1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 * Copyright 2017 Joyent, Inc. 29 * Copyright (c) 2017, Intel Corporation. 30 * Copyright (c) 2019, Datto Inc. All rights reserved. 31 * Copyright (c) 2021, Klara Inc. 32 * Copyright [2021] Hewlett Packard Enterprise Development LP 33 */ 34 35 #include <sys/zfs_context.h> 36 #include <sys/fm/fs/zfs.h> 37 #include <sys/spa.h> 38 #include <sys/spa_impl.h> 39 #include <sys/bpobj.h> 40 #include <sys/dmu.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_dir.h> 43 #include <sys/vdev_impl.h> 44 #include <sys/vdev_rebuild.h> 45 #include <sys/vdev_draid.h> 46 #include <sys/uberblock_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/space_map.h> 50 #include <sys/space_reftree.h> 51 #include <sys/zio.h> 52 #include <sys/zap.h> 53 #include <sys/fs/zfs.h> 54 #include <sys/arc.h> 55 #include <sys/zil.h> 56 #include <sys/dsl_scan.h> 57 #include <sys/vdev_raidz.h> 58 #include <sys/abd.h> 59 #include <sys/vdev_initialize.h> 60 #include <sys/vdev_trim.h> 61 #include <sys/zvol.h> 62 #include <sys/zfs_ratelimit.h> 63 #include "zfs_prop.h" 64 65 /* 66 * One metaslab from each (normal-class) vdev is used by the ZIL. These are 67 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are 68 * part of the spa_embedded_log_class. The metaslab with the most free space 69 * in each vdev is selected for this purpose when the pool is opened (or a 70 * vdev is added). See vdev_metaslab_init(). 71 * 72 * Log blocks can be allocated from the following locations. Each one is tried 73 * in order until the allocation succeeds: 74 * 1. dedicated log vdevs, aka "slog" (spa_log_class) 75 * 2. embedded slog metaslabs (spa_embedded_log_class) 76 * 3. other metaslabs in normal vdevs (spa_normal_class) 77 * 78 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer 79 * than this number of metaslabs in the vdev. This ensures that we don't set 80 * aside an unreasonable amount of space for the ZIL. If set to less than 81 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced 82 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab. 83 */ 84 static uint_t zfs_embedded_slog_min_ms = 64; 85 86 /* default target for number of metaslabs per top-level vdev */ 87 static uint_t zfs_vdev_default_ms_count = 200; 88 89 /* minimum number of metaslabs per top-level vdev */ 90 static uint_t zfs_vdev_min_ms_count = 16; 91 92 /* practical upper limit of total metaslabs per top-level vdev */ 93 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17; 94 95 /* lower limit for metaslab size (512M) */ 96 static uint_t zfs_vdev_default_ms_shift = 29; 97 98 /* upper limit for metaslab size (16G) */ 99 static uint_t zfs_vdev_max_ms_shift = 34; 100 101 int vdev_validate_skip = B_FALSE; 102 103 /* 104 * Since the DTL space map of a vdev is not expected to have a lot of 105 * entries, we default its block size to 4K. 106 */ 107 int zfs_vdev_dtl_sm_blksz = (1 << 12); 108 109 /* 110 * Rate limit slow IO (delay) events to this many per second. 111 */ 112 static unsigned int zfs_slow_io_events_per_second = 20; 113 114 /* 115 * Rate limit checksum events after this many checksum errors per second. 116 */ 117 static unsigned int zfs_checksum_events_per_second = 20; 118 119 /* 120 * Ignore errors during scrub/resilver. Allows to work around resilver 121 * upon import when there are pool errors. 122 */ 123 static int zfs_scan_ignore_errors = 0; 124 125 /* 126 * vdev-wide space maps that have lots of entries written to them at 127 * the end of each transaction can benefit from a higher I/O bandwidth 128 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. 129 */ 130 int zfs_vdev_standard_sm_blksz = (1 << 17); 131 132 /* 133 * Tunable parameter for debugging or performance analysis. Setting this 134 * will cause pool corruption on power loss if a volatile out-of-order 135 * write cache is enabled. 136 */ 137 int zfs_nocacheflush = 0; 138 139 /* 140 * Maximum and minimum ashift values that can be automatically set based on 141 * vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX 142 * is higher than the maximum value, it is intentionally limited here to not 143 * excessively impact pool space efficiency. Higher ashift values may still 144 * be forced by vdev logical ashift or by user via ashift property, but won't 145 * be set automatically as a performance optimization. 146 */ 147 uint_t zfs_vdev_max_auto_ashift = 14; 148 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN; 149 150 void 151 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) 152 { 153 va_list adx; 154 char buf[256]; 155 156 va_start(adx, fmt); 157 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 158 va_end(adx); 159 160 if (vd->vdev_path != NULL) { 161 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, 162 vd->vdev_path, buf); 163 } else { 164 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", 165 vd->vdev_ops->vdev_op_type, 166 (u_longlong_t)vd->vdev_id, 167 (u_longlong_t)vd->vdev_guid, buf); 168 } 169 } 170 171 void 172 vdev_dbgmsg_print_tree(vdev_t *vd, int indent) 173 { 174 char state[20]; 175 176 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { 177 zfs_dbgmsg("%*svdev %llu: %s", indent, "", 178 (u_longlong_t)vd->vdev_id, 179 vd->vdev_ops->vdev_op_type); 180 return; 181 } 182 183 switch (vd->vdev_state) { 184 case VDEV_STATE_UNKNOWN: 185 (void) snprintf(state, sizeof (state), "unknown"); 186 break; 187 case VDEV_STATE_CLOSED: 188 (void) snprintf(state, sizeof (state), "closed"); 189 break; 190 case VDEV_STATE_OFFLINE: 191 (void) snprintf(state, sizeof (state), "offline"); 192 break; 193 case VDEV_STATE_REMOVED: 194 (void) snprintf(state, sizeof (state), "removed"); 195 break; 196 case VDEV_STATE_CANT_OPEN: 197 (void) snprintf(state, sizeof (state), "can't open"); 198 break; 199 case VDEV_STATE_FAULTED: 200 (void) snprintf(state, sizeof (state), "faulted"); 201 break; 202 case VDEV_STATE_DEGRADED: 203 (void) snprintf(state, sizeof (state), "degraded"); 204 break; 205 case VDEV_STATE_HEALTHY: 206 (void) snprintf(state, sizeof (state), "healthy"); 207 break; 208 default: 209 (void) snprintf(state, sizeof (state), "<state %u>", 210 (uint_t)vd->vdev_state); 211 } 212 213 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, 214 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, 215 vd->vdev_islog ? " (log)" : "", 216 (u_longlong_t)vd->vdev_guid, 217 vd->vdev_path ? vd->vdev_path : "N/A", state); 218 219 for (uint64_t i = 0; i < vd->vdev_children; i++) 220 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); 221 } 222 223 /* 224 * Virtual device management. 225 */ 226 227 static vdev_ops_t *const vdev_ops_table[] = { 228 &vdev_root_ops, 229 &vdev_raidz_ops, 230 &vdev_draid_ops, 231 &vdev_draid_spare_ops, 232 &vdev_mirror_ops, 233 &vdev_replacing_ops, 234 &vdev_spare_ops, 235 &vdev_disk_ops, 236 &vdev_file_ops, 237 &vdev_missing_ops, 238 &vdev_hole_ops, 239 &vdev_indirect_ops, 240 NULL 241 }; 242 243 /* 244 * Given a vdev type, return the appropriate ops vector. 245 */ 246 static vdev_ops_t * 247 vdev_getops(const char *type) 248 { 249 vdev_ops_t *ops, *const *opspp; 250 251 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 252 if (strcmp(ops->vdev_op_type, type) == 0) 253 break; 254 255 return (ops); 256 } 257 258 /* 259 * Given a vdev and a metaslab class, find which metaslab group we're 260 * interested in. All vdevs may belong to two different metaslab classes. 261 * Dedicated slog devices use only the primary metaslab group, rather than a 262 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL. 263 */ 264 metaslab_group_t * 265 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc) 266 { 267 if (mc == spa_embedded_log_class(vd->vdev_spa) && 268 vd->vdev_log_mg != NULL) 269 return (vd->vdev_log_mg); 270 else 271 return (vd->vdev_mg); 272 } 273 274 void 275 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 276 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 277 { 278 (void) vd, (void) remain_rs; 279 280 physical_rs->rs_start = logical_rs->rs_start; 281 physical_rs->rs_end = logical_rs->rs_end; 282 } 283 284 /* 285 * Derive the enumerated allocation bias from string input. 286 * String origin is either the per-vdev zap or zpool(8). 287 */ 288 static vdev_alloc_bias_t 289 vdev_derive_alloc_bias(const char *bias) 290 { 291 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 292 293 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0) 294 alloc_bias = VDEV_BIAS_LOG; 295 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) 296 alloc_bias = VDEV_BIAS_SPECIAL; 297 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) 298 alloc_bias = VDEV_BIAS_DEDUP; 299 300 return (alloc_bias); 301 } 302 303 /* 304 * Default asize function: return the MAX of psize with the asize of 305 * all children. This is what's used by anything other than RAID-Z. 306 */ 307 uint64_t 308 vdev_default_asize(vdev_t *vd, uint64_t psize) 309 { 310 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 311 uint64_t csize; 312 313 for (int c = 0; c < vd->vdev_children; c++) { 314 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 315 asize = MAX(asize, csize); 316 } 317 318 return (asize); 319 } 320 321 uint64_t 322 vdev_default_min_asize(vdev_t *vd) 323 { 324 return (vd->vdev_min_asize); 325 } 326 327 /* 328 * Get the minimum allocatable size. We define the allocatable size as 329 * the vdev's asize rounded to the nearest metaslab. This allows us to 330 * replace or attach devices which don't have the same physical size but 331 * can still satisfy the same number of allocations. 332 */ 333 uint64_t 334 vdev_get_min_asize(vdev_t *vd) 335 { 336 vdev_t *pvd = vd->vdev_parent; 337 338 /* 339 * If our parent is NULL (inactive spare or cache) or is the root, 340 * just return our own asize. 341 */ 342 if (pvd == NULL) 343 return (vd->vdev_asize); 344 345 /* 346 * The top-level vdev just returns the allocatable size rounded 347 * to the nearest metaslab. 348 */ 349 if (vd == vd->vdev_top) 350 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 351 352 return (pvd->vdev_ops->vdev_op_min_asize(pvd)); 353 } 354 355 void 356 vdev_set_min_asize(vdev_t *vd) 357 { 358 vd->vdev_min_asize = vdev_get_min_asize(vd); 359 360 for (int c = 0; c < vd->vdev_children; c++) 361 vdev_set_min_asize(vd->vdev_child[c]); 362 } 363 364 /* 365 * Get the minimal allocation size for the top-level vdev. 366 */ 367 uint64_t 368 vdev_get_min_alloc(vdev_t *vd) 369 { 370 uint64_t min_alloc = 1ULL << vd->vdev_ashift; 371 372 if (vd->vdev_ops->vdev_op_min_alloc != NULL) 373 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd); 374 375 return (min_alloc); 376 } 377 378 /* 379 * Get the parity level for a top-level vdev. 380 */ 381 uint64_t 382 vdev_get_nparity(vdev_t *vd) 383 { 384 uint64_t nparity = 0; 385 386 if (vd->vdev_ops->vdev_op_nparity != NULL) 387 nparity = vd->vdev_ops->vdev_op_nparity(vd); 388 389 return (nparity); 390 } 391 392 static int 393 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value) 394 { 395 spa_t *spa = vd->vdev_spa; 396 objset_t *mos = spa->spa_meta_objset; 397 uint64_t objid; 398 int err; 399 400 if (vd->vdev_root_zap != 0) { 401 objid = vd->vdev_root_zap; 402 } else if (vd->vdev_top_zap != 0) { 403 objid = vd->vdev_top_zap; 404 } else if (vd->vdev_leaf_zap != 0) { 405 objid = vd->vdev_leaf_zap; 406 } else { 407 return (EINVAL); 408 } 409 410 err = zap_lookup(mos, objid, vdev_prop_to_name(prop), 411 sizeof (uint64_t), 1, value); 412 413 if (err == ENOENT) 414 *value = vdev_prop_default_numeric(prop); 415 416 return (err); 417 } 418 419 /* 420 * Get the number of data disks for a top-level vdev. 421 */ 422 uint64_t 423 vdev_get_ndisks(vdev_t *vd) 424 { 425 uint64_t ndisks = 1; 426 427 if (vd->vdev_ops->vdev_op_ndisks != NULL) 428 ndisks = vd->vdev_ops->vdev_op_ndisks(vd); 429 430 return (ndisks); 431 } 432 433 vdev_t * 434 vdev_lookup_top(spa_t *spa, uint64_t vdev) 435 { 436 vdev_t *rvd = spa->spa_root_vdev; 437 438 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 439 440 if (vdev < rvd->vdev_children) { 441 ASSERT(rvd->vdev_child[vdev] != NULL); 442 return (rvd->vdev_child[vdev]); 443 } 444 445 return (NULL); 446 } 447 448 vdev_t * 449 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 450 { 451 vdev_t *mvd; 452 453 if (vd->vdev_guid == guid) 454 return (vd); 455 456 for (int c = 0; c < vd->vdev_children; c++) 457 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 458 NULL) 459 return (mvd); 460 461 return (NULL); 462 } 463 464 static int 465 vdev_count_leaves_impl(vdev_t *vd) 466 { 467 int n = 0; 468 469 if (vd->vdev_ops->vdev_op_leaf) 470 return (1); 471 472 for (int c = 0; c < vd->vdev_children; c++) 473 n += vdev_count_leaves_impl(vd->vdev_child[c]); 474 475 return (n); 476 } 477 478 int 479 vdev_count_leaves(spa_t *spa) 480 { 481 int rc; 482 483 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 484 rc = vdev_count_leaves_impl(spa->spa_root_vdev); 485 spa_config_exit(spa, SCL_VDEV, FTAG); 486 487 return (rc); 488 } 489 490 void 491 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 492 { 493 size_t oldsize, newsize; 494 uint64_t id = cvd->vdev_id; 495 vdev_t **newchild; 496 497 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 498 ASSERT(cvd->vdev_parent == NULL); 499 500 cvd->vdev_parent = pvd; 501 502 if (pvd == NULL) 503 return; 504 505 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 506 507 oldsize = pvd->vdev_children * sizeof (vdev_t *); 508 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 509 newsize = pvd->vdev_children * sizeof (vdev_t *); 510 511 newchild = kmem_alloc(newsize, KM_SLEEP); 512 if (pvd->vdev_child != NULL) { 513 memcpy(newchild, pvd->vdev_child, oldsize); 514 kmem_free(pvd->vdev_child, oldsize); 515 } 516 517 pvd->vdev_child = newchild; 518 pvd->vdev_child[id] = cvd; 519 520 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 521 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 522 523 /* 524 * Walk up all ancestors to update guid sum. 525 */ 526 for (; pvd != NULL; pvd = pvd->vdev_parent) 527 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 528 529 if (cvd->vdev_ops->vdev_op_leaf) { 530 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd); 531 cvd->vdev_spa->spa_leaf_list_gen++; 532 } 533 } 534 535 void 536 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 537 { 538 int c; 539 uint_t id = cvd->vdev_id; 540 541 ASSERT(cvd->vdev_parent == pvd); 542 543 if (pvd == NULL) 544 return; 545 546 ASSERT(id < pvd->vdev_children); 547 ASSERT(pvd->vdev_child[id] == cvd); 548 549 pvd->vdev_child[id] = NULL; 550 cvd->vdev_parent = NULL; 551 552 for (c = 0; c < pvd->vdev_children; c++) 553 if (pvd->vdev_child[c]) 554 break; 555 556 if (c == pvd->vdev_children) { 557 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 558 pvd->vdev_child = NULL; 559 pvd->vdev_children = 0; 560 } 561 562 if (cvd->vdev_ops->vdev_op_leaf) { 563 spa_t *spa = cvd->vdev_spa; 564 list_remove(&spa->spa_leaf_list, cvd); 565 spa->spa_leaf_list_gen++; 566 } 567 568 /* 569 * Walk up all ancestors to update guid sum. 570 */ 571 for (; pvd != NULL; pvd = pvd->vdev_parent) 572 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 573 } 574 575 /* 576 * Remove any holes in the child array. 577 */ 578 void 579 vdev_compact_children(vdev_t *pvd) 580 { 581 vdev_t **newchild, *cvd; 582 int oldc = pvd->vdev_children; 583 int newc; 584 585 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 586 587 if (oldc == 0) 588 return; 589 590 for (int c = newc = 0; c < oldc; c++) 591 if (pvd->vdev_child[c]) 592 newc++; 593 594 if (newc > 0) { 595 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP); 596 597 for (int c = newc = 0; c < oldc; c++) { 598 if ((cvd = pvd->vdev_child[c]) != NULL) { 599 newchild[newc] = cvd; 600 cvd->vdev_id = newc++; 601 } 602 } 603 } else { 604 newchild = NULL; 605 } 606 607 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 608 pvd->vdev_child = newchild; 609 pvd->vdev_children = newc; 610 } 611 612 /* 613 * Allocate and minimally initialize a vdev_t. 614 */ 615 vdev_t * 616 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 617 { 618 vdev_t *vd; 619 vdev_indirect_config_t *vic; 620 621 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 622 vic = &vd->vdev_indirect_config; 623 624 if (spa->spa_root_vdev == NULL) { 625 ASSERT(ops == &vdev_root_ops); 626 spa->spa_root_vdev = vd; 627 spa->spa_load_guid = spa_generate_guid(NULL); 628 } 629 630 if (guid == 0 && ops != &vdev_hole_ops) { 631 if (spa->spa_root_vdev == vd) { 632 /* 633 * The root vdev's guid will also be the pool guid, 634 * which must be unique among all pools. 635 */ 636 guid = spa_generate_guid(NULL); 637 } else { 638 /* 639 * Any other vdev's guid must be unique within the pool. 640 */ 641 guid = spa_generate_guid(spa); 642 } 643 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 644 } 645 646 vd->vdev_spa = spa; 647 vd->vdev_id = id; 648 vd->vdev_guid = guid; 649 vd->vdev_guid_sum = guid; 650 vd->vdev_ops = ops; 651 vd->vdev_state = VDEV_STATE_CLOSED; 652 vd->vdev_ishole = (ops == &vdev_hole_ops); 653 vic->vic_prev_indirect_vdev = UINT64_MAX; 654 655 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); 656 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); 657 vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL, 658 0, 0); 659 660 /* 661 * Initialize rate limit structs for events. We rate limit ZIO delay 662 * and checksum events so that we don't overwhelm ZED with thousands 663 * of events when a disk is acting up. 664 */ 665 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second, 666 1); 667 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_slow_io_events_per_second, 668 1); 669 zfs_ratelimit_init(&vd->vdev_checksum_rl, 670 &zfs_checksum_events_per_second, 1); 671 672 /* 673 * Default Thresholds for tuning ZED 674 */ 675 vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N); 676 vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T); 677 vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N); 678 vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T); 679 680 list_link_init(&vd->vdev_config_dirty_node); 681 list_link_init(&vd->vdev_state_dirty_node); 682 list_link_init(&vd->vdev_initialize_node); 683 list_link_init(&vd->vdev_leaf_node); 684 list_link_init(&vd->vdev_trim_node); 685 686 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL); 687 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 688 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 689 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL); 690 691 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); 692 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); 693 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); 694 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); 695 696 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL); 697 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL); 698 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL); 699 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL); 700 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL); 701 cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL); 702 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL); 703 704 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL); 705 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL); 706 707 for (int t = 0; t < DTL_TYPES; t++) { 708 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 709 0); 710 } 711 712 txg_list_create(&vd->vdev_ms_list, spa, 713 offsetof(struct metaslab, ms_txg_node)); 714 txg_list_create(&vd->vdev_dtl_list, spa, 715 offsetof(struct vdev, vdev_dtl_node)); 716 vd->vdev_stat.vs_timestamp = gethrtime(); 717 vdev_queue_init(vd); 718 vdev_cache_init(vd); 719 720 return (vd); 721 } 722 723 /* 724 * Allocate a new vdev. The 'alloctype' is used to control whether we are 725 * creating a new vdev or loading an existing one - the behavior is slightly 726 * different for each case. 727 */ 728 int 729 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 730 int alloctype) 731 { 732 vdev_ops_t *ops; 733 const char *type; 734 uint64_t guid = 0, islog; 735 vdev_t *vd; 736 vdev_indirect_config_t *vic; 737 const char *tmp = NULL; 738 int rc; 739 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 740 boolean_t top_level = (parent && !parent->vdev_parent); 741 742 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 743 744 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 745 return (SET_ERROR(EINVAL)); 746 747 if ((ops = vdev_getops(type)) == NULL) 748 return (SET_ERROR(EINVAL)); 749 750 /* 751 * If this is a load, get the vdev guid from the nvlist. 752 * Otherwise, vdev_alloc_common() will generate one for us. 753 */ 754 if (alloctype == VDEV_ALLOC_LOAD) { 755 uint64_t label_id; 756 757 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 758 label_id != id) 759 return (SET_ERROR(EINVAL)); 760 761 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 762 return (SET_ERROR(EINVAL)); 763 } else if (alloctype == VDEV_ALLOC_SPARE) { 764 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 765 return (SET_ERROR(EINVAL)); 766 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 767 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 768 return (SET_ERROR(EINVAL)); 769 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 770 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 771 return (SET_ERROR(EINVAL)); 772 } 773 774 /* 775 * The first allocated vdev must be of type 'root'. 776 */ 777 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 778 return (SET_ERROR(EINVAL)); 779 780 /* 781 * Determine whether we're a log vdev. 782 */ 783 islog = 0; 784 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 785 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 786 return (SET_ERROR(ENOTSUP)); 787 788 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 789 return (SET_ERROR(ENOTSUP)); 790 791 if (top_level && alloctype == VDEV_ALLOC_ADD) { 792 const char *bias; 793 794 /* 795 * If creating a top-level vdev, check for allocation 796 * classes input. 797 */ 798 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 799 &bias) == 0) { 800 alloc_bias = vdev_derive_alloc_bias(bias); 801 802 /* spa_vdev_add() expects feature to be enabled */ 803 if (spa->spa_load_state != SPA_LOAD_CREATE && 804 !spa_feature_is_enabled(spa, 805 SPA_FEATURE_ALLOCATION_CLASSES)) { 806 return (SET_ERROR(ENOTSUP)); 807 } 808 } 809 810 /* spa_vdev_add() expects feature to be enabled */ 811 if (ops == &vdev_draid_ops && 812 spa->spa_load_state != SPA_LOAD_CREATE && 813 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) { 814 return (SET_ERROR(ENOTSUP)); 815 } 816 } 817 818 /* 819 * Initialize the vdev specific data. This is done before calling 820 * vdev_alloc_common() since it may fail and this simplifies the 821 * error reporting and cleanup code paths. 822 */ 823 void *tsd = NULL; 824 if (ops->vdev_op_init != NULL) { 825 rc = ops->vdev_op_init(spa, nv, &tsd); 826 if (rc != 0) { 827 return (rc); 828 } 829 } 830 831 vd = vdev_alloc_common(spa, id, guid, ops); 832 vd->vdev_tsd = tsd; 833 vd->vdev_islog = islog; 834 835 if (top_level && alloc_bias != VDEV_BIAS_NONE) 836 vd->vdev_alloc_bias = alloc_bias; 837 838 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0) 839 vd->vdev_path = spa_strdup(tmp); 840 841 /* 842 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a 843 * fault on a vdev and want it to persist across imports (like with 844 * zpool offline -f). 845 */ 846 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp); 847 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) { 848 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 849 vd->vdev_faulted = 1; 850 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 851 } 852 853 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0) 854 vd->vdev_devid = spa_strdup(tmp); 855 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0) 856 vd->vdev_physpath = spa_strdup(tmp); 857 858 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 859 &tmp) == 0) 860 vd->vdev_enc_sysfs_path = spa_strdup(tmp); 861 862 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0) 863 vd->vdev_fru = spa_strdup(tmp); 864 865 /* 866 * Set the whole_disk property. If it's not specified, leave the value 867 * as -1. 868 */ 869 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 870 &vd->vdev_wholedisk) != 0) 871 vd->vdev_wholedisk = -1ULL; 872 873 vic = &vd->vdev_indirect_config; 874 875 ASSERT0(vic->vic_mapping_object); 876 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 877 &vic->vic_mapping_object); 878 ASSERT0(vic->vic_births_object); 879 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 880 &vic->vic_births_object); 881 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); 882 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 883 &vic->vic_prev_indirect_vdev); 884 885 /* 886 * Look for the 'not present' flag. This will only be set if the device 887 * was not present at the time of import. 888 */ 889 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 890 &vd->vdev_not_present); 891 892 /* 893 * Get the alignment requirement. 894 */ 895 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 896 897 /* 898 * Retrieve the vdev creation time. 899 */ 900 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 901 &vd->vdev_crtxg); 902 903 if (vd->vdev_ops == &vdev_root_ops && 904 (alloctype == VDEV_ALLOC_LOAD || 905 alloctype == VDEV_ALLOC_SPLIT || 906 alloctype == VDEV_ALLOC_ROOTPOOL)) { 907 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP, 908 &vd->vdev_root_zap); 909 } 910 911 /* 912 * If we're a top-level vdev, try to load the allocation parameters. 913 */ 914 if (top_level && 915 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 916 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 917 &vd->vdev_ms_array); 918 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 919 &vd->vdev_ms_shift); 920 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 921 &vd->vdev_asize); 922 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING, 923 &vd->vdev_noalloc); 924 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 925 &vd->vdev_removing); 926 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 927 &vd->vdev_top_zap); 928 } else { 929 ASSERT0(vd->vdev_top_zap); 930 } 931 932 if (top_level && alloctype != VDEV_ALLOC_ATTACH) { 933 ASSERT(alloctype == VDEV_ALLOC_LOAD || 934 alloctype == VDEV_ALLOC_ADD || 935 alloctype == VDEV_ALLOC_SPLIT || 936 alloctype == VDEV_ALLOC_ROOTPOOL); 937 /* Note: metaslab_group_create() is now deferred */ 938 } 939 940 if (vd->vdev_ops->vdev_op_leaf && 941 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 942 (void) nvlist_lookup_uint64(nv, 943 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 944 } else { 945 ASSERT0(vd->vdev_leaf_zap); 946 } 947 948 /* 949 * If we're a leaf vdev, try to load the DTL object and other state. 950 */ 951 952 if (vd->vdev_ops->vdev_op_leaf && 953 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 954 alloctype == VDEV_ALLOC_ROOTPOOL)) { 955 if (alloctype == VDEV_ALLOC_LOAD) { 956 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 957 &vd->vdev_dtl_object); 958 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 959 &vd->vdev_unspare); 960 } 961 962 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 963 uint64_t spare = 0; 964 965 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 966 &spare) == 0 && spare) 967 spa_spare_add(vd); 968 } 969 970 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 971 &vd->vdev_offline); 972 973 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 974 &vd->vdev_resilver_txg); 975 976 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 977 &vd->vdev_rebuild_txg); 978 979 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER)) 980 vdev_defer_resilver(vd); 981 982 /* 983 * In general, when importing a pool we want to ignore the 984 * persistent fault state, as the diagnosis made on another 985 * system may not be valid in the current context. The only 986 * exception is if we forced a vdev to a persistently faulted 987 * state with 'zpool offline -f'. The persistent fault will 988 * remain across imports until cleared. 989 * 990 * Local vdevs will remain in the faulted state. 991 */ 992 if (spa_load_state(spa) == SPA_LOAD_OPEN || 993 spa_load_state(spa) == SPA_LOAD_IMPORT) { 994 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 995 &vd->vdev_faulted); 996 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 997 &vd->vdev_degraded); 998 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 999 &vd->vdev_removed); 1000 1001 if (vd->vdev_faulted || vd->vdev_degraded) { 1002 const char *aux; 1003 1004 vd->vdev_label_aux = 1005 VDEV_AUX_ERR_EXCEEDED; 1006 if (nvlist_lookup_string(nv, 1007 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 1008 strcmp(aux, "external") == 0) 1009 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 1010 else 1011 vd->vdev_faulted = 0ULL; 1012 } 1013 } 1014 } 1015 1016 /* 1017 * Add ourselves to the parent's list of children. 1018 */ 1019 vdev_add_child(parent, vd); 1020 1021 *vdp = vd; 1022 1023 return (0); 1024 } 1025 1026 void 1027 vdev_free(vdev_t *vd) 1028 { 1029 spa_t *spa = vd->vdev_spa; 1030 1031 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 1032 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1033 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); 1034 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL); 1035 1036 /* 1037 * Scan queues are normally destroyed at the end of a scan. If the 1038 * queue exists here, that implies the vdev is being removed while 1039 * the scan is still running. 1040 */ 1041 if (vd->vdev_scan_io_queue != NULL) { 1042 mutex_enter(&vd->vdev_scan_io_queue_lock); 1043 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue); 1044 vd->vdev_scan_io_queue = NULL; 1045 mutex_exit(&vd->vdev_scan_io_queue_lock); 1046 } 1047 1048 /* 1049 * vdev_free() implies closing the vdev first. This is simpler than 1050 * trying to ensure complicated semantics for all callers. 1051 */ 1052 vdev_close(vd); 1053 1054 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 1055 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 1056 1057 /* 1058 * Free all children. 1059 */ 1060 for (int c = 0; c < vd->vdev_children; c++) 1061 vdev_free(vd->vdev_child[c]); 1062 1063 ASSERT(vd->vdev_child == NULL); 1064 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 1065 1066 if (vd->vdev_ops->vdev_op_fini != NULL) 1067 vd->vdev_ops->vdev_op_fini(vd); 1068 1069 /* 1070 * Discard allocation state. 1071 */ 1072 if (vd->vdev_mg != NULL) { 1073 vdev_metaslab_fini(vd); 1074 metaslab_group_destroy(vd->vdev_mg); 1075 vd->vdev_mg = NULL; 1076 } 1077 if (vd->vdev_log_mg != NULL) { 1078 ASSERT0(vd->vdev_ms_count); 1079 metaslab_group_destroy(vd->vdev_log_mg); 1080 vd->vdev_log_mg = NULL; 1081 } 1082 1083 ASSERT0(vd->vdev_stat.vs_space); 1084 ASSERT0(vd->vdev_stat.vs_dspace); 1085 ASSERT0(vd->vdev_stat.vs_alloc); 1086 1087 /* 1088 * Remove this vdev from its parent's child list. 1089 */ 1090 vdev_remove_child(vd->vdev_parent, vd); 1091 1092 ASSERT(vd->vdev_parent == NULL); 1093 ASSERT(!list_link_active(&vd->vdev_leaf_node)); 1094 1095 /* 1096 * Clean up vdev structure. 1097 */ 1098 vdev_queue_fini(vd); 1099 vdev_cache_fini(vd); 1100 1101 if (vd->vdev_path) 1102 spa_strfree(vd->vdev_path); 1103 if (vd->vdev_devid) 1104 spa_strfree(vd->vdev_devid); 1105 if (vd->vdev_physpath) 1106 spa_strfree(vd->vdev_physpath); 1107 1108 if (vd->vdev_enc_sysfs_path) 1109 spa_strfree(vd->vdev_enc_sysfs_path); 1110 1111 if (vd->vdev_fru) 1112 spa_strfree(vd->vdev_fru); 1113 1114 if (vd->vdev_isspare) 1115 spa_spare_remove(vd); 1116 if (vd->vdev_isl2cache) 1117 spa_l2cache_remove(vd); 1118 1119 txg_list_destroy(&vd->vdev_ms_list); 1120 txg_list_destroy(&vd->vdev_dtl_list); 1121 1122 mutex_enter(&vd->vdev_dtl_lock); 1123 space_map_close(vd->vdev_dtl_sm); 1124 for (int t = 0; t < DTL_TYPES; t++) { 1125 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 1126 range_tree_destroy(vd->vdev_dtl[t]); 1127 } 1128 mutex_exit(&vd->vdev_dtl_lock); 1129 1130 EQUIV(vd->vdev_indirect_births != NULL, 1131 vd->vdev_indirect_mapping != NULL); 1132 if (vd->vdev_indirect_births != NULL) { 1133 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 1134 vdev_indirect_births_close(vd->vdev_indirect_births); 1135 } 1136 1137 if (vd->vdev_obsolete_sm != NULL) { 1138 ASSERT(vd->vdev_removing || 1139 vd->vdev_ops == &vdev_indirect_ops); 1140 space_map_close(vd->vdev_obsolete_sm); 1141 vd->vdev_obsolete_sm = NULL; 1142 } 1143 range_tree_destroy(vd->vdev_obsolete_segments); 1144 rw_destroy(&vd->vdev_indirect_rwlock); 1145 mutex_destroy(&vd->vdev_obsolete_lock); 1146 1147 mutex_destroy(&vd->vdev_dtl_lock); 1148 mutex_destroy(&vd->vdev_stat_lock); 1149 mutex_destroy(&vd->vdev_probe_lock); 1150 mutex_destroy(&vd->vdev_scan_io_queue_lock); 1151 1152 mutex_destroy(&vd->vdev_initialize_lock); 1153 mutex_destroy(&vd->vdev_initialize_io_lock); 1154 cv_destroy(&vd->vdev_initialize_io_cv); 1155 cv_destroy(&vd->vdev_initialize_cv); 1156 1157 mutex_destroy(&vd->vdev_trim_lock); 1158 mutex_destroy(&vd->vdev_autotrim_lock); 1159 mutex_destroy(&vd->vdev_trim_io_lock); 1160 cv_destroy(&vd->vdev_trim_cv); 1161 cv_destroy(&vd->vdev_autotrim_cv); 1162 cv_destroy(&vd->vdev_autotrim_kick_cv); 1163 cv_destroy(&vd->vdev_trim_io_cv); 1164 1165 mutex_destroy(&vd->vdev_rebuild_lock); 1166 cv_destroy(&vd->vdev_rebuild_cv); 1167 1168 zfs_ratelimit_fini(&vd->vdev_delay_rl); 1169 zfs_ratelimit_fini(&vd->vdev_deadman_rl); 1170 zfs_ratelimit_fini(&vd->vdev_checksum_rl); 1171 1172 if (vd == spa->spa_root_vdev) 1173 spa->spa_root_vdev = NULL; 1174 1175 kmem_free(vd, sizeof (vdev_t)); 1176 } 1177 1178 /* 1179 * Transfer top-level vdev state from svd to tvd. 1180 */ 1181 static void 1182 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 1183 { 1184 spa_t *spa = svd->vdev_spa; 1185 metaslab_t *msp; 1186 vdev_t *vd; 1187 int t; 1188 1189 ASSERT(tvd == tvd->vdev_top); 1190 1191 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite; 1192 tvd->vdev_ms_array = svd->vdev_ms_array; 1193 tvd->vdev_ms_shift = svd->vdev_ms_shift; 1194 tvd->vdev_ms_count = svd->vdev_ms_count; 1195 tvd->vdev_top_zap = svd->vdev_top_zap; 1196 1197 svd->vdev_ms_array = 0; 1198 svd->vdev_ms_shift = 0; 1199 svd->vdev_ms_count = 0; 1200 svd->vdev_top_zap = 0; 1201 1202 if (tvd->vdev_mg) 1203 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 1204 if (tvd->vdev_log_mg) 1205 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg); 1206 tvd->vdev_mg = svd->vdev_mg; 1207 tvd->vdev_log_mg = svd->vdev_log_mg; 1208 tvd->vdev_ms = svd->vdev_ms; 1209 1210 svd->vdev_mg = NULL; 1211 svd->vdev_log_mg = NULL; 1212 svd->vdev_ms = NULL; 1213 1214 if (tvd->vdev_mg != NULL) 1215 tvd->vdev_mg->mg_vd = tvd; 1216 if (tvd->vdev_log_mg != NULL) 1217 tvd->vdev_log_mg->mg_vd = tvd; 1218 1219 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; 1220 svd->vdev_checkpoint_sm = NULL; 1221 1222 tvd->vdev_alloc_bias = svd->vdev_alloc_bias; 1223 svd->vdev_alloc_bias = VDEV_BIAS_NONE; 1224 1225 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 1226 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 1227 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 1228 1229 svd->vdev_stat.vs_alloc = 0; 1230 svd->vdev_stat.vs_space = 0; 1231 svd->vdev_stat.vs_dspace = 0; 1232 1233 /* 1234 * State which may be set on a top-level vdev that's in the 1235 * process of being removed. 1236 */ 1237 ASSERT0(tvd->vdev_indirect_config.vic_births_object); 1238 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); 1239 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); 1240 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL); 1241 ASSERT3P(tvd->vdev_indirect_births, ==, NULL); 1242 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL); 1243 ASSERT0(tvd->vdev_noalloc); 1244 ASSERT0(tvd->vdev_removing); 1245 ASSERT0(tvd->vdev_rebuilding); 1246 tvd->vdev_noalloc = svd->vdev_noalloc; 1247 tvd->vdev_removing = svd->vdev_removing; 1248 tvd->vdev_rebuilding = svd->vdev_rebuilding; 1249 tvd->vdev_rebuild_config = svd->vdev_rebuild_config; 1250 tvd->vdev_indirect_config = svd->vdev_indirect_config; 1251 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; 1252 tvd->vdev_indirect_births = svd->vdev_indirect_births; 1253 range_tree_swap(&svd->vdev_obsolete_segments, 1254 &tvd->vdev_obsolete_segments); 1255 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; 1256 svd->vdev_indirect_config.vic_mapping_object = 0; 1257 svd->vdev_indirect_config.vic_births_object = 0; 1258 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; 1259 svd->vdev_indirect_mapping = NULL; 1260 svd->vdev_indirect_births = NULL; 1261 svd->vdev_obsolete_sm = NULL; 1262 svd->vdev_noalloc = 0; 1263 svd->vdev_removing = 0; 1264 svd->vdev_rebuilding = 0; 1265 1266 for (t = 0; t < TXG_SIZE; t++) { 1267 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 1268 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 1269 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 1270 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 1271 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 1272 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 1273 } 1274 1275 if (list_link_active(&svd->vdev_config_dirty_node)) { 1276 vdev_config_clean(svd); 1277 vdev_config_dirty(tvd); 1278 } 1279 1280 if (list_link_active(&svd->vdev_state_dirty_node)) { 1281 vdev_state_clean(svd); 1282 vdev_state_dirty(tvd); 1283 } 1284 1285 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 1286 svd->vdev_deflate_ratio = 0; 1287 1288 tvd->vdev_islog = svd->vdev_islog; 1289 svd->vdev_islog = 0; 1290 1291 dsl_scan_io_queue_vdev_xfer(svd, tvd); 1292 } 1293 1294 static void 1295 vdev_top_update(vdev_t *tvd, vdev_t *vd) 1296 { 1297 if (vd == NULL) 1298 return; 1299 1300 vd->vdev_top = tvd; 1301 1302 for (int c = 0; c < vd->vdev_children; c++) 1303 vdev_top_update(tvd, vd->vdev_child[c]); 1304 } 1305 1306 /* 1307 * Add a mirror/replacing vdev above an existing vdev. There is no need to 1308 * call .vdev_op_init() since mirror/replacing vdevs do not have private state. 1309 */ 1310 vdev_t * 1311 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 1312 { 1313 spa_t *spa = cvd->vdev_spa; 1314 vdev_t *pvd = cvd->vdev_parent; 1315 vdev_t *mvd; 1316 1317 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1318 1319 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 1320 1321 mvd->vdev_asize = cvd->vdev_asize; 1322 mvd->vdev_min_asize = cvd->vdev_min_asize; 1323 mvd->vdev_max_asize = cvd->vdev_max_asize; 1324 mvd->vdev_psize = cvd->vdev_psize; 1325 mvd->vdev_ashift = cvd->vdev_ashift; 1326 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift; 1327 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift; 1328 mvd->vdev_state = cvd->vdev_state; 1329 mvd->vdev_crtxg = cvd->vdev_crtxg; 1330 1331 vdev_remove_child(pvd, cvd); 1332 vdev_add_child(pvd, mvd); 1333 cvd->vdev_id = mvd->vdev_children; 1334 vdev_add_child(mvd, cvd); 1335 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1336 1337 if (mvd == mvd->vdev_top) 1338 vdev_top_transfer(cvd, mvd); 1339 1340 return (mvd); 1341 } 1342 1343 /* 1344 * Remove a 1-way mirror/replacing vdev from the tree. 1345 */ 1346 void 1347 vdev_remove_parent(vdev_t *cvd) 1348 { 1349 vdev_t *mvd = cvd->vdev_parent; 1350 vdev_t *pvd = mvd->vdev_parent; 1351 1352 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1353 1354 ASSERT(mvd->vdev_children == 1); 1355 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 1356 mvd->vdev_ops == &vdev_replacing_ops || 1357 mvd->vdev_ops == &vdev_spare_ops); 1358 cvd->vdev_ashift = mvd->vdev_ashift; 1359 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift; 1360 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift; 1361 vdev_remove_child(mvd, cvd); 1362 vdev_remove_child(pvd, mvd); 1363 1364 /* 1365 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 1366 * Otherwise, we could have detached an offline device, and when we 1367 * go to import the pool we'll think we have two top-level vdevs, 1368 * instead of a different version of the same top-level vdev. 1369 */ 1370 if (mvd->vdev_top == mvd) { 1371 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 1372 cvd->vdev_orig_guid = cvd->vdev_guid; 1373 cvd->vdev_guid += guid_delta; 1374 cvd->vdev_guid_sum += guid_delta; 1375 1376 /* 1377 * If pool not set for autoexpand, we need to also preserve 1378 * mvd's asize to prevent automatic expansion of cvd. 1379 * Otherwise if we are adjusting the mirror by attaching and 1380 * detaching children of non-uniform sizes, the mirror could 1381 * autoexpand, unexpectedly requiring larger devices to 1382 * re-establish the mirror. 1383 */ 1384 if (!cvd->vdev_spa->spa_autoexpand) 1385 cvd->vdev_asize = mvd->vdev_asize; 1386 } 1387 cvd->vdev_id = mvd->vdev_id; 1388 vdev_add_child(pvd, cvd); 1389 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1390 1391 if (cvd == cvd->vdev_top) 1392 vdev_top_transfer(mvd, cvd); 1393 1394 ASSERT(mvd->vdev_children == 0); 1395 vdev_free(mvd); 1396 } 1397 1398 void 1399 vdev_metaslab_group_create(vdev_t *vd) 1400 { 1401 spa_t *spa = vd->vdev_spa; 1402 1403 /* 1404 * metaslab_group_create was delayed until allocation bias was available 1405 */ 1406 if (vd->vdev_mg == NULL) { 1407 metaslab_class_t *mc; 1408 1409 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE) 1410 vd->vdev_alloc_bias = VDEV_BIAS_LOG; 1411 1412 ASSERT3U(vd->vdev_islog, ==, 1413 (vd->vdev_alloc_bias == VDEV_BIAS_LOG)); 1414 1415 switch (vd->vdev_alloc_bias) { 1416 case VDEV_BIAS_LOG: 1417 mc = spa_log_class(spa); 1418 break; 1419 case VDEV_BIAS_SPECIAL: 1420 mc = spa_special_class(spa); 1421 break; 1422 case VDEV_BIAS_DEDUP: 1423 mc = spa_dedup_class(spa); 1424 break; 1425 default: 1426 mc = spa_normal_class(spa); 1427 } 1428 1429 vd->vdev_mg = metaslab_group_create(mc, vd, 1430 spa->spa_alloc_count); 1431 1432 if (!vd->vdev_islog) { 1433 vd->vdev_log_mg = metaslab_group_create( 1434 spa_embedded_log_class(spa), vd, 1); 1435 } 1436 1437 /* 1438 * The spa ashift min/max only apply for the normal metaslab 1439 * class. Class destination is late binding so ashift boundary 1440 * setting had to wait until now. 1441 */ 1442 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1443 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) { 1444 if (vd->vdev_ashift > spa->spa_max_ashift) 1445 spa->spa_max_ashift = vd->vdev_ashift; 1446 if (vd->vdev_ashift < spa->spa_min_ashift) 1447 spa->spa_min_ashift = vd->vdev_ashift; 1448 1449 uint64_t min_alloc = vdev_get_min_alloc(vd); 1450 if (min_alloc < spa->spa_min_alloc) 1451 spa->spa_min_alloc = min_alloc; 1452 } 1453 } 1454 } 1455 1456 int 1457 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 1458 { 1459 spa_t *spa = vd->vdev_spa; 1460 uint64_t oldc = vd->vdev_ms_count; 1461 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 1462 metaslab_t **mspp; 1463 int error; 1464 boolean_t expanding = (oldc != 0); 1465 1466 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1467 1468 /* 1469 * This vdev is not being allocated from yet or is a hole. 1470 */ 1471 if (vd->vdev_ms_shift == 0) 1472 return (0); 1473 1474 ASSERT(!vd->vdev_ishole); 1475 1476 ASSERT(oldc <= newc); 1477 1478 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 1479 1480 if (expanding) { 1481 memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp)); 1482 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 1483 } 1484 1485 vd->vdev_ms = mspp; 1486 vd->vdev_ms_count = newc; 1487 1488 for (uint64_t m = oldc; m < newc; m++) { 1489 uint64_t object = 0; 1490 /* 1491 * vdev_ms_array may be 0 if we are creating the "fake" 1492 * metaslabs for an indirect vdev for zdb's leak detection. 1493 * See zdb_leak_init(). 1494 */ 1495 if (txg == 0 && vd->vdev_ms_array != 0) { 1496 error = dmu_read(spa->spa_meta_objset, 1497 vd->vdev_ms_array, 1498 m * sizeof (uint64_t), sizeof (uint64_t), &object, 1499 DMU_READ_PREFETCH); 1500 if (error != 0) { 1501 vdev_dbgmsg(vd, "unable to read the metaslab " 1502 "array [error=%d]", error); 1503 return (error); 1504 } 1505 } 1506 1507 error = metaslab_init(vd->vdev_mg, m, object, txg, 1508 &(vd->vdev_ms[m])); 1509 if (error != 0) { 1510 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", 1511 error); 1512 return (error); 1513 } 1514 } 1515 1516 /* 1517 * Find the emptiest metaslab on the vdev and mark it for use for 1518 * embedded slog by moving it from the regular to the log metaslab 1519 * group. 1520 */ 1521 if (vd->vdev_mg->mg_class == spa_normal_class(spa) && 1522 vd->vdev_ms_count > zfs_embedded_slog_min_ms && 1523 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) { 1524 uint64_t slog_msid = 0; 1525 uint64_t smallest = UINT64_MAX; 1526 1527 /* 1528 * Note, we only search the new metaslabs, because the old 1529 * (pre-existing) ones may be active (e.g. have non-empty 1530 * range_tree's), and we don't move them to the new 1531 * metaslab_t. 1532 */ 1533 for (uint64_t m = oldc; m < newc; m++) { 1534 uint64_t alloc = 1535 space_map_allocated(vd->vdev_ms[m]->ms_sm); 1536 if (alloc < smallest) { 1537 slog_msid = m; 1538 smallest = alloc; 1539 } 1540 } 1541 metaslab_t *slog_ms = vd->vdev_ms[slog_msid]; 1542 /* 1543 * The metaslab was marked as dirty at the end of 1544 * metaslab_init(). Remove it from the dirty list so that we 1545 * can uninitialize and reinitialize it to the new class. 1546 */ 1547 if (txg != 0) { 1548 (void) txg_list_remove_this(&vd->vdev_ms_list, 1549 slog_ms, txg); 1550 } 1551 uint64_t sm_obj = space_map_object(slog_ms->ms_sm); 1552 metaslab_fini(slog_ms); 1553 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg, 1554 &vd->vdev_ms[slog_msid])); 1555 } 1556 1557 if (txg == 0) 1558 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 1559 1560 /* 1561 * If the vdev is marked as non-allocating then don't 1562 * activate the metaslabs since we want to ensure that 1563 * no allocations are performed on this device. 1564 */ 1565 if (vd->vdev_noalloc) { 1566 /* track non-allocating vdev space */ 1567 spa->spa_nonallocating_dspace += spa_deflate(spa) ? 1568 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; 1569 } else if (!expanding) { 1570 metaslab_group_activate(vd->vdev_mg); 1571 if (vd->vdev_log_mg != NULL) 1572 metaslab_group_activate(vd->vdev_log_mg); 1573 } 1574 1575 if (txg == 0) 1576 spa_config_exit(spa, SCL_ALLOC, FTAG); 1577 1578 return (0); 1579 } 1580 1581 void 1582 vdev_metaslab_fini(vdev_t *vd) 1583 { 1584 if (vd->vdev_checkpoint_sm != NULL) { 1585 ASSERT(spa_feature_is_active(vd->vdev_spa, 1586 SPA_FEATURE_POOL_CHECKPOINT)); 1587 space_map_close(vd->vdev_checkpoint_sm); 1588 /* 1589 * Even though we close the space map, we need to set its 1590 * pointer to NULL. The reason is that vdev_metaslab_fini() 1591 * may be called multiple times for certain operations 1592 * (i.e. when destroying a pool) so we need to ensure that 1593 * this clause never executes twice. This logic is similar 1594 * to the one used for the vdev_ms clause below. 1595 */ 1596 vd->vdev_checkpoint_sm = NULL; 1597 } 1598 1599 if (vd->vdev_ms != NULL) { 1600 metaslab_group_t *mg = vd->vdev_mg; 1601 1602 metaslab_group_passivate(mg); 1603 if (vd->vdev_log_mg != NULL) { 1604 ASSERT(!vd->vdev_islog); 1605 metaslab_group_passivate(vd->vdev_log_mg); 1606 } 1607 1608 uint64_t count = vd->vdev_ms_count; 1609 for (uint64_t m = 0; m < count; m++) { 1610 metaslab_t *msp = vd->vdev_ms[m]; 1611 if (msp != NULL) 1612 metaslab_fini(msp); 1613 } 1614 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1615 vd->vdev_ms = NULL; 1616 vd->vdev_ms_count = 0; 1617 1618 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 1619 ASSERT0(mg->mg_histogram[i]); 1620 if (vd->vdev_log_mg != NULL) 1621 ASSERT0(vd->vdev_log_mg->mg_histogram[i]); 1622 } 1623 } 1624 ASSERT0(vd->vdev_ms_count); 1625 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0); 1626 } 1627 1628 typedef struct vdev_probe_stats { 1629 boolean_t vps_readable; 1630 boolean_t vps_writeable; 1631 int vps_flags; 1632 } vdev_probe_stats_t; 1633 1634 static void 1635 vdev_probe_done(zio_t *zio) 1636 { 1637 spa_t *spa = zio->io_spa; 1638 vdev_t *vd = zio->io_vd; 1639 vdev_probe_stats_t *vps = zio->io_private; 1640 1641 ASSERT(vd->vdev_probe_zio != NULL); 1642 1643 if (zio->io_type == ZIO_TYPE_READ) { 1644 if (zio->io_error == 0) 1645 vps->vps_readable = 1; 1646 if (zio->io_error == 0 && spa_writeable(spa)) { 1647 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1648 zio->io_offset, zio->io_size, zio->io_abd, 1649 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1650 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1651 } else { 1652 abd_free(zio->io_abd); 1653 } 1654 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1655 if (zio->io_error == 0) 1656 vps->vps_writeable = 1; 1657 abd_free(zio->io_abd); 1658 } else if (zio->io_type == ZIO_TYPE_NULL) { 1659 zio_t *pio; 1660 zio_link_t *zl; 1661 1662 vd->vdev_cant_read |= !vps->vps_readable; 1663 vd->vdev_cant_write |= !vps->vps_writeable; 1664 1665 if (vdev_readable(vd) && 1666 (vdev_writeable(vd) || !spa_writeable(spa))) { 1667 zio->io_error = 0; 1668 } else { 1669 ASSERT(zio->io_error != 0); 1670 vdev_dbgmsg(vd, "failed probe"); 1671 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1672 spa, vd, NULL, NULL, 0); 1673 zio->io_error = SET_ERROR(ENXIO); 1674 } 1675 1676 mutex_enter(&vd->vdev_probe_lock); 1677 ASSERT(vd->vdev_probe_zio == zio); 1678 vd->vdev_probe_zio = NULL; 1679 mutex_exit(&vd->vdev_probe_lock); 1680 1681 zl = NULL; 1682 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1683 if (!vdev_accessible(vd, pio)) 1684 pio->io_error = SET_ERROR(ENXIO); 1685 1686 kmem_free(vps, sizeof (*vps)); 1687 } 1688 } 1689 1690 /* 1691 * Determine whether this device is accessible. 1692 * 1693 * Read and write to several known locations: the pad regions of each 1694 * vdev label but the first, which we leave alone in case it contains 1695 * a VTOC. 1696 */ 1697 zio_t * 1698 vdev_probe(vdev_t *vd, zio_t *zio) 1699 { 1700 spa_t *spa = vd->vdev_spa; 1701 vdev_probe_stats_t *vps = NULL; 1702 zio_t *pio; 1703 1704 ASSERT(vd->vdev_ops->vdev_op_leaf); 1705 1706 /* 1707 * Don't probe the probe. 1708 */ 1709 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1710 return (NULL); 1711 1712 /* 1713 * To prevent 'probe storms' when a device fails, we create 1714 * just one probe i/o at a time. All zios that want to probe 1715 * this vdev will become parents of the probe io. 1716 */ 1717 mutex_enter(&vd->vdev_probe_lock); 1718 1719 if ((pio = vd->vdev_probe_zio) == NULL) { 1720 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1721 1722 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1723 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1724 ZIO_FLAG_TRYHARD; 1725 1726 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1727 /* 1728 * vdev_cant_read and vdev_cant_write can only 1729 * transition from TRUE to FALSE when we have the 1730 * SCL_ZIO lock as writer; otherwise they can only 1731 * transition from FALSE to TRUE. This ensures that 1732 * any zio looking at these values can assume that 1733 * failures persist for the life of the I/O. That's 1734 * important because when a device has intermittent 1735 * connectivity problems, we want to ensure that 1736 * they're ascribed to the device (ENXIO) and not 1737 * the zio (EIO). 1738 * 1739 * Since we hold SCL_ZIO as writer here, clear both 1740 * values so the probe can reevaluate from first 1741 * principles. 1742 */ 1743 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1744 vd->vdev_cant_read = B_FALSE; 1745 vd->vdev_cant_write = B_FALSE; 1746 } 1747 1748 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1749 vdev_probe_done, vps, 1750 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1751 1752 /* 1753 * We can't change the vdev state in this context, so we 1754 * kick off an async task to do it on our behalf. 1755 */ 1756 if (zio != NULL) { 1757 vd->vdev_probe_wanted = B_TRUE; 1758 spa_async_request(spa, SPA_ASYNC_PROBE); 1759 } 1760 } 1761 1762 if (zio != NULL) 1763 zio_add_child(zio, pio); 1764 1765 mutex_exit(&vd->vdev_probe_lock); 1766 1767 if (vps == NULL) { 1768 ASSERT(zio != NULL); 1769 return (NULL); 1770 } 1771 1772 for (int l = 1; l < VDEV_LABELS; l++) { 1773 zio_nowait(zio_read_phys(pio, vd, 1774 vdev_label_offset(vd->vdev_psize, l, 1775 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE, 1776 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1777 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1778 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1779 } 1780 1781 if (zio == NULL) 1782 return (pio); 1783 1784 zio_nowait(pio); 1785 return (NULL); 1786 } 1787 1788 static void 1789 vdev_load_child(void *arg) 1790 { 1791 vdev_t *vd = arg; 1792 1793 vd->vdev_load_error = vdev_load(vd); 1794 } 1795 1796 static void 1797 vdev_open_child(void *arg) 1798 { 1799 vdev_t *vd = arg; 1800 1801 vd->vdev_open_thread = curthread; 1802 vd->vdev_open_error = vdev_open(vd); 1803 vd->vdev_open_thread = NULL; 1804 } 1805 1806 static boolean_t 1807 vdev_uses_zvols(vdev_t *vd) 1808 { 1809 #ifdef _KERNEL 1810 if (zvol_is_zvol(vd->vdev_path)) 1811 return (B_TRUE); 1812 #endif 1813 1814 for (int c = 0; c < vd->vdev_children; c++) 1815 if (vdev_uses_zvols(vd->vdev_child[c])) 1816 return (B_TRUE); 1817 1818 return (B_FALSE); 1819 } 1820 1821 /* 1822 * Returns B_TRUE if the passed child should be opened. 1823 */ 1824 static boolean_t 1825 vdev_default_open_children_func(vdev_t *vd) 1826 { 1827 (void) vd; 1828 return (B_TRUE); 1829 } 1830 1831 /* 1832 * Open the requested child vdevs. If any of the leaf vdevs are using 1833 * a ZFS volume then do the opens in a single thread. This avoids a 1834 * deadlock when the current thread is holding the spa_namespace_lock. 1835 */ 1836 static void 1837 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func) 1838 { 1839 int children = vd->vdev_children; 1840 1841 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri, 1842 children, children, TASKQ_PREPOPULATE); 1843 vd->vdev_nonrot = B_TRUE; 1844 1845 for (int c = 0; c < children; c++) { 1846 vdev_t *cvd = vd->vdev_child[c]; 1847 1848 if (open_func(cvd) == B_FALSE) 1849 continue; 1850 1851 if (tq == NULL || vdev_uses_zvols(vd)) { 1852 cvd->vdev_open_error = vdev_open(cvd); 1853 } else { 1854 VERIFY(taskq_dispatch(tq, vdev_open_child, 1855 cvd, TQ_SLEEP) != TASKQID_INVALID); 1856 } 1857 1858 vd->vdev_nonrot &= cvd->vdev_nonrot; 1859 } 1860 1861 if (tq != NULL) { 1862 taskq_wait(tq); 1863 taskq_destroy(tq); 1864 } 1865 } 1866 1867 /* 1868 * Open all child vdevs. 1869 */ 1870 void 1871 vdev_open_children(vdev_t *vd) 1872 { 1873 vdev_open_children_impl(vd, vdev_default_open_children_func); 1874 } 1875 1876 /* 1877 * Conditionally open a subset of child vdevs. 1878 */ 1879 void 1880 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func) 1881 { 1882 vdev_open_children_impl(vd, open_func); 1883 } 1884 1885 /* 1886 * Compute the raidz-deflation ratio. Note, we hard-code 1887 * in 128k (1 << 17) because it is the "typical" blocksize. 1888 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 1889 * otherwise it would inconsistently account for existing bp's. 1890 */ 1891 static void 1892 vdev_set_deflate_ratio(vdev_t *vd) 1893 { 1894 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { 1895 vd->vdev_deflate_ratio = (1 << 17) / 1896 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 1897 } 1898 } 1899 1900 /* 1901 * Choose the best of two ashifts, preferring one between logical ashift 1902 * (absolute minimum) and administrator defined maximum, otherwise take 1903 * the biggest of the two. 1904 */ 1905 uint64_t 1906 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b) 1907 { 1908 if (a > logical && a <= zfs_vdev_max_auto_ashift) { 1909 if (b <= logical || b > zfs_vdev_max_auto_ashift) 1910 return (a); 1911 else 1912 return (MAX(a, b)); 1913 } else if (b <= logical || b > zfs_vdev_max_auto_ashift) 1914 return (MAX(a, b)); 1915 return (b); 1916 } 1917 1918 /* 1919 * Maximize performance by inflating the configured ashift for top level 1920 * vdevs to be as close to the physical ashift as possible while maintaining 1921 * administrator defined limits and ensuring it doesn't go below the 1922 * logical ashift. 1923 */ 1924 static void 1925 vdev_ashift_optimize(vdev_t *vd) 1926 { 1927 ASSERT(vd == vd->vdev_top); 1928 1929 if (vd->vdev_ashift < vd->vdev_physical_ashift && 1930 vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) { 1931 vd->vdev_ashift = MIN( 1932 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift), 1933 MAX(zfs_vdev_min_auto_ashift, 1934 vd->vdev_physical_ashift)); 1935 } else { 1936 /* 1937 * If the logical and physical ashifts are the same, then 1938 * we ensure that the top-level vdev's ashift is not smaller 1939 * than our minimum ashift value. For the unusual case 1940 * where logical ashift > physical ashift, we can't cap 1941 * the calculated ashift based on max ashift as that 1942 * would cause failures. 1943 * We still check if we need to increase it to match 1944 * the min ashift. 1945 */ 1946 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift, 1947 vd->vdev_ashift); 1948 } 1949 } 1950 1951 /* 1952 * Prepare a virtual device for access. 1953 */ 1954 int 1955 vdev_open(vdev_t *vd) 1956 { 1957 spa_t *spa = vd->vdev_spa; 1958 int error; 1959 uint64_t osize = 0; 1960 uint64_t max_osize = 0; 1961 uint64_t asize, max_asize, psize; 1962 uint64_t logical_ashift = 0; 1963 uint64_t physical_ashift = 0; 1964 1965 ASSERT(vd->vdev_open_thread == curthread || 1966 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1967 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1968 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1969 vd->vdev_state == VDEV_STATE_OFFLINE); 1970 1971 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1972 vd->vdev_cant_read = B_FALSE; 1973 vd->vdev_cant_write = B_FALSE; 1974 vd->vdev_min_asize = vdev_get_min_asize(vd); 1975 1976 /* 1977 * If this vdev is not removed, check its fault status. If it's 1978 * faulted, bail out of the open. 1979 */ 1980 if (!vd->vdev_removed && vd->vdev_faulted) { 1981 ASSERT(vd->vdev_children == 0); 1982 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1983 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1984 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1985 vd->vdev_label_aux); 1986 return (SET_ERROR(ENXIO)); 1987 } else if (vd->vdev_offline) { 1988 ASSERT(vd->vdev_children == 0); 1989 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1990 return (SET_ERROR(ENXIO)); 1991 } 1992 1993 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, 1994 &logical_ashift, &physical_ashift); 1995 1996 /* Keep the device in removed state if unplugged */ 1997 if (error == ENOENT && vd->vdev_removed) { 1998 vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED, 1999 VDEV_AUX_NONE); 2000 return (error); 2001 } 2002 2003 /* 2004 * Physical volume size should never be larger than its max size, unless 2005 * the disk has shrunk while we were reading it or the device is buggy 2006 * or damaged: either way it's not safe for use, bail out of the open. 2007 */ 2008 if (osize > max_osize) { 2009 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2010 VDEV_AUX_OPEN_FAILED); 2011 return (SET_ERROR(ENXIO)); 2012 } 2013 2014 /* 2015 * Reset the vdev_reopening flag so that we actually close 2016 * the vdev on error. 2017 */ 2018 vd->vdev_reopening = B_FALSE; 2019 if (zio_injection_enabled && error == 0) 2020 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO)); 2021 2022 if (error) { 2023 if (vd->vdev_removed && 2024 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 2025 vd->vdev_removed = B_FALSE; 2026 2027 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { 2028 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, 2029 vd->vdev_stat.vs_aux); 2030 } else { 2031 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2032 vd->vdev_stat.vs_aux); 2033 } 2034 return (error); 2035 } 2036 2037 vd->vdev_removed = B_FALSE; 2038 2039 /* 2040 * Recheck the faulted flag now that we have confirmed that 2041 * the vdev is accessible. If we're faulted, bail. 2042 */ 2043 if (vd->vdev_faulted) { 2044 ASSERT(vd->vdev_children == 0); 2045 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 2046 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 2047 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2048 vd->vdev_label_aux); 2049 return (SET_ERROR(ENXIO)); 2050 } 2051 2052 if (vd->vdev_degraded) { 2053 ASSERT(vd->vdev_children == 0); 2054 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 2055 VDEV_AUX_ERR_EXCEEDED); 2056 } else { 2057 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 2058 } 2059 2060 /* 2061 * For hole or missing vdevs we just return success. 2062 */ 2063 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 2064 return (0); 2065 2066 for (int c = 0; c < vd->vdev_children; c++) { 2067 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 2068 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 2069 VDEV_AUX_NONE); 2070 break; 2071 } 2072 } 2073 2074 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 2075 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 2076 2077 if (vd->vdev_children == 0) { 2078 if (osize < SPA_MINDEVSIZE) { 2079 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2080 VDEV_AUX_TOO_SMALL); 2081 return (SET_ERROR(EOVERFLOW)); 2082 } 2083 psize = osize; 2084 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 2085 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 2086 VDEV_LABEL_END_SIZE); 2087 } else { 2088 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 2089 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 2090 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2091 VDEV_AUX_TOO_SMALL); 2092 return (SET_ERROR(EOVERFLOW)); 2093 } 2094 psize = 0; 2095 asize = osize; 2096 max_asize = max_osize; 2097 } 2098 2099 /* 2100 * If the vdev was expanded, record this so that we can re-create the 2101 * uberblock rings in labels {2,3}, during the next sync. 2102 */ 2103 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0)) 2104 vd->vdev_copy_uberblocks = B_TRUE; 2105 2106 vd->vdev_psize = psize; 2107 2108 /* 2109 * Make sure the allocatable size hasn't shrunk too much. 2110 */ 2111 if (asize < vd->vdev_min_asize) { 2112 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2113 VDEV_AUX_BAD_LABEL); 2114 return (SET_ERROR(EINVAL)); 2115 } 2116 2117 /* 2118 * We can always set the logical/physical ashift members since 2119 * their values are only used to calculate the vdev_ashift when 2120 * the device is first added to the config. These values should 2121 * not be used for anything else since they may change whenever 2122 * the device is reopened and we don't store them in the label. 2123 */ 2124 vd->vdev_physical_ashift = 2125 MAX(physical_ashift, vd->vdev_physical_ashift); 2126 vd->vdev_logical_ashift = MAX(logical_ashift, 2127 vd->vdev_logical_ashift); 2128 2129 if (vd->vdev_asize == 0) { 2130 /* 2131 * This is the first-ever open, so use the computed values. 2132 * For compatibility, a different ashift can be requested. 2133 */ 2134 vd->vdev_asize = asize; 2135 vd->vdev_max_asize = max_asize; 2136 2137 /* 2138 * If the vdev_ashift was not overridden at creation time, 2139 * then set it the logical ashift and optimize the ashift. 2140 */ 2141 if (vd->vdev_ashift == 0) { 2142 vd->vdev_ashift = vd->vdev_logical_ashift; 2143 2144 if (vd->vdev_logical_ashift > ASHIFT_MAX) { 2145 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2146 VDEV_AUX_ASHIFT_TOO_BIG); 2147 return (SET_ERROR(EDOM)); 2148 } 2149 2150 if (vd->vdev_top == vd) { 2151 vdev_ashift_optimize(vd); 2152 } 2153 } 2154 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN || 2155 vd->vdev_ashift > ASHIFT_MAX)) { 2156 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2157 VDEV_AUX_BAD_ASHIFT); 2158 return (SET_ERROR(EDOM)); 2159 } 2160 } else { 2161 /* 2162 * Make sure the alignment required hasn't increased. 2163 */ 2164 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift && 2165 vd->vdev_ops->vdev_op_leaf) { 2166 (void) zfs_ereport_post( 2167 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT, 2168 spa, vd, NULL, NULL, 0); 2169 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2170 VDEV_AUX_BAD_LABEL); 2171 return (SET_ERROR(EDOM)); 2172 } 2173 vd->vdev_max_asize = max_asize; 2174 } 2175 2176 /* 2177 * If all children are healthy we update asize if either: 2178 * The asize has increased, due to a device expansion caused by dynamic 2179 * LUN growth or vdev replacement, and automatic expansion is enabled; 2180 * making the additional space available. 2181 * 2182 * The asize has decreased, due to a device shrink usually caused by a 2183 * vdev replace with a smaller device. This ensures that calculations 2184 * based of max_asize and asize e.g. esize are always valid. It's safe 2185 * to do this as we've already validated that asize is greater than 2186 * vdev_min_asize. 2187 */ 2188 if (vd->vdev_state == VDEV_STATE_HEALTHY && 2189 ((asize > vd->vdev_asize && 2190 (vd->vdev_expanding || spa->spa_autoexpand)) || 2191 (asize < vd->vdev_asize))) 2192 vd->vdev_asize = asize; 2193 2194 vdev_set_min_asize(vd); 2195 2196 /* 2197 * Ensure we can issue some IO before declaring the 2198 * vdev open for business. 2199 */ 2200 if (vd->vdev_ops->vdev_op_leaf && 2201 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 2202 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2203 VDEV_AUX_ERR_EXCEEDED); 2204 return (error); 2205 } 2206 2207 /* 2208 * Track the minimum allocation size. 2209 */ 2210 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 2211 vd->vdev_islog == 0 && vd->vdev_aux == NULL) { 2212 uint64_t min_alloc = vdev_get_min_alloc(vd); 2213 if (min_alloc < spa->spa_min_alloc) 2214 spa->spa_min_alloc = min_alloc; 2215 } 2216 2217 /* 2218 * If this is a leaf vdev, assess whether a resilver is needed. 2219 * But don't do this if we are doing a reopen for a scrub, since 2220 * this would just restart the scrub we are already doing. 2221 */ 2222 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen) 2223 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd); 2224 2225 return (0); 2226 } 2227 2228 static void 2229 vdev_validate_child(void *arg) 2230 { 2231 vdev_t *vd = arg; 2232 2233 vd->vdev_validate_thread = curthread; 2234 vd->vdev_validate_error = vdev_validate(vd); 2235 vd->vdev_validate_thread = NULL; 2236 } 2237 2238 /* 2239 * Called once the vdevs are all opened, this routine validates the label 2240 * contents. This needs to be done before vdev_load() so that we don't 2241 * inadvertently do repair I/Os to the wrong device. 2242 * 2243 * This function will only return failure if one of the vdevs indicates that it 2244 * has since been destroyed or exported. This is only possible if 2245 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 2246 * will be updated but the function will return 0. 2247 */ 2248 int 2249 vdev_validate(vdev_t *vd) 2250 { 2251 spa_t *spa = vd->vdev_spa; 2252 taskq_t *tq = NULL; 2253 nvlist_t *label; 2254 uint64_t guid = 0, aux_guid = 0, top_guid; 2255 uint64_t state; 2256 nvlist_t *nvl; 2257 uint64_t txg; 2258 int children = vd->vdev_children; 2259 2260 if (vdev_validate_skip) 2261 return (0); 2262 2263 if (children > 0) { 2264 tq = taskq_create("vdev_validate", children, minclsyspri, 2265 children, children, TASKQ_PREPOPULATE); 2266 } 2267 2268 for (uint64_t c = 0; c < children; c++) { 2269 vdev_t *cvd = vd->vdev_child[c]; 2270 2271 if (tq == NULL || vdev_uses_zvols(cvd)) { 2272 vdev_validate_child(cvd); 2273 } else { 2274 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd, 2275 TQ_SLEEP) != TASKQID_INVALID); 2276 } 2277 } 2278 if (tq != NULL) { 2279 taskq_wait(tq); 2280 taskq_destroy(tq); 2281 } 2282 for (int c = 0; c < children; c++) { 2283 int error = vd->vdev_child[c]->vdev_validate_error; 2284 2285 if (error != 0) 2286 return (SET_ERROR(EBADF)); 2287 } 2288 2289 2290 /* 2291 * If the device has already failed, or was marked offline, don't do 2292 * any further validation. Otherwise, label I/O will fail and we will 2293 * overwrite the previous state. 2294 */ 2295 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) 2296 return (0); 2297 2298 /* 2299 * If we are performing an extreme rewind, we allow for a label that 2300 * was modified at a point after the current txg. 2301 * If config lock is not held do not check for the txg. spa_sync could 2302 * be updating the vdev's label before updating spa_last_synced_txg. 2303 */ 2304 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || 2305 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) 2306 txg = UINT64_MAX; 2307 else 2308 txg = spa_last_synced_txg(spa); 2309 2310 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 2311 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2312 VDEV_AUX_BAD_LABEL); 2313 vdev_dbgmsg(vd, "vdev_validate: failed reading config for " 2314 "txg %llu", (u_longlong_t)txg); 2315 return (0); 2316 } 2317 2318 /* 2319 * Determine if this vdev has been split off into another 2320 * pool. If so, then refuse to open it. 2321 */ 2322 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 2323 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 2324 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2325 VDEV_AUX_SPLIT_POOL); 2326 nvlist_free(label); 2327 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); 2328 return (0); 2329 } 2330 2331 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { 2332 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2333 VDEV_AUX_CORRUPT_DATA); 2334 nvlist_free(label); 2335 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2336 ZPOOL_CONFIG_POOL_GUID); 2337 return (0); 2338 } 2339 2340 /* 2341 * If config is not trusted then ignore the spa guid check. This is 2342 * necessary because if the machine crashed during a re-guid the new 2343 * guid might have been written to all of the vdev labels, but not the 2344 * cached config. The check will be performed again once we have the 2345 * trusted config from the MOS. 2346 */ 2347 if (spa->spa_trust_config && guid != spa_guid(spa)) { 2348 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2349 VDEV_AUX_CORRUPT_DATA); 2350 nvlist_free(label); 2351 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " 2352 "match config (%llu != %llu)", (u_longlong_t)guid, 2353 (u_longlong_t)spa_guid(spa)); 2354 return (0); 2355 } 2356 2357 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 2358 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 2359 &aux_guid) != 0) 2360 aux_guid = 0; 2361 2362 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { 2363 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2364 VDEV_AUX_CORRUPT_DATA); 2365 nvlist_free(label); 2366 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2367 ZPOOL_CONFIG_GUID); 2368 return (0); 2369 } 2370 2371 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) 2372 != 0) { 2373 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2374 VDEV_AUX_CORRUPT_DATA); 2375 nvlist_free(label); 2376 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2377 ZPOOL_CONFIG_TOP_GUID); 2378 return (0); 2379 } 2380 2381 /* 2382 * If this vdev just became a top-level vdev because its sibling was 2383 * detached, it will have adopted the parent's vdev guid -- but the 2384 * label may or may not be on disk yet. Fortunately, either version 2385 * of the label will have the same top guid, so if we're a top-level 2386 * vdev, we can safely compare to that instead. 2387 * However, if the config comes from a cachefile that failed to update 2388 * after the detach, a top-level vdev will appear as a non top-level 2389 * vdev in the config. Also relax the constraints if we perform an 2390 * extreme rewind. 2391 * 2392 * If we split this vdev off instead, then we also check the 2393 * original pool's guid. We don't want to consider the vdev 2394 * corrupt if it is partway through a split operation. 2395 */ 2396 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { 2397 boolean_t mismatch = B_FALSE; 2398 if (spa->spa_trust_config && !spa->spa_extreme_rewind) { 2399 if (vd != vd->vdev_top || vd->vdev_guid != top_guid) 2400 mismatch = B_TRUE; 2401 } else { 2402 if (vd->vdev_guid != top_guid && 2403 vd->vdev_top->vdev_guid != guid) 2404 mismatch = B_TRUE; 2405 } 2406 2407 if (mismatch) { 2408 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2409 VDEV_AUX_CORRUPT_DATA); 2410 nvlist_free(label); 2411 vdev_dbgmsg(vd, "vdev_validate: config guid " 2412 "doesn't match label guid"); 2413 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", 2414 (u_longlong_t)vd->vdev_guid, 2415 (u_longlong_t)vd->vdev_top->vdev_guid); 2416 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " 2417 "aux_guid %llu", (u_longlong_t)guid, 2418 (u_longlong_t)top_guid, (u_longlong_t)aux_guid); 2419 return (0); 2420 } 2421 } 2422 2423 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 2424 &state) != 0) { 2425 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2426 VDEV_AUX_CORRUPT_DATA); 2427 nvlist_free(label); 2428 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2429 ZPOOL_CONFIG_POOL_STATE); 2430 return (0); 2431 } 2432 2433 nvlist_free(label); 2434 2435 /* 2436 * If this is a verbatim import, no need to check the 2437 * state of the pool. 2438 */ 2439 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 2440 spa_load_state(spa) == SPA_LOAD_OPEN && 2441 state != POOL_STATE_ACTIVE) { 2442 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " 2443 "for spa %s", (u_longlong_t)state, spa->spa_name); 2444 return (SET_ERROR(EBADF)); 2445 } 2446 2447 /* 2448 * If we were able to open and validate a vdev that was 2449 * previously marked permanently unavailable, clear that state 2450 * now. 2451 */ 2452 if (vd->vdev_not_present) 2453 vd->vdev_not_present = 0; 2454 2455 return (0); 2456 } 2457 2458 static void 2459 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) 2460 { 2461 char *old, *new; 2462 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) { 2463 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) { 2464 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed " 2465 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2466 dvd->vdev_path, svd->vdev_path); 2467 spa_strfree(dvd->vdev_path); 2468 dvd->vdev_path = spa_strdup(svd->vdev_path); 2469 } 2470 } else if (svd->vdev_path != NULL) { 2471 dvd->vdev_path = spa_strdup(svd->vdev_path); 2472 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", 2473 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path); 2474 } 2475 2476 /* 2477 * Our enclosure sysfs path may have changed between imports 2478 */ 2479 old = dvd->vdev_enc_sysfs_path; 2480 new = svd->vdev_enc_sysfs_path; 2481 if ((old != NULL && new == NULL) || 2482 (old == NULL && new != NULL) || 2483 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) { 2484 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path " 2485 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2486 old, new); 2487 2488 if (dvd->vdev_enc_sysfs_path) 2489 spa_strfree(dvd->vdev_enc_sysfs_path); 2490 2491 if (svd->vdev_enc_sysfs_path) { 2492 dvd->vdev_enc_sysfs_path = spa_strdup( 2493 svd->vdev_enc_sysfs_path); 2494 } else { 2495 dvd->vdev_enc_sysfs_path = NULL; 2496 } 2497 } 2498 } 2499 2500 /* 2501 * Recursively copy vdev paths from one vdev to another. Source and destination 2502 * vdev trees must have same geometry otherwise return error. Intended to copy 2503 * paths from userland config into MOS config. 2504 */ 2505 int 2506 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) 2507 { 2508 if ((svd->vdev_ops == &vdev_missing_ops) || 2509 (svd->vdev_ishole && dvd->vdev_ishole) || 2510 (dvd->vdev_ops == &vdev_indirect_ops)) 2511 return (0); 2512 2513 if (svd->vdev_ops != dvd->vdev_ops) { 2514 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", 2515 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); 2516 return (SET_ERROR(EINVAL)); 2517 } 2518 2519 if (svd->vdev_guid != dvd->vdev_guid) { 2520 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " 2521 "%llu)", (u_longlong_t)svd->vdev_guid, 2522 (u_longlong_t)dvd->vdev_guid); 2523 return (SET_ERROR(EINVAL)); 2524 } 2525 2526 if (svd->vdev_children != dvd->vdev_children) { 2527 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " 2528 "%llu != %llu", (u_longlong_t)svd->vdev_children, 2529 (u_longlong_t)dvd->vdev_children); 2530 return (SET_ERROR(EINVAL)); 2531 } 2532 2533 for (uint64_t i = 0; i < svd->vdev_children; i++) { 2534 int error = vdev_copy_path_strict(svd->vdev_child[i], 2535 dvd->vdev_child[i]); 2536 if (error != 0) 2537 return (error); 2538 } 2539 2540 if (svd->vdev_ops->vdev_op_leaf) 2541 vdev_copy_path_impl(svd, dvd); 2542 2543 return (0); 2544 } 2545 2546 static void 2547 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) 2548 { 2549 ASSERT(stvd->vdev_top == stvd); 2550 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); 2551 2552 for (uint64_t i = 0; i < dvd->vdev_children; i++) { 2553 vdev_copy_path_search(stvd, dvd->vdev_child[i]); 2554 } 2555 2556 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) 2557 return; 2558 2559 /* 2560 * The idea here is that while a vdev can shift positions within 2561 * a top vdev (when replacing, attaching mirror, etc.) it cannot 2562 * step outside of it. 2563 */ 2564 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); 2565 2566 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) 2567 return; 2568 2569 ASSERT(vd->vdev_ops->vdev_op_leaf); 2570 2571 vdev_copy_path_impl(vd, dvd); 2572 } 2573 2574 /* 2575 * Recursively copy vdev paths from one root vdev to another. Source and 2576 * destination vdev trees may differ in geometry. For each destination leaf 2577 * vdev, search a vdev with the same guid and top vdev id in the source. 2578 * Intended to copy paths from userland config into MOS config. 2579 */ 2580 void 2581 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) 2582 { 2583 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); 2584 ASSERT(srvd->vdev_ops == &vdev_root_ops); 2585 ASSERT(drvd->vdev_ops == &vdev_root_ops); 2586 2587 for (uint64_t i = 0; i < children; i++) { 2588 vdev_copy_path_search(srvd->vdev_child[i], 2589 drvd->vdev_child[i]); 2590 } 2591 } 2592 2593 /* 2594 * Close a virtual device. 2595 */ 2596 void 2597 vdev_close(vdev_t *vd) 2598 { 2599 vdev_t *pvd = vd->vdev_parent; 2600 spa_t *spa __maybe_unused = vd->vdev_spa; 2601 2602 ASSERT(vd != NULL); 2603 ASSERT(vd->vdev_open_thread == curthread || 2604 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2605 2606 /* 2607 * If our parent is reopening, then we are as well, unless we are 2608 * going offline. 2609 */ 2610 if (pvd != NULL && pvd->vdev_reopening) 2611 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 2612 2613 vd->vdev_ops->vdev_op_close(vd); 2614 2615 vdev_cache_purge(vd); 2616 2617 /* 2618 * We record the previous state before we close it, so that if we are 2619 * doing a reopen(), we don't generate FMA ereports if we notice that 2620 * it's still faulted. 2621 */ 2622 vd->vdev_prevstate = vd->vdev_state; 2623 2624 if (vd->vdev_offline) 2625 vd->vdev_state = VDEV_STATE_OFFLINE; 2626 else 2627 vd->vdev_state = VDEV_STATE_CLOSED; 2628 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2629 } 2630 2631 void 2632 vdev_hold(vdev_t *vd) 2633 { 2634 spa_t *spa = vd->vdev_spa; 2635 2636 ASSERT(spa_is_root(spa)); 2637 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 2638 return; 2639 2640 for (int c = 0; c < vd->vdev_children; c++) 2641 vdev_hold(vd->vdev_child[c]); 2642 2643 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL) 2644 vd->vdev_ops->vdev_op_hold(vd); 2645 } 2646 2647 void 2648 vdev_rele(vdev_t *vd) 2649 { 2650 ASSERT(spa_is_root(vd->vdev_spa)); 2651 for (int c = 0; c < vd->vdev_children; c++) 2652 vdev_rele(vd->vdev_child[c]); 2653 2654 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL) 2655 vd->vdev_ops->vdev_op_rele(vd); 2656 } 2657 2658 /* 2659 * Reopen all interior vdevs and any unopened leaves. We don't actually 2660 * reopen leaf vdevs which had previously been opened as they might deadlock 2661 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 2662 * If the leaf has never been opened then open it, as usual. 2663 */ 2664 void 2665 vdev_reopen(vdev_t *vd) 2666 { 2667 spa_t *spa = vd->vdev_spa; 2668 2669 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2670 2671 /* set the reopening flag unless we're taking the vdev offline */ 2672 vd->vdev_reopening = !vd->vdev_offline; 2673 vdev_close(vd); 2674 (void) vdev_open(vd); 2675 2676 /* 2677 * Call vdev_validate() here to make sure we have the same device. 2678 * Otherwise, a device with an invalid label could be successfully 2679 * opened in response to vdev_reopen(). 2680 */ 2681 if (vd->vdev_aux) { 2682 (void) vdev_validate_aux(vd); 2683 if (vdev_readable(vd) && vdev_writeable(vd) && 2684 vd->vdev_aux == &spa->spa_l2cache) { 2685 /* 2686 * In case the vdev is present we should evict all ARC 2687 * buffers and pointers to log blocks and reclaim their 2688 * space before restoring its contents to L2ARC. 2689 */ 2690 if (l2arc_vdev_present(vd)) { 2691 l2arc_rebuild_vdev(vd, B_TRUE); 2692 } else { 2693 l2arc_add_vdev(spa, vd); 2694 } 2695 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 2696 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 2697 } 2698 } else { 2699 (void) vdev_validate(vd); 2700 } 2701 2702 /* 2703 * Reassess parent vdev's health. 2704 */ 2705 vdev_propagate_state(vd); 2706 } 2707 2708 int 2709 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 2710 { 2711 int error; 2712 2713 /* 2714 * Normally, partial opens (e.g. of a mirror) are allowed. 2715 * For a create, however, we want to fail the request if 2716 * there are any components we can't open. 2717 */ 2718 error = vdev_open(vd); 2719 2720 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 2721 vdev_close(vd); 2722 return (error ? error : SET_ERROR(ENXIO)); 2723 } 2724 2725 /* 2726 * Recursively load DTLs and initialize all labels. 2727 */ 2728 if ((error = vdev_dtl_load(vd)) != 0 || 2729 (error = vdev_label_init(vd, txg, isreplacing ? 2730 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 2731 vdev_close(vd); 2732 return (error); 2733 } 2734 2735 return (0); 2736 } 2737 2738 void 2739 vdev_metaslab_set_size(vdev_t *vd) 2740 { 2741 uint64_t asize = vd->vdev_asize; 2742 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; 2743 uint64_t ms_shift; 2744 2745 /* 2746 * There are two dimensions to the metaslab sizing calculation: 2747 * the size of the metaslab and the count of metaslabs per vdev. 2748 * 2749 * The default values used below are a good balance between memory 2750 * usage (larger metaslab size means more memory needed for loaded 2751 * metaslabs; more metaslabs means more memory needed for the 2752 * metaslab_t structs), metaslab load time (larger metaslabs take 2753 * longer to load), and metaslab sync time (more metaslabs means 2754 * more time spent syncing all of them). 2755 * 2756 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. 2757 * The range of the dimensions are as follows: 2758 * 2759 * 2^29 <= ms_size <= 2^34 2760 * 16 <= ms_count <= 131,072 2761 * 2762 * On the lower end of vdev sizes, we aim for metaslabs sizes of 2763 * at least 512MB (2^29) to minimize fragmentation effects when 2764 * testing with smaller devices. However, the count constraint 2765 * of at least 16 metaslabs will override this minimum size goal. 2766 * 2767 * On the upper end of vdev sizes, we aim for a maximum metaslab 2768 * size of 16GB. However, we will cap the total count to 2^17 2769 * metaslabs to keep our memory footprint in check and let the 2770 * metaslab size grow from there if that limit is hit. 2771 * 2772 * The net effect of applying above constrains is summarized below. 2773 * 2774 * vdev size metaslab count 2775 * --------------|----------------- 2776 * < 8GB ~16 2777 * 8GB - 100GB one per 512MB 2778 * 100GB - 3TB ~200 2779 * 3TB - 2PB one per 16GB 2780 * > 2PB ~131,072 2781 * -------------------------------- 2782 * 2783 * Finally, note that all of the above calculate the initial 2784 * number of metaslabs. Expanding a top-level vdev will result 2785 * in additional metaslabs being allocated making it possible 2786 * to exceed the zfs_vdev_ms_count_limit. 2787 */ 2788 2789 if (ms_count < zfs_vdev_min_ms_count) 2790 ms_shift = highbit64(asize / zfs_vdev_min_ms_count); 2791 else if (ms_count > zfs_vdev_default_ms_count) 2792 ms_shift = highbit64(asize / zfs_vdev_default_ms_count); 2793 else 2794 ms_shift = zfs_vdev_default_ms_shift; 2795 2796 if (ms_shift < SPA_MAXBLOCKSHIFT) { 2797 ms_shift = SPA_MAXBLOCKSHIFT; 2798 } else if (ms_shift > zfs_vdev_max_ms_shift) { 2799 ms_shift = zfs_vdev_max_ms_shift; 2800 /* cap the total count to constrain memory footprint */ 2801 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) 2802 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); 2803 } 2804 2805 vd->vdev_ms_shift = ms_shift; 2806 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); 2807 } 2808 2809 void 2810 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 2811 { 2812 ASSERT(vd == vd->vdev_top); 2813 /* indirect vdevs don't have metaslabs or dtls */ 2814 ASSERT(vdev_is_concrete(vd) || flags == 0); 2815 ASSERT(ISP2(flags)); 2816 ASSERT(spa_writeable(vd->vdev_spa)); 2817 2818 if (flags & VDD_METASLAB) 2819 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 2820 2821 if (flags & VDD_DTL) 2822 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 2823 2824 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 2825 } 2826 2827 void 2828 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 2829 { 2830 for (int c = 0; c < vd->vdev_children; c++) 2831 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 2832 2833 if (vd->vdev_ops->vdev_op_leaf) 2834 vdev_dirty(vd->vdev_top, flags, vd, txg); 2835 } 2836 2837 /* 2838 * DTLs. 2839 * 2840 * A vdev's DTL (dirty time log) is the set of transaction groups for which 2841 * the vdev has less than perfect replication. There are four kinds of DTL: 2842 * 2843 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 2844 * 2845 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 2846 * 2847 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 2848 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 2849 * txgs that was scrubbed. 2850 * 2851 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 2852 * persistent errors or just some device being offline. 2853 * Unlike the other three, the DTL_OUTAGE map is not generally 2854 * maintained; it's only computed when needed, typically to 2855 * determine whether a device can be detached. 2856 * 2857 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 2858 * either has the data or it doesn't. 2859 * 2860 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 2861 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 2862 * if any child is less than fully replicated, then so is its parent. 2863 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 2864 * comprising only those txgs which appear in 'maxfaults' or more children; 2865 * those are the txgs we don't have enough replication to read. For example, 2866 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 2867 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 2868 * two child DTL_MISSING maps. 2869 * 2870 * It should be clear from the above that to compute the DTLs and outage maps 2871 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 2872 * Therefore, that is all we keep on disk. When loading the pool, or after 2873 * a configuration change, we generate all other DTLs from first principles. 2874 */ 2875 void 2876 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2877 { 2878 range_tree_t *rt = vd->vdev_dtl[t]; 2879 2880 ASSERT(t < DTL_TYPES); 2881 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2882 ASSERT(spa_writeable(vd->vdev_spa)); 2883 2884 mutex_enter(&vd->vdev_dtl_lock); 2885 if (!range_tree_contains(rt, txg, size)) 2886 range_tree_add(rt, txg, size); 2887 mutex_exit(&vd->vdev_dtl_lock); 2888 } 2889 2890 boolean_t 2891 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2892 { 2893 range_tree_t *rt = vd->vdev_dtl[t]; 2894 boolean_t dirty = B_FALSE; 2895 2896 ASSERT(t < DTL_TYPES); 2897 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2898 2899 /* 2900 * While we are loading the pool, the DTLs have not been loaded yet. 2901 * This isn't a problem but it can result in devices being tried 2902 * which are known to not have the data. In which case, the import 2903 * is relying on the checksum to ensure that we get the right data. 2904 * Note that while importing we are only reading the MOS, which is 2905 * always checksummed. 2906 */ 2907 mutex_enter(&vd->vdev_dtl_lock); 2908 if (!range_tree_is_empty(rt)) 2909 dirty = range_tree_contains(rt, txg, size); 2910 mutex_exit(&vd->vdev_dtl_lock); 2911 2912 return (dirty); 2913 } 2914 2915 boolean_t 2916 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 2917 { 2918 range_tree_t *rt = vd->vdev_dtl[t]; 2919 boolean_t empty; 2920 2921 mutex_enter(&vd->vdev_dtl_lock); 2922 empty = range_tree_is_empty(rt); 2923 mutex_exit(&vd->vdev_dtl_lock); 2924 2925 return (empty); 2926 } 2927 2928 /* 2929 * Check if the txg falls within the range which must be 2930 * resilvered. DVAs outside this range can always be skipped. 2931 */ 2932 boolean_t 2933 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 2934 uint64_t phys_birth) 2935 { 2936 (void) dva, (void) psize; 2937 2938 /* Set by sequential resilver. */ 2939 if (phys_birth == TXG_UNKNOWN) 2940 return (B_TRUE); 2941 2942 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)); 2943 } 2944 2945 /* 2946 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered. 2947 */ 2948 boolean_t 2949 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 2950 uint64_t phys_birth) 2951 { 2952 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2953 2954 if (vd->vdev_ops->vdev_op_need_resilver == NULL || 2955 vd->vdev_ops->vdev_op_leaf) 2956 return (B_TRUE); 2957 2958 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize, 2959 phys_birth)); 2960 } 2961 2962 /* 2963 * Returns the lowest txg in the DTL range. 2964 */ 2965 static uint64_t 2966 vdev_dtl_min(vdev_t *vd) 2967 { 2968 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2969 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2970 ASSERT0(vd->vdev_children); 2971 2972 return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1); 2973 } 2974 2975 /* 2976 * Returns the highest txg in the DTL. 2977 */ 2978 static uint64_t 2979 vdev_dtl_max(vdev_t *vd) 2980 { 2981 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2982 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2983 ASSERT0(vd->vdev_children); 2984 2985 return (range_tree_max(vd->vdev_dtl[DTL_MISSING])); 2986 } 2987 2988 /* 2989 * Determine if a resilvering vdev should remove any DTL entries from 2990 * its range. If the vdev was resilvering for the entire duration of the 2991 * scan then it should excise that range from its DTLs. Otherwise, this 2992 * vdev is considered partially resilvered and should leave its DTL 2993 * entries intact. The comment in vdev_dtl_reassess() describes how we 2994 * excise the DTLs. 2995 */ 2996 static boolean_t 2997 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done) 2998 { 2999 ASSERT0(vd->vdev_children); 3000 3001 if (vd->vdev_state < VDEV_STATE_DEGRADED) 3002 return (B_FALSE); 3003 3004 if (vd->vdev_resilver_deferred) 3005 return (B_FALSE); 3006 3007 if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) 3008 return (B_TRUE); 3009 3010 if (rebuild_done) { 3011 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3012 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 3013 3014 /* Rebuild not initiated by attach */ 3015 if (vd->vdev_rebuild_txg == 0) 3016 return (B_TRUE); 3017 3018 /* 3019 * When a rebuild completes without error then all missing data 3020 * up to the rebuild max txg has been reconstructed and the DTL 3021 * is eligible for excision. 3022 */ 3023 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE && 3024 vdev_dtl_max(vd) <= vrp->vrp_max_txg) { 3025 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd)); 3026 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg); 3027 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg); 3028 return (B_TRUE); 3029 } 3030 } else { 3031 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 3032 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys; 3033 3034 /* Resilver not initiated by attach */ 3035 if (vd->vdev_resilver_txg == 0) 3036 return (B_TRUE); 3037 3038 /* 3039 * When a resilver is initiated the scan will assign the 3040 * scn_max_txg value to the highest txg value that exists 3041 * in all DTLs. If this device's max DTL is not part of this 3042 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg] 3043 * then it is not eligible for excision. 3044 */ 3045 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 3046 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd)); 3047 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg); 3048 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg); 3049 return (B_TRUE); 3050 } 3051 } 3052 3053 return (B_FALSE); 3054 } 3055 3056 /* 3057 * Reassess DTLs after a config change or scrub completion. If txg == 0 no 3058 * write operations will be issued to the pool. 3059 */ 3060 void 3061 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, 3062 boolean_t scrub_done, boolean_t rebuild_done) 3063 { 3064 spa_t *spa = vd->vdev_spa; 3065 avl_tree_t reftree; 3066 int minref; 3067 3068 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 3069 3070 for (int c = 0; c < vd->vdev_children; c++) 3071 vdev_dtl_reassess(vd->vdev_child[c], txg, 3072 scrub_txg, scrub_done, rebuild_done); 3073 3074 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) 3075 return; 3076 3077 if (vd->vdev_ops->vdev_op_leaf) { 3078 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 3079 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3080 boolean_t check_excise = B_FALSE; 3081 boolean_t wasempty = B_TRUE; 3082 3083 mutex_enter(&vd->vdev_dtl_lock); 3084 3085 /* 3086 * If requested, pretend the scan or rebuild completed cleanly. 3087 */ 3088 if (zfs_scan_ignore_errors) { 3089 if (scn != NULL) 3090 scn->scn_phys.scn_errors = 0; 3091 if (vr != NULL) 3092 vr->vr_rebuild_phys.vrp_errors = 0; 3093 } 3094 3095 if (scrub_txg != 0 && 3096 !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3097 wasempty = B_FALSE; 3098 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d " 3099 "dtl:%llu/%llu errors:%llu", 3100 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg, 3101 (u_longlong_t)scrub_txg, spa->spa_scrub_started, 3102 (u_longlong_t)vdev_dtl_min(vd), 3103 (u_longlong_t)vdev_dtl_max(vd), 3104 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0)); 3105 } 3106 3107 /* 3108 * If we've completed a scrub/resilver or a rebuild cleanly 3109 * then determine if this vdev should remove any DTLs. We 3110 * only want to excise regions on vdevs that were available 3111 * during the entire duration of this scan. 3112 */ 3113 if (rebuild_done && 3114 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) { 3115 check_excise = B_TRUE; 3116 } else { 3117 if (spa->spa_scrub_started || 3118 (scn != NULL && scn->scn_phys.scn_errors == 0)) { 3119 check_excise = B_TRUE; 3120 } 3121 } 3122 3123 if (scrub_txg && check_excise && 3124 vdev_dtl_should_excise(vd, rebuild_done)) { 3125 /* 3126 * We completed a scrub, resilver or rebuild up to 3127 * scrub_txg. If we did it without rebooting, then 3128 * the scrub dtl will be valid, so excise the old 3129 * region and fold in the scrub dtl. Otherwise, 3130 * leave the dtl as-is if there was an error. 3131 * 3132 * There's little trick here: to excise the beginning 3133 * of the DTL_MISSING map, we put it into a reference 3134 * tree and then add a segment with refcnt -1 that 3135 * covers the range [0, scrub_txg). This means 3136 * that each txg in that range has refcnt -1 or 0. 3137 * We then add DTL_SCRUB with a refcnt of 2, so that 3138 * entries in the range [0, scrub_txg) will have a 3139 * positive refcnt -- either 1 or 2. We then convert 3140 * the reference tree into the new DTL_MISSING map. 3141 */ 3142 space_reftree_create(&reftree); 3143 space_reftree_add_map(&reftree, 3144 vd->vdev_dtl[DTL_MISSING], 1); 3145 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 3146 space_reftree_add_map(&reftree, 3147 vd->vdev_dtl[DTL_SCRUB], 2); 3148 space_reftree_generate_map(&reftree, 3149 vd->vdev_dtl[DTL_MISSING], 1); 3150 space_reftree_destroy(&reftree); 3151 3152 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3153 zfs_dbgmsg("update DTL_MISSING:%llu/%llu", 3154 (u_longlong_t)vdev_dtl_min(vd), 3155 (u_longlong_t)vdev_dtl_max(vd)); 3156 } else if (!wasempty) { 3157 zfs_dbgmsg("DTL_MISSING is now empty"); 3158 } 3159 } 3160 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 3161 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3162 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 3163 if (scrub_done) 3164 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 3165 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 3166 if (!vdev_readable(vd)) 3167 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 3168 else 3169 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3170 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 3171 3172 /* 3173 * If the vdev was resilvering or rebuilding and no longer 3174 * has any DTLs then reset the appropriate flag and dirty 3175 * the top level so that we persist the change. 3176 */ 3177 if (txg != 0 && 3178 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3179 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) { 3180 if (vd->vdev_rebuild_txg != 0) { 3181 vd->vdev_rebuild_txg = 0; 3182 vdev_config_dirty(vd->vdev_top); 3183 } else if (vd->vdev_resilver_txg != 0) { 3184 vd->vdev_resilver_txg = 0; 3185 vdev_config_dirty(vd->vdev_top); 3186 } 3187 } 3188 3189 mutex_exit(&vd->vdev_dtl_lock); 3190 3191 if (txg != 0) 3192 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 3193 return; 3194 } 3195 3196 mutex_enter(&vd->vdev_dtl_lock); 3197 for (int t = 0; t < DTL_TYPES; t++) { 3198 /* account for child's outage in parent's missing map */ 3199 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 3200 if (t == DTL_SCRUB) 3201 continue; /* leaf vdevs only */ 3202 if (t == DTL_PARTIAL) 3203 minref = 1; /* i.e. non-zero */ 3204 else if (vdev_get_nparity(vd) != 0) 3205 minref = vdev_get_nparity(vd) + 1; /* RAID-Z, dRAID */ 3206 else 3207 minref = vd->vdev_children; /* any kind of mirror */ 3208 space_reftree_create(&reftree); 3209 for (int c = 0; c < vd->vdev_children; c++) { 3210 vdev_t *cvd = vd->vdev_child[c]; 3211 mutex_enter(&cvd->vdev_dtl_lock); 3212 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 3213 mutex_exit(&cvd->vdev_dtl_lock); 3214 } 3215 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 3216 space_reftree_destroy(&reftree); 3217 } 3218 mutex_exit(&vd->vdev_dtl_lock); 3219 } 3220 3221 /* 3222 * Iterate over all the vdevs except spare, and post kobj events 3223 */ 3224 void 3225 vdev_post_kobj_evt(vdev_t *vd) 3226 { 3227 if (vd->vdev_ops->vdev_op_kobj_evt_post && 3228 vd->vdev_kobj_flag == B_FALSE) { 3229 vd->vdev_kobj_flag = B_TRUE; 3230 vd->vdev_ops->vdev_op_kobj_evt_post(vd); 3231 } 3232 3233 for (int c = 0; c < vd->vdev_children; c++) 3234 vdev_post_kobj_evt(vd->vdev_child[c]); 3235 } 3236 3237 /* 3238 * Iterate over all the vdevs except spare, and clear kobj events 3239 */ 3240 void 3241 vdev_clear_kobj_evt(vdev_t *vd) 3242 { 3243 vd->vdev_kobj_flag = B_FALSE; 3244 3245 for (int c = 0; c < vd->vdev_children; c++) 3246 vdev_clear_kobj_evt(vd->vdev_child[c]); 3247 } 3248 3249 int 3250 vdev_dtl_load(vdev_t *vd) 3251 { 3252 spa_t *spa = vd->vdev_spa; 3253 objset_t *mos = spa->spa_meta_objset; 3254 range_tree_t *rt; 3255 int error = 0; 3256 3257 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 3258 ASSERT(vdev_is_concrete(vd)); 3259 3260 /* 3261 * If the dtl cannot be sync'd there is no need to open it. 3262 */ 3263 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps) 3264 return (0); 3265 3266 error = space_map_open(&vd->vdev_dtl_sm, mos, 3267 vd->vdev_dtl_object, 0, -1ULL, 0); 3268 if (error) 3269 return (error); 3270 ASSERT(vd->vdev_dtl_sm != NULL); 3271 3272 rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3273 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC); 3274 if (error == 0) { 3275 mutex_enter(&vd->vdev_dtl_lock); 3276 range_tree_walk(rt, range_tree_add, 3277 vd->vdev_dtl[DTL_MISSING]); 3278 mutex_exit(&vd->vdev_dtl_lock); 3279 } 3280 3281 range_tree_vacate(rt, NULL, NULL); 3282 range_tree_destroy(rt); 3283 3284 return (error); 3285 } 3286 3287 for (int c = 0; c < vd->vdev_children; c++) { 3288 error = vdev_dtl_load(vd->vdev_child[c]); 3289 if (error != 0) 3290 break; 3291 } 3292 3293 return (error); 3294 } 3295 3296 static void 3297 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx) 3298 { 3299 spa_t *spa = vd->vdev_spa; 3300 objset_t *mos = spa->spa_meta_objset; 3301 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 3302 const char *string; 3303 3304 ASSERT(alloc_bias != VDEV_BIAS_NONE); 3305 3306 string = 3307 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG : 3308 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL : 3309 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL; 3310 3311 ASSERT(string != NULL); 3312 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, 3313 1, strlen(string) + 1, string, tx)); 3314 3315 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) { 3316 spa_activate_allocation_classes(spa, tx); 3317 } 3318 } 3319 3320 void 3321 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 3322 { 3323 spa_t *spa = vd->vdev_spa; 3324 3325 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 3326 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3327 zapobj, tx)); 3328 } 3329 3330 uint64_t 3331 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 3332 { 3333 spa_t *spa = vd->vdev_spa; 3334 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 3335 DMU_OT_NONE, 0, tx); 3336 3337 ASSERT(zap != 0); 3338 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3339 zap, tx)); 3340 3341 return (zap); 3342 } 3343 3344 void 3345 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 3346 { 3347 if (vd->vdev_ops != &vdev_hole_ops && 3348 vd->vdev_ops != &vdev_missing_ops && 3349 vd->vdev_ops != &vdev_root_ops && 3350 !vd->vdev_top->vdev_removing) { 3351 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 3352 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 3353 } 3354 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 3355 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 3356 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE) 3357 vdev_zap_allocation_data(vd, tx); 3358 } 3359 } 3360 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 && 3361 spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) { 3362 if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) 3363 spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx); 3364 vd->vdev_root_zap = vdev_create_link_zap(vd, tx); 3365 } 3366 3367 for (uint64_t i = 0; i < vd->vdev_children; i++) { 3368 vdev_construct_zaps(vd->vdev_child[i], tx); 3369 } 3370 } 3371 3372 static void 3373 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 3374 { 3375 spa_t *spa = vd->vdev_spa; 3376 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 3377 objset_t *mos = spa->spa_meta_objset; 3378 range_tree_t *rtsync; 3379 dmu_tx_t *tx; 3380 uint64_t object = space_map_object(vd->vdev_dtl_sm); 3381 3382 ASSERT(vdev_is_concrete(vd)); 3383 ASSERT(vd->vdev_ops->vdev_op_leaf); 3384 3385 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3386 3387 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 3388 mutex_enter(&vd->vdev_dtl_lock); 3389 space_map_free(vd->vdev_dtl_sm, tx); 3390 space_map_close(vd->vdev_dtl_sm); 3391 vd->vdev_dtl_sm = NULL; 3392 mutex_exit(&vd->vdev_dtl_lock); 3393 3394 /* 3395 * We only destroy the leaf ZAP for detached leaves or for 3396 * removed log devices. Removed data devices handle leaf ZAP 3397 * cleanup later, once cancellation is no longer possible. 3398 */ 3399 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 3400 vd->vdev_top->vdev_islog)) { 3401 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 3402 vd->vdev_leaf_zap = 0; 3403 } 3404 3405 dmu_tx_commit(tx); 3406 return; 3407 } 3408 3409 if (vd->vdev_dtl_sm == NULL) { 3410 uint64_t new_object; 3411 3412 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx); 3413 VERIFY3U(new_object, !=, 0); 3414 3415 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 3416 0, -1ULL, 0)); 3417 ASSERT(vd->vdev_dtl_sm != NULL); 3418 } 3419 3420 rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3421 3422 mutex_enter(&vd->vdev_dtl_lock); 3423 range_tree_walk(rt, range_tree_add, rtsync); 3424 mutex_exit(&vd->vdev_dtl_lock); 3425 3426 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx); 3427 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); 3428 range_tree_vacate(rtsync, NULL, NULL); 3429 3430 range_tree_destroy(rtsync); 3431 3432 /* 3433 * If the object for the space map has changed then dirty 3434 * the top level so that we update the config. 3435 */ 3436 if (object != space_map_object(vd->vdev_dtl_sm)) { 3437 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " 3438 "new object %llu", (u_longlong_t)txg, spa_name(spa), 3439 (u_longlong_t)object, 3440 (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); 3441 vdev_config_dirty(vd->vdev_top); 3442 } 3443 3444 dmu_tx_commit(tx); 3445 } 3446 3447 /* 3448 * Determine whether the specified vdev can be offlined/detached/removed 3449 * without losing data. 3450 */ 3451 boolean_t 3452 vdev_dtl_required(vdev_t *vd) 3453 { 3454 spa_t *spa = vd->vdev_spa; 3455 vdev_t *tvd = vd->vdev_top; 3456 uint8_t cant_read = vd->vdev_cant_read; 3457 boolean_t required; 3458 3459 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3460 3461 if (vd == spa->spa_root_vdev || vd == tvd) 3462 return (B_TRUE); 3463 3464 /* 3465 * Temporarily mark the device as unreadable, and then determine 3466 * whether this results in any DTL outages in the top-level vdev. 3467 * If not, we can safely offline/detach/remove the device. 3468 */ 3469 vd->vdev_cant_read = B_TRUE; 3470 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3471 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 3472 vd->vdev_cant_read = cant_read; 3473 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3474 3475 if (!required && zio_injection_enabled) { 3476 required = !!zio_handle_device_injection(vd, NULL, 3477 SET_ERROR(ECHILD)); 3478 } 3479 3480 return (required); 3481 } 3482 3483 /* 3484 * Determine if resilver is needed, and if so the txg range. 3485 */ 3486 boolean_t 3487 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 3488 { 3489 boolean_t needed = B_FALSE; 3490 uint64_t thismin = UINT64_MAX; 3491 uint64_t thismax = 0; 3492 3493 if (vd->vdev_children == 0) { 3494 mutex_enter(&vd->vdev_dtl_lock); 3495 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3496 vdev_writeable(vd)) { 3497 3498 thismin = vdev_dtl_min(vd); 3499 thismax = vdev_dtl_max(vd); 3500 needed = B_TRUE; 3501 } 3502 mutex_exit(&vd->vdev_dtl_lock); 3503 } else { 3504 for (int c = 0; c < vd->vdev_children; c++) { 3505 vdev_t *cvd = vd->vdev_child[c]; 3506 uint64_t cmin, cmax; 3507 3508 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 3509 thismin = MIN(thismin, cmin); 3510 thismax = MAX(thismax, cmax); 3511 needed = B_TRUE; 3512 } 3513 } 3514 } 3515 3516 if (needed && minp) { 3517 *minp = thismin; 3518 *maxp = thismax; 3519 } 3520 return (needed); 3521 } 3522 3523 /* 3524 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj 3525 * will contain either the checkpoint spacemap object or zero if none exists. 3526 * All other errors are returned to the caller. 3527 */ 3528 int 3529 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj) 3530 { 3531 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 3532 3533 if (vd->vdev_top_zap == 0) { 3534 *sm_obj = 0; 3535 return (0); 3536 } 3537 3538 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, 3539 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj); 3540 if (error == ENOENT) { 3541 *sm_obj = 0; 3542 error = 0; 3543 } 3544 3545 return (error); 3546 } 3547 3548 int 3549 vdev_load(vdev_t *vd) 3550 { 3551 int children = vd->vdev_children; 3552 int error = 0; 3553 taskq_t *tq = NULL; 3554 3555 /* 3556 * It's only worthwhile to use the taskq for the root vdev, because the 3557 * slow part is metaslab_init, and that only happens for top-level 3558 * vdevs. 3559 */ 3560 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) { 3561 tq = taskq_create("vdev_load", children, minclsyspri, 3562 children, children, TASKQ_PREPOPULATE); 3563 } 3564 3565 /* 3566 * Recursively load all children. 3567 */ 3568 for (int c = 0; c < vd->vdev_children; c++) { 3569 vdev_t *cvd = vd->vdev_child[c]; 3570 3571 if (tq == NULL || vdev_uses_zvols(cvd)) { 3572 cvd->vdev_load_error = vdev_load(cvd); 3573 } else { 3574 VERIFY(taskq_dispatch(tq, vdev_load_child, 3575 cvd, TQ_SLEEP) != TASKQID_INVALID); 3576 } 3577 } 3578 3579 if (tq != NULL) { 3580 taskq_wait(tq); 3581 taskq_destroy(tq); 3582 } 3583 3584 for (int c = 0; c < vd->vdev_children; c++) { 3585 int error = vd->vdev_child[c]->vdev_load_error; 3586 3587 if (error != 0) 3588 return (error); 3589 } 3590 3591 vdev_set_deflate_ratio(vd); 3592 3593 /* 3594 * On spa_load path, grab the allocation bias from our zap 3595 */ 3596 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3597 spa_t *spa = vd->vdev_spa; 3598 char bias_str[64]; 3599 3600 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3601 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str), 3602 bias_str); 3603 if (error == 0) { 3604 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE); 3605 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str); 3606 } else if (error != ENOENT) { 3607 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3608 VDEV_AUX_CORRUPT_DATA); 3609 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) " 3610 "failed [error=%d]", 3611 (u_longlong_t)vd->vdev_top_zap, error); 3612 return (error); 3613 } 3614 } 3615 3616 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3617 spa_t *spa = vd->vdev_spa; 3618 uint64_t failfast; 3619 3620 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3621 vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast), 3622 1, &failfast); 3623 if (error == 0) { 3624 vd->vdev_failfast = failfast & 1; 3625 } else if (error == ENOENT) { 3626 vd->vdev_failfast = vdev_prop_default_numeric( 3627 VDEV_PROP_FAILFAST); 3628 } else { 3629 vdev_dbgmsg(vd, 3630 "vdev_load: zap_lookup(top_zap=%llu) " 3631 "failed [error=%d]", 3632 (u_longlong_t)vd->vdev_top_zap, error); 3633 } 3634 } 3635 3636 /* 3637 * Load any rebuild state from the top-level vdev zap. 3638 */ 3639 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3640 error = vdev_rebuild_load(vd); 3641 if (error && error != ENOTSUP) { 3642 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3643 VDEV_AUX_CORRUPT_DATA); 3644 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load " 3645 "failed [error=%d]", error); 3646 return (error); 3647 } 3648 } 3649 3650 if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) { 3651 uint64_t zapobj; 3652 3653 if (vd->vdev_top_zap != 0) 3654 zapobj = vd->vdev_top_zap; 3655 else 3656 zapobj = vd->vdev_leaf_zap; 3657 3658 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N, 3659 &vd->vdev_checksum_n); 3660 if (error && error != ENOENT) 3661 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3662 "failed [error=%d]", (u_longlong_t)zapobj, error); 3663 3664 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T, 3665 &vd->vdev_checksum_t); 3666 if (error && error != ENOENT) 3667 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3668 "failed [error=%d]", (u_longlong_t)zapobj, error); 3669 3670 error = vdev_prop_get_int(vd, VDEV_PROP_IO_N, 3671 &vd->vdev_io_n); 3672 if (error && error != ENOENT) 3673 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3674 "failed [error=%d]", (u_longlong_t)zapobj, error); 3675 3676 error = vdev_prop_get_int(vd, VDEV_PROP_IO_T, 3677 &vd->vdev_io_t); 3678 if (error && error != ENOENT) 3679 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3680 "failed [error=%d]", (u_longlong_t)zapobj, error); 3681 } 3682 3683 /* 3684 * If this is a top-level vdev, initialize its metaslabs. 3685 */ 3686 if (vd == vd->vdev_top && vdev_is_concrete(vd)) { 3687 vdev_metaslab_group_create(vd); 3688 3689 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { 3690 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3691 VDEV_AUX_CORRUPT_DATA); 3692 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " 3693 "asize=%llu", (u_longlong_t)vd->vdev_ashift, 3694 (u_longlong_t)vd->vdev_asize); 3695 return (SET_ERROR(ENXIO)); 3696 } 3697 3698 error = vdev_metaslab_init(vd, 0); 3699 if (error != 0) { 3700 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " 3701 "[error=%d]", error); 3702 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3703 VDEV_AUX_CORRUPT_DATA); 3704 return (error); 3705 } 3706 3707 uint64_t checkpoint_sm_obj; 3708 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj); 3709 if (error == 0 && checkpoint_sm_obj != 0) { 3710 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3711 ASSERT(vd->vdev_asize != 0); 3712 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL); 3713 3714 error = space_map_open(&vd->vdev_checkpoint_sm, 3715 mos, checkpoint_sm_obj, 0, vd->vdev_asize, 3716 vd->vdev_ashift); 3717 if (error != 0) { 3718 vdev_dbgmsg(vd, "vdev_load: space_map_open " 3719 "failed for checkpoint spacemap (obj %llu) " 3720 "[error=%d]", 3721 (u_longlong_t)checkpoint_sm_obj, error); 3722 return (error); 3723 } 3724 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 3725 3726 /* 3727 * Since the checkpoint_sm contains free entries 3728 * exclusively we can use space_map_allocated() to 3729 * indicate the cumulative checkpointed space that 3730 * has been freed. 3731 */ 3732 vd->vdev_stat.vs_checkpoint_space = 3733 -space_map_allocated(vd->vdev_checkpoint_sm); 3734 vd->vdev_spa->spa_checkpoint_info.sci_dspace += 3735 vd->vdev_stat.vs_checkpoint_space; 3736 } else if (error != 0) { 3737 vdev_dbgmsg(vd, "vdev_load: failed to retrieve " 3738 "checkpoint space map object from vdev ZAP " 3739 "[error=%d]", error); 3740 return (error); 3741 } 3742 } 3743 3744 /* 3745 * If this is a leaf vdev, load its DTL. 3746 */ 3747 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { 3748 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3749 VDEV_AUX_CORRUPT_DATA); 3750 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " 3751 "[error=%d]", error); 3752 return (error); 3753 } 3754 3755 uint64_t obsolete_sm_object; 3756 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object); 3757 if (error == 0 && obsolete_sm_object != 0) { 3758 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3759 ASSERT(vd->vdev_asize != 0); 3760 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 3761 3762 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, 3763 obsolete_sm_object, 0, vd->vdev_asize, 0))) { 3764 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3765 VDEV_AUX_CORRUPT_DATA); 3766 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " 3767 "obsolete spacemap (obj %llu) [error=%d]", 3768 (u_longlong_t)obsolete_sm_object, error); 3769 return (error); 3770 } 3771 } else if (error != 0) { 3772 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete " 3773 "space map object from vdev ZAP [error=%d]", error); 3774 return (error); 3775 } 3776 3777 return (0); 3778 } 3779 3780 /* 3781 * The special vdev case is used for hot spares and l2cache devices. Its 3782 * sole purpose it to set the vdev state for the associated vdev. To do this, 3783 * we make sure that we can open the underlying device, then try to read the 3784 * label, and make sure that the label is sane and that it hasn't been 3785 * repurposed to another pool. 3786 */ 3787 int 3788 vdev_validate_aux(vdev_t *vd) 3789 { 3790 nvlist_t *label; 3791 uint64_t guid, version; 3792 uint64_t state; 3793 3794 if (!vdev_readable(vd)) 3795 return (0); 3796 3797 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 3798 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3799 VDEV_AUX_CORRUPT_DATA); 3800 return (-1); 3801 } 3802 3803 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 3804 !SPA_VERSION_IS_SUPPORTED(version) || 3805 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 3806 guid != vd->vdev_guid || 3807 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 3808 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3809 VDEV_AUX_CORRUPT_DATA); 3810 nvlist_free(label); 3811 return (-1); 3812 } 3813 3814 /* 3815 * We don't actually check the pool state here. If it's in fact in 3816 * use by another pool, we update this fact on the fly when requested. 3817 */ 3818 nvlist_free(label); 3819 return (0); 3820 } 3821 3822 static void 3823 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx) 3824 { 3825 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3826 3827 if (vd->vdev_top_zap == 0) 3828 return; 3829 3830 uint64_t object = 0; 3831 int err = zap_lookup(mos, vd->vdev_top_zap, 3832 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object); 3833 if (err == ENOENT) 3834 return; 3835 VERIFY0(err); 3836 3837 VERIFY0(dmu_object_free(mos, object, tx)); 3838 VERIFY0(zap_remove(mos, vd->vdev_top_zap, 3839 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx)); 3840 } 3841 3842 /* 3843 * Free the objects used to store this vdev's spacemaps, and the array 3844 * that points to them. 3845 */ 3846 void 3847 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) 3848 { 3849 if (vd->vdev_ms_array == 0) 3850 return; 3851 3852 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3853 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; 3854 size_t array_bytes = array_count * sizeof (uint64_t); 3855 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); 3856 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, 3857 array_bytes, smobj_array, 0)); 3858 3859 for (uint64_t i = 0; i < array_count; i++) { 3860 uint64_t smobj = smobj_array[i]; 3861 if (smobj == 0) 3862 continue; 3863 3864 space_map_free_obj(mos, smobj, tx); 3865 } 3866 3867 kmem_free(smobj_array, array_bytes); 3868 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); 3869 vdev_destroy_ms_flush_data(vd, tx); 3870 vd->vdev_ms_array = 0; 3871 } 3872 3873 static void 3874 vdev_remove_empty_log(vdev_t *vd, uint64_t txg) 3875 { 3876 spa_t *spa = vd->vdev_spa; 3877 3878 ASSERT(vd->vdev_islog); 3879 ASSERT(vd == vd->vdev_top); 3880 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 3881 3882 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 3883 3884 vdev_destroy_spacemaps(vd, tx); 3885 if (vd->vdev_top_zap != 0) { 3886 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 3887 vd->vdev_top_zap = 0; 3888 } 3889 3890 dmu_tx_commit(tx); 3891 } 3892 3893 void 3894 vdev_sync_done(vdev_t *vd, uint64_t txg) 3895 { 3896 metaslab_t *msp; 3897 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 3898 3899 ASSERT(vdev_is_concrete(vd)); 3900 3901 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 3902 != NULL) 3903 metaslab_sync_done(msp, txg); 3904 3905 if (reassess) { 3906 metaslab_sync_reassess(vd->vdev_mg); 3907 if (vd->vdev_log_mg != NULL) 3908 metaslab_sync_reassess(vd->vdev_log_mg); 3909 } 3910 } 3911 3912 void 3913 vdev_sync(vdev_t *vd, uint64_t txg) 3914 { 3915 spa_t *spa = vd->vdev_spa; 3916 vdev_t *lvd; 3917 metaslab_t *msp; 3918 3919 ASSERT3U(txg, ==, spa->spa_syncing_txg); 3920 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3921 if (range_tree_space(vd->vdev_obsolete_segments) > 0) { 3922 ASSERT(vd->vdev_removing || 3923 vd->vdev_ops == &vdev_indirect_ops); 3924 3925 vdev_indirect_sync_obsolete(vd, tx); 3926 3927 /* 3928 * If the vdev is indirect, it can't have dirty 3929 * metaslabs or DTLs. 3930 */ 3931 if (vd->vdev_ops == &vdev_indirect_ops) { 3932 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); 3933 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); 3934 dmu_tx_commit(tx); 3935 return; 3936 } 3937 } 3938 3939 ASSERT(vdev_is_concrete(vd)); 3940 3941 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && 3942 !vd->vdev_removing) { 3943 ASSERT(vd == vd->vdev_top); 3944 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 3945 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 3946 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 3947 ASSERT(vd->vdev_ms_array != 0); 3948 vdev_config_dirty(vd); 3949 } 3950 3951 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 3952 metaslab_sync(msp, txg); 3953 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 3954 } 3955 3956 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 3957 vdev_dtl_sync(lvd, txg); 3958 3959 /* 3960 * If this is an empty log device being removed, destroy the 3961 * metadata associated with it. 3962 */ 3963 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 3964 vdev_remove_empty_log(vd, txg); 3965 3966 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 3967 dmu_tx_commit(tx); 3968 } 3969 3970 uint64_t 3971 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 3972 { 3973 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 3974 } 3975 3976 /* 3977 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 3978 * not be opened, and no I/O is attempted. 3979 */ 3980 int 3981 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3982 { 3983 vdev_t *vd, *tvd; 3984 3985 spa_vdev_state_enter(spa, SCL_NONE); 3986 3987 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3988 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 3989 3990 if (!vd->vdev_ops->vdev_op_leaf) 3991 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 3992 3993 tvd = vd->vdev_top; 3994 3995 /* 3996 * If user did a 'zpool offline -f' then make the fault persist across 3997 * reboots. 3998 */ 3999 if (aux == VDEV_AUX_EXTERNAL_PERSIST) { 4000 /* 4001 * There are two kinds of forced faults: temporary and 4002 * persistent. Temporary faults go away at pool import, while 4003 * persistent faults stay set. Both types of faults can be 4004 * cleared with a zpool clear. 4005 * 4006 * We tell if a vdev is persistently faulted by looking at the 4007 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at 4008 * import then it's a persistent fault. Otherwise, it's 4009 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external" 4010 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This 4011 * tells vdev_config_generate() (which gets run later) to set 4012 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist. 4013 */ 4014 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 4015 vd->vdev_tmpoffline = B_FALSE; 4016 aux = VDEV_AUX_EXTERNAL; 4017 } else { 4018 vd->vdev_tmpoffline = B_TRUE; 4019 } 4020 4021 /* 4022 * We don't directly use the aux state here, but if we do a 4023 * vdev_reopen(), we need this value to be present to remember why we 4024 * were faulted. 4025 */ 4026 vd->vdev_label_aux = aux; 4027 4028 /* 4029 * Faulted state takes precedence over degraded. 4030 */ 4031 vd->vdev_delayed_close = B_FALSE; 4032 vd->vdev_faulted = 1ULL; 4033 vd->vdev_degraded = 0ULL; 4034 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 4035 4036 /* 4037 * If this device has the only valid copy of the data, then 4038 * back off and simply mark the vdev as degraded instead. 4039 */ 4040 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 4041 vd->vdev_degraded = 1ULL; 4042 vd->vdev_faulted = 0ULL; 4043 4044 /* 4045 * If we reopen the device and it's not dead, only then do we 4046 * mark it degraded. 4047 */ 4048 vdev_reopen(tvd); 4049 4050 if (vdev_readable(vd)) 4051 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 4052 } 4053 4054 return (spa_vdev_state_exit(spa, vd, 0)); 4055 } 4056 4057 /* 4058 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 4059 * user that something is wrong. The vdev continues to operate as normal as far 4060 * as I/O is concerned. 4061 */ 4062 int 4063 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 4064 { 4065 vdev_t *vd; 4066 4067 spa_vdev_state_enter(spa, SCL_NONE); 4068 4069 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4070 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4071 4072 if (!vd->vdev_ops->vdev_op_leaf) 4073 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4074 4075 /* 4076 * If the vdev is already faulted, then don't do anything. 4077 */ 4078 if (vd->vdev_faulted || vd->vdev_degraded) 4079 return (spa_vdev_state_exit(spa, NULL, 0)); 4080 4081 vd->vdev_degraded = 1ULL; 4082 if (!vdev_is_dead(vd)) 4083 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 4084 aux); 4085 4086 return (spa_vdev_state_exit(spa, vd, 0)); 4087 } 4088 4089 int 4090 vdev_remove_wanted(spa_t *spa, uint64_t guid) 4091 { 4092 vdev_t *vd; 4093 4094 spa_vdev_state_enter(spa, SCL_NONE); 4095 4096 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4097 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4098 4099 /* 4100 * If the vdev is already removed, or expanding which can trigger 4101 * repartition add/remove events, then don't do anything. 4102 */ 4103 if (vd->vdev_removed || vd->vdev_expanding) 4104 return (spa_vdev_state_exit(spa, NULL, 0)); 4105 4106 /* 4107 * Confirm the vdev has been removed, otherwise don't do anything. 4108 */ 4109 if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL))) 4110 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST))); 4111 4112 vd->vdev_remove_wanted = B_TRUE; 4113 spa_async_request(spa, SPA_ASYNC_REMOVE); 4114 4115 return (spa_vdev_state_exit(spa, vd, 0)); 4116 } 4117 4118 4119 /* 4120 * Online the given vdev. 4121 * 4122 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 4123 * spare device should be detached when the device finishes resilvering. 4124 * Second, the online should be treated like a 'test' online case, so no FMA 4125 * events are generated if the device fails to open. 4126 */ 4127 int 4128 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 4129 { 4130 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 4131 boolean_t wasoffline; 4132 vdev_state_t oldstate; 4133 4134 spa_vdev_state_enter(spa, SCL_NONE); 4135 4136 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4137 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4138 4139 if (!vd->vdev_ops->vdev_op_leaf) 4140 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4141 4142 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 4143 oldstate = vd->vdev_state; 4144 4145 tvd = vd->vdev_top; 4146 vd->vdev_offline = B_FALSE; 4147 vd->vdev_tmpoffline = B_FALSE; 4148 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 4149 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 4150 4151 /* XXX - L2ARC 1.0 does not support expansion */ 4152 if (!vd->vdev_aux) { 4153 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4154 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) || 4155 spa->spa_autoexpand); 4156 vd->vdev_expansion_time = gethrestime_sec(); 4157 } 4158 4159 vdev_reopen(tvd); 4160 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 4161 4162 if (!vd->vdev_aux) { 4163 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4164 pvd->vdev_expanding = B_FALSE; 4165 } 4166 4167 if (newstate) 4168 *newstate = vd->vdev_state; 4169 if ((flags & ZFS_ONLINE_UNSPARE) && 4170 !vdev_is_dead(vd) && vd->vdev_parent && 4171 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4172 vd->vdev_parent->vdev_child[0] == vd) 4173 vd->vdev_unspare = B_TRUE; 4174 4175 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 4176 4177 /* XXX - L2ARC 1.0 does not support expansion */ 4178 if (vd->vdev_aux) 4179 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 4180 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 4181 } 4182 4183 /* Restart initializing if necessary */ 4184 mutex_enter(&vd->vdev_initialize_lock); 4185 if (vdev_writeable(vd) && 4186 vd->vdev_initialize_thread == NULL && 4187 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { 4188 (void) vdev_initialize(vd); 4189 } 4190 mutex_exit(&vd->vdev_initialize_lock); 4191 4192 /* 4193 * Restart trimming if necessary. We do not restart trimming for cache 4194 * devices here. This is triggered by l2arc_rebuild_vdev() 4195 * asynchronously for the whole device or in l2arc_evict() as it evicts 4196 * space for upcoming writes. 4197 */ 4198 mutex_enter(&vd->vdev_trim_lock); 4199 if (vdev_writeable(vd) && !vd->vdev_isl2cache && 4200 vd->vdev_trim_thread == NULL && 4201 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) { 4202 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial, 4203 vd->vdev_trim_secure); 4204 } 4205 mutex_exit(&vd->vdev_trim_lock); 4206 4207 if (wasoffline || 4208 (oldstate < VDEV_STATE_DEGRADED && 4209 vd->vdev_state >= VDEV_STATE_DEGRADED)) { 4210 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 4211 4212 /* 4213 * Asynchronously detach spare vdev if resilver or 4214 * rebuild is not required 4215 */ 4216 if (vd->vdev_unspare && 4217 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4218 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) && 4219 !vdev_rebuild_active(tvd)) 4220 spa_async_request(spa, SPA_ASYNC_DETACH_SPARE); 4221 } 4222 return (spa_vdev_state_exit(spa, vd, 0)); 4223 } 4224 4225 static int 4226 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 4227 { 4228 vdev_t *vd, *tvd; 4229 int error = 0; 4230 uint64_t generation; 4231 metaslab_group_t *mg; 4232 4233 top: 4234 spa_vdev_state_enter(spa, SCL_ALLOC); 4235 4236 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4237 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4238 4239 if (!vd->vdev_ops->vdev_op_leaf) 4240 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4241 4242 if (vd->vdev_ops == &vdev_draid_spare_ops) 4243 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4244 4245 tvd = vd->vdev_top; 4246 mg = tvd->vdev_mg; 4247 generation = spa->spa_config_generation + 1; 4248 4249 /* 4250 * If the device isn't already offline, try to offline it. 4251 */ 4252 if (!vd->vdev_offline) { 4253 /* 4254 * If this device has the only valid copy of some data, 4255 * don't allow it to be offlined. Log devices are always 4256 * expendable. 4257 */ 4258 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4259 vdev_dtl_required(vd)) 4260 return (spa_vdev_state_exit(spa, NULL, 4261 SET_ERROR(EBUSY))); 4262 4263 /* 4264 * If the top-level is a slog and it has had allocations 4265 * then proceed. We check that the vdev's metaslab group 4266 * is not NULL since it's possible that we may have just 4267 * added this vdev but not yet initialized its metaslabs. 4268 */ 4269 if (tvd->vdev_islog && mg != NULL) { 4270 /* 4271 * Prevent any future allocations. 4272 */ 4273 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 4274 metaslab_group_passivate(mg); 4275 (void) spa_vdev_state_exit(spa, vd, 0); 4276 4277 error = spa_reset_logs(spa); 4278 4279 /* 4280 * If the log device was successfully reset but has 4281 * checkpointed data, do not offline it. 4282 */ 4283 if (error == 0 && 4284 tvd->vdev_checkpoint_sm != NULL) { 4285 ASSERT3U(space_map_allocated( 4286 tvd->vdev_checkpoint_sm), !=, 0); 4287 error = ZFS_ERR_CHECKPOINT_EXISTS; 4288 } 4289 4290 spa_vdev_state_enter(spa, SCL_ALLOC); 4291 4292 /* 4293 * Check to see if the config has changed. 4294 */ 4295 if (error || generation != spa->spa_config_generation) { 4296 metaslab_group_activate(mg); 4297 if (error) 4298 return (spa_vdev_state_exit(spa, 4299 vd, error)); 4300 (void) spa_vdev_state_exit(spa, vd, 0); 4301 goto top; 4302 } 4303 ASSERT0(tvd->vdev_stat.vs_alloc); 4304 } 4305 4306 /* 4307 * Offline this device and reopen its top-level vdev. 4308 * If the top-level vdev is a log device then just offline 4309 * it. Otherwise, if this action results in the top-level 4310 * vdev becoming unusable, undo it and fail the request. 4311 */ 4312 vd->vdev_offline = B_TRUE; 4313 vdev_reopen(tvd); 4314 4315 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4316 vdev_is_dead(tvd)) { 4317 vd->vdev_offline = B_FALSE; 4318 vdev_reopen(tvd); 4319 return (spa_vdev_state_exit(spa, NULL, 4320 SET_ERROR(EBUSY))); 4321 } 4322 4323 /* 4324 * Add the device back into the metaslab rotor so that 4325 * once we online the device it's open for business. 4326 */ 4327 if (tvd->vdev_islog && mg != NULL) 4328 metaslab_group_activate(mg); 4329 } 4330 4331 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 4332 4333 return (spa_vdev_state_exit(spa, vd, 0)); 4334 } 4335 4336 int 4337 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 4338 { 4339 int error; 4340 4341 mutex_enter(&spa->spa_vdev_top_lock); 4342 error = vdev_offline_locked(spa, guid, flags); 4343 mutex_exit(&spa->spa_vdev_top_lock); 4344 4345 return (error); 4346 } 4347 4348 /* 4349 * Clear the error counts associated with this vdev. Unlike vdev_online() and 4350 * vdev_offline(), we assume the spa config is locked. We also clear all 4351 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 4352 */ 4353 void 4354 vdev_clear(spa_t *spa, vdev_t *vd) 4355 { 4356 vdev_t *rvd = spa->spa_root_vdev; 4357 4358 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 4359 4360 if (vd == NULL) 4361 vd = rvd; 4362 4363 vd->vdev_stat.vs_read_errors = 0; 4364 vd->vdev_stat.vs_write_errors = 0; 4365 vd->vdev_stat.vs_checksum_errors = 0; 4366 vd->vdev_stat.vs_slow_ios = 0; 4367 4368 for (int c = 0; c < vd->vdev_children; c++) 4369 vdev_clear(spa, vd->vdev_child[c]); 4370 4371 /* 4372 * It makes no sense to "clear" an indirect or removed vdev. 4373 */ 4374 if (!vdev_is_concrete(vd) || vd->vdev_removed) 4375 return; 4376 4377 /* 4378 * If we're in the FAULTED state or have experienced failed I/O, then 4379 * clear the persistent state and attempt to reopen the device. We 4380 * also mark the vdev config dirty, so that the new faulted state is 4381 * written out to disk. 4382 */ 4383 if (vd->vdev_faulted || vd->vdev_degraded || 4384 !vdev_readable(vd) || !vdev_writeable(vd)) { 4385 /* 4386 * When reopening in response to a clear event, it may be due to 4387 * a fmadm repair request. In this case, if the device is 4388 * still broken, we want to still post the ereport again. 4389 */ 4390 vd->vdev_forcefault = B_TRUE; 4391 4392 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 4393 vd->vdev_cant_read = B_FALSE; 4394 vd->vdev_cant_write = B_FALSE; 4395 vd->vdev_stat.vs_aux = 0; 4396 4397 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 4398 4399 vd->vdev_forcefault = B_FALSE; 4400 4401 if (vd != rvd && vdev_writeable(vd->vdev_top)) 4402 vdev_state_dirty(vd->vdev_top); 4403 4404 /* If a resilver isn't required, check if vdevs can be culled */ 4405 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) && 4406 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4407 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool)) 4408 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4409 4410 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 4411 } 4412 4413 /* 4414 * When clearing a FMA-diagnosed fault, we always want to 4415 * unspare the device, as we assume that the original spare was 4416 * done in response to the FMA fault. 4417 */ 4418 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 4419 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4420 vd->vdev_parent->vdev_child[0] == vd) 4421 vd->vdev_unspare = B_TRUE; 4422 4423 /* Clear recent error events cache (i.e. duplicate events tracking) */ 4424 zfs_ereport_clear(spa, vd); 4425 } 4426 4427 boolean_t 4428 vdev_is_dead(vdev_t *vd) 4429 { 4430 /* 4431 * Holes and missing devices are always considered "dead". 4432 * This simplifies the code since we don't have to check for 4433 * these types of devices in the various code paths. 4434 * Instead we rely on the fact that we skip over dead devices 4435 * before issuing I/O to them. 4436 */ 4437 return (vd->vdev_state < VDEV_STATE_DEGRADED || 4438 vd->vdev_ops == &vdev_hole_ops || 4439 vd->vdev_ops == &vdev_missing_ops); 4440 } 4441 4442 boolean_t 4443 vdev_readable(vdev_t *vd) 4444 { 4445 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 4446 } 4447 4448 boolean_t 4449 vdev_writeable(vdev_t *vd) 4450 { 4451 return (!vdev_is_dead(vd) && !vd->vdev_cant_write && 4452 vdev_is_concrete(vd)); 4453 } 4454 4455 boolean_t 4456 vdev_allocatable(vdev_t *vd) 4457 { 4458 uint64_t state = vd->vdev_state; 4459 4460 /* 4461 * We currently allow allocations from vdevs which may be in the 4462 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 4463 * fails to reopen then we'll catch it later when we're holding 4464 * the proper locks. Note that we have to get the vdev state 4465 * in a local variable because although it changes atomically, 4466 * we're asking two separate questions about it. 4467 */ 4468 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 4469 !vd->vdev_cant_write && vdev_is_concrete(vd) && 4470 vd->vdev_mg->mg_initialized); 4471 } 4472 4473 boolean_t 4474 vdev_accessible(vdev_t *vd, zio_t *zio) 4475 { 4476 ASSERT(zio->io_vd == vd); 4477 4478 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 4479 return (B_FALSE); 4480 4481 if (zio->io_type == ZIO_TYPE_READ) 4482 return (!vd->vdev_cant_read); 4483 4484 if (zio->io_type == ZIO_TYPE_WRITE) 4485 return (!vd->vdev_cant_write); 4486 4487 return (B_TRUE); 4488 } 4489 4490 static void 4491 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs) 4492 { 4493 /* 4494 * Exclude the dRAID spare when aggregating to avoid double counting 4495 * the ops and bytes. These IOs are counted by the physical leaves. 4496 */ 4497 if (cvd->vdev_ops == &vdev_draid_spare_ops) 4498 return; 4499 4500 for (int t = 0; t < VS_ZIO_TYPES; t++) { 4501 vs->vs_ops[t] += cvs->vs_ops[t]; 4502 vs->vs_bytes[t] += cvs->vs_bytes[t]; 4503 } 4504 4505 cvs->vs_scan_removing = cvd->vdev_removing; 4506 } 4507 4508 /* 4509 * Get extended stats 4510 */ 4511 static void 4512 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx) 4513 { 4514 (void) cvd; 4515 4516 int t, b; 4517 for (t = 0; t < ZIO_TYPES; t++) { 4518 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++) 4519 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b]; 4520 4521 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) { 4522 vsx->vsx_total_histo[t][b] += 4523 cvsx->vsx_total_histo[t][b]; 4524 } 4525 } 4526 4527 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4528 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) { 4529 vsx->vsx_queue_histo[t][b] += 4530 cvsx->vsx_queue_histo[t][b]; 4531 } 4532 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t]; 4533 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t]; 4534 4535 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++) 4536 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b]; 4537 4538 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++) 4539 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b]; 4540 } 4541 4542 } 4543 4544 boolean_t 4545 vdev_is_spacemap_addressable(vdev_t *vd) 4546 { 4547 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) 4548 return (B_TRUE); 4549 4550 /* 4551 * If double-word space map entries are not enabled we assume 4552 * 47 bits of the space map entry are dedicated to the entry's 4553 * offset (see SM_OFFSET_BITS in space_map.h). We then use that 4554 * to calculate the maximum address that can be described by a 4555 * space map entry for the given device. 4556 */ 4557 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; 4558 4559 if (shift >= 63) /* detect potential overflow */ 4560 return (B_TRUE); 4561 4562 return (vd->vdev_asize < (1ULL << shift)); 4563 } 4564 4565 /* 4566 * Get statistics for the given vdev. 4567 */ 4568 static void 4569 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4570 { 4571 int t; 4572 /* 4573 * If we're getting stats on the root vdev, aggregate the I/O counts 4574 * over all top-level vdevs (i.e. the direct children of the root). 4575 */ 4576 if (!vd->vdev_ops->vdev_op_leaf) { 4577 if (vs) { 4578 memset(vs->vs_ops, 0, sizeof (vs->vs_ops)); 4579 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes)); 4580 } 4581 if (vsx) 4582 memset(vsx, 0, sizeof (*vsx)); 4583 4584 for (int c = 0; c < vd->vdev_children; c++) { 4585 vdev_t *cvd = vd->vdev_child[c]; 4586 vdev_stat_t *cvs = &cvd->vdev_stat; 4587 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex; 4588 4589 vdev_get_stats_ex_impl(cvd, cvs, cvsx); 4590 if (vs) 4591 vdev_get_child_stat(cvd, vs, cvs); 4592 if (vsx) 4593 vdev_get_child_stat_ex(cvd, vsx, cvsx); 4594 } 4595 } else { 4596 /* 4597 * We're a leaf. Just copy our ZIO active queue stats in. The 4598 * other leaf stats are updated in vdev_stat_update(). 4599 */ 4600 if (!vsx) 4601 return; 4602 4603 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex)); 4604 4605 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) { 4606 vsx->vsx_active_queue[t] = 4607 vd->vdev_queue.vq_class[t].vqc_active; 4608 vsx->vsx_pend_queue[t] = avl_numnodes( 4609 &vd->vdev_queue.vq_class[t].vqc_queued_tree); 4610 } 4611 } 4612 } 4613 4614 void 4615 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4616 { 4617 vdev_t *tvd = vd->vdev_top; 4618 mutex_enter(&vd->vdev_stat_lock); 4619 if (vs) { 4620 memcpy(vs, &vd->vdev_stat, sizeof (*vs)); 4621 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 4622 vs->vs_state = vd->vdev_state; 4623 vs->vs_rsize = vdev_get_min_asize(vd); 4624 4625 if (vd->vdev_ops->vdev_op_leaf) { 4626 vs->vs_pspace = vd->vdev_psize; 4627 vs->vs_rsize += VDEV_LABEL_START_SIZE + 4628 VDEV_LABEL_END_SIZE; 4629 /* 4630 * Report initializing progress. Since we don't 4631 * have the initializing locks held, this is only 4632 * an estimate (although a fairly accurate one). 4633 */ 4634 vs->vs_initialize_bytes_done = 4635 vd->vdev_initialize_bytes_done; 4636 vs->vs_initialize_bytes_est = 4637 vd->vdev_initialize_bytes_est; 4638 vs->vs_initialize_state = vd->vdev_initialize_state; 4639 vs->vs_initialize_action_time = 4640 vd->vdev_initialize_action_time; 4641 4642 /* 4643 * Report manual TRIM progress. Since we don't have 4644 * the manual TRIM locks held, this is only an 4645 * estimate (although fairly accurate one). 4646 */ 4647 vs->vs_trim_notsup = !vd->vdev_has_trim; 4648 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done; 4649 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est; 4650 vs->vs_trim_state = vd->vdev_trim_state; 4651 vs->vs_trim_action_time = vd->vdev_trim_action_time; 4652 4653 /* Set when there is a deferred resilver. */ 4654 vs->vs_resilver_deferred = vd->vdev_resilver_deferred; 4655 } 4656 4657 /* 4658 * Report expandable space on top-level, non-auxiliary devices 4659 * only. The expandable space is reported in terms of metaslab 4660 * sized units since that determines how much space the pool 4661 * can expand. 4662 */ 4663 if (vd->vdev_aux == NULL && tvd != NULL) { 4664 vs->vs_esize = P2ALIGN( 4665 vd->vdev_max_asize - vd->vdev_asize, 4666 1ULL << tvd->vdev_ms_shift); 4667 } 4668 4669 vs->vs_configured_ashift = vd->vdev_top != NULL 4670 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift; 4671 vs->vs_logical_ashift = vd->vdev_logical_ashift; 4672 if (vd->vdev_physical_ashift <= ASHIFT_MAX) 4673 vs->vs_physical_ashift = vd->vdev_physical_ashift; 4674 else 4675 vs->vs_physical_ashift = 0; 4676 4677 /* 4678 * Report fragmentation and rebuild progress for top-level, 4679 * non-auxiliary, concrete devices. 4680 */ 4681 if (vd->vdev_aux == NULL && vd == vd->vdev_top && 4682 vdev_is_concrete(vd)) { 4683 /* 4684 * The vdev fragmentation rating doesn't take into 4685 * account the embedded slog metaslab (vdev_log_mg). 4686 * Since it's only one metaslab, it would have a tiny 4687 * impact on the overall fragmentation. 4688 */ 4689 vs->vs_fragmentation = (vd->vdev_mg != NULL) ? 4690 vd->vdev_mg->mg_fragmentation : 0; 4691 } 4692 vs->vs_noalloc = MAX(vd->vdev_noalloc, 4693 tvd ? tvd->vdev_noalloc : 0); 4694 } 4695 4696 vdev_get_stats_ex_impl(vd, vs, vsx); 4697 mutex_exit(&vd->vdev_stat_lock); 4698 } 4699 4700 void 4701 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 4702 { 4703 return (vdev_get_stats_ex(vd, vs, NULL)); 4704 } 4705 4706 void 4707 vdev_clear_stats(vdev_t *vd) 4708 { 4709 mutex_enter(&vd->vdev_stat_lock); 4710 vd->vdev_stat.vs_space = 0; 4711 vd->vdev_stat.vs_dspace = 0; 4712 vd->vdev_stat.vs_alloc = 0; 4713 mutex_exit(&vd->vdev_stat_lock); 4714 } 4715 4716 void 4717 vdev_scan_stat_init(vdev_t *vd) 4718 { 4719 vdev_stat_t *vs = &vd->vdev_stat; 4720 4721 for (int c = 0; c < vd->vdev_children; c++) 4722 vdev_scan_stat_init(vd->vdev_child[c]); 4723 4724 mutex_enter(&vd->vdev_stat_lock); 4725 vs->vs_scan_processed = 0; 4726 mutex_exit(&vd->vdev_stat_lock); 4727 } 4728 4729 void 4730 vdev_stat_update(zio_t *zio, uint64_t psize) 4731 { 4732 spa_t *spa = zio->io_spa; 4733 vdev_t *rvd = spa->spa_root_vdev; 4734 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 4735 vdev_t *pvd; 4736 uint64_t txg = zio->io_txg; 4737 /* Suppress ASAN false positive */ 4738 #ifdef __SANITIZE_ADDRESS__ 4739 vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL; 4740 vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL; 4741 #else 4742 vdev_stat_t *vs = &vd->vdev_stat; 4743 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex; 4744 #endif 4745 zio_type_t type = zio->io_type; 4746 int flags = zio->io_flags; 4747 4748 /* 4749 * If this i/o is a gang leader, it didn't do any actual work. 4750 */ 4751 if (zio->io_gang_tree) 4752 return; 4753 4754 if (zio->io_error == 0) { 4755 /* 4756 * If this is a root i/o, don't count it -- we've already 4757 * counted the top-level vdevs, and vdev_get_stats() will 4758 * aggregate them when asked. This reduces contention on 4759 * the root vdev_stat_lock and implicitly handles blocks 4760 * that compress away to holes, for which there is no i/o. 4761 * (Holes never create vdev children, so all the counters 4762 * remain zero, which is what we want.) 4763 * 4764 * Note: this only applies to successful i/o (io_error == 0) 4765 * because unlike i/o counts, errors are not additive. 4766 * When reading a ditto block, for example, failure of 4767 * one top-level vdev does not imply a root-level error. 4768 */ 4769 if (vd == rvd) 4770 return; 4771 4772 ASSERT(vd == zio->io_vd); 4773 4774 if (flags & ZIO_FLAG_IO_BYPASS) 4775 return; 4776 4777 mutex_enter(&vd->vdev_stat_lock); 4778 4779 if (flags & ZIO_FLAG_IO_REPAIR) { 4780 /* 4781 * Repair is the result of a resilver issued by the 4782 * scan thread (spa_sync). 4783 */ 4784 if (flags & ZIO_FLAG_SCAN_THREAD) { 4785 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 4786 dsl_scan_phys_t *scn_phys = &scn->scn_phys; 4787 uint64_t *processed = &scn_phys->scn_processed; 4788 4789 if (vd->vdev_ops->vdev_op_leaf) 4790 atomic_add_64(processed, psize); 4791 vs->vs_scan_processed += psize; 4792 } 4793 4794 /* 4795 * Repair is the result of a rebuild issued by the 4796 * rebuild thread (vdev_rebuild_thread). To avoid 4797 * double counting repaired bytes the virtual dRAID 4798 * spare vdev is excluded from the processed bytes. 4799 */ 4800 if (zio->io_priority == ZIO_PRIORITY_REBUILD) { 4801 vdev_t *tvd = vd->vdev_top; 4802 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config; 4803 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 4804 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt; 4805 4806 if (vd->vdev_ops->vdev_op_leaf && 4807 vd->vdev_ops != &vdev_draid_spare_ops) { 4808 atomic_add_64(rebuilt, psize); 4809 } 4810 vs->vs_rebuild_processed += psize; 4811 } 4812 4813 if (flags & ZIO_FLAG_SELF_HEAL) 4814 vs->vs_self_healed += psize; 4815 } 4816 4817 /* 4818 * The bytes/ops/histograms are recorded at the leaf level and 4819 * aggregated into the higher level vdevs in vdev_get_stats(). 4820 */ 4821 if (vd->vdev_ops->vdev_op_leaf && 4822 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) { 4823 zio_type_t vs_type = type; 4824 zio_priority_t priority = zio->io_priority; 4825 4826 /* 4827 * TRIM ops and bytes are reported to user space as 4828 * ZIO_TYPE_IOCTL. This is done to preserve the 4829 * vdev_stat_t structure layout for user space. 4830 */ 4831 if (type == ZIO_TYPE_TRIM) 4832 vs_type = ZIO_TYPE_IOCTL; 4833 4834 /* 4835 * Solely for the purposes of 'zpool iostat -lqrw' 4836 * reporting use the priority to categorize the IO. 4837 * Only the following are reported to user space: 4838 * 4839 * ZIO_PRIORITY_SYNC_READ, 4840 * ZIO_PRIORITY_SYNC_WRITE, 4841 * ZIO_PRIORITY_ASYNC_READ, 4842 * ZIO_PRIORITY_ASYNC_WRITE, 4843 * ZIO_PRIORITY_SCRUB, 4844 * ZIO_PRIORITY_TRIM, 4845 * ZIO_PRIORITY_REBUILD. 4846 */ 4847 if (priority == ZIO_PRIORITY_INITIALIZING) { 4848 ASSERT3U(type, ==, ZIO_TYPE_WRITE); 4849 priority = ZIO_PRIORITY_ASYNC_WRITE; 4850 } else if (priority == ZIO_PRIORITY_REMOVAL) { 4851 priority = ((type == ZIO_TYPE_WRITE) ? 4852 ZIO_PRIORITY_ASYNC_WRITE : 4853 ZIO_PRIORITY_ASYNC_READ); 4854 } 4855 4856 vs->vs_ops[vs_type]++; 4857 vs->vs_bytes[vs_type] += psize; 4858 4859 if (flags & ZIO_FLAG_DELEGATED) { 4860 vsx->vsx_agg_histo[priority] 4861 [RQ_HISTO(zio->io_size)]++; 4862 } else { 4863 vsx->vsx_ind_histo[priority] 4864 [RQ_HISTO(zio->io_size)]++; 4865 } 4866 4867 if (zio->io_delta && zio->io_delay) { 4868 vsx->vsx_queue_histo[priority] 4869 [L_HISTO(zio->io_delta - zio->io_delay)]++; 4870 vsx->vsx_disk_histo[type] 4871 [L_HISTO(zio->io_delay)]++; 4872 vsx->vsx_total_histo[type] 4873 [L_HISTO(zio->io_delta)]++; 4874 } 4875 } 4876 4877 mutex_exit(&vd->vdev_stat_lock); 4878 return; 4879 } 4880 4881 if (flags & ZIO_FLAG_SPECULATIVE) 4882 return; 4883 4884 /* 4885 * If this is an I/O error that is going to be retried, then ignore the 4886 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 4887 * hard errors, when in reality they can happen for any number of 4888 * innocuous reasons (bus resets, MPxIO link failure, etc). 4889 */ 4890 if (zio->io_error == EIO && 4891 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 4892 return; 4893 4894 /* 4895 * Intent logs writes won't propagate their error to the root 4896 * I/O so don't mark these types of failures as pool-level 4897 * errors. 4898 */ 4899 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 4900 return; 4901 4902 if (type == ZIO_TYPE_WRITE && txg != 0 && 4903 (!(flags & ZIO_FLAG_IO_REPAIR) || 4904 (flags & ZIO_FLAG_SCAN_THREAD) || 4905 spa->spa_claiming)) { 4906 /* 4907 * This is either a normal write (not a repair), or it's 4908 * a repair induced by the scrub thread, or it's a repair 4909 * made by zil_claim() during spa_load() in the first txg. 4910 * In the normal case, we commit the DTL change in the same 4911 * txg as the block was born. In the scrub-induced repair 4912 * case, we know that scrubs run in first-pass syncing context, 4913 * so we commit the DTL change in spa_syncing_txg(spa). 4914 * In the zil_claim() case, we commit in spa_first_txg(spa). 4915 * 4916 * We currently do not make DTL entries for failed spontaneous 4917 * self-healing writes triggered by normal (non-scrubbing) 4918 * reads, because we have no transactional context in which to 4919 * do so -- and it's not clear that it'd be desirable anyway. 4920 */ 4921 if (vd->vdev_ops->vdev_op_leaf) { 4922 uint64_t commit_txg = txg; 4923 if (flags & ZIO_FLAG_SCAN_THREAD) { 4924 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 4925 ASSERT(spa_sync_pass(spa) == 1); 4926 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 4927 commit_txg = spa_syncing_txg(spa); 4928 } else if (spa->spa_claiming) { 4929 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 4930 commit_txg = spa_first_txg(spa); 4931 } 4932 ASSERT(commit_txg >= spa_syncing_txg(spa)); 4933 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 4934 return; 4935 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4936 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 4937 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 4938 } 4939 if (vd != rvd) 4940 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 4941 } 4942 } 4943 4944 int64_t 4945 vdev_deflated_space(vdev_t *vd, int64_t space) 4946 { 4947 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0); 4948 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 4949 4950 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio); 4951 } 4952 4953 /* 4954 * Update the in-core space usage stats for this vdev, its metaslab class, 4955 * and the root vdev. 4956 */ 4957 void 4958 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 4959 int64_t space_delta) 4960 { 4961 (void) defer_delta; 4962 int64_t dspace_delta; 4963 spa_t *spa = vd->vdev_spa; 4964 vdev_t *rvd = spa->spa_root_vdev; 4965 4966 ASSERT(vd == vd->vdev_top); 4967 4968 /* 4969 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 4970 * factor. We must calculate this here and not at the root vdev 4971 * because the root vdev's psize-to-asize is simply the max of its 4972 * children's, thus not accurate enough for us. 4973 */ 4974 dspace_delta = vdev_deflated_space(vd, space_delta); 4975 4976 mutex_enter(&vd->vdev_stat_lock); 4977 /* ensure we won't underflow */ 4978 if (alloc_delta < 0) { 4979 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta); 4980 } 4981 4982 vd->vdev_stat.vs_alloc += alloc_delta; 4983 vd->vdev_stat.vs_space += space_delta; 4984 vd->vdev_stat.vs_dspace += dspace_delta; 4985 mutex_exit(&vd->vdev_stat_lock); 4986 4987 /* every class but log contributes to root space stats */ 4988 if (vd->vdev_mg != NULL && !vd->vdev_islog) { 4989 ASSERT(!vd->vdev_isl2cache); 4990 mutex_enter(&rvd->vdev_stat_lock); 4991 rvd->vdev_stat.vs_alloc += alloc_delta; 4992 rvd->vdev_stat.vs_space += space_delta; 4993 rvd->vdev_stat.vs_dspace += dspace_delta; 4994 mutex_exit(&rvd->vdev_stat_lock); 4995 } 4996 /* Note: metaslab_class_space_update moved to metaslab_space_update */ 4997 } 4998 4999 /* 5000 * Mark a top-level vdev's config as dirty, placing it on the dirty list 5001 * so that it will be written out next time the vdev configuration is synced. 5002 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 5003 */ 5004 void 5005 vdev_config_dirty(vdev_t *vd) 5006 { 5007 spa_t *spa = vd->vdev_spa; 5008 vdev_t *rvd = spa->spa_root_vdev; 5009 int c; 5010 5011 ASSERT(spa_writeable(spa)); 5012 5013 /* 5014 * If this is an aux vdev (as with l2cache and spare devices), then we 5015 * update the vdev config manually and set the sync flag. 5016 */ 5017 if (vd->vdev_aux != NULL) { 5018 spa_aux_vdev_t *sav = vd->vdev_aux; 5019 nvlist_t **aux; 5020 uint_t naux; 5021 5022 for (c = 0; c < sav->sav_count; c++) { 5023 if (sav->sav_vdevs[c] == vd) 5024 break; 5025 } 5026 5027 if (c == sav->sav_count) { 5028 /* 5029 * We're being removed. There's nothing more to do. 5030 */ 5031 ASSERT(sav->sav_sync == B_TRUE); 5032 return; 5033 } 5034 5035 sav->sav_sync = B_TRUE; 5036 5037 if (nvlist_lookup_nvlist_array(sav->sav_config, 5038 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 5039 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 5040 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 5041 } 5042 5043 ASSERT(c < naux); 5044 5045 /* 5046 * Setting the nvlist in the middle if the array is a little 5047 * sketchy, but it will work. 5048 */ 5049 nvlist_free(aux[c]); 5050 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 5051 5052 return; 5053 } 5054 5055 /* 5056 * The dirty list is protected by the SCL_CONFIG lock. The caller 5057 * must either hold SCL_CONFIG as writer, or must be the sync thread 5058 * (which holds SCL_CONFIG as reader). There's only one sync thread, 5059 * so this is sufficient to ensure mutual exclusion. 5060 */ 5061 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 5062 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5063 spa_config_held(spa, SCL_CONFIG, RW_READER))); 5064 5065 if (vd == rvd) { 5066 for (c = 0; c < rvd->vdev_children; c++) 5067 vdev_config_dirty(rvd->vdev_child[c]); 5068 } else { 5069 ASSERT(vd == vd->vdev_top); 5070 5071 if (!list_link_active(&vd->vdev_config_dirty_node) && 5072 vdev_is_concrete(vd)) { 5073 list_insert_head(&spa->spa_config_dirty_list, vd); 5074 } 5075 } 5076 } 5077 5078 void 5079 vdev_config_clean(vdev_t *vd) 5080 { 5081 spa_t *spa = vd->vdev_spa; 5082 5083 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 5084 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5085 spa_config_held(spa, SCL_CONFIG, RW_READER))); 5086 5087 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 5088 list_remove(&spa->spa_config_dirty_list, vd); 5089 } 5090 5091 /* 5092 * Mark a top-level vdev's state as dirty, so that the next pass of 5093 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 5094 * the state changes from larger config changes because they require 5095 * much less locking, and are often needed for administrative actions. 5096 */ 5097 void 5098 vdev_state_dirty(vdev_t *vd) 5099 { 5100 spa_t *spa = vd->vdev_spa; 5101 5102 ASSERT(spa_writeable(spa)); 5103 ASSERT(vd == vd->vdev_top); 5104 5105 /* 5106 * The state list is protected by the SCL_STATE lock. The caller 5107 * must either hold SCL_STATE as writer, or must be the sync thread 5108 * (which holds SCL_STATE as reader). There's only one sync thread, 5109 * so this is sufficient to ensure mutual exclusion. 5110 */ 5111 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 5112 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5113 spa_config_held(spa, SCL_STATE, RW_READER))); 5114 5115 if (!list_link_active(&vd->vdev_state_dirty_node) && 5116 vdev_is_concrete(vd)) 5117 list_insert_head(&spa->spa_state_dirty_list, vd); 5118 } 5119 5120 void 5121 vdev_state_clean(vdev_t *vd) 5122 { 5123 spa_t *spa = vd->vdev_spa; 5124 5125 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 5126 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5127 spa_config_held(spa, SCL_STATE, RW_READER))); 5128 5129 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 5130 list_remove(&spa->spa_state_dirty_list, vd); 5131 } 5132 5133 /* 5134 * Propagate vdev state up from children to parent. 5135 */ 5136 void 5137 vdev_propagate_state(vdev_t *vd) 5138 { 5139 spa_t *spa = vd->vdev_spa; 5140 vdev_t *rvd = spa->spa_root_vdev; 5141 int degraded = 0, faulted = 0; 5142 int corrupted = 0; 5143 vdev_t *child; 5144 5145 if (vd->vdev_children > 0) { 5146 for (int c = 0; c < vd->vdev_children; c++) { 5147 child = vd->vdev_child[c]; 5148 5149 /* 5150 * Don't factor holes or indirect vdevs into the 5151 * decision. 5152 */ 5153 if (!vdev_is_concrete(child)) 5154 continue; 5155 5156 if (!vdev_readable(child) || 5157 (!vdev_writeable(child) && spa_writeable(spa))) { 5158 /* 5159 * Root special: if there is a top-level log 5160 * device, treat the root vdev as if it were 5161 * degraded. 5162 */ 5163 if (child->vdev_islog && vd == rvd) 5164 degraded++; 5165 else 5166 faulted++; 5167 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 5168 degraded++; 5169 } 5170 5171 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 5172 corrupted++; 5173 } 5174 5175 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 5176 5177 /* 5178 * Root special: if there is a top-level vdev that cannot be 5179 * opened due to corrupted metadata, then propagate the root 5180 * vdev's aux state as 'corrupt' rather than 'insufficient 5181 * replicas'. 5182 */ 5183 if (corrupted && vd == rvd && 5184 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 5185 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 5186 VDEV_AUX_CORRUPT_DATA); 5187 } 5188 5189 if (vd->vdev_parent) 5190 vdev_propagate_state(vd->vdev_parent); 5191 } 5192 5193 /* 5194 * Set a vdev's state. If this is during an open, we don't update the parent 5195 * state, because we're in the process of opening children depth-first. 5196 * Otherwise, we propagate the change to the parent. 5197 * 5198 * If this routine places a device in a faulted state, an appropriate ereport is 5199 * generated. 5200 */ 5201 void 5202 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 5203 { 5204 uint64_t save_state; 5205 spa_t *spa = vd->vdev_spa; 5206 5207 if (state == vd->vdev_state) { 5208 /* 5209 * Since vdev_offline() code path is already in an offline 5210 * state we can miss a statechange event to OFFLINE. Check 5211 * the previous state to catch this condition. 5212 */ 5213 if (vd->vdev_ops->vdev_op_leaf && 5214 (state == VDEV_STATE_OFFLINE) && 5215 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) { 5216 /* post an offline state change */ 5217 zfs_post_state_change(spa, vd, vd->vdev_prevstate); 5218 } 5219 vd->vdev_stat.vs_aux = aux; 5220 return; 5221 } 5222 5223 save_state = vd->vdev_state; 5224 5225 vd->vdev_state = state; 5226 vd->vdev_stat.vs_aux = aux; 5227 5228 /* 5229 * If we are setting the vdev state to anything but an open state, then 5230 * always close the underlying device unless the device has requested 5231 * a delayed close (i.e. we're about to remove or fault the device). 5232 * Otherwise, we keep accessible but invalid devices open forever. 5233 * We don't call vdev_close() itself, because that implies some extra 5234 * checks (offline, etc) that we don't want here. This is limited to 5235 * leaf devices, because otherwise closing the device will affect other 5236 * children. 5237 */ 5238 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 5239 vd->vdev_ops->vdev_op_leaf) 5240 vd->vdev_ops->vdev_op_close(vd); 5241 5242 if (vd->vdev_removed && 5243 state == VDEV_STATE_CANT_OPEN && 5244 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 5245 /* 5246 * If the previous state is set to VDEV_STATE_REMOVED, then this 5247 * device was previously marked removed and someone attempted to 5248 * reopen it. If this failed due to a nonexistent device, then 5249 * keep the device in the REMOVED state. We also let this be if 5250 * it is one of our special test online cases, which is only 5251 * attempting to online the device and shouldn't generate an FMA 5252 * fault. 5253 */ 5254 vd->vdev_state = VDEV_STATE_REMOVED; 5255 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 5256 } else if (state == VDEV_STATE_REMOVED) { 5257 vd->vdev_removed = B_TRUE; 5258 } else if (state == VDEV_STATE_CANT_OPEN) { 5259 /* 5260 * If we fail to open a vdev during an import or recovery, we 5261 * mark it as "not available", which signifies that it was 5262 * never there to begin with. Failure to open such a device 5263 * is not considered an error. 5264 */ 5265 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 5266 spa_load_state(spa) == SPA_LOAD_RECOVER) && 5267 vd->vdev_ops->vdev_op_leaf) 5268 vd->vdev_not_present = 1; 5269 5270 /* 5271 * Post the appropriate ereport. If the 'prevstate' field is 5272 * set to something other than VDEV_STATE_UNKNOWN, it indicates 5273 * that this is part of a vdev_reopen(). In this case, we don't 5274 * want to post the ereport if the device was already in the 5275 * CANT_OPEN state beforehand. 5276 * 5277 * If the 'checkremove' flag is set, then this is an attempt to 5278 * online the device in response to an insertion event. If we 5279 * hit this case, then we have detected an insertion event for a 5280 * faulted or offline device that wasn't in the removed state. 5281 * In this scenario, we don't post an ereport because we are 5282 * about to replace the device, or attempt an online with 5283 * vdev_forcefault, which will generate the fault for us. 5284 */ 5285 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 5286 !vd->vdev_not_present && !vd->vdev_checkremove && 5287 vd != spa->spa_root_vdev) { 5288 const char *class; 5289 5290 switch (aux) { 5291 case VDEV_AUX_OPEN_FAILED: 5292 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 5293 break; 5294 case VDEV_AUX_CORRUPT_DATA: 5295 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 5296 break; 5297 case VDEV_AUX_NO_REPLICAS: 5298 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 5299 break; 5300 case VDEV_AUX_BAD_GUID_SUM: 5301 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 5302 break; 5303 case VDEV_AUX_TOO_SMALL: 5304 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 5305 break; 5306 case VDEV_AUX_BAD_LABEL: 5307 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 5308 break; 5309 case VDEV_AUX_BAD_ASHIFT: 5310 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT; 5311 break; 5312 default: 5313 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 5314 } 5315 5316 (void) zfs_ereport_post(class, spa, vd, NULL, NULL, 5317 save_state); 5318 } 5319 5320 /* Erase any notion of persistent removed state */ 5321 vd->vdev_removed = B_FALSE; 5322 } else { 5323 vd->vdev_removed = B_FALSE; 5324 } 5325 5326 /* 5327 * Notify ZED of any significant state-change on a leaf vdev. 5328 * 5329 */ 5330 if (vd->vdev_ops->vdev_op_leaf) { 5331 /* preserve original state from a vdev_reopen() */ 5332 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) && 5333 (vd->vdev_prevstate != vd->vdev_state) && 5334 (save_state <= VDEV_STATE_CLOSED)) 5335 save_state = vd->vdev_prevstate; 5336 5337 /* filter out state change due to initial vdev_open */ 5338 if (save_state > VDEV_STATE_CLOSED) 5339 zfs_post_state_change(spa, vd, save_state); 5340 } 5341 5342 if (!isopen && vd->vdev_parent) 5343 vdev_propagate_state(vd->vdev_parent); 5344 } 5345 5346 boolean_t 5347 vdev_children_are_offline(vdev_t *vd) 5348 { 5349 ASSERT(!vd->vdev_ops->vdev_op_leaf); 5350 5351 for (uint64_t i = 0; i < vd->vdev_children; i++) { 5352 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) 5353 return (B_FALSE); 5354 } 5355 5356 return (B_TRUE); 5357 } 5358 5359 /* 5360 * Check the vdev configuration to ensure that it's capable of supporting 5361 * a root pool. We do not support partial configuration. 5362 */ 5363 boolean_t 5364 vdev_is_bootable(vdev_t *vd) 5365 { 5366 if (!vd->vdev_ops->vdev_op_leaf) { 5367 const char *vdev_type = vd->vdev_ops->vdev_op_type; 5368 5369 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) 5370 return (B_FALSE); 5371 } 5372 5373 for (int c = 0; c < vd->vdev_children; c++) { 5374 if (!vdev_is_bootable(vd->vdev_child[c])) 5375 return (B_FALSE); 5376 } 5377 return (B_TRUE); 5378 } 5379 5380 boolean_t 5381 vdev_is_concrete(vdev_t *vd) 5382 { 5383 vdev_ops_t *ops = vd->vdev_ops; 5384 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || 5385 ops == &vdev_missing_ops || ops == &vdev_root_ops) { 5386 return (B_FALSE); 5387 } else { 5388 return (B_TRUE); 5389 } 5390 } 5391 5392 /* 5393 * Determine if a log device has valid content. If the vdev was 5394 * removed or faulted in the MOS config then we know that 5395 * the content on the log device has already been written to the pool. 5396 */ 5397 boolean_t 5398 vdev_log_state_valid(vdev_t *vd) 5399 { 5400 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 5401 !vd->vdev_removed) 5402 return (B_TRUE); 5403 5404 for (int c = 0; c < vd->vdev_children; c++) 5405 if (vdev_log_state_valid(vd->vdev_child[c])) 5406 return (B_TRUE); 5407 5408 return (B_FALSE); 5409 } 5410 5411 /* 5412 * Expand a vdev if possible. 5413 */ 5414 void 5415 vdev_expand(vdev_t *vd, uint64_t txg) 5416 { 5417 ASSERT(vd->vdev_top == vd); 5418 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5419 ASSERT(vdev_is_concrete(vd)); 5420 5421 vdev_set_deflate_ratio(vd); 5422 5423 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && 5424 vdev_is_concrete(vd)) { 5425 vdev_metaslab_group_create(vd); 5426 VERIFY(vdev_metaslab_init(vd, txg) == 0); 5427 vdev_config_dirty(vd); 5428 } 5429 } 5430 5431 /* 5432 * Split a vdev. 5433 */ 5434 void 5435 vdev_split(vdev_t *vd) 5436 { 5437 vdev_t *cvd, *pvd = vd->vdev_parent; 5438 5439 VERIFY3U(pvd->vdev_children, >, 1); 5440 5441 vdev_remove_child(pvd, vd); 5442 vdev_compact_children(pvd); 5443 5444 ASSERT3P(pvd->vdev_child, !=, NULL); 5445 5446 cvd = pvd->vdev_child[0]; 5447 if (pvd->vdev_children == 1) { 5448 vdev_remove_parent(cvd); 5449 cvd->vdev_splitting = B_TRUE; 5450 } 5451 vdev_propagate_state(cvd); 5452 } 5453 5454 void 5455 vdev_deadman(vdev_t *vd, const char *tag) 5456 { 5457 for (int c = 0; c < vd->vdev_children; c++) { 5458 vdev_t *cvd = vd->vdev_child[c]; 5459 5460 vdev_deadman(cvd, tag); 5461 } 5462 5463 if (vd->vdev_ops->vdev_op_leaf) { 5464 vdev_queue_t *vq = &vd->vdev_queue; 5465 5466 mutex_enter(&vq->vq_lock); 5467 if (avl_numnodes(&vq->vq_active_tree) > 0) { 5468 spa_t *spa = vd->vdev_spa; 5469 zio_t *fio; 5470 uint64_t delta; 5471 5472 zfs_dbgmsg("slow vdev: %s has %lu active IOs", 5473 vd->vdev_path, avl_numnodes(&vq->vq_active_tree)); 5474 5475 /* 5476 * Look at the head of all the pending queues, 5477 * if any I/O has been outstanding for longer than 5478 * the spa_deadman_synctime invoke the deadman logic. 5479 */ 5480 fio = avl_first(&vq->vq_active_tree); 5481 delta = gethrtime() - fio->io_timestamp; 5482 if (delta > spa_deadman_synctime(spa)) 5483 zio_deadman(fio, tag); 5484 } 5485 mutex_exit(&vq->vq_lock); 5486 } 5487 } 5488 5489 void 5490 vdev_defer_resilver(vdev_t *vd) 5491 { 5492 ASSERT(vd->vdev_ops->vdev_op_leaf); 5493 5494 vd->vdev_resilver_deferred = B_TRUE; 5495 vd->vdev_spa->spa_resilver_deferred = B_TRUE; 5496 } 5497 5498 /* 5499 * Clears the resilver deferred flag on all leaf devs under vd. Returns 5500 * B_TRUE if we have devices that need to be resilvered and are available to 5501 * accept resilver I/Os. 5502 */ 5503 boolean_t 5504 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx) 5505 { 5506 boolean_t resilver_needed = B_FALSE; 5507 spa_t *spa = vd->vdev_spa; 5508 5509 for (int c = 0; c < vd->vdev_children; c++) { 5510 vdev_t *cvd = vd->vdev_child[c]; 5511 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx); 5512 } 5513 5514 if (vd == spa->spa_root_vdev && 5515 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) { 5516 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 5517 vdev_config_dirty(vd); 5518 spa->spa_resilver_deferred = B_FALSE; 5519 return (resilver_needed); 5520 } 5521 5522 if (!vdev_is_concrete(vd) || vd->vdev_aux || 5523 !vd->vdev_ops->vdev_op_leaf) 5524 return (resilver_needed); 5525 5526 vd->vdev_resilver_deferred = B_FALSE; 5527 5528 return (!vdev_is_dead(vd) && !vd->vdev_offline && 5529 vdev_resilver_needed(vd, NULL, NULL)); 5530 } 5531 5532 boolean_t 5533 vdev_xlate_is_empty(range_seg64_t *rs) 5534 { 5535 return (rs->rs_start == rs->rs_end); 5536 } 5537 5538 /* 5539 * Translate a logical range to the first contiguous physical range for the 5540 * specified vdev_t. This function is initially called with a leaf vdev and 5541 * will walk each parent vdev until it reaches a top-level vdev. Once the 5542 * top-level is reached the physical range is initialized and the recursive 5543 * function begins to unwind. As it unwinds it calls the parent's vdev 5544 * specific translation function to do the real conversion. 5545 */ 5546 void 5547 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 5548 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 5549 { 5550 /* 5551 * Walk up the vdev tree 5552 */ 5553 if (vd != vd->vdev_top) { 5554 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs, 5555 remain_rs); 5556 } else { 5557 /* 5558 * We've reached the top-level vdev, initialize the physical 5559 * range to the logical range and set an empty remaining 5560 * range then start to unwind. 5561 */ 5562 physical_rs->rs_start = logical_rs->rs_start; 5563 physical_rs->rs_end = logical_rs->rs_end; 5564 5565 remain_rs->rs_start = logical_rs->rs_start; 5566 remain_rs->rs_end = logical_rs->rs_start; 5567 5568 return; 5569 } 5570 5571 vdev_t *pvd = vd->vdev_parent; 5572 ASSERT3P(pvd, !=, NULL); 5573 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL); 5574 5575 /* 5576 * As this recursive function unwinds, translate the logical 5577 * range into its physical and any remaining components by calling 5578 * the vdev specific translate function. 5579 */ 5580 range_seg64_t intermediate = { 0 }; 5581 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs); 5582 5583 physical_rs->rs_start = intermediate.rs_start; 5584 physical_rs->rs_end = intermediate.rs_end; 5585 } 5586 5587 void 5588 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs, 5589 vdev_xlate_func_t *func, void *arg) 5590 { 5591 range_seg64_t iter_rs = *logical_rs; 5592 range_seg64_t physical_rs; 5593 range_seg64_t remain_rs; 5594 5595 while (!vdev_xlate_is_empty(&iter_rs)) { 5596 5597 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs); 5598 5599 /* 5600 * With raidz and dRAID, it's possible that the logical range 5601 * does not live on this leaf vdev. Only when there is a non- 5602 * zero physical size call the provided function. 5603 */ 5604 if (!vdev_xlate_is_empty(&physical_rs)) 5605 func(arg, &physical_rs); 5606 5607 iter_rs = remain_rs; 5608 } 5609 } 5610 5611 static char * 5612 vdev_name(vdev_t *vd, char *buf, int buflen) 5613 { 5614 if (vd->vdev_path == NULL) { 5615 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) { 5616 strlcpy(buf, vd->vdev_spa->spa_name, buflen); 5617 } else if (!vd->vdev_ops->vdev_op_leaf) { 5618 snprintf(buf, buflen, "%s-%llu", 5619 vd->vdev_ops->vdev_op_type, 5620 (u_longlong_t)vd->vdev_id); 5621 } 5622 } else { 5623 strlcpy(buf, vd->vdev_path, buflen); 5624 } 5625 return (buf); 5626 } 5627 5628 /* 5629 * Look at the vdev tree and determine whether any devices are currently being 5630 * replaced. 5631 */ 5632 boolean_t 5633 vdev_replace_in_progress(vdev_t *vdev) 5634 { 5635 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0); 5636 5637 if (vdev->vdev_ops == &vdev_replacing_ops) 5638 return (B_TRUE); 5639 5640 /* 5641 * A 'spare' vdev indicates that we have a replace in progress, unless 5642 * it has exactly two children, and the second, the hot spare, has 5643 * finished being resilvered. 5644 */ 5645 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 || 5646 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING))) 5647 return (B_TRUE); 5648 5649 for (int i = 0; i < vdev->vdev_children; i++) { 5650 if (vdev_replace_in_progress(vdev->vdev_child[i])) 5651 return (B_TRUE); 5652 } 5653 5654 return (B_FALSE); 5655 } 5656 5657 /* 5658 * Add a (source=src, propname=propval) list to an nvlist. 5659 */ 5660 static void 5661 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval, 5662 uint64_t intval, zprop_source_t src) 5663 { 5664 nvlist_t *propval; 5665 5666 propval = fnvlist_alloc(); 5667 fnvlist_add_uint64(propval, ZPROP_SOURCE, src); 5668 5669 if (strval != NULL) 5670 fnvlist_add_string(propval, ZPROP_VALUE, strval); 5671 else 5672 fnvlist_add_uint64(propval, ZPROP_VALUE, intval); 5673 5674 fnvlist_add_nvlist(nvl, propname, propval); 5675 nvlist_free(propval); 5676 } 5677 5678 static void 5679 vdev_props_set_sync(void *arg, dmu_tx_t *tx) 5680 { 5681 vdev_t *vd; 5682 nvlist_t *nvp = arg; 5683 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5684 objset_t *mos = spa->spa_meta_objset; 5685 nvpair_t *elem = NULL; 5686 uint64_t vdev_guid; 5687 nvlist_t *nvprops; 5688 5689 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV); 5690 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS); 5691 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE); 5692 5693 /* this vdev could get removed while waiting for this sync task */ 5694 if (vd == NULL) 5695 return; 5696 5697 mutex_enter(&spa->spa_props_lock); 5698 5699 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5700 uint64_t intval, objid = 0; 5701 const char *strval; 5702 vdev_prop_t prop; 5703 const char *propname = nvpair_name(elem); 5704 zprop_type_t proptype; 5705 5706 /* 5707 * Set vdev property values in the vdev props mos object. 5708 */ 5709 if (vd->vdev_root_zap != 0) { 5710 objid = vd->vdev_root_zap; 5711 } else if (vd->vdev_top_zap != 0) { 5712 objid = vd->vdev_top_zap; 5713 } else if (vd->vdev_leaf_zap != 0) { 5714 objid = vd->vdev_leaf_zap; 5715 } else { 5716 /* 5717 * XXX: implement vdev_props_set_check() 5718 */ 5719 panic("vdev not root/top/leaf"); 5720 } 5721 5722 switch (prop = vdev_name_to_prop(propname)) { 5723 case VDEV_PROP_USERPROP: 5724 if (vdev_prop_user(propname)) { 5725 strval = fnvpair_value_string(elem); 5726 if (strlen(strval) == 0) { 5727 /* remove the property if value == "" */ 5728 (void) zap_remove(mos, objid, propname, 5729 tx); 5730 } else { 5731 VERIFY0(zap_update(mos, objid, propname, 5732 1, strlen(strval) + 1, strval, tx)); 5733 } 5734 spa_history_log_internal(spa, "vdev set", tx, 5735 "vdev_guid=%llu: %s=%s", 5736 (u_longlong_t)vdev_guid, nvpair_name(elem), 5737 strval); 5738 } 5739 break; 5740 default: 5741 /* normalize the property name */ 5742 propname = vdev_prop_to_name(prop); 5743 proptype = vdev_prop_get_type(prop); 5744 5745 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5746 ASSERT(proptype == PROP_TYPE_STRING); 5747 strval = fnvpair_value_string(elem); 5748 VERIFY0(zap_update(mos, objid, propname, 5749 1, strlen(strval) + 1, strval, tx)); 5750 spa_history_log_internal(spa, "vdev set", tx, 5751 "vdev_guid=%llu: %s=%s", 5752 (u_longlong_t)vdev_guid, nvpair_name(elem), 5753 strval); 5754 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5755 intval = fnvpair_value_uint64(elem); 5756 5757 if (proptype == PROP_TYPE_INDEX) { 5758 const char *unused; 5759 VERIFY0(vdev_prop_index_to_string( 5760 prop, intval, &unused)); 5761 } 5762 VERIFY0(zap_update(mos, objid, propname, 5763 sizeof (uint64_t), 1, &intval, tx)); 5764 spa_history_log_internal(spa, "vdev set", tx, 5765 "vdev_guid=%llu: %s=%lld", 5766 (u_longlong_t)vdev_guid, 5767 nvpair_name(elem), (longlong_t)intval); 5768 } else { 5769 panic("invalid vdev property type %u", 5770 nvpair_type(elem)); 5771 } 5772 } 5773 5774 } 5775 5776 mutex_exit(&spa->spa_props_lock); 5777 } 5778 5779 int 5780 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 5781 { 5782 spa_t *spa = vd->vdev_spa; 5783 nvpair_t *elem = NULL; 5784 uint64_t vdev_guid; 5785 nvlist_t *nvprops; 5786 int error = 0; 5787 5788 ASSERT(vd != NULL); 5789 5790 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV, 5791 &vdev_guid) != 0) 5792 return (SET_ERROR(EINVAL)); 5793 5794 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS, 5795 &nvprops) != 0) 5796 return (SET_ERROR(EINVAL)); 5797 5798 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL) 5799 return (SET_ERROR(EINVAL)); 5800 5801 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5802 const char *propname = nvpair_name(elem); 5803 vdev_prop_t prop = vdev_name_to_prop(propname); 5804 uint64_t intval = 0; 5805 const char *strval = NULL; 5806 5807 if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) { 5808 error = EINVAL; 5809 goto end; 5810 } 5811 5812 if (vdev_prop_readonly(prop)) { 5813 error = EROFS; 5814 goto end; 5815 } 5816 5817 /* Special Processing */ 5818 switch (prop) { 5819 case VDEV_PROP_PATH: 5820 if (vd->vdev_path == NULL) { 5821 error = EROFS; 5822 break; 5823 } 5824 if (nvpair_value_string(elem, &strval) != 0) { 5825 error = EINVAL; 5826 break; 5827 } 5828 /* New path must start with /dev/ */ 5829 if (strncmp(strval, "/dev/", 5)) { 5830 error = EINVAL; 5831 break; 5832 } 5833 error = spa_vdev_setpath(spa, vdev_guid, strval); 5834 break; 5835 case VDEV_PROP_ALLOCATING: 5836 if (nvpair_value_uint64(elem, &intval) != 0) { 5837 error = EINVAL; 5838 break; 5839 } 5840 if (intval != vd->vdev_noalloc) 5841 break; 5842 if (intval == 0) 5843 error = spa_vdev_noalloc(spa, vdev_guid); 5844 else 5845 error = spa_vdev_alloc(spa, vdev_guid); 5846 break; 5847 case VDEV_PROP_FAILFAST: 5848 if (nvpair_value_uint64(elem, &intval) != 0) { 5849 error = EINVAL; 5850 break; 5851 } 5852 vd->vdev_failfast = intval & 1; 5853 break; 5854 case VDEV_PROP_CHECKSUM_N: 5855 if (nvpair_value_uint64(elem, &intval) != 0) { 5856 error = EINVAL; 5857 break; 5858 } 5859 vd->vdev_checksum_n = intval; 5860 break; 5861 case VDEV_PROP_CHECKSUM_T: 5862 if (nvpair_value_uint64(elem, &intval) != 0) { 5863 error = EINVAL; 5864 break; 5865 } 5866 vd->vdev_checksum_t = intval; 5867 break; 5868 case VDEV_PROP_IO_N: 5869 if (nvpair_value_uint64(elem, &intval) != 0) { 5870 error = EINVAL; 5871 break; 5872 } 5873 vd->vdev_io_n = intval; 5874 break; 5875 case VDEV_PROP_IO_T: 5876 if (nvpair_value_uint64(elem, &intval) != 0) { 5877 error = EINVAL; 5878 break; 5879 } 5880 vd->vdev_io_t = intval; 5881 break; 5882 default: 5883 /* Most processing is done in vdev_props_set_sync */ 5884 break; 5885 } 5886 end: 5887 if (error != 0) { 5888 intval = error; 5889 vdev_prop_add_list(outnvl, propname, strval, intval, 0); 5890 return (error); 5891 } 5892 } 5893 5894 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync, 5895 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 5896 } 5897 5898 int 5899 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 5900 { 5901 spa_t *spa = vd->vdev_spa; 5902 objset_t *mos = spa->spa_meta_objset; 5903 int err = 0; 5904 uint64_t objid; 5905 uint64_t vdev_guid; 5906 nvpair_t *elem = NULL; 5907 nvlist_t *nvprops = NULL; 5908 uint64_t intval = 0; 5909 char *strval = NULL; 5910 const char *propname = NULL; 5911 vdev_prop_t prop; 5912 5913 ASSERT(vd != NULL); 5914 ASSERT(mos != NULL); 5915 5916 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV, 5917 &vdev_guid) != 0) 5918 return (SET_ERROR(EINVAL)); 5919 5920 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops); 5921 5922 if (vd->vdev_root_zap != 0) { 5923 objid = vd->vdev_root_zap; 5924 } else if (vd->vdev_top_zap != 0) { 5925 objid = vd->vdev_top_zap; 5926 } else if (vd->vdev_leaf_zap != 0) { 5927 objid = vd->vdev_leaf_zap; 5928 } else { 5929 return (SET_ERROR(EINVAL)); 5930 } 5931 ASSERT(objid != 0); 5932 5933 mutex_enter(&spa->spa_props_lock); 5934 5935 if (nvprops != NULL) { 5936 char namebuf[64] = { 0 }; 5937 5938 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5939 intval = 0; 5940 strval = NULL; 5941 propname = nvpair_name(elem); 5942 prop = vdev_name_to_prop(propname); 5943 zprop_source_t src = ZPROP_SRC_DEFAULT; 5944 uint64_t integer_size, num_integers; 5945 5946 switch (prop) { 5947 /* Special Read-only Properties */ 5948 case VDEV_PROP_NAME: 5949 strval = vdev_name(vd, namebuf, 5950 sizeof (namebuf)); 5951 if (strval == NULL) 5952 continue; 5953 vdev_prop_add_list(outnvl, propname, strval, 0, 5954 ZPROP_SRC_NONE); 5955 continue; 5956 case VDEV_PROP_CAPACITY: 5957 /* percent used */ 5958 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 : 5959 (vd->vdev_stat.vs_alloc * 100 / 5960 vd->vdev_stat.vs_dspace); 5961 vdev_prop_add_list(outnvl, propname, NULL, 5962 intval, ZPROP_SRC_NONE); 5963 continue; 5964 case VDEV_PROP_STATE: 5965 vdev_prop_add_list(outnvl, propname, NULL, 5966 vd->vdev_state, ZPROP_SRC_NONE); 5967 continue; 5968 case VDEV_PROP_GUID: 5969 vdev_prop_add_list(outnvl, propname, NULL, 5970 vd->vdev_guid, ZPROP_SRC_NONE); 5971 continue; 5972 case VDEV_PROP_ASIZE: 5973 vdev_prop_add_list(outnvl, propname, NULL, 5974 vd->vdev_asize, ZPROP_SRC_NONE); 5975 continue; 5976 case VDEV_PROP_PSIZE: 5977 vdev_prop_add_list(outnvl, propname, NULL, 5978 vd->vdev_psize, ZPROP_SRC_NONE); 5979 continue; 5980 case VDEV_PROP_ASHIFT: 5981 vdev_prop_add_list(outnvl, propname, NULL, 5982 vd->vdev_ashift, ZPROP_SRC_NONE); 5983 continue; 5984 case VDEV_PROP_SIZE: 5985 vdev_prop_add_list(outnvl, propname, NULL, 5986 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE); 5987 continue; 5988 case VDEV_PROP_FREE: 5989 vdev_prop_add_list(outnvl, propname, NULL, 5990 vd->vdev_stat.vs_dspace - 5991 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 5992 continue; 5993 case VDEV_PROP_ALLOCATED: 5994 vdev_prop_add_list(outnvl, propname, NULL, 5995 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 5996 continue; 5997 case VDEV_PROP_EXPANDSZ: 5998 vdev_prop_add_list(outnvl, propname, NULL, 5999 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE); 6000 continue; 6001 case VDEV_PROP_FRAGMENTATION: 6002 vdev_prop_add_list(outnvl, propname, NULL, 6003 vd->vdev_stat.vs_fragmentation, 6004 ZPROP_SRC_NONE); 6005 continue; 6006 case VDEV_PROP_PARITY: 6007 vdev_prop_add_list(outnvl, propname, NULL, 6008 vdev_get_nparity(vd), ZPROP_SRC_NONE); 6009 continue; 6010 case VDEV_PROP_PATH: 6011 if (vd->vdev_path == NULL) 6012 continue; 6013 vdev_prop_add_list(outnvl, propname, 6014 vd->vdev_path, 0, ZPROP_SRC_NONE); 6015 continue; 6016 case VDEV_PROP_DEVID: 6017 if (vd->vdev_devid == NULL) 6018 continue; 6019 vdev_prop_add_list(outnvl, propname, 6020 vd->vdev_devid, 0, ZPROP_SRC_NONE); 6021 continue; 6022 case VDEV_PROP_PHYS_PATH: 6023 if (vd->vdev_physpath == NULL) 6024 continue; 6025 vdev_prop_add_list(outnvl, propname, 6026 vd->vdev_physpath, 0, ZPROP_SRC_NONE); 6027 continue; 6028 case VDEV_PROP_ENC_PATH: 6029 if (vd->vdev_enc_sysfs_path == NULL) 6030 continue; 6031 vdev_prop_add_list(outnvl, propname, 6032 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE); 6033 continue; 6034 case VDEV_PROP_FRU: 6035 if (vd->vdev_fru == NULL) 6036 continue; 6037 vdev_prop_add_list(outnvl, propname, 6038 vd->vdev_fru, 0, ZPROP_SRC_NONE); 6039 continue; 6040 case VDEV_PROP_PARENT: 6041 if (vd->vdev_parent != NULL) { 6042 strval = vdev_name(vd->vdev_parent, 6043 namebuf, sizeof (namebuf)); 6044 vdev_prop_add_list(outnvl, propname, 6045 strval, 0, ZPROP_SRC_NONE); 6046 } 6047 continue; 6048 case VDEV_PROP_CHILDREN: 6049 if (vd->vdev_children > 0) 6050 strval = kmem_zalloc(ZAP_MAXVALUELEN, 6051 KM_SLEEP); 6052 for (uint64_t i = 0; i < vd->vdev_children; 6053 i++) { 6054 const char *vname; 6055 6056 vname = vdev_name(vd->vdev_child[i], 6057 namebuf, sizeof (namebuf)); 6058 if (vname == NULL) 6059 vname = "(unknown)"; 6060 if (strlen(strval) > 0) 6061 strlcat(strval, ",", 6062 ZAP_MAXVALUELEN); 6063 strlcat(strval, vname, ZAP_MAXVALUELEN); 6064 } 6065 if (strval != NULL) { 6066 vdev_prop_add_list(outnvl, propname, 6067 strval, 0, ZPROP_SRC_NONE); 6068 kmem_free(strval, ZAP_MAXVALUELEN); 6069 } 6070 continue; 6071 case VDEV_PROP_NUMCHILDREN: 6072 vdev_prop_add_list(outnvl, propname, NULL, 6073 vd->vdev_children, ZPROP_SRC_NONE); 6074 continue; 6075 case VDEV_PROP_READ_ERRORS: 6076 vdev_prop_add_list(outnvl, propname, NULL, 6077 vd->vdev_stat.vs_read_errors, 6078 ZPROP_SRC_NONE); 6079 continue; 6080 case VDEV_PROP_WRITE_ERRORS: 6081 vdev_prop_add_list(outnvl, propname, NULL, 6082 vd->vdev_stat.vs_write_errors, 6083 ZPROP_SRC_NONE); 6084 continue; 6085 case VDEV_PROP_CHECKSUM_ERRORS: 6086 vdev_prop_add_list(outnvl, propname, NULL, 6087 vd->vdev_stat.vs_checksum_errors, 6088 ZPROP_SRC_NONE); 6089 continue; 6090 case VDEV_PROP_INITIALIZE_ERRORS: 6091 vdev_prop_add_list(outnvl, propname, NULL, 6092 vd->vdev_stat.vs_initialize_errors, 6093 ZPROP_SRC_NONE); 6094 continue; 6095 case VDEV_PROP_OPS_NULL: 6096 vdev_prop_add_list(outnvl, propname, NULL, 6097 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL], 6098 ZPROP_SRC_NONE); 6099 continue; 6100 case VDEV_PROP_OPS_READ: 6101 vdev_prop_add_list(outnvl, propname, NULL, 6102 vd->vdev_stat.vs_ops[ZIO_TYPE_READ], 6103 ZPROP_SRC_NONE); 6104 continue; 6105 case VDEV_PROP_OPS_WRITE: 6106 vdev_prop_add_list(outnvl, propname, NULL, 6107 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE], 6108 ZPROP_SRC_NONE); 6109 continue; 6110 case VDEV_PROP_OPS_FREE: 6111 vdev_prop_add_list(outnvl, propname, NULL, 6112 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE], 6113 ZPROP_SRC_NONE); 6114 continue; 6115 case VDEV_PROP_OPS_CLAIM: 6116 vdev_prop_add_list(outnvl, propname, NULL, 6117 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM], 6118 ZPROP_SRC_NONE); 6119 continue; 6120 case VDEV_PROP_OPS_TRIM: 6121 /* 6122 * TRIM ops and bytes are reported to user 6123 * space as ZIO_TYPE_IOCTL. This is done to 6124 * preserve the vdev_stat_t structure layout 6125 * for user space. 6126 */ 6127 vdev_prop_add_list(outnvl, propname, NULL, 6128 vd->vdev_stat.vs_ops[ZIO_TYPE_IOCTL], 6129 ZPROP_SRC_NONE); 6130 continue; 6131 case VDEV_PROP_BYTES_NULL: 6132 vdev_prop_add_list(outnvl, propname, NULL, 6133 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL], 6134 ZPROP_SRC_NONE); 6135 continue; 6136 case VDEV_PROP_BYTES_READ: 6137 vdev_prop_add_list(outnvl, propname, NULL, 6138 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ], 6139 ZPROP_SRC_NONE); 6140 continue; 6141 case VDEV_PROP_BYTES_WRITE: 6142 vdev_prop_add_list(outnvl, propname, NULL, 6143 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE], 6144 ZPROP_SRC_NONE); 6145 continue; 6146 case VDEV_PROP_BYTES_FREE: 6147 vdev_prop_add_list(outnvl, propname, NULL, 6148 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE], 6149 ZPROP_SRC_NONE); 6150 continue; 6151 case VDEV_PROP_BYTES_CLAIM: 6152 vdev_prop_add_list(outnvl, propname, NULL, 6153 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM], 6154 ZPROP_SRC_NONE); 6155 continue; 6156 case VDEV_PROP_BYTES_TRIM: 6157 /* 6158 * TRIM ops and bytes are reported to user 6159 * space as ZIO_TYPE_IOCTL. This is done to 6160 * preserve the vdev_stat_t structure layout 6161 * for user space. 6162 */ 6163 vdev_prop_add_list(outnvl, propname, NULL, 6164 vd->vdev_stat.vs_bytes[ZIO_TYPE_IOCTL], 6165 ZPROP_SRC_NONE); 6166 continue; 6167 case VDEV_PROP_REMOVING: 6168 vdev_prop_add_list(outnvl, propname, NULL, 6169 vd->vdev_removing, ZPROP_SRC_NONE); 6170 continue; 6171 /* Numeric Properites */ 6172 case VDEV_PROP_ALLOCATING: 6173 /* Leaf vdevs cannot have this property */ 6174 if (vd->vdev_mg == NULL && 6175 vd->vdev_top != NULL) { 6176 src = ZPROP_SRC_NONE; 6177 intval = ZPROP_BOOLEAN_NA; 6178 } else { 6179 err = vdev_prop_get_int(vd, prop, 6180 &intval); 6181 if (err && err != ENOENT) 6182 break; 6183 6184 if (intval == 6185 vdev_prop_default_numeric(prop)) 6186 src = ZPROP_SRC_DEFAULT; 6187 else 6188 src = ZPROP_SRC_LOCAL; 6189 } 6190 6191 vdev_prop_add_list(outnvl, propname, NULL, 6192 intval, src); 6193 break; 6194 case VDEV_PROP_FAILFAST: 6195 src = ZPROP_SRC_LOCAL; 6196 strval = NULL; 6197 6198 err = zap_lookup(mos, objid, nvpair_name(elem), 6199 sizeof (uint64_t), 1, &intval); 6200 if (err == ENOENT) { 6201 intval = vdev_prop_default_numeric( 6202 prop); 6203 err = 0; 6204 } else if (err) { 6205 break; 6206 } 6207 if (intval == vdev_prop_default_numeric(prop)) 6208 src = ZPROP_SRC_DEFAULT; 6209 6210 vdev_prop_add_list(outnvl, propname, strval, 6211 intval, src); 6212 break; 6213 case VDEV_PROP_CHECKSUM_N: 6214 case VDEV_PROP_CHECKSUM_T: 6215 case VDEV_PROP_IO_N: 6216 case VDEV_PROP_IO_T: 6217 err = vdev_prop_get_int(vd, prop, &intval); 6218 if (err && err != ENOENT) 6219 break; 6220 6221 if (intval == vdev_prop_default_numeric(prop)) 6222 src = ZPROP_SRC_DEFAULT; 6223 else 6224 src = ZPROP_SRC_LOCAL; 6225 6226 vdev_prop_add_list(outnvl, propname, NULL, 6227 intval, src); 6228 break; 6229 /* Text Properties */ 6230 case VDEV_PROP_COMMENT: 6231 /* Exists in the ZAP below */ 6232 /* FALLTHRU */ 6233 case VDEV_PROP_USERPROP: 6234 /* User Properites */ 6235 src = ZPROP_SRC_LOCAL; 6236 6237 err = zap_length(mos, objid, nvpair_name(elem), 6238 &integer_size, &num_integers); 6239 if (err) 6240 break; 6241 6242 switch (integer_size) { 6243 case 8: 6244 /* User properties cannot be integers */ 6245 err = EINVAL; 6246 break; 6247 case 1: 6248 /* string property */ 6249 strval = kmem_alloc(num_integers, 6250 KM_SLEEP); 6251 err = zap_lookup(mos, objid, 6252 nvpair_name(elem), 1, 6253 num_integers, strval); 6254 if (err) { 6255 kmem_free(strval, 6256 num_integers); 6257 break; 6258 } 6259 vdev_prop_add_list(outnvl, propname, 6260 strval, 0, src); 6261 kmem_free(strval, num_integers); 6262 break; 6263 } 6264 break; 6265 default: 6266 err = ENOENT; 6267 break; 6268 } 6269 if (err) 6270 break; 6271 } 6272 } else { 6273 /* 6274 * Get all properties from the MOS vdev property object. 6275 */ 6276 zap_cursor_t zc; 6277 zap_attribute_t za; 6278 for (zap_cursor_init(&zc, mos, objid); 6279 (err = zap_cursor_retrieve(&zc, &za)) == 0; 6280 zap_cursor_advance(&zc)) { 6281 intval = 0; 6282 strval = NULL; 6283 zprop_source_t src = ZPROP_SRC_DEFAULT; 6284 propname = za.za_name; 6285 6286 switch (za.za_integer_length) { 6287 case 8: 6288 /* We do not allow integer user properties */ 6289 /* This is likely an internal value */ 6290 break; 6291 case 1: 6292 /* string property */ 6293 strval = kmem_alloc(za.za_num_integers, 6294 KM_SLEEP); 6295 err = zap_lookup(mos, objid, za.za_name, 1, 6296 za.za_num_integers, strval); 6297 if (err) { 6298 kmem_free(strval, za.za_num_integers); 6299 break; 6300 } 6301 vdev_prop_add_list(outnvl, propname, strval, 0, 6302 src); 6303 kmem_free(strval, za.za_num_integers); 6304 break; 6305 6306 default: 6307 break; 6308 } 6309 } 6310 zap_cursor_fini(&zc); 6311 } 6312 6313 mutex_exit(&spa->spa_props_lock); 6314 if (err && err != ENOENT) { 6315 return (err); 6316 } 6317 6318 return (0); 6319 } 6320 6321 EXPORT_SYMBOL(vdev_fault); 6322 EXPORT_SYMBOL(vdev_degrade); 6323 EXPORT_SYMBOL(vdev_online); 6324 EXPORT_SYMBOL(vdev_offline); 6325 EXPORT_SYMBOL(vdev_clear); 6326 6327 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW, 6328 "Target number of metaslabs per top-level vdev"); 6329 6330 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW, 6331 "Default lower limit for metaslab size"); 6332 6333 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW, 6334 "Default upper limit for metaslab size"); 6335 6336 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW, 6337 "Minimum number of metaslabs per top-level vdev"); 6338 6339 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW, 6340 "Practical upper limit of total metaslabs per top-level vdev"); 6341 6342 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW, 6343 "Rate limit slow IO (delay) events to this many per second"); 6344 6345 /* BEGIN CSTYLED */ 6346 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW, 6347 "Rate limit checksum events to this many checksum errors per second " 6348 "(do not set below ZED threshold)."); 6349 /* END CSTYLED */ 6350 6351 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW, 6352 "Ignore errors during resilver/scrub"); 6353 6354 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW, 6355 "Bypass vdev_validate()"); 6356 6357 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW, 6358 "Disable cache flushes"); 6359 6360 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW, 6361 "Minimum number of metaslabs required to dedicate one for log blocks"); 6362 6363 /* BEGIN CSTYLED */ 6364 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift, 6365 param_set_min_auto_ashift, param_get_uint, ZMOD_RW, 6366 "Minimum ashift used when creating new top-level vdevs"); 6367 6368 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift, 6369 param_set_max_auto_ashift, param_get_uint, ZMOD_RW, 6370 "Maximum ashift used when optimizing for logical -> physical sector " 6371 "size on new top-level vdevs"); 6372 /* END CSTYLED */ 6373