1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 * Copyright 2017 Joyent, Inc. 29 * Copyright (c) 2017, Intel Corporation. 30 * Copyright (c) 2019, Datto Inc. All rights reserved. 31 */ 32 33 #include <sys/zfs_context.h> 34 #include <sys/fm/fs/zfs.h> 35 #include <sys/spa.h> 36 #include <sys/spa_impl.h> 37 #include <sys/bpobj.h> 38 #include <sys/dmu.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/dsl_dir.h> 41 #include <sys/vdev_impl.h> 42 #include <sys/vdev_rebuild.h> 43 #include <sys/uberblock_impl.h> 44 #include <sys/metaslab.h> 45 #include <sys/metaslab_impl.h> 46 #include <sys/space_map.h> 47 #include <sys/space_reftree.h> 48 #include <sys/zio.h> 49 #include <sys/zap.h> 50 #include <sys/fs/zfs.h> 51 #include <sys/arc.h> 52 #include <sys/zil.h> 53 #include <sys/dsl_scan.h> 54 #include <sys/abd.h> 55 #include <sys/vdev_initialize.h> 56 #include <sys/vdev_trim.h> 57 #include <sys/zvol.h> 58 #include <sys/zfs_ratelimit.h> 59 60 /* default target for number of metaslabs per top-level vdev */ 61 int zfs_vdev_default_ms_count = 200; 62 63 /* minimum number of metaslabs per top-level vdev */ 64 int zfs_vdev_min_ms_count = 16; 65 66 /* practical upper limit of total metaslabs per top-level vdev */ 67 int zfs_vdev_ms_count_limit = 1ULL << 17; 68 69 /* lower limit for metaslab size (512M) */ 70 int zfs_vdev_default_ms_shift = 29; 71 72 /* upper limit for metaslab size (16G) */ 73 int zfs_vdev_max_ms_shift = 34; 74 75 int vdev_validate_skip = B_FALSE; 76 77 /* 78 * Since the DTL space map of a vdev is not expected to have a lot of 79 * entries, we default its block size to 4K. 80 */ 81 int zfs_vdev_dtl_sm_blksz = (1 << 12); 82 83 /* 84 * Rate limit slow IO (delay) events to this many per second. 85 */ 86 unsigned int zfs_slow_io_events_per_second = 20; 87 88 /* 89 * Rate limit checksum events after this many checksum errors per second. 90 */ 91 unsigned int zfs_checksum_events_per_second = 20; 92 93 /* 94 * Ignore errors during scrub/resilver. Allows to work around resilver 95 * upon import when there are pool errors. 96 */ 97 int zfs_scan_ignore_errors = 0; 98 99 /* 100 * vdev-wide space maps that have lots of entries written to them at 101 * the end of each transaction can benefit from a higher I/O bandwidth 102 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. 103 */ 104 int zfs_vdev_standard_sm_blksz = (1 << 17); 105 106 /* 107 * Tunable parameter for debugging or performance analysis. Setting this 108 * will cause pool corruption on power loss if a volatile out-of-order 109 * write cache is enabled. 110 */ 111 int zfs_nocacheflush = 0; 112 113 uint64_t zfs_vdev_max_auto_ashift = ASHIFT_MAX; 114 uint64_t zfs_vdev_min_auto_ashift = ASHIFT_MIN; 115 116 /*PRINTFLIKE2*/ 117 void 118 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) 119 { 120 va_list adx; 121 char buf[256]; 122 123 va_start(adx, fmt); 124 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 125 va_end(adx); 126 127 if (vd->vdev_path != NULL) { 128 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, 129 vd->vdev_path, buf); 130 } else { 131 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", 132 vd->vdev_ops->vdev_op_type, 133 (u_longlong_t)vd->vdev_id, 134 (u_longlong_t)vd->vdev_guid, buf); 135 } 136 } 137 138 void 139 vdev_dbgmsg_print_tree(vdev_t *vd, int indent) 140 { 141 char state[20]; 142 143 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { 144 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id, 145 vd->vdev_ops->vdev_op_type); 146 return; 147 } 148 149 switch (vd->vdev_state) { 150 case VDEV_STATE_UNKNOWN: 151 (void) snprintf(state, sizeof (state), "unknown"); 152 break; 153 case VDEV_STATE_CLOSED: 154 (void) snprintf(state, sizeof (state), "closed"); 155 break; 156 case VDEV_STATE_OFFLINE: 157 (void) snprintf(state, sizeof (state), "offline"); 158 break; 159 case VDEV_STATE_REMOVED: 160 (void) snprintf(state, sizeof (state), "removed"); 161 break; 162 case VDEV_STATE_CANT_OPEN: 163 (void) snprintf(state, sizeof (state), "can't open"); 164 break; 165 case VDEV_STATE_FAULTED: 166 (void) snprintf(state, sizeof (state), "faulted"); 167 break; 168 case VDEV_STATE_DEGRADED: 169 (void) snprintf(state, sizeof (state), "degraded"); 170 break; 171 case VDEV_STATE_HEALTHY: 172 (void) snprintf(state, sizeof (state), "healthy"); 173 break; 174 default: 175 (void) snprintf(state, sizeof (state), "<state %u>", 176 (uint_t)vd->vdev_state); 177 } 178 179 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, 180 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, 181 vd->vdev_islog ? " (log)" : "", 182 (u_longlong_t)vd->vdev_guid, 183 vd->vdev_path ? vd->vdev_path : "N/A", state); 184 185 for (uint64_t i = 0; i < vd->vdev_children; i++) 186 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); 187 } 188 189 /* 190 * Virtual device management. 191 */ 192 193 static vdev_ops_t *vdev_ops_table[] = { 194 &vdev_root_ops, 195 &vdev_raidz_ops, 196 &vdev_mirror_ops, 197 &vdev_replacing_ops, 198 &vdev_spare_ops, 199 &vdev_disk_ops, 200 &vdev_file_ops, 201 &vdev_missing_ops, 202 &vdev_hole_ops, 203 &vdev_indirect_ops, 204 NULL 205 }; 206 207 /* 208 * Given a vdev type, return the appropriate ops vector. 209 */ 210 static vdev_ops_t * 211 vdev_getops(const char *type) 212 { 213 vdev_ops_t *ops, **opspp; 214 215 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 216 if (strcmp(ops->vdev_op_type, type) == 0) 217 break; 218 219 return (ops); 220 } 221 222 /* ARGSUSED */ 223 void 224 vdev_default_xlate(vdev_t *vd, const range_seg64_t *in, range_seg64_t *res) 225 { 226 res->rs_start = in->rs_start; 227 res->rs_end = in->rs_end; 228 } 229 230 /* 231 * Derive the enumerated allocation bias from string input. 232 * String origin is either the per-vdev zap or zpool(1M). 233 */ 234 static vdev_alloc_bias_t 235 vdev_derive_alloc_bias(const char *bias) 236 { 237 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 238 239 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0) 240 alloc_bias = VDEV_BIAS_LOG; 241 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) 242 alloc_bias = VDEV_BIAS_SPECIAL; 243 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) 244 alloc_bias = VDEV_BIAS_DEDUP; 245 246 return (alloc_bias); 247 } 248 249 /* 250 * Default asize function: return the MAX of psize with the asize of 251 * all children. This is what's used by anything other than RAID-Z. 252 */ 253 uint64_t 254 vdev_default_asize(vdev_t *vd, uint64_t psize) 255 { 256 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 257 uint64_t csize; 258 259 for (int c = 0; c < vd->vdev_children; c++) { 260 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 261 asize = MAX(asize, csize); 262 } 263 264 return (asize); 265 } 266 267 /* 268 * Get the minimum allocatable size. We define the allocatable size as 269 * the vdev's asize rounded to the nearest metaslab. This allows us to 270 * replace or attach devices which don't have the same physical size but 271 * can still satisfy the same number of allocations. 272 */ 273 uint64_t 274 vdev_get_min_asize(vdev_t *vd) 275 { 276 vdev_t *pvd = vd->vdev_parent; 277 278 /* 279 * If our parent is NULL (inactive spare or cache) or is the root, 280 * just return our own asize. 281 */ 282 if (pvd == NULL) 283 return (vd->vdev_asize); 284 285 /* 286 * The top-level vdev just returns the allocatable size rounded 287 * to the nearest metaslab. 288 */ 289 if (vd == vd->vdev_top) 290 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 291 292 /* 293 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 294 * so each child must provide at least 1/Nth of its asize. 295 */ 296 if (pvd->vdev_ops == &vdev_raidz_ops) 297 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) / 298 pvd->vdev_children); 299 300 return (pvd->vdev_min_asize); 301 } 302 303 void 304 vdev_set_min_asize(vdev_t *vd) 305 { 306 vd->vdev_min_asize = vdev_get_min_asize(vd); 307 308 for (int c = 0; c < vd->vdev_children; c++) 309 vdev_set_min_asize(vd->vdev_child[c]); 310 } 311 312 vdev_t * 313 vdev_lookup_top(spa_t *spa, uint64_t vdev) 314 { 315 vdev_t *rvd = spa->spa_root_vdev; 316 317 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 318 319 if (vdev < rvd->vdev_children) { 320 ASSERT(rvd->vdev_child[vdev] != NULL); 321 return (rvd->vdev_child[vdev]); 322 } 323 324 return (NULL); 325 } 326 327 vdev_t * 328 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 329 { 330 vdev_t *mvd; 331 332 if (vd->vdev_guid == guid) 333 return (vd); 334 335 for (int c = 0; c < vd->vdev_children; c++) 336 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 337 NULL) 338 return (mvd); 339 340 return (NULL); 341 } 342 343 static int 344 vdev_count_leaves_impl(vdev_t *vd) 345 { 346 int n = 0; 347 348 if (vd->vdev_ops->vdev_op_leaf) 349 return (1); 350 351 for (int c = 0; c < vd->vdev_children; c++) 352 n += vdev_count_leaves_impl(vd->vdev_child[c]); 353 354 return (n); 355 } 356 357 int 358 vdev_count_leaves(spa_t *spa) 359 { 360 int rc; 361 362 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 363 rc = vdev_count_leaves_impl(spa->spa_root_vdev); 364 spa_config_exit(spa, SCL_VDEV, FTAG); 365 366 return (rc); 367 } 368 369 void 370 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 371 { 372 size_t oldsize, newsize; 373 uint64_t id = cvd->vdev_id; 374 vdev_t **newchild; 375 376 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 377 ASSERT(cvd->vdev_parent == NULL); 378 379 cvd->vdev_parent = pvd; 380 381 if (pvd == NULL) 382 return; 383 384 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 385 386 oldsize = pvd->vdev_children * sizeof (vdev_t *); 387 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 388 newsize = pvd->vdev_children * sizeof (vdev_t *); 389 390 newchild = kmem_alloc(newsize, KM_SLEEP); 391 if (pvd->vdev_child != NULL) { 392 bcopy(pvd->vdev_child, newchild, oldsize); 393 kmem_free(pvd->vdev_child, oldsize); 394 } 395 396 pvd->vdev_child = newchild; 397 pvd->vdev_child[id] = cvd; 398 399 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 400 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 401 402 /* 403 * Walk up all ancestors to update guid sum. 404 */ 405 for (; pvd != NULL; pvd = pvd->vdev_parent) 406 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 407 408 if (cvd->vdev_ops->vdev_op_leaf) { 409 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd); 410 cvd->vdev_spa->spa_leaf_list_gen++; 411 } 412 } 413 414 void 415 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 416 { 417 int c; 418 uint_t id = cvd->vdev_id; 419 420 ASSERT(cvd->vdev_parent == pvd); 421 422 if (pvd == NULL) 423 return; 424 425 ASSERT(id < pvd->vdev_children); 426 ASSERT(pvd->vdev_child[id] == cvd); 427 428 pvd->vdev_child[id] = NULL; 429 cvd->vdev_parent = NULL; 430 431 for (c = 0; c < pvd->vdev_children; c++) 432 if (pvd->vdev_child[c]) 433 break; 434 435 if (c == pvd->vdev_children) { 436 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 437 pvd->vdev_child = NULL; 438 pvd->vdev_children = 0; 439 } 440 441 if (cvd->vdev_ops->vdev_op_leaf) { 442 spa_t *spa = cvd->vdev_spa; 443 list_remove(&spa->spa_leaf_list, cvd); 444 spa->spa_leaf_list_gen++; 445 } 446 447 /* 448 * Walk up all ancestors to update guid sum. 449 */ 450 for (; pvd != NULL; pvd = pvd->vdev_parent) 451 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 452 } 453 454 /* 455 * Remove any holes in the child array. 456 */ 457 void 458 vdev_compact_children(vdev_t *pvd) 459 { 460 vdev_t **newchild, *cvd; 461 int oldc = pvd->vdev_children; 462 int newc; 463 464 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 465 466 if (oldc == 0) 467 return; 468 469 for (int c = newc = 0; c < oldc; c++) 470 if (pvd->vdev_child[c]) 471 newc++; 472 473 if (newc > 0) { 474 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP); 475 476 for (int c = newc = 0; c < oldc; c++) { 477 if ((cvd = pvd->vdev_child[c]) != NULL) { 478 newchild[newc] = cvd; 479 cvd->vdev_id = newc++; 480 } 481 } 482 } else { 483 newchild = NULL; 484 } 485 486 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 487 pvd->vdev_child = newchild; 488 pvd->vdev_children = newc; 489 } 490 491 /* 492 * Allocate and minimally initialize a vdev_t. 493 */ 494 vdev_t * 495 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 496 { 497 vdev_t *vd; 498 vdev_indirect_config_t *vic; 499 500 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 501 vic = &vd->vdev_indirect_config; 502 503 if (spa->spa_root_vdev == NULL) { 504 ASSERT(ops == &vdev_root_ops); 505 spa->spa_root_vdev = vd; 506 spa->spa_load_guid = spa_generate_guid(NULL); 507 } 508 509 if (guid == 0 && ops != &vdev_hole_ops) { 510 if (spa->spa_root_vdev == vd) { 511 /* 512 * The root vdev's guid will also be the pool guid, 513 * which must be unique among all pools. 514 */ 515 guid = spa_generate_guid(NULL); 516 } else { 517 /* 518 * Any other vdev's guid must be unique within the pool. 519 */ 520 guid = spa_generate_guid(spa); 521 } 522 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 523 } 524 525 vd->vdev_spa = spa; 526 vd->vdev_id = id; 527 vd->vdev_guid = guid; 528 vd->vdev_guid_sum = guid; 529 vd->vdev_ops = ops; 530 vd->vdev_state = VDEV_STATE_CLOSED; 531 vd->vdev_ishole = (ops == &vdev_hole_ops); 532 vic->vic_prev_indirect_vdev = UINT64_MAX; 533 534 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); 535 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); 536 vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL, 537 0, 0); 538 539 /* 540 * Initialize rate limit structs for events. We rate limit ZIO delay 541 * and checksum events so that we don't overwhelm ZED with thousands 542 * of events when a disk is acting up. 543 */ 544 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second, 545 1); 546 zfs_ratelimit_init(&vd->vdev_checksum_rl, 547 &zfs_checksum_events_per_second, 1); 548 549 list_link_init(&vd->vdev_config_dirty_node); 550 list_link_init(&vd->vdev_state_dirty_node); 551 list_link_init(&vd->vdev_initialize_node); 552 list_link_init(&vd->vdev_leaf_node); 553 list_link_init(&vd->vdev_trim_node); 554 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL); 555 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 556 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 557 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL); 558 559 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); 560 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); 561 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); 562 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); 563 564 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL); 565 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL); 566 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL); 567 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL); 568 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL); 569 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL); 570 571 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL); 572 mutex_init(&vd->vdev_rebuild_io_lock, NULL, MUTEX_DEFAULT, NULL); 573 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL); 574 cv_init(&vd->vdev_rebuild_io_cv, NULL, CV_DEFAULT, NULL); 575 576 for (int t = 0; t < DTL_TYPES; t++) { 577 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 578 0); 579 } 580 581 txg_list_create(&vd->vdev_ms_list, spa, 582 offsetof(struct metaslab, ms_txg_node)); 583 txg_list_create(&vd->vdev_dtl_list, spa, 584 offsetof(struct vdev, vdev_dtl_node)); 585 vd->vdev_stat.vs_timestamp = gethrtime(); 586 vdev_queue_init(vd); 587 vdev_cache_init(vd); 588 589 return (vd); 590 } 591 592 /* 593 * Allocate a new vdev. The 'alloctype' is used to control whether we are 594 * creating a new vdev or loading an existing one - the behavior is slightly 595 * different for each case. 596 */ 597 int 598 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 599 int alloctype) 600 { 601 vdev_ops_t *ops; 602 char *type; 603 uint64_t guid = 0, islog, nparity; 604 vdev_t *vd; 605 vdev_indirect_config_t *vic; 606 char *tmp = NULL; 607 int rc; 608 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 609 boolean_t top_level = (parent && !parent->vdev_parent); 610 611 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 612 613 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 614 return (SET_ERROR(EINVAL)); 615 616 if ((ops = vdev_getops(type)) == NULL) 617 return (SET_ERROR(EINVAL)); 618 619 /* 620 * If this is a load, get the vdev guid from the nvlist. 621 * Otherwise, vdev_alloc_common() will generate one for us. 622 */ 623 if (alloctype == VDEV_ALLOC_LOAD) { 624 uint64_t label_id; 625 626 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 627 label_id != id) 628 return (SET_ERROR(EINVAL)); 629 630 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 631 return (SET_ERROR(EINVAL)); 632 } else if (alloctype == VDEV_ALLOC_SPARE) { 633 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 634 return (SET_ERROR(EINVAL)); 635 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 636 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 637 return (SET_ERROR(EINVAL)); 638 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 639 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 640 return (SET_ERROR(EINVAL)); 641 } 642 643 /* 644 * The first allocated vdev must be of type 'root'. 645 */ 646 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 647 return (SET_ERROR(EINVAL)); 648 649 /* 650 * Determine whether we're a log vdev. 651 */ 652 islog = 0; 653 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 654 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 655 return (SET_ERROR(ENOTSUP)); 656 657 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 658 return (SET_ERROR(ENOTSUP)); 659 660 /* 661 * Set the nparity property for RAID-Z vdevs. 662 */ 663 nparity = -1ULL; 664 if (ops == &vdev_raidz_ops) { 665 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 666 &nparity) == 0) { 667 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 668 return (SET_ERROR(EINVAL)); 669 /* 670 * Previous versions could only support 1 or 2 parity 671 * device. 672 */ 673 if (nparity > 1 && 674 spa_version(spa) < SPA_VERSION_RAIDZ2) 675 return (SET_ERROR(ENOTSUP)); 676 if (nparity > 2 && 677 spa_version(spa) < SPA_VERSION_RAIDZ3) 678 return (SET_ERROR(ENOTSUP)); 679 } else { 680 /* 681 * We require the parity to be specified for SPAs that 682 * support multiple parity levels. 683 */ 684 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 685 return (SET_ERROR(EINVAL)); 686 /* 687 * Otherwise, we default to 1 parity device for RAID-Z. 688 */ 689 nparity = 1; 690 } 691 } else { 692 nparity = 0; 693 } 694 ASSERT(nparity != -1ULL); 695 696 /* 697 * If creating a top-level vdev, check for allocation classes input 698 */ 699 if (top_level && alloctype == VDEV_ALLOC_ADD) { 700 char *bias; 701 702 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 703 &bias) == 0) { 704 alloc_bias = vdev_derive_alloc_bias(bias); 705 706 /* spa_vdev_add() expects feature to be enabled */ 707 if (spa->spa_load_state != SPA_LOAD_CREATE && 708 !spa_feature_is_enabled(spa, 709 SPA_FEATURE_ALLOCATION_CLASSES)) { 710 return (SET_ERROR(ENOTSUP)); 711 } 712 } 713 } 714 715 vd = vdev_alloc_common(spa, id, guid, ops); 716 vic = &vd->vdev_indirect_config; 717 718 vd->vdev_islog = islog; 719 vd->vdev_nparity = nparity; 720 if (top_level && alloc_bias != VDEV_BIAS_NONE) 721 vd->vdev_alloc_bias = alloc_bias; 722 723 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 724 vd->vdev_path = spa_strdup(vd->vdev_path); 725 726 /* 727 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a 728 * fault on a vdev and want it to persist across imports (like with 729 * zpool offline -f). 730 */ 731 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp); 732 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) { 733 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 734 vd->vdev_faulted = 1; 735 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 736 } 737 738 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 739 vd->vdev_devid = spa_strdup(vd->vdev_devid); 740 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 741 &vd->vdev_physpath) == 0) 742 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 743 744 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 745 &vd->vdev_enc_sysfs_path) == 0) 746 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path); 747 748 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 749 vd->vdev_fru = spa_strdup(vd->vdev_fru); 750 751 /* 752 * Set the whole_disk property. If it's not specified, leave the value 753 * as -1. 754 */ 755 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 756 &vd->vdev_wholedisk) != 0) 757 vd->vdev_wholedisk = -1ULL; 758 759 ASSERT0(vic->vic_mapping_object); 760 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 761 &vic->vic_mapping_object); 762 ASSERT0(vic->vic_births_object); 763 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 764 &vic->vic_births_object); 765 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); 766 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 767 &vic->vic_prev_indirect_vdev); 768 769 /* 770 * Look for the 'not present' flag. This will only be set if the device 771 * was not present at the time of import. 772 */ 773 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 774 &vd->vdev_not_present); 775 776 /* 777 * Get the alignment requirement. 778 */ 779 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 780 781 /* 782 * Retrieve the vdev creation time. 783 */ 784 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 785 &vd->vdev_crtxg); 786 787 /* 788 * If we're a top-level vdev, try to load the allocation parameters. 789 */ 790 if (top_level && 791 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 792 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 793 &vd->vdev_ms_array); 794 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 795 &vd->vdev_ms_shift); 796 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 797 &vd->vdev_asize); 798 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 799 &vd->vdev_removing); 800 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 801 &vd->vdev_top_zap); 802 } else { 803 ASSERT0(vd->vdev_top_zap); 804 } 805 806 if (top_level && alloctype != VDEV_ALLOC_ATTACH) { 807 ASSERT(alloctype == VDEV_ALLOC_LOAD || 808 alloctype == VDEV_ALLOC_ADD || 809 alloctype == VDEV_ALLOC_SPLIT || 810 alloctype == VDEV_ALLOC_ROOTPOOL); 811 /* Note: metaslab_group_create() is now deferred */ 812 } 813 814 if (vd->vdev_ops->vdev_op_leaf && 815 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 816 (void) nvlist_lookup_uint64(nv, 817 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 818 } else { 819 ASSERT0(vd->vdev_leaf_zap); 820 } 821 822 /* 823 * If we're a leaf vdev, try to load the DTL object and other state. 824 */ 825 826 if (vd->vdev_ops->vdev_op_leaf && 827 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 828 alloctype == VDEV_ALLOC_ROOTPOOL)) { 829 if (alloctype == VDEV_ALLOC_LOAD) { 830 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 831 &vd->vdev_dtl_object); 832 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 833 &vd->vdev_unspare); 834 } 835 836 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 837 uint64_t spare = 0; 838 839 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 840 &spare) == 0 && spare) 841 spa_spare_add(vd); 842 } 843 844 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 845 &vd->vdev_offline); 846 847 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 848 &vd->vdev_resilver_txg); 849 850 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 851 &vd->vdev_rebuild_txg); 852 853 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER)) 854 vdev_defer_resilver(vd); 855 856 /* 857 * In general, when importing a pool we want to ignore the 858 * persistent fault state, as the diagnosis made on another 859 * system may not be valid in the current context. The only 860 * exception is if we forced a vdev to a persistently faulted 861 * state with 'zpool offline -f'. The persistent fault will 862 * remain across imports until cleared. 863 * 864 * Local vdevs will remain in the faulted state. 865 */ 866 if (spa_load_state(spa) == SPA_LOAD_OPEN || 867 spa_load_state(spa) == SPA_LOAD_IMPORT) { 868 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 869 &vd->vdev_faulted); 870 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 871 &vd->vdev_degraded); 872 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 873 &vd->vdev_removed); 874 875 if (vd->vdev_faulted || vd->vdev_degraded) { 876 char *aux; 877 878 vd->vdev_label_aux = 879 VDEV_AUX_ERR_EXCEEDED; 880 if (nvlist_lookup_string(nv, 881 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 882 strcmp(aux, "external") == 0) 883 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 884 else 885 vd->vdev_faulted = 0ULL; 886 } 887 } 888 } 889 890 /* 891 * Add ourselves to the parent's list of children. 892 */ 893 vdev_add_child(parent, vd); 894 895 *vdp = vd; 896 897 return (0); 898 } 899 900 void 901 vdev_free(vdev_t *vd) 902 { 903 spa_t *spa = vd->vdev_spa; 904 905 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 906 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 907 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); 908 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL); 909 910 /* 911 * Scan queues are normally destroyed at the end of a scan. If the 912 * queue exists here, that implies the vdev is being removed while 913 * the scan is still running. 914 */ 915 if (vd->vdev_scan_io_queue != NULL) { 916 mutex_enter(&vd->vdev_scan_io_queue_lock); 917 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue); 918 vd->vdev_scan_io_queue = NULL; 919 mutex_exit(&vd->vdev_scan_io_queue_lock); 920 } 921 922 /* 923 * vdev_free() implies closing the vdev first. This is simpler than 924 * trying to ensure complicated semantics for all callers. 925 */ 926 vdev_close(vd); 927 928 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 929 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 930 931 /* 932 * Free all children. 933 */ 934 for (int c = 0; c < vd->vdev_children; c++) 935 vdev_free(vd->vdev_child[c]); 936 937 ASSERT(vd->vdev_child == NULL); 938 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 939 940 /* 941 * Discard allocation state. 942 */ 943 if (vd->vdev_mg != NULL) { 944 vdev_metaslab_fini(vd); 945 metaslab_group_destroy(vd->vdev_mg); 946 vd->vdev_mg = NULL; 947 } 948 949 ASSERT0(vd->vdev_stat.vs_space); 950 ASSERT0(vd->vdev_stat.vs_dspace); 951 ASSERT0(vd->vdev_stat.vs_alloc); 952 953 /* 954 * Remove this vdev from its parent's child list. 955 */ 956 vdev_remove_child(vd->vdev_parent, vd); 957 958 ASSERT(vd->vdev_parent == NULL); 959 ASSERT(!list_link_active(&vd->vdev_leaf_node)); 960 961 /* 962 * Clean up vdev structure. 963 */ 964 vdev_queue_fini(vd); 965 vdev_cache_fini(vd); 966 967 if (vd->vdev_path) 968 spa_strfree(vd->vdev_path); 969 if (vd->vdev_devid) 970 spa_strfree(vd->vdev_devid); 971 if (vd->vdev_physpath) 972 spa_strfree(vd->vdev_physpath); 973 974 if (vd->vdev_enc_sysfs_path) 975 spa_strfree(vd->vdev_enc_sysfs_path); 976 977 if (vd->vdev_fru) 978 spa_strfree(vd->vdev_fru); 979 980 if (vd->vdev_isspare) 981 spa_spare_remove(vd); 982 if (vd->vdev_isl2cache) 983 spa_l2cache_remove(vd); 984 985 txg_list_destroy(&vd->vdev_ms_list); 986 txg_list_destroy(&vd->vdev_dtl_list); 987 988 mutex_enter(&vd->vdev_dtl_lock); 989 space_map_close(vd->vdev_dtl_sm); 990 for (int t = 0; t < DTL_TYPES; t++) { 991 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 992 range_tree_destroy(vd->vdev_dtl[t]); 993 } 994 mutex_exit(&vd->vdev_dtl_lock); 995 996 EQUIV(vd->vdev_indirect_births != NULL, 997 vd->vdev_indirect_mapping != NULL); 998 if (vd->vdev_indirect_births != NULL) { 999 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 1000 vdev_indirect_births_close(vd->vdev_indirect_births); 1001 } 1002 1003 if (vd->vdev_obsolete_sm != NULL) { 1004 ASSERT(vd->vdev_removing || 1005 vd->vdev_ops == &vdev_indirect_ops); 1006 space_map_close(vd->vdev_obsolete_sm); 1007 vd->vdev_obsolete_sm = NULL; 1008 } 1009 range_tree_destroy(vd->vdev_obsolete_segments); 1010 rw_destroy(&vd->vdev_indirect_rwlock); 1011 mutex_destroy(&vd->vdev_obsolete_lock); 1012 1013 mutex_destroy(&vd->vdev_dtl_lock); 1014 mutex_destroy(&vd->vdev_stat_lock); 1015 mutex_destroy(&vd->vdev_probe_lock); 1016 mutex_destroy(&vd->vdev_scan_io_queue_lock); 1017 1018 mutex_destroy(&vd->vdev_initialize_lock); 1019 mutex_destroy(&vd->vdev_initialize_io_lock); 1020 cv_destroy(&vd->vdev_initialize_io_cv); 1021 cv_destroy(&vd->vdev_initialize_cv); 1022 1023 mutex_destroy(&vd->vdev_trim_lock); 1024 mutex_destroy(&vd->vdev_autotrim_lock); 1025 mutex_destroy(&vd->vdev_trim_io_lock); 1026 cv_destroy(&vd->vdev_trim_cv); 1027 cv_destroy(&vd->vdev_autotrim_cv); 1028 cv_destroy(&vd->vdev_trim_io_cv); 1029 1030 mutex_destroy(&vd->vdev_rebuild_lock); 1031 mutex_destroy(&vd->vdev_rebuild_io_lock); 1032 cv_destroy(&vd->vdev_rebuild_cv); 1033 cv_destroy(&vd->vdev_rebuild_io_cv); 1034 1035 zfs_ratelimit_fini(&vd->vdev_delay_rl); 1036 zfs_ratelimit_fini(&vd->vdev_checksum_rl); 1037 1038 if (vd == spa->spa_root_vdev) 1039 spa->spa_root_vdev = NULL; 1040 1041 kmem_free(vd, sizeof (vdev_t)); 1042 } 1043 1044 /* 1045 * Transfer top-level vdev state from svd to tvd. 1046 */ 1047 static void 1048 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 1049 { 1050 spa_t *spa = svd->vdev_spa; 1051 metaslab_t *msp; 1052 vdev_t *vd; 1053 int t; 1054 1055 ASSERT(tvd == tvd->vdev_top); 1056 1057 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite; 1058 tvd->vdev_ms_array = svd->vdev_ms_array; 1059 tvd->vdev_ms_shift = svd->vdev_ms_shift; 1060 tvd->vdev_ms_count = svd->vdev_ms_count; 1061 tvd->vdev_top_zap = svd->vdev_top_zap; 1062 1063 svd->vdev_ms_array = 0; 1064 svd->vdev_ms_shift = 0; 1065 svd->vdev_ms_count = 0; 1066 svd->vdev_top_zap = 0; 1067 1068 if (tvd->vdev_mg) 1069 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 1070 tvd->vdev_mg = svd->vdev_mg; 1071 tvd->vdev_ms = svd->vdev_ms; 1072 1073 svd->vdev_mg = NULL; 1074 svd->vdev_ms = NULL; 1075 1076 if (tvd->vdev_mg != NULL) 1077 tvd->vdev_mg->mg_vd = tvd; 1078 1079 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; 1080 svd->vdev_checkpoint_sm = NULL; 1081 1082 tvd->vdev_alloc_bias = svd->vdev_alloc_bias; 1083 svd->vdev_alloc_bias = VDEV_BIAS_NONE; 1084 1085 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 1086 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 1087 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 1088 1089 svd->vdev_stat.vs_alloc = 0; 1090 svd->vdev_stat.vs_space = 0; 1091 svd->vdev_stat.vs_dspace = 0; 1092 1093 /* 1094 * State which may be set on a top-level vdev that's in the 1095 * process of being removed. 1096 */ 1097 ASSERT0(tvd->vdev_indirect_config.vic_births_object); 1098 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); 1099 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); 1100 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL); 1101 ASSERT3P(tvd->vdev_indirect_births, ==, NULL); 1102 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL); 1103 ASSERT0(tvd->vdev_removing); 1104 ASSERT0(tvd->vdev_rebuilding); 1105 tvd->vdev_removing = svd->vdev_removing; 1106 tvd->vdev_rebuilding = svd->vdev_rebuilding; 1107 tvd->vdev_rebuild_config = svd->vdev_rebuild_config; 1108 tvd->vdev_indirect_config = svd->vdev_indirect_config; 1109 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; 1110 tvd->vdev_indirect_births = svd->vdev_indirect_births; 1111 range_tree_swap(&svd->vdev_obsolete_segments, 1112 &tvd->vdev_obsolete_segments); 1113 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; 1114 svd->vdev_indirect_config.vic_mapping_object = 0; 1115 svd->vdev_indirect_config.vic_births_object = 0; 1116 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; 1117 svd->vdev_indirect_mapping = NULL; 1118 svd->vdev_indirect_births = NULL; 1119 svd->vdev_obsolete_sm = NULL; 1120 svd->vdev_removing = 0; 1121 svd->vdev_rebuilding = 0; 1122 1123 for (t = 0; t < TXG_SIZE; t++) { 1124 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 1125 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 1126 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 1127 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 1128 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 1129 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 1130 } 1131 1132 if (list_link_active(&svd->vdev_config_dirty_node)) { 1133 vdev_config_clean(svd); 1134 vdev_config_dirty(tvd); 1135 } 1136 1137 if (list_link_active(&svd->vdev_state_dirty_node)) { 1138 vdev_state_clean(svd); 1139 vdev_state_dirty(tvd); 1140 } 1141 1142 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 1143 svd->vdev_deflate_ratio = 0; 1144 1145 tvd->vdev_islog = svd->vdev_islog; 1146 svd->vdev_islog = 0; 1147 1148 dsl_scan_io_queue_vdev_xfer(svd, tvd); 1149 } 1150 1151 static void 1152 vdev_top_update(vdev_t *tvd, vdev_t *vd) 1153 { 1154 if (vd == NULL) 1155 return; 1156 1157 vd->vdev_top = tvd; 1158 1159 for (int c = 0; c < vd->vdev_children; c++) 1160 vdev_top_update(tvd, vd->vdev_child[c]); 1161 } 1162 1163 /* 1164 * Add a mirror/replacing vdev above an existing vdev. 1165 */ 1166 vdev_t * 1167 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 1168 { 1169 spa_t *spa = cvd->vdev_spa; 1170 vdev_t *pvd = cvd->vdev_parent; 1171 vdev_t *mvd; 1172 1173 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1174 1175 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 1176 1177 mvd->vdev_asize = cvd->vdev_asize; 1178 mvd->vdev_min_asize = cvd->vdev_min_asize; 1179 mvd->vdev_max_asize = cvd->vdev_max_asize; 1180 mvd->vdev_psize = cvd->vdev_psize; 1181 mvd->vdev_ashift = cvd->vdev_ashift; 1182 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift; 1183 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift; 1184 mvd->vdev_state = cvd->vdev_state; 1185 mvd->vdev_crtxg = cvd->vdev_crtxg; 1186 1187 vdev_remove_child(pvd, cvd); 1188 vdev_add_child(pvd, mvd); 1189 cvd->vdev_id = mvd->vdev_children; 1190 vdev_add_child(mvd, cvd); 1191 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1192 1193 if (mvd == mvd->vdev_top) 1194 vdev_top_transfer(cvd, mvd); 1195 1196 return (mvd); 1197 } 1198 1199 /* 1200 * Remove a 1-way mirror/replacing vdev from the tree. 1201 */ 1202 void 1203 vdev_remove_parent(vdev_t *cvd) 1204 { 1205 vdev_t *mvd = cvd->vdev_parent; 1206 vdev_t *pvd = mvd->vdev_parent; 1207 1208 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1209 1210 ASSERT(mvd->vdev_children == 1); 1211 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 1212 mvd->vdev_ops == &vdev_replacing_ops || 1213 mvd->vdev_ops == &vdev_spare_ops); 1214 cvd->vdev_ashift = mvd->vdev_ashift; 1215 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift; 1216 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift; 1217 vdev_remove_child(mvd, cvd); 1218 vdev_remove_child(pvd, mvd); 1219 1220 /* 1221 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 1222 * Otherwise, we could have detached an offline device, and when we 1223 * go to import the pool we'll think we have two top-level vdevs, 1224 * instead of a different version of the same top-level vdev. 1225 */ 1226 if (mvd->vdev_top == mvd) { 1227 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 1228 cvd->vdev_orig_guid = cvd->vdev_guid; 1229 cvd->vdev_guid += guid_delta; 1230 cvd->vdev_guid_sum += guid_delta; 1231 1232 /* 1233 * If pool not set for autoexpand, we need to also preserve 1234 * mvd's asize to prevent automatic expansion of cvd. 1235 * Otherwise if we are adjusting the mirror by attaching and 1236 * detaching children of non-uniform sizes, the mirror could 1237 * autoexpand, unexpectedly requiring larger devices to 1238 * re-establish the mirror. 1239 */ 1240 if (!cvd->vdev_spa->spa_autoexpand) 1241 cvd->vdev_asize = mvd->vdev_asize; 1242 } 1243 cvd->vdev_id = mvd->vdev_id; 1244 vdev_add_child(pvd, cvd); 1245 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1246 1247 if (cvd == cvd->vdev_top) 1248 vdev_top_transfer(mvd, cvd); 1249 1250 ASSERT(mvd->vdev_children == 0); 1251 vdev_free(mvd); 1252 } 1253 1254 static void 1255 vdev_metaslab_group_create(vdev_t *vd) 1256 { 1257 spa_t *spa = vd->vdev_spa; 1258 1259 /* 1260 * metaslab_group_create was delayed until allocation bias was available 1261 */ 1262 if (vd->vdev_mg == NULL) { 1263 metaslab_class_t *mc; 1264 1265 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE) 1266 vd->vdev_alloc_bias = VDEV_BIAS_LOG; 1267 1268 ASSERT3U(vd->vdev_islog, ==, 1269 (vd->vdev_alloc_bias == VDEV_BIAS_LOG)); 1270 1271 switch (vd->vdev_alloc_bias) { 1272 case VDEV_BIAS_LOG: 1273 mc = spa_log_class(spa); 1274 break; 1275 case VDEV_BIAS_SPECIAL: 1276 mc = spa_special_class(spa); 1277 break; 1278 case VDEV_BIAS_DEDUP: 1279 mc = spa_dedup_class(spa); 1280 break; 1281 default: 1282 mc = spa_normal_class(spa); 1283 } 1284 1285 vd->vdev_mg = metaslab_group_create(mc, vd, 1286 spa->spa_alloc_count); 1287 1288 /* 1289 * The spa ashift min/max only apply for the normal metaslab 1290 * class. Class destination is late binding so ashift boundry 1291 * setting had to wait until now. 1292 */ 1293 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1294 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) { 1295 if (vd->vdev_ashift > spa->spa_max_ashift) 1296 spa->spa_max_ashift = vd->vdev_ashift; 1297 if (vd->vdev_ashift < spa->spa_min_ashift) 1298 spa->spa_min_ashift = vd->vdev_ashift; 1299 } 1300 } 1301 } 1302 1303 int 1304 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 1305 { 1306 spa_t *spa = vd->vdev_spa; 1307 objset_t *mos = spa->spa_meta_objset; 1308 uint64_t m; 1309 uint64_t oldc = vd->vdev_ms_count; 1310 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 1311 metaslab_t **mspp; 1312 int error; 1313 boolean_t expanding = (oldc != 0); 1314 1315 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1316 1317 /* 1318 * This vdev is not being allocated from yet or is a hole. 1319 */ 1320 if (vd->vdev_ms_shift == 0) 1321 return (0); 1322 1323 ASSERT(!vd->vdev_ishole); 1324 1325 ASSERT(oldc <= newc); 1326 1327 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 1328 1329 if (expanding) { 1330 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 1331 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 1332 } 1333 1334 vd->vdev_ms = mspp; 1335 vd->vdev_ms_count = newc; 1336 for (m = oldc; m < newc; m++) { 1337 uint64_t object = 0; 1338 1339 /* 1340 * vdev_ms_array may be 0 if we are creating the "fake" 1341 * metaslabs for an indirect vdev for zdb's leak detection. 1342 * See zdb_leak_init(). 1343 */ 1344 if (txg == 0 && vd->vdev_ms_array != 0) { 1345 error = dmu_read(mos, vd->vdev_ms_array, 1346 m * sizeof (uint64_t), sizeof (uint64_t), &object, 1347 DMU_READ_PREFETCH); 1348 if (error != 0) { 1349 vdev_dbgmsg(vd, "unable to read the metaslab " 1350 "array [error=%d]", error); 1351 return (error); 1352 } 1353 } 1354 1355 #ifndef _KERNEL 1356 /* 1357 * To accommodate zdb_leak_init() fake indirect 1358 * metaslabs, we allocate a metaslab group for 1359 * indirect vdevs which normally don't have one. 1360 */ 1361 if (vd->vdev_mg == NULL) { 1362 ASSERT0(vdev_is_concrete(vd)); 1363 vdev_metaslab_group_create(vd); 1364 } 1365 #endif 1366 error = metaslab_init(vd->vdev_mg, m, object, txg, 1367 &(vd->vdev_ms[m])); 1368 if (error != 0) { 1369 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", 1370 error); 1371 return (error); 1372 } 1373 } 1374 1375 if (txg == 0) 1376 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 1377 1378 /* 1379 * If the vdev is being removed we don't activate 1380 * the metaslabs since we want to ensure that no new 1381 * allocations are performed on this device. 1382 */ 1383 if (!expanding && !vd->vdev_removing) { 1384 metaslab_group_activate(vd->vdev_mg); 1385 } 1386 1387 if (txg == 0) 1388 spa_config_exit(spa, SCL_ALLOC, FTAG); 1389 1390 /* 1391 * Regardless whether this vdev was just added or it is being 1392 * expanded, the metaslab count has changed. Recalculate the 1393 * block limit. 1394 */ 1395 spa_log_sm_set_blocklimit(spa); 1396 1397 return (0); 1398 } 1399 1400 void 1401 vdev_metaslab_fini(vdev_t *vd) 1402 { 1403 if (vd->vdev_checkpoint_sm != NULL) { 1404 ASSERT(spa_feature_is_active(vd->vdev_spa, 1405 SPA_FEATURE_POOL_CHECKPOINT)); 1406 space_map_close(vd->vdev_checkpoint_sm); 1407 /* 1408 * Even though we close the space map, we need to set its 1409 * pointer to NULL. The reason is that vdev_metaslab_fini() 1410 * may be called multiple times for certain operations 1411 * (i.e. when destroying a pool) so we need to ensure that 1412 * this clause never executes twice. This logic is similar 1413 * to the one used for the vdev_ms clause below. 1414 */ 1415 vd->vdev_checkpoint_sm = NULL; 1416 } 1417 1418 if (vd->vdev_ms != NULL) { 1419 metaslab_group_t *mg = vd->vdev_mg; 1420 metaslab_group_passivate(mg); 1421 1422 uint64_t count = vd->vdev_ms_count; 1423 for (uint64_t m = 0; m < count; m++) { 1424 metaslab_t *msp = vd->vdev_ms[m]; 1425 if (msp != NULL) 1426 metaslab_fini(msp); 1427 } 1428 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1429 vd->vdev_ms = NULL; 1430 1431 vd->vdev_ms_count = 0; 1432 1433 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 1434 ASSERT0(mg->mg_histogram[i]); 1435 } 1436 ASSERT0(vd->vdev_ms_count); 1437 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0); 1438 } 1439 1440 typedef struct vdev_probe_stats { 1441 boolean_t vps_readable; 1442 boolean_t vps_writeable; 1443 int vps_flags; 1444 } vdev_probe_stats_t; 1445 1446 static void 1447 vdev_probe_done(zio_t *zio) 1448 { 1449 spa_t *spa = zio->io_spa; 1450 vdev_t *vd = zio->io_vd; 1451 vdev_probe_stats_t *vps = zio->io_private; 1452 1453 ASSERT(vd->vdev_probe_zio != NULL); 1454 1455 if (zio->io_type == ZIO_TYPE_READ) { 1456 if (zio->io_error == 0) 1457 vps->vps_readable = 1; 1458 if (zio->io_error == 0 && spa_writeable(spa)) { 1459 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1460 zio->io_offset, zio->io_size, zio->io_abd, 1461 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1462 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1463 } else { 1464 abd_free(zio->io_abd); 1465 } 1466 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1467 if (zio->io_error == 0) 1468 vps->vps_writeable = 1; 1469 abd_free(zio->io_abd); 1470 } else if (zio->io_type == ZIO_TYPE_NULL) { 1471 zio_t *pio; 1472 zio_link_t *zl; 1473 1474 vd->vdev_cant_read |= !vps->vps_readable; 1475 vd->vdev_cant_write |= !vps->vps_writeable; 1476 1477 if (vdev_readable(vd) && 1478 (vdev_writeable(vd) || !spa_writeable(spa))) { 1479 zio->io_error = 0; 1480 } else { 1481 ASSERT(zio->io_error != 0); 1482 vdev_dbgmsg(vd, "failed probe"); 1483 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1484 spa, vd, NULL, NULL, 0); 1485 zio->io_error = SET_ERROR(ENXIO); 1486 } 1487 1488 mutex_enter(&vd->vdev_probe_lock); 1489 ASSERT(vd->vdev_probe_zio == zio); 1490 vd->vdev_probe_zio = NULL; 1491 mutex_exit(&vd->vdev_probe_lock); 1492 1493 zl = NULL; 1494 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1495 if (!vdev_accessible(vd, pio)) 1496 pio->io_error = SET_ERROR(ENXIO); 1497 1498 kmem_free(vps, sizeof (*vps)); 1499 } 1500 } 1501 1502 /* 1503 * Determine whether this device is accessible. 1504 * 1505 * Read and write to several known locations: the pad regions of each 1506 * vdev label but the first, which we leave alone in case it contains 1507 * a VTOC. 1508 */ 1509 zio_t * 1510 vdev_probe(vdev_t *vd, zio_t *zio) 1511 { 1512 spa_t *spa = vd->vdev_spa; 1513 vdev_probe_stats_t *vps = NULL; 1514 zio_t *pio; 1515 1516 ASSERT(vd->vdev_ops->vdev_op_leaf); 1517 1518 /* 1519 * Don't probe the probe. 1520 */ 1521 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1522 return (NULL); 1523 1524 /* 1525 * To prevent 'probe storms' when a device fails, we create 1526 * just one probe i/o at a time. All zios that want to probe 1527 * this vdev will become parents of the probe io. 1528 */ 1529 mutex_enter(&vd->vdev_probe_lock); 1530 1531 if ((pio = vd->vdev_probe_zio) == NULL) { 1532 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1533 1534 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1535 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1536 ZIO_FLAG_TRYHARD; 1537 1538 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1539 /* 1540 * vdev_cant_read and vdev_cant_write can only 1541 * transition from TRUE to FALSE when we have the 1542 * SCL_ZIO lock as writer; otherwise they can only 1543 * transition from FALSE to TRUE. This ensures that 1544 * any zio looking at these values can assume that 1545 * failures persist for the life of the I/O. That's 1546 * important because when a device has intermittent 1547 * connectivity problems, we want to ensure that 1548 * they're ascribed to the device (ENXIO) and not 1549 * the zio (EIO). 1550 * 1551 * Since we hold SCL_ZIO as writer here, clear both 1552 * values so the probe can reevaluate from first 1553 * principles. 1554 */ 1555 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1556 vd->vdev_cant_read = B_FALSE; 1557 vd->vdev_cant_write = B_FALSE; 1558 } 1559 1560 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1561 vdev_probe_done, vps, 1562 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1563 1564 /* 1565 * We can't change the vdev state in this context, so we 1566 * kick off an async task to do it on our behalf. 1567 */ 1568 if (zio != NULL) { 1569 vd->vdev_probe_wanted = B_TRUE; 1570 spa_async_request(spa, SPA_ASYNC_PROBE); 1571 } 1572 } 1573 1574 if (zio != NULL) 1575 zio_add_child(zio, pio); 1576 1577 mutex_exit(&vd->vdev_probe_lock); 1578 1579 if (vps == NULL) { 1580 ASSERT(zio != NULL); 1581 return (NULL); 1582 } 1583 1584 for (int l = 1; l < VDEV_LABELS; l++) { 1585 zio_nowait(zio_read_phys(pio, vd, 1586 vdev_label_offset(vd->vdev_psize, l, 1587 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE, 1588 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1589 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1590 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1591 } 1592 1593 if (zio == NULL) 1594 return (pio); 1595 1596 zio_nowait(pio); 1597 return (NULL); 1598 } 1599 1600 static void 1601 vdev_open_child(void *arg) 1602 { 1603 vdev_t *vd = arg; 1604 1605 vd->vdev_open_thread = curthread; 1606 vd->vdev_open_error = vdev_open(vd); 1607 vd->vdev_open_thread = NULL; 1608 } 1609 1610 static boolean_t 1611 vdev_uses_zvols(vdev_t *vd) 1612 { 1613 #ifdef _KERNEL 1614 if (zvol_is_zvol(vd->vdev_path)) 1615 return (B_TRUE); 1616 #endif 1617 1618 for (int c = 0; c < vd->vdev_children; c++) 1619 if (vdev_uses_zvols(vd->vdev_child[c])) 1620 return (B_TRUE); 1621 1622 return (B_FALSE); 1623 } 1624 1625 void 1626 vdev_open_children(vdev_t *vd) 1627 { 1628 taskq_t *tq; 1629 int children = vd->vdev_children; 1630 1631 /* 1632 * in order to handle pools on top of zvols, do the opens 1633 * in a single thread so that the same thread holds the 1634 * spa_namespace_lock 1635 */ 1636 if (vdev_uses_zvols(vd)) { 1637 retry_sync: 1638 for (int c = 0; c < children; c++) 1639 vd->vdev_child[c]->vdev_open_error = 1640 vdev_open(vd->vdev_child[c]); 1641 } else { 1642 tq = taskq_create("vdev_open", children, minclsyspri, 1643 children, children, TASKQ_PREPOPULATE); 1644 if (tq == NULL) 1645 goto retry_sync; 1646 1647 for (int c = 0; c < children; c++) 1648 VERIFY(taskq_dispatch(tq, vdev_open_child, 1649 vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID); 1650 1651 taskq_destroy(tq); 1652 } 1653 1654 vd->vdev_nonrot = B_TRUE; 1655 1656 for (int c = 0; c < children; c++) 1657 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot; 1658 } 1659 1660 /* 1661 * Compute the raidz-deflation ratio. Note, we hard-code 1662 * in 128k (1 << 17) because it is the "typical" blocksize. 1663 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 1664 * otherwise it would inconsistently account for existing bp's. 1665 */ 1666 static void 1667 vdev_set_deflate_ratio(vdev_t *vd) 1668 { 1669 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { 1670 vd->vdev_deflate_ratio = (1 << 17) / 1671 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 1672 } 1673 } 1674 1675 /* 1676 * Maximize performance by inflating the configured ashift for top level 1677 * vdevs to be as close to the physical ashift as possible while maintaining 1678 * administrator defined limits and ensuring it doesn't go below the 1679 * logical ashift. 1680 */ 1681 static void 1682 vdev_ashift_optimize(vdev_t *vd) 1683 { 1684 ASSERT(vd == vd->vdev_top); 1685 1686 if (vd->vdev_ashift < vd->vdev_physical_ashift) { 1687 vd->vdev_ashift = MIN( 1688 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift), 1689 MAX(zfs_vdev_min_auto_ashift, 1690 vd->vdev_physical_ashift)); 1691 } else { 1692 /* 1693 * If the logical and physical ashifts are the same, then 1694 * we ensure that the top-level vdev's ashift is not smaller 1695 * than our minimum ashift value. For the unusual case 1696 * where logical ashift > physical ashift, we can't cap 1697 * the calculated ashift based on max ashift as that 1698 * would cause failures. 1699 * We still check if we need to increase it to match 1700 * the min ashift. 1701 */ 1702 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift, 1703 vd->vdev_ashift); 1704 } 1705 } 1706 1707 /* 1708 * Prepare a virtual device for access. 1709 */ 1710 int 1711 vdev_open(vdev_t *vd) 1712 { 1713 spa_t *spa = vd->vdev_spa; 1714 int error; 1715 uint64_t osize = 0; 1716 uint64_t max_osize = 0; 1717 uint64_t asize, max_asize, psize; 1718 uint64_t logical_ashift = 0; 1719 uint64_t physical_ashift = 0; 1720 1721 ASSERT(vd->vdev_open_thread == curthread || 1722 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1723 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1724 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1725 vd->vdev_state == VDEV_STATE_OFFLINE); 1726 1727 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1728 vd->vdev_cant_read = B_FALSE; 1729 vd->vdev_cant_write = B_FALSE; 1730 vd->vdev_min_asize = vdev_get_min_asize(vd); 1731 1732 /* 1733 * If this vdev is not removed, check its fault status. If it's 1734 * faulted, bail out of the open. 1735 */ 1736 if (!vd->vdev_removed && vd->vdev_faulted) { 1737 ASSERT(vd->vdev_children == 0); 1738 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1739 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1740 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1741 vd->vdev_label_aux); 1742 return (SET_ERROR(ENXIO)); 1743 } else if (vd->vdev_offline) { 1744 ASSERT(vd->vdev_children == 0); 1745 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1746 return (SET_ERROR(ENXIO)); 1747 } 1748 1749 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, 1750 &logical_ashift, &physical_ashift); 1751 /* 1752 * Physical volume size should never be larger than its max size, unless 1753 * the disk has shrunk while we were reading it or the device is buggy 1754 * or damaged: either way it's not safe for use, bail out of the open. 1755 */ 1756 if (osize > max_osize) { 1757 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1758 VDEV_AUX_OPEN_FAILED); 1759 return (SET_ERROR(ENXIO)); 1760 } 1761 1762 /* 1763 * Reset the vdev_reopening flag so that we actually close 1764 * the vdev on error. 1765 */ 1766 vd->vdev_reopening = B_FALSE; 1767 if (zio_injection_enabled && error == 0) 1768 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO)); 1769 1770 if (error) { 1771 if (vd->vdev_removed && 1772 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1773 vd->vdev_removed = B_FALSE; 1774 1775 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { 1776 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, 1777 vd->vdev_stat.vs_aux); 1778 } else { 1779 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1780 vd->vdev_stat.vs_aux); 1781 } 1782 return (error); 1783 } 1784 1785 vd->vdev_removed = B_FALSE; 1786 1787 /* 1788 * Recheck the faulted flag now that we have confirmed that 1789 * the vdev is accessible. If we're faulted, bail. 1790 */ 1791 if (vd->vdev_faulted) { 1792 ASSERT(vd->vdev_children == 0); 1793 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1794 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1795 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1796 vd->vdev_label_aux); 1797 return (SET_ERROR(ENXIO)); 1798 } 1799 1800 if (vd->vdev_degraded) { 1801 ASSERT(vd->vdev_children == 0); 1802 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1803 VDEV_AUX_ERR_EXCEEDED); 1804 } else { 1805 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1806 } 1807 1808 /* 1809 * For hole or missing vdevs we just return success. 1810 */ 1811 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1812 return (0); 1813 1814 for (int c = 0; c < vd->vdev_children; c++) { 1815 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1816 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1817 VDEV_AUX_NONE); 1818 break; 1819 } 1820 } 1821 1822 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1823 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1824 1825 if (vd->vdev_children == 0) { 1826 if (osize < SPA_MINDEVSIZE) { 1827 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1828 VDEV_AUX_TOO_SMALL); 1829 return (SET_ERROR(EOVERFLOW)); 1830 } 1831 psize = osize; 1832 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1833 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1834 VDEV_LABEL_END_SIZE); 1835 } else { 1836 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1837 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1838 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1839 VDEV_AUX_TOO_SMALL); 1840 return (SET_ERROR(EOVERFLOW)); 1841 } 1842 psize = 0; 1843 asize = osize; 1844 max_asize = max_osize; 1845 } 1846 1847 /* 1848 * If the vdev was expanded, record this so that we can re-create the 1849 * uberblock rings in labels {2,3}, during the next sync. 1850 */ 1851 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0)) 1852 vd->vdev_copy_uberblocks = B_TRUE; 1853 1854 vd->vdev_psize = psize; 1855 1856 /* 1857 * Make sure the allocatable size hasn't shrunk too much. 1858 */ 1859 if (asize < vd->vdev_min_asize) { 1860 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1861 VDEV_AUX_BAD_LABEL); 1862 return (SET_ERROR(EINVAL)); 1863 } 1864 1865 /* 1866 * We can always set the logical/physical ashift members since 1867 * their values are only used to calculate the vdev_ashift when 1868 * the device is first added to the config. These values should 1869 * not be used for anything else since they may change whenever 1870 * the device is reopened and we don't store them in the label. 1871 */ 1872 vd->vdev_physical_ashift = 1873 MAX(physical_ashift, vd->vdev_physical_ashift); 1874 vd->vdev_logical_ashift = MAX(logical_ashift, 1875 vd->vdev_logical_ashift); 1876 1877 if (vd->vdev_asize == 0) { 1878 /* 1879 * This is the first-ever open, so use the computed values. 1880 * For compatibility, a different ashift can be requested. 1881 */ 1882 vd->vdev_asize = asize; 1883 vd->vdev_max_asize = max_asize; 1884 1885 /* 1886 * If the vdev_ashift was not overriden at creation time, 1887 * then set it the logical ashift and optimize the ashift. 1888 */ 1889 if (vd->vdev_ashift == 0) { 1890 vd->vdev_ashift = vd->vdev_logical_ashift; 1891 1892 if (vd->vdev_logical_ashift > ASHIFT_MAX) { 1893 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1894 VDEV_AUX_ASHIFT_TOO_BIG); 1895 return (SET_ERROR(EDOM)); 1896 } 1897 1898 if (vd->vdev_top == vd) { 1899 vdev_ashift_optimize(vd); 1900 } 1901 } 1902 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN || 1903 vd->vdev_ashift > ASHIFT_MAX)) { 1904 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1905 VDEV_AUX_BAD_ASHIFT); 1906 return (SET_ERROR(EDOM)); 1907 } 1908 } else { 1909 /* 1910 * Make sure the alignment required hasn't increased. 1911 */ 1912 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift && 1913 vd->vdev_ops->vdev_op_leaf) { 1914 (void) zfs_ereport_post( 1915 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT, 1916 spa, vd, NULL, NULL, 0); 1917 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1918 VDEV_AUX_BAD_LABEL); 1919 return (SET_ERROR(EDOM)); 1920 } 1921 vd->vdev_max_asize = max_asize; 1922 } 1923 1924 /* 1925 * If all children are healthy we update asize if either: 1926 * The asize has increased, due to a device expansion caused by dynamic 1927 * LUN growth or vdev replacement, and automatic expansion is enabled; 1928 * making the additional space available. 1929 * 1930 * The asize has decreased, due to a device shrink usually caused by a 1931 * vdev replace with a smaller device. This ensures that calculations 1932 * based of max_asize and asize e.g. esize are always valid. It's safe 1933 * to do this as we've already validated that asize is greater than 1934 * vdev_min_asize. 1935 */ 1936 if (vd->vdev_state == VDEV_STATE_HEALTHY && 1937 ((asize > vd->vdev_asize && 1938 (vd->vdev_expanding || spa->spa_autoexpand)) || 1939 (asize < vd->vdev_asize))) 1940 vd->vdev_asize = asize; 1941 1942 vdev_set_min_asize(vd); 1943 1944 /* 1945 * Ensure we can issue some IO before declaring the 1946 * vdev open for business. 1947 */ 1948 if (vd->vdev_ops->vdev_op_leaf && 1949 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1950 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1951 VDEV_AUX_ERR_EXCEEDED); 1952 return (error); 1953 } 1954 1955 /* 1956 * If this is a leaf vdev, assess whether a resilver is needed. 1957 * But don't do this if we are doing a reopen for a scrub, since 1958 * this would just restart the scrub we are already doing. 1959 */ 1960 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen) 1961 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd); 1962 1963 return (0); 1964 } 1965 1966 /* 1967 * Called once the vdevs are all opened, this routine validates the label 1968 * contents. This needs to be done before vdev_load() so that we don't 1969 * inadvertently do repair I/Os to the wrong device. 1970 * 1971 * This function will only return failure if one of the vdevs indicates that it 1972 * has since been destroyed or exported. This is only possible if 1973 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1974 * will be updated but the function will return 0. 1975 */ 1976 int 1977 vdev_validate(vdev_t *vd) 1978 { 1979 spa_t *spa = vd->vdev_spa; 1980 nvlist_t *label; 1981 uint64_t guid = 0, aux_guid = 0, top_guid; 1982 uint64_t state; 1983 nvlist_t *nvl; 1984 uint64_t txg; 1985 1986 if (vdev_validate_skip) 1987 return (0); 1988 1989 for (uint64_t c = 0; c < vd->vdev_children; c++) 1990 if (vdev_validate(vd->vdev_child[c]) != 0) 1991 return (SET_ERROR(EBADF)); 1992 1993 /* 1994 * If the device has already failed, or was marked offline, don't do 1995 * any further validation. Otherwise, label I/O will fail and we will 1996 * overwrite the previous state. 1997 */ 1998 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) 1999 return (0); 2000 2001 /* 2002 * If we are performing an extreme rewind, we allow for a label that 2003 * was modified at a point after the current txg. 2004 * If config lock is not held do not check for the txg. spa_sync could 2005 * be updating the vdev's label before updating spa_last_synced_txg. 2006 */ 2007 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || 2008 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) 2009 txg = UINT64_MAX; 2010 else 2011 txg = spa_last_synced_txg(spa); 2012 2013 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 2014 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2015 VDEV_AUX_BAD_LABEL); 2016 vdev_dbgmsg(vd, "vdev_validate: failed reading config for " 2017 "txg %llu", (u_longlong_t)txg); 2018 return (0); 2019 } 2020 2021 /* 2022 * Determine if this vdev has been split off into another 2023 * pool. If so, then refuse to open it. 2024 */ 2025 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 2026 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 2027 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2028 VDEV_AUX_SPLIT_POOL); 2029 nvlist_free(label); 2030 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); 2031 return (0); 2032 } 2033 2034 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { 2035 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2036 VDEV_AUX_CORRUPT_DATA); 2037 nvlist_free(label); 2038 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2039 ZPOOL_CONFIG_POOL_GUID); 2040 return (0); 2041 } 2042 2043 /* 2044 * If config is not trusted then ignore the spa guid check. This is 2045 * necessary because if the machine crashed during a re-guid the new 2046 * guid might have been written to all of the vdev labels, but not the 2047 * cached config. The check will be performed again once we have the 2048 * trusted config from the MOS. 2049 */ 2050 if (spa->spa_trust_config && guid != spa_guid(spa)) { 2051 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2052 VDEV_AUX_CORRUPT_DATA); 2053 nvlist_free(label); 2054 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " 2055 "match config (%llu != %llu)", (u_longlong_t)guid, 2056 (u_longlong_t)spa_guid(spa)); 2057 return (0); 2058 } 2059 2060 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 2061 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 2062 &aux_guid) != 0) 2063 aux_guid = 0; 2064 2065 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { 2066 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2067 VDEV_AUX_CORRUPT_DATA); 2068 nvlist_free(label); 2069 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2070 ZPOOL_CONFIG_GUID); 2071 return (0); 2072 } 2073 2074 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) 2075 != 0) { 2076 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2077 VDEV_AUX_CORRUPT_DATA); 2078 nvlist_free(label); 2079 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2080 ZPOOL_CONFIG_TOP_GUID); 2081 return (0); 2082 } 2083 2084 /* 2085 * If this vdev just became a top-level vdev because its sibling was 2086 * detached, it will have adopted the parent's vdev guid -- but the 2087 * label may or may not be on disk yet. Fortunately, either version 2088 * of the label will have the same top guid, so if we're a top-level 2089 * vdev, we can safely compare to that instead. 2090 * However, if the config comes from a cachefile that failed to update 2091 * after the detach, a top-level vdev will appear as a non top-level 2092 * vdev in the config. Also relax the constraints if we perform an 2093 * extreme rewind. 2094 * 2095 * If we split this vdev off instead, then we also check the 2096 * original pool's guid. We don't want to consider the vdev 2097 * corrupt if it is partway through a split operation. 2098 */ 2099 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { 2100 boolean_t mismatch = B_FALSE; 2101 if (spa->spa_trust_config && !spa->spa_extreme_rewind) { 2102 if (vd != vd->vdev_top || vd->vdev_guid != top_guid) 2103 mismatch = B_TRUE; 2104 } else { 2105 if (vd->vdev_guid != top_guid && 2106 vd->vdev_top->vdev_guid != guid) 2107 mismatch = B_TRUE; 2108 } 2109 2110 if (mismatch) { 2111 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2112 VDEV_AUX_CORRUPT_DATA); 2113 nvlist_free(label); 2114 vdev_dbgmsg(vd, "vdev_validate: config guid " 2115 "doesn't match label guid"); 2116 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", 2117 (u_longlong_t)vd->vdev_guid, 2118 (u_longlong_t)vd->vdev_top->vdev_guid); 2119 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " 2120 "aux_guid %llu", (u_longlong_t)guid, 2121 (u_longlong_t)top_guid, (u_longlong_t)aux_guid); 2122 return (0); 2123 } 2124 } 2125 2126 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 2127 &state) != 0) { 2128 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2129 VDEV_AUX_CORRUPT_DATA); 2130 nvlist_free(label); 2131 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2132 ZPOOL_CONFIG_POOL_STATE); 2133 return (0); 2134 } 2135 2136 nvlist_free(label); 2137 2138 /* 2139 * If this is a verbatim import, no need to check the 2140 * state of the pool. 2141 */ 2142 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 2143 spa_load_state(spa) == SPA_LOAD_OPEN && 2144 state != POOL_STATE_ACTIVE) { 2145 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " 2146 "for spa %s", (u_longlong_t)state, spa->spa_name); 2147 return (SET_ERROR(EBADF)); 2148 } 2149 2150 /* 2151 * If we were able to open and validate a vdev that was 2152 * previously marked permanently unavailable, clear that state 2153 * now. 2154 */ 2155 if (vd->vdev_not_present) 2156 vd->vdev_not_present = 0; 2157 2158 return (0); 2159 } 2160 2161 static void 2162 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) 2163 { 2164 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) { 2165 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) { 2166 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed " 2167 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2168 dvd->vdev_path, svd->vdev_path); 2169 spa_strfree(dvd->vdev_path); 2170 dvd->vdev_path = spa_strdup(svd->vdev_path); 2171 } 2172 } else if (svd->vdev_path != NULL) { 2173 dvd->vdev_path = spa_strdup(svd->vdev_path); 2174 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", 2175 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path); 2176 } 2177 } 2178 2179 /* 2180 * Recursively copy vdev paths from one vdev to another. Source and destination 2181 * vdev trees must have same geometry otherwise return error. Intended to copy 2182 * paths from userland config into MOS config. 2183 */ 2184 int 2185 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) 2186 { 2187 if ((svd->vdev_ops == &vdev_missing_ops) || 2188 (svd->vdev_ishole && dvd->vdev_ishole) || 2189 (dvd->vdev_ops == &vdev_indirect_ops)) 2190 return (0); 2191 2192 if (svd->vdev_ops != dvd->vdev_ops) { 2193 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", 2194 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); 2195 return (SET_ERROR(EINVAL)); 2196 } 2197 2198 if (svd->vdev_guid != dvd->vdev_guid) { 2199 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " 2200 "%llu)", (u_longlong_t)svd->vdev_guid, 2201 (u_longlong_t)dvd->vdev_guid); 2202 return (SET_ERROR(EINVAL)); 2203 } 2204 2205 if (svd->vdev_children != dvd->vdev_children) { 2206 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " 2207 "%llu != %llu", (u_longlong_t)svd->vdev_children, 2208 (u_longlong_t)dvd->vdev_children); 2209 return (SET_ERROR(EINVAL)); 2210 } 2211 2212 for (uint64_t i = 0; i < svd->vdev_children; i++) { 2213 int error = vdev_copy_path_strict(svd->vdev_child[i], 2214 dvd->vdev_child[i]); 2215 if (error != 0) 2216 return (error); 2217 } 2218 2219 if (svd->vdev_ops->vdev_op_leaf) 2220 vdev_copy_path_impl(svd, dvd); 2221 2222 return (0); 2223 } 2224 2225 static void 2226 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) 2227 { 2228 ASSERT(stvd->vdev_top == stvd); 2229 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); 2230 2231 for (uint64_t i = 0; i < dvd->vdev_children; i++) { 2232 vdev_copy_path_search(stvd, dvd->vdev_child[i]); 2233 } 2234 2235 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) 2236 return; 2237 2238 /* 2239 * The idea here is that while a vdev can shift positions within 2240 * a top vdev (when replacing, attaching mirror, etc.) it cannot 2241 * step outside of it. 2242 */ 2243 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); 2244 2245 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) 2246 return; 2247 2248 ASSERT(vd->vdev_ops->vdev_op_leaf); 2249 2250 vdev_copy_path_impl(vd, dvd); 2251 } 2252 2253 /* 2254 * Recursively copy vdev paths from one root vdev to another. Source and 2255 * destination vdev trees may differ in geometry. For each destination leaf 2256 * vdev, search a vdev with the same guid and top vdev id in the source. 2257 * Intended to copy paths from userland config into MOS config. 2258 */ 2259 void 2260 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) 2261 { 2262 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); 2263 ASSERT(srvd->vdev_ops == &vdev_root_ops); 2264 ASSERT(drvd->vdev_ops == &vdev_root_ops); 2265 2266 for (uint64_t i = 0; i < children; i++) { 2267 vdev_copy_path_search(srvd->vdev_child[i], 2268 drvd->vdev_child[i]); 2269 } 2270 } 2271 2272 /* 2273 * Close a virtual device. 2274 */ 2275 void 2276 vdev_close(vdev_t *vd) 2277 { 2278 vdev_t *pvd = vd->vdev_parent; 2279 spa_t *spa __maybe_unused = vd->vdev_spa; 2280 2281 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2282 2283 /* 2284 * If our parent is reopening, then we are as well, unless we are 2285 * going offline. 2286 */ 2287 if (pvd != NULL && pvd->vdev_reopening) 2288 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 2289 2290 vd->vdev_ops->vdev_op_close(vd); 2291 2292 vdev_cache_purge(vd); 2293 2294 /* 2295 * We record the previous state before we close it, so that if we are 2296 * doing a reopen(), we don't generate FMA ereports if we notice that 2297 * it's still faulted. 2298 */ 2299 vd->vdev_prevstate = vd->vdev_state; 2300 2301 if (vd->vdev_offline) 2302 vd->vdev_state = VDEV_STATE_OFFLINE; 2303 else 2304 vd->vdev_state = VDEV_STATE_CLOSED; 2305 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2306 } 2307 2308 void 2309 vdev_hold(vdev_t *vd) 2310 { 2311 spa_t *spa = vd->vdev_spa; 2312 2313 ASSERT(spa_is_root(spa)); 2314 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 2315 return; 2316 2317 for (int c = 0; c < vd->vdev_children; c++) 2318 vdev_hold(vd->vdev_child[c]); 2319 2320 if (vd->vdev_ops->vdev_op_leaf) 2321 vd->vdev_ops->vdev_op_hold(vd); 2322 } 2323 2324 void 2325 vdev_rele(vdev_t *vd) 2326 { 2327 ASSERT(spa_is_root(vd->vdev_spa)); 2328 for (int c = 0; c < vd->vdev_children; c++) 2329 vdev_rele(vd->vdev_child[c]); 2330 2331 if (vd->vdev_ops->vdev_op_leaf) 2332 vd->vdev_ops->vdev_op_rele(vd); 2333 } 2334 2335 /* 2336 * Reopen all interior vdevs and any unopened leaves. We don't actually 2337 * reopen leaf vdevs which had previously been opened as they might deadlock 2338 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 2339 * If the leaf has never been opened then open it, as usual. 2340 */ 2341 void 2342 vdev_reopen(vdev_t *vd) 2343 { 2344 spa_t *spa = vd->vdev_spa; 2345 2346 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2347 2348 /* set the reopening flag unless we're taking the vdev offline */ 2349 vd->vdev_reopening = !vd->vdev_offline; 2350 vdev_close(vd); 2351 (void) vdev_open(vd); 2352 2353 /* 2354 * Call vdev_validate() here to make sure we have the same device. 2355 * Otherwise, a device with an invalid label could be successfully 2356 * opened in response to vdev_reopen(). 2357 */ 2358 if (vd->vdev_aux) { 2359 (void) vdev_validate_aux(vd); 2360 if (vdev_readable(vd) && vdev_writeable(vd) && 2361 vd->vdev_aux == &spa->spa_l2cache) { 2362 /* 2363 * In case the vdev is present we should evict all ARC 2364 * buffers and pointers to log blocks and reclaim their 2365 * space before restoring its contents to L2ARC. 2366 */ 2367 if (l2arc_vdev_present(vd)) { 2368 l2arc_rebuild_vdev(vd, B_TRUE); 2369 } else { 2370 l2arc_add_vdev(spa, vd); 2371 } 2372 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 2373 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 2374 } 2375 } else { 2376 (void) vdev_validate(vd); 2377 } 2378 2379 /* 2380 * Reassess parent vdev's health. 2381 */ 2382 vdev_propagate_state(vd); 2383 } 2384 2385 int 2386 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 2387 { 2388 int error; 2389 2390 /* 2391 * Normally, partial opens (e.g. of a mirror) are allowed. 2392 * For a create, however, we want to fail the request if 2393 * there are any components we can't open. 2394 */ 2395 error = vdev_open(vd); 2396 2397 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 2398 vdev_close(vd); 2399 return (error ? error : SET_ERROR(ENXIO)); 2400 } 2401 2402 /* 2403 * Recursively load DTLs and initialize all labels. 2404 */ 2405 if ((error = vdev_dtl_load(vd)) != 0 || 2406 (error = vdev_label_init(vd, txg, isreplacing ? 2407 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 2408 vdev_close(vd); 2409 return (error); 2410 } 2411 2412 return (0); 2413 } 2414 2415 void 2416 vdev_metaslab_set_size(vdev_t *vd) 2417 { 2418 uint64_t asize = vd->vdev_asize; 2419 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; 2420 uint64_t ms_shift; 2421 2422 /* 2423 * There are two dimensions to the metaslab sizing calculation: 2424 * the size of the metaslab and the count of metaslabs per vdev. 2425 * 2426 * The default values used below are a good balance between memory 2427 * usage (larger metaslab size means more memory needed for loaded 2428 * metaslabs; more metaslabs means more memory needed for the 2429 * metaslab_t structs), metaslab load time (larger metaslabs take 2430 * longer to load), and metaslab sync time (more metaslabs means 2431 * more time spent syncing all of them). 2432 * 2433 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. 2434 * The range of the dimensions are as follows: 2435 * 2436 * 2^29 <= ms_size <= 2^34 2437 * 16 <= ms_count <= 131,072 2438 * 2439 * On the lower end of vdev sizes, we aim for metaslabs sizes of 2440 * at least 512MB (2^29) to minimize fragmentation effects when 2441 * testing with smaller devices. However, the count constraint 2442 * of at least 16 metaslabs will override this minimum size goal. 2443 * 2444 * On the upper end of vdev sizes, we aim for a maximum metaslab 2445 * size of 16GB. However, we will cap the total count to 2^17 2446 * metaslabs to keep our memory footprint in check and let the 2447 * metaslab size grow from there if that limit is hit. 2448 * 2449 * The net effect of applying above constrains is summarized below. 2450 * 2451 * vdev size metaslab count 2452 * --------------|----------------- 2453 * < 8GB ~16 2454 * 8GB - 100GB one per 512MB 2455 * 100GB - 3TB ~200 2456 * 3TB - 2PB one per 16GB 2457 * > 2PB ~131,072 2458 * -------------------------------- 2459 * 2460 * Finally, note that all of the above calculate the initial 2461 * number of metaslabs. Expanding a top-level vdev will result 2462 * in additional metaslabs being allocated making it possible 2463 * to exceed the zfs_vdev_ms_count_limit. 2464 */ 2465 2466 if (ms_count < zfs_vdev_min_ms_count) 2467 ms_shift = highbit64(asize / zfs_vdev_min_ms_count); 2468 else if (ms_count > zfs_vdev_default_ms_count) 2469 ms_shift = highbit64(asize / zfs_vdev_default_ms_count); 2470 else 2471 ms_shift = zfs_vdev_default_ms_shift; 2472 2473 if (ms_shift < SPA_MAXBLOCKSHIFT) { 2474 ms_shift = SPA_MAXBLOCKSHIFT; 2475 } else if (ms_shift > zfs_vdev_max_ms_shift) { 2476 ms_shift = zfs_vdev_max_ms_shift; 2477 /* cap the total count to constrain memory footprint */ 2478 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) 2479 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); 2480 } 2481 2482 vd->vdev_ms_shift = ms_shift; 2483 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); 2484 } 2485 2486 void 2487 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 2488 { 2489 ASSERT(vd == vd->vdev_top); 2490 /* indirect vdevs don't have metaslabs or dtls */ 2491 ASSERT(vdev_is_concrete(vd) || flags == 0); 2492 ASSERT(ISP2(flags)); 2493 ASSERT(spa_writeable(vd->vdev_spa)); 2494 2495 if (flags & VDD_METASLAB) 2496 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 2497 2498 if (flags & VDD_DTL) 2499 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 2500 2501 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 2502 } 2503 2504 void 2505 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 2506 { 2507 for (int c = 0; c < vd->vdev_children; c++) 2508 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 2509 2510 if (vd->vdev_ops->vdev_op_leaf) 2511 vdev_dirty(vd->vdev_top, flags, vd, txg); 2512 } 2513 2514 /* 2515 * DTLs. 2516 * 2517 * A vdev's DTL (dirty time log) is the set of transaction groups for which 2518 * the vdev has less than perfect replication. There are four kinds of DTL: 2519 * 2520 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 2521 * 2522 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 2523 * 2524 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 2525 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 2526 * txgs that was scrubbed. 2527 * 2528 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 2529 * persistent errors or just some device being offline. 2530 * Unlike the other three, the DTL_OUTAGE map is not generally 2531 * maintained; it's only computed when needed, typically to 2532 * determine whether a device can be detached. 2533 * 2534 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 2535 * either has the data or it doesn't. 2536 * 2537 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 2538 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 2539 * if any child is less than fully replicated, then so is its parent. 2540 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 2541 * comprising only those txgs which appear in 'maxfaults' or more children; 2542 * those are the txgs we don't have enough replication to read. For example, 2543 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 2544 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 2545 * two child DTL_MISSING maps. 2546 * 2547 * It should be clear from the above that to compute the DTLs and outage maps 2548 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 2549 * Therefore, that is all we keep on disk. When loading the pool, or after 2550 * a configuration change, we generate all other DTLs from first principles. 2551 */ 2552 void 2553 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2554 { 2555 range_tree_t *rt = vd->vdev_dtl[t]; 2556 2557 ASSERT(t < DTL_TYPES); 2558 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2559 ASSERT(spa_writeable(vd->vdev_spa)); 2560 2561 mutex_enter(&vd->vdev_dtl_lock); 2562 if (!range_tree_contains(rt, txg, size)) 2563 range_tree_add(rt, txg, size); 2564 mutex_exit(&vd->vdev_dtl_lock); 2565 } 2566 2567 boolean_t 2568 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2569 { 2570 range_tree_t *rt = vd->vdev_dtl[t]; 2571 boolean_t dirty = B_FALSE; 2572 2573 ASSERT(t < DTL_TYPES); 2574 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2575 2576 /* 2577 * While we are loading the pool, the DTLs have not been loaded yet. 2578 * Ignore the DTLs and try all devices. This avoids a recursive 2579 * mutex enter on the vdev_dtl_lock, and also makes us try hard 2580 * when loading the pool (relying on the checksum to ensure that 2581 * we get the right data -- note that we while loading, we are 2582 * only reading the MOS, which is always checksummed). 2583 */ 2584 if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE) 2585 return (B_FALSE); 2586 2587 mutex_enter(&vd->vdev_dtl_lock); 2588 if (!range_tree_is_empty(rt)) 2589 dirty = range_tree_contains(rt, txg, size); 2590 mutex_exit(&vd->vdev_dtl_lock); 2591 2592 return (dirty); 2593 } 2594 2595 boolean_t 2596 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 2597 { 2598 range_tree_t *rt = vd->vdev_dtl[t]; 2599 boolean_t empty; 2600 2601 mutex_enter(&vd->vdev_dtl_lock); 2602 empty = range_tree_is_empty(rt); 2603 mutex_exit(&vd->vdev_dtl_lock); 2604 2605 return (empty); 2606 } 2607 2608 /* 2609 * Returns B_TRUE if vdev determines offset needs to be resilvered. 2610 */ 2611 boolean_t 2612 vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize) 2613 { 2614 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2615 2616 if (vd->vdev_ops->vdev_op_need_resilver == NULL || 2617 vd->vdev_ops->vdev_op_leaf) 2618 return (B_TRUE); 2619 2620 return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize)); 2621 } 2622 2623 /* 2624 * Returns the lowest txg in the DTL range. 2625 */ 2626 static uint64_t 2627 vdev_dtl_min(vdev_t *vd) 2628 { 2629 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2630 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2631 ASSERT0(vd->vdev_children); 2632 2633 return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1); 2634 } 2635 2636 /* 2637 * Returns the highest txg in the DTL. 2638 */ 2639 static uint64_t 2640 vdev_dtl_max(vdev_t *vd) 2641 { 2642 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2643 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2644 ASSERT0(vd->vdev_children); 2645 2646 return (range_tree_max(vd->vdev_dtl[DTL_MISSING])); 2647 } 2648 2649 /* 2650 * Determine if a resilvering vdev should remove any DTL entries from 2651 * its range. If the vdev was resilvering for the entire duration of the 2652 * scan then it should excise that range from its DTLs. Otherwise, this 2653 * vdev is considered partially resilvered and should leave its DTL 2654 * entries intact. The comment in vdev_dtl_reassess() describes how we 2655 * excise the DTLs. 2656 */ 2657 static boolean_t 2658 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done) 2659 { 2660 ASSERT0(vd->vdev_children); 2661 2662 if (vd->vdev_state < VDEV_STATE_DEGRADED) 2663 return (B_FALSE); 2664 2665 if (vd->vdev_resilver_deferred) 2666 return (B_FALSE); 2667 2668 if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) 2669 return (B_TRUE); 2670 2671 if (rebuild_done) { 2672 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 2673 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 2674 2675 /* Rebuild not initiated by attach */ 2676 if (vd->vdev_rebuild_txg == 0) 2677 return (B_TRUE); 2678 2679 /* 2680 * When a rebuild completes without error then all missing data 2681 * up to the rebuild max txg has been reconstructed and the DTL 2682 * is eligible for excision. 2683 */ 2684 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE && 2685 vdev_dtl_max(vd) <= vrp->vrp_max_txg) { 2686 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd)); 2687 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg); 2688 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg); 2689 return (B_TRUE); 2690 } 2691 } else { 2692 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 2693 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys; 2694 2695 /* Resilver not initiated by attach */ 2696 if (vd->vdev_resilver_txg == 0) 2697 return (B_TRUE); 2698 2699 /* 2700 * When a resilver is initiated the scan will assign the 2701 * scn_max_txg value to the highest txg value that exists 2702 * in all DTLs. If this device's max DTL is not part of this 2703 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg] 2704 * then it is not eligible for excision. 2705 */ 2706 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 2707 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd)); 2708 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg); 2709 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg); 2710 return (B_TRUE); 2711 } 2712 } 2713 2714 return (B_FALSE); 2715 } 2716 2717 /* 2718 * Reassess DTLs after a config change or scrub completion. If txg == 0 no 2719 * write operations will be issued to the pool. 2720 */ 2721 void 2722 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, 2723 boolean_t scrub_done, boolean_t rebuild_done) 2724 { 2725 spa_t *spa = vd->vdev_spa; 2726 avl_tree_t reftree; 2727 int minref; 2728 2729 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2730 2731 for (int c = 0; c < vd->vdev_children; c++) 2732 vdev_dtl_reassess(vd->vdev_child[c], txg, 2733 scrub_txg, scrub_done, rebuild_done); 2734 2735 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) 2736 return; 2737 2738 if (vd->vdev_ops->vdev_op_leaf) { 2739 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 2740 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 2741 boolean_t check_excise = B_FALSE; 2742 boolean_t wasempty = B_TRUE; 2743 2744 mutex_enter(&vd->vdev_dtl_lock); 2745 2746 /* 2747 * If requested, pretend the scan or rebuild completed cleanly. 2748 */ 2749 if (zfs_scan_ignore_errors) { 2750 if (scn != NULL) 2751 scn->scn_phys.scn_errors = 0; 2752 if (vr != NULL) 2753 vr->vr_rebuild_phys.vrp_errors = 0; 2754 } 2755 2756 if (scrub_txg != 0 && 2757 !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 2758 wasempty = B_FALSE; 2759 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d " 2760 "dtl:%llu/%llu errors:%llu", 2761 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg, 2762 (u_longlong_t)scrub_txg, spa->spa_scrub_started, 2763 (u_longlong_t)vdev_dtl_min(vd), 2764 (u_longlong_t)vdev_dtl_max(vd), 2765 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0)); 2766 } 2767 2768 /* 2769 * If we've completed a scrub/resilver or a rebuild cleanly 2770 * then determine if this vdev should remove any DTLs. We 2771 * only want to excise regions on vdevs that were available 2772 * during the entire duration of this scan. 2773 */ 2774 if (rebuild_done && 2775 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) { 2776 check_excise = B_TRUE; 2777 } else { 2778 if (spa->spa_scrub_started || 2779 (scn != NULL && scn->scn_phys.scn_errors == 0)) { 2780 check_excise = B_TRUE; 2781 } 2782 } 2783 2784 if (scrub_txg && check_excise && 2785 vdev_dtl_should_excise(vd, rebuild_done)) { 2786 /* 2787 * We completed a scrub, resilver or rebuild up to 2788 * scrub_txg. If we did it without rebooting, then 2789 * the scrub dtl will be valid, so excise the old 2790 * region and fold in the scrub dtl. Otherwise, 2791 * leave the dtl as-is if there was an error. 2792 * 2793 * There's little trick here: to excise the beginning 2794 * of the DTL_MISSING map, we put it into a reference 2795 * tree and then add a segment with refcnt -1 that 2796 * covers the range [0, scrub_txg). This means 2797 * that each txg in that range has refcnt -1 or 0. 2798 * We then add DTL_SCRUB with a refcnt of 2, so that 2799 * entries in the range [0, scrub_txg) will have a 2800 * positive refcnt -- either 1 or 2. We then convert 2801 * the reference tree into the new DTL_MISSING map. 2802 */ 2803 space_reftree_create(&reftree); 2804 space_reftree_add_map(&reftree, 2805 vd->vdev_dtl[DTL_MISSING], 1); 2806 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 2807 space_reftree_add_map(&reftree, 2808 vd->vdev_dtl[DTL_SCRUB], 2); 2809 space_reftree_generate_map(&reftree, 2810 vd->vdev_dtl[DTL_MISSING], 1); 2811 space_reftree_destroy(&reftree); 2812 2813 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 2814 zfs_dbgmsg("update DTL_MISSING:%llu/%llu", 2815 (u_longlong_t)vdev_dtl_min(vd), 2816 (u_longlong_t)vdev_dtl_max(vd)); 2817 } else if (!wasempty) { 2818 zfs_dbgmsg("DTL_MISSING is now empty"); 2819 } 2820 } 2821 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 2822 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 2823 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 2824 if (scrub_done) 2825 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 2826 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 2827 if (!vdev_readable(vd)) 2828 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 2829 else 2830 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 2831 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 2832 2833 /* 2834 * If the vdev was resilvering or rebuilding and no longer 2835 * has any DTLs then reset the appropriate flag and dirty 2836 * the top level so that we persist the change. 2837 */ 2838 if (txg != 0 && 2839 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 2840 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) { 2841 if (vd->vdev_rebuild_txg != 0) { 2842 vd->vdev_rebuild_txg = 0; 2843 vdev_config_dirty(vd->vdev_top); 2844 } else if (vd->vdev_resilver_txg != 0) { 2845 vd->vdev_resilver_txg = 0; 2846 vdev_config_dirty(vd->vdev_top); 2847 } 2848 } 2849 2850 mutex_exit(&vd->vdev_dtl_lock); 2851 2852 if (txg != 0) 2853 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 2854 return; 2855 } 2856 2857 mutex_enter(&vd->vdev_dtl_lock); 2858 for (int t = 0; t < DTL_TYPES; t++) { 2859 /* account for child's outage in parent's missing map */ 2860 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 2861 if (t == DTL_SCRUB) 2862 continue; /* leaf vdevs only */ 2863 if (t == DTL_PARTIAL) 2864 minref = 1; /* i.e. non-zero */ 2865 else if (vd->vdev_nparity != 0) 2866 minref = vd->vdev_nparity + 1; /* RAID-Z */ 2867 else 2868 minref = vd->vdev_children; /* any kind of mirror */ 2869 space_reftree_create(&reftree); 2870 for (int c = 0; c < vd->vdev_children; c++) { 2871 vdev_t *cvd = vd->vdev_child[c]; 2872 mutex_enter(&cvd->vdev_dtl_lock); 2873 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 2874 mutex_exit(&cvd->vdev_dtl_lock); 2875 } 2876 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 2877 space_reftree_destroy(&reftree); 2878 } 2879 mutex_exit(&vd->vdev_dtl_lock); 2880 } 2881 2882 int 2883 vdev_dtl_load(vdev_t *vd) 2884 { 2885 spa_t *spa = vd->vdev_spa; 2886 objset_t *mos = spa->spa_meta_objset; 2887 int error = 0; 2888 2889 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 2890 ASSERT(vdev_is_concrete(vd)); 2891 2892 error = space_map_open(&vd->vdev_dtl_sm, mos, 2893 vd->vdev_dtl_object, 0, -1ULL, 0); 2894 if (error) 2895 return (error); 2896 ASSERT(vd->vdev_dtl_sm != NULL); 2897 2898 mutex_enter(&vd->vdev_dtl_lock); 2899 error = space_map_load(vd->vdev_dtl_sm, 2900 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 2901 mutex_exit(&vd->vdev_dtl_lock); 2902 2903 return (error); 2904 } 2905 2906 for (int c = 0; c < vd->vdev_children; c++) { 2907 error = vdev_dtl_load(vd->vdev_child[c]); 2908 if (error != 0) 2909 break; 2910 } 2911 2912 return (error); 2913 } 2914 2915 static void 2916 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx) 2917 { 2918 spa_t *spa = vd->vdev_spa; 2919 objset_t *mos = spa->spa_meta_objset; 2920 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 2921 const char *string; 2922 2923 ASSERT(alloc_bias != VDEV_BIAS_NONE); 2924 2925 string = 2926 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG : 2927 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL : 2928 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL; 2929 2930 ASSERT(string != NULL); 2931 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, 2932 1, strlen(string) + 1, string, tx)); 2933 2934 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) { 2935 spa_activate_allocation_classes(spa, tx); 2936 } 2937 } 2938 2939 void 2940 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 2941 { 2942 spa_t *spa = vd->vdev_spa; 2943 2944 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 2945 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 2946 zapobj, tx)); 2947 } 2948 2949 uint64_t 2950 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 2951 { 2952 spa_t *spa = vd->vdev_spa; 2953 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 2954 DMU_OT_NONE, 0, tx); 2955 2956 ASSERT(zap != 0); 2957 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 2958 zap, tx)); 2959 2960 return (zap); 2961 } 2962 2963 void 2964 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 2965 { 2966 if (vd->vdev_ops != &vdev_hole_ops && 2967 vd->vdev_ops != &vdev_missing_ops && 2968 vd->vdev_ops != &vdev_root_ops && 2969 !vd->vdev_top->vdev_removing) { 2970 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 2971 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 2972 } 2973 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 2974 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 2975 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE) 2976 vdev_zap_allocation_data(vd, tx); 2977 } 2978 } 2979 2980 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2981 vdev_construct_zaps(vd->vdev_child[i], tx); 2982 } 2983 } 2984 2985 static void 2986 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 2987 { 2988 spa_t *spa = vd->vdev_spa; 2989 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 2990 objset_t *mos = spa->spa_meta_objset; 2991 range_tree_t *rtsync; 2992 dmu_tx_t *tx; 2993 uint64_t object = space_map_object(vd->vdev_dtl_sm); 2994 2995 ASSERT(vdev_is_concrete(vd)); 2996 ASSERT(vd->vdev_ops->vdev_op_leaf); 2997 2998 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2999 3000 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 3001 mutex_enter(&vd->vdev_dtl_lock); 3002 space_map_free(vd->vdev_dtl_sm, tx); 3003 space_map_close(vd->vdev_dtl_sm); 3004 vd->vdev_dtl_sm = NULL; 3005 mutex_exit(&vd->vdev_dtl_lock); 3006 3007 /* 3008 * We only destroy the leaf ZAP for detached leaves or for 3009 * removed log devices. Removed data devices handle leaf ZAP 3010 * cleanup later, once cancellation is no longer possible. 3011 */ 3012 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 3013 vd->vdev_top->vdev_islog)) { 3014 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 3015 vd->vdev_leaf_zap = 0; 3016 } 3017 3018 dmu_tx_commit(tx); 3019 return; 3020 } 3021 3022 if (vd->vdev_dtl_sm == NULL) { 3023 uint64_t new_object; 3024 3025 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx); 3026 VERIFY3U(new_object, !=, 0); 3027 3028 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 3029 0, -1ULL, 0)); 3030 ASSERT(vd->vdev_dtl_sm != NULL); 3031 } 3032 3033 rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3034 3035 mutex_enter(&vd->vdev_dtl_lock); 3036 range_tree_walk(rt, range_tree_add, rtsync); 3037 mutex_exit(&vd->vdev_dtl_lock); 3038 3039 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx); 3040 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); 3041 range_tree_vacate(rtsync, NULL, NULL); 3042 3043 range_tree_destroy(rtsync); 3044 3045 /* 3046 * If the object for the space map has changed then dirty 3047 * the top level so that we update the config. 3048 */ 3049 if (object != space_map_object(vd->vdev_dtl_sm)) { 3050 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " 3051 "new object %llu", (u_longlong_t)txg, spa_name(spa), 3052 (u_longlong_t)object, 3053 (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); 3054 vdev_config_dirty(vd->vdev_top); 3055 } 3056 3057 dmu_tx_commit(tx); 3058 } 3059 3060 /* 3061 * Determine whether the specified vdev can be offlined/detached/removed 3062 * without losing data. 3063 */ 3064 boolean_t 3065 vdev_dtl_required(vdev_t *vd) 3066 { 3067 spa_t *spa = vd->vdev_spa; 3068 vdev_t *tvd = vd->vdev_top; 3069 uint8_t cant_read = vd->vdev_cant_read; 3070 boolean_t required; 3071 3072 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3073 3074 if (vd == spa->spa_root_vdev || vd == tvd) 3075 return (B_TRUE); 3076 3077 /* 3078 * Temporarily mark the device as unreadable, and then determine 3079 * whether this results in any DTL outages in the top-level vdev. 3080 * If not, we can safely offline/detach/remove the device. 3081 */ 3082 vd->vdev_cant_read = B_TRUE; 3083 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3084 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 3085 vd->vdev_cant_read = cant_read; 3086 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3087 3088 if (!required && zio_injection_enabled) { 3089 required = !!zio_handle_device_injection(vd, NULL, 3090 SET_ERROR(ECHILD)); 3091 } 3092 3093 return (required); 3094 } 3095 3096 /* 3097 * Determine if resilver is needed, and if so the txg range. 3098 */ 3099 boolean_t 3100 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 3101 { 3102 boolean_t needed = B_FALSE; 3103 uint64_t thismin = UINT64_MAX; 3104 uint64_t thismax = 0; 3105 3106 if (vd->vdev_children == 0) { 3107 mutex_enter(&vd->vdev_dtl_lock); 3108 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3109 vdev_writeable(vd)) { 3110 3111 thismin = vdev_dtl_min(vd); 3112 thismax = vdev_dtl_max(vd); 3113 needed = B_TRUE; 3114 } 3115 mutex_exit(&vd->vdev_dtl_lock); 3116 } else { 3117 for (int c = 0; c < vd->vdev_children; c++) { 3118 vdev_t *cvd = vd->vdev_child[c]; 3119 uint64_t cmin, cmax; 3120 3121 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 3122 thismin = MIN(thismin, cmin); 3123 thismax = MAX(thismax, cmax); 3124 needed = B_TRUE; 3125 } 3126 } 3127 } 3128 3129 if (needed && minp) { 3130 *minp = thismin; 3131 *maxp = thismax; 3132 } 3133 return (needed); 3134 } 3135 3136 /* 3137 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj 3138 * will contain either the checkpoint spacemap object or zero if none exists. 3139 * All other errors are returned to the caller. 3140 */ 3141 int 3142 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj) 3143 { 3144 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 3145 3146 if (vd->vdev_top_zap == 0) { 3147 *sm_obj = 0; 3148 return (0); 3149 } 3150 3151 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, 3152 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj); 3153 if (error == ENOENT) { 3154 *sm_obj = 0; 3155 error = 0; 3156 } 3157 3158 return (error); 3159 } 3160 3161 int 3162 vdev_load(vdev_t *vd) 3163 { 3164 int error = 0; 3165 3166 /* 3167 * Recursively load all children. 3168 */ 3169 for (int c = 0; c < vd->vdev_children; c++) { 3170 error = vdev_load(vd->vdev_child[c]); 3171 if (error != 0) { 3172 return (error); 3173 } 3174 } 3175 3176 vdev_set_deflate_ratio(vd); 3177 3178 /* 3179 * On spa_load path, grab the allocation bias from our zap 3180 */ 3181 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3182 spa_t *spa = vd->vdev_spa; 3183 char bias_str[64]; 3184 3185 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3186 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str), 3187 bias_str); 3188 if (error == 0) { 3189 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE); 3190 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str); 3191 } else if (error != ENOENT) { 3192 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3193 VDEV_AUX_CORRUPT_DATA); 3194 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) " 3195 "failed [error=%d]", vd->vdev_top_zap, error); 3196 return (error); 3197 } 3198 } 3199 3200 /* 3201 * Load any rebuild state from the top-level vdev zap. 3202 */ 3203 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3204 error = vdev_rebuild_load(vd); 3205 if (error && error != ENOTSUP) { 3206 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3207 VDEV_AUX_CORRUPT_DATA); 3208 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load " 3209 "failed [error=%d]", error); 3210 return (error); 3211 } 3212 } 3213 3214 /* 3215 * If this is a top-level vdev, initialize its metaslabs. 3216 */ 3217 if (vd == vd->vdev_top && vdev_is_concrete(vd)) { 3218 vdev_metaslab_group_create(vd); 3219 3220 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { 3221 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3222 VDEV_AUX_CORRUPT_DATA); 3223 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " 3224 "asize=%llu", (u_longlong_t)vd->vdev_ashift, 3225 (u_longlong_t)vd->vdev_asize); 3226 return (SET_ERROR(ENXIO)); 3227 } 3228 3229 error = vdev_metaslab_init(vd, 0); 3230 if (error != 0) { 3231 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " 3232 "[error=%d]", error); 3233 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3234 VDEV_AUX_CORRUPT_DATA); 3235 return (error); 3236 } 3237 3238 uint64_t checkpoint_sm_obj; 3239 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj); 3240 if (error == 0 && checkpoint_sm_obj != 0) { 3241 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3242 ASSERT(vd->vdev_asize != 0); 3243 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL); 3244 3245 error = space_map_open(&vd->vdev_checkpoint_sm, 3246 mos, checkpoint_sm_obj, 0, vd->vdev_asize, 3247 vd->vdev_ashift); 3248 if (error != 0) { 3249 vdev_dbgmsg(vd, "vdev_load: space_map_open " 3250 "failed for checkpoint spacemap (obj %llu) " 3251 "[error=%d]", 3252 (u_longlong_t)checkpoint_sm_obj, error); 3253 return (error); 3254 } 3255 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 3256 3257 /* 3258 * Since the checkpoint_sm contains free entries 3259 * exclusively we can use space_map_allocated() to 3260 * indicate the cumulative checkpointed space that 3261 * has been freed. 3262 */ 3263 vd->vdev_stat.vs_checkpoint_space = 3264 -space_map_allocated(vd->vdev_checkpoint_sm); 3265 vd->vdev_spa->spa_checkpoint_info.sci_dspace += 3266 vd->vdev_stat.vs_checkpoint_space; 3267 } else if (error != 0) { 3268 vdev_dbgmsg(vd, "vdev_load: failed to retrieve " 3269 "checkpoint space map object from vdev ZAP " 3270 "[error=%d]", error); 3271 return (error); 3272 } 3273 } 3274 3275 /* 3276 * If this is a leaf vdev, load its DTL. 3277 */ 3278 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { 3279 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3280 VDEV_AUX_CORRUPT_DATA); 3281 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " 3282 "[error=%d]", error); 3283 return (error); 3284 } 3285 3286 uint64_t obsolete_sm_object; 3287 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object); 3288 if (error == 0 && obsolete_sm_object != 0) { 3289 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3290 ASSERT(vd->vdev_asize != 0); 3291 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 3292 3293 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, 3294 obsolete_sm_object, 0, vd->vdev_asize, 0))) { 3295 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3296 VDEV_AUX_CORRUPT_DATA); 3297 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " 3298 "obsolete spacemap (obj %llu) [error=%d]", 3299 (u_longlong_t)obsolete_sm_object, error); 3300 return (error); 3301 } 3302 } else if (error != 0) { 3303 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete " 3304 "space map object from vdev ZAP [error=%d]", error); 3305 return (error); 3306 } 3307 3308 return (0); 3309 } 3310 3311 /* 3312 * The special vdev case is used for hot spares and l2cache devices. Its 3313 * sole purpose it to set the vdev state for the associated vdev. To do this, 3314 * we make sure that we can open the underlying device, then try to read the 3315 * label, and make sure that the label is sane and that it hasn't been 3316 * repurposed to another pool. 3317 */ 3318 int 3319 vdev_validate_aux(vdev_t *vd) 3320 { 3321 nvlist_t *label; 3322 uint64_t guid, version; 3323 uint64_t state; 3324 3325 if (!vdev_readable(vd)) 3326 return (0); 3327 3328 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 3329 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3330 VDEV_AUX_CORRUPT_DATA); 3331 return (-1); 3332 } 3333 3334 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 3335 !SPA_VERSION_IS_SUPPORTED(version) || 3336 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 3337 guid != vd->vdev_guid || 3338 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 3339 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3340 VDEV_AUX_CORRUPT_DATA); 3341 nvlist_free(label); 3342 return (-1); 3343 } 3344 3345 /* 3346 * We don't actually check the pool state here. If it's in fact in 3347 * use by another pool, we update this fact on the fly when requested. 3348 */ 3349 nvlist_free(label); 3350 return (0); 3351 } 3352 3353 static void 3354 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx) 3355 { 3356 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3357 3358 if (vd->vdev_top_zap == 0) 3359 return; 3360 3361 uint64_t object = 0; 3362 int err = zap_lookup(mos, vd->vdev_top_zap, 3363 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object); 3364 if (err == ENOENT) 3365 return; 3366 VERIFY0(err); 3367 3368 VERIFY0(dmu_object_free(mos, object, tx)); 3369 VERIFY0(zap_remove(mos, vd->vdev_top_zap, 3370 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx)); 3371 } 3372 3373 /* 3374 * Free the objects used to store this vdev's spacemaps, and the array 3375 * that points to them. 3376 */ 3377 void 3378 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) 3379 { 3380 if (vd->vdev_ms_array == 0) 3381 return; 3382 3383 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3384 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; 3385 size_t array_bytes = array_count * sizeof (uint64_t); 3386 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); 3387 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, 3388 array_bytes, smobj_array, 0)); 3389 3390 for (uint64_t i = 0; i < array_count; i++) { 3391 uint64_t smobj = smobj_array[i]; 3392 if (smobj == 0) 3393 continue; 3394 3395 space_map_free_obj(mos, smobj, tx); 3396 } 3397 3398 kmem_free(smobj_array, array_bytes); 3399 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); 3400 vdev_destroy_ms_flush_data(vd, tx); 3401 vd->vdev_ms_array = 0; 3402 } 3403 3404 static void 3405 vdev_remove_empty_log(vdev_t *vd, uint64_t txg) 3406 { 3407 spa_t *spa = vd->vdev_spa; 3408 3409 ASSERT(vd->vdev_islog); 3410 ASSERT(vd == vd->vdev_top); 3411 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 3412 3413 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 3414 3415 vdev_destroy_spacemaps(vd, tx); 3416 if (vd->vdev_top_zap != 0) { 3417 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 3418 vd->vdev_top_zap = 0; 3419 } 3420 3421 dmu_tx_commit(tx); 3422 } 3423 3424 void 3425 vdev_sync_done(vdev_t *vd, uint64_t txg) 3426 { 3427 metaslab_t *msp; 3428 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 3429 3430 ASSERT(vdev_is_concrete(vd)); 3431 3432 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 3433 != NULL) 3434 metaslab_sync_done(msp, txg); 3435 3436 if (reassess) 3437 metaslab_sync_reassess(vd->vdev_mg); 3438 } 3439 3440 void 3441 vdev_sync(vdev_t *vd, uint64_t txg) 3442 { 3443 spa_t *spa = vd->vdev_spa; 3444 vdev_t *lvd; 3445 metaslab_t *msp; 3446 3447 ASSERT3U(txg, ==, spa->spa_syncing_txg); 3448 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3449 if (range_tree_space(vd->vdev_obsolete_segments) > 0) { 3450 ASSERT(vd->vdev_removing || 3451 vd->vdev_ops == &vdev_indirect_ops); 3452 3453 vdev_indirect_sync_obsolete(vd, tx); 3454 3455 /* 3456 * If the vdev is indirect, it can't have dirty 3457 * metaslabs or DTLs. 3458 */ 3459 if (vd->vdev_ops == &vdev_indirect_ops) { 3460 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); 3461 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); 3462 dmu_tx_commit(tx); 3463 return; 3464 } 3465 } 3466 3467 ASSERT(vdev_is_concrete(vd)); 3468 3469 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && 3470 !vd->vdev_removing) { 3471 ASSERT(vd == vd->vdev_top); 3472 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 3473 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 3474 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 3475 ASSERT(vd->vdev_ms_array != 0); 3476 vdev_config_dirty(vd); 3477 } 3478 3479 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 3480 metaslab_sync(msp, txg); 3481 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 3482 } 3483 3484 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 3485 vdev_dtl_sync(lvd, txg); 3486 3487 /* 3488 * If this is an empty log device being removed, destroy the 3489 * metadata associated with it. 3490 */ 3491 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 3492 vdev_remove_empty_log(vd, txg); 3493 3494 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 3495 dmu_tx_commit(tx); 3496 } 3497 3498 uint64_t 3499 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 3500 { 3501 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 3502 } 3503 3504 /* 3505 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 3506 * not be opened, and no I/O is attempted. 3507 */ 3508 int 3509 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3510 { 3511 vdev_t *vd, *tvd; 3512 3513 spa_vdev_state_enter(spa, SCL_NONE); 3514 3515 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3516 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 3517 3518 if (!vd->vdev_ops->vdev_op_leaf) 3519 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 3520 3521 tvd = vd->vdev_top; 3522 3523 /* 3524 * If user did a 'zpool offline -f' then make the fault persist across 3525 * reboots. 3526 */ 3527 if (aux == VDEV_AUX_EXTERNAL_PERSIST) { 3528 /* 3529 * There are two kinds of forced faults: temporary and 3530 * persistent. Temporary faults go away at pool import, while 3531 * persistent faults stay set. Both types of faults can be 3532 * cleared with a zpool clear. 3533 * 3534 * We tell if a vdev is persistently faulted by looking at the 3535 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at 3536 * import then it's a persistent fault. Otherwise, it's 3537 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external" 3538 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This 3539 * tells vdev_config_generate() (which gets run later) to set 3540 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist. 3541 */ 3542 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 3543 vd->vdev_tmpoffline = B_FALSE; 3544 aux = VDEV_AUX_EXTERNAL; 3545 } else { 3546 vd->vdev_tmpoffline = B_TRUE; 3547 } 3548 3549 /* 3550 * We don't directly use the aux state here, but if we do a 3551 * vdev_reopen(), we need this value to be present to remember why we 3552 * were faulted. 3553 */ 3554 vd->vdev_label_aux = aux; 3555 3556 /* 3557 * Faulted state takes precedence over degraded. 3558 */ 3559 vd->vdev_delayed_close = B_FALSE; 3560 vd->vdev_faulted = 1ULL; 3561 vd->vdev_degraded = 0ULL; 3562 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 3563 3564 /* 3565 * If this device has the only valid copy of the data, then 3566 * back off and simply mark the vdev as degraded instead. 3567 */ 3568 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 3569 vd->vdev_degraded = 1ULL; 3570 vd->vdev_faulted = 0ULL; 3571 3572 /* 3573 * If we reopen the device and it's not dead, only then do we 3574 * mark it degraded. 3575 */ 3576 vdev_reopen(tvd); 3577 3578 if (vdev_readable(vd)) 3579 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 3580 } 3581 3582 return (spa_vdev_state_exit(spa, vd, 0)); 3583 } 3584 3585 /* 3586 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 3587 * user that something is wrong. The vdev continues to operate as normal as far 3588 * as I/O is concerned. 3589 */ 3590 int 3591 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3592 { 3593 vdev_t *vd; 3594 3595 spa_vdev_state_enter(spa, SCL_NONE); 3596 3597 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3598 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 3599 3600 if (!vd->vdev_ops->vdev_op_leaf) 3601 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 3602 3603 /* 3604 * If the vdev is already faulted, then don't do anything. 3605 */ 3606 if (vd->vdev_faulted || vd->vdev_degraded) 3607 return (spa_vdev_state_exit(spa, NULL, 0)); 3608 3609 vd->vdev_degraded = 1ULL; 3610 if (!vdev_is_dead(vd)) 3611 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 3612 aux); 3613 3614 return (spa_vdev_state_exit(spa, vd, 0)); 3615 } 3616 3617 /* 3618 * Online the given vdev. 3619 * 3620 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 3621 * spare device should be detached when the device finishes resilvering. 3622 * Second, the online should be treated like a 'test' online case, so no FMA 3623 * events are generated if the device fails to open. 3624 */ 3625 int 3626 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 3627 { 3628 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 3629 boolean_t wasoffline; 3630 vdev_state_t oldstate; 3631 3632 spa_vdev_state_enter(spa, SCL_NONE); 3633 3634 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3635 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 3636 3637 if (!vd->vdev_ops->vdev_op_leaf) 3638 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 3639 3640 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 3641 oldstate = vd->vdev_state; 3642 3643 tvd = vd->vdev_top; 3644 vd->vdev_offline = B_FALSE; 3645 vd->vdev_tmpoffline = B_FALSE; 3646 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 3647 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 3648 3649 /* XXX - L2ARC 1.0 does not support expansion */ 3650 if (!vd->vdev_aux) { 3651 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3652 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) || 3653 spa->spa_autoexpand); 3654 vd->vdev_expansion_time = gethrestime_sec(); 3655 } 3656 3657 vdev_reopen(tvd); 3658 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 3659 3660 if (!vd->vdev_aux) { 3661 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3662 pvd->vdev_expanding = B_FALSE; 3663 } 3664 3665 if (newstate) 3666 *newstate = vd->vdev_state; 3667 if ((flags & ZFS_ONLINE_UNSPARE) && 3668 !vdev_is_dead(vd) && vd->vdev_parent && 3669 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 3670 vd->vdev_parent->vdev_child[0] == vd) 3671 vd->vdev_unspare = B_TRUE; 3672 3673 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 3674 3675 /* XXX - L2ARC 1.0 does not support expansion */ 3676 if (vd->vdev_aux) 3677 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 3678 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 3679 } 3680 3681 /* Restart initializing if necessary */ 3682 mutex_enter(&vd->vdev_initialize_lock); 3683 if (vdev_writeable(vd) && 3684 vd->vdev_initialize_thread == NULL && 3685 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { 3686 (void) vdev_initialize(vd); 3687 } 3688 mutex_exit(&vd->vdev_initialize_lock); 3689 3690 /* 3691 * Restart trimming if necessary. We do not restart trimming for cache 3692 * devices here. This is triggered by l2arc_rebuild_vdev() 3693 * asynchronously for the whole device or in l2arc_evict() as it evicts 3694 * space for upcoming writes. 3695 */ 3696 mutex_enter(&vd->vdev_trim_lock); 3697 if (vdev_writeable(vd) && !vd->vdev_isl2cache && 3698 vd->vdev_trim_thread == NULL && 3699 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) { 3700 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial, 3701 vd->vdev_trim_secure); 3702 } 3703 mutex_exit(&vd->vdev_trim_lock); 3704 3705 if (wasoffline || 3706 (oldstate < VDEV_STATE_DEGRADED && 3707 vd->vdev_state >= VDEV_STATE_DEGRADED)) 3708 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 3709 3710 return (spa_vdev_state_exit(spa, vd, 0)); 3711 } 3712 3713 static int 3714 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 3715 { 3716 vdev_t *vd, *tvd; 3717 int error = 0; 3718 uint64_t generation; 3719 metaslab_group_t *mg; 3720 3721 top: 3722 spa_vdev_state_enter(spa, SCL_ALLOC); 3723 3724 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3725 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 3726 3727 if (!vd->vdev_ops->vdev_op_leaf) 3728 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 3729 3730 tvd = vd->vdev_top; 3731 mg = tvd->vdev_mg; 3732 generation = spa->spa_config_generation + 1; 3733 3734 /* 3735 * If the device isn't already offline, try to offline it. 3736 */ 3737 if (!vd->vdev_offline) { 3738 /* 3739 * If this device has the only valid copy of some data, 3740 * don't allow it to be offlined. Log devices are always 3741 * expendable. 3742 */ 3743 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 3744 vdev_dtl_required(vd)) 3745 return (spa_vdev_state_exit(spa, NULL, 3746 SET_ERROR(EBUSY))); 3747 3748 /* 3749 * If the top-level is a slog and it has had allocations 3750 * then proceed. We check that the vdev's metaslab group 3751 * is not NULL since it's possible that we may have just 3752 * added this vdev but not yet initialized its metaslabs. 3753 */ 3754 if (tvd->vdev_islog && mg != NULL) { 3755 /* 3756 * Prevent any future allocations. 3757 */ 3758 metaslab_group_passivate(mg); 3759 (void) spa_vdev_state_exit(spa, vd, 0); 3760 3761 error = spa_reset_logs(spa); 3762 3763 /* 3764 * If the log device was successfully reset but has 3765 * checkpointed data, do not offline it. 3766 */ 3767 if (error == 0 && 3768 tvd->vdev_checkpoint_sm != NULL) { 3769 ASSERT3U(space_map_allocated( 3770 tvd->vdev_checkpoint_sm), !=, 0); 3771 error = ZFS_ERR_CHECKPOINT_EXISTS; 3772 } 3773 3774 spa_vdev_state_enter(spa, SCL_ALLOC); 3775 3776 /* 3777 * Check to see if the config has changed. 3778 */ 3779 if (error || generation != spa->spa_config_generation) { 3780 metaslab_group_activate(mg); 3781 if (error) 3782 return (spa_vdev_state_exit(spa, 3783 vd, error)); 3784 (void) spa_vdev_state_exit(spa, vd, 0); 3785 goto top; 3786 } 3787 ASSERT0(tvd->vdev_stat.vs_alloc); 3788 } 3789 3790 /* 3791 * Offline this device and reopen its top-level vdev. 3792 * If the top-level vdev is a log device then just offline 3793 * it. Otherwise, if this action results in the top-level 3794 * vdev becoming unusable, undo it and fail the request. 3795 */ 3796 vd->vdev_offline = B_TRUE; 3797 vdev_reopen(tvd); 3798 3799 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 3800 vdev_is_dead(tvd)) { 3801 vd->vdev_offline = B_FALSE; 3802 vdev_reopen(tvd); 3803 return (spa_vdev_state_exit(spa, NULL, 3804 SET_ERROR(EBUSY))); 3805 } 3806 3807 /* 3808 * Add the device back into the metaslab rotor so that 3809 * once we online the device it's open for business. 3810 */ 3811 if (tvd->vdev_islog && mg != NULL) 3812 metaslab_group_activate(mg); 3813 } 3814 3815 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 3816 3817 return (spa_vdev_state_exit(spa, vd, 0)); 3818 } 3819 3820 int 3821 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 3822 { 3823 int error; 3824 3825 mutex_enter(&spa->spa_vdev_top_lock); 3826 error = vdev_offline_locked(spa, guid, flags); 3827 mutex_exit(&spa->spa_vdev_top_lock); 3828 3829 return (error); 3830 } 3831 3832 /* 3833 * Clear the error counts associated with this vdev. Unlike vdev_online() and 3834 * vdev_offline(), we assume the spa config is locked. We also clear all 3835 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 3836 */ 3837 void 3838 vdev_clear(spa_t *spa, vdev_t *vd) 3839 { 3840 vdev_t *rvd = spa->spa_root_vdev; 3841 3842 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3843 3844 if (vd == NULL) 3845 vd = rvd; 3846 3847 vd->vdev_stat.vs_read_errors = 0; 3848 vd->vdev_stat.vs_write_errors = 0; 3849 vd->vdev_stat.vs_checksum_errors = 0; 3850 vd->vdev_stat.vs_slow_ios = 0; 3851 3852 for (int c = 0; c < vd->vdev_children; c++) 3853 vdev_clear(spa, vd->vdev_child[c]); 3854 3855 /* 3856 * It makes no sense to "clear" an indirect vdev. 3857 */ 3858 if (!vdev_is_concrete(vd)) 3859 return; 3860 3861 /* 3862 * If we're in the FAULTED state or have experienced failed I/O, then 3863 * clear the persistent state and attempt to reopen the device. We 3864 * also mark the vdev config dirty, so that the new faulted state is 3865 * written out to disk. 3866 */ 3867 if (vd->vdev_faulted || vd->vdev_degraded || 3868 !vdev_readable(vd) || !vdev_writeable(vd)) { 3869 /* 3870 * When reopening in response to a clear event, it may be due to 3871 * a fmadm repair request. In this case, if the device is 3872 * still broken, we want to still post the ereport again. 3873 */ 3874 vd->vdev_forcefault = B_TRUE; 3875 3876 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 3877 vd->vdev_cant_read = B_FALSE; 3878 vd->vdev_cant_write = B_FALSE; 3879 vd->vdev_stat.vs_aux = 0; 3880 3881 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 3882 3883 vd->vdev_forcefault = B_FALSE; 3884 3885 if (vd != rvd && vdev_writeable(vd->vdev_top)) 3886 vdev_state_dirty(vd->vdev_top); 3887 3888 /* If a resilver isn't required, check if vdevs can be culled */ 3889 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) && 3890 !dsl_scan_resilvering(spa->spa_dsl_pool) && 3891 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool)) 3892 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 3893 3894 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 3895 } 3896 3897 /* 3898 * When clearing a FMA-diagnosed fault, we always want to 3899 * unspare the device, as we assume that the original spare was 3900 * done in response to the FMA fault. 3901 */ 3902 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 3903 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 3904 vd->vdev_parent->vdev_child[0] == vd) 3905 vd->vdev_unspare = B_TRUE; 3906 } 3907 3908 boolean_t 3909 vdev_is_dead(vdev_t *vd) 3910 { 3911 /* 3912 * Holes and missing devices are always considered "dead". 3913 * This simplifies the code since we don't have to check for 3914 * these types of devices in the various code paths. 3915 * Instead we rely on the fact that we skip over dead devices 3916 * before issuing I/O to them. 3917 */ 3918 return (vd->vdev_state < VDEV_STATE_DEGRADED || 3919 vd->vdev_ops == &vdev_hole_ops || 3920 vd->vdev_ops == &vdev_missing_ops); 3921 } 3922 3923 boolean_t 3924 vdev_readable(vdev_t *vd) 3925 { 3926 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 3927 } 3928 3929 boolean_t 3930 vdev_writeable(vdev_t *vd) 3931 { 3932 return (!vdev_is_dead(vd) && !vd->vdev_cant_write && 3933 vdev_is_concrete(vd)); 3934 } 3935 3936 boolean_t 3937 vdev_allocatable(vdev_t *vd) 3938 { 3939 uint64_t state = vd->vdev_state; 3940 3941 /* 3942 * We currently allow allocations from vdevs which may be in the 3943 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 3944 * fails to reopen then we'll catch it later when we're holding 3945 * the proper locks. Note that we have to get the vdev state 3946 * in a local variable because although it changes atomically, 3947 * we're asking two separate questions about it. 3948 */ 3949 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 3950 !vd->vdev_cant_write && vdev_is_concrete(vd) && 3951 vd->vdev_mg->mg_initialized); 3952 } 3953 3954 boolean_t 3955 vdev_accessible(vdev_t *vd, zio_t *zio) 3956 { 3957 ASSERT(zio->io_vd == vd); 3958 3959 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 3960 return (B_FALSE); 3961 3962 if (zio->io_type == ZIO_TYPE_READ) 3963 return (!vd->vdev_cant_read); 3964 3965 if (zio->io_type == ZIO_TYPE_WRITE) 3966 return (!vd->vdev_cant_write); 3967 3968 return (B_TRUE); 3969 } 3970 3971 static void 3972 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs) 3973 { 3974 for (int t = 0; t < VS_ZIO_TYPES; t++) { 3975 vs->vs_ops[t] += cvs->vs_ops[t]; 3976 vs->vs_bytes[t] += cvs->vs_bytes[t]; 3977 } 3978 3979 cvs->vs_scan_removing = cvd->vdev_removing; 3980 } 3981 3982 /* 3983 * Get extended stats 3984 */ 3985 static void 3986 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx) 3987 { 3988 int t, b; 3989 for (t = 0; t < ZIO_TYPES; t++) { 3990 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++) 3991 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b]; 3992 3993 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) { 3994 vsx->vsx_total_histo[t][b] += 3995 cvsx->vsx_total_histo[t][b]; 3996 } 3997 } 3998 3999 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4000 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) { 4001 vsx->vsx_queue_histo[t][b] += 4002 cvsx->vsx_queue_histo[t][b]; 4003 } 4004 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t]; 4005 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t]; 4006 4007 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++) 4008 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b]; 4009 4010 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++) 4011 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b]; 4012 } 4013 4014 } 4015 4016 boolean_t 4017 vdev_is_spacemap_addressable(vdev_t *vd) 4018 { 4019 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) 4020 return (B_TRUE); 4021 4022 /* 4023 * If double-word space map entries are not enabled we assume 4024 * 47 bits of the space map entry are dedicated to the entry's 4025 * offset (see SM_OFFSET_BITS in space_map.h). We then use that 4026 * to calculate the maximum address that can be described by a 4027 * space map entry for the given device. 4028 */ 4029 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; 4030 4031 if (shift >= 63) /* detect potential overflow */ 4032 return (B_TRUE); 4033 4034 return (vd->vdev_asize < (1ULL << shift)); 4035 } 4036 4037 /* 4038 * Get statistics for the given vdev. 4039 */ 4040 static void 4041 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4042 { 4043 int t; 4044 /* 4045 * If we're getting stats on the root vdev, aggregate the I/O counts 4046 * over all top-level vdevs (i.e. the direct children of the root). 4047 */ 4048 if (!vd->vdev_ops->vdev_op_leaf) { 4049 if (vs) { 4050 memset(vs->vs_ops, 0, sizeof (vs->vs_ops)); 4051 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes)); 4052 } 4053 if (vsx) 4054 memset(vsx, 0, sizeof (*vsx)); 4055 4056 for (int c = 0; c < vd->vdev_children; c++) { 4057 vdev_t *cvd = vd->vdev_child[c]; 4058 vdev_stat_t *cvs = &cvd->vdev_stat; 4059 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex; 4060 4061 vdev_get_stats_ex_impl(cvd, cvs, cvsx); 4062 if (vs) 4063 vdev_get_child_stat(cvd, vs, cvs); 4064 if (vsx) 4065 vdev_get_child_stat_ex(cvd, vsx, cvsx); 4066 4067 } 4068 } else { 4069 /* 4070 * We're a leaf. Just copy our ZIO active queue stats in. The 4071 * other leaf stats are updated in vdev_stat_update(). 4072 */ 4073 if (!vsx) 4074 return; 4075 4076 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex)); 4077 4078 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) { 4079 vsx->vsx_active_queue[t] = 4080 vd->vdev_queue.vq_class[t].vqc_active; 4081 vsx->vsx_pend_queue[t] = avl_numnodes( 4082 &vd->vdev_queue.vq_class[t].vqc_queued_tree); 4083 } 4084 } 4085 } 4086 4087 void 4088 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4089 { 4090 vdev_t *tvd = vd->vdev_top; 4091 mutex_enter(&vd->vdev_stat_lock); 4092 if (vs) { 4093 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 4094 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 4095 vs->vs_state = vd->vdev_state; 4096 vs->vs_rsize = vdev_get_min_asize(vd); 4097 4098 if (vd->vdev_ops->vdev_op_leaf) { 4099 vs->vs_rsize += VDEV_LABEL_START_SIZE + 4100 VDEV_LABEL_END_SIZE; 4101 /* 4102 * Report initializing progress. Since we don't 4103 * have the initializing locks held, this is only 4104 * an estimate (although a fairly accurate one). 4105 */ 4106 vs->vs_initialize_bytes_done = 4107 vd->vdev_initialize_bytes_done; 4108 vs->vs_initialize_bytes_est = 4109 vd->vdev_initialize_bytes_est; 4110 vs->vs_initialize_state = vd->vdev_initialize_state; 4111 vs->vs_initialize_action_time = 4112 vd->vdev_initialize_action_time; 4113 4114 /* 4115 * Report manual TRIM progress. Since we don't have 4116 * the manual TRIM locks held, this is only an 4117 * estimate (although fairly accurate one). 4118 */ 4119 vs->vs_trim_notsup = !vd->vdev_has_trim; 4120 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done; 4121 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est; 4122 vs->vs_trim_state = vd->vdev_trim_state; 4123 vs->vs_trim_action_time = vd->vdev_trim_action_time; 4124 4125 /* Set when there is a deferred resilver. */ 4126 vs->vs_resilver_deferred = vd->vdev_resilver_deferred; 4127 } 4128 4129 /* 4130 * Report expandable space on top-level, non-auxiliary devices 4131 * only. The expandable space is reported in terms of metaslab 4132 * sized units since that determines how much space the pool 4133 * can expand. 4134 */ 4135 if (vd->vdev_aux == NULL && tvd != NULL) { 4136 vs->vs_esize = P2ALIGN( 4137 vd->vdev_max_asize - vd->vdev_asize, 4138 1ULL << tvd->vdev_ms_shift); 4139 } 4140 4141 vs->vs_configured_ashift = vd->vdev_top != NULL 4142 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift; 4143 vs->vs_logical_ashift = vd->vdev_logical_ashift; 4144 vs->vs_physical_ashift = vd->vdev_physical_ashift; 4145 4146 /* 4147 * Report fragmentation and rebuild progress for top-level, 4148 * non-auxiliary, concrete devices. 4149 */ 4150 if (vd->vdev_aux == NULL && vd == vd->vdev_top && 4151 vdev_is_concrete(vd)) { 4152 vs->vs_fragmentation = (vd->vdev_mg != NULL) ? 4153 vd->vdev_mg->mg_fragmentation : 0; 4154 } 4155 } 4156 4157 vdev_get_stats_ex_impl(vd, vs, vsx); 4158 mutex_exit(&vd->vdev_stat_lock); 4159 } 4160 4161 void 4162 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 4163 { 4164 return (vdev_get_stats_ex(vd, vs, NULL)); 4165 } 4166 4167 void 4168 vdev_clear_stats(vdev_t *vd) 4169 { 4170 mutex_enter(&vd->vdev_stat_lock); 4171 vd->vdev_stat.vs_space = 0; 4172 vd->vdev_stat.vs_dspace = 0; 4173 vd->vdev_stat.vs_alloc = 0; 4174 mutex_exit(&vd->vdev_stat_lock); 4175 } 4176 4177 void 4178 vdev_scan_stat_init(vdev_t *vd) 4179 { 4180 vdev_stat_t *vs = &vd->vdev_stat; 4181 4182 for (int c = 0; c < vd->vdev_children; c++) 4183 vdev_scan_stat_init(vd->vdev_child[c]); 4184 4185 mutex_enter(&vd->vdev_stat_lock); 4186 vs->vs_scan_processed = 0; 4187 mutex_exit(&vd->vdev_stat_lock); 4188 } 4189 4190 void 4191 vdev_stat_update(zio_t *zio, uint64_t psize) 4192 { 4193 spa_t *spa = zio->io_spa; 4194 vdev_t *rvd = spa->spa_root_vdev; 4195 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 4196 vdev_t *pvd; 4197 uint64_t txg = zio->io_txg; 4198 vdev_stat_t *vs = &vd->vdev_stat; 4199 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex; 4200 zio_type_t type = zio->io_type; 4201 int flags = zio->io_flags; 4202 4203 /* 4204 * If this i/o is a gang leader, it didn't do any actual work. 4205 */ 4206 if (zio->io_gang_tree) 4207 return; 4208 4209 if (zio->io_error == 0) { 4210 /* 4211 * If this is a root i/o, don't count it -- we've already 4212 * counted the top-level vdevs, and vdev_get_stats() will 4213 * aggregate them when asked. This reduces contention on 4214 * the root vdev_stat_lock and implicitly handles blocks 4215 * that compress away to holes, for which there is no i/o. 4216 * (Holes never create vdev children, so all the counters 4217 * remain zero, which is what we want.) 4218 * 4219 * Note: this only applies to successful i/o (io_error == 0) 4220 * because unlike i/o counts, errors are not additive. 4221 * When reading a ditto block, for example, failure of 4222 * one top-level vdev does not imply a root-level error. 4223 */ 4224 if (vd == rvd) 4225 return; 4226 4227 ASSERT(vd == zio->io_vd); 4228 4229 if (flags & ZIO_FLAG_IO_BYPASS) 4230 return; 4231 4232 mutex_enter(&vd->vdev_stat_lock); 4233 4234 if (flags & ZIO_FLAG_IO_REPAIR) { 4235 /* 4236 * Repair is the result of a resilver issued by the 4237 * scan thread (spa_sync). 4238 */ 4239 if (flags & ZIO_FLAG_SCAN_THREAD) { 4240 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 4241 dsl_scan_phys_t *scn_phys = &scn->scn_phys; 4242 uint64_t *processed = &scn_phys->scn_processed; 4243 4244 if (vd->vdev_ops->vdev_op_leaf) 4245 atomic_add_64(processed, psize); 4246 vs->vs_scan_processed += psize; 4247 } 4248 4249 /* 4250 * Repair is the result of a rebuild issued by the 4251 * rebuild thread (vdev_rebuild_thread). 4252 */ 4253 if (zio->io_priority == ZIO_PRIORITY_REBUILD) { 4254 vdev_t *tvd = vd->vdev_top; 4255 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config; 4256 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 4257 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt; 4258 4259 if (vd->vdev_ops->vdev_op_leaf) 4260 atomic_add_64(rebuilt, psize); 4261 vs->vs_rebuild_processed += psize; 4262 } 4263 4264 if (flags & ZIO_FLAG_SELF_HEAL) 4265 vs->vs_self_healed += psize; 4266 } 4267 4268 /* 4269 * The bytes/ops/histograms are recorded at the leaf level and 4270 * aggregated into the higher level vdevs in vdev_get_stats(). 4271 */ 4272 if (vd->vdev_ops->vdev_op_leaf && 4273 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) { 4274 zio_type_t vs_type = type; 4275 zio_priority_t priority = zio->io_priority; 4276 4277 /* 4278 * TRIM ops and bytes are reported to user space as 4279 * ZIO_TYPE_IOCTL. This is done to preserve the 4280 * vdev_stat_t structure layout for user space. 4281 */ 4282 if (type == ZIO_TYPE_TRIM) 4283 vs_type = ZIO_TYPE_IOCTL; 4284 4285 /* 4286 * Solely for the purposes of 'zpool iostat -lqrw' 4287 * reporting use the priority to catagorize the IO. 4288 * Only the following are reported to user space: 4289 * 4290 * ZIO_PRIORITY_SYNC_READ, 4291 * ZIO_PRIORITY_SYNC_WRITE, 4292 * ZIO_PRIORITY_ASYNC_READ, 4293 * ZIO_PRIORITY_ASYNC_WRITE, 4294 * ZIO_PRIORITY_SCRUB, 4295 * ZIO_PRIORITY_TRIM. 4296 */ 4297 if (priority == ZIO_PRIORITY_REBUILD) { 4298 priority = ((type == ZIO_TYPE_WRITE) ? 4299 ZIO_PRIORITY_ASYNC_WRITE : 4300 ZIO_PRIORITY_SCRUB); 4301 } else if (priority == ZIO_PRIORITY_INITIALIZING) { 4302 ASSERT3U(type, ==, ZIO_TYPE_WRITE); 4303 priority = ZIO_PRIORITY_ASYNC_WRITE; 4304 } else if (priority == ZIO_PRIORITY_REMOVAL) { 4305 priority = ((type == ZIO_TYPE_WRITE) ? 4306 ZIO_PRIORITY_ASYNC_WRITE : 4307 ZIO_PRIORITY_ASYNC_READ); 4308 } 4309 4310 vs->vs_ops[vs_type]++; 4311 vs->vs_bytes[vs_type] += psize; 4312 4313 if (flags & ZIO_FLAG_DELEGATED) { 4314 vsx->vsx_agg_histo[priority] 4315 [RQ_HISTO(zio->io_size)]++; 4316 } else { 4317 vsx->vsx_ind_histo[priority] 4318 [RQ_HISTO(zio->io_size)]++; 4319 } 4320 4321 if (zio->io_delta && zio->io_delay) { 4322 vsx->vsx_queue_histo[priority] 4323 [L_HISTO(zio->io_delta - zio->io_delay)]++; 4324 vsx->vsx_disk_histo[type] 4325 [L_HISTO(zio->io_delay)]++; 4326 vsx->vsx_total_histo[type] 4327 [L_HISTO(zio->io_delta)]++; 4328 } 4329 } 4330 4331 mutex_exit(&vd->vdev_stat_lock); 4332 return; 4333 } 4334 4335 if (flags & ZIO_FLAG_SPECULATIVE) 4336 return; 4337 4338 /* 4339 * If this is an I/O error that is going to be retried, then ignore the 4340 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 4341 * hard errors, when in reality they can happen for any number of 4342 * innocuous reasons (bus resets, MPxIO link failure, etc). 4343 */ 4344 if (zio->io_error == EIO && 4345 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 4346 return; 4347 4348 /* 4349 * Intent logs writes won't propagate their error to the root 4350 * I/O so don't mark these types of failures as pool-level 4351 * errors. 4352 */ 4353 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 4354 return; 4355 4356 if (spa->spa_load_state == SPA_LOAD_NONE && 4357 type == ZIO_TYPE_WRITE && txg != 0 && 4358 (!(flags & ZIO_FLAG_IO_REPAIR) || 4359 (flags & ZIO_FLAG_SCAN_THREAD) || 4360 spa->spa_claiming)) { 4361 /* 4362 * This is either a normal write (not a repair), or it's 4363 * a repair induced by the scrub thread, or it's a repair 4364 * made by zil_claim() during spa_load() in the first txg. 4365 * In the normal case, we commit the DTL change in the same 4366 * txg as the block was born. In the scrub-induced repair 4367 * case, we know that scrubs run in first-pass syncing context, 4368 * so we commit the DTL change in spa_syncing_txg(spa). 4369 * In the zil_claim() case, we commit in spa_first_txg(spa). 4370 * 4371 * We currently do not make DTL entries for failed spontaneous 4372 * self-healing writes triggered by normal (non-scrubbing) 4373 * reads, because we have no transactional context in which to 4374 * do so -- and it's not clear that it'd be desirable anyway. 4375 */ 4376 if (vd->vdev_ops->vdev_op_leaf) { 4377 uint64_t commit_txg = txg; 4378 if (flags & ZIO_FLAG_SCAN_THREAD) { 4379 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 4380 ASSERT(spa_sync_pass(spa) == 1); 4381 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 4382 commit_txg = spa_syncing_txg(spa); 4383 } else if (spa->spa_claiming) { 4384 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 4385 commit_txg = spa_first_txg(spa); 4386 } 4387 ASSERT(commit_txg >= spa_syncing_txg(spa)); 4388 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 4389 return; 4390 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4391 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 4392 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 4393 } 4394 if (vd != rvd) 4395 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 4396 } 4397 } 4398 4399 int64_t 4400 vdev_deflated_space(vdev_t *vd, int64_t space) 4401 { 4402 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0); 4403 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 4404 4405 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio); 4406 } 4407 4408 /* 4409 * Update the in-core space usage stats for this vdev, its metaslab class, 4410 * and the root vdev. 4411 */ 4412 void 4413 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 4414 int64_t space_delta) 4415 { 4416 int64_t dspace_delta; 4417 spa_t *spa = vd->vdev_spa; 4418 vdev_t *rvd = spa->spa_root_vdev; 4419 4420 ASSERT(vd == vd->vdev_top); 4421 4422 /* 4423 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 4424 * factor. We must calculate this here and not at the root vdev 4425 * because the root vdev's psize-to-asize is simply the max of its 4426 * children's, thus not accurate enough for us. 4427 */ 4428 dspace_delta = vdev_deflated_space(vd, space_delta); 4429 4430 mutex_enter(&vd->vdev_stat_lock); 4431 /* ensure we won't underflow */ 4432 if (alloc_delta < 0) { 4433 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta); 4434 } 4435 4436 vd->vdev_stat.vs_alloc += alloc_delta; 4437 vd->vdev_stat.vs_space += space_delta; 4438 vd->vdev_stat.vs_dspace += dspace_delta; 4439 mutex_exit(&vd->vdev_stat_lock); 4440 4441 /* every class but log contributes to root space stats */ 4442 if (vd->vdev_mg != NULL && !vd->vdev_islog) { 4443 ASSERT(!vd->vdev_isl2cache); 4444 mutex_enter(&rvd->vdev_stat_lock); 4445 rvd->vdev_stat.vs_alloc += alloc_delta; 4446 rvd->vdev_stat.vs_space += space_delta; 4447 rvd->vdev_stat.vs_dspace += dspace_delta; 4448 mutex_exit(&rvd->vdev_stat_lock); 4449 } 4450 /* Note: metaslab_class_space_update moved to metaslab_space_update */ 4451 } 4452 4453 /* 4454 * Mark a top-level vdev's config as dirty, placing it on the dirty list 4455 * so that it will be written out next time the vdev configuration is synced. 4456 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 4457 */ 4458 void 4459 vdev_config_dirty(vdev_t *vd) 4460 { 4461 spa_t *spa = vd->vdev_spa; 4462 vdev_t *rvd = spa->spa_root_vdev; 4463 int c; 4464 4465 ASSERT(spa_writeable(spa)); 4466 4467 /* 4468 * If this is an aux vdev (as with l2cache and spare devices), then we 4469 * update the vdev config manually and set the sync flag. 4470 */ 4471 if (vd->vdev_aux != NULL) { 4472 spa_aux_vdev_t *sav = vd->vdev_aux; 4473 nvlist_t **aux; 4474 uint_t naux; 4475 4476 for (c = 0; c < sav->sav_count; c++) { 4477 if (sav->sav_vdevs[c] == vd) 4478 break; 4479 } 4480 4481 if (c == sav->sav_count) { 4482 /* 4483 * We're being removed. There's nothing more to do. 4484 */ 4485 ASSERT(sav->sav_sync == B_TRUE); 4486 return; 4487 } 4488 4489 sav->sav_sync = B_TRUE; 4490 4491 if (nvlist_lookup_nvlist_array(sav->sav_config, 4492 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 4493 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 4494 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 4495 } 4496 4497 ASSERT(c < naux); 4498 4499 /* 4500 * Setting the nvlist in the middle if the array is a little 4501 * sketchy, but it will work. 4502 */ 4503 nvlist_free(aux[c]); 4504 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 4505 4506 return; 4507 } 4508 4509 /* 4510 * The dirty list is protected by the SCL_CONFIG lock. The caller 4511 * must either hold SCL_CONFIG as writer, or must be the sync thread 4512 * (which holds SCL_CONFIG as reader). There's only one sync thread, 4513 * so this is sufficient to ensure mutual exclusion. 4514 */ 4515 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 4516 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4517 spa_config_held(spa, SCL_CONFIG, RW_READER))); 4518 4519 if (vd == rvd) { 4520 for (c = 0; c < rvd->vdev_children; c++) 4521 vdev_config_dirty(rvd->vdev_child[c]); 4522 } else { 4523 ASSERT(vd == vd->vdev_top); 4524 4525 if (!list_link_active(&vd->vdev_config_dirty_node) && 4526 vdev_is_concrete(vd)) { 4527 list_insert_head(&spa->spa_config_dirty_list, vd); 4528 } 4529 } 4530 } 4531 4532 void 4533 vdev_config_clean(vdev_t *vd) 4534 { 4535 spa_t *spa = vd->vdev_spa; 4536 4537 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 4538 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4539 spa_config_held(spa, SCL_CONFIG, RW_READER))); 4540 4541 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 4542 list_remove(&spa->spa_config_dirty_list, vd); 4543 } 4544 4545 /* 4546 * Mark a top-level vdev's state as dirty, so that the next pass of 4547 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 4548 * the state changes from larger config changes because they require 4549 * much less locking, and are often needed for administrative actions. 4550 */ 4551 void 4552 vdev_state_dirty(vdev_t *vd) 4553 { 4554 spa_t *spa = vd->vdev_spa; 4555 4556 ASSERT(spa_writeable(spa)); 4557 ASSERT(vd == vd->vdev_top); 4558 4559 /* 4560 * The state list is protected by the SCL_STATE lock. The caller 4561 * must either hold SCL_STATE as writer, or must be the sync thread 4562 * (which holds SCL_STATE as reader). There's only one sync thread, 4563 * so this is sufficient to ensure mutual exclusion. 4564 */ 4565 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 4566 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4567 spa_config_held(spa, SCL_STATE, RW_READER))); 4568 4569 if (!list_link_active(&vd->vdev_state_dirty_node) && 4570 vdev_is_concrete(vd)) 4571 list_insert_head(&spa->spa_state_dirty_list, vd); 4572 } 4573 4574 void 4575 vdev_state_clean(vdev_t *vd) 4576 { 4577 spa_t *spa = vd->vdev_spa; 4578 4579 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 4580 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4581 spa_config_held(spa, SCL_STATE, RW_READER))); 4582 4583 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 4584 list_remove(&spa->spa_state_dirty_list, vd); 4585 } 4586 4587 /* 4588 * Propagate vdev state up from children to parent. 4589 */ 4590 void 4591 vdev_propagate_state(vdev_t *vd) 4592 { 4593 spa_t *spa = vd->vdev_spa; 4594 vdev_t *rvd = spa->spa_root_vdev; 4595 int degraded = 0, faulted = 0; 4596 int corrupted = 0; 4597 vdev_t *child; 4598 4599 if (vd->vdev_children > 0) { 4600 for (int c = 0; c < vd->vdev_children; c++) { 4601 child = vd->vdev_child[c]; 4602 4603 /* 4604 * Don't factor holes or indirect vdevs into the 4605 * decision. 4606 */ 4607 if (!vdev_is_concrete(child)) 4608 continue; 4609 4610 if (!vdev_readable(child) || 4611 (!vdev_writeable(child) && spa_writeable(spa))) { 4612 /* 4613 * Root special: if there is a top-level log 4614 * device, treat the root vdev as if it were 4615 * degraded. 4616 */ 4617 if (child->vdev_islog && vd == rvd) 4618 degraded++; 4619 else 4620 faulted++; 4621 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 4622 degraded++; 4623 } 4624 4625 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 4626 corrupted++; 4627 } 4628 4629 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 4630 4631 /* 4632 * Root special: if there is a top-level vdev that cannot be 4633 * opened due to corrupted metadata, then propagate the root 4634 * vdev's aux state as 'corrupt' rather than 'insufficient 4635 * replicas'. 4636 */ 4637 if (corrupted && vd == rvd && 4638 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 4639 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 4640 VDEV_AUX_CORRUPT_DATA); 4641 } 4642 4643 if (vd->vdev_parent) 4644 vdev_propagate_state(vd->vdev_parent); 4645 } 4646 4647 /* 4648 * Set a vdev's state. If this is during an open, we don't update the parent 4649 * state, because we're in the process of opening children depth-first. 4650 * Otherwise, we propagate the change to the parent. 4651 * 4652 * If this routine places a device in a faulted state, an appropriate ereport is 4653 * generated. 4654 */ 4655 void 4656 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 4657 { 4658 uint64_t save_state; 4659 spa_t *spa = vd->vdev_spa; 4660 4661 if (state == vd->vdev_state) { 4662 /* 4663 * Since vdev_offline() code path is already in an offline 4664 * state we can miss a statechange event to OFFLINE. Check 4665 * the previous state to catch this condition. 4666 */ 4667 if (vd->vdev_ops->vdev_op_leaf && 4668 (state == VDEV_STATE_OFFLINE) && 4669 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) { 4670 /* post an offline state change */ 4671 zfs_post_state_change(spa, vd, vd->vdev_prevstate); 4672 } 4673 vd->vdev_stat.vs_aux = aux; 4674 return; 4675 } 4676 4677 save_state = vd->vdev_state; 4678 4679 vd->vdev_state = state; 4680 vd->vdev_stat.vs_aux = aux; 4681 4682 /* 4683 * If we are setting the vdev state to anything but an open state, then 4684 * always close the underlying device unless the device has requested 4685 * a delayed close (i.e. we're about to remove or fault the device). 4686 * Otherwise, we keep accessible but invalid devices open forever. 4687 * We don't call vdev_close() itself, because that implies some extra 4688 * checks (offline, etc) that we don't want here. This is limited to 4689 * leaf devices, because otherwise closing the device will affect other 4690 * children. 4691 */ 4692 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 4693 vd->vdev_ops->vdev_op_leaf) 4694 vd->vdev_ops->vdev_op_close(vd); 4695 4696 if (vd->vdev_removed && 4697 state == VDEV_STATE_CANT_OPEN && 4698 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 4699 /* 4700 * If the previous state is set to VDEV_STATE_REMOVED, then this 4701 * device was previously marked removed and someone attempted to 4702 * reopen it. If this failed due to a nonexistent device, then 4703 * keep the device in the REMOVED state. We also let this be if 4704 * it is one of our special test online cases, which is only 4705 * attempting to online the device and shouldn't generate an FMA 4706 * fault. 4707 */ 4708 vd->vdev_state = VDEV_STATE_REMOVED; 4709 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 4710 } else if (state == VDEV_STATE_REMOVED) { 4711 vd->vdev_removed = B_TRUE; 4712 } else if (state == VDEV_STATE_CANT_OPEN) { 4713 /* 4714 * If we fail to open a vdev during an import or recovery, we 4715 * mark it as "not available", which signifies that it was 4716 * never there to begin with. Failure to open such a device 4717 * is not considered an error. 4718 */ 4719 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 4720 spa_load_state(spa) == SPA_LOAD_RECOVER) && 4721 vd->vdev_ops->vdev_op_leaf) 4722 vd->vdev_not_present = 1; 4723 4724 /* 4725 * Post the appropriate ereport. If the 'prevstate' field is 4726 * set to something other than VDEV_STATE_UNKNOWN, it indicates 4727 * that this is part of a vdev_reopen(). In this case, we don't 4728 * want to post the ereport if the device was already in the 4729 * CANT_OPEN state beforehand. 4730 * 4731 * If the 'checkremove' flag is set, then this is an attempt to 4732 * online the device in response to an insertion event. If we 4733 * hit this case, then we have detected an insertion event for a 4734 * faulted or offline device that wasn't in the removed state. 4735 * In this scenario, we don't post an ereport because we are 4736 * about to replace the device, or attempt an online with 4737 * vdev_forcefault, which will generate the fault for us. 4738 */ 4739 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 4740 !vd->vdev_not_present && !vd->vdev_checkremove && 4741 vd != spa->spa_root_vdev) { 4742 const char *class; 4743 4744 switch (aux) { 4745 case VDEV_AUX_OPEN_FAILED: 4746 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 4747 break; 4748 case VDEV_AUX_CORRUPT_DATA: 4749 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 4750 break; 4751 case VDEV_AUX_NO_REPLICAS: 4752 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 4753 break; 4754 case VDEV_AUX_BAD_GUID_SUM: 4755 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 4756 break; 4757 case VDEV_AUX_TOO_SMALL: 4758 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 4759 break; 4760 case VDEV_AUX_BAD_LABEL: 4761 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 4762 break; 4763 case VDEV_AUX_BAD_ASHIFT: 4764 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT; 4765 break; 4766 default: 4767 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 4768 } 4769 4770 (void) zfs_ereport_post(class, spa, vd, NULL, NULL, 4771 save_state); 4772 } 4773 4774 /* Erase any notion of persistent removed state */ 4775 vd->vdev_removed = B_FALSE; 4776 } else { 4777 vd->vdev_removed = B_FALSE; 4778 } 4779 4780 /* 4781 * Notify ZED of any significant state-change on a leaf vdev. 4782 * 4783 */ 4784 if (vd->vdev_ops->vdev_op_leaf) { 4785 /* preserve original state from a vdev_reopen() */ 4786 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) && 4787 (vd->vdev_prevstate != vd->vdev_state) && 4788 (save_state <= VDEV_STATE_CLOSED)) 4789 save_state = vd->vdev_prevstate; 4790 4791 /* filter out state change due to initial vdev_open */ 4792 if (save_state > VDEV_STATE_CLOSED) 4793 zfs_post_state_change(spa, vd, save_state); 4794 } 4795 4796 if (!isopen && vd->vdev_parent) 4797 vdev_propagate_state(vd->vdev_parent); 4798 } 4799 4800 boolean_t 4801 vdev_children_are_offline(vdev_t *vd) 4802 { 4803 ASSERT(!vd->vdev_ops->vdev_op_leaf); 4804 4805 for (uint64_t i = 0; i < vd->vdev_children; i++) { 4806 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) 4807 return (B_FALSE); 4808 } 4809 4810 return (B_TRUE); 4811 } 4812 4813 /* 4814 * Check the vdev configuration to ensure that it's capable of supporting 4815 * a root pool. We do not support partial configuration. 4816 */ 4817 boolean_t 4818 vdev_is_bootable(vdev_t *vd) 4819 { 4820 if (!vd->vdev_ops->vdev_op_leaf) { 4821 const char *vdev_type = vd->vdev_ops->vdev_op_type; 4822 4823 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 || 4824 strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) { 4825 return (B_FALSE); 4826 } 4827 } 4828 4829 for (int c = 0; c < vd->vdev_children; c++) { 4830 if (!vdev_is_bootable(vd->vdev_child[c])) 4831 return (B_FALSE); 4832 } 4833 return (B_TRUE); 4834 } 4835 4836 boolean_t 4837 vdev_is_concrete(vdev_t *vd) 4838 { 4839 vdev_ops_t *ops = vd->vdev_ops; 4840 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || 4841 ops == &vdev_missing_ops || ops == &vdev_root_ops) { 4842 return (B_FALSE); 4843 } else { 4844 return (B_TRUE); 4845 } 4846 } 4847 4848 /* 4849 * Determine if a log device has valid content. If the vdev was 4850 * removed or faulted in the MOS config then we know that 4851 * the content on the log device has already been written to the pool. 4852 */ 4853 boolean_t 4854 vdev_log_state_valid(vdev_t *vd) 4855 { 4856 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 4857 !vd->vdev_removed) 4858 return (B_TRUE); 4859 4860 for (int c = 0; c < vd->vdev_children; c++) 4861 if (vdev_log_state_valid(vd->vdev_child[c])) 4862 return (B_TRUE); 4863 4864 return (B_FALSE); 4865 } 4866 4867 /* 4868 * Expand a vdev if possible. 4869 */ 4870 void 4871 vdev_expand(vdev_t *vd, uint64_t txg) 4872 { 4873 ASSERT(vd->vdev_top == vd); 4874 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4875 ASSERT(vdev_is_concrete(vd)); 4876 4877 vdev_set_deflate_ratio(vd); 4878 4879 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && 4880 vdev_is_concrete(vd)) { 4881 vdev_metaslab_group_create(vd); 4882 VERIFY(vdev_metaslab_init(vd, txg) == 0); 4883 vdev_config_dirty(vd); 4884 } 4885 } 4886 4887 /* 4888 * Split a vdev. 4889 */ 4890 void 4891 vdev_split(vdev_t *vd) 4892 { 4893 vdev_t *cvd, *pvd = vd->vdev_parent; 4894 4895 vdev_remove_child(pvd, vd); 4896 vdev_compact_children(pvd); 4897 4898 cvd = pvd->vdev_child[0]; 4899 if (pvd->vdev_children == 1) { 4900 vdev_remove_parent(cvd); 4901 cvd->vdev_splitting = B_TRUE; 4902 } 4903 vdev_propagate_state(cvd); 4904 } 4905 4906 void 4907 vdev_deadman(vdev_t *vd, char *tag) 4908 { 4909 for (int c = 0; c < vd->vdev_children; c++) { 4910 vdev_t *cvd = vd->vdev_child[c]; 4911 4912 vdev_deadman(cvd, tag); 4913 } 4914 4915 if (vd->vdev_ops->vdev_op_leaf) { 4916 vdev_queue_t *vq = &vd->vdev_queue; 4917 4918 mutex_enter(&vq->vq_lock); 4919 if (avl_numnodes(&vq->vq_active_tree) > 0) { 4920 spa_t *spa = vd->vdev_spa; 4921 zio_t *fio; 4922 uint64_t delta; 4923 4924 zfs_dbgmsg("slow vdev: %s has %d active IOs", 4925 vd->vdev_path, avl_numnodes(&vq->vq_active_tree)); 4926 4927 /* 4928 * Look at the head of all the pending queues, 4929 * if any I/O has been outstanding for longer than 4930 * the spa_deadman_synctime invoke the deadman logic. 4931 */ 4932 fio = avl_first(&vq->vq_active_tree); 4933 delta = gethrtime() - fio->io_timestamp; 4934 if (delta > spa_deadman_synctime(spa)) 4935 zio_deadman(fio, tag); 4936 } 4937 mutex_exit(&vq->vq_lock); 4938 } 4939 } 4940 4941 void 4942 vdev_defer_resilver(vdev_t *vd) 4943 { 4944 ASSERT(vd->vdev_ops->vdev_op_leaf); 4945 4946 vd->vdev_resilver_deferred = B_TRUE; 4947 vd->vdev_spa->spa_resilver_deferred = B_TRUE; 4948 } 4949 4950 /* 4951 * Clears the resilver deferred flag on all leaf devs under vd. Returns 4952 * B_TRUE if we have devices that need to be resilvered and are available to 4953 * accept resilver I/Os. 4954 */ 4955 boolean_t 4956 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx) 4957 { 4958 boolean_t resilver_needed = B_FALSE; 4959 spa_t *spa = vd->vdev_spa; 4960 4961 for (int c = 0; c < vd->vdev_children; c++) { 4962 vdev_t *cvd = vd->vdev_child[c]; 4963 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx); 4964 } 4965 4966 if (vd == spa->spa_root_vdev && 4967 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) { 4968 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 4969 vdev_config_dirty(vd); 4970 spa->spa_resilver_deferred = B_FALSE; 4971 return (resilver_needed); 4972 } 4973 4974 if (!vdev_is_concrete(vd) || vd->vdev_aux || 4975 !vd->vdev_ops->vdev_op_leaf) 4976 return (resilver_needed); 4977 4978 vd->vdev_resilver_deferred = B_FALSE; 4979 4980 return (!vdev_is_dead(vd) && !vd->vdev_offline && 4981 vdev_resilver_needed(vd, NULL, NULL)); 4982 } 4983 4984 /* 4985 * Translate a logical range to the physical range for the specified vdev_t. 4986 * This function is initially called with a leaf vdev and will walk each 4987 * parent vdev until it reaches a top-level vdev. Once the top-level is 4988 * reached the physical range is initialized and the recursive function 4989 * begins to unwind. As it unwinds it calls the parent's vdev specific 4990 * translation function to do the real conversion. 4991 */ 4992 void 4993 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 4994 range_seg64_t *physical_rs) 4995 { 4996 /* 4997 * Walk up the vdev tree 4998 */ 4999 if (vd != vd->vdev_top) { 5000 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs); 5001 } else { 5002 /* 5003 * We've reached the top-level vdev, initialize the 5004 * physical range to the logical range and start to 5005 * unwind. 5006 */ 5007 physical_rs->rs_start = logical_rs->rs_start; 5008 physical_rs->rs_end = logical_rs->rs_end; 5009 return; 5010 } 5011 5012 vdev_t *pvd = vd->vdev_parent; 5013 ASSERT3P(pvd, !=, NULL); 5014 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL); 5015 5016 /* 5017 * As this recursive function unwinds, translate the logical 5018 * range into its physical components by calling the 5019 * vdev specific translate function. 5020 */ 5021 range_seg64_t intermediate = { 0 }; 5022 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate); 5023 5024 physical_rs->rs_start = intermediate.rs_start; 5025 physical_rs->rs_end = intermediate.rs_end; 5026 } 5027 5028 /* 5029 * Look at the vdev tree and determine whether any devices are currently being 5030 * replaced. 5031 */ 5032 boolean_t 5033 vdev_replace_in_progress(vdev_t *vdev) 5034 { 5035 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0); 5036 5037 if (vdev->vdev_ops == &vdev_replacing_ops) 5038 return (B_TRUE); 5039 5040 /* 5041 * A 'spare' vdev indicates that we have a replace in progress, unless 5042 * it has exactly two children, and the second, the hot spare, has 5043 * finished being resilvered. 5044 */ 5045 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 || 5046 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING))) 5047 return (B_TRUE); 5048 5049 for (int i = 0; i < vdev->vdev_children; i++) { 5050 if (vdev_replace_in_progress(vdev->vdev_child[i])) 5051 return (B_TRUE); 5052 } 5053 5054 return (B_FALSE); 5055 } 5056 5057 EXPORT_SYMBOL(vdev_fault); 5058 EXPORT_SYMBOL(vdev_degrade); 5059 EXPORT_SYMBOL(vdev_online); 5060 EXPORT_SYMBOL(vdev_offline); 5061 EXPORT_SYMBOL(vdev_clear); 5062 5063 /* BEGIN CSTYLED */ 5064 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, INT, ZMOD_RW, 5065 "Target number of metaslabs per top-level vdev"); 5066 5067 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, INT, ZMOD_RW, 5068 "Default limit for metaslab size"); 5069 5070 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, INT, ZMOD_RW, 5071 "Minimum number of metaslabs per top-level vdev"); 5072 5073 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, INT, ZMOD_RW, 5074 "Practical upper limit of total metaslabs per top-level vdev"); 5075 5076 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW, 5077 "Rate limit slow IO (delay) events to this many per second"); 5078 5079 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW, 5080 "Rate limit checksum events to this many checksum errors per second " 5081 "(do not set below zed threshold)."); 5082 5083 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW, 5084 "Ignore errors during resilver/scrub"); 5085 5086 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW, 5087 "Bypass vdev_validate()"); 5088 5089 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW, 5090 "Disable cache flushes"); 5091 5092 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift, 5093 param_set_min_auto_ashift, param_get_ulong, ZMOD_RW, 5094 "Minimum ashift used when creating new top-level vdevs"); 5095 5096 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift, 5097 param_set_max_auto_ashift, param_get_ulong, ZMOD_RW, 5098 "Maximum ashift used when optimizing for logical -> physical sector " 5099 "size on new top-level vdevs"); 5100 /* END CSTYLED */ 5101