); 3485 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC); 3486 if (error == 0) { 3487 mutex_enter(&vd->vdev_dtl_lock); 3488 zfs_range_tree_walk(rt, zfs_range_tree_add, 3489 vd->vdev_dtl[DTL_MISSING]); 3490 mutex_exit(&vd->vdev_dtl_lock); 3491 } 3492 3493 zfs_range_tree_vacate(rt, NULL, NULL); 3494 zfs_range_tree_destroy(rt); 3495 3496 return (error); 3497 } 3498 3499 for (int c = 0; c < vd->vdev_children; c++) { 3500 error = vdev_dtl_load(vd->vdev_child[c]); 3501 if (error != 0) 3502 break; 3503 } 3504 3505 return (error); 3506 } 3507 3508 static void 3509 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx) 3510 { 3511 spa_t *spa = vd->vdev_spa; 3512 objset_t *mos = spa->spa_meta_objset; 3513 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 3514 const char *string; 3515 3516 ASSERT(alloc_bias != VDEV_BIAS_NONE); 3517 3518 string = 3519 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG : 3520 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL : 3521 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL; 3522 3523 ASSERT(string != NULL); 3524 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, 3525 1, strlen(string) + 1, string, tx)); 3526 3527 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) { 3528 spa_activate_allocation_classes(spa, tx); 3529 } 3530 } 3531 3532 void 3533 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 3534 { 3535 spa_t *spa = vd->vdev_spa; 3536 3537 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 3538 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3539 zapobj, tx)); 3540 } 3541 3542 uint64_t 3543 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 3544 { 3545 spa_t *spa = vd->vdev_spa; 3546 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 3547 DMU_OT_NONE, 0, tx); 3548 3549 ASSERT(zap != 0); 3550 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3551 zap, tx)); 3552 3553 return (zap); 3554 } 3555 3556 void 3557 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 3558 { 3559 if (vd->vdev_ops != &vdev_hole_ops && 3560 vd->vdev_ops != &vdev_missing_ops && 3561 vd->vdev_ops != &vdev_root_ops && 3562 !vd->vdev_top->vdev_removing) { 3563 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 3564 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 3565 } 3566 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 3567 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 3568 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE) 3569 vdev_zap_allocation_data(vd, tx); 3570 } 3571 } 3572 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 && 3573 spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) { 3574 if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) 3575 spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx); 3576 vd->vdev_root_zap = vdev_create_link_zap(vd, tx); 3577 } 3578 3579 for (uint64_t i = 0; i < vd->vdev_children; i++) { 3580 vdev_construct_zaps(vd->vdev_child[i], tx); 3581 } 3582 } 3583 3584 static void 3585 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 3586 { 3587 spa_t *spa = vd->vdev_spa; 3588 zfs_range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 3589 objset_t *mos = spa->spa_meta_objset; 3590 zfs_range_tree_t *rtsync; 3591 dmu_tx_t *tx; 3592 uint64_t object = space_map_object(vd->vdev_dtl_sm); 3593 3594 ASSERT(vdev_is_concrete(vd)); 3595 ASSERT(vd->vdev_ops->vdev_op_leaf); 3596 3597 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3598 3599 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 3600 mutex_enter(&vd->vdev_dtl_lock); 3601 space_map_free(vd->vdev_dtl_sm, tx); 3602 space_map_close(vd->vdev_dtl_sm); 3603 vd->vdev_dtl_sm = NULL; 3604 mutex_exit(&vd->vdev_dtl_lock); 3605 3606 /* 3607 * We only destroy the leaf ZAP for detached leaves or for 3608 * removed log devices. Removed data devices handle leaf ZAP 3609 * cleanup later, once cancellation is no longer possible. 3610 */ 3611 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 3612 vd->vdev_top->vdev_islog)) { 3613 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 3614 vd->vdev_leaf_zap = 0; 3615 } 3616 3617 dmu_tx_commit(tx); 3618 return; 3619 } 3620 3621 if (vd->vdev_dtl_sm == NULL) { 3622 uint64_t new_object; 3623 3624 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx); 3625 VERIFY3U(new_object, !=, 0); 3626 3627 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 3628 0, -1ULL, 0)); 3629 ASSERT(vd->vdev_dtl_sm != NULL); 3630 } 3631 3632 rtsync = zfs_range_tree_create_flags(NULL, ZFS_RANGE_SEG64, NULL, 0, 0, 3633 ZFS_RT_F_DYN_NAME, vdev_rt_name(vd, "rtsync")); 3634 3635 mutex_enter(&vd->vdev_dtl_lock); 3636 zfs_range_tree_walk(rt, zfs_range_tree_add, rtsync); 3637 mutex_exit(&vd->vdev_dtl_lock); 3638 3639 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx); 3640 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); 3641 zfs_range_tree_vacate(rtsync, NULL, NULL); 3642 3643 zfs_range_tree_destroy(rtsync); 3644 3645 /* 3646 * If the object for the space map has changed then dirty 3647 * the top level so that we update the config. 3648 */ 3649 if (object != space_map_object(vd->vdev_dtl_sm)) { 3650 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " 3651 "new object %llu", (u_longlong_t)txg, spa_name(spa), 3652 (u_longlong_t)object, 3653 (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); 3654 vdev_config_dirty(vd->vdev_top); 3655 } 3656 3657 dmu_tx_commit(tx); 3658 } 3659 3660 /* 3661 * Determine whether the specified vdev can be 3662 * - offlined 3663 * - detached 3664 * - removed 3665 * - faulted 3666 * without losing data. 3667 */ 3668 boolean_t 3669 vdev_dtl_required(vdev_t *vd) 3670 { 3671 spa_t *spa = vd->vdev_spa; 3672 vdev_t *tvd = vd->vdev_top; 3673 uint8_t cant_read = vd->vdev_cant_read; 3674 boolean_t required; 3675 boolean_t faulting = vd->vdev_state == VDEV_STATE_FAULTED; 3676 3677 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3678 3679 if (vd == spa->spa_root_vdev || vd == tvd) 3680 return (B_TRUE); 3681 3682 /* 3683 * Temporarily mark the device as unreadable, and then determine 3684 * whether this results in any DTL outages in the top-level vdev. 3685 * If not, we can safely offline/detach/remove the device. 3686 */ 3687 vd->vdev_cant_read = B_TRUE; 3688 vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting); 3689 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 3690 vd->vdev_cant_read = cant_read; 3691 vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting); 3692 3693 if (!required && zio_injection_enabled) { 3694 required = !!zio_handle_device_injection(vd, NULL, 3695 SET_ERROR(ECHILD)); 3696 } 3697 3698 return (required); 3699 } 3700 3701 /* 3702 * Determine if resilver is needed, and if so the txg range. 3703 */ 3704 boolean_t 3705 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 3706 { 3707 boolean_t needed = B_FALSE; 3708 uint64_t thismin = UINT64_MAX; 3709 uint64_t thismax = 0; 3710 3711 if (vd->vdev_children == 0) { 3712 mutex_enter(&vd->vdev_dtl_lock); 3713 if (!zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3714 vdev_writeable(vd)) { 3715 3716 thismin = vdev_dtl_min(vd); 3717 thismax = vdev_dtl_max(vd); 3718 needed = B_TRUE; 3719 } 3720 mutex_exit(&vd->vdev_dtl_lock); 3721 } else { 3722 for (int c = 0; c < vd->vdev_children; c++) { 3723 vdev_t *cvd = vd->vdev_child[c]; 3724 uint64_t cmin, cmax; 3725 3726 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 3727 thismin = MIN(thismin, cmin); 3728 thismax = MAX(thismax, cmax); 3729 needed = B_TRUE; 3730 } 3731 } 3732 } 3733 3734 if (needed && minp) { 3735 *minp = thismin; 3736 *maxp = thismax; 3737 } 3738 return (needed); 3739 } 3740 3741 /* 3742 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj 3743 * will contain either the checkpoint spacemap object or zero if none exists. 3744 * All other errors are returned to the caller. 3745 */ 3746 int 3747 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj) 3748 { 3749 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 3750 3751 if (vd->vdev_top_zap == 0) { 3752 *sm_obj = 0; 3753 return (0); 3754 } 3755 3756 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, 3757 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj); 3758 if (error == ENOENT) { 3759 *sm_obj = 0; 3760 error = 0; 3761 } 3762 3763 return (error); 3764 } 3765 3766 int 3767 vdev_load(vdev_t *vd) 3768 { 3769 int children = vd->vdev_children; 3770 int error = 0; 3771 taskq_t *tq = NULL; 3772 3773 /* 3774 * It's only worthwhile to use the taskq for the root vdev, because the 3775 * slow part is metaslab_init, and that only happens for top-level 3776 * vdevs. 3777 */ 3778 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) { 3779 tq = taskq_create("vdev_load", children, minclsyspri, 3780 children, children, TASKQ_PREPOPULATE); 3781 } 3782 3783 /* 3784 * Recursively load all children. 3785 */ 3786 for (int c = 0; c < vd->vdev_children; c++) { 3787 vdev_t *cvd = vd->vdev_child[c]; 3788 3789 if (tq == NULL || vdev_uses_zvols(cvd)) { 3790 cvd->vdev_load_error = vdev_load(cvd); 3791 } else { 3792 VERIFY(taskq_dispatch(tq, vdev_load_child, 3793 cvd, TQ_SLEEP) != TASKQID_INVALID); 3794 } 3795 } 3796 3797 if (tq != NULL) { 3798 taskq_wait(tq); 3799 taskq_destroy(tq); 3800 } 3801 3802 for (int c = 0; c < vd->vdev_children; c++) { 3803 int error = vd->vdev_child[c]->vdev_load_error; 3804 3805 if (error != 0) 3806 return (error); 3807 } 3808 3809 vdev_set_deflate_ratio(vd); 3810 3811 if (vd->vdev_ops == &vdev_raidz_ops) { 3812 error = vdev_raidz_load(vd); 3813 if (error != 0) 3814 return (error); 3815 } 3816 3817 /* 3818 * On spa_load path, grab the allocation bias from our zap 3819 */ 3820 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3821 spa_t *spa = vd->vdev_spa; 3822 char bias_str[64]; 3823 3824 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3825 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str), 3826 bias_str); 3827 if (error == 0) { 3828 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE); 3829 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str); 3830 } else if (error != ENOENT) { 3831 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3832 VDEV_AUX_CORRUPT_DATA); 3833 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) " 3834 "failed [error=%d]", 3835 (u_longlong_t)vd->vdev_top_zap, error); 3836 return (error); 3837 } 3838 } 3839 3840 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3841 spa_t *spa = vd->vdev_spa; 3842 uint64_t failfast; 3843 3844 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3845 vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast), 3846 1, &failfast); 3847 if (error == 0) { 3848 vd->vdev_failfast = failfast & 1; 3849 } else if (error == ENOENT) { 3850 vd->vdev_failfast = vdev_prop_default_numeric( 3851 VDEV_PROP_FAILFAST); 3852 } else { 3853 vdev_dbgmsg(vd, 3854 "vdev_load: zap_lookup(top_zap=%llu) " 3855 "failed [error=%d]", 3856 (u_longlong_t)vd->vdev_top_zap, error); 3857 } 3858 } 3859 3860 /* 3861 * Load any rebuild state from the top-level vdev zap. 3862 */ 3863 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3864 error = vdev_rebuild_load(vd); 3865 if (error && error != ENOTSUP) { 3866 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3867 VDEV_AUX_CORRUPT_DATA); 3868 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load " 3869 "failed [error=%d]", error); 3870 return (error); 3871 } 3872 } 3873 3874 if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) { 3875 uint64_t zapobj; 3876 3877 if (vd->vdev_top_zap != 0) 3878 zapobj = vd->vdev_top_zap; 3879 else 3880 zapobj = vd->vdev_leaf_zap; 3881 3882 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N, 3883 &vd->vdev_checksum_n); 3884 if (error && error != ENOENT) 3885 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3886 "failed [error=%d]", (u_longlong_t)zapobj, error); 3887 3888 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T, 3889 &vd->vdev_checksum_t); 3890 if (error && error != ENOENT) 3891 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3892 "failed [error=%d]", (u_longlong_t)zapobj, error); 3893 3894 error = vdev_prop_get_int(vd, VDEV_PROP_IO_N, 3895 &vd->vdev_io_n); 3896 if (error && error != ENOENT) 3897 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3898 "failed [error=%d]", (u_longlong_t)zapobj, error); 3899 3900 error = vdev_prop_get_int(vd, VDEV_PROP_IO_T, 3901 &vd->vdev_io_t); 3902 if (error && error != ENOENT) 3903 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3904 "failed [error=%d]", (u_longlong_t)zapobj, error); 3905 3906 error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_N, 3907 &vd->vdev_slow_io_n); 3908 if (error && error != ENOENT) 3909 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3910 "failed [error=%d]", (u_longlong_t)zapobj, error); 3911 3912 error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_T, 3913 &vd->vdev_slow_io_t); 3914 if (error && error != ENOENT) 3915 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3916 "failed [error=%d]", (u_longlong_t)zapobj, error); 3917 } 3918 3919 /* 3920 * If this is a top-level vdev, initialize its metaslabs. 3921 */ 3922 if (vd == vd->vdev_top && vdev_is_concrete(vd)) { 3923 vdev_metaslab_group_create(vd); 3924 3925 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { 3926 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3927 VDEV_AUX_CORRUPT_DATA); 3928 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " 3929 "asize=%llu", (u_longlong_t)vd->vdev_ashift, 3930 (u_longlong_t)vd->vdev_asize); 3931 return (SET_ERROR(ENXIO)); 3932 } 3933 3934 error = vdev_metaslab_init(vd, 0); 3935 if (error != 0) { 3936 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " 3937 "[error=%d]", error); 3938 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3939 VDEV_AUX_CORRUPT_DATA); 3940 return (error); 3941 } 3942 3943 uint64_t checkpoint_sm_obj; 3944 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj); 3945 if (error == 0 && checkpoint_sm_obj != 0) { 3946 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3947 ASSERT(vd->vdev_asize != 0); 3948 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL); 3949 3950 error = space_map_open(&vd->vdev_checkpoint_sm, 3951 mos, checkpoint_sm_obj, 0, vd->vdev_asize, 3952 vd->vdev_ashift); 3953 if (error != 0) { 3954 vdev_dbgmsg(vd, "vdev_load: space_map_open " 3955 "failed for checkpoint spacemap (obj %llu) " 3956 "[error=%d]", 3957 (u_longlong_t)checkpoint_sm_obj, error); 3958 return (error); 3959 } 3960 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 3961 3962 /* 3963 * Since the checkpoint_sm contains free entries 3964 * exclusively we can use space_map_allocated() to 3965 * indicate the cumulative checkpointed space that 3966 * has been freed. 3967 */ 3968 vd->vdev_stat.vs_checkpoint_space = 3969 -space_map_allocated(vd->vdev_checkpoint_sm); 3970 vd->vdev_spa->spa_checkpoint_info.sci_dspace += 3971 vd->vdev_stat.vs_checkpoint_space; 3972 } else if (error != 0) { 3973 vdev_dbgmsg(vd, "vdev_load: failed to retrieve " 3974 "checkpoint space map object from vdev ZAP " 3975 "[error=%d]", error); 3976 return (error); 3977 } 3978 } 3979 3980 /* 3981 * If this is a leaf vdev, load its DTL. 3982 */ 3983 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { 3984 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3985 VDEV_AUX_CORRUPT_DATA); 3986 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " 3987 "[error=%d]", error); 3988 return (error); 3989 } 3990 3991 uint64_t obsolete_sm_object; 3992 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object); 3993 if (error == 0 && obsolete_sm_object != 0) { 3994 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3995 ASSERT(vd->vdev_asize != 0); 3996 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 3997 3998 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, 3999 obsolete_sm_object, 0, vd->vdev_asize, 0))) { 4000 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 4001 VDEV_AUX_CORRUPT_DATA); 4002 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " 4003 "obsolete spacemap (obj %llu) [error=%d]", 4004 (u_longlong_t)obsolete_sm_object, error); 4005 return (error); 4006 } 4007 } else if (error != 0) { 4008 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete " 4009 "space map object from vdev ZAP [error=%d]", error); 4010 return (error); 4011 } 4012 4013 return (0); 4014 } 4015 4016 /* 4017 * The special vdev case is used for hot spares and l2cache devices. Its 4018 * sole purpose it to set the vdev state for the associated vdev. To do this, 4019 * we make sure that we can open the underlying device, then try to read the 4020 * label, and make sure that the label is sane and that it hasn't been 4021 * repurposed to another pool. 4022 */ 4023 int 4024 vdev_validate_aux(vdev_t *vd) 4025 { 4026 nvlist_t *label; 4027 uint64_t guid, version; 4028 uint64_t state; 4029 4030 if (!vdev_readable(vd)) 4031 return (0); 4032 4033 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 4034 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 4035 VDEV_AUX_CORRUPT_DATA); 4036 return (-1); 4037 } 4038 4039 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 4040 !SPA_VERSION_IS_SUPPORTED(version) || 4041 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 4042 guid != vd->vdev_guid || 4043 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 4044 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 4045 VDEV_AUX_CORRUPT_DATA); 4046 nvlist_free(label); 4047 return (-1); 4048 } 4049 4050 /* 4051 * We don't actually check the pool state here. If it's in fact in 4052 * use by another pool, we update this fact on the fly when requested. 4053 */ 4054 nvlist_free(label); 4055 return (0); 4056 } 4057 4058 static void 4059 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx) 4060 { 4061 objset_t *mos = spa_meta_objset(vd->vdev_spa); 4062 4063 if (vd->vdev_top_zap == 0) 4064 return; 4065 4066 uint64_t object = 0; 4067 int err = zap_lookup(mos, vd->vdev_top_zap, 4068 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object); 4069 if (err == ENOENT) 4070 return; 4071 VERIFY0(err); 4072 4073 VERIFY0(dmu_object_free(mos, object, tx)); 4074 VERIFY0(zap_remove(mos, vd->vdev_top_zap, 4075 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx)); 4076 } 4077 4078 /* 4079 * Free the objects used to store this vdev's spacemaps, and the array 4080 * that points to them. 4081 */ 4082 void 4083 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) 4084 { 4085 if (vd->vdev_ms_array == 0) 4086 return; 4087 4088 objset_t *mos = vd->vdev_spa->spa_meta_objset; 4089 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; 4090 size_t array_bytes = array_count * sizeof (uint64_t); 4091 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); 4092 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, 4093 array_bytes, smobj_array, 0)); 4094 4095 for (uint64_t i = 0; i < array_count; i++) { 4096 uint64_t smobj = smobj_array[i]; 4097 if (smobj == 0) 4098 continue; 4099 4100 space_map_free_obj(mos, smobj, tx); 4101 } 4102 4103 kmem_free(smobj_array, array_bytes); 4104 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); 4105 vdev_destroy_ms_flush_data(vd, tx); 4106 vd->vdev_ms_array = 0; 4107 } 4108 4109 static void 4110 vdev_remove_empty_log(vdev_t *vd, uint64_t txg) 4111 { 4112 spa_t *spa = vd->vdev_spa; 4113 4114 ASSERT(vd->vdev_islog); 4115 ASSERT(vd == vd->vdev_top); 4116 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 4117 4118 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 4119 4120 vdev_destroy_spacemaps(vd, tx); 4121 if (vd->vdev_top_zap != 0) { 4122 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 4123 vd->vdev_top_zap = 0; 4124 } 4125 4126 dmu_tx_commit(tx); 4127 } 4128 4129 void 4130 vdev_sync_done(vdev_t *vd, uint64_t txg) 4131 { 4132 metaslab_t *msp; 4133 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 4134 4135 ASSERT(vdev_is_concrete(vd)); 4136 4137 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 4138 != NULL) 4139 metaslab_sync_done(msp, txg); 4140 4141 if (reassess) { 4142 metaslab_sync_reassess(vd->vdev_mg); 4143 if (vd->vdev_log_mg != NULL) 4144 metaslab_sync_reassess(vd->vdev_log_mg); 4145 } 4146 } 4147 4148 void 4149 vdev_sync(vdev_t *vd, uint64_t txg) 4150 { 4151 spa_t *spa = vd->vdev_spa; 4152 vdev_t *lvd; 4153 metaslab_t *msp; 4154 4155 ASSERT3U(txg, ==, spa->spa_syncing_txg); 4156 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 4157 if (zfs_range_tree_space(vd->vdev_obsolete_segments) > 0) { 4158 ASSERT(vd->vdev_removing || 4159 vd->vdev_ops == &vdev_indirect_ops); 4160 4161 vdev_indirect_sync_obsolete(vd, tx); 4162 4163 /* 4164 * If the vdev is indirect, it can't have dirty 4165 * metaslabs or DTLs. 4166 */ 4167 if (vd->vdev_ops == &vdev_indirect_ops) { 4168 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); 4169 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); 4170 dmu_tx_commit(tx); 4171 return; 4172 } 4173 } 4174 4175 ASSERT(vdev_is_concrete(vd)); 4176 4177 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && 4178 !vd->vdev_removing) { 4179 ASSERT(vd == vd->vdev_top); 4180 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 4181 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 4182 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 4183 ASSERT(vd->vdev_ms_array != 0); 4184 vdev_config_dirty(vd); 4185 } 4186 4187 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 4188 metaslab_sync(msp, txg); 4189 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 4190 } 4191 4192 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 4193 vdev_dtl_sync(lvd, txg); 4194 4195 /* 4196 * If this is an empty log device being removed, destroy the 4197 * metadata associated with it. 4198 */ 4199 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 4200 vdev_remove_empty_log(vd, txg); 4201 4202 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 4203 dmu_tx_commit(tx); 4204 } 4205 uint64_t 4206 vdev_asize_to_psize_txg(vdev_t *vd, uint64_t asize, uint64_t txg) 4207 { 4208 return (vd->vdev_ops->vdev_op_asize_to_psize(vd, asize, txg)); 4209 } 4210 4211 /* 4212 * Return the amount of space that should be (or was) allocated for the given 4213 * psize (compressed block size) in the given TXG. Note that for expanded 4214 * RAIDZ vdevs, the size allocated for older BP's may be larger. See 4215 * vdev_raidz_psize_to_asize(). 4216 */ 4217 uint64_t 4218 vdev_psize_to_asize_txg(vdev_t *vd, uint64_t psize, uint64_t txg) 4219 { 4220 return (vd->vdev_ops->vdev_op_psize_to_asize(vd, psize, txg)); 4221 } 4222 4223 uint64_t 4224 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 4225 { 4226 return (vdev_psize_to_asize_txg(vd, psize, 0)); 4227 } 4228 4229 /* 4230 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 4231 * not be opened, and no I/O is attempted. 4232 */ 4233 int 4234 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 4235 { 4236 vdev_t *vd, *tvd; 4237 4238 spa_vdev_state_enter(spa, SCL_NONE); 4239 4240 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4241 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4242 4243 if (!vd->vdev_ops->vdev_op_leaf) 4244 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4245 4246 tvd = vd->vdev_top; 4247 4248 /* 4249 * If user did a 'zpool offline -f' then make the fault persist across 4250 * reboots. 4251 */ 4252 if (aux == VDEV_AUX_EXTERNAL_PERSIST) { 4253 /* 4254 * There are two kinds of forced faults: temporary and 4255 * persistent. Temporary faults go away at pool import, while 4256 * persistent faults stay set. Both types of faults can be 4257 * cleared with a zpool clear. 4258 * 4259 * We tell if a vdev is persistently faulted by looking at the 4260 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at 4261 * import then it's a persistent fault. Otherwise, it's 4262 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external" 4263 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This 4264 * tells vdev_config_generate() (which gets run later) to set 4265 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist. 4266 */ 4267 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 4268 vd->vdev_tmpoffline = B_FALSE; 4269 aux = VDEV_AUX_EXTERNAL; 4270 } else { 4271 vd->vdev_tmpoffline = B_TRUE; 4272 } 4273 4274 /* 4275 * We don't directly use the aux state here, but if we do a 4276 * vdev_reopen(), we need this value to be present to remember why we 4277 * were faulted. 4278 */ 4279 vd->vdev_label_aux = aux; 4280 4281 /* 4282 * Faulted state takes precedence over degraded. 4283 */ 4284 vd->vdev_delayed_close = B_FALSE; 4285 vd->vdev_faulted = 1ULL; 4286 vd->vdev_degraded = 0ULL; 4287 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 4288 4289 /* 4290 * If this device has the only valid copy of the data, then 4291 * back off and simply mark the vdev as degraded instead. 4292 */ 4293 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 4294 vd->vdev_degraded = 1ULL; 4295 vd->vdev_faulted = 0ULL; 4296 4297 /* 4298 * If we reopen the device and it's not dead, only then do we 4299 * mark it degraded. 4300 */ 4301 vdev_reopen(tvd); 4302 4303 if (vdev_readable(vd)) 4304 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 4305 } 4306 4307 return (spa_vdev_state_exit(spa, vd, 0)); 4308 } 4309 4310 /* 4311 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 4312 * user that something is wrong. The vdev continues to operate as normal as far 4313 * as I/O is concerned. 4314 */ 4315 int 4316 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 4317 { 4318 vdev_t *vd; 4319 4320 spa_vdev_state_enter(spa, SCL_NONE); 4321 4322 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4323 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4324 4325 if (!vd->vdev_ops->vdev_op_leaf) 4326 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4327 4328 /* 4329 * If the vdev is already faulted, then don't do anything. 4330 */ 4331 if (vd->vdev_faulted || vd->vdev_degraded) 4332 return (spa_vdev_state_exit(spa, NULL, 0)); 4333 4334 vd->vdev_degraded = 1ULL; 4335 if (!vdev_is_dead(vd)) 4336 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 4337 aux); 4338 4339 return (spa_vdev_state_exit(spa, vd, 0)); 4340 } 4341 4342 int 4343 vdev_remove_wanted(spa_t *spa, uint64_t guid) 4344 { 4345 vdev_t *vd; 4346 4347 spa_vdev_state_enter(spa, SCL_NONE); 4348 4349 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4350 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4351 4352 /* 4353 * If the vdev is already removed, or expanding which can trigger 4354 * repartition add/remove events, then don't do anything. 4355 */ 4356 if (vd->vdev_removed || vd->vdev_expanding) 4357 return (spa_vdev_state_exit(spa, NULL, 0)); 4358 4359 /* 4360 * Confirm the vdev has been removed, otherwise don't do anything. 4361 */ 4362 if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL))) 4363 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST))); 4364 4365 vd->vdev_remove_wanted = B_TRUE; 4366 spa_async_request(spa, SPA_ASYNC_REMOVE_BY_USER); 4367 4368 return (spa_vdev_state_exit(spa, vd, 0)); 4369 } 4370 4371 4372 /* 4373 * Online the given vdev. 4374 * 4375 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 4376 * spare device should be detached when the device finishes resilvering. 4377 * Second, the online should be treated like a 'test' online case, so no FMA 4378 * events are generated if the device fails to open. 4379 */ 4380 int 4381 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 4382 { 4383 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 4384 boolean_t wasoffline; 4385 vdev_state_t oldstate; 4386 4387 spa_vdev_state_enter(spa, SCL_NONE); 4388 4389 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4390 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4391 4392 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 4393 oldstate = vd->vdev_state; 4394 4395 tvd = vd->vdev_top; 4396 vd->vdev_offline = B_FALSE; 4397 vd->vdev_tmpoffline = B_FALSE; 4398 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 4399 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 4400 4401 /* XXX - L2ARC 1.0 does not support expansion */ 4402 if (!vd->vdev_aux) { 4403 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4404 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) || 4405 spa->spa_autoexpand); 4406 vd->vdev_expansion_time = gethrestime_sec(); 4407 } 4408 4409 vdev_reopen(tvd); 4410 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 4411 4412 if (!vd->vdev_aux) { 4413 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4414 pvd->vdev_expanding = B_FALSE; 4415 } 4416 4417 if (newstate) 4418 *newstate = vd->vdev_state; 4419 if ((flags & ZFS_ONLINE_UNSPARE) && 4420 !vdev_is_dead(vd) && vd->vdev_parent && 4421 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4422 vd->vdev_parent->vdev_child[0] == vd) 4423 vd->vdev_unspare = B_TRUE; 4424 4425 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 4426 4427 /* XXX - L2ARC 1.0 does not support expansion */ 4428 if (vd->vdev_aux) 4429 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 4430 spa->spa_ccw_fail_time = 0; 4431 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 4432 } 4433 4434 /* Restart initializing if necessary */ 4435 mutex_enter(&vd->vdev_initialize_lock); 4436 if (vdev_writeable(vd) && 4437 vd->vdev_initialize_thread == NULL && 4438 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { 4439 (void) vdev_initialize(vd); 4440 } 4441 mutex_exit(&vd->vdev_initialize_lock); 4442 4443 /* 4444 * Restart trimming if necessary. We do not restart trimming for cache 4445 * devices here. This is triggered by l2arc_rebuild_vdev() 4446 * asynchronously for the whole device or in l2arc_evict() as it evicts 4447 * space for upcoming writes. 4448 */ 4449 mutex_enter(&vd->vdev_trim_lock); 4450 if (vdev_writeable(vd) && !vd->vdev_isl2cache && 4451 vd->vdev_trim_thread == NULL && 4452 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) { 4453 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial, 4454 vd->vdev_trim_secure); 4455 } 4456 mutex_exit(&vd->vdev_trim_lock); 4457 4458 if (wasoffline || 4459 (oldstate < VDEV_STATE_DEGRADED && 4460 vd->vdev_state >= VDEV_STATE_DEGRADED)) { 4461 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 4462 4463 /* 4464 * Asynchronously detach spare vdev if resilver or 4465 * rebuild is not required 4466 */ 4467 if (vd->vdev_unspare && 4468 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4469 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) && 4470 !vdev_rebuild_active(tvd)) 4471 spa_async_request(spa, SPA_ASYNC_DETACH_SPARE); 4472 } 4473 return (spa_vdev_state_exit(spa, vd, 0)); 4474 } 4475 4476 static int 4477 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 4478 { 4479 vdev_t *vd, *tvd; 4480 int error = 0; 4481 uint64_t generation; 4482 metaslab_group_t *mg; 4483 4484 top: 4485 spa_vdev_state_enter(spa, SCL_ALLOC); 4486 4487 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4488 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4489 4490 if (!vd->vdev_ops->vdev_op_leaf) 4491 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4492 4493 if (vd->vdev_ops == &vdev_draid_spare_ops) 4494 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4495 4496 tvd = vd->vdev_top; 4497 mg = tvd->vdev_mg; 4498 generation = spa->spa_config_generation + 1; 4499 4500 /* 4501 * If the device isn't already offline, try to offline it. 4502 */ 4503 if (!vd->vdev_offline) { 4504 /* 4505 * If this device has the only valid copy of some data, 4506 * don't allow it to be offlined. Log devices are always 4507 * expendable. 4508 */ 4509 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4510 vdev_dtl_required(vd)) 4511 return (spa_vdev_state_exit(spa, NULL, 4512 SET_ERROR(EBUSY))); 4513 4514 /* 4515 * If the top-level is a slog and it has had allocations 4516 * then proceed. We check that the vdev's metaslab group 4517 * is not NULL since it's possible that we may have just 4518 * added this vdev but not yet initialized its metaslabs. 4519 */ 4520 if (tvd->vdev_islog && mg != NULL) { 4521 /* 4522 * Prevent any future allocations. 4523 */ 4524 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 4525 metaslab_group_passivate(mg); 4526 (void) spa_vdev_state_exit(spa, vd, 0); 4527 4528 error = spa_reset_logs(spa); 4529 4530 /* 4531 * If the log device was successfully reset but has 4532 * checkpointed data, do not offline it. 4533 */ 4534 if (error == 0 && 4535 tvd->vdev_checkpoint_sm != NULL) { 4536 ASSERT3U(space_map_allocated( 4537 tvd->vdev_checkpoint_sm), !=, 0); 4538 error = ZFS_ERR_CHECKPOINT_EXISTS; 4539 } 4540 4541 spa_vdev_state_enter(spa, SCL_ALLOC); 4542 4543 /* 4544 * Check to see if the config has changed. 4545 */ 4546 if (error || generation != spa->spa_config_generation) { 4547 metaslab_group_activate(mg); 4548 if (error) 4549 return (spa_vdev_state_exit(spa, 4550 vd, error)); 4551 (void) spa_vdev_state_exit(spa, vd, 0); 4552 goto top; 4553 } 4554 ASSERT0(tvd->vdev_stat.vs_alloc); 4555 } 4556 4557 /* 4558 * Offline this device and reopen its top-level vdev. 4559 * If the top-level vdev is a log device then just offline 4560 * it. Otherwise, if this action results in the top-level 4561 * vdev becoming unusable, undo it and fail the request. 4562 */ 4563 vd->vdev_offline = B_TRUE; 4564 vdev_reopen(tvd); 4565 4566 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4567 vdev_is_dead(tvd)) { 4568 vd->vdev_offline = B_FALSE; 4569 vdev_reopen(tvd); 4570 return (spa_vdev_state_exit(spa, NULL, 4571 SET_ERROR(EBUSY))); 4572 } 4573 4574 /* 4575 * Add the device back into the metaslab rotor so that 4576 * once we online the device it's open for business. 4577 */ 4578 if (tvd->vdev_islog && mg != NULL) 4579 metaslab_group_activate(mg); 4580 } 4581 4582 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 4583 4584 return (spa_vdev_state_exit(spa, vd, 0)); 4585 } 4586 4587 int 4588 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 4589 { 4590 int error; 4591 4592 mutex_enter(&spa->spa_vdev_top_lock); 4593 error = vdev_offline_locked(spa, guid, flags); 4594 mutex_exit(&spa->spa_vdev_top_lock); 4595 4596 return (error); 4597 } 4598 4599 /* 4600 * Clear the error counts associated with this vdev. Unlike vdev_online() and 4601 * vdev_offline(), we assume the spa config is locked. We also clear all 4602 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 4603 */ 4604 void 4605 vdev_clear(spa_t *spa, vdev_t *vd) 4606 { 4607 vdev_t *rvd = spa->spa_root_vdev; 4608 4609 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 4610 4611 if (vd == NULL) 4612 vd = rvd; 4613 4614 vd->vdev_stat.vs_read_errors = 0; 4615 vd->vdev_stat.vs_write_errors = 0; 4616 vd->vdev_stat.vs_checksum_errors = 0; 4617 vd->vdev_stat.vs_dio_verify_errors = 0; 4618 vd->vdev_stat.vs_slow_ios = 0; 4619 4620 for (int c = 0; c < vd->vdev_children; c++) 4621 vdev_clear(spa, vd->vdev_child[c]); 4622 4623 /* 4624 * It makes no sense to "clear" an indirect or removed vdev. 4625 */ 4626 if (!vdev_is_concrete(vd) || vd->vdev_removed) 4627 return; 4628 4629 /* 4630 * If we're in the FAULTED state or have experienced failed I/O, then 4631 * clear the persistent state and attempt to reopen the device. We 4632 * also mark the vdev config dirty, so that the new faulted state is 4633 * written out to disk. 4634 */ 4635 if (vd->vdev_faulted || vd->vdev_degraded || 4636 !vdev_readable(vd) || !vdev_writeable(vd)) { 4637 /* 4638 * When reopening in response to a clear event, it may be due to 4639 * a fmadm repair request. In this case, if the device is 4640 * still broken, we want to still post the ereport again. 4641 */ 4642 vd->vdev_forcefault = B_TRUE; 4643 4644 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 4645 vd->vdev_cant_read = B_FALSE; 4646 vd->vdev_cant_write = B_FALSE; 4647 vd->vdev_stat.vs_aux = 0; 4648 4649 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 4650 4651 vd->vdev_forcefault = B_FALSE; 4652 4653 if (vd != rvd && vdev_writeable(vd->vdev_top)) 4654 vdev_state_dirty(vd->vdev_top); 4655 4656 /* If a resilver isn't required, check if vdevs can be culled */ 4657 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) && 4658 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4659 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool)) 4660 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4661 4662 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 4663 } 4664 4665 /* 4666 * When clearing a FMA-diagnosed fault, we always want to 4667 * unspare the device, as we assume that the original spare was 4668 * done in response to the FMA fault. 4669 */ 4670 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 4671 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4672 vd->vdev_parent->vdev_child[0] == vd) 4673 vd->vdev_unspare = B_TRUE; 4674 4675 /* Clear recent error events cache (i.e. duplicate events tracking) */ 4676 zfs_ereport_clear(spa, vd); 4677 } 4678 4679 boolean_t 4680 vdev_is_dead(vdev_t *vd) 4681 { 4682 /* 4683 * Holes and missing devices are always considered "dead". 4684 * This simplifies the code since we don't have to check for 4685 * these types of devices in the various code paths. 4686 * Instead we rely on the fact that we skip over dead devices 4687 * before issuing I/O to them. 4688 */ 4689 return (vd->vdev_state < VDEV_STATE_DEGRADED || 4690 vd->vdev_ops == &vdev_hole_ops || 4691 vd->vdev_ops == &vdev_missing_ops); 4692 } 4693 4694 boolean_t 4695 vdev_readable(vdev_t *vd) 4696 { 4697 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 4698 } 4699 4700 boolean_t 4701 vdev_writeable(vdev_t *vd) 4702 { 4703 return (!vdev_is_dead(vd) && !vd->vdev_cant_write && 4704 vdev_is_concrete(vd)); 4705 } 4706 4707 boolean_t 4708 vdev_allocatable(vdev_t *vd) 4709 { 4710 uint64_t state = vd->vdev_state; 4711 4712 /* 4713 * We currently allow allocations from vdevs which may be in the 4714 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 4715 * fails to reopen then we'll catch it later when we're holding 4716 * the proper locks. Note that we have to get the vdev state 4717 * in a local variable because although it changes atomically, 4718 * we're asking two separate questions about it. 4719 */ 4720 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 4721 !vd->vdev_cant_write && vdev_is_concrete(vd) && 4722 vd->vdev_mg->mg_initialized); 4723 } 4724 4725 boolean_t 4726 vdev_accessible(vdev_t *vd, zio_t *zio) 4727 { 4728 ASSERT(zio->io_vd == vd); 4729 4730 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 4731 return (B_FALSE); 4732 4733 if (zio->io_type == ZIO_TYPE_READ) 4734 return (!vd->vdev_cant_read); 4735 4736 if (zio->io_type == ZIO_TYPE_WRITE) 4737 return (!vd->vdev_cant_write); 4738 4739 return (B_TRUE); 4740 } 4741 4742 static void 4743 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs) 4744 { 4745 /* 4746 * Exclude the dRAID spare when aggregating to avoid double counting 4747 * the ops and bytes. These IOs are counted by the physical leaves. 4748 */ 4749 if (cvd->vdev_ops == &vdev_draid_spare_ops) 4750 return; 4751 4752 for (int t = 0; t < VS_ZIO_TYPES; t++) { 4753 vs->vs_ops[t] += cvs->vs_ops[t]; 4754 vs->vs_bytes[t] += cvs->vs_bytes[t]; 4755 } 4756 4757 cvs->vs_scan_removing = cvd->vdev_removing; 4758 } 4759 4760 /* 4761 * Get extended stats 4762 */ 4763 static void 4764 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx) 4765 { 4766 (void) cvd; 4767 4768 int t, b; 4769 for (t = 0; t < ZIO_TYPES; t++) { 4770 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++) 4771 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b]; 4772 4773 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) { 4774 vsx->vsx_total_histo[t][b] += 4775 cvsx->vsx_total_histo[t][b]; 4776 } 4777 } 4778 4779 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4780 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) { 4781 vsx->vsx_queue_histo[t][b] += 4782 cvsx->vsx_queue_histo[t][b]; 4783 } 4784 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t]; 4785 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t]; 4786 4787 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++) 4788 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b]; 4789 4790 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++) 4791 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b]; 4792 } 4793 4794 } 4795 4796 boolean_t 4797 vdev_is_spacemap_addressable(vdev_t *vd) 4798 { 4799 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) 4800 return (B_TRUE); 4801 4802 /* 4803 * If double-word space map entries are not enabled we assume 4804 * 47 bits of the space map entry are dedicated to the entry's 4805 * offset (see SM_OFFSET_BITS in space_map.h). We then use that 4806 * to calculate the maximum address that can be described by a 4807 * space map entry for the given device. 4808 */ 4809 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; 4810 4811 if (shift >= 63) /* detect potential overflow */ 4812 return (B_TRUE); 4813 4814 return (vd->vdev_asize < (1ULL << shift)); 4815 } 4816 4817 /* 4818 * Get statistics for the given vdev. 4819 */ 4820 static void 4821 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4822 { 4823 int t; 4824 /* 4825 * If we're getting stats on the root vdev, aggregate the I/O counts 4826 * over all top-level vdevs (i.e. the direct children of the root). 4827 */ 4828 if (!vd->vdev_ops->vdev_op_leaf) { 4829 if (vs) { 4830 memset(vs->vs_ops, 0, sizeof (vs->vs_ops)); 4831 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes)); 4832 } 4833 if (vsx) 4834 memset(vsx, 0, sizeof (*vsx)); 4835 4836 for (int c = 0; c < vd->vdev_children; c++) { 4837 vdev_t *cvd = vd->vdev_child[c]; 4838 vdev_stat_t *cvs = &cvd->vdev_stat; 4839 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex; 4840 4841 vdev_get_stats_ex_impl(cvd, cvs, cvsx); 4842 if (vs) 4843 vdev_get_child_stat(cvd, vs, cvs); 4844 if (vsx) 4845 vdev_get_child_stat_ex(cvd, vsx, cvsx); 4846 } 4847 } else { 4848 /* 4849 * We're a leaf. Just copy our ZIO active queue stats in. The 4850 * other leaf stats are updated in vdev_stat_update(). 4851 */ 4852 if (!vsx) 4853 return; 4854 4855 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex)); 4856 4857 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4858 vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t]; 4859 vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t); 4860 } 4861 } 4862 } 4863 4864 void 4865 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4866 { 4867 vdev_t *tvd = vd->vdev_top; 4868 mutex_enter(&vd->vdev_stat_lock); 4869 if (vs) { 4870 memcpy(vs, &vd->vdev_stat, sizeof (*vs)); 4871 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 4872 vs->vs_state = vd->vdev_state; 4873 vs->vs_rsize = vdev_get_min_asize(vd); 4874 4875 if (vd->vdev_ops->vdev_op_leaf) { 4876 vs->vs_pspace = vd->vdev_psize; 4877 vs->vs_rsize += VDEV_LABEL_START_SIZE + 4878 VDEV_LABEL_END_SIZE; 4879 /* 4880 * Report initializing progress. Since we don't 4881 * have the initializing locks held, this is only 4882 * an estimate (although a fairly accurate one). 4883 */ 4884 vs->vs_initialize_bytes_done = 4885 vd->vdev_initialize_bytes_done; 4886 vs->vs_initialize_bytes_est = 4887 vd->vdev_initialize_bytes_est; 4888 vs->vs_initialize_state = vd->vdev_initialize_state; 4889 vs->vs_initialize_action_time = 4890 vd->vdev_initialize_action_time; 4891 4892 /* 4893 * Report manual TRIM progress. Since we don't have 4894 * the manual TRIM locks held, this is only an 4895 * estimate (although fairly accurate one). 4896 */ 4897 vs->vs_trim_notsup = !vd->vdev_has_trim; 4898 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done; 4899 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est; 4900 vs->vs_trim_state = vd->vdev_trim_state; 4901 vs->vs_trim_action_time = vd->vdev_trim_action_time; 4902 4903 /* Set when there is a deferred resilver. */ 4904 vs->vs_resilver_deferred = vd->vdev_resilver_deferred; 4905 } 4906 4907 /* 4908 * Report expandable space on top-level, non-auxiliary devices 4909 * only. The expandable space is reported in terms of metaslab 4910 * sized units since that determines how much space the pool 4911 * can expand. 4912 */ 4913 if (vd->vdev_aux == NULL && tvd != NULL) { 4914 vs->vs_esize = P2ALIGN_TYPED( 4915 vd->vdev_max_asize - vd->vdev_asize, 4916 1ULL << tvd->vdev_ms_shift, uint64_t); 4917 } 4918 4919 vs->vs_configured_ashift = vd->vdev_top != NULL 4920 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift; 4921 vs->vs_logical_ashift = vd->vdev_logical_ashift; 4922 if (vd->vdev_physical_ashift <= ASHIFT_MAX) 4923 vs->vs_physical_ashift = vd->vdev_physical_ashift; 4924 else 4925 vs->vs_physical_ashift = 0; 4926 4927 /* 4928 * Report fragmentation and rebuild progress for top-level, 4929 * non-auxiliary, concrete devices. 4930 */ 4931 if (vd->vdev_aux == NULL && vd == vd->vdev_top && 4932 vdev_is_concrete(vd)) { 4933 /* 4934 * The vdev fragmentation rating doesn't take into 4935 * account the embedded slog metaslab (vdev_log_mg). 4936 * Since it's only one metaslab, it would have a tiny 4937 * impact on the overall fragmentation. 4938 */ 4939 vs->vs_fragmentation = (vd->vdev_mg != NULL) ? 4940 vd->vdev_mg->mg_fragmentation : 0; 4941 } 4942 vs->vs_noalloc = MAX(vd->vdev_noalloc, 4943 tvd ? tvd->vdev_noalloc : 0); 4944 } 4945 4946 vdev_get_stats_ex_impl(vd, vs, vsx); 4947 mutex_exit(&vd->vdev_stat_lock); 4948 } 4949 4950 void 4951 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 4952 { 4953 return (vdev_get_stats_ex(vd, vs, NULL)); 4954 } 4955 4956 void 4957 vdev_clear_stats(vdev_t *vd) 4958 { 4959 mutex_enter(&vd->vdev_stat_lock); 4960 vd->vdev_stat.vs_space = 0; 4961 vd->vdev_stat.vs_dspace = 0; 4962 vd->vdev_stat.vs_alloc = 0; 4963 mutex_exit(&vd->vdev_stat_lock); 4964 } 4965 4966 void 4967 vdev_scan_stat_init(vdev_t *vd) 4968 { 4969 vdev_stat_t *vs = &vd->vdev_stat; 4970 4971 for (int c = 0; c < vd->vdev_children; c++) 4972 vdev_scan_stat_init(vd->vdev_child[c]); 4973 4974 mutex_enter(&vd->vdev_stat_lock); 4975 vs->vs_scan_processed = 0; 4976 mutex_exit(&vd->vdev_stat_lock); 4977 } 4978 4979 void 4980 vdev_stat_update(zio_t *zio, uint64_t psize) 4981 { 4982 spa_t *spa = zio->io_spa; 4983 vdev_t *rvd = spa->spa_root_vdev; 4984 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 4985 vdev_t *pvd; 4986 uint64_t txg = zio->io_txg; 4987 /* Suppress ASAN false positive */ 4988 #ifdef __SANITIZE_ADDRESS__ 4989 vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL; 4990 vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL; 4991 #else 4992 vdev_stat_t *vs = &vd->vdev_stat; 4993 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex; 4994 #endif 4995 zio_type_t type = zio->io_type; 4996 int flags = zio->io_flags; 4997 4998 /* 4999 * If this i/o is a gang leader, it didn't do any actual work. 5000 */ 5001 if (zio->io_gang_tree) 5002 return; 5003 5004 if (zio->io_error == 0) { 5005 /* 5006 * If this is a root i/o, don't count it -- we've already 5007 * counted the top-level vdevs, and vdev_get_stats() will 5008 * aggregate them when asked. This reduces contention on 5009 * the root vdev_stat_lock and implicitly handles blocks 5010 * that compress away to holes, for which there is no i/o. 5011 * (Holes never create vdev children, so all the counters 5012 * remain zero, which is what we want.) 5013 * 5014 * Note: this only applies to successful i/o (io_error == 0) 5015 * because unlike i/o counts, errors are not additive. 5016 * When reading a ditto block, for example, failure of 5017 * one top-level vdev does not imply a root-level error. 5018 */ 5019 if (vd == rvd) 5020 return; 5021 5022 ASSERT(vd == zio->io_vd); 5023 5024 if (flags & ZIO_FLAG_IO_BYPASS) 5025 return; 5026 5027 mutex_enter(&vd->vdev_stat_lock); 5028 5029 if (flags & ZIO_FLAG_IO_REPAIR) { 5030 /* 5031 * Repair is the result of a resilver issued by the 5032 * scan thread (spa_sync). 5033 */ 5034 if (flags & ZIO_FLAG_SCAN_THREAD) { 5035 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 5036 dsl_scan_phys_t *scn_phys = &scn->scn_phys; 5037 uint64_t *processed = &scn_phys->scn_processed; 5038 5039 if (vd->vdev_ops->vdev_op_leaf) 5040 atomic_add_64(processed, psize); 5041 vs->vs_scan_processed += psize; 5042 } 5043 5044 /* 5045 * Repair is the result of a rebuild issued by the 5046 * rebuild thread (vdev_rebuild_thread). To avoid 5047 * double counting repaired bytes the virtual dRAID 5048 * spare vdev is excluded from the processed bytes. 5049 */ 5050 if (zio->io_priority == ZIO_PRIORITY_REBUILD) { 5051 vdev_t *tvd = vd->vdev_top; 5052 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config; 5053 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 5054 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt; 5055 5056 if (vd->vdev_ops->vdev_op_leaf && 5057 vd->vdev_ops != &vdev_draid_spare_ops) { 5058 atomic_add_64(rebuilt, psize); 5059 } 5060 vs->vs_rebuild_processed += psize; 5061 } 5062 5063 if (flags & ZIO_FLAG_SELF_HEAL) 5064 vs->vs_self_healed += psize; 5065 } 5066 5067 /* 5068 * The bytes/ops/histograms are recorded at the leaf level and 5069 * aggregated into the higher level vdevs in vdev_get_stats(). 5070 */ 5071 if (vd->vdev_ops->vdev_op_leaf && 5072 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) { 5073 zio_type_t vs_type = type; 5074 zio_priority_t priority = zio->io_priority; 5075 5076 /* 5077 * TRIM ops and bytes are reported to user space as 5078 * ZIO_TYPE_FLUSH. This is done to preserve the 5079 * vdev_stat_t structure layout for user space. 5080 */ 5081 if (type == ZIO_TYPE_TRIM) 5082 vs_type = ZIO_TYPE_FLUSH; 5083 5084 /* 5085 * Solely for the purposes of 'zpool iostat -lqrw' 5086 * reporting use the priority to categorize the IO. 5087 * Only the following are reported to user space: 5088 * 5089 * ZIO_PRIORITY_SYNC_READ, 5090 * ZIO_PRIORITY_SYNC_WRITE, 5091 * ZIO_PRIORITY_ASYNC_READ, 5092 * ZIO_PRIORITY_ASYNC_WRITE, 5093 * ZIO_PRIORITY_SCRUB, 5094 * ZIO_PRIORITY_TRIM, 5095 * ZIO_PRIORITY_REBUILD. 5096 */ 5097 if (priority == ZIO_PRIORITY_INITIALIZING) { 5098 ASSERT3U(type, ==, ZIO_TYPE_WRITE); 5099 priority = ZIO_PRIORITY_ASYNC_WRITE; 5100 } else if (priority == ZIO_PRIORITY_REMOVAL) { 5101 priority = ((type == ZIO_TYPE_WRITE) ? 5102 ZIO_PRIORITY_ASYNC_WRITE : 5103 ZIO_PRIORITY_ASYNC_READ); 5104 } 5105 5106 vs->vs_ops[vs_type]++; 5107 vs->vs_bytes[vs_type] += psize; 5108 5109 if (flags & ZIO_FLAG_DELEGATED) { 5110 vsx->vsx_agg_histo[priority] 5111 [RQ_HISTO(zio->io_size)]++; 5112 } else { 5113 vsx->vsx_ind_histo[priority] 5114 [RQ_HISTO(zio->io_size)]++; 5115 } 5116 5117 if (zio->io_delta && zio->io_delay) { 5118 vsx->vsx_queue_histo[priority] 5119 [L_HISTO(zio->io_delta - zio->io_delay)]++; 5120 vsx->vsx_disk_histo[type] 5121 [L_HISTO(zio->io_delay)]++; 5122 vsx->vsx_total_histo[type] 5123 [L_HISTO(zio->io_delta)]++; 5124 } 5125 } 5126 5127 mutex_exit(&vd->vdev_stat_lock); 5128 return; 5129 } 5130 5131 if (flags & ZIO_FLAG_SPECULATIVE) 5132 return; 5133 5134 /* 5135 * If this is an I/O error that is going to be retried, then ignore the 5136 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 5137 * hard errors, when in reality they can happen for any number of 5138 * innocuous reasons (bus resets, MPxIO link failure, etc). 5139 */ 5140 if (zio->io_error == EIO && 5141 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 5142 return; 5143 5144 /* 5145 * Intent logs writes won't propagate their error to the root 5146 * I/O so don't mark these types of failures as pool-level 5147 * errors. 5148 */ 5149 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 5150 return; 5151 5152 if (type == ZIO_TYPE_WRITE && txg != 0 && 5153 (!(flags & ZIO_FLAG_IO_REPAIR) || 5154 (flags & ZIO_FLAG_SCAN_THREAD) || 5155 spa->spa_claiming)) { 5156 /* 5157 * This is either a normal write (not a repair), or it's 5158 * a repair induced by the scrub thread, or it's a repair 5159 * made by zil_claim() during spa_load() in the first txg. 5160 * In the normal case, we commit the DTL change in the same 5161 * txg as the block was born. In the scrub-induced repair 5162 * case, we know that scrubs run in first-pass syncing context, 5163 * so we commit the DTL change in spa_syncing_txg(spa). 5164 * In the zil_claim() case, we commit in spa_first_txg(spa). 5165 * 5166 * We currently do not make DTL entries for failed spontaneous 5167 * self-healing writes triggered by normal (non-scrubbing) 5168 * reads, because we have no transactional context in which to 5169 * do so -- and it's not clear that it'd be desirable anyway. 5170 */ 5171 if (vd->vdev_ops->vdev_op_leaf) { 5172 uint64_t commit_txg = txg; 5173 if (flags & ZIO_FLAG_SCAN_THREAD) { 5174 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 5175 ASSERT(spa_sync_pass(spa) == 1); 5176 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 5177 commit_txg = spa_syncing_txg(spa); 5178 } else if (spa->spa_claiming) { 5179 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 5180 commit_txg = spa_first_txg(spa); 5181 } 5182 ASSERT(commit_txg >= spa_syncing_txg(spa)); 5183 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 5184 return; 5185 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 5186 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 5187 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 5188 } 5189 if (vd != rvd) 5190 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 5191 } 5192 } 5193 5194 int64_t 5195 vdev_deflated_space(vdev_t *vd, int64_t space) 5196 { 5197 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0); 5198 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 5199 5200 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio); 5201 } 5202 5203 /* 5204 * Update the in-core space usage stats for this vdev, its metaslab class, 5205 * and the root vdev. 5206 */ 5207 void 5208 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 5209 int64_t space_delta) 5210 { 5211 (void) defer_delta; 5212 int64_t dspace_delta; 5213 spa_t *spa = vd->vdev_spa; 5214 vdev_t *rvd = spa->spa_root_vdev; 5215 5216 ASSERT(vd == vd->vdev_top); 5217 5218 /* 5219 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 5220 * factor. We must calculate this here and not at the root vdev 5221 * because the root vdev's psize-to-asize is simply the max of its 5222 * children's, thus not accurate enough for us. 5223 */ 5224 dspace_delta = vdev_deflated_space(vd, space_delta); 5225 5226 mutex_enter(&vd->vdev_stat_lock); 5227 /* ensure we won't underflow */ 5228 if (alloc_delta < 0) { 5229 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta); 5230 } 5231 5232 vd->vdev_stat.vs_alloc += alloc_delta; 5233 vd->vdev_stat.vs_space += space_delta; 5234 vd->vdev_stat.vs_dspace += dspace_delta; 5235 mutex_exit(&vd->vdev_stat_lock); 5236 5237 /* every class but log contributes to root space stats */ 5238 if (vd->vdev_mg != NULL && !vd->vdev_islog) { 5239 ASSERT(!vd->vdev_isl2cache); 5240 mutex_enter(&rvd->vdev_stat_lock); 5241 rvd->vdev_stat.vs_alloc += alloc_delta; 5242 rvd->vdev_stat.vs_space += space_delta; 5243 rvd->vdev_stat.vs_dspace += dspace_delta; 5244 mutex_exit(&rvd->vdev_stat_lock); 5245 } 5246 /* Note: metaslab_class_space_update moved to metaslab_space_update */ 5247 } 5248 5249 /* 5250 * Mark a top-level vdev's config as dirty, placing it on the dirty list 5251 * so that it will be written out next time the vdev configuration is synced. 5252 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 5253 */ 5254 void 5255 vdev_config_dirty(vdev_t *vd) 5256 { 5257 spa_t *spa = vd->vdev_spa; 5258 vdev_t *rvd = spa->spa_root_vdev; 5259 int c; 5260 5261 ASSERT(spa_writeable(spa)); 5262 5263 /* 5264 * If this is an aux vdev (as with l2cache and spare devices), then we 5265 * update the vdev config manually and set the sync flag. 5266 */ 5267 if (vd->vdev_aux != NULL) { 5268 spa_aux_vdev_t *sav = vd->vdev_aux; 5269 nvlist_t **aux; 5270 uint_t naux; 5271 5272 for (c = 0; c < sav->sav_count; c++) { 5273 if (sav->sav_vdevs[c] == vd) 5274 break; 5275 } 5276 5277 if (c == sav->sav_count) { 5278 /* 5279 * We're being removed. There's nothing more to do. 5280 */ 5281 ASSERT(sav->sav_sync == B_TRUE); 5282 return; 5283 } 5284 5285 sav->sav_sync = B_TRUE; 5286 5287 if (nvlist_lookup_nvlist_array(sav->sav_config, 5288 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 5289 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 5290 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 5291 } 5292 5293 ASSERT(c < naux); 5294 5295 /* 5296 * Setting the nvlist in the middle if the array is a little 5297 * sketchy, but it will work. 5298 */ 5299 nvlist_free(aux[c]); 5300 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 5301 5302 return; 5303 } 5304 5305 /* 5306 * The dirty list is protected by the SCL_CONFIG lock. The caller 5307 * must either hold SCL_CONFIG as writer, or must be the sync thread 5308 * (which holds SCL_CONFIG as reader). There's only one sync thread, 5309 * so this is sufficient to ensure mutual exclusion. 5310 */ 5311 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 5312 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5313 spa_config_held(spa, SCL_CONFIG, RW_READER))); 5314 5315 if (vd == rvd) { 5316 for (c = 0; c < rvd->vdev_children; c++) 5317 vdev_config_dirty(rvd->vdev_child[c]); 5318 } else { 5319 ASSERT(vd == vd->vdev_top); 5320 5321 if (!list_link_active(&vd->vdev_config_dirty_node) && 5322 vdev_is_concrete(vd)) { 5323 list_insert_head(&spa->spa_config_dirty_list, vd); 5324 } 5325 } 5326 } 5327 5328 void 5329 vdev_config_clean(vdev_t *vd) 5330 { 5331 spa_t *spa = vd->vdev_spa; 5332 5333 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 5334 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5335 spa_config_held(spa, SCL_CONFIG, RW_READER))); 5336 5337 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 5338 list_remove(&spa->spa_config_dirty_list, vd); 5339 } 5340 5341 /* 5342 * Mark a top-level vdev's state as dirty, so that the next pass of 5343 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 5344 * the state changes from larger config changes because they require 5345 * much less locking, and are often needed for administrative actions. 5346 */ 5347 void 5348 vdev_state_dirty(vdev_t *vd) 5349 { 5350 spa_t *spa = vd->vdev_spa; 5351 5352 ASSERT(spa_writeable(spa)); 5353 ASSERT(vd == vd->vdev_top); 5354 5355 /* 5356 * The state list is protected by the SCL_STATE lock. The caller 5357 * must either hold SCL_STATE as writer, or must be the sync thread 5358 * (which holds SCL_STATE as reader). There's only one sync thread, 5359 * so this is sufficient to ensure mutual exclusion. 5360 */ 5361 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 5362 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5363 spa_config_held(spa, SCL_STATE, RW_READER))); 5364 5365 if (!list_link_active(&vd->vdev_state_dirty_node) && 5366 vdev_is_concrete(vd)) 5367 list_insert_head(&spa->spa_state_dirty_list, vd); 5368 } 5369 5370 void 5371 vdev_state_clean(vdev_t *vd) 5372 { 5373 spa_t *spa = vd->vdev_spa; 5374 5375 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 5376 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5377 spa_config_held(spa, SCL_STATE, RW_READER))); 5378 5379 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 5380 list_remove(&spa->spa_state_dirty_list, vd); 5381 } 5382 5383 /* 5384 * Propagate vdev state up from children to parent. 5385 */ 5386 void 5387 vdev_propagate_state(vdev_t *vd) 5388 { 5389 spa_t *spa = vd->vdev_spa; 5390 vdev_t *rvd = spa->spa_root_vdev; 5391 int degraded = 0, faulted = 0; 5392 int corrupted = 0; 5393 vdev_t *child; 5394 5395 if (vd->vdev_children > 0) { 5396 for (int c = 0; c < vd->vdev_children; c++) { 5397 child = vd->vdev_child[c]; 5398 5399 /* 5400 * Don't factor holes or indirect vdevs into the 5401 * decision. 5402 */ 5403 if (!vdev_is_concrete(child)) 5404 continue; 5405 5406 if (!vdev_readable(child) || 5407 (!vdev_writeable(child) && spa_writeable(spa))) { 5408 /* 5409 * Root special: if there is a top-level log 5410 * device, treat the root vdev as if it were 5411 * degraded. 5412 */ 5413 if (child->vdev_islog && vd == rvd) 5414 degraded++; 5415 else 5416 faulted++; 5417 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 5418 degraded++; 5419 } 5420 5421 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 5422 corrupted++; 5423 } 5424 5425 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 5426 5427 /* 5428 * Root special: if there is a top-level vdev that cannot be 5429 * opened due to corrupted metadata, then propagate the root 5430 * vdev's aux state as 'corrupt' rather than 'insufficient 5431 * replicas'. 5432 */ 5433 if (corrupted && vd == rvd && 5434 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 5435 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 5436 VDEV_AUX_CORRUPT_DATA); 5437 } 5438 5439 if (vd->vdev_parent) 5440 vdev_propagate_state(vd->vdev_parent); 5441 } 5442 5443 /* 5444 * Set a vdev's state. If this is during an open, we don't update the parent 5445 * state, because we're in the process of opening children depth-first. 5446 * Otherwise, we propagate the change to the parent. 5447 * 5448 * If this routine places a device in a faulted state, an appropriate ereport is 5449 * generated. 5450 */ 5451 void 5452 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 5453 { 5454 uint64_t save_state; 5455 spa_t *spa = vd->vdev_spa; 5456 5457 if (state == vd->vdev_state) { 5458 /* 5459 * Since vdev_offline() code path is already in an offline 5460 * state we can miss a statechange event to OFFLINE. Check 5461 * the previous state to catch this condition. 5462 */ 5463 if (vd->vdev_ops->vdev_op_leaf && 5464 (state == VDEV_STATE_OFFLINE) && 5465 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) { 5466 /* post an offline state change */ 5467 zfs_post_state_change(spa, vd, vd->vdev_prevstate); 5468 } 5469 vd->vdev_stat.vs_aux = aux; 5470 return; 5471 } 5472 5473 save_state = vd->vdev_state; 5474 5475 vd->vdev_state = state; 5476 vd->vdev_stat.vs_aux = aux; 5477 5478 /* 5479 * If we are setting the vdev state to anything but an open state, then 5480 * always close the underlying device unless the device has requested 5481 * a delayed close (i.e. we're about to remove or fault the device). 5482 * Otherwise, we keep accessible but invalid devices open forever. 5483 * We don't call vdev_close() itself, because that implies some extra 5484 * checks (offline, etc) that we don't want here. This is limited to 5485 * leaf devices, because otherwise closing the device will affect other 5486 * children. 5487 */ 5488 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 5489 vd->vdev_ops->vdev_op_leaf) 5490 vd->vdev_ops->vdev_op_close(vd); 5491 5492 if (vd->vdev_removed && 5493 state == VDEV_STATE_CANT_OPEN && 5494 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 5495 /* 5496 * If the previous state is set to VDEV_STATE_REMOVED, then this 5497 * device was previously marked removed and someone attempted to 5498 * reopen it. If this failed due to a nonexistent device, then 5499 * keep the device in the REMOVED state. We also let this be if 5500 * it is one of our special test online cases, which is only 5501 * attempting to online the device and shouldn't generate an FMA 5502 * fault. 5503 */ 5504 vd->vdev_state = VDEV_STATE_REMOVED; 5505 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 5506 } else if (state == VDEV_STATE_REMOVED) { 5507 vd->vdev_removed = B_TRUE; 5508 } else if (state == VDEV_STATE_CANT_OPEN) { 5509 /* 5510 * If we fail to open a vdev during an import or recovery, we 5511 * mark it as "not available", which signifies that it was 5512 * never there to begin with. Failure to open such a device 5513 * is not considered an error. 5514 */ 5515 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 5516 spa_load_state(spa) == SPA_LOAD_RECOVER) && 5517 vd->vdev_ops->vdev_op_leaf) 5518 vd->vdev_not_present = 1; 5519 5520 /* 5521 * Post the appropriate ereport. If the 'prevstate' field is 5522 * set to something other than VDEV_STATE_UNKNOWN, it indicates 5523 * that this is part of a vdev_reopen(). In this case, we don't 5524 * want to post the ereport if the device was already in the 5525 * CANT_OPEN state beforehand. 5526 * 5527 * If the 'checkremove' flag is set, then this is an attempt to 5528 * online the device in response to an insertion event. If we 5529 * hit this case, then we have detected an insertion event for a 5530 * faulted or offline device that wasn't in the removed state. 5531 * In this scenario, we don't post an ereport because we are 5532 * about to replace the device, or attempt an online with 5533 * vdev_forcefault, which will generate the fault for us. 5534 */ 5535 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 5536 !vd->vdev_not_present && !vd->vdev_checkremove && 5537 vd != spa->spa_root_vdev) { 5538 const char *class; 5539 5540 switch (aux) { 5541 case VDEV_AUX_OPEN_FAILED: 5542 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 5543 break; 5544 case VDEV_AUX_CORRUPT_DATA: 5545 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 5546 break; 5547 case VDEV_AUX_NO_REPLICAS: 5548 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 5549 break; 5550 case VDEV_AUX_BAD_GUID_SUM: 5551 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 5552 break; 5553 case VDEV_AUX_TOO_SMALL: 5554 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 5555 break; 5556 case VDEV_AUX_BAD_LABEL: 5557 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 5558 break; 5559 case VDEV_AUX_BAD_ASHIFT: 5560 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT; 5561 break; 5562 default: 5563 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 5564 } 5565 5566 (void) zfs_ereport_post(class, spa, vd, NULL, NULL, 5567 save_state); 5568 } 5569 5570 /* Erase any notion of persistent removed state */ 5571 vd->vdev_removed = B_FALSE; 5572 } else { 5573 vd->vdev_removed = B_FALSE; 5574 } 5575 5576 /* 5577 * Notify ZED of any significant state-change on a leaf vdev. 5578 * 5579 */ 5580 if (vd->vdev_ops->vdev_op_leaf) { 5581 /* preserve original state from a vdev_reopen() */ 5582 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) && 5583 (vd->vdev_prevstate != vd->vdev_state) && 5584 (save_state <= VDEV_STATE_CLOSED)) 5585 save_state = vd->vdev_prevstate; 5586 5587 /* filter out state change due to initial vdev_open */ 5588 if (save_state > VDEV_STATE_CLOSED) 5589 zfs_post_state_change(spa, vd, save_state); 5590 } 5591 5592 if (!isopen && vd->vdev_parent) 5593 vdev_propagate_state(vd->vdev_parent); 5594 } 5595 5596 boolean_t 5597 vdev_children_are_offline(vdev_t *vd) 5598 { 5599 ASSERT(!vd->vdev_ops->vdev_op_leaf); 5600 5601 for (uint64_t i = 0; i < vd->vdev_children; i++) { 5602 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) 5603 return (B_FALSE); 5604 } 5605 5606 return (B_TRUE); 5607 } 5608 5609 /* 5610 * Check the vdev configuration to ensure that it's capable of supporting 5611 * a root pool. We do not support partial configuration. 5612 */ 5613 boolean_t 5614 vdev_is_bootable(vdev_t *vd) 5615 { 5616 if (!vd->vdev_ops->vdev_op_leaf) { 5617 const char *vdev_type = vd->vdev_ops->vdev_op_type; 5618 5619 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) 5620 return (B_FALSE); 5621 } 5622 5623 for (int c = 0; c < vd->vdev_children; c++) { 5624 if (!vdev_is_bootable(vd->vdev_child[c])) 5625 return (B_FALSE); 5626 } 5627 return (B_TRUE); 5628 } 5629 5630 boolean_t 5631 vdev_is_concrete(vdev_t *vd) 5632 { 5633 vdev_ops_t *ops = vd->vdev_ops; 5634 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || 5635 ops == &vdev_missing_ops || ops == &vdev_root_ops) { 5636 return (B_FALSE); 5637 } else { 5638 return (B_TRUE); 5639 } 5640 } 5641 5642 /* 5643 * Determine if a log device has valid content. If the vdev was 5644 * removed or faulted in the MOS config then we know that 5645 * the content on the log device has already been written to the pool. 5646 */ 5647 boolean_t 5648 vdev_log_state_valid(vdev_t *vd) 5649 { 5650 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 5651 !vd->vdev_removed) 5652 return (B_TRUE); 5653 5654 for (int c = 0; c < vd->vdev_children; c++) 5655 if (vdev_log_state_valid(vd->vdev_child[c])) 5656 return (B_TRUE); 5657 5658 return (B_FALSE); 5659 } 5660 5661 /* 5662 * Expand a vdev if possible. 5663 */ 5664 void 5665 vdev_expand(vdev_t *vd, uint64_t txg) 5666 { 5667 ASSERT(vd->vdev_top == vd); 5668 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5669 ASSERT(vdev_is_concrete(vd)); 5670 5671 vdev_set_deflate_ratio(vd); 5672 5673 if ((vd->vdev_spa->spa_raidz_expand == NULL || 5674 vd->vdev_spa->spa_raidz_expand->vre_vdev_id != vd->vdev_id) && 5675 (vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && 5676 vdev_is_concrete(vd)) { 5677 vdev_metaslab_group_create(vd); 5678 VERIFY(vdev_metaslab_init(vd, txg) == 0); 5679 vdev_config_dirty(vd); 5680 } 5681 } 5682 5683 /* 5684 * Split a vdev. 5685 */ 5686 void 5687 vdev_split(vdev_t *vd) 5688 { 5689 vdev_t *cvd, *pvd = vd->vdev_parent; 5690 5691 VERIFY3U(pvd->vdev_children, >, 1); 5692 5693 vdev_remove_child(pvd, vd); 5694 vdev_compact_children(pvd); 5695 5696 ASSERT3P(pvd->vdev_child, !=, NULL); 5697 5698 cvd = pvd->vdev_child[0]; 5699 if (pvd->vdev_children == 1) { 5700 vdev_remove_parent(cvd); 5701 cvd->vdev_splitting = B_TRUE; 5702 } 5703 vdev_propagate_state(cvd); 5704 } 5705 5706 void 5707 vdev_deadman(vdev_t *vd, const char *tag) 5708 { 5709 for (int c = 0; c < vd->vdev_children; c++) { 5710 vdev_t *cvd = vd->vdev_child[c]; 5711 5712 vdev_deadman(cvd, tag); 5713 } 5714 5715 if (vd->vdev_ops->vdev_op_leaf) { 5716 vdev_queue_t *vq = &vd->vdev_queue; 5717 5718 mutex_enter(&vq->vq_lock); 5719 if (vq->vq_active > 0) { 5720 spa_t *spa = vd->vdev_spa; 5721 zio_t *fio; 5722 uint64_t delta; 5723 5724 zfs_dbgmsg("slow vdev: %s has %u active IOs", 5725 vd->vdev_path, vq->vq_active); 5726 5727 /* 5728 * Look at the head of all the pending queues, 5729 * if any I/O has been outstanding for longer than 5730 * the spa_deadman_synctime invoke the deadman logic. 5731 */ 5732 fio = list_head(&vq->vq_active_list); 5733 delta = gethrtime() - fio->io_timestamp; 5734 if (delta > spa_deadman_synctime(spa)) 5735 zio_deadman(fio, tag); 5736 } 5737 mutex_exit(&vq->vq_lock); 5738 } 5739 } 5740 5741 void 5742 vdev_defer_resilver(vdev_t *vd) 5743 { 5744 ASSERT(vd->vdev_ops->vdev_op_leaf); 5745 5746 vd->vdev_resilver_deferred = B_TRUE; 5747 vd->vdev_spa->spa_resilver_deferred = B_TRUE; 5748 } 5749 5750 /* 5751 * Clears the resilver deferred flag on all leaf devs under vd. Returns 5752 * B_TRUE if we have devices that need to be resilvered and are available to 5753 * accept resilver I/Os. 5754 */ 5755 boolean_t 5756 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx) 5757 { 5758 boolean_t resilver_needed = B_FALSE; 5759 spa_t *spa = vd->vdev_spa; 5760 5761 for (int c = 0; c < vd->vdev_children; c++) { 5762 vdev_t *cvd = vd->vdev_child[c]; 5763 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx); 5764 } 5765 5766 if (vd == spa->spa_root_vdev && 5767 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) { 5768 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 5769 vdev_config_dirty(vd); 5770 spa->spa_resilver_deferred = B_FALSE; 5771 return (resilver_needed); 5772 } 5773 5774 if (!vdev_is_concrete(vd) || vd->vdev_aux || 5775 !vd->vdev_ops->vdev_op_leaf) 5776 return (resilver_needed); 5777 5778 vd->vdev_resilver_deferred = B_FALSE; 5779 5780 return (!vdev_is_dead(vd) && !vd->vdev_offline && 5781 vdev_resilver_needed(vd, NULL, NULL)); 5782 } 5783 5784 boolean_t 5785 vdev_xlate_is_empty(zfs_range_seg64_t *rs) 5786 { 5787 return (rs->rs_start == rs->rs_end); 5788 } 5789 5790 /* 5791 * Translate a logical range to the first contiguous physical range for the 5792 * specified vdev_t. This function is initially called with a leaf vdev and 5793 * will walk each parent vdev until it reaches a top-level vdev. Once the 5794 * top-level is reached the physical range is initialized and the recursive 5795 * function begins to unwind. As it unwinds it calls the parent's vdev 5796 * specific translation function to do the real conversion. 5797 */ 5798 void 5799 vdev_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs, 5800 zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs) 5801 { 5802 /* 5803 * Walk up the vdev tree 5804 */ 5805 if (vd != vd->vdev_top) { 5806 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs, 5807 remain_rs); 5808 } else { 5809 /* 5810 * We've reached the top-level vdev, initialize the physical 5811 * range to the logical range and set an empty remaining 5812 * range then start to unwind. 5813 */ 5814 physical_rs->rs_start = logical_rs->rs_start; 5815 physical_rs->rs_end = logical_rs->rs_end; 5816 5817 remain_rs->rs_start = logical_rs->rs_start; 5818 remain_rs->rs_end = logical_rs->rs_start; 5819 5820 return; 5821 } 5822 5823 vdev_t *pvd = vd->vdev_parent; 5824 ASSERT3P(pvd, !=, NULL); 5825 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL); 5826 5827 /* 5828 * As this recursive function unwinds, translate the logical 5829 * range into its physical and any remaining components by calling 5830 * the vdev specific translate function. 5831 */ 5832 zfs_range_seg64_t intermediate = { 0 }; 5833 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs); 5834 5835 physical_rs->rs_start = intermediate.rs_start; 5836 physical_rs->rs_end = intermediate.rs_end; 5837 } 5838 5839 void 5840 vdev_xlate_walk(vdev_t *vd, const zfs_range_seg64_t *logical_rs, 5841 vdev_xlate_func_t *func, void *arg) 5842 { 5843 zfs_range_seg64_t iter_rs = *logical_rs; 5844 zfs_range_seg64_t physical_rs; 5845 zfs_range_seg64_t remain_rs; 5846 5847 while (!vdev_xlate_is_empty(&iter_rs)) { 5848 5849 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs); 5850 5851 /* 5852 * With raidz and dRAID, it's possible that the logical range 5853 * does not live on this leaf vdev. Only when there is a non- 5854 * zero physical size call the provided function. 5855 */ 5856 if (!vdev_xlate_is_empty(&physical_rs)) 5857 func(arg, &physical_rs); 5858 5859 iter_rs = remain_rs; 5860 } 5861 } 5862 5863 static char * 5864 vdev_name(vdev_t *vd, char *buf, int buflen) 5865 { 5866 if (vd->vdev_path == NULL) { 5867 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) { 5868 strlcpy(buf, vd->vdev_spa->spa_name, buflen); 5869 } else if (!vd->vdev_ops->vdev_op_leaf) { 5870 snprintf(buf, buflen, "%s-%llu", 5871 vd->vdev_ops->vdev_op_type, 5872 (u_longlong_t)vd->vdev_id); 5873 } 5874 } else { 5875 strlcpy(buf, vd->vdev_path, buflen); 5876 } 5877 return (buf); 5878 } 5879 5880 /* 5881 * Look at the vdev tree and determine whether any devices are currently being 5882 * replaced. 5883 */ 5884 boolean_t 5885 vdev_replace_in_progress(vdev_t *vdev) 5886 { 5887 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0); 5888 5889 if (vdev->vdev_ops == &vdev_replacing_ops) 5890 return (B_TRUE); 5891 5892 /* 5893 * A 'spare' vdev indicates that we have a replace in progress, unless 5894 * it has exactly two children, and the second, the hot spare, has 5895 * finished being resilvered. 5896 */ 5897 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 || 5898 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING))) 5899 return (B_TRUE); 5900 5901 for (int i = 0; i < vdev->vdev_children; i++) { 5902 if (vdev_replace_in_progress(vdev->vdev_child[i])) 5903 return (B_TRUE); 5904 } 5905 5906 return (B_FALSE); 5907 } 5908 5909 /* 5910 * Add a (source=src, propname=propval) list to an nvlist. 5911 */ 5912 static void 5913 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval, 5914 uint64_t intval, zprop_source_t src) 5915 { 5916 nvlist_t *propval; 5917 5918 propval = fnvlist_alloc(); 5919 fnvlist_add_uint64(propval, ZPROP_SOURCE, src); 5920 5921 if (strval != NULL) 5922 fnvlist_add_string(propval, ZPROP_VALUE, strval); 5923 else 5924 fnvlist_add_uint64(propval, ZPROP_VALUE, intval); 5925 5926 fnvlist_add_nvlist(nvl, propname, propval); 5927 nvlist_free(propval); 5928 } 5929 5930 static void 5931 vdev_props_set_sync(void *arg, dmu_tx_t *tx) 5932 { 5933 vdev_t *vd; 5934 nvlist_t *nvp = arg; 5935 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5936 objset_t *mos = spa->spa_meta_objset; 5937 nvpair_t *elem = NULL; 5938 uint64_t vdev_guid; 5939 uint64_t objid; 5940 nvlist_t *nvprops; 5941 5942 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV); 5943 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS); 5944 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE); 5945 5946 /* this vdev could get removed while waiting for this sync task */ 5947 if (vd == NULL) 5948 return; 5949 5950 /* 5951 * Set vdev property values in the vdev props mos object. 5952 */ 5953 if (vd->vdev_root_zap != 0) { 5954 objid = vd->vdev_root_zap; 5955 } else if (vd->vdev_top_zap != 0) { 5956 objid = vd->vdev_top_zap; 5957 } else if (vd->vdev_leaf_zap != 0) { 5958 objid = vd->vdev_leaf_zap; 5959 } else { 5960 panic("unexpected vdev type"); 5961 } 5962 5963 mutex_enter(&spa->spa_props_lock); 5964 5965 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5966 uint64_t intval; 5967 const char *strval; 5968 vdev_prop_t prop; 5969 const char *propname = nvpair_name(elem); 5970 zprop_type_t proptype; 5971 5972 switch (prop = vdev_name_to_prop(propname)) { 5973 case VDEV_PROP_USERPROP: 5974 if (vdev_prop_user(propname)) { 5975 strval = fnvpair_value_string(elem); 5976 if (strlen(strval) == 0) { 5977 /* remove the property if value == "" */ 5978 (void) zap_remove(mos, objid, propname, 5979 tx); 5980 } else { 5981 VERIFY0(zap_update(mos, objid, propname, 5982 1, strlen(strval) + 1, strval, tx)); 5983 } 5984 spa_history_log_internal(spa, "vdev set", tx, 5985 "vdev_guid=%llu: %s=%s", 5986 (u_longlong_t)vdev_guid, nvpair_name(elem), 5987 strval); 5988 } 5989 break; 5990 default: 5991 /* normalize the property name */ 5992 propname = vdev_prop_to_name(prop); 5993 proptype = vdev_prop_get_type(prop); 5994 5995 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5996 ASSERT(proptype == PROP_TYPE_STRING); 5997 strval = fnvpair_value_string(elem); 5998 VERIFY0(zap_update(mos, objid, propname, 5999 1, strlen(strval) + 1, strval, tx)); 6000 spa_history_log_internal(spa, "vdev set", tx, 6001 "vdev_guid=%llu: %s=%s", 6002 (u_longlong_t)vdev_guid, nvpair_name(elem), 6003 strval); 6004 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 6005 intval = fnvpair_value_uint64(elem); 6006 6007 if (proptype == PROP_TYPE_INDEX) { 6008 const char *unused; 6009 VERIFY0(vdev_prop_index_to_string( 6010 prop, intval, &unused)); 6011 } 6012 VERIFY0(zap_update(mos, objid, propname, 6013 sizeof (uint64_t), 1, &intval, tx)); 6014 spa_history_log_internal(spa, "vdev set", tx, 6015 "vdev_guid=%llu: %s=%lld", 6016 (u_longlong_t)vdev_guid, 6017 nvpair_name(elem), (longlong_t)intval); 6018 } else { 6019 panic("invalid vdev property type %u", 6020 nvpair_type(elem)); 6021 } 6022 } 6023 6024 } 6025 6026 mutex_exit(&spa->spa_props_lock); 6027 } 6028 6029 int 6030 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 6031 { 6032 spa_t *spa = vd->vdev_spa; 6033 nvpair_t *elem = NULL; 6034 uint64_t vdev_guid; 6035 nvlist_t *nvprops; 6036 int error = 0; 6037 6038 ASSERT(vd != NULL); 6039 6040 /* Check that vdev has a zap we can use */ 6041 if (vd->vdev_root_zap == 0 && 6042 vd->vdev_top_zap == 0 && 6043 vd->vdev_leaf_zap == 0) 6044 return (SET_ERROR(EINVAL)); 6045 6046 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV, 6047 &vdev_guid) != 0) 6048 return (SET_ERROR(EINVAL)); 6049 6050 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS, 6051 &nvprops) != 0) 6052 return (SET_ERROR(EINVAL)); 6053 6054 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL) 6055 return (SET_ERROR(EINVAL)); 6056 6057 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 6058 const char *propname = nvpair_name(elem); 6059 vdev_prop_t prop = vdev_name_to_prop(propname); 6060 uint64_t intval = 0; 6061 const char *strval = NULL; 6062 6063 if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) { 6064 error = EINVAL; 6065 goto end; 6066 } 6067 6068 if (prop != VDEV_PROP_USERPROP && vdev_prop_readonly(prop)) { 6069 error = EROFS; 6070 goto end; 6071 } 6072 6073 /* Special Processing */ 6074 switch (prop) { 6075 case VDEV_PROP_PATH: 6076 if (vd->vdev_path == NULL) { 6077 error = EROFS; 6078 break; 6079 } 6080 if (nvpair_value_string(elem, &strval) != 0) { 6081 error = EINVAL; 6082 break; 6083 } 6084 /* New path must start with /dev/ */ 6085 if (strncmp(strval, "/dev/", 5)) { 6086 error = EINVAL; 6087 break; 6088 } 6089 error = spa_vdev_setpath(spa, vdev_guid, strval); 6090 break; 6091 case VDEV_PROP_ALLOCATING: 6092 if (nvpair_value_uint64(elem, &intval) != 0) { 6093 error = EINVAL; 6094 break; 6095 } 6096 if (intval != vd->vdev_noalloc) 6097 break; 6098 if (intval == 0) 6099 error = spa_vdev_noalloc(spa, vdev_guid); 6100 else 6101 error = spa_vdev_alloc(spa, vdev_guid); 6102 break; 6103 case VDEV_PROP_FAILFAST: 6104 if (nvpair_value_uint64(elem, &intval) != 0) { 6105 error = EINVAL; 6106 break; 6107 } 6108 vd->vdev_failfast = intval & 1; 6109 break; 6110 case VDEV_PROP_CHECKSUM_N: 6111 if (nvpair_value_uint64(elem, &intval) != 0) { 6112 error = EINVAL; 6113 break; 6114 } 6115 vd->vdev_checksum_n = intval; 6116 break; 6117 case VDEV_PROP_CHECKSUM_T: 6118 if (nvpair_value_uint64(elem, &intval) != 0) { 6119 error = EINVAL; 6120 break; 6121 } 6122 vd->vdev_checksum_t = intval; 6123 break; 6124 case VDEV_PROP_IO_N: 6125 if (nvpair_value_uint64(elem, &intval) != 0) { 6126 error = EINVAL; 6127 break; 6128 } 6129 vd->vdev_io_n = intval; 6130 break; 6131 case VDEV_PROP_IO_T: 6132 if (nvpair_value_uint64(elem, &intval) != 0) { 6133 error = EINVAL; 6134 break; 6135 } 6136 vd->vdev_io_t = intval; 6137 break; 6138 case VDEV_PROP_SLOW_IO_N: 6139 if (nvpair_value_uint64(elem, &intval) != 0) { 6140 error = EINVAL; 6141 break; 6142 } 6143 vd->vdev_slow_io_n = intval; 6144 break; 6145 case VDEV_PROP_SLOW_IO_T: 6146 if (nvpair_value_uint64(elem, &intval) != 0) { 6147 error = EINVAL; 6148 break; 6149 } 6150 vd->vdev_slow_io_t = intval; 6151 break; 6152 default: 6153 /* Most processing is done in vdev_props_set_sync */ 6154 break; 6155 } 6156 end: 6157 if (error != 0) { 6158 intval = error; 6159 vdev_prop_add_list(outnvl, propname, strval, intval, 0); 6160 return (error); 6161 } 6162 } 6163 6164 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync, 6165 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 6166 } 6167 6168 int 6169 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 6170 { 6171 spa_t *spa = vd->vdev_spa; 6172 objset_t *mos = spa->spa_meta_objset; 6173 int err = 0; 6174 uint64_t objid; 6175 uint64_t vdev_guid; 6176 nvpair_t *elem = NULL; 6177 nvlist_t *nvprops = NULL; 6178 uint64_t intval = 0; 6179 char *strval = NULL; 6180 const char *propname = NULL; 6181 vdev_prop_t prop; 6182 6183 ASSERT(vd != NULL); 6184 ASSERT(mos != NULL); 6185 6186 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV, 6187 &vdev_guid) != 0) 6188 return (SET_ERROR(EINVAL)); 6189 6190 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops); 6191 6192 if (vd->vdev_root_zap != 0) { 6193 objid = vd->vdev_root_zap; 6194 } else if (vd->vdev_top_zap != 0) { 6195 objid = vd->vdev_top_zap; 6196 } else if (vd->vdev_leaf_zap != 0) { 6197 objid = vd->vdev_leaf_zap; 6198 } else { 6199 return (SET_ERROR(EINVAL)); 6200 } 6201 ASSERT(objid != 0); 6202 6203 mutex_enter(&spa->spa_props_lock); 6204 6205 if (nvprops != NULL) { 6206 char namebuf[64] = { 0 }; 6207 6208 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 6209 intval = 0; 6210 strval = NULL; 6211 propname = nvpair_name(elem); 6212 prop = vdev_name_to_prop(propname); 6213 zprop_source_t src = ZPROP_SRC_DEFAULT; 6214 uint64_t integer_size, num_integers; 6215 6216 switch (prop) { 6217 /* Special Read-only Properties */ 6218 case VDEV_PROP_NAME: 6219 strval = vdev_name(vd, namebuf, 6220 sizeof (namebuf)); 6221 if (strval == NULL) 6222 continue; 6223 vdev_prop_add_list(outnvl, propname, strval, 0, 6224 ZPROP_SRC_NONE); 6225 continue; 6226 case VDEV_PROP_CAPACITY: 6227 /* percent used */ 6228 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 : 6229 (vd->vdev_stat.vs_alloc * 100 / 6230 vd->vdev_stat.vs_dspace); 6231 vdev_prop_add_list(outnvl, propname, NULL, 6232 intval, ZPROP_SRC_NONE); 6233 continue; 6234 case VDEV_PROP_STATE: 6235 vdev_prop_add_list(outnvl, propname, NULL, 6236 vd->vdev_state, ZPROP_SRC_NONE); 6237 continue; 6238 case VDEV_PROP_GUID: 6239 vdev_prop_add_list(outnvl, propname, NULL, 6240 vd->vdev_guid, ZPROP_SRC_NONE); 6241 continue; 6242 case VDEV_PROP_ASIZE: 6243 vdev_prop_add_list(outnvl, propname, NULL, 6244 vd->vdev_asize, ZPROP_SRC_NONE); 6245 continue; 6246 case VDEV_PROP_PSIZE: 6247 vdev_prop_add_list(outnvl, propname, NULL, 6248 vd->vdev_psize, ZPROP_SRC_NONE); 6249 continue; 6250 case VDEV_PROP_ASHIFT: 6251 vdev_prop_add_list(outnvl, propname, NULL, 6252 vd->vdev_ashift, ZPROP_SRC_NONE); 6253 continue; 6254 case VDEV_PROP_SIZE: 6255 vdev_prop_add_list(outnvl, propname, NULL, 6256 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE); 6257 continue; 6258 case VDEV_PROP_FREE: 6259 vdev_prop_add_list(outnvl, propname, NULL, 6260 vd->vdev_stat.vs_dspace - 6261 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 6262 continue; 6263 case VDEV_PROP_ALLOCATED: 6264 vdev_prop_add_list(outnvl, propname, NULL, 6265 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 6266 continue; 6267 case VDEV_PROP_EXPANDSZ: 6268 vdev_prop_add_list(outnvl, propname, NULL, 6269 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE); 6270 continue; 6271 case VDEV_PROP_FRAGMENTATION: 6272 vdev_prop_add_list(outnvl, propname, NULL, 6273 vd->vdev_stat.vs_fragmentation, 6274 ZPROP_SRC_NONE); 6275 continue; 6276 case VDEV_PROP_PARITY: 6277 vdev_prop_add_list(outnvl, propname, NULL, 6278 vdev_get_nparity(vd), ZPROP_SRC_NONE); 6279 continue; 6280 case VDEV_PROP_PATH: 6281 if (vd->vdev_path == NULL) 6282 continue; 6283 vdev_prop_add_list(outnvl, propname, 6284 vd->vdev_path, 0, ZPROP_SRC_NONE); 6285 continue; 6286 case VDEV_PROP_DEVID: 6287 if (vd->vdev_devid == NULL) 6288 continue; 6289 vdev_prop_add_list(outnvl, propname, 6290 vd->vdev_devid, 0, ZPROP_SRC_NONE); 6291 continue; 6292 case VDEV_PROP_PHYS_PATH: 6293 if (vd->vdev_physpath == NULL) 6294 continue; 6295 vdev_prop_add_list(outnvl, propname, 6296 vd->vdev_physpath, 0, ZPROP_SRC_NONE); 6297 continue; 6298 case VDEV_PROP_ENC_PATH: 6299 if (vd->vdev_enc_sysfs_path == NULL) 6300 continue; 6301 vdev_prop_add_list(outnvl, propname, 6302 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE); 6303 continue; 6304 case VDEV_PROP_FRU: 6305 if (vd->vdev_fru == NULL) 6306 continue; 6307 vdev_prop_add_list(outnvl, propname, 6308 vd->vdev_fru, 0, ZPROP_SRC_NONE); 6309 continue; 6310 case VDEV_PROP_PARENT: 6311 if (vd->vdev_parent != NULL) { 6312 strval = vdev_name(vd->vdev_parent, 6313 namebuf, sizeof (namebuf)); 6314 vdev_prop_add_list(outnvl, propname, 6315 strval, 0, ZPROP_SRC_NONE); 6316 } 6317 continue; 6318 case VDEV_PROP_CHILDREN: 6319 if (vd->vdev_children > 0) 6320 strval = kmem_zalloc(ZAP_MAXVALUELEN, 6321 KM_SLEEP); 6322 for (uint64_t i = 0; i < vd->vdev_children; 6323 i++) { 6324 const char *vname; 6325 6326 vname = vdev_name(vd->vdev_child[i], 6327 namebuf, sizeof (namebuf)); 6328 if (vname == NULL) 6329 vname = "(unknown)"; 6330 if (strlen(strval) > 0) 6331 strlcat(strval, ",", 6332 ZAP_MAXVALUELEN); 6333 strlcat(strval, vname, ZAP_MAXVALUELEN); 6334 } 6335 if (strval != NULL) { 6336 vdev_prop_add_list(outnvl, propname, 6337 strval, 0, ZPROP_SRC_NONE); 6338 kmem_free(strval, ZAP_MAXVALUELEN); 6339 } 6340 continue; 6341 case VDEV_PROP_NUMCHILDREN: 6342 vdev_prop_add_list(outnvl, propname, NULL, 6343 vd->vdev_children, ZPROP_SRC_NONE); 6344 continue; 6345 case VDEV_PROP_READ_ERRORS: 6346 vdev_prop_add_list(outnvl, propname, NULL, 6347 vd->vdev_stat.vs_read_errors, 6348 ZPROP_SRC_NONE); 6349 continue; 6350 case VDEV_PROP_WRITE_ERRORS: 6351 vdev_prop_add_list(outnvl, propname, NULL, 6352 vd->vdev_stat.vs_write_errors, 6353 ZPROP_SRC_NONE); 6354 continue; 6355 case VDEV_PROP_CHECKSUM_ERRORS: 6356 vdev_prop_add_list(outnvl, propname, NULL, 6357 vd->vdev_stat.vs_checksum_errors, 6358 ZPROP_SRC_NONE); 6359 continue; 6360 case VDEV_PROP_INITIALIZE_ERRORS: 6361 vdev_prop_add_list(outnvl, propname, NULL, 6362 vd->vdev_stat.vs_initialize_errors, 6363 ZPROP_SRC_NONE); 6364 continue; 6365 case VDEV_PROP_TRIM_ERRORS: 6366 vdev_prop_add_list(outnvl, propname, NULL, 6367 vd->vdev_stat.vs_trim_errors, 6368 ZPROP_SRC_NONE); 6369 continue; 6370 case VDEV_PROP_SLOW_IOS: 6371 vdev_prop_add_list(outnvl, propname, NULL, 6372 vd->vdev_stat.vs_slow_ios, 6373 ZPROP_SRC_NONE); 6374 continue; 6375 case VDEV_PROP_OPS_NULL: 6376 vdev_prop_add_list(outnvl, propname, NULL, 6377 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL], 6378 ZPROP_SRC_NONE); 6379 continue; 6380 case VDEV_PROP_OPS_READ: 6381 vdev_prop_add_list(outnvl, propname, NULL, 6382 vd->vdev_stat.vs_ops[ZIO_TYPE_READ], 6383 ZPROP_SRC_NONE); 6384 continue; 6385 case VDEV_PROP_OPS_WRITE: 6386 vdev_prop_add_list(outnvl, propname, NULL, 6387 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE], 6388 ZPROP_SRC_NONE); 6389 continue; 6390 case VDEV_PROP_OPS_FREE: 6391 vdev_prop_add_list(outnvl, propname, NULL, 6392 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE], 6393 ZPROP_SRC_NONE); 6394 continue; 6395 case VDEV_PROP_OPS_CLAIM: 6396 vdev_prop_add_list(outnvl, propname, NULL, 6397 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM], 6398 ZPROP_SRC_NONE); 6399 continue; 6400 case VDEV_PROP_OPS_TRIM: 6401 /* 6402 * TRIM ops and bytes are reported to user 6403 * space as ZIO_TYPE_FLUSH. This is done to 6404 * preserve the vdev_stat_t structure layout 6405 * for user space. 6406 */ 6407 vdev_prop_add_list(outnvl, propname, NULL, 6408 vd->vdev_stat.vs_ops[ZIO_TYPE_FLUSH], 6409 ZPROP_SRC_NONE); 6410 continue; 6411 case VDEV_PROP_BYTES_NULL: 6412 vdev_prop_add_list(outnvl, propname, NULL, 6413 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL], 6414 ZPROP_SRC_NONE); 6415 continue; 6416 case VDEV_PROP_BYTES_READ: 6417 vdev_prop_add_list(outnvl, propname, NULL, 6418 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ], 6419 ZPROP_SRC_NONE); 6420 continue; 6421 case VDEV_PROP_BYTES_WRITE: 6422 vdev_prop_add_list(outnvl, propname, NULL, 6423 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE], 6424 ZPROP_SRC_NONE); 6425 continue; 6426 case VDEV_PROP_BYTES_FREE: 6427 vdev_prop_add_list(outnvl, propname, NULL, 6428 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE], 6429 ZPROP_SRC_NONE); 6430 continue; 6431 case VDEV_PROP_BYTES_CLAIM: 6432 vdev_prop_add_list(outnvl, propname, NULL, 6433 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM], 6434 ZPROP_SRC_NONE); 6435 continue; 6436 case VDEV_PROP_BYTES_TRIM: 6437 /* 6438 * TRIM ops and bytes are reported to user 6439 * space as ZIO_TYPE_FLUSH. This is done to 6440 * preserve the vdev_stat_t structure layout 6441 * for user space. 6442 */ 6443 vdev_prop_add_list(outnvl, propname, NULL, 6444 vd->vdev_stat.vs_bytes[ZIO_TYPE_FLUSH], 6445 ZPROP_SRC_NONE); 6446 continue; 6447 case VDEV_PROP_REMOVING: 6448 vdev_prop_add_list(outnvl, propname, NULL, 6449 vd->vdev_removing, ZPROP_SRC_NONE); 6450 continue; 6451 case VDEV_PROP_RAIDZ_EXPANDING: 6452 /* Only expose this for raidz */ 6453 if (vd->vdev_ops == &vdev_raidz_ops) { 6454 vdev_prop_add_list(outnvl, propname, 6455 NULL, vd->vdev_rz_expanding, 6456 ZPROP_SRC_NONE); 6457 } 6458 continue; 6459 case VDEV_PROP_TRIM_SUPPORT: 6460 /* only valid for leaf vdevs */ 6461 if (vd->vdev_ops->vdev_op_leaf) { 6462 vdev_prop_add_list(outnvl, propname, 6463 NULL, vd->vdev_has_trim, 6464 ZPROP_SRC_NONE); 6465 } 6466 continue; 6467 /* Numeric Properites */ 6468 case VDEV_PROP_ALLOCATING: 6469 /* Leaf vdevs cannot have this property */ 6470 if (vd->vdev_mg == NULL && 6471 vd->vdev_top != NULL) { 6472 src = ZPROP_SRC_NONE; 6473 intval = ZPROP_BOOLEAN_NA; 6474 } else { 6475 err = vdev_prop_get_int(vd, prop, 6476 &intval); 6477 if (err && err != ENOENT) 6478 break; 6479 6480 if (intval == 6481 vdev_prop_default_numeric(prop)) 6482 src = ZPROP_SRC_DEFAULT; 6483 else 6484 src = ZPROP_SRC_LOCAL; 6485 } 6486 6487 vdev_prop_add_list(outnvl, propname, NULL, 6488 intval, src); 6489 break; 6490 case VDEV_PROP_FAILFAST: 6491 src = ZPROP_SRC_LOCAL; 6492 strval = NULL; 6493 6494 err = zap_lookup(mos, objid, nvpair_name(elem), 6495 sizeof (uint64_t), 1, &intval); 6496 if (err == ENOENT) { 6497 intval = vdev_prop_default_numeric( 6498 prop); 6499 err = 0; 6500 } else if (err) { 6501 break; 6502 } 6503 if (intval == vdev_prop_default_numeric(prop)) 6504 src = ZPROP_SRC_DEFAULT; 6505 6506 vdev_prop_add_list(outnvl, propname, strval, 6507 intval, src); 6508 break; 6509 case VDEV_PROP_CHECKSUM_N: 6510 case VDEV_PROP_CHECKSUM_T: 6511 case VDEV_PROP_IO_N: 6512 case VDEV_PROP_IO_T: 6513 case VDEV_PROP_SLOW_IO_N: 6514 case VDEV_PROP_SLOW_IO_T: 6515 err = vdev_prop_get_int(vd, prop, &intval); 6516 if (err && err != ENOENT) 6517 break; 6518 6519 if (intval == vdev_prop_default_numeric(prop)) 6520 src = ZPROP_SRC_DEFAULT; 6521 else 6522 src = ZPROP_SRC_LOCAL; 6523 6524 vdev_prop_add_list(outnvl, propname, NULL, 6525 intval, src); 6526 break; 6527 /* Text Properties */ 6528 case VDEV_PROP_COMMENT: 6529 /* Exists in the ZAP below */ 6530 /* FALLTHRU */ 6531 case VDEV_PROP_USERPROP: 6532 /* User Properites */ 6533 src = ZPROP_SRC_LOCAL; 6534 6535 err = zap_length(mos, objid, nvpair_name(elem), 6536 &integer_size, &num_integers); 6537 if (err) 6538 break; 6539 6540 switch (integer_size) { 6541 case 8: 6542 /* User properties cannot be integers */ 6543 err = EINVAL; 6544 break; 6545 case 1: 6546 /* string property */ 6547 strval = kmem_alloc(num_integers, 6548 KM_SLEEP); 6549 err = zap_lookup(mos, objid, 6550 nvpair_name(elem), 1, 6551 num_integers, strval); 6552 if (err) { 6553 kmem_free(strval, 6554 num_integers); 6555 break; 6556 } 6557 vdev_prop_add_list(outnvl, propname, 6558 strval, 0, src); 6559 kmem_free(strval, num_integers); 6560 break; 6561 } 6562 break; 6563 default: 6564 err = ENOENT; 6565 break; 6566 } 6567 if (err) 6568 break; 6569 } 6570 } else { 6571 /* 6572 * Get all properties from the MOS vdev property object. 6573 */ 6574 zap_cursor_t zc; 6575 zap_attribute_t *za = zap_attribute_alloc(); 6576 for (zap_cursor_init(&zc, mos, objid); 6577 (err = zap_cursor_retrieve(&zc, za)) == 0; 6578 zap_cursor_advance(&zc)) { 6579 intval = 0; 6580 strval = NULL; 6581 zprop_source_t src = ZPROP_SRC_DEFAULT; 6582 propname = za->za_name; 6583 6584 switch (za->za_integer_length) { 6585 case 8: 6586 /* We do not allow integer user properties */ 6587 /* This is likely an internal value */ 6588 break; 6589 case 1: 6590 /* string property */ 6591 strval = kmem_alloc(za->za_num_integers, 6592 KM_SLEEP); 6593 err = zap_lookup(mos, objid, za->za_name, 1, 6594 za->za_num_integers, strval); 6595 if (err) { 6596 kmem_free(strval, za->za_num_integers); 6597 break; 6598 } 6599 vdev_prop_add_list(outnvl, propname, strval, 0, 6600 src); 6601 kmem_free(strval, za->za_num_integers); 6602 break; 6603 6604 default: 6605 break; 6606 } 6607 } 6608 zap_cursor_fini(&zc); 6609 zap_attribute_free(za); 6610 } 6611 6612 mutex_exit(&spa->spa_props_lock); 6613 if (err && err != ENOENT) { 6614 return (err); 6615 } 6616 6617 return (0); 6618 } 6619 6620 EXPORT_SYMBOL(vdev_fault); 6621 EXPORT_SYMBOL(vdev_degrade); 6622 EXPORT_SYMBOL(vdev_online); 6623 EXPORT_SYMBOL(vdev_offline); 6624 EXPORT_SYMBOL(vdev_clear); 6625 6626 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW, 6627 "Target number of metaslabs per top-level vdev"); 6628 6629 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW, 6630 "Default lower limit for metaslab size"); 6631 6632 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW, 6633 "Default upper limit for metaslab size"); 6634 6635 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW, 6636 "Minimum number of metaslabs per top-level vdev"); 6637 6638 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW, 6639 "Practical upper limit of total metaslabs per top-level vdev"); 6640 6641 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW, 6642 "Rate limit slow IO (delay) events to this many per second"); 6643 6644 ZFS_MODULE_PARAM(zfs, zfs_, deadman_events_per_second, UINT, ZMOD_RW, 6645 "Rate limit hung IO (deadman) events to this many per second"); 6646 6647 ZFS_MODULE_PARAM(zfs, zfs_, dio_write_verify_events_per_second, UINT, ZMOD_RW, 6648 "Rate Direct I/O write verify events to this many per second"); 6649 6650 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, direct_write_verify, UINT, ZMOD_RW, 6651 "Direct I/O writes will perform for checksum verification before " 6652 "commiting write"); 6653 6654 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW, 6655 "Rate limit checksum events to this many checksum errors per second " 6656 "(do not set below ZED threshold)."); 6657 6658 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW, 6659 "Ignore errors during resilver/scrub"); 6660 6661 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW, 6662 "Bypass vdev_validate()"); 6663 6664 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW, 6665 "Disable cache flushes"); 6666 6667 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW, 6668 "Minimum number of metaslabs required to dedicate one for log blocks"); 6669 6670 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift, 6671 param_set_min_auto_ashift, param_get_uint, ZMOD_RW, 6672 "Minimum ashift used when creating new top-level vdevs"); 6673 6674 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift, 6675 param_set_max_auto_ashift, param_get_uint, ZMOD_RW, 6676 "Maximum ashift used when optimizing for logical -> physical sector " 6677 "size on new top-level vdevs"); 6678 6679 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, raidz_impl, 6680 param_set_raidz_impl, param_get_raidz_impl, ZMOD_RW, 6681 "RAIDZ implementation"); 6682