xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev.c (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  * Copyright 2017 Joyent, Inc.
29  * Copyright (c) 2017, Intel Corporation.
30  * Copyright (c) 2019, Datto Inc. All rights reserved.
31  * Copyright (c) 2021, Klara Inc.
32  * Copyright [2021] Hewlett Packard Enterprise Development LP
33  */
34 
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa.h>
38 #include <sys/spa_impl.h>
39 #include <sys/bpobj.h>
40 #include <sys/dmu.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/vdev_rebuild.h>
45 #include <sys/vdev_draid.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/metaslab.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/space_map.h>
50 #include <sys/space_reftree.h>
51 #include <sys/zio.h>
52 #include <sys/zap.h>
53 #include <sys/fs/zfs.h>
54 #include <sys/arc.h>
55 #include <sys/zil.h>
56 #include <sys/dsl_scan.h>
57 #include <sys/vdev_raidz.h>
58 #include <sys/abd.h>
59 #include <sys/vdev_initialize.h>
60 #include <sys/vdev_trim.h>
61 #include <sys/zvol.h>
62 #include <sys/zfs_ratelimit.h>
63 #include "zfs_prop.h"
64 
65 /*
66  * One metaslab from each (normal-class) vdev is used by the ZIL.  These are
67  * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
68  * part of the spa_embedded_log_class.  The metaslab with the most free space
69  * in each vdev is selected for this purpose when the pool is opened (or a
70  * vdev is added).  See vdev_metaslab_init().
71  *
72  * Log blocks can be allocated from the following locations.  Each one is tried
73  * in order until the allocation succeeds:
74  * 1. dedicated log vdevs, aka "slog" (spa_log_class)
75  * 2. embedded slog metaslabs (spa_embedded_log_class)
76  * 3. other metaslabs in normal vdevs (spa_normal_class)
77  *
78  * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
79  * than this number of metaslabs in the vdev.  This ensures that we don't set
80  * aside an unreasonable amount of space for the ZIL.  If set to less than
81  * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
82  * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
83  */
84 static uint_t zfs_embedded_slog_min_ms = 64;
85 
86 /* default target for number of metaslabs per top-level vdev */
87 static uint_t zfs_vdev_default_ms_count = 200;
88 
89 /* minimum number of metaslabs per top-level vdev */
90 static uint_t zfs_vdev_min_ms_count = 16;
91 
92 /* practical upper limit of total metaslabs per top-level vdev */
93 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17;
94 
95 /* lower limit for metaslab size (512M) */
96 static uint_t zfs_vdev_default_ms_shift = 29;
97 
98 /* upper limit for metaslab size (16G) */
99 static uint_t zfs_vdev_max_ms_shift = 34;
100 
101 int vdev_validate_skip = B_FALSE;
102 
103 /*
104  * Since the DTL space map of a vdev is not expected to have a lot of
105  * entries, we default its block size to 4K.
106  */
107 int zfs_vdev_dtl_sm_blksz = (1 << 12);
108 
109 /*
110  * Rate limit slow IO (delay) events to this many per second.
111  */
112 static unsigned int zfs_slow_io_events_per_second = 20;
113 
114 /*
115  * Rate limit checksum events after this many checksum errors per second.
116  */
117 static unsigned int zfs_checksum_events_per_second = 20;
118 
119 /*
120  * Ignore errors during scrub/resilver.  Allows to work around resilver
121  * upon import when there are pool errors.
122  */
123 static int zfs_scan_ignore_errors = 0;
124 
125 /*
126  * vdev-wide space maps that have lots of entries written to them at
127  * the end of each transaction can benefit from a higher I/O bandwidth
128  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
129  */
130 int zfs_vdev_standard_sm_blksz = (1 << 17);
131 
132 /*
133  * Tunable parameter for debugging or performance analysis. Setting this
134  * will cause pool corruption on power loss if a volatile out-of-order
135  * write cache is enabled.
136  */
137 int zfs_nocacheflush = 0;
138 
139 /*
140  * Maximum and minimum ashift values that can be automatically set based on
141  * vdev's physical ashift (disk's physical sector size).  While ASHIFT_MAX
142  * is higher than the maximum value, it is intentionally limited here to not
143  * excessively impact pool space efficiency.  Higher ashift values may still
144  * be forced by vdev logical ashift or by user via ashift property, but won't
145  * be set automatically as a performance optimization.
146  */
147 uint_t zfs_vdev_max_auto_ashift = 14;
148 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
149 
150 void
151 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
152 {
153 	va_list adx;
154 	char buf[256];
155 
156 	va_start(adx, fmt);
157 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
158 	va_end(adx);
159 
160 	if (vd->vdev_path != NULL) {
161 		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
162 		    vd->vdev_path, buf);
163 	} else {
164 		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
165 		    vd->vdev_ops->vdev_op_type,
166 		    (u_longlong_t)vd->vdev_id,
167 		    (u_longlong_t)vd->vdev_guid, buf);
168 	}
169 }
170 
171 void
172 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
173 {
174 	char state[20];
175 
176 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
177 		zfs_dbgmsg("%*svdev %llu: %s", indent, "",
178 		    (u_longlong_t)vd->vdev_id,
179 		    vd->vdev_ops->vdev_op_type);
180 		return;
181 	}
182 
183 	switch (vd->vdev_state) {
184 	case VDEV_STATE_UNKNOWN:
185 		(void) snprintf(state, sizeof (state), "unknown");
186 		break;
187 	case VDEV_STATE_CLOSED:
188 		(void) snprintf(state, sizeof (state), "closed");
189 		break;
190 	case VDEV_STATE_OFFLINE:
191 		(void) snprintf(state, sizeof (state), "offline");
192 		break;
193 	case VDEV_STATE_REMOVED:
194 		(void) snprintf(state, sizeof (state), "removed");
195 		break;
196 	case VDEV_STATE_CANT_OPEN:
197 		(void) snprintf(state, sizeof (state), "can't open");
198 		break;
199 	case VDEV_STATE_FAULTED:
200 		(void) snprintf(state, sizeof (state), "faulted");
201 		break;
202 	case VDEV_STATE_DEGRADED:
203 		(void) snprintf(state, sizeof (state), "degraded");
204 		break;
205 	case VDEV_STATE_HEALTHY:
206 		(void) snprintf(state, sizeof (state), "healthy");
207 		break;
208 	default:
209 		(void) snprintf(state, sizeof (state), "<state %u>",
210 		    (uint_t)vd->vdev_state);
211 	}
212 
213 	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
214 	    "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
215 	    vd->vdev_islog ? " (log)" : "",
216 	    (u_longlong_t)vd->vdev_guid,
217 	    vd->vdev_path ? vd->vdev_path : "N/A", state);
218 
219 	for (uint64_t i = 0; i < vd->vdev_children; i++)
220 		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
221 }
222 
223 /*
224  * Virtual device management.
225  */
226 
227 static vdev_ops_t *const vdev_ops_table[] = {
228 	&vdev_root_ops,
229 	&vdev_raidz_ops,
230 	&vdev_draid_ops,
231 	&vdev_draid_spare_ops,
232 	&vdev_mirror_ops,
233 	&vdev_replacing_ops,
234 	&vdev_spare_ops,
235 	&vdev_disk_ops,
236 	&vdev_file_ops,
237 	&vdev_missing_ops,
238 	&vdev_hole_ops,
239 	&vdev_indirect_ops,
240 	NULL
241 };
242 
243 /*
244  * Given a vdev type, return the appropriate ops vector.
245  */
246 static vdev_ops_t *
247 vdev_getops(const char *type)
248 {
249 	vdev_ops_t *ops, *const *opspp;
250 
251 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
252 		if (strcmp(ops->vdev_op_type, type) == 0)
253 			break;
254 
255 	return (ops);
256 }
257 
258 /*
259  * Given a vdev and a metaslab class, find which metaslab group we're
260  * interested in. All vdevs may belong to two different metaslab classes.
261  * Dedicated slog devices use only the primary metaslab group, rather than a
262  * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL.
263  */
264 metaslab_group_t *
265 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
266 {
267 	if (mc == spa_embedded_log_class(vd->vdev_spa) &&
268 	    vd->vdev_log_mg != NULL)
269 		return (vd->vdev_log_mg);
270 	else
271 		return (vd->vdev_mg);
272 }
273 
274 void
275 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
276     range_seg64_t *physical_rs, range_seg64_t *remain_rs)
277 {
278 	(void) vd, (void) remain_rs;
279 
280 	physical_rs->rs_start = logical_rs->rs_start;
281 	physical_rs->rs_end = logical_rs->rs_end;
282 }
283 
284 /*
285  * Derive the enumerated allocation bias from string input.
286  * String origin is either the per-vdev zap or zpool(8).
287  */
288 static vdev_alloc_bias_t
289 vdev_derive_alloc_bias(const char *bias)
290 {
291 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
292 
293 	if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
294 		alloc_bias = VDEV_BIAS_LOG;
295 	else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
296 		alloc_bias = VDEV_BIAS_SPECIAL;
297 	else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
298 		alloc_bias = VDEV_BIAS_DEDUP;
299 
300 	return (alloc_bias);
301 }
302 
303 /*
304  * Default asize function: return the MAX of psize with the asize of
305  * all children.  This is what's used by anything other than RAID-Z.
306  */
307 uint64_t
308 vdev_default_asize(vdev_t *vd, uint64_t psize)
309 {
310 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
311 	uint64_t csize;
312 
313 	for (int c = 0; c < vd->vdev_children; c++) {
314 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
315 		asize = MAX(asize, csize);
316 	}
317 
318 	return (asize);
319 }
320 
321 uint64_t
322 vdev_default_min_asize(vdev_t *vd)
323 {
324 	return (vd->vdev_min_asize);
325 }
326 
327 /*
328  * Get the minimum allocatable size. We define the allocatable size as
329  * the vdev's asize rounded to the nearest metaslab. This allows us to
330  * replace or attach devices which don't have the same physical size but
331  * can still satisfy the same number of allocations.
332  */
333 uint64_t
334 vdev_get_min_asize(vdev_t *vd)
335 {
336 	vdev_t *pvd = vd->vdev_parent;
337 
338 	/*
339 	 * If our parent is NULL (inactive spare or cache) or is the root,
340 	 * just return our own asize.
341 	 */
342 	if (pvd == NULL)
343 		return (vd->vdev_asize);
344 
345 	/*
346 	 * The top-level vdev just returns the allocatable size rounded
347 	 * to the nearest metaslab.
348 	 */
349 	if (vd == vd->vdev_top)
350 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
351 
352 	return (pvd->vdev_ops->vdev_op_min_asize(pvd));
353 }
354 
355 void
356 vdev_set_min_asize(vdev_t *vd)
357 {
358 	vd->vdev_min_asize = vdev_get_min_asize(vd);
359 
360 	for (int c = 0; c < vd->vdev_children; c++)
361 		vdev_set_min_asize(vd->vdev_child[c]);
362 }
363 
364 /*
365  * Get the minimal allocation size for the top-level vdev.
366  */
367 uint64_t
368 vdev_get_min_alloc(vdev_t *vd)
369 {
370 	uint64_t min_alloc = 1ULL << vd->vdev_ashift;
371 
372 	if (vd->vdev_ops->vdev_op_min_alloc != NULL)
373 		min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
374 
375 	return (min_alloc);
376 }
377 
378 /*
379  * Get the parity level for a top-level vdev.
380  */
381 uint64_t
382 vdev_get_nparity(vdev_t *vd)
383 {
384 	uint64_t nparity = 0;
385 
386 	if (vd->vdev_ops->vdev_op_nparity != NULL)
387 		nparity = vd->vdev_ops->vdev_op_nparity(vd);
388 
389 	return (nparity);
390 }
391 
392 static int
393 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value)
394 {
395 	spa_t *spa = vd->vdev_spa;
396 	objset_t *mos = spa->spa_meta_objset;
397 	uint64_t objid;
398 	int err;
399 
400 	if (vd->vdev_root_zap != 0) {
401 		objid = vd->vdev_root_zap;
402 	} else if (vd->vdev_top_zap != 0) {
403 		objid = vd->vdev_top_zap;
404 	} else if (vd->vdev_leaf_zap != 0) {
405 		objid = vd->vdev_leaf_zap;
406 	} else {
407 		return (EINVAL);
408 	}
409 
410 	err = zap_lookup(mos, objid, vdev_prop_to_name(prop),
411 	    sizeof (uint64_t), 1, value);
412 
413 	if (err == ENOENT)
414 		*value = vdev_prop_default_numeric(prop);
415 
416 	return (err);
417 }
418 
419 /*
420  * Get the number of data disks for a top-level vdev.
421  */
422 uint64_t
423 vdev_get_ndisks(vdev_t *vd)
424 {
425 	uint64_t ndisks = 1;
426 
427 	if (vd->vdev_ops->vdev_op_ndisks != NULL)
428 		ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
429 
430 	return (ndisks);
431 }
432 
433 vdev_t *
434 vdev_lookup_top(spa_t *spa, uint64_t vdev)
435 {
436 	vdev_t *rvd = spa->spa_root_vdev;
437 
438 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
439 
440 	if (vdev < rvd->vdev_children) {
441 		ASSERT(rvd->vdev_child[vdev] != NULL);
442 		return (rvd->vdev_child[vdev]);
443 	}
444 
445 	return (NULL);
446 }
447 
448 vdev_t *
449 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
450 {
451 	vdev_t *mvd;
452 
453 	if (vd->vdev_guid == guid)
454 		return (vd);
455 
456 	for (int c = 0; c < vd->vdev_children; c++)
457 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
458 		    NULL)
459 			return (mvd);
460 
461 	return (NULL);
462 }
463 
464 static int
465 vdev_count_leaves_impl(vdev_t *vd)
466 {
467 	int n = 0;
468 
469 	if (vd->vdev_ops->vdev_op_leaf)
470 		return (1);
471 
472 	for (int c = 0; c < vd->vdev_children; c++)
473 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
474 
475 	return (n);
476 }
477 
478 int
479 vdev_count_leaves(spa_t *spa)
480 {
481 	int rc;
482 
483 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
484 	rc = vdev_count_leaves_impl(spa->spa_root_vdev);
485 	spa_config_exit(spa, SCL_VDEV, FTAG);
486 
487 	return (rc);
488 }
489 
490 void
491 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
492 {
493 	size_t oldsize, newsize;
494 	uint64_t id = cvd->vdev_id;
495 	vdev_t **newchild;
496 
497 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
498 	ASSERT(cvd->vdev_parent == NULL);
499 
500 	cvd->vdev_parent = pvd;
501 
502 	if (pvd == NULL)
503 		return;
504 
505 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
506 
507 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
508 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
509 	newsize = pvd->vdev_children * sizeof (vdev_t *);
510 
511 	newchild = kmem_alloc(newsize, KM_SLEEP);
512 	if (pvd->vdev_child != NULL) {
513 		memcpy(newchild, pvd->vdev_child, oldsize);
514 		kmem_free(pvd->vdev_child, oldsize);
515 	}
516 
517 	pvd->vdev_child = newchild;
518 	pvd->vdev_child[id] = cvd;
519 
520 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
521 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
522 
523 	/*
524 	 * Walk up all ancestors to update guid sum.
525 	 */
526 	for (; pvd != NULL; pvd = pvd->vdev_parent)
527 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
528 
529 	if (cvd->vdev_ops->vdev_op_leaf) {
530 		list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
531 		cvd->vdev_spa->spa_leaf_list_gen++;
532 	}
533 }
534 
535 void
536 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
537 {
538 	int c;
539 	uint_t id = cvd->vdev_id;
540 
541 	ASSERT(cvd->vdev_parent == pvd);
542 
543 	if (pvd == NULL)
544 		return;
545 
546 	ASSERT(id < pvd->vdev_children);
547 	ASSERT(pvd->vdev_child[id] == cvd);
548 
549 	pvd->vdev_child[id] = NULL;
550 	cvd->vdev_parent = NULL;
551 
552 	for (c = 0; c < pvd->vdev_children; c++)
553 		if (pvd->vdev_child[c])
554 			break;
555 
556 	if (c == pvd->vdev_children) {
557 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
558 		pvd->vdev_child = NULL;
559 		pvd->vdev_children = 0;
560 	}
561 
562 	if (cvd->vdev_ops->vdev_op_leaf) {
563 		spa_t *spa = cvd->vdev_spa;
564 		list_remove(&spa->spa_leaf_list, cvd);
565 		spa->spa_leaf_list_gen++;
566 	}
567 
568 	/*
569 	 * Walk up all ancestors to update guid sum.
570 	 */
571 	for (; pvd != NULL; pvd = pvd->vdev_parent)
572 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
573 }
574 
575 /*
576  * Remove any holes in the child array.
577  */
578 void
579 vdev_compact_children(vdev_t *pvd)
580 {
581 	vdev_t **newchild, *cvd;
582 	int oldc = pvd->vdev_children;
583 	int newc;
584 
585 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
586 
587 	if (oldc == 0)
588 		return;
589 
590 	for (int c = newc = 0; c < oldc; c++)
591 		if (pvd->vdev_child[c])
592 			newc++;
593 
594 	if (newc > 0) {
595 		newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
596 
597 		for (int c = newc = 0; c < oldc; c++) {
598 			if ((cvd = pvd->vdev_child[c]) != NULL) {
599 				newchild[newc] = cvd;
600 				cvd->vdev_id = newc++;
601 			}
602 		}
603 	} else {
604 		newchild = NULL;
605 	}
606 
607 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
608 	pvd->vdev_child = newchild;
609 	pvd->vdev_children = newc;
610 }
611 
612 /*
613  * Allocate and minimally initialize a vdev_t.
614  */
615 vdev_t *
616 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
617 {
618 	vdev_t *vd;
619 	vdev_indirect_config_t *vic;
620 
621 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
622 	vic = &vd->vdev_indirect_config;
623 
624 	if (spa->spa_root_vdev == NULL) {
625 		ASSERT(ops == &vdev_root_ops);
626 		spa->spa_root_vdev = vd;
627 		spa->spa_load_guid = spa_generate_guid(NULL);
628 	}
629 
630 	if (guid == 0 && ops != &vdev_hole_ops) {
631 		if (spa->spa_root_vdev == vd) {
632 			/*
633 			 * The root vdev's guid will also be the pool guid,
634 			 * which must be unique among all pools.
635 			 */
636 			guid = spa_generate_guid(NULL);
637 		} else {
638 			/*
639 			 * Any other vdev's guid must be unique within the pool.
640 			 */
641 			guid = spa_generate_guid(spa);
642 		}
643 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
644 	}
645 
646 	vd->vdev_spa = spa;
647 	vd->vdev_id = id;
648 	vd->vdev_guid = guid;
649 	vd->vdev_guid_sum = guid;
650 	vd->vdev_ops = ops;
651 	vd->vdev_state = VDEV_STATE_CLOSED;
652 	vd->vdev_ishole = (ops == &vdev_hole_ops);
653 	vic->vic_prev_indirect_vdev = UINT64_MAX;
654 
655 	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
656 	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
657 	vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL,
658 	    0, 0);
659 
660 	/*
661 	 * Initialize rate limit structs for events.  We rate limit ZIO delay
662 	 * and checksum events so that we don't overwhelm ZED with thousands
663 	 * of events when a disk is acting up.
664 	 */
665 	zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
666 	    1);
667 	zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_slow_io_events_per_second,
668 	    1);
669 	zfs_ratelimit_init(&vd->vdev_checksum_rl,
670 	    &zfs_checksum_events_per_second, 1);
671 
672 	/*
673 	 * Default Thresholds for tuning ZED
674 	 */
675 	vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N);
676 	vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T);
677 	vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N);
678 	vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T);
679 
680 	list_link_init(&vd->vdev_config_dirty_node);
681 	list_link_init(&vd->vdev_state_dirty_node);
682 	list_link_init(&vd->vdev_initialize_node);
683 	list_link_init(&vd->vdev_leaf_node);
684 	list_link_init(&vd->vdev_trim_node);
685 
686 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
687 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
688 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
689 	mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
690 
691 	mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
692 	mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
693 	cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
694 	cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
695 
696 	mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
697 	mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
698 	mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
699 	cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
700 	cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
701 	cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL);
702 	cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
703 
704 	mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
705 	cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
706 
707 	for (int t = 0; t < DTL_TYPES; t++) {
708 		vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
709 		    0);
710 	}
711 
712 	txg_list_create(&vd->vdev_ms_list, spa,
713 	    offsetof(struct metaslab, ms_txg_node));
714 	txg_list_create(&vd->vdev_dtl_list, spa,
715 	    offsetof(struct vdev, vdev_dtl_node));
716 	vd->vdev_stat.vs_timestamp = gethrtime();
717 	vdev_queue_init(vd);
718 	vdev_cache_init(vd);
719 
720 	return (vd);
721 }
722 
723 /*
724  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
725  * creating a new vdev or loading an existing one - the behavior is slightly
726  * different for each case.
727  */
728 int
729 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
730     int alloctype)
731 {
732 	vdev_ops_t *ops;
733 	const char *type;
734 	uint64_t guid = 0, islog;
735 	vdev_t *vd;
736 	vdev_indirect_config_t *vic;
737 	const char *tmp = NULL;
738 	int rc;
739 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
740 	boolean_t top_level = (parent && !parent->vdev_parent);
741 
742 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
743 
744 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
745 		return (SET_ERROR(EINVAL));
746 
747 	if ((ops = vdev_getops(type)) == NULL)
748 		return (SET_ERROR(EINVAL));
749 
750 	/*
751 	 * If this is a load, get the vdev guid from the nvlist.
752 	 * Otherwise, vdev_alloc_common() will generate one for us.
753 	 */
754 	if (alloctype == VDEV_ALLOC_LOAD) {
755 		uint64_t label_id;
756 
757 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
758 		    label_id != id)
759 			return (SET_ERROR(EINVAL));
760 
761 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
762 			return (SET_ERROR(EINVAL));
763 	} else if (alloctype == VDEV_ALLOC_SPARE) {
764 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
765 			return (SET_ERROR(EINVAL));
766 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
767 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
768 			return (SET_ERROR(EINVAL));
769 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
770 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
771 			return (SET_ERROR(EINVAL));
772 	}
773 
774 	/*
775 	 * The first allocated vdev must be of type 'root'.
776 	 */
777 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
778 		return (SET_ERROR(EINVAL));
779 
780 	/*
781 	 * Determine whether we're a log vdev.
782 	 */
783 	islog = 0;
784 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
785 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
786 		return (SET_ERROR(ENOTSUP));
787 
788 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
789 		return (SET_ERROR(ENOTSUP));
790 
791 	if (top_level && alloctype == VDEV_ALLOC_ADD) {
792 		const char *bias;
793 
794 		/*
795 		 * If creating a top-level vdev, check for allocation
796 		 * classes input.
797 		 */
798 		if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
799 		    &bias) == 0) {
800 			alloc_bias = vdev_derive_alloc_bias(bias);
801 
802 			/* spa_vdev_add() expects feature to be enabled */
803 			if (spa->spa_load_state != SPA_LOAD_CREATE &&
804 			    !spa_feature_is_enabled(spa,
805 			    SPA_FEATURE_ALLOCATION_CLASSES)) {
806 				return (SET_ERROR(ENOTSUP));
807 			}
808 		}
809 
810 		/* spa_vdev_add() expects feature to be enabled */
811 		if (ops == &vdev_draid_ops &&
812 		    spa->spa_load_state != SPA_LOAD_CREATE &&
813 		    !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
814 			return (SET_ERROR(ENOTSUP));
815 		}
816 	}
817 
818 	/*
819 	 * Initialize the vdev specific data.  This is done before calling
820 	 * vdev_alloc_common() since it may fail and this simplifies the
821 	 * error reporting and cleanup code paths.
822 	 */
823 	void *tsd = NULL;
824 	if (ops->vdev_op_init != NULL) {
825 		rc = ops->vdev_op_init(spa, nv, &tsd);
826 		if (rc != 0) {
827 			return (rc);
828 		}
829 	}
830 
831 	vd = vdev_alloc_common(spa, id, guid, ops);
832 	vd->vdev_tsd = tsd;
833 	vd->vdev_islog = islog;
834 
835 	if (top_level && alloc_bias != VDEV_BIAS_NONE)
836 		vd->vdev_alloc_bias = alloc_bias;
837 
838 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0)
839 		vd->vdev_path = spa_strdup(tmp);
840 
841 	/*
842 	 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
843 	 * fault on a vdev and want it to persist across imports (like with
844 	 * zpool offline -f).
845 	 */
846 	rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
847 	if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
848 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
849 		vd->vdev_faulted = 1;
850 		vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
851 	}
852 
853 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0)
854 		vd->vdev_devid = spa_strdup(tmp);
855 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0)
856 		vd->vdev_physpath = spa_strdup(tmp);
857 
858 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
859 	    &tmp) == 0)
860 		vd->vdev_enc_sysfs_path = spa_strdup(tmp);
861 
862 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0)
863 		vd->vdev_fru = spa_strdup(tmp);
864 
865 	/*
866 	 * Set the whole_disk property.  If it's not specified, leave the value
867 	 * as -1.
868 	 */
869 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
870 	    &vd->vdev_wholedisk) != 0)
871 		vd->vdev_wholedisk = -1ULL;
872 
873 	vic = &vd->vdev_indirect_config;
874 
875 	ASSERT0(vic->vic_mapping_object);
876 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
877 	    &vic->vic_mapping_object);
878 	ASSERT0(vic->vic_births_object);
879 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
880 	    &vic->vic_births_object);
881 	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
882 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
883 	    &vic->vic_prev_indirect_vdev);
884 
885 	/*
886 	 * Look for the 'not present' flag.  This will only be set if the device
887 	 * was not present at the time of import.
888 	 */
889 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
890 	    &vd->vdev_not_present);
891 
892 	/*
893 	 * Get the alignment requirement.
894 	 */
895 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
896 
897 	/*
898 	 * Retrieve the vdev creation time.
899 	 */
900 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
901 	    &vd->vdev_crtxg);
902 
903 	if (vd->vdev_ops == &vdev_root_ops &&
904 	    (alloctype == VDEV_ALLOC_LOAD ||
905 	    alloctype == VDEV_ALLOC_SPLIT ||
906 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
907 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP,
908 		    &vd->vdev_root_zap);
909 	}
910 
911 	/*
912 	 * If we're a top-level vdev, try to load the allocation parameters.
913 	 */
914 	if (top_level &&
915 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
916 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
917 		    &vd->vdev_ms_array);
918 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
919 		    &vd->vdev_ms_shift);
920 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
921 		    &vd->vdev_asize);
922 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
923 		    &vd->vdev_noalloc);
924 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
925 		    &vd->vdev_removing);
926 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
927 		    &vd->vdev_top_zap);
928 	} else {
929 		ASSERT0(vd->vdev_top_zap);
930 	}
931 
932 	if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
933 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
934 		    alloctype == VDEV_ALLOC_ADD ||
935 		    alloctype == VDEV_ALLOC_SPLIT ||
936 		    alloctype == VDEV_ALLOC_ROOTPOOL);
937 		/* Note: metaslab_group_create() is now deferred */
938 	}
939 
940 	if (vd->vdev_ops->vdev_op_leaf &&
941 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
942 		(void) nvlist_lookup_uint64(nv,
943 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
944 	} else {
945 		ASSERT0(vd->vdev_leaf_zap);
946 	}
947 
948 	/*
949 	 * If we're a leaf vdev, try to load the DTL object and other state.
950 	 */
951 
952 	if (vd->vdev_ops->vdev_op_leaf &&
953 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
954 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
955 		if (alloctype == VDEV_ALLOC_LOAD) {
956 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
957 			    &vd->vdev_dtl_object);
958 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
959 			    &vd->vdev_unspare);
960 		}
961 
962 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
963 			uint64_t spare = 0;
964 
965 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
966 			    &spare) == 0 && spare)
967 				spa_spare_add(vd);
968 		}
969 
970 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
971 		    &vd->vdev_offline);
972 
973 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
974 		    &vd->vdev_resilver_txg);
975 
976 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
977 		    &vd->vdev_rebuild_txg);
978 
979 		if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
980 			vdev_defer_resilver(vd);
981 
982 		/*
983 		 * In general, when importing a pool we want to ignore the
984 		 * persistent fault state, as the diagnosis made on another
985 		 * system may not be valid in the current context.  The only
986 		 * exception is if we forced a vdev to a persistently faulted
987 		 * state with 'zpool offline -f'.  The persistent fault will
988 		 * remain across imports until cleared.
989 		 *
990 		 * Local vdevs will remain in the faulted state.
991 		 */
992 		if (spa_load_state(spa) == SPA_LOAD_OPEN ||
993 		    spa_load_state(spa) == SPA_LOAD_IMPORT) {
994 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
995 			    &vd->vdev_faulted);
996 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
997 			    &vd->vdev_degraded);
998 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
999 			    &vd->vdev_removed);
1000 
1001 			if (vd->vdev_faulted || vd->vdev_degraded) {
1002 				const char *aux;
1003 
1004 				vd->vdev_label_aux =
1005 				    VDEV_AUX_ERR_EXCEEDED;
1006 				if (nvlist_lookup_string(nv,
1007 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
1008 				    strcmp(aux, "external") == 0)
1009 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
1010 				else
1011 					vd->vdev_faulted = 0ULL;
1012 			}
1013 		}
1014 	}
1015 
1016 	/*
1017 	 * Add ourselves to the parent's list of children.
1018 	 */
1019 	vdev_add_child(parent, vd);
1020 
1021 	*vdp = vd;
1022 
1023 	return (0);
1024 }
1025 
1026 void
1027 vdev_free(vdev_t *vd)
1028 {
1029 	spa_t *spa = vd->vdev_spa;
1030 
1031 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1032 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1033 	ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1034 	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
1035 
1036 	/*
1037 	 * Scan queues are normally destroyed at the end of a scan. If the
1038 	 * queue exists here, that implies the vdev is being removed while
1039 	 * the scan is still running.
1040 	 */
1041 	if (vd->vdev_scan_io_queue != NULL) {
1042 		mutex_enter(&vd->vdev_scan_io_queue_lock);
1043 		dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
1044 		vd->vdev_scan_io_queue = NULL;
1045 		mutex_exit(&vd->vdev_scan_io_queue_lock);
1046 	}
1047 
1048 	/*
1049 	 * vdev_free() implies closing the vdev first.  This is simpler than
1050 	 * trying to ensure complicated semantics for all callers.
1051 	 */
1052 	vdev_close(vd);
1053 
1054 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
1055 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1056 
1057 	/*
1058 	 * Free all children.
1059 	 */
1060 	for (int c = 0; c < vd->vdev_children; c++)
1061 		vdev_free(vd->vdev_child[c]);
1062 
1063 	ASSERT(vd->vdev_child == NULL);
1064 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1065 
1066 	if (vd->vdev_ops->vdev_op_fini != NULL)
1067 		vd->vdev_ops->vdev_op_fini(vd);
1068 
1069 	/*
1070 	 * Discard allocation state.
1071 	 */
1072 	if (vd->vdev_mg != NULL) {
1073 		vdev_metaslab_fini(vd);
1074 		metaslab_group_destroy(vd->vdev_mg);
1075 		vd->vdev_mg = NULL;
1076 	}
1077 	if (vd->vdev_log_mg != NULL) {
1078 		ASSERT0(vd->vdev_ms_count);
1079 		metaslab_group_destroy(vd->vdev_log_mg);
1080 		vd->vdev_log_mg = NULL;
1081 	}
1082 
1083 	ASSERT0(vd->vdev_stat.vs_space);
1084 	ASSERT0(vd->vdev_stat.vs_dspace);
1085 	ASSERT0(vd->vdev_stat.vs_alloc);
1086 
1087 	/*
1088 	 * Remove this vdev from its parent's child list.
1089 	 */
1090 	vdev_remove_child(vd->vdev_parent, vd);
1091 
1092 	ASSERT(vd->vdev_parent == NULL);
1093 	ASSERT(!list_link_active(&vd->vdev_leaf_node));
1094 
1095 	/*
1096 	 * Clean up vdev structure.
1097 	 */
1098 	vdev_queue_fini(vd);
1099 	vdev_cache_fini(vd);
1100 
1101 	if (vd->vdev_path)
1102 		spa_strfree(vd->vdev_path);
1103 	if (vd->vdev_devid)
1104 		spa_strfree(vd->vdev_devid);
1105 	if (vd->vdev_physpath)
1106 		spa_strfree(vd->vdev_physpath);
1107 
1108 	if (vd->vdev_enc_sysfs_path)
1109 		spa_strfree(vd->vdev_enc_sysfs_path);
1110 
1111 	if (vd->vdev_fru)
1112 		spa_strfree(vd->vdev_fru);
1113 
1114 	if (vd->vdev_isspare)
1115 		spa_spare_remove(vd);
1116 	if (vd->vdev_isl2cache)
1117 		spa_l2cache_remove(vd);
1118 
1119 	txg_list_destroy(&vd->vdev_ms_list);
1120 	txg_list_destroy(&vd->vdev_dtl_list);
1121 
1122 	mutex_enter(&vd->vdev_dtl_lock);
1123 	space_map_close(vd->vdev_dtl_sm);
1124 	for (int t = 0; t < DTL_TYPES; t++) {
1125 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1126 		range_tree_destroy(vd->vdev_dtl[t]);
1127 	}
1128 	mutex_exit(&vd->vdev_dtl_lock);
1129 
1130 	EQUIV(vd->vdev_indirect_births != NULL,
1131 	    vd->vdev_indirect_mapping != NULL);
1132 	if (vd->vdev_indirect_births != NULL) {
1133 		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1134 		vdev_indirect_births_close(vd->vdev_indirect_births);
1135 	}
1136 
1137 	if (vd->vdev_obsolete_sm != NULL) {
1138 		ASSERT(vd->vdev_removing ||
1139 		    vd->vdev_ops == &vdev_indirect_ops);
1140 		space_map_close(vd->vdev_obsolete_sm);
1141 		vd->vdev_obsolete_sm = NULL;
1142 	}
1143 	range_tree_destroy(vd->vdev_obsolete_segments);
1144 	rw_destroy(&vd->vdev_indirect_rwlock);
1145 	mutex_destroy(&vd->vdev_obsolete_lock);
1146 
1147 	mutex_destroy(&vd->vdev_dtl_lock);
1148 	mutex_destroy(&vd->vdev_stat_lock);
1149 	mutex_destroy(&vd->vdev_probe_lock);
1150 	mutex_destroy(&vd->vdev_scan_io_queue_lock);
1151 
1152 	mutex_destroy(&vd->vdev_initialize_lock);
1153 	mutex_destroy(&vd->vdev_initialize_io_lock);
1154 	cv_destroy(&vd->vdev_initialize_io_cv);
1155 	cv_destroy(&vd->vdev_initialize_cv);
1156 
1157 	mutex_destroy(&vd->vdev_trim_lock);
1158 	mutex_destroy(&vd->vdev_autotrim_lock);
1159 	mutex_destroy(&vd->vdev_trim_io_lock);
1160 	cv_destroy(&vd->vdev_trim_cv);
1161 	cv_destroy(&vd->vdev_autotrim_cv);
1162 	cv_destroy(&vd->vdev_autotrim_kick_cv);
1163 	cv_destroy(&vd->vdev_trim_io_cv);
1164 
1165 	mutex_destroy(&vd->vdev_rebuild_lock);
1166 	cv_destroy(&vd->vdev_rebuild_cv);
1167 
1168 	zfs_ratelimit_fini(&vd->vdev_delay_rl);
1169 	zfs_ratelimit_fini(&vd->vdev_deadman_rl);
1170 	zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1171 
1172 	if (vd == spa->spa_root_vdev)
1173 		spa->spa_root_vdev = NULL;
1174 
1175 	kmem_free(vd, sizeof (vdev_t));
1176 }
1177 
1178 /*
1179  * Transfer top-level vdev state from svd to tvd.
1180  */
1181 static void
1182 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1183 {
1184 	spa_t *spa = svd->vdev_spa;
1185 	metaslab_t *msp;
1186 	vdev_t *vd;
1187 	int t;
1188 
1189 	ASSERT(tvd == tvd->vdev_top);
1190 
1191 	tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
1192 	tvd->vdev_ms_array = svd->vdev_ms_array;
1193 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
1194 	tvd->vdev_ms_count = svd->vdev_ms_count;
1195 	tvd->vdev_top_zap = svd->vdev_top_zap;
1196 
1197 	svd->vdev_ms_array = 0;
1198 	svd->vdev_ms_shift = 0;
1199 	svd->vdev_ms_count = 0;
1200 	svd->vdev_top_zap = 0;
1201 
1202 	if (tvd->vdev_mg)
1203 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1204 	if (tvd->vdev_log_mg)
1205 		ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1206 	tvd->vdev_mg = svd->vdev_mg;
1207 	tvd->vdev_log_mg = svd->vdev_log_mg;
1208 	tvd->vdev_ms = svd->vdev_ms;
1209 
1210 	svd->vdev_mg = NULL;
1211 	svd->vdev_log_mg = NULL;
1212 	svd->vdev_ms = NULL;
1213 
1214 	if (tvd->vdev_mg != NULL)
1215 		tvd->vdev_mg->mg_vd = tvd;
1216 	if (tvd->vdev_log_mg != NULL)
1217 		tvd->vdev_log_mg->mg_vd = tvd;
1218 
1219 	tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1220 	svd->vdev_checkpoint_sm = NULL;
1221 
1222 	tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1223 	svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1224 
1225 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1226 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1227 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1228 
1229 	svd->vdev_stat.vs_alloc = 0;
1230 	svd->vdev_stat.vs_space = 0;
1231 	svd->vdev_stat.vs_dspace = 0;
1232 
1233 	/*
1234 	 * State which may be set on a top-level vdev that's in the
1235 	 * process of being removed.
1236 	 */
1237 	ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1238 	ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1239 	ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1240 	ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1241 	ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1242 	ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1243 	ASSERT0(tvd->vdev_noalloc);
1244 	ASSERT0(tvd->vdev_removing);
1245 	ASSERT0(tvd->vdev_rebuilding);
1246 	tvd->vdev_noalloc = svd->vdev_noalloc;
1247 	tvd->vdev_removing = svd->vdev_removing;
1248 	tvd->vdev_rebuilding = svd->vdev_rebuilding;
1249 	tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1250 	tvd->vdev_indirect_config = svd->vdev_indirect_config;
1251 	tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1252 	tvd->vdev_indirect_births = svd->vdev_indirect_births;
1253 	range_tree_swap(&svd->vdev_obsolete_segments,
1254 	    &tvd->vdev_obsolete_segments);
1255 	tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1256 	svd->vdev_indirect_config.vic_mapping_object = 0;
1257 	svd->vdev_indirect_config.vic_births_object = 0;
1258 	svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1259 	svd->vdev_indirect_mapping = NULL;
1260 	svd->vdev_indirect_births = NULL;
1261 	svd->vdev_obsolete_sm = NULL;
1262 	svd->vdev_noalloc = 0;
1263 	svd->vdev_removing = 0;
1264 	svd->vdev_rebuilding = 0;
1265 
1266 	for (t = 0; t < TXG_SIZE; t++) {
1267 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1268 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1269 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1270 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1271 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1272 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1273 	}
1274 
1275 	if (list_link_active(&svd->vdev_config_dirty_node)) {
1276 		vdev_config_clean(svd);
1277 		vdev_config_dirty(tvd);
1278 	}
1279 
1280 	if (list_link_active(&svd->vdev_state_dirty_node)) {
1281 		vdev_state_clean(svd);
1282 		vdev_state_dirty(tvd);
1283 	}
1284 
1285 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1286 	svd->vdev_deflate_ratio = 0;
1287 
1288 	tvd->vdev_islog = svd->vdev_islog;
1289 	svd->vdev_islog = 0;
1290 
1291 	dsl_scan_io_queue_vdev_xfer(svd, tvd);
1292 }
1293 
1294 static void
1295 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1296 {
1297 	if (vd == NULL)
1298 		return;
1299 
1300 	vd->vdev_top = tvd;
1301 
1302 	for (int c = 0; c < vd->vdev_children; c++)
1303 		vdev_top_update(tvd, vd->vdev_child[c]);
1304 }
1305 
1306 /*
1307  * Add a mirror/replacing vdev above an existing vdev.  There is no need to
1308  * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1309  */
1310 vdev_t *
1311 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1312 {
1313 	spa_t *spa = cvd->vdev_spa;
1314 	vdev_t *pvd = cvd->vdev_parent;
1315 	vdev_t *mvd;
1316 
1317 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1318 
1319 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1320 
1321 	mvd->vdev_asize = cvd->vdev_asize;
1322 	mvd->vdev_min_asize = cvd->vdev_min_asize;
1323 	mvd->vdev_max_asize = cvd->vdev_max_asize;
1324 	mvd->vdev_psize = cvd->vdev_psize;
1325 	mvd->vdev_ashift = cvd->vdev_ashift;
1326 	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1327 	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1328 	mvd->vdev_state = cvd->vdev_state;
1329 	mvd->vdev_crtxg = cvd->vdev_crtxg;
1330 
1331 	vdev_remove_child(pvd, cvd);
1332 	vdev_add_child(pvd, mvd);
1333 	cvd->vdev_id = mvd->vdev_children;
1334 	vdev_add_child(mvd, cvd);
1335 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1336 
1337 	if (mvd == mvd->vdev_top)
1338 		vdev_top_transfer(cvd, mvd);
1339 
1340 	return (mvd);
1341 }
1342 
1343 /*
1344  * Remove a 1-way mirror/replacing vdev from the tree.
1345  */
1346 void
1347 vdev_remove_parent(vdev_t *cvd)
1348 {
1349 	vdev_t *mvd = cvd->vdev_parent;
1350 	vdev_t *pvd = mvd->vdev_parent;
1351 
1352 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1353 
1354 	ASSERT(mvd->vdev_children == 1);
1355 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1356 	    mvd->vdev_ops == &vdev_replacing_ops ||
1357 	    mvd->vdev_ops == &vdev_spare_ops);
1358 	cvd->vdev_ashift = mvd->vdev_ashift;
1359 	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1360 	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1361 	vdev_remove_child(mvd, cvd);
1362 	vdev_remove_child(pvd, mvd);
1363 
1364 	/*
1365 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1366 	 * Otherwise, we could have detached an offline device, and when we
1367 	 * go to import the pool we'll think we have two top-level vdevs,
1368 	 * instead of a different version of the same top-level vdev.
1369 	 */
1370 	if (mvd->vdev_top == mvd) {
1371 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1372 		cvd->vdev_orig_guid = cvd->vdev_guid;
1373 		cvd->vdev_guid += guid_delta;
1374 		cvd->vdev_guid_sum += guid_delta;
1375 
1376 		/*
1377 		 * If pool not set for autoexpand, we need to also preserve
1378 		 * mvd's asize to prevent automatic expansion of cvd.
1379 		 * Otherwise if we are adjusting the mirror by attaching and
1380 		 * detaching children of non-uniform sizes, the mirror could
1381 		 * autoexpand, unexpectedly requiring larger devices to
1382 		 * re-establish the mirror.
1383 		 */
1384 		if (!cvd->vdev_spa->spa_autoexpand)
1385 			cvd->vdev_asize = mvd->vdev_asize;
1386 	}
1387 	cvd->vdev_id = mvd->vdev_id;
1388 	vdev_add_child(pvd, cvd);
1389 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1390 
1391 	if (cvd == cvd->vdev_top)
1392 		vdev_top_transfer(mvd, cvd);
1393 
1394 	ASSERT(mvd->vdev_children == 0);
1395 	vdev_free(mvd);
1396 }
1397 
1398 void
1399 vdev_metaslab_group_create(vdev_t *vd)
1400 {
1401 	spa_t *spa = vd->vdev_spa;
1402 
1403 	/*
1404 	 * metaslab_group_create was delayed until allocation bias was available
1405 	 */
1406 	if (vd->vdev_mg == NULL) {
1407 		metaslab_class_t *mc;
1408 
1409 		if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1410 			vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1411 
1412 		ASSERT3U(vd->vdev_islog, ==,
1413 		    (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1414 
1415 		switch (vd->vdev_alloc_bias) {
1416 		case VDEV_BIAS_LOG:
1417 			mc = spa_log_class(spa);
1418 			break;
1419 		case VDEV_BIAS_SPECIAL:
1420 			mc = spa_special_class(spa);
1421 			break;
1422 		case VDEV_BIAS_DEDUP:
1423 			mc = spa_dedup_class(spa);
1424 			break;
1425 		default:
1426 			mc = spa_normal_class(spa);
1427 		}
1428 
1429 		vd->vdev_mg = metaslab_group_create(mc, vd,
1430 		    spa->spa_alloc_count);
1431 
1432 		if (!vd->vdev_islog) {
1433 			vd->vdev_log_mg = metaslab_group_create(
1434 			    spa_embedded_log_class(spa), vd, 1);
1435 		}
1436 
1437 		/*
1438 		 * The spa ashift min/max only apply for the normal metaslab
1439 		 * class. Class destination is late binding so ashift boundary
1440 		 * setting had to wait until now.
1441 		 */
1442 		if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1443 		    mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1444 			if (vd->vdev_ashift > spa->spa_max_ashift)
1445 				spa->spa_max_ashift = vd->vdev_ashift;
1446 			if (vd->vdev_ashift < spa->spa_min_ashift)
1447 				spa->spa_min_ashift = vd->vdev_ashift;
1448 
1449 			uint64_t min_alloc = vdev_get_min_alloc(vd);
1450 			if (min_alloc < spa->spa_min_alloc)
1451 				spa->spa_min_alloc = min_alloc;
1452 		}
1453 	}
1454 }
1455 
1456 int
1457 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1458 {
1459 	spa_t *spa = vd->vdev_spa;
1460 	uint64_t oldc = vd->vdev_ms_count;
1461 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1462 	metaslab_t **mspp;
1463 	int error;
1464 	boolean_t expanding = (oldc != 0);
1465 
1466 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1467 
1468 	/*
1469 	 * This vdev is not being allocated from yet or is a hole.
1470 	 */
1471 	if (vd->vdev_ms_shift == 0)
1472 		return (0);
1473 
1474 	ASSERT(!vd->vdev_ishole);
1475 
1476 	ASSERT(oldc <= newc);
1477 
1478 	mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1479 
1480 	if (expanding) {
1481 		memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp));
1482 		vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1483 	}
1484 
1485 	vd->vdev_ms = mspp;
1486 	vd->vdev_ms_count = newc;
1487 
1488 	for (uint64_t m = oldc; m < newc; m++) {
1489 		uint64_t object = 0;
1490 		/*
1491 		 * vdev_ms_array may be 0 if we are creating the "fake"
1492 		 * metaslabs for an indirect vdev for zdb's leak detection.
1493 		 * See zdb_leak_init().
1494 		 */
1495 		if (txg == 0 && vd->vdev_ms_array != 0) {
1496 			error = dmu_read(spa->spa_meta_objset,
1497 			    vd->vdev_ms_array,
1498 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1499 			    DMU_READ_PREFETCH);
1500 			if (error != 0) {
1501 				vdev_dbgmsg(vd, "unable to read the metaslab "
1502 				    "array [error=%d]", error);
1503 				return (error);
1504 			}
1505 		}
1506 
1507 		error = metaslab_init(vd->vdev_mg, m, object, txg,
1508 		    &(vd->vdev_ms[m]));
1509 		if (error != 0) {
1510 			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1511 			    error);
1512 			return (error);
1513 		}
1514 	}
1515 
1516 	/*
1517 	 * Find the emptiest metaslab on the vdev and mark it for use for
1518 	 * embedded slog by moving it from the regular to the log metaslab
1519 	 * group.
1520 	 */
1521 	if (vd->vdev_mg->mg_class == spa_normal_class(spa) &&
1522 	    vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1523 	    avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1524 		uint64_t slog_msid = 0;
1525 		uint64_t smallest = UINT64_MAX;
1526 
1527 		/*
1528 		 * Note, we only search the new metaslabs, because the old
1529 		 * (pre-existing) ones may be active (e.g. have non-empty
1530 		 * range_tree's), and we don't move them to the new
1531 		 * metaslab_t.
1532 		 */
1533 		for (uint64_t m = oldc; m < newc; m++) {
1534 			uint64_t alloc =
1535 			    space_map_allocated(vd->vdev_ms[m]->ms_sm);
1536 			if (alloc < smallest) {
1537 				slog_msid = m;
1538 				smallest = alloc;
1539 			}
1540 		}
1541 		metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1542 		/*
1543 		 * The metaslab was marked as dirty at the end of
1544 		 * metaslab_init(). Remove it from the dirty list so that we
1545 		 * can uninitialize and reinitialize it to the new class.
1546 		 */
1547 		if (txg != 0) {
1548 			(void) txg_list_remove_this(&vd->vdev_ms_list,
1549 			    slog_ms, txg);
1550 		}
1551 		uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1552 		metaslab_fini(slog_ms);
1553 		VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1554 		    &vd->vdev_ms[slog_msid]));
1555 	}
1556 
1557 	if (txg == 0)
1558 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1559 
1560 	/*
1561 	 * If the vdev is marked as non-allocating then don't
1562 	 * activate the metaslabs since we want to ensure that
1563 	 * no allocations are performed on this device.
1564 	 */
1565 	if (vd->vdev_noalloc) {
1566 		/* track non-allocating vdev space */
1567 		spa->spa_nonallocating_dspace += spa_deflate(spa) ?
1568 		    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1569 	} else if (!expanding) {
1570 		metaslab_group_activate(vd->vdev_mg);
1571 		if (vd->vdev_log_mg != NULL)
1572 			metaslab_group_activate(vd->vdev_log_mg);
1573 	}
1574 
1575 	if (txg == 0)
1576 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1577 
1578 	return (0);
1579 }
1580 
1581 void
1582 vdev_metaslab_fini(vdev_t *vd)
1583 {
1584 	if (vd->vdev_checkpoint_sm != NULL) {
1585 		ASSERT(spa_feature_is_active(vd->vdev_spa,
1586 		    SPA_FEATURE_POOL_CHECKPOINT));
1587 		space_map_close(vd->vdev_checkpoint_sm);
1588 		/*
1589 		 * Even though we close the space map, we need to set its
1590 		 * pointer to NULL. The reason is that vdev_metaslab_fini()
1591 		 * may be called multiple times for certain operations
1592 		 * (i.e. when destroying a pool) so we need to ensure that
1593 		 * this clause never executes twice. This logic is similar
1594 		 * to the one used for the vdev_ms clause below.
1595 		 */
1596 		vd->vdev_checkpoint_sm = NULL;
1597 	}
1598 
1599 	if (vd->vdev_ms != NULL) {
1600 		metaslab_group_t *mg = vd->vdev_mg;
1601 
1602 		metaslab_group_passivate(mg);
1603 		if (vd->vdev_log_mg != NULL) {
1604 			ASSERT(!vd->vdev_islog);
1605 			metaslab_group_passivate(vd->vdev_log_mg);
1606 		}
1607 
1608 		uint64_t count = vd->vdev_ms_count;
1609 		for (uint64_t m = 0; m < count; m++) {
1610 			metaslab_t *msp = vd->vdev_ms[m];
1611 			if (msp != NULL)
1612 				metaslab_fini(msp);
1613 		}
1614 		vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1615 		vd->vdev_ms = NULL;
1616 		vd->vdev_ms_count = 0;
1617 
1618 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1619 			ASSERT0(mg->mg_histogram[i]);
1620 			if (vd->vdev_log_mg != NULL)
1621 				ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1622 		}
1623 	}
1624 	ASSERT0(vd->vdev_ms_count);
1625 	ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
1626 }
1627 
1628 typedef struct vdev_probe_stats {
1629 	boolean_t	vps_readable;
1630 	boolean_t	vps_writeable;
1631 	int		vps_flags;
1632 } vdev_probe_stats_t;
1633 
1634 static void
1635 vdev_probe_done(zio_t *zio)
1636 {
1637 	spa_t *spa = zio->io_spa;
1638 	vdev_t *vd = zio->io_vd;
1639 	vdev_probe_stats_t *vps = zio->io_private;
1640 
1641 	ASSERT(vd->vdev_probe_zio != NULL);
1642 
1643 	if (zio->io_type == ZIO_TYPE_READ) {
1644 		if (zio->io_error == 0)
1645 			vps->vps_readable = 1;
1646 		if (zio->io_error == 0 && spa_writeable(spa)) {
1647 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1648 			    zio->io_offset, zio->io_size, zio->io_abd,
1649 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1650 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1651 		} else {
1652 			abd_free(zio->io_abd);
1653 		}
1654 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1655 		if (zio->io_error == 0)
1656 			vps->vps_writeable = 1;
1657 		abd_free(zio->io_abd);
1658 	} else if (zio->io_type == ZIO_TYPE_NULL) {
1659 		zio_t *pio;
1660 		zio_link_t *zl;
1661 
1662 		vd->vdev_cant_read |= !vps->vps_readable;
1663 		vd->vdev_cant_write |= !vps->vps_writeable;
1664 
1665 		if (vdev_readable(vd) &&
1666 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1667 			zio->io_error = 0;
1668 		} else {
1669 			ASSERT(zio->io_error != 0);
1670 			vdev_dbgmsg(vd, "failed probe");
1671 			(void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1672 			    spa, vd, NULL, NULL, 0);
1673 			zio->io_error = SET_ERROR(ENXIO);
1674 		}
1675 
1676 		mutex_enter(&vd->vdev_probe_lock);
1677 		ASSERT(vd->vdev_probe_zio == zio);
1678 		vd->vdev_probe_zio = NULL;
1679 		mutex_exit(&vd->vdev_probe_lock);
1680 
1681 		zl = NULL;
1682 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1683 			if (!vdev_accessible(vd, pio))
1684 				pio->io_error = SET_ERROR(ENXIO);
1685 
1686 		kmem_free(vps, sizeof (*vps));
1687 	}
1688 }
1689 
1690 /*
1691  * Determine whether this device is accessible.
1692  *
1693  * Read and write to several known locations: the pad regions of each
1694  * vdev label but the first, which we leave alone in case it contains
1695  * a VTOC.
1696  */
1697 zio_t *
1698 vdev_probe(vdev_t *vd, zio_t *zio)
1699 {
1700 	spa_t *spa = vd->vdev_spa;
1701 	vdev_probe_stats_t *vps = NULL;
1702 	zio_t *pio;
1703 
1704 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1705 
1706 	/*
1707 	 * Don't probe the probe.
1708 	 */
1709 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1710 		return (NULL);
1711 
1712 	/*
1713 	 * To prevent 'probe storms' when a device fails, we create
1714 	 * just one probe i/o at a time.  All zios that want to probe
1715 	 * this vdev will become parents of the probe io.
1716 	 */
1717 	mutex_enter(&vd->vdev_probe_lock);
1718 
1719 	if ((pio = vd->vdev_probe_zio) == NULL) {
1720 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1721 
1722 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1723 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1724 		    ZIO_FLAG_TRYHARD;
1725 
1726 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1727 			/*
1728 			 * vdev_cant_read and vdev_cant_write can only
1729 			 * transition from TRUE to FALSE when we have the
1730 			 * SCL_ZIO lock as writer; otherwise they can only
1731 			 * transition from FALSE to TRUE.  This ensures that
1732 			 * any zio looking at these values can assume that
1733 			 * failures persist for the life of the I/O.  That's
1734 			 * important because when a device has intermittent
1735 			 * connectivity problems, we want to ensure that
1736 			 * they're ascribed to the device (ENXIO) and not
1737 			 * the zio (EIO).
1738 			 *
1739 			 * Since we hold SCL_ZIO as writer here, clear both
1740 			 * values so the probe can reevaluate from first
1741 			 * principles.
1742 			 */
1743 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1744 			vd->vdev_cant_read = B_FALSE;
1745 			vd->vdev_cant_write = B_FALSE;
1746 		}
1747 
1748 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1749 		    vdev_probe_done, vps,
1750 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1751 
1752 		/*
1753 		 * We can't change the vdev state in this context, so we
1754 		 * kick off an async task to do it on our behalf.
1755 		 */
1756 		if (zio != NULL) {
1757 			vd->vdev_probe_wanted = B_TRUE;
1758 			spa_async_request(spa, SPA_ASYNC_PROBE);
1759 		}
1760 	}
1761 
1762 	if (zio != NULL)
1763 		zio_add_child(zio, pio);
1764 
1765 	mutex_exit(&vd->vdev_probe_lock);
1766 
1767 	if (vps == NULL) {
1768 		ASSERT(zio != NULL);
1769 		return (NULL);
1770 	}
1771 
1772 	for (int l = 1; l < VDEV_LABELS; l++) {
1773 		zio_nowait(zio_read_phys(pio, vd,
1774 		    vdev_label_offset(vd->vdev_psize, l,
1775 		    offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1776 		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1777 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1778 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1779 	}
1780 
1781 	if (zio == NULL)
1782 		return (pio);
1783 
1784 	zio_nowait(pio);
1785 	return (NULL);
1786 }
1787 
1788 static void
1789 vdev_load_child(void *arg)
1790 {
1791 	vdev_t *vd = arg;
1792 
1793 	vd->vdev_load_error = vdev_load(vd);
1794 }
1795 
1796 static void
1797 vdev_open_child(void *arg)
1798 {
1799 	vdev_t *vd = arg;
1800 
1801 	vd->vdev_open_thread = curthread;
1802 	vd->vdev_open_error = vdev_open(vd);
1803 	vd->vdev_open_thread = NULL;
1804 }
1805 
1806 static boolean_t
1807 vdev_uses_zvols(vdev_t *vd)
1808 {
1809 #ifdef _KERNEL
1810 	if (zvol_is_zvol(vd->vdev_path))
1811 		return (B_TRUE);
1812 #endif
1813 
1814 	for (int c = 0; c < vd->vdev_children; c++)
1815 		if (vdev_uses_zvols(vd->vdev_child[c]))
1816 			return (B_TRUE);
1817 
1818 	return (B_FALSE);
1819 }
1820 
1821 /*
1822  * Returns B_TRUE if the passed child should be opened.
1823  */
1824 static boolean_t
1825 vdev_default_open_children_func(vdev_t *vd)
1826 {
1827 	(void) vd;
1828 	return (B_TRUE);
1829 }
1830 
1831 /*
1832  * Open the requested child vdevs.  If any of the leaf vdevs are using
1833  * a ZFS volume then do the opens in a single thread.  This avoids a
1834  * deadlock when the current thread is holding the spa_namespace_lock.
1835  */
1836 static void
1837 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
1838 {
1839 	int children = vd->vdev_children;
1840 
1841 	taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
1842 	    children, children, TASKQ_PREPOPULATE);
1843 	vd->vdev_nonrot = B_TRUE;
1844 
1845 	for (int c = 0; c < children; c++) {
1846 		vdev_t *cvd = vd->vdev_child[c];
1847 
1848 		if (open_func(cvd) == B_FALSE)
1849 			continue;
1850 
1851 		if (tq == NULL || vdev_uses_zvols(vd)) {
1852 			cvd->vdev_open_error = vdev_open(cvd);
1853 		} else {
1854 			VERIFY(taskq_dispatch(tq, vdev_open_child,
1855 			    cvd, TQ_SLEEP) != TASKQID_INVALID);
1856 		}
1857 
1858 		vd->vdev_nonrot &= cvd->vdev_nonrot;
1859 	}
1860 
1861 	if (tq != NULL) {
1862 		taskq_wait(tq);
1863 		taskq_destroy(tq);
1864 	}
1865 }
1866 
1867 /*
1868  * Open all child vdevs.
1869  */
1870 void
1871 vdev_open_children(vdev_t *vd)
1872 {
1873 	vdev_open_children_impl(vd, vdev_default_open_children_func);
1874 }
1875 
1876 /*
1877  * Conditionally open a subset of child vdevs.
1878  */
1879 void
1880 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
1881 {
1882 	vdev_open_children_impl(vd, open_func);
1883 }
1884 
1885 /*
1886  * Compute the raidz-deflation ratio.  Note, we hard-code
1887  * in 128k (1 << 17) because it is the "typical" blocksize.
1888  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1889  * otherwise it would inconsistently account for existing bp's.
1890  */
1891 static void
1892 vdev_set_deflate_ratio(vdev_t *vd)
1893 {
1894 	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1895 		vd->vdev_deflate_ratio = (1 << 17) /
1896 		    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1897 	}
1898 }
1899 
1900 /*
1901  * Choose the best of two ashifts, preferring one between logical ashift
1902  * (absolute minimum) and administrator defined maximum, otherwise take
1903  * the biggest of the two.
1904  */
1905 uint64_t
1906 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b)
1907 {
1908 	if (a > logical && a <= zfs_vdev_max_auto_ashift) {
1909 		if (b <= logical || b > zfs_vdev_max_auto_ashift)
1910 			return (a);
1911 		else
1912 			return (MAX(a, b));
1913 	} else if (b <= logical || b > zfs_vdev_max_auto_ashift)
1914 		return (MAX(a, b));
1915 	return (b);
1916 }
1917 
1918 /*
1919  * Maximize performance by inflating the configured ashift for top level
1920  * vdevs to be as close to the physical ashift as possible while maintaining
1921  * administrator defined limits and ensuring it doesn't go below the
1922  * logical ashift.
1923  */
1924 static void
1925 vdev_ashift_optimize(vdev_t *vd)
1926 {
1927 	ASSERT(vd == vd->vdev_top);
1928 
1929 	if (vd->vdev_ashift < vd->vdev_physical_ashift &&
1930 	    vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) {
1931 		vd->vdev_ashift = MIN(
1932 		    MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
1933 		    MAX(zfs_vdev_min_auto_ashift,
1934 		    vd->vdev_physical_ashift));
1935 	} else {
1936 		/*
1937 		 * If the logical and physical ashifts are the same, then
1938 		 * we ensure that the top-level vdev's ashift is not smaller
1939 		 * than our minimum ashift value. For the unusual case
1940 		 * where logical ashift > physical ashift, we can't cap
1941 		 * the calculated ashift based on max ashift as that
1942 		 * would cause failures.
1943 		 * We still check if we need to increase it to match
1944 		 * the min ashift.
1945 		 */
1946 		vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
1947 		    vd->vdev_ashift);
1948 	}
1949 }
1950 
1951 /*
1952  * Prepare a virtual device for access.
1953  */
1954 int
1955 vdev_open(vdev_t *vd)
1956 {
1957 	spa_t *spa = vd->vdev_spa;
1958 	int error;
1959 	uint64_t osize = 0;
1960 	uint64_t max_osize = 0;
1961 	uint64_t asize, max_asize, psize;
1962 	uint64_t logical_ashift = 0;
1963 	uint64_t physical_ashift = 0;
1964 
1965 	ASSERT(vd->vdev_open_thread == curthread ||
1966 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1967 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1968 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1969 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1970 
1971 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1972 	vd->vdev_cant_read = B_FALSE;
1973 	vd->vdev_cant_write = B_FALSE;
1974 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1975 
1976 	/*
1977 	 * If this vdev is not removed, check its fault status.  If it's
1978 	 * faulted, bail out of the open.
1979 	 */
1980 	if (!vd->vdev_removed && vd->vdev_faulted) {
1981 		ASSERT(vd->vdev_children == 0);
1982 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1983 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1984 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1985 		    vd->vdev_label_aux);
1986 		return (SET_ERROR(ENXIO));
1987 	} else if (vd->vdev_offline) {
1988 		ASSERT(vd->vdev_children == 0);
1989 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1990 		return (SET_ERROR(ENXIO));
1991 	}
1992 
1993 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1994 	    &logical_ashift, &physical_ashift);
1995 
1996 	/* Keep the device in removed state if unplugged */
1997 	if (error == ENOENT && vd->vdev_removed) {
1998 		vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED,
1999 		    VDEV_AUX_NONE);
2000 		return (error);
2001 	}
2002 
2003 	/*
2004 	 * Physical volume size should never be larger than its max size, unless
2005 	 * the disk has shrunk while we were reading it or the device is buggy
2006 	 * or damaged: either way it's not safe for use, bail out of the open.
2007 	 */
2008 	if (osize > max_osize) {
2009 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2010 		    VDEV_AUX_OPEN_FAILED);
2011 		return (SET_ERROR(ENXIO));
2012 	}
2013 
2014 	/*
2015 	 * Reset the vdev_reopening flag so that we actually close
2016 	 * the vdev on error.
2017 	 */
2018 	vd->vdev_reopening = B_FALSE;
2019 	if (zio_injection_enabled && error == 0)
2020 		error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
2021 
2022 	if (error) {
2023 		if (vd->vdev_removed &&
2024 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
2025 			vd->vdev_removed = B_FALSE;
2026 
2027 		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
2028 			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
2029 			    vd->vdev_stat.vs_aux);
2030 		} else {
2031 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2032 			    vd->vdev_stat.vs_aux);
2033 		}
2034 		return (error);
2035 	}
2036 
2037 	vd->vdev_removed = B_FALSE;
2038 
2039 	/*
2040 	 * Recheck the faulted flag now that we have confirmed that
2041 	 * the vdev is accessible.  If we're faulted, bail.
2042 	 */
2043 	if (vd->vdev_faulted) {
2044 		ASSERT(vd->vdev_children == 0);
2045 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2046 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2047 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2048 		    vd->vdev_label_aux);
2049 		return (SET_ERROR(ENXIO));
2050 	}
2051 
2052 	if (vd->vdev_degraded) {
2053 		ASSERT(vd->vdev_children == 0);
2054 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2055 		    VDEV_AUX_ERR_EXCEEDED);
2056 	} else {
2057 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
2058 	}
2059 
2060 	/*
2061 	 * For hole or missing vdevs we just return success.
2062 	 */
2063 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
2064 		return (0);
2065 
2066 	for (int c = 0; c < vd->vdev_children; c++) {
2067 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
2068 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2069 			    VDEV_AUX_NONE);
2070 			break;
2071 		}
2072 	}
2073 
2074 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
2075 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
2076 
2077 	if (vd->vdev_children == 0) {
2078 		if (osize < SPA_MINDEVSIZE) {
2079 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2080 			    VDEV_AUX_TOO_SMALL);
2081 			return (SET_ERROR(EOVERFLOW));
2082 		}
2083 		psize = osize;
2084 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
2085 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
2086 		    VDEV_LABEL_END_SIZE);
2087 	} else {
2088 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
2089 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
2090 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2091 			    VDEV_AUX_TOO_SMALL);
2092 			return (SET_ERROR(EOVERFLOW));
2093 		}
2094 		psize = 0;
2095 		asize = osize;
2096 		max_asize = max_osize;
2097 	}
2098 
2099 	/*
2100 	 * If the vdev was expanded, record this so that we can re-create the
2101 	 * uberblock rings in labels {2,3}, during the next sync.
2102 	 */
2103 	if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2104 		vd->vdev_copy_uberblocks = B_TRUE;
2105 
2106 	vd->vdev_psize = psize;
2107 
2108 	/*
2109 	 * Make sure the allocatable size hasn't shrunk too much.
2110 	 */
2111 	if (asize < vd->vdev_min_asize) {
2112 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2113 		    VDEV_AUX_BAD_LABEL);
2114 		return (SET_ERROR(EINVAL));
2115 	}
2116 
2117 	/*
2118 	 * We can always set the logical/physical ashift members since
2119 	 * their values are only used to calculate the vdev_ashift when
2120 	 * the device is first added to the config. These values should
2121 	 * not be used for anything else since they may change whenever
2122 	 * the device is reopened and we don't store them in the label.
2123 	 */
2124 	vd->vdev_physical_ashift =
2125 	    MAX(physical_ashift, vd->vdev_physical_ashift);
2126 	vd->vdev_logical_ashift = MAX(logical_ashift,
2127 	    vd->vdev_logical_ashift);
2128 
2129 	if (vd->vdev_asize == 0) {
2130 		/*
2131 		 * This is the first-ever open, so use the computed values.
2132 		 * For compatibility, a different ashift can be requested.
2133 		 */
2134 		vd->vdev_asize = asize;
2135 		vd->vdev_max_asize = max_asize;
2136 
2137 		/*
2138 		 * If the vdev_ashift was not overridden at creation time,
2139 		 * then set it the logical ashift and optimize the ashift.
2140 		 */
2141 		if (vd->vdev_ashift == 0) {
2142 			vd->vdev_ashift = vd->vdev_logical_ashift;
2143 
2144 			if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2145 				vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2146 				    VDEV_AUX_ASHIFT_TOO_BIG);
2147 				return (SET_ERROR(EDOM));
2148 			}
2149 
2150 			if (vd->vdev_top == vd) {
2151 				vdev_ashift_optimize(vd);
2152 			}
2153 		}
2154 		if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2155 		    vd->vdev_ashift > ASHIFT_MAX)) {
2156 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2157 			    VDEV_AUX_BAD_ASHIFT);
2158 			return (SET_ERROR(EDOM));
2159 		}
2160 	} else {
2161 		/*
2162 		 * Make sure the alignment required hasn't increased.
2163 		 */
2164 		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2165 		    vd->vdev_ops->vdev_op_leaf) {
2166 			(void) zfs_ereport_post(
2167 			    FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2168 			    spa, vd, NULL, NULL, 0);
2169 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2170 			    VDEV_AUX_BAD_LABEL);
2171 			return (SET_ERROR(EDOM));
2172 		}
2173 		vd->vdev_max_asize = max_asize;
2174 	}
2175 
2176 	/*
2177 	 * If all children are healthy we update asize if either:
2178 	 * The asize has increased, due to a device expansion caused by dynamic
2179 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
2180 	 * making the additional space available.
2181 	 *
2182 	 * The asize has decreased, due to a device shrink usually caused by a
2183 	 * vdev replace with a smaller device. This ensures that calculations
2184 	 * based of max_asize and asize e.g. esize are always valid. It's safe
2185 	 * to do this as we've already validated that asize is greater than
2186 	 * vdev_min_asize.
2187 	 */
2188 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2189 	    ((asize > vd->vdev_asize &&
2190 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
2191 	    (asize < vd->vdev_asize)))
2192 		vd->vdev_asize = asize;
2193 
2194 	vdev_set_min_asize(vd);
2195 
2196 	/*
2197 	 * Ensure we can issue some IO before declaring the
2198 	 * vdev open for business.
2199 	 */
2200 	if (vd->vdev_ops->vdev_op_leaf &&
2201 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2202 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2203 		    VDEV_AUX_ERR_EXCEEDED);
2204 		return (error);
2205 	}
2206 
2207 	/*
2208 	 * Track the minimum allocation size.
2209 	 */
2210 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2211 	    vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2212 		uint64_t min_alloc = vdev_get_min_alloc(vd);
2213 		if (min_alloc < spa->spa_min_alloc)
2214 			spa->spa_min_alloc = min_alloc;
2215 	}
2216 
2217 	/*
2218 	 * If this is a leaf vdev, assess whether a resilver is needed.
2219 	 * But don't do this if we are doing a reopen for a scrub, since
2220 	 * this would just restart the scrub we are already doing.
2221 	 */
2222 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2223 		dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2224 
2225 	return (0);
2226 }
2227 
2228 static void
2229 vdev_validate_child(void *arg)
2230 {
2231 	vdev_t *vd = arg;
2232 
2233 	vd->vdev_validate_thread = curthread;
2234 	vd->vdev_validate_error = vdev_validate(vd);
2235 	vd->vdev_validate_thread = NULL;
2236 }
2237 
2238 /*
2239  * Called once the vdevs are all opened, this routine validates the label
2240  * contents. This needs to be done before vdev_load() so that we don't
2241  * inadvertently do repair I/Os to the wrong device.
2242  *
2243  * This function will only return failure if one of the vdevs indicates that it
2244  * has since been destroyed or exported.  This is only possible if
2245  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
2246  * will be updated but the function will return 0.
2247  */
2248 int
2249 vdev_validate(vdev_t *vd)
2250 {
2251 	spa_t *spa = vd->vdev_spa;
2252 	taskq_t *tq = NULL;
2253 	nvlist_t *label;
2254 	uint64_t guid = 0, aux_guid = 0, top_guid;
2255 	uint64_t state;
2256 	nvlist_t *nvl;
2257 	uint64_t txg;
2258 	int children = vd->vdev_children;
2259 
2260 	if (vdev_validate_skip)
2261 		return (0);
2262 
2263 	if (children > 0) {
2264 		tq = taskq_create("vdev_validate", children, minclsyspri,
2265 		    children, children, TASKQ_PREPOPULATE);
2266 	}
2267 
2268 	for (uint64_t c = 0; c < children; c++) {
2269 		vdev_t *cvd = vd->vdev_child[c];
2270 
2271 		if (tq == NULL || vdev_uses_zvols(cvd)) {
2272 			vdev_validate_child(cvd);
2273 		} else {
2274 			VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
2275 			    TQ_SLEEP) != TASKQID_INVALID);
2276 		}
2277 	}
2278 	if (tq != NULL) {
2279 		taskq_wait(tq);
2280 		taskq_destroy(tq);
2281 	}
2282 	for (int c = 0; c < children; c++) {
2283 		int error = vd->vdev_child[c]->vdev_validate_error;
2284 
2285 		if (error != 0)
2286 			return (SET_ERROR(EBADF));
2287 	}
2288 
2289 
2290 	/*
2291 	 * If the device has already failed, or was marked offline, don't do
2292 	 * any further validation.  Otherwise, label I/O will fail and we will
2293 	 * overwrite the previous state.
2294 	 */
2295 	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2296 		return (0);
2297 
2298 	/*
2299 	 * If we are performing an extreme rewind, we allow for a label that
2300 	 * was modified at a point after the current txg.
2301 	 * If config lock is not held do not check for the txg. spa_sync could
2302 	 * be updating the vdev's label before updating spa_last_synced_txg.
2303 	 */
2304 	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2305 	    spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2306 		txg = UINT64_MAX;
2307 	else
2308 		txg = spa_last_synced_txg(spa);
2309 
2310 	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2311 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2312 		    VDEV_AUX_BAD_LABEL);
2313 		vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2314 		    "txg %llu", (u_longlong_t)txg);
2315 		return (0);
2316 	}
2317 
2318 	/*
2319 	 * Determine if this vdev has been split off into another
2320 	 * pool.  If so, then refuse to open it.
2321 	 */
2322 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2323 	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2324 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2325 		    VDEV_AUX_SPLIT_POOL);
2326 		nvlist_free(label);
2327 		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2328 		return (0);
2329 	}
2330 
2331 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2332 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2333 		    VDEV_AUX_CORRUPT_DATA);
2334 		nvlist_free(label);
2335 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2336 		    ZPOOL_CONFIG_POOL_GUID);
2337 		return (0);
2338 	}
2339 
2340 	/*
2341 	 * If config is not trusted then ignore the spa guid check. This is
2342 	 * necessary because if the machine crashed during a re-guid the new
2343 	 * guid might have been written to all of the vdev labels, but not the
2344 	 * cached config. The check will be performed again once we have the
2345 	 * trusted config from the MOS.
2346 	 */
2347 	if (spa->spa_trust_config && guid != spa_guid(spa)) {
2348 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2349 		    VDEV_AUX_CORRUPT_DATA);
2350 		nvlist_free(label);
2351 		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2352 		    "match config (%llu != %llu)", (u_longlong_t)guid,
2353 		    (u_longlong_t)spa_guid(spa));
2354 		return (0);
2355 	}
2356 
2357 	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2358 	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2359 	    &aux_guid) != 0)
2360 		aux_guid = 0;
2361 
2362 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2363 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2364 		    VDEV_AUX_CORRUPT_DATA);
2365 		nvlist_free(label);
2366 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2367 		    ZPOOL_CONFIG_GUID);
2368 		return (0);
2369 	}
2370 
2371 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2372 	    != 0) {
2373 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2374 		    VDEV_AUX_CORRUPT_DATA);
2375 		nvlist_free(label);
2376 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2377 		    ZPOOL_CONFIG_TOP_GUID);
2378 		return (0);
2379 	}
2380 
2381 	/*
2382 	 * If this vdev just became a top-level vdev because its sibling was
2383 	 * detached, it will have adopted the parent's vdev guid -- but the
2384 	 * label may or may not be on disk yet. Fortunately, either version
2385 	 * of the label will have the same top guid, so if we're a top-level
2386 	 * vdev, we can safely compare to that instead.
2387 	 * However, if the config comes from a cachefile that failed to update
2388 	 * after the detach, a top-level vdev will appear as a non top-level
2389 	 * vdev in the config. Also relax the constraints if we perform an
2390 	 * extreme rewind.
2391 	 *
2392 	 * If we split this vdev off instead, then we also check the
2393 	 * original pool's guid. We don't want to consider the vdev
2394 	 * corrupt if it is partway through a split operation.
2395 	 */
2396 	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2397 		boolean_t mismatch = B_FALSE;
2398 		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2399 			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2400 				mismatch = B_TRUE;
2401 		} else {
2402 			if (vd->vdev_guid != top_guid &&
2403 			    vd->vdev_top->vdev_guid != guid)
2404 				mismatch = B_TRUE;
2405 		}
2406 
2407 		if (mismatch) {
2408 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2409 			    VDEV_AUX_CORRUPT_DATA);
2410 			nvlist_free(label);
2411 			vdev_dbgmsg(vd, "vdev_validate: config guid "
2412 			    "doesn't match label guid");
2413 			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2414 			    (u_longlong_t)vd->vdev_guid,
2415 			    (u_longlong_t)vd->vdev_top->vdev_guid);
2416 			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2417 			    "aux_guid %llu", (u_longlong_t)guid,
2418 			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2419 			return (0);
2420 		}
2421 	}
2422 
2423 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2424 	    &state) != 0) {
2425 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2426 		    VDEV_AUX_CORRUPT_DATA);
2427 		nvlist_free(label);
2428 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2429 		    ZPOOL_CONFIG_POOL_STATE);
2430 		return (0);
2431 	}
2432 
2433 	nvlist_free(label);
2434 
2435 	/*
2436 	 * If this is a verbatim import, no need to check the
2437 	 * state of the pool.
2438 	 */
2439 	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2440 	    spa_load_state(spa) == SPA_LOAD_OPEN &&
2441 	    state != POOL_STATE_ACTIVE) {
2442 		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2443 		    "for spa %s", (u_longlong_t)state, spa->spa_name);
2444 		return (SET_ERROR(EBADF));
2445 	}
2446 
2447 	/*
2448 	 * If we were able to open and validate a vdev that was
2449 	 * previously marked permanently unavailable, clear that state
2450 	 * now.
2451 	 */
2452 	if (vd->vdev_not_present)
2453 		vd->vdev_not_present = 0;
2454 
2455 	return (0);
2456 }
2457 
2458 static void
2459 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2460 {
2461 	char *old, *new;
2462 	if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
2463 		if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
2464 			zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
2465 			    "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2466 			    dvd->vdev_path, svd->vdev_path);
2467 			spa_strfree(dvd->vdev_path);
2468 			dvd->vdev_path = spa_strdup(svd->vdev_path);
2469 		}
2470 	} else if (svd->vdev_path != NULL) {
2471 		dvd->vdev_path = spa_strdup(svd->vdev_path);
2472 		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2473 		    (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
2474 	}
2475 
2476 	/*
2477 	 * Our enclosure sysfs path may have changed between imports
2478 	 */
2479 	old = dvd->vdev_enc_sysfs_path;
2480 	new = svd->vdev_enc_sysfs_path;
2481 	if ((old != NULL && new == NULL) ||
2482 	    (old == NULL && new != NULL) ||
2483 	    ((old != NULL && new != NULL) && strcmp(new, old) != 0)) {
2484 		zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
2485 		    "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2486 		    old, new);
2487 
2488 		if (dvd->vdev_enc_sysfs_path)
2489 			spa_strfree(dvd->vdev_enc_sysfs_path);
2490 
2491 		if (svd->vdev_enc_sysfs_path) {
2492 			dvd->vdev_enc_sysfs_path = spa_strdup(
2493 			    svd->vdev_enc_sysfs_path);
2494 		} else {
2495 			dvd->vdev_enc_sysfs_path = NULL;
2496 		}
2497 	}
2498 }
2499 
2500 /*
2501  * Recursively copy vdev paths from one vdev to another. Source and destination
2502  * vdev trees must have same geometry otherwise return error. Intended to copy
2503  * paths from userland config into MOS config.
2504  */
2505 int
2506 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2507 {
2508 	if ((svd->vdev_ops == &vdev_missing_ops) ||
2509 	    (svd->vdev_ishole && dvd->vdev_ishole) ||
2510 	    (dvd->vdev_ops == &vdev_indirect_ops))
2511 		return (0);
2512 
2513 	if (svd->vdev_ops != dvd->vdev_ops) {
2514 		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2515 		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2516 		return (SET_ERROR(EINVAL));
2517 	}
2518 
2519 	if (svd->vdev_guid != dvd->vdev_guid) {
2520 		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2521 		    "%llu)", (u_longlong_t)svd->vdev_guid,
2522 		    (u_longlong_t)dvd->vdev_guid);
2523 		return (SET_ERROR(EINVAL));
2524 	}
2525 
2526 	if (svd->vdev_children != dvd->vdev_children) {
2527 		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2528 		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
2529 		    (u_longlong_t)dvd->vdev_children);
2530 		return (SET_ERROR(EINVAL));
2531 	}
2532 
2533 	for (uint64_t i = 0; i < svd->vdev_children; i++) {
2534 		int error = vdev_copy_path_strict(svd->vdev_child[i],
2535 		    dvd->vdev_child[i]);
2536 		if (error != 0)
2537 			return (error);
2538 	}
2539 
2540 	if (svd->vdev_ops->vdev_op_leaf)
2541 		vdev_copy_path_impl(svd, dvd);
2542 
2543 	return (0);
2544 }
2545 
2546 static void
2547 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2548 {
2549 	ASSERT(stvd->vdev_top == stvd);
2550 	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2551 
2552 	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2553 		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2554 	}
2555 
2556 	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2557 		return;
2558 
2559 	/*
2560 	 * The idea here is that while a vdev can shift positions within
2561 	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2562 	 * step outside of it.
2563 	 */
2564 	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2565 
2566 	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2567 		return;
2568 
2569 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2570 
2571 	vdev_copy_path_impl(vd, dvd);
2572 }
2573 
2574 /*
2575  * Recursively copy vdev paths from one root vdev to another. Source and
2576  * destination vdev trees may differ in geometry. For each destination leaf
2577  * vdev, search a vdev with the same guid and top vdev id in the source.
2578  * Intended to copy paths from userland config into MOS config.
2579  */
2580 void
2581 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2582 {
2583 	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2584 	ASSERT(srvd->vdev_ops == &vdev_root_ops);
2585 	ASSERT(drvd->vdev_ops == &vdev_root_ops);
2586 
2587 	for (uint64_t i = 0; i < children; i++) {
2588 		vdev_copy_path_search(srvd->vdev_child[i],
2589 		    drvd->vdev_child[i]);
2590 	}
2591 }
2592 
2593 /*
2594  * Close a virtual device.
2595  */
2596 void
2597 vdev_close(vdev_t *vd)
2598 {
2599 	vdev_t *pvd = vd->vdev_parent;
2600 	spa_t *spa __maybe_unused = vd->vdev_spa;
2601 
2602 	ASSERT(vd != NULL);
2603 	ASSERT(vd->vdev_open_thread == curthread ||
2604 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2605 
2606 	/*
2607 	 * If our parent is reopening, then we are as well, unless we are
2608 	 * going offline.
2609 	 */
2610 	if (pvd != NULL && pvd->vdev_reopening)
2611 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2612 
2613 	vd->vdev_ops->vdev_op_close(vd);
2614 
2615 	vdev_cache_purge(vd);
2616 
2617 	/*
2618 	 * We record the previous state before we close it, so that if we are
2619 	 * doing a reopen(), we don't generate FMA ereports if we notice that
2620 	 * it's still faulted.
2621 	 */
2622 	vd->vdev_prevstate = vd->vdev_state;
2623 
2624 	if (vd->vdev_offline)
2625 		vd->vdev_state = VDEV_STATE_OFFLINE;
2626 	else
2627 		vd->vdev_state = VDEV_STATE_CLOSED;
2628 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2629 }
2630 
2631 void
2632 vdev_hold(vdev_t *vd)
2633 {
2634 	spa_t *spa = vd->vdev_spa;
2635 
2636 	ASSERT(spa_is_root(spa));
2637 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2638 		return;
2639 
2640 	for (int c = 0; c < vd->vdev_children; c++)
2641 		vdev_hold(vd->vdev_child[c]);
2642 
2643 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL)
2644 		vd->vdev_ops->vdev_op_hold(vd);
2645 }
2646 
2647 void
2648 vdev_rele(vdev_t *vd)
2649 {
2650 	ASSERT(spa_is_root(vd->vdev_spa));
2651 	for (int c = 0; c < vd->vdev_children; c++)
2652 		vdev_rele(vd->vdev_child[c]);
2653 
2654 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL)
2655 		vd->vdev_ops->vdev_op_rele(vd);
2656 }
2657 
2658 /*
2659  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2660  * reopen leaf vdevs which had previously been opened as they might deadlock
2661  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2662  * If the leaf has never been opened then open it, as usual.
2663  */
2664 void
2665 vdev_reopen(vdev_t *vd)
2666 {
2667 	spa_t *spa = vd->vdev_spa;
2668 
2669 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2670 
2671 	/* set the reopening flag unless we're taking the vdev offline */
2672 	vd->vdev_reopening = !vd->vdev_offline;
2673 	vdev_close(vd);
2674 	(void) vdev_open(vd);
2675 
2676 	/*
2677 	 * Call vdev_validate() here to make sure we have the same device.
2678 	 * Otherwise, a device with an invalid label could be successfully
2679 	 * opened in response to vdev_reopen().
2680 	 */
2681 	if (vd->vdev_aux) {
2682 		(void) vdev_validate_aux(vd);
2683 		if (vdev_readable(vd) && vdev_writeable(vd) &&
2684 		    vd->vdev_aux == &spa->spa_l2cache) {
2685 			/*
2686 			 * In case the vdev is present we should evict all ARC
2687 			 * buffers and pointers to log blocks and reclaim their
2688 			 * space before restoring its contents to L2ARC.
2689 			 */
2690 			if (l2arc_vdev_present(vd)) {
2691 				l2arc_rebuild_vdev(vd, B_TRUE);
2692 			} else {
2693 				l2arc_add_vdev(spa, vd);
2694 			}
2695 			spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2696 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2697 		}
2698 	} else {
2699 		(void) vdev_validate(vd);
2700 	}
2701 
2702 	/*
2703 	 * Reassess parent vdev's health.
2704 	 */
2705 	vdev_propagate_state(vd);
2706 }
2707 
2708 int
2709 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2710 {
2711 	int error;
2712 
2713 	/*
2714 	 * Normally, partial opens (e.g. of a mirror) are allowed.
2715 	 * For a create, however, we want to fail the request if
2716 	 * there are any components we can't open.
2717 	 */
2718 	error = vdev_open(vd);
2719 
2720 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2721 		vdev_close(vd);
2722 		return (error ? error : SET_ERROR(ENXIO));
2723 	}
2724 
2725 	/*
2726 	 * Recursively load DTLs and initialize all labels.
2727 	 */
2728 	if ((error = vdev_dtl_load(vd)) != 0 ||
2729 	    (error = vdev_label_init(vd, txg, isreplacing ?
2730 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2731 		vdev_close(vd);
2732 		return (error);
2733 	}
2734 
2735 	return (0);
2736 }
2737 
2738 void
2739 vdev_metaslab_set_size(vdev_t *vd)
2740 {
2741 	uint64_t asize = vd->vdev_asize;
2742 	uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2743 	uint64_t ms_shift;
2744 
2745 	/*
2746 	 * There are two dimensions to the metaslab sizing calculation:
2747 	 * the size of the metaslab and the count of metaslabs per vdev.
2748 	 *
2749 	 * The default values used below are a good balance between memory
2750 	 * usage (larger metaslab size means more memory needed for loaded
2751 	 * metaslabs; more metaslabs means more memory needed for the
2752 	 * metaslab_t structs), metaslab load time (larger metaslabs take
2753 	 * longer to load), and metaslab sync time (more metaslabs means
2754 	 * more time spent syncing all of them).
2755 	 *
2756 	 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2757 	 * The range of the dimensions are as follows:
2758 	 *
2759 	 *	2^29 <= ms_size  <= 2^34
2760 	 *	  16 <= ms_count <= 131,072
2761 	 *
2762 	 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2763 	 * at least 512MB (2^29) to minimize fragmentation effects when
2764 	 * testing with smaller devices.  However, the count constraint
2765 	 * of at least 16 metaslabs will override this minimum size goal.
2766 	 *
2767 	 * On the upper end of vdev sizes, we aim for a maximum metaslab
2768 	 * size of 16GB.  However, we will cap the total count to 2^17
2769 	 * metaslabs to keep our memory footprint in check and let the
2770 	 * metaslab size grow from there if that limit is hit.
2771 	 *
2772 	 * The net effect of applying above constrains is summarized below.
2773 	 *
2774 	 *   vdev size       metaslab count
2775 	 *  --------------|-----------------
2776 	 *      < 8GB        ~16
2777 	 *  8GB   - 100GB   one per 512MB
2778 	 *  100GB - 3TB     ~200
2779 	 *  3TB   - 2PB     one per 16GB
2780 	 *      > 2PB       ~131,072
2781 	 *  --------------------------------
2782 	 *
2783 	 *  Finally, note that all of the above calculate the initial
2784 	 *  number of metaslabs. Expanding a top-level vdev will result
2785 	 *  in additional metaslabs being allocated making it possible
2786 	 *  to exceed the zfs_vdev_ms_count_limit.
2787 	 */
2788 
2789 	if (ms_count < zfs_vdev_min_ms_count)
2790 		ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2791 	else if (ms_count > zfs_vdev_default_ms_count)
2792 		ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2793 	else
2794 		ms_shift = zfs_vdev_default_ms_shift;
2795 
2796 	if (ms_shift < SPA_MAXBLOCKSHIFT) {
2797 		ms_shift = SPA_MAXBLOCKSHIFT;
2798 	} else if (ms_shift > zfs_vdev_max_ms_shift) {
2799 		ms_shift = zfs_vdev_max_ms_shift;
2800 		/* cap the total count to constrain memory footprint */
2801 		if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2802 			ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2803 	}
2804 
2805 	vd->vdev_ms_shift = ms_shift;
2806 	ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2807 }
2808 
2809 void
2810 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2811 {
2812 	ASSERT(vd == vd->vdev_top);
2813 	/* indirect vdevs don't have metaslabs or dtls */
2814 	ASSERT(vdev_is_concrete(vd) || flags == 0);
2815 	ASSERT(ISP2(flags));
2816 	ASSERT(spa_writeable(vd->vdev_spa));
2817 
2818 	if (flags & VDD_METASLAB)
2819 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2820 
2821 	if (flags & VDD_DTL)
2822 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2823 
2824 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2825 }
2826 
2827 void
2828 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2829 {
2830 	for (int c = 0; c < vd->vdev_children; c++)
2831 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2832 
2833 	if (vd->vdev_ops->vdev_op_leaf)
2834 		vdev_dirty(vd->vdev_top, flags, vd, txg);
2835 }
2836 
2837 /*
2838  * DTLs.
2839  *
2840  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2841  * the vdev has less than perfect replication.  There are four kinds of DTL:
2842  *
2843  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2844  *
2845  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2846  *
2847  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2848  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2849  *	txgs that was scrubbed.
2850  *
2851  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2852  *	persistent errors or just some device being offline.
2853  *	Unlike the other three, the DTL_OUTAGE map is not generally
2854  *	maintained; it's only computed when needed, typically to
2855  *	determine whether a device can be detached.
2856  *
2857  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2858  * either has the data or it doesn't.
2859  *
2860  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2861  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2862  * if any child is less than fully replicated, then so is its parent.
2863  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2864  * comprising only those txgs which appear in 'maxfaults' or more children;
2865  * those are the txgs we don't have enough replication to read.  For example,
2866  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2867  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2868  * two child DTL_MISSING maps.
2869  *
2870  * It should be clear from the above that to compute the DTLs and outage maps
2871  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2872  * Therefore, that is all we keep on disk.  When loading the pool, or after
2873  * a configuration change, we generate all other DTLs from first principles.
2874  */
2875 void
2876 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2877 {
2878 	range_tree_t *rt = vd->vdev_dtl[t];
2879 
2880 	ASSERT(t < DTL_TYPES);
2881 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2882 	ASSERT(spa_writeable(vd->vdev_spa));
2883 
2884 	mutex_enter(&vd->vdev_dtl_lock);
2885 	if (!range_tree_contains(rt, txg, size))
2886 		range_tree_add(rt, txg, size);
2887 	mutex_exit(&vd->vdev_dtl_lock);
2888 }
2889 
2890 boolean_t
2891 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2892 {
2893 	range_tree_t *rt = vd->vdev_dtl[t];
2894 	boolean_t dirty = B_FALSE;
2895 
2896 	ASSERT(t < DTL_TYPES);
2897 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2898 
2899 	/*
2900 	 * While we are loading the pool, the DTLs have not been loaded yet.
2901 	 * This isn't a problem but it can result in devices being tried
2902 	 * which are known to not have the data.  In which case, the import
2903 	 * is relying on the checksum to ensure that we get the right data.
2904 	 * Note that while importing we are only reading the MOS, which is
2905 	 * always checksummed.
2906 	 */
2907 	mutex_enter(&vd->vdev_dtl_lock);
2908 	if (!range_tree_is_empty(rt))
2909 		dirty = range_tree_contains(rt, txg, size);
2910 	mutex_exit(&vd->vdev_dtl_lock);
2911 
2912 	return (dirty);
2913 }
2914 
2915 boolean_t
2916 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2917 {
2918 	range_tree_t *rt = vd->vdev_dtl[t];
2919 	boolean_t empty;
2920 
2921 	mutex_enter(&vd->vdev_dtl_lock);
2922 	empty = range_tree_is_empty(rt);
2923 	mutex_exit(&vd->vdev_dtl_lock);
2924 
2925 	return (empty);
2926 }
2927 
2928 /*
2929  * Check if the txg falls within the range which must be
2930  * resilvered.  DVAs outside this range can always be skipped.
2931  */
2932 boolean_t
2933 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2934     uint64_t phys_birth)
2935 {
2936 	(void) dva, (void) psize;
2937 
2938 	/* Set by sequential resilver. */
2939 	if (phys_birth == TXG_UNKNOWN)
2940 		return (B_TRUE);
2941 
2942 	return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
2943 }
2944 
2945 /*
2946  * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
2947  */
2948 boolean_t
2949 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2950     uint64_t phys_birth)
2951 {
2952 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2953 
2954 	if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2955 	    vd->vdev_ops->vdev_op_leaf)
2956 		return (B_TRUE);
2957 
2958 	return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
2959 	    phys_birth));
2960 }
2961 
2962 /*
2963  * Returns the lowest txg in the DTL range.
2964  */
2965 static uint64_t
2966 vdev_dtl_min(vdev_t *vd)
2967 {
2968 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2969 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2970 	ASSERT0(vd->vdev_children);
2971 
2972 	return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
2973 }
2974 
2975 /*
2976  * Returns the highest txg in the DTL.
2977  */
2978 static uint64_t
2979 vdev_dtl_max(vdev_t *vd)
2980 {
2981 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2982 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2983 	ASSERT0(vd->vdev_children);
2984 
2985 	return (range_tree_max(vd->vdev_dtl[DTL_MISSING]));
2986 }
2987 
2988 /*
2989  * Determine if a resilvering vdev should remove any DTL entries from
2990  * its range. If the vdev was resilvering for the entire duration of the
2991  * scan then it should excise that range from its DTLs. Otherwise, this
2992  * vdev is considered partially resilvered and should leave its DTL
2993  * entries intact. The comment in vdev_dtl_reassess() describes how we
2994  * excise the DTLs.
2995  */
2996 static boolean_t
2997 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
2998 {
2999 	ASSERT0(vd->vdev_children);
3000 
3001 	if (vd->vdev_state < VDEV_STATE_DEGRADED)
3002 		return (B_FALSE);
3003 
3004 	if (vd->vdev_resilver_deferred)
3005 		return (B_FALSE);
3006 
3007 	if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
3008 		return (B_TRUE);
3009 
3010 	if (rebuild_done) {
3011 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3012 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
3013 
3014 		/* Rebuild not initiated by attach */
3015 		if (vd->vdev_rebuild_txg == 0)
3016 			return (B_TRUE);
3017 
3018 		/*
3019 		 * When a rebuild completes without error then all missing data
3020 		 * up to the rebuild max txg has been reconstructed and the DTL
3021 		 * is eligible for excision.
3022 		 */
3023 		if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
3024 		    vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
3025 			ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
3026 			ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
3027 			ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
3028 			return (B_TRUE);
3029 		}
3030 	} else {
3031 		dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
3032 		dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
3033 
3034 		/* Resilver not initiated by attach */
3035 		if (vd->vdev_resilver_txg == 0)
3036 			return (B_TRUE);
3037 
3038 		/*
3039 		 * When a resilver is initiated the scan will assign the
3040 		 * scn_max_txg value to the highest txg value that exists
3041 		 * in all DTLs. If this device's max DTL is not part of this
3042 		 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
3043 		 * then it is not eligible for excision.
3044 		 */
3045 		if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
3046 			ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
3047 			ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
3048 			ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
3049 			return (B_TRUE);
3050 		}
3051 	}
3052 
3053 	return (B_FALSE);
3054 }
3055 
3056 /*
3057  * Reassess DTLs after a config change or scrub completion. If txg == 0 no
3058  * write operations will be issued to the pool.
3059  */
3060 void
3061 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3062     boolean_t scrub_done, boolean_t rebuild_done)
3063 {
3064 	spa_t *spa = vd->vdev_spa;
3065 	avl_tree_t reftree;
3066 	int minref;
3067 
3068 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3069 
3070 	for (int c = 0; c < vd->vdev_children; c++)
3071 		vdev_dtl_reassess(vd->vdev_child[c], txg,
3072 		    scrub_txg, scrub_done, rebuild_done);
3073 
3074 	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
3075 		return;
3076 
3077 	if (vd->vdev_ops->vdev_op_leaf) {
3078 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
3079 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3080 		boolean_t check_excise = B_FALSE;
3081 		boolean_t wasempty = B_TRUE;
3082 
3083 		mutex_enter(&vd->vdev_dtl_lock);
3084 
3085 		/*
3086 		 * If requested, pretend the scan or rebuild completed cleanly.
3087 		 */
3088 		if (zfs_scan_ignore_errors) {
3089 			if (scn != NULL)
3090 				scn->scn_phys.scn_errors = 0;
3091 			if (vr != NULL)
3092 				vr->vr_rebuild_phys.vrp_errors = 0;
3093 		}
3094 
3095 		if (scrub_txg != 0 &&
3096 		    !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3097 			wasempty = B_FALSE;
3098 			zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
3099 			    "dtl:%llu/%llu errors:%llu",
3100 			    (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
3101 			    (u_longlong_t)scrub_txg, spa->spa_scrub_started,
3102 			    (u_longlong_t)vdev_dtl_min(vd),
3103 			    (u_longlong_t)vdev_dtl_max(vd),
3104 			    (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
3105 		}
3106 
3107 		/*
3108 		 * If we've completed a scrub/resilver or a rebuild cleanly
3109 		 * then determine if this vdev should remove any DTLs. We
3110 		 * only want to excise regions on vdevs that were available
3111 		 * during the entire duration of this scan.
3112 		 */
3113 		if (rebuild_done &&
3114 		    vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
3115 			check_excise = B_TRUE;
3116 		} else {
3117 			if (spa->spa_scrub_started ||
3118 			    (scn != NULL && scn->scn_phys.scn_errors == 0)) {
3119 				check_excise = B_TRUE;
3120 			}
3121 		}
3122 
3123 		if (scrub_txg && check_excise &&
3124 		    vdev_dtl_should_excise(vd, rebuild_done)) {
3125 			/*
3126 			 * We completed a scrub, resilver or rebuild up to
3127 			 * scrub_txg.  If we did it without rebooting, then
3128 			 * the scrub dtl will be valid, so excise the old
3129 			 * region and fold in the scrub dtl.  Otherwise,
3130 			 * leave the dtl as-is if there was an error.
3131 			 *
3132 			 * There's little trick here: to excise the beginning
3133 			 * of the DTL_MISSING map, we put it into a reference
3134 			 * tree and then add a segment with refcnt -1 that
3135 			 * covers the range [0, scrub_txg).  This means
3136 			 * that each txg in that range has refcnt -1 or 0.
3137 			 * We then add DTL_SCRUB with a refcnt of 2, so that
3138 			 * entries in the range [0, scrub_txg) will have a
3139 			 * positive refcnt -- either 1 or 2.  We then convert
3140 			 * the reference tree into the new DTL_MISSING map.
3141 			 */
3142 			space_reftree_create(&reftree);
3143 			space_reftree_add_map(&reftree,
3144 			    vd->vdev_dtl[DTL_MISSING], 1);
3145 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
3146 			space_reftree_add_map(&reftree,
3147 			    vd->vdev_dtl[DTL_SCRUB], 2);
3148 			space_reftree_generate_map(&reftree,
3149 			    vd->vdev_dtl[DTL_MISSING], 1);
3150 			space_reftree_destroy(&reftree);
3151 
3152 			if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3153 				zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3154 				    (u_longlong_t)vdev_dtl_min(vd),
3155 				    (u_longlong_t)vdev_dtl_max(vd));
3156 			} else if (!wasempty) {
3157 				zfs_dbgmsg("DTL_MISSING is now empty");
3158 			}
3159 		}
3160 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3161 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3162 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3163 		if (scrub_done)
3164 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
3165 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3166 		if (!vdev_readable(vd))
3167 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3168 		else
3169 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3170 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3171 
3172 		/*
3173 		 * If the vdev was resilvering or rebuilding and no longer
3174 		 * has any DTLs then reset the appropriate flag and dirty
3175 		 * the top level so that we persist the change.
3176 		 */
3177 		if (txg != 0 &&
3178 		    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3179 		    range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3180 			if (vd->vdev_rebuild_txg != 0) {
3181 				vd->vdev_rebuild_txg = 0;
3182 				vdev_config_dirty(vd->vdev_top);
3183 			} else if (vd->vdev_resilver_txg != 0) {
3184 				vd->vdev_resilver_txg = 0;
3185 				vdev_config_dirty(vd->vdev_top);
3186 			}
3187 		}
3188 
3189 		mutex_exit(&vd->vdev_dtl_lock);
3190 
3191 		if (txg != 0)
3192 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3193 		return;
3194 	}
3195 
3196 	mutex_enter(&vd->vdev_dtl_lock);
3197 	for (int t = 0; t < DTL_TYPES; t++) {
3198 		/* account for child's outage in parent's missing map */
3199 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3200 		if (t == DTL_SCRUB)
3201 			continue;			/* leaf vdevs only */
3202 		if (t == DTL_PARTIAL)
3203 			minref = 1;			/* i.e. non-zero */
3204 		else if (vdev_get_nparity(vd) != 0)
3205 			minref = vdev_get_nparity(vd) + 1; /* RAID-Z, dRAID */
3206 		else
3207 			minref = vd->vdev_children;	/* any kind of mirror */
3208 		space_reftree_create(&reftree);
3209 		for (int c = 0; c < vd->vdev_children; c++) {
3210 			vdev_t *cvd = vd->vdev_child[c];
3211 			mutex_enter(&cvd->vdev_dtl_lock);
3212 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
3213 			mutex_exit(&cvd->vdev_dtl_lock);
3214 		}
3215 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
3216 		space_reftree_destroy(&reftree);
3217 	}
3218 	mutex_exit(&vd->vdev_dtl_lock);
3219 }
3220 
3221 /*
3222  * Iterate over all the vdevs except spare, and post kobj events
3223  */
3224 void
3225 vdev_post_kobj_evt(vdev_t *vd)
3226 {
3227 	if (vd->vdev_ops->vdev_op_kobj_evt_post &&
3228 	    vd->vdev_kobj_flag == B_FALSE) {
3229 		vd->vdev_kobj_flag = B_TRUE;
3230 		vd->vdev_ops->vdev_op_kobj_evt_post(vd);
3231 	}
3232 
3233 	for (int c = 0; c < vd->vdev_children; c++)
3234 		vdev_post_kobj_evt(vd->vdev_child[c]);
3235 }
3236 
3237 /*
3238  * Iterate over all the vdevs except spare, and clear kobj events
3239  */
3240 void
3241 vdev_clear_kobj_evt(vdev_t *vd)
3242 {
3243 	vd->vdev_kobj_flag = B_FALSE;
3244 
3245 	for (int c = 0; c < vd->vdev_children; c++)
3246 		vdev_clear_kobj_evt(vd->vdev_child[c]);
3247 }
3248 
3249 int
3250 vdev_dtl_load(vdev_t *vd)
3251 {
3252 	spa_t *spa = vd->vdev_spa;
3253 	objset_t *mos = spa->spa_meta_objset;
3254 	range_tree_t *rt;
3255 	int error = 0;
3256 
3257 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3258 		ASSERT(vdev_is_concrete(vd));
3259 
3260 		/*
3261 		 * If the dtl cannot be sync'd there is no need to open it.
3262 		 */
3263 		if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps)
3264 			return (0);
3265 
3266 		error = space_map_open(&vd->vdev_dtl_sm, mos,
3267 		    vd->vdev_dtl_object, 0, -1ULL, 0);
3268 		if (error)
3269 			return (error);
3270 		ASSERT(vd->vdev_dtl_sm != NULL);
3271 
3272 		rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3273 		error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3274 		if (error == 0) {
3275 			mutex_enter(&vd->vdev_dtl_lock);
3276 			range_tree_walk(rt, range_tree_add,
3277 			    vd->vdev_dtl[DTL_MISSING]);
3278 			mutex_exit(&vd->vdev_dtl_lock);
3279 		}
3280 
3281 		range_tree_vacate(rt, NULL, NULL);
3282 		range_tree_destroy(rt);
3283 
3284 		return (error);
3285 	}
3286 
3287 	for (int c = 0; c < vd->vdev_children; c++) {
3288 		error = vdev_dtl_load(vd->vdev_child[c]);
3289 		if (error != 0)
3290 			break;
3291 	}
3292 
3293 	return (error);
3294 }
3295 
3296 static void
3297 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3298 {
3299 	spa_t *spa = vd->vdev_spa;
3300 	objset_t *mos = spa->spa_meta_objset;
3301 	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3302 	const char *string;
3303 
3304 	ASSERT(alloc_bias != VDEV_BIAS_NONE);
3305 
3306 	string =
3307 	    (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3308 	    (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3309 	    (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3310 
3311 	ASSERT(string != NULL);
3312 	VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3313 	    1, strlen(string) + 1, string, tx));
3314 
3315 	if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3316 		spa_activate_allocation_classes(spa, tx);
3317 	}
3318 }
3319 
3320 void
3321 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3322 {
3323 	spa_t *spa = vd->vdev_spa;
3324 
3325 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3326 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3327 	    zapobj, tx));
3328 }
3329 
3330 uint64_t
3331 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3332 {
3333 	spa_t *spa = vd->vdev_spa;
3334 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3335 	    DMU_OT_NONE, 0, tx);
3336 
3337 	ASSERT(zap != 0);
3338 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3339 	    zap, tx));
3340 
3341 	return (zap);
3342 }
3343 
3344 void
3345 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3346 {
3347 	if (vd->vdev_ops != &vdev_hole_ops &&
3348 	    vd->vdev_ops != &vdev_missing_ops &&
3349 	    vd->vdev_ops != &vdev_root_ops &&
3350 	    !vd->vdev_top->vdev_removing) {
3351 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3352 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3353 		}
3354 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3355 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3356 			if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3357 				vdev_zap_allocation_data(vd, tx);
3358 		}
3359 	}
3360 	if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 &&
3361 	    spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) {
3362 		if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2))
3363 			spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx);
3364 		vd->vdev_root_zap = vdev_create_link_zap(vd, tx);
3365 	}
3366 
3367 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3368 		vdev_construct_zaps(vd->vdev_child[i], tx);
3369 	}
3370 }
3371 
3372 static void
3373 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3374 {
3375 	spa_t *spa = vd->vdev_spa;
3376 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3377 	objset_t *mos = spa->spa_meta_objset;
3378 	range_tree_t *rtsync;
3379 	dmu_tx_t *tx;
3380 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
3381 
3382 	ASSERT(vdev_is_concrete(vd));
3383 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3384 
3385 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3386 
3387 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3388 		mutex_enter(&vd->vdev_dtl_lock);
3389 		space_map_free(vd->vdev_dtl_sm, tx);
3390 		space_map_close(vd->vdev_dtl_sm);
3391 		vd->vdev_dtl_sm = NULL;
3392 		mutex_exit(&vd->vdev_dtl_lock);
3393 
3394 		/*
3395 		 * We only destroy the leaf ZAP for detached leaves or for
3396 		 * removed log devices. Removed data devices handle leaf ZAP
3397 		 * cleanup later, once cancellation is no longer possible.
3398 		 */
3399 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3400 		    vd->vdev_top->vdev_islog)) {
3401 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3402 			vd->vdev_leaf_zap = 0;
3403 		}
3404 
3405 		dmu_tx_commit(tx);
3406 		return;
3407 	}
3408 
3409 	if (vd->vdev_dtl_sm == NULL) {
3410 		uint64_t new_object;
3411 
3412 		new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3413 		VERIFY3U(new_object, !=, 0);
3414 
3415 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3416 		    0, -1ULL, 0));
3417 		ASSERT(vd->vdev_dtl_sm != NULL);
3418 	}
3419 
3420 	rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3421 
3422 	mutex_enter(&vd->vdev_dtl_lock);
3423 	range_tree_walk(rt, range_tree_add, rtsync);
3424 	mutex_exit(&vd->vdev_dtl_lock);
3425 
3426 	space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3427 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3428 	range_tree_vacate(rtsync, NULL, NULL);
3429 
3430 	range_tree_destroy(rtsync);
3431 
3432 	/*
3433 	 * If the object for the space map has changed then dirty
3434 	 * the top level so that we update the config.
3435 	 */
3436 	if (object != space_map_object(vd->vdev_dtl_sm)) {
3437 		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3438 		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
3439 		    (u_longlong_t)object,
3440 		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3441 		vdev_config_dirty(vd->vdev_top);
3442 	}
3443 
3444 	dmu_tx_commit(tx);
3445 }
3446 
3447 /*
3448  * Determine whether the specified vdev can be offlined/detached/removed
3449  * without losing data.
3450  */
3451 boolean_t
3452 vdev_dtl_required(vdev_t *vd)
3453 {
3454 	spa_t *spa = vd->vdev_spa;
3455 	vdev_t *tvd = vd->vdev_top;
3456 	uint8_t cant_read = vd->vdev_cant_read;
3457 	boolean_t required;
3458 
3459 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3460 
3461 	if (vd == spa->spa_root_vdev || vd == tvd)
3462 		return (B_TRUE);
3463 
3464 	/*
3465 	 * Temporarily mark the device as unreadable, and then determine
3466 	 * whether this results in any DTL outages in the top-level vdev.
3467 	 * If not, we can safely offline/detach/remove the device.
3468 	 */
3469 	vd->vdev_cant_read = B_TRUE;
3470 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3471 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3472 	vd->vdev_cant_read = cant_read;
3473 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3474 
3475 	if (!required && zio_injection_enabled) {
3476 		required = !!zio_handle_device_injection(vd, NULL,
3477 		    SET_ERROR(ECHILD));
3478 	}
3479 
3480 	return (required);
3481 }
3482 
3483 /*
3484  * Determine if resilver is needed, and if so the txg range.
3485  */
3486 boolean_t
3487 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3488 {
3489 	boolean_t needed = B_FALSE;
3490 	uint64_t thismin = UINT64_MAX;
3491 	uint64_t thismax = 0;
3492 
3493 	if (vd->vdev_children == 0) {
3494 		mutex_enter(&vd->vdev_dtl_lock);
3495 		if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3496 		    vdev_writeable(vd)) {
3497 
3498 			thismin = vdev_dtl_min(vd);
3499 			thismax = vdev_dtl_max(vd);
3500 			needed = B_TRUE;
3501 		}
3502 		mutex_exit(&vd->vdev_dtl_lock);
3503 	} else {
3504 		for (int c = 0; c < vd->vdev_children; c++) {
3505 			vdev_t *cvd = vd->vdev_child[c];
3506 			uint64_t cmin, cmax;
3507 
3508 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3509 				thismin = MIN(thismin, cmin);
3510 				thismax = MAX(thismax, cmax);
3511 				needed = B_TRUE;
3512 			}
3513 		}
3514 	}
3515 
3516 	if (needed && minp) {
3517 		*minp = thismin;
3518 		*maxp = thismax;
3519 	}
3520 	return (needed);
3521 }
3522 
3523 /*
3524  * Gets the checkpoint space map object from the vdev's ZAP.  On success sm_obj
3525  * will contain either the checkpoint spacemap object or zero if none exists.
3526  * All other errors are returned to the caller.
3527  */
3528 int
3529 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3530 {
3531 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3532 
3533 	if (vd->vdev_top_zap == 0) {
3534 		*sm_obj = 0;
3535 		return (0);
3536 	}
3537 
3538 	int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3539 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3540 	if (error == ENOENT) {
3541 		*sm_obj = 0;
3542 		error = 0;
3543 	}
3544 
3545 	return (error);
3546 }
3547 
3548 int
3549 vdev_load(vdev_t *vd)
3550 {
3551 	int children = vd->vdev_children;
3552 	int error = 0;
3553 	taskq_t *tq = NULL;
3554 
3555 	/*
3556 	 * It's only worthwhile to use the taskq for the root vdev, because the
3557 	 * slow part is metaslab_init, and that only happens for top-level
3558 	 * vdevs.
3559 	 */
3560 	if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
3561 		tq = taskq_create("vdev_load", children, minclsyspri,
3562 		    children, children, TASKQ_PREPOPULATE);
3563 	}
3564 
3565 	/*
3566 	 * Recursively load all children.
3567 	 */
3568 	for (int c = 0; c < vd->vdev_children; c++) {
3569 		vdev_t *cvd = vd->vdev_child[c];
3570 
3571 		if (tq == NULL || vdev_uses_zvols(cvd)) {
3572 			cvd->vdev_load_error = vdev_load(cvd);
3573 		} else {
3574 			VERIFY(taskq_dispatch(tq, vdev_load_child,
3575 			    cvd, TQ_SLEEP) != TASKQID_INVALID);
3576 		}
3577 	}
3578 
3579 	if (tq != NULL) {
3580 		taskq_wait(tq);
3581 		taskq_destroy(tq);
3582 	}
3583 
3584 	for (int c = 0; c < vd->vdev_children; c++) {
3585 		int error = vd->vdev_child[c]->vdev_load_error;
3586 
3587 		if (error != 0)
3588 			return (error);
3589 	}
3590 
3591 	vdev_set_deflate_ratio(vd);
3592 
3593 	/*
3594 	 * On spa_load path, grab the allocation bias from our zap
3595 	 */
3596 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3597 		spa_t *spa = vd->vdev_spa;
3598 		char bias_str[64];
3599 
3600 		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3601 		    VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3602 		    bias_str);
3603 		if (error == 0) {
3604 			ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3605 			vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3606 		} else if (error != ENOENT) {
3607 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3608 			    VDEV_AUX_CORRUPT_DATA);
3609 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3610 			    "failed [error=%d]",
3611 			    (u_longlong_t)vd->vdev_top_zap, error);
3612 			return (error);
3613 		}
3614 	}
3615 
3616 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3617 		spa_t *spa = vd->vdev_spa;
3618 		uint64_t failfast;
3619 
3620 		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3621 		    vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast),
3622 		    1, &failfast);
3623 		if (error == 0) {
3624 			vd->vdev_failfast = failfast & 1;
3625 		} else if (error == ENOENT) {
3626 			vd->vdev_failfast = vdev_prop_default_numeric(
3627 			    VDEV_PROP_FAILFAST);
3628 		} else {
3629 			vdev_dbgmsg(vd,
3630 			    "vdev_load: zap_lookup(top_zap=%llu) "
3631 			    "failed [error=%d]",
3632 			    (u_longlong_t)vd->vdev_top_zap, error);
3633 		}
3634 	}
3635 
3636 	/*
3637 	 * Load any rebuild state from the top-level vdev zap.
3638 	 */
3639 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3640 		error = vdev_rebuild_load(vd);
3641 		if (error && error != ENOTSUP) {
3642 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3643 			    VDEV_AUX_CORRUPT_DATA);
3644 			vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3645 			    "failed [error=%d]", error);
3646 			return (error);
3647 		}
3648 	}
3649 
3650 	if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) {
3651 		uint64_t zapobj;
3652 
3653 		if (vd->vdev_top_zap != 0)
3654 			zapobj = vd->vdev_top_zap;
3655 		else
3656 			zapobj = vd->vdev_leaf_zap;
3657 
3658 		error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N,
3659 		    &vd->vdev_checksum_n);
3660 		if (error && error != ENOENT)
3661 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3662 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3663 
3664 		error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T,
3665 		    &vd->vdev_checksum_t);
3666 		if (error && error != ENOENT)
3667 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3668 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3669 
3670 		error = vdev_prop_get_int(vd, VDEV_PROP_IO_N,
3671 		    &vd->vdev_io_n);
3672 		if (error && error != ENOENT)
3673 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3674 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3675 
3676 		error = vdev_prop_get_int(vd, VDEV_PROP_IO_T,
3677 		    &vd->vdev_io_t);
3678 		if (error && error != ENOENT)
3679 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3680 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3681 	}
3682 
3683 	/*
3684 	 * If this is a top-level vdev, initialize its metaslabs.
3685 	 */
3686 	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3687 		vdev_metaslab_group_create(vd);
3688 
3689 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3690 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3691 			    VDEV_AUX_CORRUPT_DATA);
3692 			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3693 			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3694 			    (u_longlong_t)vd->vdev_asize);
3695 			return (SET_ERROR(ENXIO));
3696 		}
3697 
3698 		error = vdev_metaslab_init(vd, 0);
3699 		if (error != 0) {
3700 			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3701 			    "[error=%d]", error);
3702 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3703 			    VDEV_AUX_CORRUPT_DATA);
3704 			return (error);
3705 		}
3706 
3707 		uint64_t checkpoint_sm_obj;
3708 		error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3709 		if (error == 0 && checkpoint_sm_obj != 0) {
3710 			objset_t *mos = spa_meta_objset(vd->vdev_spa);
3711 			ASSERT(vd->vdev_asize != 0);
3712 			ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3713 
3714 			error = space_map_open(&vd->vdev_checkpoint_sm,
3715 			    mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3716 			    vd->vdev_ashift);
3717 			if (error != 0) {
3718 				vdev_dbgmsg(vd, "vdev_load: space_map_open "
3719 				    "failed for checkpoint spacemap (obj %llu) "
3720 				    "[error=%d]",
3721 				    (u_longlong_t)checkpoint_sm_obj, error);
3722 				return (error);
3723 			}
3724 			ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3725 
3726 			/*
3727 			 * Since the checkpoint_sm contains free entries
3728 			 * exclusively we can use space_map_allocated() to
3729 			 * indicate the cumulative checkpointed space that
3730 			 * has been freed.
3731 			 */
3732 			vd->vdev_stat.vs_checkpoint_space =
3733 			    -space_map_allocated(vd->vdev_checkpoint_sm);
3734 			vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3735 			    vd->vdev_stat.vs_checkpoint_space;
3736 		} else if (error != 0) {
3737 			vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3738 			    "checkpoint space map object from vdev ZAP "
3739 			    "[error=%d]", error);
3740 			return (error);
3741 		}
3742 	}
3743 
3744 	/*
3745 	 * If this is a leaf vdev, load its DTL.
3746 	 */
3747 	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3748 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3749 		    VDEV_AUX_CORRUPT_DATA);
3750 		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3751 		    "[error=%d]", error);
3752 		return (error);
3753 	}
3754 
3755 	uint64_t obsolete_sm_object;
3756 	error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3757 	if (error == 0 && obsolete_sm_object != 0) {
3758 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
3759 		ASSERT(vd->vdev_asize != 0);
3760 		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3761 
3762 		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3763 		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3764 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3765 			    VDEV_AUX_CORRUPT_DATA);
3766 			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3767 			    "obsolete spacemap (obj %llu) [error=%d]",
3768 			    (u_longlong_t)obsolete_sm_object, error);
3769 			return (error);
3770 		}
3771 	} else if (error != 0) {
3772 		vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3773 		    "space map object from vdev ZAP [error=%d]", error);
3774 		return (error);
3775 	}
3776 
3777 	return (0);
3778 }
3779 
3780 /*
3781  * The special vdev case is used for hot spares and l2cache devices.  Its
3782  * sole purpose it to set the vdev state for the associated vdev.  To do this,
3783  * we make sure that we can open the underlying device, then try to read the
3784  * label, and make sure that the label is sane and that it hasn't been
3785  * repurposed to another pool.
3786  */
3787 int
3788 vdev_validate_aux(vdev_t *vd)
3789 {
3790 	nvlist_t *label;
3791 	uint64_t guid, version;
3792 	uint64_t state;
3793 
3794 	if (!vdev_readable(vd))
3795 		return (0);
3796 
3797 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3798 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3799 		    VDEV_AUX_CORRUPT_DATA);
3800 		return (-1);
3801 	}
3802 
3803 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3804 	    !SPA_VERSION_IS_SUPPORTED(version) ||
3805 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3806 	    guid != vd->vdev_guid ||
3807 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3808 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3809 		    VDEV_AUX_CORRUPT_DATA);
3810 		nvlist_free(label);
3811 		return (-1);
3812 	}
3813 
3814 	/*
3815 	 * We don't actually check the pool state here.  If it's in fact in
3816 	 * use by another pool, we update this fact on the fly when requested.
3817 	 */
3818 	nvlist_free(label);
3819 	return (0);
3820 }
3821 
3822 static void
3823 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3824 {
3825 	objset_t *mos = spa_meta_objset(vd->vdev_spa);
3826 
3827 	if (vd->vdev_top_zap == 0)
3828 		return;
3829 
3830 	uint64_t object = 0;
3831 	int err = zap_lookup(mos, vd->vdev_top_zap,
3832 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3833 	if (err == ENOENT)
3834 		return;
3835 	VERIFY0(err);
3836 
3837 	VERIFY0(dmu_object_free(mos, object, tx));
3838 	VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3839 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3840 }
3841 
3842 /*
3843  * Free the objects used to store this vdev's spacemaps, and the array
3844  * that points to them.
3845  */
3846 void
3847 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3848 {
3849 	if (vd->vdev_ms_array == 0)
3850 		return;
3851 
3852 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
3853 	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3854 	size_t array_bytes = array_count * sizeof (uint64_t);
3855 	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3856 	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3857 	    array_bytes, smobj_array, 0));
3858 
3859 	for (uint64_t i = 0; i < array_count; i++) {
3860 		uint64_t smobj = smobj_array[i];
3861 		if (smobj == 0)
3862 			continue;
3863 
3864 		space_map_free_obj(mos, smobj, tx);
3865 	}
3866 
3867 	kmem_free(smobj_array, array_bytes);
3868 	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3869 	vdev_destroy_ms_flush_data(vd, tx);
3870 	vd->vdev_ms_array = 0;
3871 }
3872 
3873 static void
3874 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3875 {
3876 	spa_t *spa = vd->vdev_spa;
3877 
3878 	ASSERT(vd->vdev_islog);
3879 	ASSERT(vd == vd->vdev_top);
3880 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
3881 
3882 	dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3883 
3884 	vdev_destroy_spacemaps(vd, tx);
3885 	if (vd->vdev_top_zap != 0) {
3886 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3887 		vd->vdev_top_zap = 0;
3888 	}
3889 
3890 	dmu_tx_commit(tx);
3891 }
3892 
3893 void
3894 vdev_sync_done(vdev_t *vd, uint64_t txg)
3895 {
3896 	metaslab_t *msp;
3897 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3898 
3899 	ASSERT(vdev_is_concrete(vd));
3900 
3901 	while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3902 	    != NULL)
3903 		metaslab_sync_done(msp, txg);
3904 
3905 	if (reassess) {
3906 		metaslab_sync_reassess(vd->vdev_mg);
3907 		if (vd->vdev_log_mg != NULL)
3908 			metaslab_sync_reassess(vd->vdev_log_mg);
3909 	}
3910 }
3911 
3912 void
3913 vdev_sync(vdev_t *vd, uint64_t txg)
3914 {
3915 	spa_t *spa = vd->vdev_spa;
3916 	vdev_t *lvd;
3917 	metaslab_t *msp;
3918 
3919 	ASSERT3U(txg, ==, spa->spa_syncing_txg);
3920 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3921 	if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3922 		ASSERT(vd->vdev_removing ||
3923 		    vd->vdev_ops == &vdev_indirect_ops);
3924 
3925 		vdev_indirect_sync_obsolete(vd, tx);
3926 
3927 		/*
3928 		 * If the vdev is indirect, it can't have dirty
3929 		 * metaslabs or DTLs.
3930 		 */
3931 		if (vd->vdev_ops == &vdev_indirect_ops) {
3932 			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3933 			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3934 			dmu_tx_commit(tx);
3935 			return;
3936 		}
3937 	}
3938 
3939 	ASSERT(vdev_is_concrete(vd));
3940 
3941 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3942 	    !vd->vdev_removing) {
3943 		ASSERT(vd == vd->vdev_top);
3944 		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3945 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3946 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3947 		ASSERT(vd->vdev_ms_array != 0);
3948 		vdev_config_dirty(vd);
3949 	}
3950 
3951 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3952 		metaslab_sync(msp, txg);
3953 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3954 	}
3955 
3956 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3957 		vdev_dtl_sync(lvd, txg);
3958 
3959 	/*
3960 	 * If this is an empty log device being removed, destroy the
3961 	 * metadata associated with it.
3962 	 */
3963 	if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3964 		vdev_remove_empty_log(vd, txg);
3965 
3966 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3967 	dmu_tx_commit(tx);
3968 }
3969 
3970 uint64_t
3971 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3972 {
3973 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
3974 }
3975 
3976 /*
3977  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
3978  * not be opened, and no I/O is attempted.
3979  */
3980 int
3981 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3982 {
3983 	vdev_t *vd, *tvd;
3984 
3985 	spa_vdev_state_enter(spa, SCL_NONE);
3986 
3987 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3988 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3989 
3990 	if (!vd->vdev_ops->vdev_op_leaf)
3991 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3992 
3993 	tvd = vd->vdev_top;
3994 
3995 	/*
3996 	 * If user did a 'zpool offline -f' then make the fault persist across
3997 	 * reboots.
3998 	 */
3999 	if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
4000 		/*
4001 		 * There are two kinds of forced faults: temporary and
4002 		 * persistent.  Temporary faults go away at pool import, while
4003 		 * persistent faults stay set.  Both types of faults can be
4004 		 * cleared with a zpool clear.
4005 		 *
4006 		 * We tell if a vdev is persistently faulted by looking at the
4007 		 * ZPOOL_CONFIG_AUX_STATE nvpair.  If it's set to "external" at
4008 		 * import then it's a persistent fault.  Otherwise, it's
4009 		 * temporary.  We get ZPOOL_CONFIG_AUX_STATE set to "external"
4010 		 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL.  This
4011 		 * tells vdev_config_generate() (which gets run later) to set
4012 		 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
4013 		 */
4014 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
4015 		vd->vdev_tmpoffline = B_FALSE;
4016 		aux = VDEV_AUX_EXTERNAL;
4017 	} else {
4018 		vd->vdev_tmpoffline = B_TRUE;
4019 	}
4020 
4021 	/*
4022 	 * We don't directly use the aux state here, but if we do a
4023 	 * vdev_reopen(), we need this value to be present to remember why we
4024 	 * were faulted.
4025 	 */
4026 	vd->vdev_label_aux = aux;
4027 
4028 	/*
4029 	 * Faulted state takes precedence over degraded.
4030 	 */
4031 	vd->vdev_delayed_close = B_FALSE;
4032 	vd->vdev_faulted = 1ULL;
4033 	vd->vdev_degraded = 0ULL;
4034 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
4035 
4036 	/*
4037 	 * If this device has the only valid copy of the data, then
4038 	 * back off and simply mark the vdev as degraded instead.
4039 	 */
4040 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
4041 		vd->vdev_degraded = 1ULL;
4042 		vd->vdev_faulted = 0ULL;
4043 
4044 		/*
4045 		 * If we reopen the device and it's not dead, only then do we
4046 		 * mark it degraded.
4047 		 */
4048 		vdev_reopen(tvd);
4049 
4050 		if (vdev_readable(vd))
4051 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
4052 	}
4053 
4054 	return (spa_vdev_state_exit(spa, vd, 0));
4055 }
4056 
4057 /*
4058  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
4059  * user that something is wrong.  The vdev continues to operate as normal as far
4060  * as I/O is concerned.
4061  */
4062 int
4063 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4064 {
4065 	vdev_t *vd;
4066 
4067 	spa_vdev_state_enter(spa, SCL_NONE);
4068 
4069 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4070 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4071 
4072 	if (!vd->vdev_ops->vdev_op_leaf)
4073 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4074 
4075 	/*
4076 	 * If the vdev is already faulted, then don't do anything.
4077 	 */
4078 	if (vd->vdev_faulted || vd->vdev_degraded)
4079 		return (spa_vdev_state_exit(spa, NULL, 0));
4080 
4081 	vd->vdev_degraded = 1ULL;
4082 	if (!vdev_is_dead(vd))
4083 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
4084 		    aux);
4085 
4086 	return (spa_vdev_state_exit(spa, vd, 0));
4087 }
4088 
4089 int
4090 vdev_remove_wanted(spa_t *spa, uint64_t guid)
4091 {
4092 	vdev_t *vd;
4093 
4094 	spa_vdev_state_enter(spa, SCL_NONE);
4095 
4096 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4097 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4098 
4099 	/*
4100 	 * If the vdev is already removed, or expanding which can trigger
4101 	 * repartition add/remove events, then don't do anything.
4102 	 */
4103 	if (vd->vdev_removed || vd->vdev_expanding)
4104 		return (spa_vdev_state_exit(spa, NULL, 0));
4105 
4106 	/*
4107 	 * Confirm the vdev has been removed, otherwise don't do anything.
4108 	 */
4109 	if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL)))
4110 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST)));
4111 
4112 	vd->vdev_remove_wanted = B_TRUE;
4113 	spa_async_request(spa, SPA_ASYNC_REMOVE);
4114 
4115 	return (spa_vdev_state_exit(spa, vd, 0));
4116 }
4117 
4118 
4119 /*
4120  * Online the given vdev.
4121  *
4122  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
4123  * spare device should be detached when the device finishes resilvering.
4124  * Second, the online should be treated like a 'test' online case, so no FMA
4125  * events are generated if the device fails to open.
4126  */
4127 int
4128 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
4129 {
4130 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
4131 	boolean_t wasoffline;
4132 	vdev_state_t oldstate;
4133 
4134 	spa_vdev_state_enter(spa, SCL_NONE);
4135 
4136 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4137 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4138 
4139 	if (!vd->vdev_ops->vdev_op_leaf)
4140 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4141 
4142 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
4143 	oldstate = vd->vdev_state;
4144 
4145 	tvd = vd->vdev_top;
4146 	vd->vdev_offline = B_FALSE;
4147 	vd->vdev_tmpoffline = B_FALSE;
4148 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
4149 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
4150 
4151 	/* XXX - L2ARC 1.0 does not support expansion */
4152 	if (!vd->vdev_aux) {
4153 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4154 			pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
4155 			    spa->spa_autoexpand);
4156 		vd->vdev_expansion_time = gethrestime_sec();
4157 	}
4158 
4159 	vdev_reopen(tvd);
4160 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
4161 
4162 	if (!vd->vdev_aux) {
4163 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4164 			pvd->vdev_expanding = B_FALSE;
4165 	}
4166 
4167 	if (newstate)
4168 		*newstate = vd->vdev_state;
4169 	if ((flags & ZFS_ONLINE_UNSPARE) &&
4170 	    !vdev_is_dead(vd) && vd->vdev_parent &&
4171 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4172 	    vd->vdev_parent->vdev_child[0] == vd)
4173 		vd->vdev_unspare = B_TRUE;
4174 
4175 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
4176 
4177 		/* XXX - L2ARC 1.0 does not support expansion */
4178 		if (vd->vdev_aux)
4179 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
4180 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4181 	}
4182 
4183 	/* Restart initializing if necessary */
4184 	mutex_enter(&vd->vdev_initialize_lock);
4185 	if (vdev_writeable(vd) &&
4186 	    vd->vdev_initialize_thread == NULL &&
4187 	    vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
4188 		(void) vdev_initialize(vd);
4189 	}
4190 	mutex_exit(&vd->vdev_initialize_lock);
4191 
4192 	/*
4193 	 * Restart trimming if necessary. We do not restart trimming for cache
4194 	 * devices here. This is triggered by l2arc_rebuild_vdev()
4195 	 * asynchronously for the whole device or in l2arc_evict() as it evicts
4196 	 * space for upcoming writes.
4197 	 */
4198 	mutex_enter(&vd->vdev_trim_lock);
4199 	if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
4200 	    vd->vdev_trim_thread == NULL &&
4201 	    vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
4202 		(void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
4203 		    vd->vdev_trim_secure);
4204 	}
4205 	mutex_exit(&vd->vdev_trim_lock);
4206 
4207 	if (wasoffline ||
4208 	    (oldstate < VDEV_STATE_DEGRADED &&
4209 	    vd->vdev_state >= VDEV_STATE_DEGRADED)) {
4210 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
4211 
4212 		/*
4213 		 * Asynchronously detach spare vdev if resilver or
4214 		 * rebuild is not required
4215 		 */
4216 		if (vd->vdev_unspare &&
4217 		    !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4218 		    !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) &&
4219 		    !vdev_rebuild_active(tvd))
4220 			spa_async_request(spa, SPA_ASYNC_DETACH_SPARE);
4221 	}
4222 	return (spa_vdev_state_exit(spa, vd, 0));
4223 }
4224 
4225 static int
4226 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
4227 {
4228 	vdev_t *vd, *tvd;
4229 	int error = 0;
4230 	uint64_t generation;
4231 	metaslab_group_t *mg;
4232 
4233 top:
4234 	spa_vdev_state_enter(spa, SCL_ALLOC);
4235 
4236 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4237 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4238 
4239 	if (!vd->vdev_ops->vdev_op_leaf)
4240 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4241 
4242 	if (vd->vdev_ops == &vdev_draid_spare_ops)
4243 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4244 
4245 	tvd = vd->vdev_top;
4246 	mg = tvd->vdev_mg;
4247 	generation = spa->spa_config_generation + 1;
4248 
4249 	/*
4250 	 * If the device isn't already offline, try to offline it.
4251 	 */
4252 	if (!vd->vdev_offline) {
4253 		/*
4254 		 * If this device has the only valid copy of some data,
4255 		 * don't allow it to be offlined. Log devices are always
4256 		 * expendable.
4257 		 */
4258 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4259 		    vdev_dtl_required(vd))
4260 			return (spa_vdev_state_exit(spa, NULL,
4261 			    SET_ERROR(EBUSY)));
4262 
4263 		/*
4264 		 * If the top-level is a slog and it has had allocations
4265 		 * then proceed.  We check that the vdev's metaslab group
4266 		 * is not NULL since it's possible that we may have just
4267 		 * added this vdev but not yet initialized its metaslabs.
4268 		 */
4269 		if (tvd->vdev_islog && mg != NULL) {
4270 			/*
4271 			 * Prevent any future allocations.
4272 			 */
4273 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
4274 			metaslab_group_passivate(mg);
4275 			(void) spa_vdev_state_exit(spa, vd, 0);
4276 
4277 			error = spa_reset_logs(spa);
4278 
4279 			/*
4280 			 * If the log device was successfully reset but has
4281 			 * checkpointed data, do not offline it.
4282 			 */
4283 			if (error == 0 &&
4284 			    tvd->vdev_checkpoint_sm != NULL) {
4285 				ASSERT3U(space_map_allocated(
4286 				    tvd->vdev_checkpoint_sm), !=, 0);
4287 				error = ZFS_ERR_CHECKPOINT_EXISTS;
4288 			}
4289 
4290 			spa_vdev_state_enter(spa, SCL_ALLOC);
4291 
4292 			/*
4293 			 * Check to see if the config has changed.
4294 			 */
4295 			if (error || generation != spa->spa_config_generation) {
4296 				metaslab_group_activate(mg);
4297 				if (error)
4298 					return (spa_vdev_state_exit(spa,
4299 					    vd, error));
4300 				(void) spa_vdev_state_exit(spa, vd, 0);
4301 				goto top;
4302 			}
4303 			ASSERT0(tvd->vdev_stat.vs_alloc);
4304 		}
4305 
4306 		/*
4307 		 * Offline this device and reopen its top-level vdev.
4308 		 * If the top-level vdev is a log device then just offline
4309 		 * it. Otherwise, if this action results in the top-level
4310 		 * vdev becoming unusable, undo it and fail the request.
4311 		 */
4312 		vd->vdev_offline = B_TRUE;
4313 		vdev_reopen(tvd);
4314 
4315 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4316 		    vdev_is_dead(tvd)) {
4317 			vd->vdev_offline = B_FALSE;
4318 			vdev_reopen(tvd);
4319 			return (spa_vdev_state_exit(spa, NULL,
4320 			    SET_ERROR(EBUSY)));
4321 		}
4322 
4323 		/*
4324 		 * Add the device back into the metaslab rotor so that
4325 		 * once we online the device it's open for business.
4326 		 */
4327 		if (tvd->vdev_islog && mg != NULL)
4328 			metaslab_group_activate(mg);
4329 	}
4330 
4331 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4332 
4333 	return (spa_vdev_state_exit(spa, vd, 0));
4334 }
4335 
4336 int
4337 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4338 {
4339 	int error;
4340 
4341 	mutex_enter(&spa->spa_vdev_top_lock);
4342 	error = vdev_offline_locked(spa, guid, flags);
4343 	mutex_exit(&spa->spa_vdev_top_lock);
4344 
4345 	return (error);
4346 }
4347 
4348 /*
4349  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
4350  * vdev_offline(), we assume the spa config is locked.  We also clear all
4351  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
4352  */
4353 void
4354 vdev_clear(spa_t *spa, vdev_t *vd)
4355 {
4356 	vdev_t *rvd = spa->spa_root_vdev;
4357 
4358 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4359 
4360 	if (vd == NULL)
4361 		vd = rvd;
4362 
4363 	vd->vdev_stat.vs_read_errors = 0;
4364 	vd->vdev_stat.vs_write_errors = 0;
4365 	vd->vdev_stat.vs_checksum_errors = 0;
4366 	vd->vdev_stat.vs_slow_ios = 0;
4367 
4368 	for (int c = 0; c < vd->vdev_children; c++)
4369 		vdev_clear(spa, vd->vdev_child[c]);
4370 
4371 	/*
4372 	 * It makes no sense to "clear" an indirect  or removed vdev.
4373 	 */
4374 	if (!vdev_is_concrete(vd) || vd->vdev_removed)
4375 		return;
4376 
4377 	/*
4378 	 * If we're in the FAULTED state or have experienced failed I/O, then
4379 	 * clear the persistent state and attempt to reopen the device.  We
4380 	 * also mark the vdev config dirty, so that the new faulted state is
4381 	 * written out to disk.
4382 	 */
4383 	if (vd->vdev_faulted || vd->vdev_degraded ||
4384 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
4385 		/*
4386 		 * When reopening in response to a clear event, it may be due to
4387 		 * a fmadm repair request.  In this case, if the device is
4388 		 * still broken, we want to still post the ereport again.
4389 		 */
4390 		vd->vdev_forcefault = B_TRUE;
4391 
4392 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4393 		vd->vdev_cant_read = B_FALSE;
4394 		vd->vdev_cant_write = B_FALSE;
4395 		vd->vdev_stat.vs_aux = 0;
4396 
4397 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4398 
4399 		vd->vdev_forcefault = B_FALSE;
4400 
4401 		if (vd != rvd && vdev_writeable(vd->vdev_top))
4402 			vdev_state_dirty(vd->vdev_top);
4403 
4404 		/* If a resilver isn't required, check if vdevs can be culled */
4405 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4406 		    !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4407 		    !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4408 			spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4409 
4410 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4411 	}
4412 
4413 	/*
4414 	 * When clearing a FMA-diagnosed fault, we always want to
4415 	 * unspare the device, as we assume that the original spare was
4416 	 * done in response to the FMA fault.
4417 	 */
4418 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4419 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4420 	    vd->vdev_parent->vdev_child[0] == vd)
4421 		vd->vdev_unspare = B_TRUE;
4422 
4423 	/* Clear recent error events cache (i.e. duplicate events tracking) */
4424 	zfs_ereport_clear(spa, vd);
4425 }
4426 
4427 boolean_t
4428 vdev_is_dead(vdev_t *vd)
4429 {
4430 	/*
4431 	 * Holes and missing devices are always considered "dead".
4432 	 * This simplifies the code since we don't have to check for
4433 	 * these types of devices in the various code paths.
4434 	 * Instead we rely on the fact that we skip over dead devices
4435 	 * before issuing I/O to them.
4436 	 */
4437 	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4438 	    vd->vdev_ops == &vdev_hole_ops ||
4439 	    vd->vdev_ops == &vdev_missing_ops);
4440 }
4441 
4442 boolean_t
4443 vdev_readable(vdev_t *vd)
4444 {
4445 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4446 }
4447 
4448 boolean_t
4449 vdev_writeable(vdev_t *vd)
4450 {
4451 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4452 	    vdev_is_concrete(vd));
4453 }
4454 
4455 boolean_t
4456 vdev_allocatable(vdev_t *vd)
4457 {
4458 	uint64_t state = vd->vdev_state;
4459 
4460 	/*
4461 	 * We currently allow allocations from vdevs which may be in the
4462 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4463 	 * fails to reopen then we'll catch it later when we're holding
4464 	 * the proper locks.  Note that we have to get the vdev state
4465 	 * in a local variable because although it changes atomically,
4466 	 * we're asking two separate questions about it.
4467 	 */
4468 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4469 	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4470 	    vd->vdev_mg->mg_initialized);
4471 }
4472 
4473 boolean_t
4474 vdev_accessible(vdev_t *vd, zio_t *zio)
4475 {
4476 	ASSERT(zio->io_vd == vd);
4477 
4478 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4479 		return (B_FALSE);
4480 
4481 	if (zio->io_type == ZIO_TYPE_READ)
4482 		return (!vd->vdev_cant_read);
4483 
4484 	if (zio->io_type == ZIO_TYPE_WRITE)
4485 		return (!vd->vdev_cant_write);
4486 
4487 	return (B_TRUE);
4488 }
4489 
4490 static void
4491 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4492 {
4493 	/*
4494 	 * Exclude the dRAID spare when aggregating to avoid double counting
4495 	 * the ops and bytes.  These IOs are counted by the physical leaves.
4496 	 */
4497 	if (cvd->vdev_ops == &vdev_draid_spare_ops)
4498 		return;
4499 
4500 	for (int t = 0; t < VS_ZIO_TYPES; t++) {
4501 		vs->vs_ops[t] += cvs->vs_ops[t];
4502 		vs->vs_bytes[t] += cvs->vs_bytes[t];
4503 	}
4504 
4505 	cvs->vs_scan_removing = cvd->vdev_removing;
4506 }
4507 
4508 /*
4509  * Get extended stats
4510  */
4511 static void
4512 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4513 {
4514 	(void) cvd;
4515 
4516 	int t, b;
4517 	for (t = 0; t < ZIO_TYPES; t++) {
4518 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4519 			vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4520 
4521 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4522 			vsx->vsx_total_histo[t][b] +=
4523 			    cvsx->vsx_total_histo[t][b];
4524 		}
4525 	}
4526 
4527 	for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4528 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4529 			vsx->vsx_queue_histo[t][b] +=
4530 			    cvsx->vsx_queue_histo[t][b];
4531 		}
4532 		vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4533 		vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4534 
4535 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4536 			vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4537 
4538 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4539 			vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4540 	}
4541 
4542 }
4543 
4544 boolean_t
4545 vdev_is_spacemap_addressable(vdev_t *vd)
4546 {
4547 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4548 		return (B_TRUE);
4549 
4550 	/*
4551 	 * If double-word space map entries are not enabled we assume
4552 	 * 47 bits of the space map entry are dedicated to the entry's
4553 	 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4554 	 * to calculate the maximum address that can be described by a
4555 	 * space map entry for the given device.
4556 	 */
4557 	uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4558 
4559 	if (shift >= 63) /* detect potential overflow */
4560 		return (B_TRUE);
4561 
4562 	return (vd->vdev_asize < (1ULL << shift));
4563 }
4564 
4565 /*
4566  * Get statistics for the given vdev.
4567  */
4568 static void
4569 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4570 {
4571 	int t;
4572 	/*
4573 	 * If we're getting stats on the root vdev, aggregate the I/O counts
4574 	 * over all top-level vdevs (i.e. the direct children of the root).
4575 	 */
4576 	if (!vd->vdev_ops->vdev_op_leaf) {
4577 		if (vs) {
4578 			memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4579 			memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4580 		}
4581 		if (vsx)
4582 			memset(vsx, 0, sizeof (*vsx));
4583 
4584 		for (int c = 0; c < vd->vdev_children; c++) {
4585 			vdev_t *cvd = vd->vdev_child[c];
4586 			vdev_stat_t *cvs = &cvd->vdev_stat;
4587 			vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4588 
4589 			vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4590 			if (vs)
4591 				vdev_get_child_stat(cvd, vs, cvs);
4592 			if (vsx)
4593 				vdev_get_child_stat_ex(cvd, vsx, cvsx);
4594 		}
4595 	} else {
4596 		/*
4597 		 * We're a leaf.  Just copy our ZIO active queue stats in.  The
4598 		 * other leaf stats are updated in vdev_stat_update().
4599 		 */
4600 		if (!vsx)
4601 			return;
4602 
4603 		memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4604 
4605 		for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
4606 			vsx->vsx_active_queue[t] =
4607 			    vd->vdev_queue.vq_class[t].vqc_active;
4608 			vsx->vsx_pend_queue[t] = avl_numnodes(
4609 			    &vd->vdev_queue.vq_class[t].vqc_queued_tree);
4610 		}
4611 	}
4612 }
4613 
4614 void
4615 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4616 {
4617 	vdev_t *tvd = vd->vdev_top;
4618 	mutex_enter(&vd->vdev_stat_lock);
4619 	if (vs) {
4620 		memcpy(vs, &vd->vdev_stat, sizeof (*vs));
4621 		vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4622 		vs->vs_state = vd->vdev_state;
4623 		vs->vs_rsize = vdev_get_min_asize(vd);
4624 
4625 		if (vd->vdev_ops->vdev_op_leaf) {
4626 			vs->vs_pspace = vd->vdev_psize;
4627 			vs->vs_rsize += VDEV_LABEL_START_SIZE +
4628 			    VDEV_LABEL_END_SIZE;
4629 			/*
4630 			 * Report initializing progress. Since we don't
4631 			 * have the initializing locks held, this is only
4632 			 * an estimate (although a fairly accurate one).
4633 			 */
4634 			vs->vs_initialize_bytes_done =
4635 			    vd->vdev_initialize_bytes_done;
4636 			vs->vs_initialize_bytes_est =
4637 			    vd->vdev_initialize_bytes_est;
4638 			vs->vs_initialize_state = vd->vdev_initialize_state;
4639 			vs->vs_initialize_action_time =
4640 			    vd->vdev_initialize_action_time;
4641 
4642 			/*
4643 			 * Report manual TRIM progress. Since we don't have
4644 			 * the manual TRIM locks held, this is only an
4645 			 * estimate (although fairly accurate one).
4646 			 */
4647 			vs->vs_trim_notsup = !vd->vdev_has_trim;
4648 			vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4649 			vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4650 			vs->vs_trim_state = vd->vdev_trim_state;
4651 			vs->vs_trim_action_time = vd->vdev_trim_action_time;
4652 
4653 			/* Set when there is a deferred resilver. */
4654 			vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4655 		}
4656 
4657 		/*
4658 		 * Report expandable space on top-level, non-auxiliary devices
4659 		 * only. The expandable space is reported in terms of metaslab
4660 		 * sized units since that determines how much space the pool
4661 		 * can expand.
4662 		 */
4663 		if (vd->vdev_aux == NULL && tvd != NULL) {
4664 			vs->vs_esize = P2ALIGN(
4665 			    vd->vdev_max_asize - vd->vdev_asize,
4666 			    1ULL << tvd->vdev_ms_shift);
4667 		}
4668 
4669 		vs->vs_configured_ashift = vd->vdev_top != NULL
4670 		    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4671 		vs->vs_logical_ashift = vd->vdev_logical_ashift;
4672 		if (vd->vdev_physical_ashift <= ASHIFT_MAX)
4673 			vs->vs_physical_ashift = vd->vdev_physical_ashift;
4674 		else
4675 			vs->vs_physical_ashift = 0;
4676 
4677 		/*
4678 		 * Report fragmentation and rebuild progress for top-level,
4679 		 * non-auxiliary, concrete devices.
4680 		 */
4681 		if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4682 		    vdev_is_concrete(vd)) {
4683 			/*
4684 			 * The vdev fragmentation rating doesn't take into
4685 			 * account the embedded slog metaslab (vdev_log_mg).
4686 			 * Since it's only one metaslab, it would have a tiny
4687 			 * impact on the overall fragmentation.
4688 			 */
4689 			vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4690 			    vd->vdev_mg->mg_fragmentation : 0;
4691 		}
4692 		vs->vs_noalloc = MAX(vd->vdev_noalloc,
4693 		    tvd ? tvd->vdev_noalloc : 0);
4694 	}
4695 
4696 	vdev_get_stats_ex_impl(vd, vs, vsx);
4697 	mutex_exit(&vd->vdev_stat_lock);
4698 }
4699 
4700 void
4701 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4702 {
4703 	return (vdev_get_stats_ex(vd, vs, NULL));
4704 }
4705 
4706 void
4707 vdev_clear_stats(vdev_t *vd)
4708 {
4709 	mutex_enter(&vd->vdev_stat_lock);
4710 	vd->vdev_stat.vs_space = 0;
4711 	vd->vdev_stat.vs_dspace = 0;
4712 	vd->vdev_stat.vs_alloc = 0;
4713 	mutex_exit(&vd->vdev_stat_lock);
4714 }
4715 
4716 void
4717 vdev_scan_stat_init(vdev_t *vd)
4718 {
4719 	vdev_stat_t *vs = &vd->vdev_stat;
4720 
4721 	for (int c = 0; c < vd->vdev_children; c++)
4722 		vdev_scan_stat_init(vd->vdev_child[c]);
4723 
4724 	mutex_enter(&vd->vdev_stat_lock);
4725 	vs->vs_scan_processed = 0;
4726 	mutex_exit(&vd->vdev_stat_lock);
4727 }
4728 
4729 void
4730 vdev_stat_update(zio_t *zio, uint64_t psize)
4731 {
4732 	spa_t *spa = zio->io_spa;
4733 	vdev_t *rvd = spa->spa_root_vdev;
4734 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4735 	vdev_t *pvd;
4736 	uint64_t txg = zio->io_txg;
4737 /* Suppress ASAN false positive */
4738 #ifdef __SANITIZE_ADDRESS__
4739 	vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL;
4740 	vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL;
4741 #else
4742 	vdev_stat_t *vs = &vd->vdev_stat;
4743 	vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
4744 #endif
4745 	zio_type_t type = zio->io_type;
4746 	int flags = zio->io_flags;
4747 
4748 	/*
4749 	 * If this i/o is a gang leader, it didn't do any actual work.
4750 	 */
4751 	if (zio->io_gang_tree)
4752 		return;
4753 
4754 	if (zio->io_error == 0) {
4755 		/*
4756 		 * If this is a root i/o, don't count it -- we've already
4757 		 * counted the top-level vdevs, and vdev_get_stats() will
4758 		 * aggregate them when asked.  This reduces contention on
4759 		 * the root vdev_stat_lock and implicitly handles blocks
4760 		 * that compress away to holes, for which there is no i/o.
4761 		 * (Holes never create vdev children, so all the counters
4762 		 * remain zero, which is what we want.)
4763 		 *
4764 		 * Note: this only applies to successful i/o (io_error == 0)
4765 		 * because unlike i/o counts, errors are not additive.
4766 		 * When reading a ditto block, for example, failure of
4767 		 * one top-level vdev does not imply a root-level error.
4768 		 */
4769 		if (vd == rvd)
4770 			return;
4771 
4772 		ASSERT(vd == zio->io_vd);
4773 
4774 		if (flags & ZIO_FLAG_IO_BYPASS)
4775 			return;
4776 
4777 		mutex_enter(&vd->vdev_stat_lock);
4778 
4779 		if (flags & ZIO_FLAG_IO_REPAIR) {
4780 			/*
4781 			 * Repair is the result of a resilver issued by the
4782 			 * scan thread (spa_sync).
4783 			 */
4784 			if (flags & ZIO_FLAG_SCAN_THREAD) {
4785 				dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
4786 				dsl_scan_phys_t *scn_phys = &scn->scn_phys;
4787 				uint64_t *processed = &scn_phys->scn_processed;
4788 
4789 				if (vd->vdev_ops->vdev_op_leaf)
4790 					atomic_add_64(processed, psize);
4791 				vs->vs_scan_processed += psize;
4792 			}
4793 
4794 			/*
4795 			 * Repair is the result of a rebuild issued by the
4796 			 * rebuild thread (vdev_rebuild_thread).  To avoid
4797 			 * double counting repaired bytes the virtual dRAID
4798 			 * spare vdev is excluded from the processed bytes.
4799 			 */
4800 			if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
4801 				vdev_t *tvd = vd->vdev_top;
4802 				vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
4803 				vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
4804 				uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
4805 
4806 				if (vd->vdev_ops->vdev_op_leaf &&
4807 				    vd->vdev_ops != &vdev_draid_spare_ops) {
4808 					atomic_add_64(rebuilt, psize);
4809 				}
4810 				vs->vs_rebuild_processed += psize;
4811 			}
4812 
4813 			if (flags & ZIO_FLAG_SELF_HEAL)
4814 				vs->vs_self_healed += psize;
4815 		}
4816 
4817 		/*
4818 		 * The bytes/ops/histograms are recorded at the leaf level and
4819 		 * aggregated into the higher level vdevs in vdev_get_stats().
4820 		 */
4821 		if (vd->vdev_ops->vdev_op_leaf &&
4822 		    (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4823 			zio_type_t vs_type = type;
4824 			zio_priority_t priority = zio->io_priority;
4825 
4826 			/*
4827 			 * TRIM ops and bytes are reported to user space as
4828 			 * ZIO_TYPE_IOCTL.  This is done to preserve the
4829 			 * vdev_stat_t structure layout for user space.
4830 			 */
4831 			if (type == ZIO_TYPE_TRIM)
4832 				vs_type = ZIO_TYPE_IOCTL;
4833 
4834 			/*
4835 			 * Solely for the purposes of 'zpool iostat -lqrw'
4836 			 * reporting use the priority to categorize the IO.
4837 			 * Only the following are reported to user space:
4838 			 *
4839 			 *   ZIO_PRIORITY_SYNC_READ,
4840 			 *   ZIO_PRIORITY_SYNC_WRITE,
4841 			 *   ZIO_PRIORITY_ASYNC_READ,
4842 			 *   ZIO_PRIORITY_ASYNC_WRITE,
4843 			 *   ZIO_PRIORITY_SCRUB,
4844 			 *   ZIO_PRIORITY_TRIM,
4845 			 *   ZIO_PRIORITY_REBUILD.
4846 			 */
4847 			if (priority == ZIO_PRIORITY_INITIALIZING) {
4848 				ASSERT3U(type, ==, ZIO_TYPE_WRITE);
4849 				priority = ZIO_PRIORITY_ASYNC_WRITE;
4850 			} else if (priority == ZIO_PRIORITY_REMOVAL) {
4851 				priority = ((type == ZIO_TYPE_WRITE) ?
4852 				    ZIO_PRIORITY_ASYNC_WRITE :
4853 				    ZIO_PRIORITY_ASYNC_READ);
4854 			}
4855 
4856 			vs->vs_ops[vs_type]++;
4857 			vs->vs_bytes[vs_type] += psize;
4858 
4859 			if (flags & ZIO_FLAG_DELEGATED) {
4860 				vsx->vsx_agg_histo[priority]
4861 				    [RQ_HISTO(zio->io_size)]++;
4862 			} else {
4863 				vsx->vsx_ind_histo[priority]
4864 				    [RQ_HISTO(zio->io_size)]++;
4865 			}
4866 
4867 			if (zio->io_delta && zio->io_delay) {
4868 				vsx->vsx_queue_histo[priority]
4869 				    [L_HISTO(zio->io_delta - zio->io_delay)]++;
4870 				vsx->vsx_disk_histo[type]
4871 				    [L_HISTO(zio->io_delay)]++;
4872 				vsx->vsx_total_histo[type]
4873 				    [L_HISTO(zio->io_delta)]++;
4874 			}
4875 		}
4876 
4877 		mutex_exit(&vd->vdev_stat_lock);
4878 		return;
4879 	}
4880 
4881 	if (flags & ZIO_FLAG_SPECULATIVE)
4882 		return;
4883 
4884 	/*
4885 	 * If this is an I/O error that is going to be retried, then ignore the
4886 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
4887 	 * hard errors, when in reality they can happen for any number of
4888 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
4889 	 */
4890 	if (zio->io_error == EIO &&
4891 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
4892 		return;
4893 
4894 	/*
4895 	 * Intent logs writes won't propagate their error to the root
4896 	 * I/O so don't mark these types of failures as pool-level
4897 	 * errors.
4898 	 */
4899 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
4900 		return;
4901 
4902 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
4903 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
4904 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
4905 	    spa->spa_claiming)) {
4906 		/*
4907 		 * This is either a normal write (not a repair), or it's
4908 		 * a repair induced by the scrub thread, or it's a repair
4909 		 * made by zil_claim() during spa_load() in the first txg.
4910 		 * In the normal case, we commit the DTL change in the same
4911 		 * txg as the block was born.  In the scrub-induced repair
4912 		 * case, we know that scrubs run in first-pass syncing context,
4913 		 * so we commit the DTL change in spa_syncing_txg(spa).
4914 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
4915 		 *
4916 		 * We currently do not make DTL entries for failed spontaneous
4917 		 * self-healing writes triggered by normal (non-scrubbing)
4918 		 * reads, because we have no transactional context in which to
4919 		 * do so -- and it's not clear that it'd be desirable anyway.
4920 		 */
4921 		if (vd->vdev_ops->vdev_op_leaf) {
4922 			uint64_t commit_txg = txg;
4923 			if (flags & ZIO_FLAG_SCAN_THREAD) {
4924 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4925 				ASSERT(spa_sync_pass(spa) == 1);
4926 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
4927 				commit_txg = spa_syncing_txg(spa);
4928 			} else if (spa->spa_claiming) {
4929 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4930 				commit_txg = spa_first_txg(spa);
4931 			}
4932 			ASSERT(commit_txg >= spa_syncing_txg(spa));
4933 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
4934 				return;
4935 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4936 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
4937 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
4938 		}
4939 		if (vd != rvd)
4940 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
4941 	}
4942 }
4943 
4944 int64_t
4945 vdev_deflated_space(vdev_t *vd, int64_t space)
4946 {
4947 	ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
4948 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
4949 
4950 	return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
4951 }
4952 
4953 /*
4954  * Update the in-core space usage stats for this vdev, its metaslab class,
4955  * and the root vdev.
4956  */
4957 void
4958 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
4959     int64_t space_delta)
4960 {
4961 	(void) defer_delta;
4962 	int64_t dspace_delta;
4963 	spa_t *spa = vd->vdev_spa;
4964 	vdev_t *rvd = spa->spa_root_vdev;
4965 
4966 	ASSERT(vd == vd->vdev_top);
4967 
4968 	/*
4969 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
4970 	 * factor.  We must calculate this here and not at the root vdev
4971 	 * because the root vdev's psize-to-asize is simply the max of its
4972 	 * children's, thus not accurate enough for us.
4973 	 */
4974 	dspace_delta = vdev_deflated_space(vd, space_delta);
4975 
4976 	mutex_enter(&vd->vdev_stat_lock);
4977 	/* ensure we won't underflow */
4978 	if (alloc_delta < 0) {
4979 		ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
4980 	}
4981 
4982 	vd->vdev_stat.vs_alloc += alloc_delta;
4983 	vd->vdev_stat.vs_space += space_delta;
4984 	vd->vdev_stat.vs_dspace += dspace_delta;
4985 	mutex_exit(&vd->vdev_stat_lock);
4986 
4987 	/* every class but log contributes to root space stats */
4988 	if (vd->vdev_mg != NULL && !vd->vdev_islog) {
4989 		ASSERT(!vd->vdev_isl2cache);
4990 		mutex_enter(&rvd->vdev_stat_lock);
4991 		rvd->vdev_stat.vs_alloc += alloc_delta;
4992 		rvd->vdev_stat.vs_space += space_delta;
4993 		rvd->vdev_stat.vs_dspace += dspace_delta;
4994 		mutex_exit(&rvd->vdev_stat_lock);
4995 	}
4996 	/* Note: metaslab_class_space_update moved to metaslab_space_update */
4997 }
4998 
4999 /*
5000  * Mark a top-level vdev's config as dirty, placing it on the dirty list
5001  * so that it will be written out next time the vdev configuration is synced.
5002  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
5003  */
5004 void
5005 vdev_config_dirty(vdev_t *vd)
5006 {
5007 	spa_t *spa = vd->vdev_spa;
5008 	vdev_t *rvd = spa->spa_root_vdev;
5009 	int c;
5010 
5011 	ASSERT(spa_writeable(spa));
5012 
5013 	/*
5014 	 * If this is an aux vdev (as with l2cache and spare devices), then we
5015 	 * update the vdev config manually and set the sync flag.
5016 	 */
5017 	if (vd->vdev_aux != NULL) {
5018 		spa_aux_vdev_t *sav = vd->vdev_aux;
5019 		nvlist_t **aux;
5020 		uint_t naux;
5021 
5022 		for (c = 0; c < sav->sav_count; c++) {
5023 			if (sav->sav_vdevs[c] == vd)
5024 				break;
5025 		}
5026 
5027 		if (c == sav->sav_count) {
5028 			/*
5029 			 * We're being removed.  There's nothing more to do.
5030 			 */
5031 			ASSERT(sav->sav_sync == B_TRUE);
5032 			return;
5033 		}
5034 
5035 		sav->sav_sync = B_TRUE;
5036 
5037 		if (nvlist_lookup_nvlist_array(sav->sav_config,
5038 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
5039 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
5040 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
5041 		}
5042 
5043 		ASSERT(c < naux);
5044 
5045 		/*
5046 		 * Setting the nvlist in the middle if the array is a little
5047 		 * sketchy, but it will work.
5048 		 */
5049 		nvlist_free(aux[c]);
5050 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
5051 
5052 		return;
5053 	}
5054 
5055 	/*
5056 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
5057 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
5058 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
5059 	 * so this is sufficient to ensure mutual exclusion.
5060 	 */
5061 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5062 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5063 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
5064 
5065 	if (vd == rvd) {
5066 		for (c = 0; c < rvd->vdev_children; c++)
5067 			vdev_config_dirty(rvd->vdev_child[c]);
5068 	} else {
5069 		ASSERT(vd == vd->vdev_top);
5070 
5071 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
5072 		    vdev_is_concrete(vd)) {
5073 			list_insert_head(&spa->spa_config_dirty_list, vd);
5074 		}
5075 	}
5076 }
5077 
5078 void
5079 vdev_config_clean(vdev_t *vd)
5080 {
5081 	spa_t *spa = vd->vdev_spa;
5082 
5083 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5084 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5085 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
5086 
5087 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
5088 	list_remove(&spa->spa_config_dirty_list, vd);
5089 }
5090 
5091 /*
5092  * Mark a top-level vdev's state as dirty, so that the next pass of
5093  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
5094  * the state changes from larger config changes because they require
5095  * much less locking, and are often needed for administrative actions.
5096  */
5097 void
5098 vdev_state_dirty(vdev_t *vd)
5099 {
5100 	spa_t *spa = vd->vdev_spa;
5101 
5102 	ASSERT(spa_writeable(spa));
5103 	ASSERT(vd == vd->vdev_top);
5104 
5105 	/*
5106 	 * The state list is protected by the SCL_STATE lock.  The caller
5107 	 * must either hold SCL_STATE as writer, or must be the sync thread
5108 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
5109 	 * so this is sufficient to ensure mutual exclusion.
5110 	 */
5111 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5112 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5113 	    spa_config_held(spa, SCL_STATE, RW_READER)));
5114 
5115 	if (!list_link_active(&vd->vdev_state_dirty_node) &&
5116 	    vdev_is_concrete(vd))
5117 		list_insert_head(&spa->spa_state_dirty_list, vd);
5118 }
5119 
5120 void
5121 vdev_state_clean(vdev_t *vd)
5122 {
5123 	spa_t *spa = vd->vdev_spa;
5124 
5125 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5126 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5127 	    spa_config_held(spa, SCL_STATE, RW_READER)));
5128 
5129 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
5130 	list_remove(&spa->spa_state_dirty_list, vd);
5131 }
5132 
5133 /*
5134  * Propagate vdev state up from children to parent.
5135  */
5136 void
5137 vdev_propagate_state(vdev_t *vd)
5138 {
5139 	spa_t *spa = vd->vdev_spa;
5140 	vdev_t *rvd = spa->spa_root_vdev;
5141 	int degraded = 0, faulted = 0;
5142 	int corrupted = 0;
5143 	vdev_t *child;
5144 
5145 	if (vd->vdev_children > 0) {
5146 		for (int c = 0; c < vd->vdev_children; c++) {
5147 			child = vd->vdev_child[c];
5148 
5149 			/*
5150 			 * Don't factor holes or indirect vdevs into the
5151 			 * decision.
5152 			 */
5153 			if (!vdev_is_concrete(child))
5154 				continue;
5155 
5156 			if (!vdev_readable(child) ||
5157 			    (!vdev_writeable(child) && spa_writeable(spa))) {
5158 				/*
5159 				 * Root special: if there is a top-level log
5160 				 * device, treat the root vdev as if it were
5161 				 * degraded.
5162 				 */
5163 				if (child->vdev_islog && vd == rvd)
5164 					degraded++;
5165 				else
5166 					faulted++;
5167 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
5168 				degraded++;
5169 			}
5170 
5171 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
5172 				corrupted++;
5173 		}
5174 
5175 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
5176 
5177 		/*
5178 		 * Root special: if there is a top-level vdev that cannot be
5179 		 * opened due to corrupted metadata, then propagate the root
5180 		 * vdev's aux state as 'corrupt' rather than 'insufficient
5181 		 * replicas'.
5182 		 */
5183 		if (corrupted && vd == rvd &&
5184 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
5185 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
5186 			    VDEV_AUX_CORRUPT_DATA);
5187 	}
5188 
5189 	if (vd->vdev_parent)
5190 		vdev_propagate_state(vd->vdev_parent);
5191 }
5192 
5193 /*
5194  * Set a vdev's state.  If this is during an open, we don't update the parent
5195  * state, because we're in the process of opening children depth-first.
5196  * Otherwise, we propagate the change to the parent.
5197  *
5198  * If this routine places a device in a faulted state, an appropriate ereport is
5199  * generated.
5200  */
5201 void
5202 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
5203 {
5204 	uint64_t save_state;
5205 	spa_t *spa = vd->vdev_spa;
5206 
5207 	if (state == vd->vdev_state) {
5208 		/*
5209 		 * Since vdev_offline() code path is already in an offline
5210 		 * state we can miss a statechange event to OFFLINE. Check
5211 		 * the previous state to catch this condition.
5212 		 */
5213 		if (vd->vdev_ops->vdev_op_leaf &&
5214 		    (state == VDEV_STATE_OFFLINE) &&
5215 		    (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
5216 			/* post an offline state change */
5217 			zfs_post_state_change(spa, vd, vd->vdev_prevstate);
5218 		}
5219 		vd->vdev_stat.vs_aux = aux;
5220 		return;
5221 	}
5222 
5223 	save_state = vd->vdev_state;
5224 
5225 	vd->vdev_state = state;
5226 	vd->vdev_stat.vs_aux = aux;
5227 
5228 	/*
5229 	 * If we are setting the vdev state to anything but an open state, then
5230 	 * always close the underlying device unless the device has requested
5231 	 * a delayed close (i.e. we're about to remove or fault the device).
5232 	 * Otherwise, we keep accessible but invalid devices open forever.
5233 	 * We don't call vdev_close() itself, because that implies some extra
5234 	 * checks (offline, etc) that we don't want here.  This is limited to
5235 	 * leaf devices, because otherwise closing the device will affect other
5236 	 * children.
5237 	 */
5238 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
5239 	    vd->vdev_ops->vdev_op_leaf)
5240 		vd->vdev_ops->vdev_op_close(vd);
5241 
5242 	if (vd->vdev_removed &&
5243 	    state == VDEV_STATE_CANT_OPEN &&
5244 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
5245 		/*
5246 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
5247 		 * device was previously marked removed and someone attempted to
5248 		 * reopen it.  If this failed due to a nonexistent device, then
5249 		 * keep the device in the REMOVED state.  We also let this be if
5250 		 * it is one of our special test online cases, which is only
5251 		 * attempting to online the device and shouldn't generate an FMA
5252 		 * fault.
5253 		 */
5254 		vd->vdev_state = VDEV_STATE_REMOVED;
5255 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
5256 	} else if (state == VDEV_STATE_REMOVED) {
5257 		vd->vdev_removed = B_TRUE;
5258 	} else if (state == VDEV_STATE_CANT_OPEN) {
5259 		/*
5260 		 * If we fail to open a vdev during an import or recovery, we
5261 		 * mark it as "not available", which signifies that it was
5262 		 * never there to begin with.  Failure to open such a device
5263 		 * is not considered an error.
5264 		 */
5265 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
5266 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
5267 		    vd->vdev_ops->vdev_op_leaf)
5268 			vd->vdev_not_present = 1;
5269 
5270 		/*
5271 		 * Post the appropriate ereport.  If the 'prevstate' field is
5272 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5273 		 * that this is part of a vdev_reopen().  In this case, we don't
5274 		 * want to post the ereport if the device was already in the
5275 		 * CANT_OPEN state beforehand.
5276 		 *
5277 		 * If the 'checkremove' flag is set, then this is an attempt to
5278 		 * online the device in response to an insertion event.  If we
5279 		 * hit this case, then we have detected an insertion event for a
5280 		 * faulted or offline device that wasn't in the removed state.
5281 		 * In this scenario, we don't post an ereport because we are
5282 		 * about to replace the device, or attempt an online with
5283 		 * vdev_forcefault, which will generate the fault for us.
5284 		 */
5285 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
5286 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
5287 		    vd != spa->spa_root_vdev) {
5288 			const char *class;
5289 
5290 			switch (aux) {
5291 			case VDEV_AUX_OPEN_FAILED:
5292 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
5293 				break;
5294 			case VDEV_AUX_CORRUPT_DATA:
5295 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
5296 				break;
5297 			case VDEV_AUX_NO_REPLICAS:
5298 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
5299 				break;
5300 			case VDEV_AUX_BAD_GUID_SUM:
5301 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
5302 				break;
5303 			case VDEV_AUX_TOO_SMALL:
5304 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
5305 				break;
5306 			case VDEV_AUX_BAD_LABEL:
5307 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
5308 				break;
5309 			case VDEV_AUX_BAD_ASHIFT:
5310 				class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
5311 				break;
5312 			default:
5313 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
5314 			}
5315 
5316 			(void) zfs_ereport_post(class, spa, vd, NULL, NULL,
5317 			    save_state);
5318 		}
5319 
5320 		/* Erase any notion of persistent removed state */
5321 		vd->vdev_removed = B_FALSE;
5322 	} else {
5323 		vd->vdev_removed = B_FALSE;
5324 	}
5325 
5326 	/*
5327 	 * Notify ZED of any significant state-change on a leaf vdev.
5328 	 *
5329 	 */
5330 	if (vd->vdev_ops->vdev_op_leaf) {
5331 		/* preserve original state from a vdev_reopen() */
5332 		if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
5333 		    (vd->vdev_prevstate != vd->vdev_state) &&
5334 		    (save_state <= VDEV_STATE_CLOSED))
5335 			save_state = vd->vdev_prevstate;
5336 
5337 		/* filter out state change due to initial vdev_open */
5338 		if (save_state > VDEV_STATE_CLOSED)
5339 			zfs_post_state_change(spa, vd, save_state);
5340 	}
5341 
5342 	if (!isopen && vd->vdev_parent)
5343 		vdev_propagate_state(vd->vdev_parent);
5344 }
5345 
5346 boolean_t
5347 vdev_children_are_offline(vdev_t *vd)
5348 {
5349 	ASSERT(!vd->vdev_ops->vdev_op_leaf);
5350 
5351 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
5352 		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5353 			return (B_FALSE);
5354 	}
5355 
5356 	return (B_TRUE);
5357 }
5358 
5359 /*
5360  * Check the vdev configuration to ensure that it's capable of supporting
5361  * a root pool. We do not support partial configuration.
5362  */
5363 boolean_t
5364 vdev_is_bootable(vdev_t *vd)
5365 {
5366 	if (!vd->vdev_ops->vdev_op_leaf) {
5367 		const char *vdev_type = vd->vdev_ops->vdev_op_type;
5368 
5369 		if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
5370 			return (B_FALSE);
5371 	}
5372 
5373 	for (int c = 0; c < vd->vdev_children; c++) {
5374 		if (!vdev_is_bootable(vd->vdev_child[c]))
5375 			return (B_FALSE);
5376 	}
5377 	return (B_TRUE);
5378 }
5379 
5380 boolean_t
5381 vdev_is_concrete(vdev_t *vd)
5382 {
5383 	vdev_ops_t *ops = vd->vdev_ops;
5384 	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5385 	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5386 		return (B_FALSE);
5387 	} else {
5388 		return (B_TRUE);
5389 	}
5390 }
5391 
5392 /*
5393  * Determine if a log device has valid content.  If the vdev was
5394  * removed or faulted in the MOS config then we know that
5395  * the content on the log device has already been written to the pool.
5396  */
5397 boolean_t
5398 vdev_log_state_valid(vdev_t *vd)
5399 {
5400 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5401 	    !vd->vdev_removed)
5402 		return (B_TRUE);
5403 
5404 	for (int c = 0; c < vd->vdev_children; c++)
5405 		if (vdev_log_state_valid(vd->vdev_child[c]))
5406 			return (B_TRUE);
5407 
5408 	return (B_FALSE);
5409 }
5410 
5411 /*
5412  * Expand a vdev if possible.
5413  */
5414 void
5415 vdev_expand(vdev_t *vd, uint64_t txg)
5416 {
5417 	ASSERT(vd->vdev_top == vd);
5418 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5419 	ASSERT(vdev_is_concrete(vd));
5420 
5421 	vdev_set_deflate_ratio(vd);
5422 
5423 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5424 	    vdev_is_concrete(vd)) {
5425 		vdev_metaslab_group_create(vd);
5426 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
5427 		vdev_config_dirty(vd);
5428 	}
5429 }
5430 
5431 /*
5432  * Split a vdev.
5433  */
5434 void
5435 vdev_split(vdev_t *vd)
5436 {
5437 	vdev_t *cvd, *pvd = vd->vdev_parent;
5438 
5439 	VERIFY3U(pvd->vdev_children, >, 1);
5440 
5441 	vdev_remove_child(pvd, vd);
5442 	vdev_compact_children(pvd);
5443 
5444 	ASSERT3P(pvd->vdev_child, !=, NULL);
5445 
5446 	cvd = pvd->vdev_child[0];
5447 	if (pvd->vdev_children == 1) {
5448 		vdev_remove_parent(cvd);
5449 		cvd->vdev_splitting = B_TRUE;
5450 	}
5451 	vdev_propagate_state(cvd);
5452 }
5453 
5454 void
5455 vdev_deadman(vdev_t *vd, const char *tag)
5456 {
5457 	for (int c = 0; c < vd->vdev_children; c++) {
5458 		vdev_t *cvd = vd->vdev_child[c];
5459 
5460 		vdev_deadman(cvd, tag);
5461 	}
5462 
5463 	if (vd->vdev_ops->vdev_op_leaf) {
5464 		vdev_queue_t *vq = &vd->vdev_queue;
5465 
5466 		mutex_enter(&vq->vq_lock);
5467 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
5468 			spa_t *spa = vd->vdev_spa;
5469 			zio_t *fio;
5470 			uint64_t delta;
5471 
5472 			zfs_dbgmsg("slow vdev: %s has %lu active IOs",
5473 			    vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
5474 
5475 			/*
5476 			 * Look at the head of all the pending queues,
5477 			 * if any I/O has been outstanding for longer than
5478 			 * the spa_deadman_synctime invoke the deadman logic.
5479 			 */
5480 			fio = avl_first(&vq->vq_active_tree);
5481 			delta = gethrtime() - fio->io_timestamp;
5482 			if (delta > spa_deadman_synctime(spa))
5483 				zio_deadman(fio, tag);
5484 		}
5485 		mutex_exit(&vq->vq_lock);
5486 	}
5487 }
5488 
5489 void
5490 vdev_defer_resilver(vdev_t *vd)
5491 {
5492 	ASSERT(vd->vdev_ops->vdev_op_leaf);
5493 
5494 	vd->vdev_resilver_deferred = B_TRUE;
5495 	vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5496 }
5497 
5498 /*
5499  * Clears the resilver deferred flag on all leaf devs under vd. Returns
5500  * B_TRUE if we have devices that need to be resilvered and are available to
5501  * accept resilver I/Os.
5502  */
5503 boolean_t
5504 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5505 {
5506 	boolean_t resilver_needed = B_FALSE;
5507 	spa_t *spa = vd->vdev_spa;
5508 
5509 	for (int c = 0; c < vd->vdev_children; c++) {
5510 		vdev_t *cvd = vd->vdev_child[c];
5511 		resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5512 	}
5513 
5514 	if (vd == spa->spa_root_vdev &&
5515 	    spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5516 		spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5517 		vdev_config_dirty(vd);
5518 		spa->spa_resilver_deferred = B_FALSE;
5519 		return (resilver_needed);
5520 	}
5521 
5522 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5523 	    !vd->vdev_ops->vdev_op_leaf)
5524 		return (resilver_needed);
5525 
5526 	vd->vdev_resilver_deferred = B_FALSE;
5527 
5528 	return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5529 	    vdev_resilver_needed(vd, NULL, NULL));
5530 }
5531 
5532 boolean_t
5533 vdev_xlate_is_empty(range_seg64_t *rs)
5534 {
5535 	return (rs->rs_start == rs->rs_end);
5536 }
5537 
5538 /*
5539  * Translate a logical range to the first contiguous physical range for the
5540  * specified vdev_t.  This function is initially called with a leaf vdev and
5541  * will walk each parent vdev until it reaches a top-level vdev. Once the
5542  * top-level is reached the physical range is initialized and the recursive
5543  * function begins to unwind. As it unwinds it calls the parent's vdev
5544  * specific translation function to do the real conversion.
5545  */
5546 void
5547 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
5548     range_seg64_t *physical_rs, range_seg64_t *remain_rs)
5549 {
5550 	/*
5551 	 * Walk up the vdev tree
5552 	 */
5553 	if (vd != vd->vdev_top) {
5554 		vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5555 		    remain_rs);
5556 	} else {
5557 		/*
5558 		 * We've reached the top-level vdev, initialize the physical
5559 		 * range to the logical range and set an empty remaining
5560 		 * range then start to unwind.
5561 		 */
5562 		physical_rs->rs_start = logical_rs->rs_start;
5563 		physical_rs->rs_end = logical_rs->rs_end;
5564 
5565 		remain_rs->rs_start = logical_rs->rs_start;
5566 		remain_rs->rs_end = logical_rs->rs_start;
5567 
5568 		return;
5569 	}
5570 
5571 	vdev_t *pvd = vd->vdev_parent;
5572 	ASSERT3P(pvd, !=, NULL);
5573 	ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5574 
5575 	/*
5576 	 * As this recursive function unwinds, translate the logical
5577 	 * range into its physical and any remaining components by calling
5578 	 * the vdev specific translate function.
5579 	 */
5580 	range_seg64_t intermediate = { 0 };
5581 	pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5582 
5583 	physical_rs->rs_start = intermediate.rs_start;
5584 	physical_rs->rs_end = intermediate.rs_end;
5585 }
5586 
5587 void
5588 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs,
5589     vdev_xlate_func_t *func, void *arg)
5590 {
5591 	range_seg64_t iter_rs = *logical_rs;
5592 	range_seg64_t physical_rs;
5593 	range_seg64_t remain_rs;
5594 
5595 	while (!vdev_xlate_is_empty(&iter_rs)) {
5596 
5597 		vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5598 
5599 		/*
5600 		 * With raidz and dRAID, it's possible that the logical range
5601 		 * does not live on this leaf vdev. Only when there is a non-
5602 		 * zero physical size call the provided function.
5603 		 */
5604 		if (!vdev_xlate_is_empty(&physical_rs))
5605 			func(arg, &physical_rs);
5606 
5607 		iter_rs = remain_rs;
5608 	}
5609 }
5610 
5611 static char *
5612 vdev_name(vdev_t *vd, char *buf, int buflen)
5613 {
5614 	if (vd->vdev_path == NULL) {
5615 		if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) {
5616 			strlcpy(buf, vd->vdev_spa->spa_name, buflen);
5617 		} else if (!vd->vdev_ops->vdev_op_leaf) {
5618 			snprintf(buf, buflen, "%s-%llu",
5619 			    vd->vdev_ops->vdev_op_type,
5620 			    (u_longlong_t)vd->vdev_id);
5621 		}
5622 	} else {
5623 		strlcpy(buf, vd->vdev_path, buflen);
5624 	}
5625 	return (buf);
5626 }
5627 
5628 /*
5629  * Look at the vdev tree and determine whether any devices are currently being
5630  * replaced.
5631  */
5632 boolean_t
5633 vdev_replace_in_progress(vdev_t *vdev)
5634 {
5635 	ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5636 
5637 	if (vdev->vdev_ops == &vdev_replacing_ops)
5638 		return (B_TRUE);
5639 
5640 	/*
5641 	 * A 'spare' vdev indicates that we have a replace in progress, unless
5642 	 * it has exactly two children, and the second, the hot spare, has
5643 	 * finished being resilvered.
5644 	 */
5645 	if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5646 	    !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5647 		return (B_TRUE);
5648 
5649 	for (int i = 0; i < vdev->vdev_children; i++) {
5650 		if (vdev_replace_in_progress(vdev->vdev_child[i]))
5651 			return (B_TRUE);
5652 	}
5653 
5654 	return (B_FALSE);
5655 }
5656 
5657 /*
5658  * Add a (source=src, propname=propval) list to an nvlist.
5659  */
5660 static void
5661 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval,
5662     uint64_t intval, zprop_source_t src)
5663 {
5664 	nvlist_t *propval;
5665 
5666 	propval = fnvlist_alloc();
5667 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
5668 
5669 	if (strval != NULL)
5670 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
5671 	else
5672 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
5673 
5674 	fnvlist_add_nvlist(nvl, propname, propval);
5675 	nvlist_free(propval);
5676 }
5677 
5678 static void
5679 vdev_props_set_sync(void *arg, dmu_tx_t *tx)
5680 {
5681 	vdev_t *vd;
5682 	nvlist_t *nvp = arg;
5683 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5684 	objset_t *mos = spa->spa_meta_objset;
5685 	nvpair_t *elem = NULL;
5686 	uint64_t vdev_guid;
5687 	nvlist_t *nvprops;
5688 
5689 	vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV);
5690 	nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS);
5691 	vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE);
5692 
5693 	/* this vdev could get removed while waiting for this sync task */
5694 	if (vd == NULL)
5695 		return;
5696 
5697 	mutex_enter(&spa->spa_props_lock);
5698 
5699 	while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5700 		uint64_t intval, objid = 0;
5701 		const char *strval;
5702 		vdev_prop_t prop;
5703 		const char *propname = nvpair_name(elem);
5704 		zprop_type_t proptype;
5705 
5706 		/*
5707 		 * Set vdev property values in the vdev props mos object.
5708 		 */
5709 		if (vd->vdev_root_zap != 0) {
5710 			objid = vd->vdev_root_zap;
5711 		} else if (vd->vdev_top_zap != 0) {
5712 			objid = vd->vdev_top_zap;
5713 		} else if (vd->vdev_leaf_zap != 0) {
5714 			objid = vd->vdev_leaf_zap;
5715 		} else {
5716 			/*
5717 			 * XXX: implement vdev_props_set_check()
5718 			 */
5719 			panic("vdev not root/top/leaf");
5720 		}
5721 
5722 		switch (prop = vdev_name_to_prop(propname)) {
5723 		case VDEV_PROP_USERPROP:
5724 			if (vdev_prop_user(propname)) {
5725 				strval = fnvpair_value_string(elem);
5726 				if (strlen(strval) == 0) {
5727 					/* remove the property if value == "" */
5728 					(void) zap_remove(mos, objid, propname,
5729 					    tx);
5730 				} else {
5731 					VERIFY0(zap_update(mos, objid, propname,
5732 					    1, strlen(strval) + 1, strval, tx));
5733 				}
5734 				spa_history_log_internal(spa, "vdev set", tx,
5735 				    "vdev_guid=%llu: %s=%s",
5736 				    (u_longlong_t)vdev_guid, nvpair_name(elem),
5737 				    strval);
5738 			}
5739 			break;
5740 		default:
5741 			/* normalize the property name */
5742 			propname = vdev_prop_to_name(prop);
5743 			proptype = vdev_prop_get_type(prop);
5744 
5745 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5746 				ASSERT(proptype == PROP_TYPE_STRING);
5747 				strval = fnvpair_value_string(elem);
5748 				VERIFY0(zap_update(mos, objid, propname,
5749 				    1, strlen(strval) + 1, strval, tx));
5750 				spa_history_log_internal(spa, "vdev set", tx,
5751 				    "vdev_guid=%llu: %s=%s",
5752 				    (u_longlong_t)vdev_guid, nvpair_name(elem),
5753 				    strval);
5754 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5755 				intval = fnvpair_value_uint64(elem);
5756 
5757 				if (proptype == PROP_TYPE_INDEX) {
5758 					const char *unused;
5759 					VERIFY0(vdev_prop_index_to_string(
5760 					    prop, intval, &unused));
5761 				}
5762 				VERIFY0(zap_update(mos, objid, propname,
5763 				    sizeof (uint64_t), 1, &intval, tx));
5764 				spa_history_log_internal(spa, "vdev set", tx,
5765 				    "vdev_guid=%llu: %s=%lld",
5766 				    (u_longlong_t)vdev_guid,
5767 				    nvpair_name(elem), (longlong_t)intval);
5768 			} else {
5769 				panic("invalid vdev property type %u",
5770 				    nvpair_type(elem));
5771 			}
5772 		}
5773 
5774 	}
5775 
5776 	mutex_exit(&spa->spa_props_lock);
5777 }
5778 
5779 int
5780 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
5781 {
5782 	spa_t *spa = vd->vdev_spa;
5783 	nvpair_t *elem = NULL;
5784 	uint64_t vdev_guid;
5785 	nvlist_t *nvprops;
5786 	int error = 0;
5787 
5788 	ASSERT(vd != NULL);
5789 
5790 	if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV,
5791 	    &vdev_guid) != 0)
5792 		return (SET_ERROR(EINVAL));
5793 
5794 	if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS,
5795 	    &nvprops) != 0)
5796 		return (SET_ERROR(EINVAL));
5797 
5798 	if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL)
5799 		return (SET_ERROR(EINVAL));
5800 
5801 	while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5802 		const char *propname = nvpair_name(elem);
5803 		vdev_prop_t prop = vdev_name_to_prop(propname);
5804 		uint64_t intval = 0;
5805 		const char *strval = NULL;
5806 
5807 		if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) {
5808 			error = EINVAL;
5809 			goto end;
5810 		}
5811 
5812 		if (vdev_prop_readonly(prop)) {
5813 			error = EROFS;
5814 			goto end;
5815 		}
5816 
5817 		/* Special Processing */
5818 		switch (prop) {
5819 		case VDEV_PROP_PATH:
5820 			if (vd->vdev_path == NULL) {
5821 				error = EROFS;
5822 				break;
5823 			}
5824 			if (nvpair_value_string(elem, &strval) != 0) {
5825 				error = EINVAL;
5826 				break;
5827 			}
5828 			/* New path must start with /dev/ */
5829 			if (strncmp(strval, "/dev/", 5)) {
5830 				error = EINVAL;
5831 				break;
5832 			}
5833 			error = spa_vdev_setpath(spa, vdev_guid, strval);
5834 			break;
5835 		case VDEV_PROP_ALLOCATING:
5836 			if (nvpair_value_uint64(elem, &intval) != 0) {
5837 				error = EINVAL;
5838 				break;
5839 			}
5840 			if (intval != vd->vdev_noalloc)
5841 				break;
5842 			if (intval == 0)
5843 				error = spa_vdev_noalloc(spa, vdev_guid);
5844 			else
5845 				error = spa_vdev_alloc(spa, vdev_guid);
5846 			break;
5847 		case VDEV_PROP_FAILFAST:
5848 			if (nvpair_value_uint64(elem, &intval) != 0) {
5849 				error = EINVAL;
5850 				break;
5851 			}
5852 			vd->vdev_failfast = intval & 1;
5853 			break;
5854 		case VDEV_PROP_CHECKSUM_N:
5855 			if (nvpair_value_uint64(elem, &intval) != 0) {
5856 				error = EINVAL;
5857 				break;
5858 			}
5859 			vd->vdev_checksum_n = intval;
5860 			break;
5861 		case VDEV_PROP_CHECKSUM_T:
5862 			if (nvpair_value_uint64(elem, &intval) != 0) {
5863 				error = EINVAL;
5864 				break;
5865 			}
5866 			vd->vdev_checksum_t = intval;
5867 			break;
5868 		case VDEV_PROP_IO_N:
5869 			if (nvpair_value_uint64(elem, &intval) != 0) {
5870 				error = EINVAL;
5871 				break;
5872 			}
5873 			vd->vdev_io_n = intval;
5874 			break;
5875 		case VDEV_PROP_IO_T:
5876 			if (nvpair_value_uint64(elem, &intval) != 0) {
5877 				error = EINVAL;
5878 				break;
5879 			}
5880 			vd->vdev_io_t = intval;
5881 			break;
5882 		default:
5883 			/* Most processing is done in vdev_props_set_sync */
5884 			break;
5885 		}
5886 end:
5887 		if (error != 0) {
5888 			intval = error;
5889 			vdev_prop_add_list(outnvl, propname, strval, intval, 0);
5890 			return (error);
5891 		}
5892 	}
5893 
5894 	return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync,
5895 	    innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED));
5896 }
5897 
5898 int
5899 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
5900 {
5901 	spa_t *spa = vd->vdev_spa;
5902 	objset_t *mos = spa->spa_meta_objset;
5903 	int err = 0;
5904 	uint64_t objid;
5905 	uint64_t vdev_guid;
5906 	nvpair_t *elem = NULL;
5907 	nvlist_t *nvprops = NULL;
5908 	uint64_t intval = 0;
5909 	char *strval = NULL;
5910 	const char *propname = NULL;
5911 	vdev_prop_t prop;
5912 
5913 	ASSERT(vd != NULL);
5914 	ASSERT(mos != NULL);
5915 
5916 	if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV,
5917 	    &vdev_guid) != 0)
5918 		return (SET_ERROR(EINVAL));
5919 
5920 	nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops);
5921 
5922 	if (vd->vdev_root_zap != 0) {
5923 		objid = vd->vdev_root_zap;
5924 	} else if (vd->vdev_top_zap != 0) {
5925 		objid = vd->vdev_top_zap;
5926 	} else if (vd->vdev_leaf_zap != 0) {
5927 		objid = vd->vdev_leaf_zap;
5928 	} else {
5929 		return (SET_ERROR(EINVAL));
5930 	}
5931 	ASSERT(objid != 0);
5932 
5933 	mutex_enter(&spa->spa_props_lock);
5934 
5935 	if (nvprops != NULL) {
5936 		char namebuf[64] = { 0 };
5937 
5938 		while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5939 			intval = 0;
5940 			strval = NULL;
5941 			propname = nvpair_name(elem);
5942 			prop = vdev_name_to_prop(propname);
5943 			zprop_source_t src = ZPROP_SRC_DEFAULT;
5944 			uint64_t integer_size, num_integers;
5945 
5946 			switch (prop) {
5947 			/* Special Read-only Properties */
5948 			case VDEV_PROP_NAME:
5949 				strval = vdev_name(vd, namebuf,
5950 				    sizeof (namebuf));
5951 				if (strval == NULL)
5952 					continue;
5953 				vdev_prop_add_list(outnvl, propname, strval, 0,
5954 				    ZPROP_SRC_NONE);
5955 				continue;
5956 			case VDEV_PROP_CAPACITY:
5957 				/* percent used */
5958 				intval = (vd->vdev_stat.vs_dspace == 0) ? 0 :
5959 				    (vd->vdev_stat.vs_alloc * 100 /
5960 				    vd->vdev_stat.vs_dspace);
5961 				vdev_prop_add_list(outnvl, propname, NULL,
5962 				    intval, ZPROP_SRC_NONE);
5963 				continue;
5964 			case VDEV_PROP_STATE:
5965 				vdev_prop_add_list(outnvl, propname, NULL,
5966 				    vd->vdev_state, ZPROP_SRC_NONE);
5967 				continue;
5968 			case VDEV_PROP_GUID:
5969 				vdev_prop_add_list(outnvl, propname, NULL,
5970 				    vd->vdev_guid, ZPROP_SRC_NONE);
5971 				continue;
5972 			case VDEV_PROP_ASIZE:
5973 				vdev_prop_add_list(outnvl, propname, NULL,
5974 				    vd->vdev_asize, ZPROP_SRC_NONE);
5975 				continue;
5976 			case VDEV_PROP_PSIZE:
5977 				vdev_prop_add_list(outnvl, propname, NULL,
5978 				    vd->vdev_psize, ZPROP_SRC_NONE);
5979 				continue;
5980 			case VDEV_PROP_ASHIFT:
5981 				vdev_prop_add_list(outnvl, propname, NULL,
5982 				    vd->vdev_ashift, ZPROP_SRC_NONE);
5983 				continue;
5984 			case VDEV_PROP_SIZE:
5985 				vdev_prop_add_list(outnvl, propname, NULL,
5986 				    vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE);
5987 				continue;
5988 			case VDEV_PROP_FREE:
5989 				vdev_prop_add_list(outnvl, propname, NULL,
5990 				    vd->vdev_stat.vs_dspace -
5991 				    vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
5992 				continue;
5993 			case VDEV_PROP_ALLOCATED:
5994 				vdev_prop_add_list(outnvl, propname, NULL,
5995 				    vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
5996 				continue;
5997 			case VDEV_PROP_EXPANDSZ:
5998 				vdev_prop_add_list(outnvl, propname, NULL,
5999 				    vd->vdev_stat.vs_esize, ZPROP_SRC_NONE);
6000 				continue;
6001 			case VDEV_PROP_FRAGMENTATION:
6002 				vdev_prop_add_list(outnvl, propname, NULL,
6003 				    vd->vdev_stat.vs_fragmentation,
6004 				    ZPROP_SRC_NONE);
6005 				continue;
6006 			case VDEV_PROP_PARITY:
6007 				vdev_prop_add_list(outnvl, propname, NULL,
6008 				    vdev_get_nparity(vd), ZPROP_SRC_NONE);
6009 				continue;
6010 			case VDEV_PROP_PATH:
6011 				if (vd->vdev_path == NULL)
6012 					continue;
6013 				vdev_prop_add_list(outnvl, propname,
6014 				    vd->vdev_path, 0, ZPROP_SRC_NONE);
6015 				continue;
6016 			case VDEV_PROP_DEVID:
6017 				if (vd->vdev_devid == NULL)
6018 					continue;
6019 				vdev_prop_add_list(outnvl, propname,
6020 				    vd->vdev_devid, 0, ZPROP_SRC_NONE);
6021 				continue;
6022 			case VDEV_PROP_PHYS_PATH:
6023 				if (vd->vdev_physpath == NULL)
6024 					continue;
6025 				vdev_prop_add_list(outnvl, propname,
6026 				    vd->vdev_physpath, 0, ZPROP_SRC_NONE);
6027 				continue;
6028 			case VDEV_PROP_ENC_PATH:
6029 				if (vd->vdev_enc_sysfs_path == NULL)
6030 					continue;
6031 				vdev_prop_add_list(outnvl, propname,
6032 				    vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE);
6033 				continue;
6034 			case VDEV_PROP_FRU:
6035 				if (vd->vdev_fru == NULL)
6036 					continue;
6037 				vdev_prop_add_list(outnvl, propname,
6038 				    vd->vdev_fru, 0, ZPROP_SRC_NONE);
6039 				continue;
6040 			case VDEV_PROP_PARENT:
6041 				if (vd->vdev_parent != NULL) {
6042 					strval = vdev_name(vd->vdev_parent,
6043 					    namebuf, sizeof (namebuf));
6044 					vdev_prop_add_list(outnvl, propname,
6045 					    strval, 0, ZPROP_SRC_NONE);
6046 				}
6047 				continue;
6048 			case VDEV_PROP_CHILDREN:
6049 				if (vd->vdev_children > 0)
6050 					strval = kmem_zalloc(ZAP_MAXVALUELEN,
6051 					    KM_SLEEP);
6052 				for (uint64_t i = 0; i < vd->vdev_children;
6053 				    i++) {
6054 					const char *vname;
6055 
6056 					vname = vdev_name(vd->vdev_child[i],
6057 					    namebuf, sizeof (namebuf));
6058 					if (vname == NULL)
6059 						vname = "(unknown)";
6060 					if (strlen(strval) > 0)
6061 						strlcat(strval, ",",
6062 						    ZAP_MAXVALUELEN);
6063 					strlcat(strval, vname, ZAP_MAXVALUELEN);
6064 				}
6065 				if (strval != NULL) {
6066 					vdev_prop_add_list(outnvl, propname,
6067 					    strval, 0, ZPROP_SRC_NONE);
6068 					kmem_free(strval, ZAP_MAXVALUELEN);
6069 				}
6070 				continue;
6071 			case VDEV_PROP_NUMCHILDREN:
6072 				vdev_prop_add_list(outnvl, propname, NULL,
6073 				    vd->vdev_children, ZPROP_SRC_NONE);
6074 				continue;
6075 			case VDEV_PROP_READ_ERRORS:
6076 				vdev_prop_add_list(outnvl, propname, NULL,
6077 				    vd->vdev_stat.vs_read_errors,
6078 				    ZPROP_SRC_NONE);
6079 				continue;
6080 			case VDEV_PROP_WRITE_ERRORS:
6081 				vdev_prop_add_list(outnvl, propname, NULL,
6082 				    vd->vdev_stat.vs_write_errors,
6083 				    ZPROP_SRC_NONE);
6084 				continue;
6085 			case VDEV_PROP_CHECKSUM_ERRORS:
6086 				vdev_prop_add_list(outnvl, propname, NULL,
6087 				    vd->vdev_stat.vs_checksum_errors,
6088 				    ZPROP_SRC_NONE);
6089 				continue;
6090 			case VDEV_PROP_INITIALIZE_ERRORS:
6091 				vdev_prop_add_list(outnvl, propname, NULL,
6092 				    vd->vdev_stat.vs_initialize_errors,
6093 				    ZPROP_SRC_NONE);
6094 				continue;
6095 			case VDEV_PROP_OPS_NULL:
6096 				vdev_prop_add_list(outnvl, propname, NULL,
6097 				    vd->vdev_stat.vs_ops[ZIO_TYPE_NULL],
6098 				    ZPROP_SRC_NONE);
6099 				continue;
6100 			case VDEV_PROP_OPS_READ:
6101 				vdev_prop_add_list(outnvl, propname, NULL,
6102 				    vd->vdev_stat.vs_ops[ZIO_TYPE_READ],
6103 				    ZPROP_SRC_NONE);
6104 				continue;
6105 			case VDEV_PROP_OPS_WRITE:
6106 				vdev_prop_add_list(outnvl, propname, NULL,
6107 				    vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE],
6108 				    ZPROP_SRC_NONE);
6109 				continue;
6110 			case VDEV_PROP_OPS_FREE:
6111 				vdev_prop_add_list(outnvl, propname, NULL,
6112 				    vd->vdev_stat.vs_ops[ZIO_TYPE_FREE],
6113 				    ZPROP_SRC_NONE);
6114 				continue;
6115 			case VDEV_PROP_OPS_CLAIM:
6116 				vdev_prop_add_list(outnvl, propname, NULL,
6117 				    vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM],
6118 				    ZPROP_SRC_NONE);
6119 				continue;
6120 			case VDEV_PROP_OPS_TRIM:
6121 				/*
6122 				 * TRIM ops and bytes are reported to user
6123 				 * space as ZIO_TYPE_IOCTL.  This is done to
6124 				 * preserve the vdev_stat_t structure layout
6125 				 * for user space.
6126 				 */
6127 				vdev_prop_add_list(outnvl, propname, NULL,
6128 				    vd->vdev_stat.vs_ops[ZIO_TYPE_IOCTL],
6129 				    ZPROP_SRC_NONE);
6130 				continue;
6131 			case VDEV_PROP_BYTES_NULL:
6132 				vdev_prop_add_list(outnvl, propname, NULL,
6133 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL],
6134 				    ZPROP_SRC_NONE);
6135 				continue;
6136 			case VDEV_PROP_BYTES_READ:
6137 				vdev_prop_add_list(outnvl, propname, NULL,
6138 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_READ],
6139 				    ZPROP_SRC_NONE);
6140 				continue;
6141 			case VDEV_PROP_BYTES_WRITE:
6142 				vdev_prop_add_list(outnvl, propname, NULL,
6143 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE],
6144 				    ZPROP_SRC_NONE);
6145 				continue;
6146 			case VDEV_PROP_BYTES_FREE:
6147 				vdev_prop_add_list(outnvl, propname, NULL,
6148 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE],
6149 				    ZPROP_SRC_NONE);
6150 				continue;
6151 			case VDEV_PROP_BYTES_CLAIM:
6152 				vdev_prop_add_list(outnvl, propname, NULL,
6153 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM],
6154 				    ZPROP_SRC_NONE);
6155 				continue;
6156 			case VDEV_PROP_BYTES_TRIM:
6157 				/*
6158 				 * TRIM ops and bytes are reported to user
6159 				 * space as ZIO_TYPE_IOCTL.  This is done to
6160 				 * preserve the vdev_stat_t structure layout
6161 				 * for user space.
6162 				 */
6163 				vdev_prop_add_list(outnvl, propname, NULL,
6164 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_IOCTL],
6165 				    ZPROP_SRC_NONE);
6166 				continue;
6167 			case VDEV_PROP_REMOVING:
6168 				vdev_prop_add_list(outnvl, propname, NULL,
6169 				    vd->vdev_removing, ZPROP_SRC_NONE);
6170 				continue;
6171 			/* Numeric Properites */
6172 			case VDEV_PROP_ALLOCATING:
6173 				/* Leaf vdevs cannot have this property */
6174 				if (vd->vdev_mg == NULL &&
6175 				    vd->vdev_top != NULL) {
6176 					src = ZPROP_SRC_NONE;
6177 					intval = ZPROP_BOOLEAN_NA;
6178 				} else {
6179 					err = vdev_prop_get_int(vd, prop,
6180 					    &intval);
6181 					if (err && err != ENOENT)
6182 						break;
6183 
6184 					if (intval ==
6185 					    vdev_prop_default_numeric(prop))
6186 						src = ZPROP_SRC_DEFAULT;
6187 					else
6188 						src = ZPROP_SRC_LOCAL;
6189 				}
6190 
6191 				vdev_prop_add_list(outnvl, propname, NULL,
6192 				    intval, src);
6193 				break;
6194 			case VDEV_PROP_FAILFAST:
6195 				src = ZPROP_SRC_LOCAL;
6196 				strval = NULL;
6197 
6198 				err = zap_lookup(mos, objid, nvpair_name(elem),
6199 				    sizeof (uint64_t), 1, &intval);
6200 				if (err == ENOENT) {
6201 					intval = vdev_prop_default_numeric(
6202 					    prop);
6203 					err = 0;
6204 				} else if (err) {
6205 					break;
6206 				}
6207 				if (intval == vdev_prop_default_numeric(prop))
6208 					src = ZPROP_SRC_DEFAULT;
6209 
6210 				vdev_prop_add_list(outnvl, propname, strval,
6211 				    intval, src);
6212 				break;
6213 			case VDEV_PROP_CHECKSUM_N:
6214 			case VDEV_PROP_CHECKSUM_T:
6215 			case VDEV_PROP_IO_N:
6216 			case VDEV_PROP_IO_T:
6217 				err = vdev_prop_get_int(vd, prop, &intval);
6218 				if (err && err != ENOENT)
6219 					break;
6220 
6221 				if (intval == vdev_prop_default_numeric(prop))
6222 					src = ZPROP_SRC_DEFAULT;
6223 				else
6224 					src = ZPROP_SRC_LOCAL;
6225 
6226 				vdev_prop_add_list(outnvl, propname, NULL,
6227 				    intval, src);
6228 				break;
6229 			/* Text Properties */
6230 			case VDEV_PROP_COMMENT:
6231 				/* Exists in the ZAP below */
6232 				/* FALLTHRU */
6233 			case VDEV_PROP_USERPROP:
6234 				/* User Properites */
6235 				src = ZPROP_SRC_LOCAL;
6236 
6237 				err = zap_length(mos, objid, nvpair_name(elem),
6238 				    &integer_size, &num_integers);
6239 				if (err)
6240 					break;
6241 
6242 				switch (integer_size) {
6243 				case 8:
6244 					/* User properties cannot be integers */
6245 					err = EINVAL;
6246 					break;
6247 				case 1:
6248 					/* string property */
6249 					strval = kmem_alloc(num_integers,
6250 					    KM_SLEEP);
6251 					err = zap_lookup(mos, objid,
6252 					    nvpair_name(elem), 1,
6253 					    num_integers, strval);
6254 					if (err) {
6255 						kmem_free(strval,
6256 						    num_integers);
6257 						break;
6258 					}
6259 					vdev_prop_add_list(outnvl, propname,
6260 					    strval, 0, src);
6261 					kmem_free(strval, num_integers);
6262 					break;
6263 				}
6264 				break;
6265 			default:
6266 				err = ENOENT;
6267 				break;
6268 			}
6269 			if (err)
6270 				break;
6271 		}
6272 	} else {
6273 		/*
6274 		 * Get all properties from the MOS vdev property object.
6275 		 */
6276 		zap_cursor_t zc;
6277 		zap_attribute_t za;
6278 		for (zap_cursor_init(&zc, mos, objid);
6279 		    (err = zap_cursor_retrieve(&zc, &za)) == 0;
6280 		    zap_cursor_advance(&zc)) {
6281 			intval = 0;
6282 			strval = NULL;
6283 			zprop_source_t src = ZPROP_SRC_DEFAULT;
6284 			propname = za.za_name;
6285 
6286 			switch (za.za_integer_length) {
6287 			case 8:
6288 				/* We do not allow integer user properties */
6289 				/* This is likely an internal value */
6290 				break;
6291 			case 1:
6292 				/* string property */
6293 				strval = kmem_alloc(za.za_num_integers,
6294 				    KM_SLEEP);
6295 				err = zap_lookup(mos, objid, za.za_name, 1,
6296 				    za.za_num_integers, strval);
6297 				if (err) {
6298 					kmem_free(strval, za.za_num_integers);
6299 					break;
6300 				}
6301 				vdev_prop_add_list(outnvl, propname, strval, 0,
6302 				    src);
6303 				kmem_free(strval, za.za_num_integers);
6304 				break;
6305 
6306 			default:
6307 				break;
6308 			}
6309 		}
6310 		zap_cursor_fini(&zc);
6311 	}
6312 
6313 	mutex_exit(&spa->spa_props_lock);
6314 	if (err && err != ENOENT) {
6315 		return (err);
6316 	}
6317 
6318 	return (0);
6319 }
6320 
6321 EXPORT_SYMBOL(vdev_fault);
6322 EXPORT_SYMBOL(vdev_degrade);
6323 EXPORT_SYMBOL(vdev_online);
6324 EXPORT_SYMBOL(vdev_offline);
6325 EXPORT_SYMBOL(vdev_clear);
6326 
6327 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW,
6328 	"Target number of metaslabs per top-level vdev");
6329 
6330 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW,
6331 	"Default lower limit for metaslab size");
6332 
6333 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW,
6334 	"Default upper limit for metaslab size");
6335 
6336 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW,
6337 	"Minimum number of metaslabs per top-level vdev");
6338 
6339 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW,
6340 	"Practical upper limit of total metaslabs per top-level vdev");
6341 
6342 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
6343 	"Rate limit slow IO (delay) events to this many per second");
6344 
6345 /* BEGIN CSTYLED */
6346 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
6347 	"Rate limit checksum events to this many checksum errors per second "
6348 	"(do not set below ZED threshold).");
6349 /* END CSTYLED */
6350 
6351 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
6352 	"Ignore errors during resilver/scrub");
6353 
6354 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
6355 	"Bypass vdev_validate()");
6356 
6357 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
6358 	"Disable cache flushes");
6359 
6360 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW,
6361 	"Minimum number of metaslabs required to dedicate one for log blocks");
6362 
6363 /* BEGIN CSTYLED */
6364 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
6365 	param_set_min_auto_ashift, param_get_uint, ZMOD_RW,
6366 	"Minimum ashift used when creating new top-level vdevs");
6367 
6368 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
6369 	param_set_max_auto_ashift, param_get_uint, ZMOD_RW,
6370 	"Maximum ashift used when optimizing for logical -> physical sector "
6371 	"size on new top-level vdevs");
6372 /* END CSTYLED */
6373