xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev.c (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  * Copyright 2017 Joyent, Inc.
29  * Copyright (c) 2017, Intel Corporation.
30  * Copyright (c) 2019, Datto Inc. All rights reserved.
31  */
32 
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/spa.h>
36 #include <sys/spa_impl.h>
37 #include <sys/bpobj.h>
38 #include <sys/dmu.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/vdev_rebuild.h>
43 #include <sys/uberblock_impl.h>
44 #include <sys/metaslab.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/space_map.h>
47 #include <sys/space_reftree.h>
48 #include <sys/zio.h>
49 #include <sys/zap.h>
50 #include <sys/fs/zfs.h>
51 #include <sys/arc.h>
52 #include <sys/zil.h>
53 #include <sys/dsl_scan.h>
54 #include <sys/abd.h>
55 #include <sys/vdev_initialize.h>
56 #include <sys/vdev_trim.h>
57 #include <sys/zvol.h>
58 #include <sys/zfs_ratelimit.h>
59 
60 /* default target for number of metaslabs per top-level vdev */
61 int zfs_vdev_default_ms_count = 200;
62 
63 /* minimum number of metaslabs per top-level vdev */
64 int zfs_vdev_min_ms_count = 16;
65 
66 /* practical upper limit of total metaslabs per top-level vdev */
67 int zfs_vdev_ms_count_limit = 1ULL << 17;
68 
69 /* lower limit for metaslab size (512M) */
70 int zfs_vdev_default_ms_shift = 29;
71 
72 /* upper limit for metaslab size (16G) */
73 int zfs_vdev_max_ms_shift = 34;
74 
75 int vdev_validate_skip = B_FALSE;
76 
77 /*
78  * Since the DTL space map of a vdev is not expected to have a lot of
79  * entries, we default its block size to 4K.
80  */
81 int zfs_vdev_dtl_sm_blksz = (1 << 12);
82 
83 /*
84  * Rate limit slow IO (delay) events to this many per second.
85  */
86 unsigned int zfs_slow_io_events_per_second = 20;
87 
88 /*
89  * Rate limit checksum events after this many checksum errors per second.
90  */
91 unsigned int zfs_checksum_events_per_second = 20;
92 
93 /*
94  * Ignore errors during scrub/resilver.  Allows to work around resilver
95  * upon import when there are pool errors.
96  */
97 int zfs_scan_ignore_errors = 0;
98 
99 /*
100  * vdev-wide space maps that have lots of entries written to them at
101  * the end of each transaction can benefit from a higher I/O bandwidth
102  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
103  */
104 int zfs_vdev_standard_sm_blksz = (1 << 17);
105 
106 /*
107  * Tunable parameter for debugging or performance analysis. Setting this
108  * will cause pool corruption on power loss if a volatile out-of-order
109  * write cache is enabled.
110  */
111 int zfs_nocacheflush = 0;
112 
113 uint64_t zfs_vdev_max_auto_ashift = ASHIFT_MAX;
114 uint64_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
115 
116 /*PRINTFLIKE2*/
117 void
118 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
119 {
120 	va_list adx;
121 	char buf[256];
122 
123 	va_start(adx, fmt);
124 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
125 	va_end(adx);
126 
127 	if (vd->vdev_path != NULL) {
128 		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
129 		    vd->vdev_path, buf);
130 	} else {
131 		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
132 		    vd->vdev_ops->vdev_op_type,
133 		    (u_longlong_t)vd->vdev_id,
134 		    (u_longlong_t)vd->vdev_guid, buf);
135 	}
136 }
137 
138 void
139 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
140 {
141 	char state[20];
142 
143 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
144 		zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
145 		    vd->vdev_ops->vdev_op_type);
146 		return;
147 	}
148 
149 	switch (vd->vdev_state) {
150 	case VDEV_STATE_UNKNOWN:
151 		(void) snprintf(state, sizeof (state), "unknown");
152 		break;
153 	case VDEV_STATE_CLOSED:
154 		(void) snprintf(state, sizeof (state), "closed");
155 		break;
156 	case VDEV_STATE_OFFLINE:
157 		(void) snprintf(state, sizeof (state), "offline");
158 		break;
159 	case VDEV_STATE_REMOVED:
160 		(void) snprintf(state, sizeof (state), "removed");
161 		break;
162 	case VDEV_STATE_CANT_OPEN:
163 		(void) snprintf(state, sizeof (state), "can't open");
164 		break;
165 	case VDEV_STATE_FAULTED:
166 		(void) snprintf(state, sizeof (state), "faulted");
167 		break;
168 	case VDEV_STATE_DEGRADED:
169 		(void) snprintf(state, sizeof (state), "degraded");
170 		break;
171 	case VDEV_STATE_HEALTHY:
172 		(void) snprintf(state, sizeof (state), "healthy");
173 		break;
174 	default:
175 		(void) snprintf(state, sizeof (state), "<state %u>",
176 		    (uint_t)vd->vdev_state);
177 	}
178 
179 	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
180 	    "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
181 	    vd->vdev_islog ? " (log)" : "",
182 	    (u_longlong_t)vd->vdev_guid,
183 	    vd->vdev_path ? vd->vdev_path : "N/A", state);
184 
185 	for (uint64_t i = 0; i < vd->vdev_children; i++)
186 		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
187 }
188 
189 /*
190  * Virtual device management.
191  */
192 
193 static vdev_ops_t *vdev_ops_table[] = {
194 	&vdev_root_ops,
195 	&vdev_raidz_ops,
196 	&vdev_mirror_ops,
197 	&vdev_replacing_ops,
198 	&vdev_spare_ops,
199 	&vdev_disk_ops,
200 	&vdev_file_ops,
201 	&vdev_missing_ops,
202 	&vdev_hole_ops,
203 	&vdev_indirect_ops,
204 	NULL
205 };
206 
207 /*
208  * Given a vdev type, return the appropriate ops vector.
209  */
210 static vdev_ops_t *
211 vdev_getops(const char *type)
212 {
213 	vdev_ops_t *ops, **opspp;
214 
215 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
216 		if (strcmp(ops->vdev_op_type, type) == 0)
217 			break;
218 
219 	return (ops);
220 }
221 
222 /* ARGSUSED */
223 void
224 vdev_default_xlate(vdev_t *vd, const range_seg64_t *in, range_seg64_t *res)
225 {
226 	res->rs_start = in->rs_start;
227 	res->rs_end = in->rs_end;
228 }
229 
230 /*
231  * Derive the enumerated allocation bias from string input.
232  * String origin is either the per-vdev zap or zpool(1M).
233  */
234 static vdev_alloc_bias_t
235 vdev_derive_alloc_bias(const char *bias)
236 {
237 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
238 
239 	if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
240 		alloc_bias = VDEV_BIAS_LOG;
241 	else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
242 		alloc_bias = VDEV_BIAS_SPECIAL;
243 	else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
244 		alloc_bias = VDEV_BIAS_DEDUP;
245 
246 	return (alloc_bias);
247 }
248 
249 /*
250  * Default asize function: return the MAX of psize with the asize of
251  * all children.  This is what's used by anything other than RAID-Z.
252  */
253 uint64_t
254 vdev_default_asize(vdev_t *vd, uint64_t psize)
255 {
256 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
257 	uint64_t csize;
258 
259 	for (int c = 0; c < vd->vdev_children; c++) {
260 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
261 		asize = MAX(asize, csize);
262 	}
263 
264 	return (asize);
265 }
266 
267 /*
268  * Get the minimum allocatable size. We define the allocatable size as
269  * the vdev's asize rounded to the nearest metaslab. This allows us to
270  * replace or attach devices which don't have the same physical size but
271  * can still satisfy the same number of allocations.
272  */
273 uint64_t
274 vdev_get_min_asize(vdev_t *vd)
275 {
276 	vdev_t *pvd = vd->vdev_parent;
277 
278 	/*
279 	 * If our parent is NULL (inactive spare or cache) or is the root,
280 	 * just return our own asize.
281 	 */
282 	if (pvd == NULL)
283 		return (vd->vdev_asize);
284 
285 	/*
286 	 * The top-level vdev just returns the allocatable size rounded
287 	 * to the nearest metaslab.
288 	 */
289 	if (vd == vd->vdev_top)
290 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
291 
292 	/*
293 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
294 	 * so each child must provide at least 1/Nth of its asize.
295 	 */
296 	if (pvd->vdev_ops == &vdev_raidz_ops)
297 		return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
298 		    pvd->vdev_children);
299 
300 	return (pvd->vdev_min_asize);
301 }
302 
303 void
304 vdev_set_min_asize(vdev_t *vd)
305 {
306 	vd->vdev_min_asize = vdev_get_min_asize(vd);
307 
308 	for (int c = 0; c < vd->vdev_children; c++)
309 		vdev_set_min_asize(vd->vdev_child[c]);
310 }
311 
312 vdev_t *
313 vdev_lookup_top(spa_t *spa, uint64_t vdev)
314 {
315 	vdev_t *rvd = spa->spa_root_vdev;
316 
317 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
318 
319 	if (vdev < rvd->vdev_children) {
320 		ASSERT(rvd->vdev_child[vdev] != NULL);
321 		return (rvd->vdev_child[vdev]);
322 	}
323 
324 	return (NULL);
325 }
326 
327 vdev_t *
328 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
329 {
330 	vdev_t *mvd;
331 
332 	if (vd->vdev_guid == guid)
333 		return (vd);
334 
335 	for (int c = 0; c < vd->vdev_children; c++)
336 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
337 		    NULL)
338 			return (mvd);
339 
340 	return (NULL);
341 }
342 
343 static int
344 vdev_count_leaves_impl(vdev_t *vd)
345 {
346 	int n = 0;
347 
348 	if (vd->vdev_ops->vdev_op_leaf)
349 		return (1);
350 
351 	for (int c = 0; c < vd->vdev_children; c++)
352 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
353 
354 	return (n);
355 }
356 
357 int
358 vdev_count_leaves(spa_t *spa)
359 {
360 	int rc;
361 
362 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
363 	rc = vdev_count_leaves_impl(spa->spa_root_vdev);
364 	spa_config_exit(spa, SCL_VDEV, FTAG);
365 
366 	return (rc);
367 }
368 
369 void
370 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
371 {
372 	size_t oldsize, newsize;
373 	uint64_t id = cvd->vdev_id;
374 	vdev_t **newchild;
375 
376 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
377 	ASSERT(cvd->vdev_parent == NULL);
378 
379 	cvd->vdev_parent = pvd;
380 
381 	if (pvd == NULL)
382 		return;
383 
384 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
385 
386 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
387 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
388 	newsize = pvd->vdev_children * sizeof (vdev_t *);
389 
390 	newchild = kmem_alloc(newsize, KM_SLEEP);
391 	if (pvd->vdev_child != NULL) {
392 		bcopy(pvd->vdev_child, newchild, oldsize);
393 		kmem_free(pvd->vdev_child, oldsize);
394 	}
395 
396 	pvd->vdev_child = newchild;
397 	pvd->vdev_child[id] = cvd;
398 
399 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
400 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
401 
402 	/*
403 	 * Walk up all ancestors to update guid sum.
404 	 */
405 	for (; pvd != NULL; pvd = pvd->vdev_parent)
406 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
407 
408 	if (cvd->vdev_ops->vdev_op_leaf) {
409 		list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
410 		cvd->vdev_spa->spa_leaf_list_gen++;
411 	}
412 }
413 
414 void
415 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
416 {
417 	int c;
418 	uint_t id = cvd->vdev_id;
419 
420 	ASSERT(cvd->vdev_parent == pvd);
421 
422 	if (pvd == NULL)
423 		return;
424 
425 	ASSERT(id < pvd->vdev_children);
426 	ASSERT(pvd->vdev_child[id] == cvd);
427 
428 	pvd->vdev_child[id] = NULL;
429 	cvd->vdev_parent = NULL;
430 
431 	for (c = 0; c < pvd->vdev_children; c++)
432 		if (pvd->vdev_child[c])
433 			break;
434 
435 	if (c == pvd->vdev_children) {
436 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
437 		pvd->vdev_child = NULL;
438 		pvd->vdev_children = 0;
439 	}
440 
441 	if (cvd->vdev_ops->vdev_op_leaf) {
442 		spa_t *spa = cvd->vdev_spa;
443 		list_remove(&spa->spa_leaf_list, cvd);
444 		spa->spa_leaf_list_gen++;
445 	}
446 
447 	/*
448 	 * Walk up all ancestors to update guid sum.
449 	 */
450 	for (; pvd != NULL; pvd = pvd->vdev_parent)
451 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
452 }
453 
454 /*
455  * Remove any holes in the child array.
456  */
457 void
458 vdev_compact_children(vdev_t *pvd)
459 {
460 	vdev_t **newchild, *cvd;
461 	int oldc = pvd->vdev_children;
462 	int newc;
463 
464 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
465 
466 	if (oldc == 0)
467 		return;
468 
469 	for (int c = newc = 0; c < oldc; c++)
470 		if (pvd->vdev_child[c])
471 			newc++;
472 
473 	if (newc > 0) {
474 		newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
475 
476 		for (int c = newc = 0; c < oldc; c++) {
477 			if ((cvd = pvd->vdev_child[c]) != NULL) {
478 				newchild[newc] = cvd;
479 				cvd->vdev_id = newc++;
480 			}
481 		}
482 	} else {
483 		newchild = NULL;
484 	}
485 
486 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
487 	pvd->vdev_child = newchild;
488 	pvd->vdev_children = newc;
489 }
490 
491 /*
492  * Allocate and minimally initialize a vdev_t.
493  */
494 vdev_t *
495 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
496 {
497 	vdev_t *vd;
498 	vdev_indirect_config_t *vic;
499 
500 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
501 	vic = &vd->vdev_indirect_config;
502 
503 	if (spa->spa_root_vdev == NULL) {
504 		ASSERT(ops == &vdev_root_ops);
505 		spa->spa_root_vdev = vd;
506 		spa->spa_load_guid = spa_generate_guid(NULL);
507 	}
508 
509 	if (guid == 0 && ops != &vdev_hole_ops) {
510 		if (spa->spa_root_vdev == vd) {
511 			/*
512 			 * The root vdev's guid will also be the pool guid,
513 			 * which must be unique among all pools.
514 			 */
515 			guid = spa_generate_guid(NULL);
516 		} else {
517 			/*
518 			 * Any other vdev's guid must be unique within the pool.
519 			 */
520 			guid = spa_generate_guid(spa);
521 		}
522 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
523 	}
524 
525 	vd->vdev_spa = spa;
526 	vd->vdev_id = id;
527 	vd->vdev_guid = guid;
528 	vd->vdev_guid_sum = guid;
529 	vd->vdev_ops = ops;
530 	vd->vdev_state = VDEV_STATE_CLOSED;
531 	vd->vdev_ishole = (ops == &vdev_hole_ops);
532 	vic->vic_prev_indirect_vdev = UINT64_MAX;
533 
534 	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
535 	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
536 	vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL,
537 	    0, 0);
538 
539 	/*
540 	 * Initialize rate limit structs for events.  We rate limit ZIO delay
541 	 * and checksum events so that we don't overwhelm ZED with thousands
542 	 * of events when a disk is acting up.
543 	 */
544 	zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
545 	    1);
546 	zfs_ratelimit_init(&vd->vdev_checksum_rl,
547 	    &zfs_checksum_events_per_second, 1);
548 
549 	list_link_init(&vd->vdev_config_dirty_node);
550 	list_link_init(&vd->vdev_state_dirty_node);
551 	list_link_init(&vd->vdev_initialize_node);
552 	list_link_init(&vd->vdev_leaf_node);
553 	list_link_init(&vd->vdev_trim_node);
554 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
555 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
556 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
557 	mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
558 
559 	mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
560 	mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
561 	cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
562 	cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
563 
564 	mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
565 	mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
566 	mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
567 	cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
568 	cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
569 	cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
570 
571 	mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
572 	mutex_init(&vd->vdev_rebuild_io_lock, NULL, MUTEX_DEFAULT, NULL);
573 	cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
574 	cv_init(&vd->vdev_rebuild_io_cv, NULL, CV_DEFAULT, NULL);
575 
576 	for (int t = 0; t < DTL_TYPES; t++) {
577 		vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
578 		    0);
579 	}
580 
581 	txg_list_create(&vd->vdev_ms_list, spa,
582 	    offsetof(struct metaslab, ms_txg_node));
583 	txg_list_create(&vd->vdev_dtl_list, spa,
584 	    offsetof(struct vdev, vdev_dtl_node));
585 	vd->vdev_stat.vs_timestamp = gethrtime();
586 	vdev_queue_init(vd);
587 	vdev_cache_init(vd);
588 
589 	return (vd);
590 }
591 
592 /*
593  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
594  * creating a new vdev or loading an existing one - the behavior is slightly
595  * different for each case.
596  */
597 int
598 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
599     int alloctype)
600 {
601 	vdev_ops_t *ops;
602 	char *type;
603 	uint64_t guid = 0, islog, nparity;
604 	vdev_t *vd;
605 	vdev_indirect_config_t *vic;
606 	char *tmp = NULL;
607 	int rc;
608 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
609 	boolean_t top_level = (parent && !parent->vdev_parent);
610 
611 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
612 
613 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
614 		return (SET_ERROR(EINVAL));
615 
616 	if ((ops = vdev_getops(type)) == NULL)
617 		return (SET_ERROR(EINVAL));
618 
619 	/*
620 	 * If this is a load, get the vdev guid from the nvlist.
621 	 * Otherwise, vdev_alloc_common() will generate one for us.
622 	 */
623 	if (alloctype == VDEV_ALLOC_LOAD) {
624 		uint64_t label_id;
625 
626 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
627 		    label_id != id)
628 			return (SET_ERROR(EINVAL));
629 
630 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
631 			return (SET_ERROR(EINVAL));
632 	} else if (alloctype == VDEV_ALLOC_SPARE) {
633 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
634 			return (SET_ERROR(EINVAL));
635 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
636 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
637 			return (SET_ERROR(EINVAL));
638 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
639 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
640 			return (SET_ERROR(EINVAL));
641 	}
642 
643 	/*
644 	 * The first allocated vdev must be of type 'root'.
645 	 */
646 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
647 		return (SET_ERROR(EINVAL));
648 
649 	/*
650 	 * Determine whether we're a log vdev.
651 	 */
652 	islog = 0;
653 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
654 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
655 		return (SET_ERROR(ENOTSUP));
656 
657 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
658 		return (SET_ERROR(ENOTSUP));
659 
660 	/*
661 	 * Set the nparity property for RAID-Z vdevs.
662 	 */
663 	nparity = -1ULL;
664 	if (ops == &vdev_raidz_ops) {
665 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
666 		    &nparity) == 0) {
667 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
668 				return (SET_ERROR(EINVAL));
669 			/*
670 			 * Previous versions could only support 1 or 2 parity
671 			 * device.
672 			 */
673 			if (nparity > 1 &&
674 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
675 				return (SET_ERROR(ENOTSUP));
676 			if (nparity > 2 &&
677 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
678 				return (SET_ERROR(ENOTSUP));
679 		} else {
680 			/*
681 			 * We require the parity to be specified for SPAs that
682 			 * support multiple parity levels.
683 			 */
684 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
685 				return (SET_ERROR(EINVAL));
686 			/*
687 			 * Otherwise, we default to 1 parity device for RAID-Z.
688 			 */
689 			nparity = 1;
690 		}
691 	} else {
692 		nparity = 0;
693 	}
694 	ASSERT(nparity != -1ULL);
695 
696 	/*
697 	 * If creating a top-level vdev, check for allocation classes input
698 	 */
699 	if (top_level && alloctype == VDEV_ALLOC_ADD) {
700 		char *bias;
701 
702 		if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
703 		    &bias) == 0) {
704 			alloc_bias = vdev_derive_alloc_bias(bias);
705 
706 			/* spa_vdev_add() expects feature to be enabled */
707 			if (spa->spa_load_state != SPA_LOAD_CREATE &&
708 			    !spa_feature_is_enabled(spa,
709 			    SPA_FEATURE_ALLOCATION_CLASSES)) {
710 				return (SET_ERROR(ENOTSUP));
711 			}
712 		}
713 	}
714 
715 	vd = vdev_alloc_common(spa, id, guid, ops);
716 	vic = &vd->vdev_indirect_config;
717 
718 	vd->vdev_islog = islog;
719 	vd->vdev_nparity = nparity;
720 	if (top_level && alloc_bias != VDEV_BIAS_NONE)
721 		vd->vdev_alloc_bias = alloc_bias;
722 
723 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
724 		vd->vdev_path = spa_strdup(vd->vdev_path);
725 
726 	/*
727 	 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
728 	 * fault on a vdev and want it to persist across imports (like with
729 	 * zpool offline -f).
730 	 */
731 	rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
732 	if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
733 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
734 		vd->vdev_faulted = 1;
735 		vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
736 	}
737 
738 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
739 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
740 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
741 	    &vd->vdev_physpath) == 0)
742 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
743 
744 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
745 	    &vd->vdev_enc_sysfs_path) == 0)
746 		vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
747 
748 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
749 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
750 
751 	/*
752 	 * Set the whole_disk property.  If it's not specified, leave the value
753 	 * as -1.
754 	 */
755 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
756 	    &vd->vdev_wholedisk) != 0)
757 		vd->vdev_wholedisk = -1ULL;
758 
759 	ASSERT0(vic->vic_mapping_object);
760 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
761 	    &vic->vic_mapping_object);
762 	ASSERT0(vic->vic_births_object);
763 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
764 	    &vic->vic_births_object);
765 	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
766 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
767 	    &vic->vic_prev_indirect_vdev);
768 
769 	/*
770 	 * Look for the 'not present' flag.  This will only be set if the device
771 	 * was not present at the time of import.
772 	 */
773 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
774 	    &vd->vdev_not_present);
775 
776 	/*
777 	 * Get the alignment requirement.
778 	 */
779 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
780 
781 	/*
782 	 * Retrieve the vdev creation time.
783 	 */
784 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
785 	    &vd->vdev_crtxg);
786 
787 	/*
788 	 * If we're a top-level vdev, try to load the allocation parameters.
789 	 */
790 	if (top_level &&
791 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
792 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
793 		    &vd->vdev_ms_array);
794 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
795 		    &vd->vdev_ms_shift);
796 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
797 		    &vd->vdev_asize);
798 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
799 		    &vd->vdev_removing);
800 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
801 		    &vd->vdev_top_zap);
802 	} else {
803 		ASSERT0(vd->vdev_top_zap);
804 	}
805 
806 	if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
807 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
808 		    alloctype == VDEV_ALLOC_ADD ||
809 		    alloctype == VDEV_ALLOC_SPLIT ||
810 		    alloctype == VDEV_ALLOC_ROOTPOOL);
811 		/* Note: metaslab_group_create() is now deferred */
812 	}
813 
814 	if (vd->vdev_ops->vdev_op_leaf &&
815 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
816 		(void) nvlist_lookup_uint64(nv,
817 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
818 	} else {
819 		ASSERT0(vd->vdev_leaf_zap);
820 	}
821 
822 	/*
823 	 * If we're a leaf vdev, try to load the DTL object and other state.
824 	 */
825 
826 	if (vd->vdev_ops->vdev_op_leaf &&
827 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
828 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
829 		if (alloctype == VDEV_ALLOC_LOAD) {
830 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
831 			    &vd->vdev_dtl_object);
832 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
833 			    &vd->vdev_unspare);
834 		}
835 
836 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
837 			uint64_t spare = 0;
838 
839 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
840 			    &spare) == 0 && spare)
841 				spa_spare_add(vd);
842 		}
843 
844 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
845 		    &vd->vdev_offline);
846 
847 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
848 		    &vd->vdev_resilver_txg);
849 
850 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
851 		    &vd->vdev_rebuild_txg);
852 
853 		if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
854 			vdev_defer_resilver(vd);
855 
856 		/*
857 		 * In general, when importing a pool we want to ignore the
858 		 * persistent fault state, as the diagnosis made on another
859 		 * system may not be valid in the current context.  The only
860 		 * exception is if we forced a vdev to a persistently faulted
861 		 * state with 'zpool offline -f'.  The persistent fault will
862 		 * remain across imports until cleared.
863 		 *
864 		 * Local vdevs will remain in the faulted state.
865 		 */
866 		if (spa_load_state(spa) == SPA_LOAD_OPEN ||
867 		    spa_load_state(spa) == SPA_LOAD_IMPORT) {
868 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
869 			    &vd->vdev_faulted);
870 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
871 			    &vd->vdev_degraded);
872 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
873 			    &vd->vdev_removed);
874 
875 			if (vd->vdev_faulted || vd->vdev_degraded) {
876 				char *aux;
877 
878 				vd->vdev_label_aux =
879 				    VDEV_AUX_ERR_EXCEEDED;
880 				if (nvlist_lookup_string(nv,
881 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
882 				    strcmp(aux, "external") == 0)
883 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
884 				else
885 					vd->vdev_faulted = 0ULL;
886 			}
887 		}
888 	}
889 
890 	/*
891 	 * Add ourselves to the parent's list of children.
892 	 */
893 	vdev_add_child(parent, vd);
894 
895 	*vdp = vd;
896 
897 	return (0);
898 }
899 
900 void
901 vdev_free(vdev_t *vd)
902 {
903 	spa_t *spa = vd->vdev_spa;
904 
905 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
906 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
907 	ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
908 	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
909 
910 	/*
911 	 * Scan queues are normally destroyed at the end of a scan. If the
912 	 * queue exists here, that implies the vdev is being removed while
913 	 * the scan is still running.
914 	 */
915 	if (vd->vdev_scan_io_queue != NULL) {
916 		mutex_enter(&vd->vdev_scan_io_queue_lock);
917 		dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
918 		vd->vdev_scan_io_queue = NULL;
919 		mutex_exit(&vd->vdev_scan_io_queue_lock);
920 	}
921 
922 	/*
923 	 * vdev_free() implies closing the vdev first.  This is simpler than
924 	 * trying to ensure complicated semantics for all callers.
925 	 */
926 	vdev_close(vd);
927 
928 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
929 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
930 
931 	/*
932 	 * Free all children.
933 	 */
934 	for (int c = 0; c < vd->vdev_children; c++)
935 		vdev_free(vd->vdev_child[c]);
936 
937 	ASSERT(vd->vdev_child == NULL);
938 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
939 
940 	/*
941 	 * Discard allocation state.
942 	 */
943 	if (vd->vdev_mg != NULL) {
944 		vdev_metaslab_fini(vd);
945 		metaslab_group_destroy(vd->vdev_mg);
946 		vd->vdev_mg = NULL;
947 	}
948 
949 	ASSERT0(vd->vdev_stat.vs_space);
950 	ASSERT0(vd->vdev_stat.vs_dspace);
951 	ASSERT0(vd->vdev_stat.vs_alloc);
952 
953 	/*
954 	 * Remove this vdev from its parent's child list.
955 	 */
956 	vdev_remove_child(vd->vdev_parent, vd);
957 
958 	ASSERT(vd->vdev_parent == NULL);
959 	ASSERT(!list_link_active(&vd->vdev_leaf_node));
960 
961 	/*
962 	 * Clean up vdev structure.
963 	 */
964 	vdev_queue_fini(vd);
965 	vdev_cache_fini(vd);
966 
967 	if (vd->vdev_path)
968 		spa_strfree(vd->vdev_path);
969 	if (vd->vdev_devid)
970 		spa_strfree(vd->vdev_devid);
971 	if (vd->vdev_physpath)
972 		spa_strfree(vd->vdev_physpath);
973 
974 	if (vd->vdev_enc_sysfs_path)
975 		spa_strfree(vd->vdev_enc_sysfs_path);
976 
977 	if (vd->vdev_fru)
978 		spa_strfree(vd->vdev_fru);
979 
980 	if (vd->vdev_isspare)
981 		spa_spare_remove(vd);
982 	if (vd->vdev_isl2cache)
983 		spa_l2cache_remove(vd);
984 
985 	txg_list_destroy(&vd->vdev_ms_list);
986 	txg_list_destroy(&vd->vdev_dtl_list);
987 
988 	mutex_enter(&vd->vdev_dtl_lock);
989 	space_map_close(vd->vdev_dtl_sm);
990 	for (int t = 0; t < DTL_TYPES; t++) {
991 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
992 		range_tree_destroy(vd->vdev_dtl[t]);
993 	}
994 	mutex_exit(&vd->vdev_dtl_lock);
995 
996 	EQUIV(vd->vdev_indirect_births != NULL,
997 	    vd->vdev_indirect_mapping != NULL);
998 	if (vd->vdev_indirect_births != NULL) {
999 		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1000 		vdev_indirect_births_close(vd->vdev_indirect_births);
1001 	}
1002 
1003 	if (vd->vdev_obsolete_sm != NULL) {
1004 		ASSERT(vd->vdev_removing ||
1005 		    vd->vdev_ops == &vdev_indirect_ops);
1006 		space_map_close(vd->vdev_obsolete_sm);
1007 		vd->vdev_obsolete_sm = NULL;
1008 	}
1009 	range_tree_destroy(vd->vdev_obsolete_segments);
1010 	rw_destroy(&vd->vdev_indirect_rwlock);
1011 	mutex_destroy(&vd->vdev_obsolete_lock);
1012 
1013 	mutex_destroy(&vd->vdev_dtl_lock);
1014 	mutex_destroy(&vd->vdev_stat_lock);
1015 	mutex_destroy(&vd->vdev_probe_lock);
1016 	mutex_destroy(&vd->vdev_scan_io_queue_lock);
1017 
1018 	mutex_destroy(&vd->vdev_initialize_lock);
1019 	mutex_destroy(&vd->vdev_initialize_io_lock);
1020 	cv_destroy(&vd->vdev_initialize_io_cv);
1021 	cv_destroy(&vd->vdev_initialize_cv);
1022 
1023 	mutex_destroy(&vd->vdev_trim_lock);
1024 	mutex_destroy(&vd->vdev_autotrim_lock);
1025 	mutex_destroy(&vd->vdev_trim_io_lock);
1026 	cv_destroy(&vd->vdev_trim_cv);
1027 	cv_destroy(&vd->vdev_autotrim_cv);
1028 	cv_destroy(&vd->vdev_trim_io_cv);
1029 
1030 	mutex_destroy(&vd->vdev_rebuild_lock);
1031 	mutex_destroy(&vd->vdev_rebuild_io_lock);
1032 	cv_destroy(&vd->vdev_rebuild_cv);
1033 	cv_destroy(&vd->vdev_rebuild_io_cv);
1034 
1035 	zfs_ratelimit_fini(&vd->vdev_delay_rl);
1036 	zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1037 
1038 	if (vd == spa->spa_root_vdev)
1039 		spa->spa_root_vdev = NULL;
1040 
1041 	kmem_free(vd, sizeof (vdev_t));
1042 }
1043 
1044 /*
1045  * Transfer top-level vdev state from svd to tvd.
1046  */
1047 static void
1048 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1049 {
1050 	spa_t *spa = svd->vdev_spa;
1051 	metaslab_t *msp;
1052 	vdev_t *vd;
1053 	int t;
1054 
1055 	ASSERT(tvd == tvd->vdev_top);
1056 
1057 	tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
1058 	tvd->vdev_ms_array = svd->vdev_ms_array;
1059 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
1060 	tvd->vdev_ms_count = svd->vdev_ms_count;
1061 	tvd->vdev_top_zap = svd->vdev_top_zap;
1062 
1063 	svd->vdev_ms_array = 0;
1064 	svd->vdev_ms_shift = 0;
1065 	svd->vdev_ms_count = 0;
1066 	svd->vdev_top_zap = 0;
1067 
1068 	if (tvd->vdev_mg)
1069 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1070 	tvd->vdev_mg = svd->vdev_mg;
1071 	tvd->vdev_ms = svd->vdev_ms;
1072 
1073 	svd->vdev_mg = NULL;
1074 	svd->vdev_ms = NULL;
1075 
1076 	if (tvd->vdev_mg != NULL)
1077 		tvd->vdev_mg->mg_vd = tvd;
1078 
1079 	tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1080 	svd->vdev_checkpoint_sm = NULL;
1081 
1082 	tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1083 	svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1084 
1085 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1086 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1087 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1088 
1089 	svd->vdev_stat.vs_alloc = 0;
1090 	svd->vdev_stat.vs_space = 0;
1091 	svd->vdev_stat.vs_dspace = 0;
1092 
1093 	/*
1094 	 * State which may be set on a top-level vdev that's in the
1095 	 * process of being removed.
1096 	 */
1097 	ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1098 	ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1099 	ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1100 	ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1101 	ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1102 	ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1103 	ASSERT0(tvd->vdev_removing);
1104 	ASSERT0(tvd->vdev_rebuilding);
1105 	tvd->vdev_removing = svd->vdev_removing;
1106 	tvd->vdev_rebuilding = svd->vdev_rebuilding;
1107 	tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1108 	tvd->vdev_indirect_config = svd->vdev_indirect_config;
1109 	tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1110 	tvd->vdev_indirect_births = svd->vdev_indirect_births;
1111 	range_tree_swap(&svd->vdev_obsolete_segments,
1112 	    &tvd->vdev_obsolete_segments);
1113 	tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1114 	svd->vdev_indirect_config.vic_mapping_object = 0;
1115 	svd->vdev_indirect_config.vic_births_object = 0;
1116 	svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1117 	svd->vdev_indirect_mapping = NULL;
1118 	svd->vdev_indirect_births = NULL;
1119 	svd->vdev_obsolete_sm = NULL;
1120 	svd->vdev_removing = 0;
1121 	svd->vdev_rebuilding = 0;
1122 
1123 	for (t = 0; t < TXG_SIZE; t++) {
1124 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1125 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1126 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1127 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1128 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1129 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1130 	}
1131 
1132 	if (list_link_active(&svd->vdev_config_dirty_node)) {
1133 		vdev_config_clean(svd);
1134 		vdev_config_dirty(tvd);
1135 	}
1136 
1137 	if (list_link_active(&svd->vdev_state_dirty_node)) {
1138 		vdev_state_clean(svd);
1139 		vdev_state_dirty(tvd);
1140 	}
1141 
1142 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1143 	svd->vdev_deflate_ratio = 0;
1144 
1145 	tvd->vdev_islog = svd->vdev_islog;
1146 	svd->vdev_islog = 0;
1147 
1148 	dsl_scan_io_queue_vdev_xfer(svd, tvd);
1149 }
1150 
1151 static void
1152 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1153 {
1154 	if (vd == NULL)
1155 		return;
1156 
1157 	vd->vdev_top = tvd;
1158 
1159 	for (int c = 0; c < vd->vdev_children; c++)
1160 		vdev_top_update(tvd, vd->vdev_child[c]);
1161 }
1162 
1163 /*
1164  * Add a mirror/replacing vdev above an existing vdev.
1165  */
1166 vdev_t *
1167 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1168 {
1169 	spa_t *spa = cvd->vdev_spa;
1170 	vdev_t *pvd = cvd->vdev_parent;
1171 	vdev_t *mvd;
1172 
1173 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1174 
1175 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1176 
1177 	mvd->vdev_asize = cvd->vdev_asize;
1178 	mvd->vdev_min_asize = cvd->vdev_min_asize;
1179 	mvd->vdev_max_asize = cvd->vdev_max_asize;
1180 	mvd->vdev_psize = cvd->vdev_psize;
1181 	mvd->vdev_ashift = cvd->vdev_ashift;
1182 	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1183 	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1184 	mvd->vdev_state = cvd->vdev_state;
1185 	mvd->vdev_crtxg = cvd->vdev_crtxg;
1186 
1187 	vdev_remove_child(pvd, cvd);
1188 	vdev_add_child(pvd, mvd);
1189 	cvd->vdev_id = mvd->vdev_children;
1190 	vdev_add_child(mvd, cvd);
1191 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1192 
1193 	if (mvd == mvd->vdev_top)
1194 		vdev_top_transfer(cvd, mvd);
1195 
1196 	return (mvd);
1197 }
1198 
1199 /*
1200  * Remove a 1-way mirror/replacing vdev from the tree.
1201  */
1202 void
1203 vdev_remove_parent(vdev_t *cvd)
1204 {
1205 	vdev_t *mvd = cvd->vdev_parent;
1206 	vdev_t *pvd = mvd->vdev_parent;
1207 
1208 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1209 
1210 	ASSERT(mvd->vdev_children == 1);
1211 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1212 	    mvd->vdev_ops == &vdev_replacing_ops ||
1213 	    mvd->vdev_ops == &vdev_spare_ops);
1214 	cvd->vdev_ashift = mvd->vdev_ashift;
1215 	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1216 	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1217 	vdev_remove_child(mvd, cvd);
1218 	vdev_remove_child(pvd, mvd);
1219 
1220 	/*
1221 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1222 	 * Otherwise, we could have detached an offline device, and when we
1223 	 * go to import the pool we'll think we have two top-level vdevs,
1224 	 * instead of a different version of the same top-level vdev.
1225 	 */
1226 	if (mvd->vdev_top == mvd) {
1227 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1228 		cvd->vdev_orig_guid = cvd->vdev_guid;
1229 		cvd->vdev_guid += guid_delta;
1230 		cvd->vdev_guid_sum += guid_delta;
1231 
1232 		/*
1233 		 * If pool not set for autoexpand, we need to also preserve
1234 		 * mvd's asize to prevent automatic expansion of cvd.
1235 		 * Otherwise if we are adjusting the mirror by attaching and
1236 		 * detaching children of non-uniform sizes, the mirror could
1237 		 * autoexpand, unexpectedly requiring larger devices to
1238 		 * re-establish the mirror.
1239 		 */
1240 		if (!cvd->vdev_spa->spa_autoexpand)
1241 			cvd->vdev_asize = mvd->vdev_asize;
1242 	}
1243 	cvd->vdev_id = mvd->vdev_id;
1244 	vdev_add_child(pvd, cvd);
1245 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1246 
1247 	if (cvd == cvd->vdev_top)
1248 		vdev_top_transfer(mvd, cvd);
1249 
1250 	ASSERT(mvd->vdev_children == 0);
1251 	vdev_free(mvd);
1252 }
1253 
1254 static void
1255 vdev_metaslab_group_create(vdev_t *vd)
1256 {
1257 	spa_t *spa = vd->vdev_spa;
1258 
1259 	/*
1260 	 * metaslab_group_create was delayed until allocation bias was available
1261 	 */
1262 	if (vd->vdev_mg == NULL) {
1263 		metaslab_class_t *mc;
1264 
1265 		if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1266 			vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1267 
1268 		ASSERT3U(vd->vdev_islog, ==,
1269 		    (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1270 
1271 		switch (vd->vdev_alloc_bias) {
1272 		case VDEV_BIAS_LOG:
1273 			mc = spa_log_class(spa);
1274 			break;
1275 		case VDEV_BIAS_SPECIAL:
1276 			mc = spa_special_class(spa);
1277 			break;
1278 		case VDEV_BIAS_DEDUP:
1279 			mc = spa_dedup_class(spa);
1280 			break;
1281 		default:
1282 			mc = spa_normal_class(spa);
1283 		}
1284 
1285 		vd->vdev_mg = metaslab_group_create(mc, vd,
1286 		    spa->spa_alloc_count);
1287 
1288 		/*
1289 		 * The spa ashift min/max only apply for the normal metaslab
1290 		 * class. Class destination is late binding so ashift boundry
1291 		 * setting had to wait until now.
1292 		 */
1293 		if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1294 		    mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1295 			if (vd->vdev_ashift > spa->spa_max_ashift)
1296 				spa->spa_max_ashift = vd->vdev_ashift;
1297 			if (vd->vdev_ashift < spa->spa_min_ashift)
1298 				spa->spa_min_ashift = vd->vdev_ashift;
1299 		}
1300 	}
1301 }
1302 
1303 int
1304 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1305 {
1306 	spa_t *spa = vd->vdev_spa;
1307 	objset_t *mos = spa->spa_meta_objset;
1308 	uint64_t m;
1309 	uint64_t oldc = vd->vdev_ms_count;
1310 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1311 	metaslab_t **mspp;
1312 	int error;
1313 	boolean_t expanding = (oldc != 0);
1314 
1315 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1316 
1317 	/*
1318 	 * This vdev is not being allocated from yet or is a hole.
1319 	 */
1320 	if (vd->vdev_ms_shift == 0)
1321 		return (0);
1322 
1323 	ASSERT(!vd->vdev_ishole);
1324 
1325 	ASSERT(oldc <= newc);
1326 
1327 	mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1328 
1329 	if (expanding) {
1330 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1331 		vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1332 	}
1333 
1334 	vd->vdev_ms = mspp;
1335 	vd->vdev_ms_count = newc;
1336 	for (m = oldc; m < newc; m++) {
1337 		uint64_t object = 0;
1338 
1339 		/*
1340 		 * vdev_ms_array may be 0 if we are creating the "fake"
1341 		 * metaslabs for an indirect vdev for zdb's leak detection.
1342 		 * See zdb_leak_init().
1343 		 */
1344 		if (txg == 0 && vd->vdev_ms_array != 0) {
1345 			error = dmu_read(mos, vd->vdev_ms_array,
1346 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1347 			    DMU_READ_PREFETCH);
1348 			if (error != 0) {
1349 				vdev_dbgmsg(vd, "unable to read the metaslab "
1350 				    "array [error=%d]", error);
1351 				return (error);
1352 			}
1353 		}
1354 
1355 #ifndef _KERNEL
1356 		/*
1357 		 * To accommodate zdb_leak_init() fake indirect
1358 		 * metaslabs, we allocate a metaslab group for
1359 		 * indirect vdevs which normally don't have one.
1360 		 */
1361 		if (vd->vdev_mg == NULL) {
1362 			ASSERT0(vdev_is_concrete(vd));
1363 			vdev_metaslab_group_create(vd);
1364 		}
1365 #endif
1366 		error = metaslab_init(vd->vdev_mg, m, object, txg,
1367 		    &(vd->vdev_ms[m]));
1368 		if (error != 0) {
1369 			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1370 			    error);
1371 			return (error);
1372 		}
1373 	}
1374 
1375 	if (txg == 0)
1376 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1377 
1378 	/*
1379 	 * If the vdev is being removed we don't activate
1380 	 * the metaslabs since we want to ensure that no new
1381 	 * allocations are performed on this device.
1382 	 */
1383 	if (!expanding && !vd->vdev_removing) {
1384 		metaslab_group_activate(vd->vdev_mg);
1385 	}
1386 
1387 	if (txg == 0)
1388 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1389 
1390 	/*
1391 	 * Regardless whether this vdev was just added or it is being
1392 	 * expanded, the metaslab count has changed. Recalculate the
1393 	 * block limit.
1394 	 */
1395 	spa_log_sm_set_blocklimit(spa);
1396 
1397 	return (0);
1398 }
1399 
1400 void
1401 vdev_metaslab_fini(vdev_t *vd)
1402 {
1403 	if (vd->vdev_checkpoint_sm != NULL) {
1404 		ASSERT(spa_feature_is_active(vd->vdev_spa,
1405 		    SPA_FEATURE_POOL_CHECKPOINT));
1406 		space_map_close(vd->vdev_checkpoint_sm);
1407 		/*
1408 		 * Even though we close the space map, we need to set its
1409 		 * pointer to NULL. The reason is that vdev_metaslab_fini()
1410 		 * may be called multiple times for certain operations
1411 		 * (i.e. when destroying a pool) so we need to ensure that
1412 		 * this clause never executes twice. This logic is similar
1413 		 * to the one used for the vdev_ms clause below.
1414 		 */
1415 		vd->vdev_checkpoint_sm = NULL;
1416 	}
1417 
1418 	if (vd->vdev_ms != NULL) {
1419 		metaslab_group_t *mg = vd->vdev_mg;
1420 		metaslab_group_passivate(mg);
1421 
1422 		uint64_t count = vd->vdev_ms_count;
1423 		for (uint64_t m = 0; m < count; m++) {
1424 			metaslab_t *msp = vd->vdev_ms[m];
1425 			if (msp != NULL)
1426 				metaslab_fini(msp);
1427 		}
1428 		vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1429 		vd->vdev_ms = NULL;
1430 
1431 		vd->vdev_ms_count = 0;
1432 
1433 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
1434 			ASSERT0(mg->mg_histogram[i]);
1435 	}
1436 	ASSERT0(vd->vdev_ms_count);
1437 	ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
1438 }
1439 
1440 typedef struct vdev_probe_stats {
1441 	boolean_t	vps_readable;
1442 	boolean_t	vps_writeable;
1443 	int		vps_flags;
1444 } vdev_probe_stats_t;
1445 
1446 static void
1447 vdev_probe_done(zio_t *zio)
1448 {
1449 	spa_t *spa = zio->io_spa;
1450 	vdev_t *vd = zio->io_vd;
1451 	vdev_probe_stats_t *vps = zio->io_private;
1452 
1453 	ASSERT(vd->vdev_probe_zio != NULL);
1454 
1455 	if (zio->io_type == ZIO_TYPE_READ) {
1456 		if (zio->io_error == 0)
1457 			vps->vps_readable = 1;
1458 		if (zio->io_error == 0 && spa_writeable(spa)) {
1459 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1460 			    zio->io_offset, zio->io_size, zio->io_abd,
1461 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1462 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1463 		} else {
1464 			abd_free(zio->io_abd);
1465 		}
1466 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1467 		if (zio->io_error == 0)
1468 			vps->vps_writeable = 1;
1469 		abd_free(zio->io_abd);
1470 	} else if (zio->io_type == ZIO_TYPE_NULL) {
1471 		zio_t *pio;
1472 		zio_link_t *zl;
1473 
1474 		vd->vdev_cant_read |= !vps->vps_readable;
1475 		vd->vdev_cant_write |= !vps->vps_writeable;
1476 
1477 		if (vdev_readable(vd) &&
1478 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1479 			zio->io_error = 0;
1480 		} else {
1481 			ASSERT(zio->io_error != 0);
1482 			vdev_dbgmsg(vd, "failed probe");
1483 			(void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1484 			    spa, vd, NULL, NULL, 0);
1485 			zio->io_error = SET_ERROR(ENXIO);
1486 		}
1487 
1488 		mutex_enter(&vd->vdev_probe_lock);
1489 		ASSERT(vd->vdev_probe_zio == zio);
1490 		vd->vdev_probe_zio = NULL;
1491 		mutex_exit(&vd->vdev_probe_lock);
1492 
1493 		zl = NULL;
1494 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1495 			if (!vdev_accessible(vd, pio))
1496 				pio->io_error = SET_ERROR(ENXIO);
1497 
1498 		kmem_free(vps, sizeof (*vps));
1499 	}
1500 }
1501 
1502 /*
1503  * Determine whether this device is accessible.
1504  *
1505  * Read and write to several known locations: the pad regions of each
1506  * vdev label but the first, which we leave alone in case it contains
1507  * a VTOC.
1508  */
1509 zio_t *
1510 vdev_probe(vdev_t *vd, zio_t *zio)
1511 {
1512 	spa_t *spa = vd->vdev_spa;
1513 	vdev_probe_stats_t *vps = NULL;
1514 	zio_t *pio;
1515 
1516 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1517 
1518 	/*
1519 	 * Don't probe the probe.
1520 	 */
1521 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1522 		return (NULL);
1523 
1524 	/*
1525 	 * To prevent 'probe storms' when a device fails, we create
1526 	 * just one probe i/o at a time.  All zios that want to probe
1527 	 * this vdev will become parents of the probe io.
1528 	 */
1529 	mutex_enter(&vd->vdev_probe_lock);
1530 
1531 	if ((pio = vd->vdev_probe_zio) == NULL) {
1532 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1533 
1534 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1535 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1536 		    ZIO_FLAG_TRYHARD;
1537 
1538 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1539 			/*
1540 			 * vdev_cant_read and vdev_cant_write can only
1541 			 * transition from TRUE to FALSE when we have the
1542 			 * SCL_ZIO lock as writer; otherwise they can only
1543 			 * transition from FALSE to TRUE.  This ensures that
1544 			 * any zio looking at these values can assume that
1545 			 * failures persist for the life of the I/O.  That's
1546 			 * important because when a device has intermittent
1547 			 * connectivity problems, we want to ensure that
1548 			 * they're ascribed to the device (ENXIO) and not
1549 			 * the zio (EIO).
1550 			 *
1551 			 * Since we hold SCL_ZIO as writer here, clear both
1552 			 * values so the probe can reevaluate from first
1553 			 * principles.
1554 			 */
1555 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1556 			vd->vdev_cant_read = B_FALSE;
1557 			vd->vdev_cant_write = B_FALSE;
1558 		}
1559 
1560 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1561 		    vdev_probe_done, vps,
1562 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1563 
1564 		/*
1565 		 * We can't change the vdev state in this context, so we
1566 		 * kick off an async task to do it on our behalf.
1567 		 */
1568 		if (zio != NULL) {
1569 			vd->vdev_probe_wanted = B_TRUE;
1570 			spa_async_request(spa, SPA_ASYNC_PROBE);
1571 		}
1572 	}
1573 
1574 	if (zio != NULL)
1575 		zio_add_child(zio, pio);
1576 
1577 	mutex_exit(&vd->vdev_probe_lock);
1578 
1579 	if (vps == NULL) {
1580 		ASSERT(zio != NULL);
1581 		return (NULL);
1582 	}
1583 
1584 	for (int l = 1; l < VDEV_LABELS; l++) {
1585 		zio_nowait(zio_read_phys(pio, vd,
1586 		    vdev_label_offset(vd->vdev_psize, l,
1587 		    offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1588 		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1589 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1590 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1591 	}
1592 
1593 	if (zio == NULL)
1594 		return (pio);
1595 
1596 	zio_nowait(pio);
1597 	return (NULL);
1598 }
1599 
1600 static void
1601 vdev_open_child(void *arg)
1602 {
1603 	vdev_t *vd = arg;
1604 
1605 	vd->vdev_open_thread = curthread;
1606 	vd->vdev_open_error = vdev_open(vd);
1607 	vd->vdev_open_thread = NULL;
1608 }
1609 
1610 static boolean_t
1611 vdev_uses_zvols(vdev_t *vd)
1612 {
1613 #ifdef _KERNEL
1614 	if (zvol_is_zvol(vd->vdev_path))
1615 		return (B_TRUE);
1616 #endif
1617 
1618 	for (int c = 0; c < vd->vdev_children; c++)
1619 		if (vdev_uses_zvols(vd->vdev_child[c]))
1620 			return (B_TRUE);
1621 
1622 	return (B_FALSE);
1623 }
1624 
1625 void
1626 vdev_open_children(vdev_t *vd)
1627 {
1628 	taskq_t *tq;
1629 	int children = vd->vdev_children;
1630 
1631 	/*
1632 	 * in order to handle pools on top of zvols, do the opens
1633 	 * in a single thread so that the same thread holds the
1634 	 * spa_namespace_lock
1635 	 */
1636 	if (vdev_uses_zvols(vd)) {
1637 retry_sync:
1638 		for (int c = 0; c < children; c++)
1639 			vd->vdev_child[c]->vdev_open_error =
1640 			    vdev_open(vd->vdev_child[c]);
1641 	} else {
1642 		tq = taskq_create("vdev_open", children, minclsyspri,
1643 		    children, children, TASKQ_PREPOPULATE);
1644 		if (tq == NULL)
1645 			goto retry_sync;
1646 
1647 		for (int c = 0; c < children; c++)
1648 			VERIFY(taskq_dispatch(tq, vdev_open_child,
1649 			    vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
1650 
1651 		taskq_destroy(tq);
1652 	}
1653 
1654 	vd->vdev_nonrot = B_TRUE;
1655 
1656 	for (int c = 0; c < children; c++)
1657 		vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1658 }
1659 
1660 /*
1661  * Compute the raidz-deflation ratio.  Note, we hard-code
1662  * in 128k (1 << 17) because it is the "typical" blocksize.
1663  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1664  * otherwise it would inconsistently account for existing bp's.
1665  */
1666 static void
1667 vdev_set_deflate_ratio(vdev_t *vd)
1668 {
1669 	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1670 		vd->vdev_deflate_ratio = (1 << 17) /
1671 		    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1672 	}
1673 }
1674 
1675 /*
1676  * Maximize performance by inflating the configured ashift for top level
1677  * vdevs to be as close to the physical ashift as possible while maintaining
1678  * administrator defined limits and ensuring it doesn't go below the
1679  * logical ashift.
1680  */
1681 static void
1682 vdev_ashift_optimize(vdev_t *vd)
1683 {
1684 	ASSERT(vd == vd->vdev_top);
1685 
1686 	if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1687 		vd->vdev_ashift = MIN(
1688 		    MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
1689 		    MAX(zfs_vdev_min_auto_ashift,
1690 		    vd->vdev_physical_ashift));
1691 	} else {
1692 		/*
1693 		 * If the logical and physical ashifts are the same, then
1694 		 * we ensure that the top-level vdev's ashift is not smaller
1695 		 * than our minimum ashift value. For the unusual case
1696 		 * where logical ashift > physical ashift, we can't cap
1697 		 * the calculated ashift based on max ashift as that
1698 		 * would cause failures.
1699 		 * We still check if we need to increase it to match
1700 		 * the min ashift.
1701 		 */
1702 		vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
1703 		    vd->vdev_ashift);
1704 	}
1705 }
1706 
1707 /*
1708  * Prepare a virtual device for access.
1709  */
1710 int
1711 vdev_open(vdev_t *vd)
1712 {
1713 	spa_t *spa = vd->vdev_spa;
1714 	int error;
1715 	uint64_t osize = 0;
1716 	uint64_t max_osize = 0;
1717 	uint64_t asize, max_asize, psize;
1718 	uint64_t logical_ashift = 0;
1719 	uint64_t physical_ashift = 0;
1720 
1721 	ASSERT(vd->vdev_open_thread == curthread ||
1722 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1723 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1724 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1725 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1726 
1727 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1728 	vd->vdev_cant_read = B_FALSE;
1729 	vd->vdev_cant_write = B_FALSE;
1730 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1731 
1732 	/*
1733 	 * If this vdev is not removed, check its fault status.  If it's
1734 	 * faulted, bail out of the open.
1735 	 */
1736 	if (!vd->vdev_removed && vd->vdev_faulted) {
1737 		ASSERT(vd->vdev_children == 0);
1738 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1739 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1740 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1741 		    vd->vdev_label_aux);
1742 		return (SET_ERROR(ENXIO));
1743 	} else if (vd->vdev_offline) {
1744 		ASSERT(vd->vdev_children == 0);
1745 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1746 		return (SET_ERROR(ENXIO));
1747 	}
1748 
1749 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1750 	    &logical_ashift, &physical_ashift);
1751 	/*
1752 	 * Physical volume size should never be larger than its max size, unless
1753 	 * the disk has shrunk while we were reading it or the device is buggy
1754 	 * or damaged: either way it's not safe for use, bail out of the open.
1755 	 */
1756 	if (osize > max_osize) {
1757 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1758 		    VDEV_AUX_OPEN_FAILED);
1759 		return (SET_ERROR(ENXIO));
1760 	}
1761 
1762 	/*
1763 	 * Reset the vdev_reopening flag so that we actually close
1764 	 * the vdev on error.
1765 	 */
1766 	vd->vdev_reopening = B_FALSE;
1767 	if (zio_injection_enabled && error == 0)
1768 		error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
1769 
1770 	if (error) {
1771 		if (vd->vdev_removed &&
1772 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1773 			vd->vdev_removed = B_FALSE;
1774 
1775 		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1776 			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1777 			    vd->vdev_stat.vs_aux);
1778 		} else {
1779 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1780 			    vd->vdev_stat.vs_aux);
1781 		}
1782 		return (error);
1783 	}
1784 
1785 	vd->vdev_removed = B_FALSE;
1786 
1787 	/*
1788 	 * Recheck the faulted flag now that we have confirmed that
1789 	 * the vdev is accessible.  If we're faulted, bail.
1790 	 */
1791 	if (vd->vdev_faulted) {
1792 		ASSERT(vd->vdev_children == 0);
1793 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1794 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1795 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1796 		    vd->vdev_label_aux);
1797 		return (SET_ERROR(ENXIO));
1798 	}
1799 
1800 	if (vd->vdev_degraded) {
1801 		ASSERT(vd->vdev_children == 0);
1802 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1803 		    VDEV_AUX_ERR_EXCEEDED);
1804 	} else {
1805 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1806 	}
1807 
1808 	/*
1809 	 * For hole or missing vdevs we just return success.
1810 	 */
1811 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1812 		return (0);
1813 
1814 	for (int c = 0; c < vd->vdev_children; c++) {
1815 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1816 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1817 			    VDEV_AUX_NONE);
1818 			break;
1819 		}
1820 	}
1821 
1822 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1823 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1824 
1825 	if (vd->vdev_children == 0) {
1826 		if (osize < SPA_MINDEVSIZE) {
1827 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1828 			    VDEV_AUX_TOO_SMALL);
1829 			return (SET_ERROR(EOVERFLOW));
1830 		}
1831 		psize = osize;
1832 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1833 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1834 		    VDEV_LABEL_END_SIZE);
1835 	} else {
1836 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1837 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1838 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1839 			    VDEV_AUX_TOO_SMALL);
1840 			return (SET_ERROR(EOVERFLOW));
1841 		}
1842 		psize = 0;
1843 		asize = osize;
1844 		max_asize = max_osize;
1845 	}
1846 
1847 	/*
1848 	 * If the vdev was expanded, record this so that we can re-create the
1849 	 * uberblock rings in labels {2,3}, during the next sync.
1850 	 */
1851 	if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
1852 		vd->vdev_copy_uberblocks = B_TRUE;
1853 
1854 	vd->vdev_psize = psize;
1855 
1856 	/*
1857 	 * Make sure the allocatable size hasn't shrunk too much.
1858 	 */
1859 	if (asize < vd->vdev_min_asize) {
1860 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1861 		    VDEV_AUX_BAD_LABEL);
1862 		return (SET_ERROR(EINVAL));
1863 	}
1864 
1865 	/*
1866 	 * We can always set the logical/physical ashift members since
1867 	 * their values are only used to calculate the vdev_ashift when
1868 	 * the device is first added to the config. These values should
1869 	 * not be used for anything else since they may change whenever
1870 	 * the device is reopened and we don't store them in the label.
1871 	 */
1872 	vd->vdev_physical_ashift =
1873 	    MAX(physical_ashift, vd->vdev_physical_ashift);
1874 	vd->vdev_logical_ashift = MAX(logical_ashift,
1875 	    vd->vdev_logical_ashift);
1876 
1877 	if (vd->vdev_asize == 0) {
1878 		/*
1879 		 * This is the first-ever open, so use the computed values.
1880 		 * For compatibility, a different ashift can be requested.
1881 		 */
1882 		vd->vdev_asize = asize;
1883 		vd->vdev_max_asize = max_asize;
1884 
1885 		/*
1886 		 * If the vdev_ashift was not overriden at creation time,
1887 		 * then set it the logical ashift and optimize the ashift.
1888 		 */
1889 		if (vd->vdev_ashift == 0) {
1890 			vd->vdev_ashift = vd->vdev_logical_ashift;
1891 
1892 			if (vd->vdev_logical_ashift > ASHIFT_MAX) {
1893 				vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1894 				    VDEV_AUX_ASHIFT_TOO_BIG);
1895 				return (SET_ERROR(EDOM));
1896 			}
1897 
1898 			if (vd->vdev_top == vd) {
1899 				vdev_ashift_optimize(vd);
1900 			}
1901 		}
1902 		if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
1903 		    vd->vdev_ashift > ASHIFT_MAX)) {
1904 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1905 			    VDEV_AUX_BAD_ASHIFT);
1906 			return (SET_ERROR(EDOM));
1907 		}
1908 	} else {
1909 		/*
1910 		 * Make sure the alignment required hasn't increased.
1911 		 */
1912 		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1913 		    vd->vdev_ops->vdev_op_leaf) {
1914 			(void) zfs_ereport_post(
1915 			    FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1916 			    spa, vd, NULL, NULL, 0);
1917 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1918 			    VDEV_AUX_BAD_LABEL);
1919 			return (SET_ERROR(EDOM));
1920 		}
1921 		vd->vdev_max_asize = max_asize;
1922 	}
1923 
1924 	/*
1925 	 * If all children are healthy we update asize if either:
1926 	 * The asize has increased, due to a device expansion caused by dynamic
1927 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
1928 	 * making the additional space available.
1929 	 *
1930 	 * The asize has decreased, due to a device shrink usually caused by a
1931 	 * vdev replace with a smaller device. This ensures that calculations
1932 	 * based of max_asize and asize e.g. esize are always valid. It's safe
1933 	 * to do this as we've already validated that asize is greater than
1934 	 * vdev_min_asize.
1935 	 */
1936 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1937 	    ((asize > vd->vdev_asize &&
1938 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
1939 	    (asize < vd->vdev_asize)))
1940 		vd->vdev_asize = asize;
1941 
1942 	vdev_set_min_asize(vd);
1943 
1944 	/*
1945 	 * Ensure we can issue some IO before declaring the
1946 	 * vdev open for business.
1947 	 */
1948 	if (vd->vdev_ops->vdev_op_leaf &&
1949 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1950 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1951 		    VDEV_AUX_ERR_EXCEEDED);
1952 		return (error);
1953 	}
1954 
1955 	/*
1956 	 * If this is a leaf vdev, assess whether a resilver is needed.
1957 	 * But don't do this if we are doing a reopen for a scrub, since
1958 	 * this would just restart the scrub we are already doing.
1959 	 */
1960 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
1961 		dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
1962 
1963 	return (0);
1964 }
1965 
1966 /*
1967  * Called once the vdevs are all opened, this routine validates the label
1968  * contents. This needs to be done before vdev_load() so that we don't
1969  * inadvertently do repair I/Os to the wrong device.
1970  *
1971  * This function will only return failure if one of the vdevs indicates that it
1972  * has since been destroyed or exported.  This is only possible if
1973  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1974  * will be updated but the function will return 0.
1975  */
1976 int
1977 vdev_validate(vdev_t *vd)
1978 {
1979 	spa_t *spa = vd->vdev_spa;
1980 	nvlist_t *label;
1981 	uint64_t guid = 0, aux_guid = 0, top_guid;
1982 	uint64_t state;
1983 	nvlist_t *nvl;
1984 	uint64_t txg;
1985 
1986 	if (vdev_validate_skip)
1987 		return (0);
1988 
1989 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1990 		if (vdev_validate(vd->vdev_child[c]) != 0)
1991 			return (SET_ERROR(EBADF));
1992 
1993 	/*
1994 	 * If the device has already failed, or was marked offline, don't do
1995 	 * any further validation.  Otherwise, label I/O will fail and we will
1996 	 * overwrite the previous state.
1997 	 */
1998 	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1999 		return (0);
2000 
2001 	/*
2002 	 * If we are performing an extreme rewind, we allow for a label that
2003 	 * was modified at a point after the current txg.
2004 	 * If config lock is not held do not check for the txg. spa_sync could
2005 	 * be updating the vdev's label before updating spa_last_synced_txg.
2006 	 */
2007 	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2008 	    spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2009 		txg = UINT64_MAX;
2010 	else
2011 		txg = spa_last_synced_txg(spa);
2012 
2013 	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2014 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2015 		    VDEV_AUX_BAD_LABEL);
2016 		vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2017 		    "txg %llu", (u_longlong_t)txg);
2018 		return (0);
2019 	}
2020 
2021 	/*
2022 	 * Determine if this vdev has been split off into another
2023 	 * pool.  If so, then refuse to open it.
2024 	 */
2025 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2026 	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2027 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2028 		    VDEV_AUX_SPLIT_POOL);
2029 		nvlist_free(label);
2030 		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2031 		return (0);
2032 	}
2033 
2034 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2035 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2036 		    VDEV_AUX_CORRUPT_DATA);
2037 		nvlist_free(label);
2038 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2039 		    ZPOOL_CONFIG_POOL_GUID);
2040 		return (0);
2041 	}
2042 
2043 	/*
2044 	 * If config is not trusted then ignore the spa guid check. This is
2045 	 * necessary because if the machine crashed during a re-guid the new
2046 	 * guid might have been written to all of the vdev labels, but not the
2047 	 * cached config. The check will be performed again once we have the
2048 	 * trusted config from the MOS.
2049 	 */
2050 	if (spa->spa_trust_config && guid != spa_guid(spa)) {
2051 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2052 		    VDEV_AUX_CORRUPT_DATA);
2053 		nvlist_free(label);
2054 		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2055 		    "match config (%llu != %llu)", (u_longlong_t)guid,
2056 		    (u_longlong_t)spa_guid(spa));
2057 		return (0);
2058 	}
2059 
2060 	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2061 	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2062 	    &aux_guid) != 0)
2063 		aux_guid = 0;
2064 
2065 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2066 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2067 		    VDEV_AUX_CORRUPT_DATA);
2068 		nvlist_free(label);
2069 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2070 		    ZPOOL_CONFIG_GUID);
2071 		return (0);
2072 	}
2073 
2074 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2075 	    != 0) {
2076 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2077 		    VDEV_AUX_CORRUPT_DATA);
2078 		nvlist_free(label);
2079 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2080 		    ZPOOL_CONFIG_TOP_GUID);
2081 		return (0);
2082 	}
2083 
2084 	/*
2085 	 * If this vdev just became a top-level vdev because its sibling was
2086 	 * detached, it will have adopted the parent's vdev guid -- but the
2087 	 * label may or may not be on disk yet. Fortunately, either version
2088 	 * of the label will have the same top guid, so if we're a top-level
2089 	 * vdev, we can safely compare to that instead.
2090 	 * However, if the config comes from a cachefile that failed to update
2091 	 * after the detach, a top-level vdev will appear as a non top-level
2092 	 * vdev in the config. Also relax the constraints if we perform an
2093 	 * extreme rewind.
2094 	 *
2095 	 * If we split this vdev off instead, then we also check the
2096 	 * original pool's guid. We don't want to consider the vdev
2097 	 * corrupt if it is partway through a split operation.
2098 	 */
2099 	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2100 		boolean_t mismatch = B_FALSE;
2101 		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2102 			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2103 				mismatch = B_TRUE;
2104 		} else {
2105 			if (vd->vdev_guid != top_guid &&
2106 			    vd->vdev_top->vdev_guid != guid)
2107 				mismatch = B_TRUE;
2108 		}
2109 
2110 		if (mismatch) {
2111 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2112 			    VDEV_AUX_CORRUPT_DATA);
2113 			nvlist_free(label);
2114 			vdev_dbgmsg(vd, "vdev_validate: config guid "
2115 			    "doesn't match label guid");
2116 			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2117 			    (u_longlong_t)vd->vdev_guid,
2118 			    (u_longlong_t)vd->vdev_top->vdev_guid);
2119 			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2120 			    "aux_guid %llu", (u_longlong_t)guid,
2121 			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2122 			return (0);
2123 		}
2124 	}
2125 
2126 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2127 	    &state) != 0) {
2128 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2129 		    VDEV_AUX_CORRUPT_DATA);
2130 		nvlist_free(label);
2131 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2132 		    ZPOOL_CONFIG_POOL_STATE);
2133 		return (0);
2134 	}
2135 
2136 	nvlist_free(label);
2137 
2138 	/*
2139 	 * If this is a verbatim import, no need to check the
2140 	 * state of the pool.
2141 	 */
2142 	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2143 	    spa_load_state(spa) == SPA_LOAD_OPEN &&
2144 	    state != POOL_STATE_ACTIVE) {
2145 		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2146 		    "for spa %s", (u_longlong_t)state, spa->spa_name);
2147 		return (SET_ERROR(EBADF));
2148 	}
2149 
2150 	/*
2151 	 * If we were able to open and validate a vdev that was
2152 	 * previously marked permanently unavailable, clear that state
2153 	 * now.
2154 	 */
2155 	if (vd->vdev_not_present)
2156 		vd->vdev_not_present = 0;
2157 
2158 	return (0);
2159 }
2160 
2161 static void
2162 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2163 {
2164 	if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
2165 		if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
2166 			zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
2167 			    "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2168 			    dvd->vdev_path, svd->vdev_path);
2169 			spa_strfree(dvd->vdev_path);
2170 			dvd->vdev_path = spa_strdup(svd->vdev_path);
2171 		}
2172 	} else if (svd->vdev_path != NULL) {
2173 		dvd->vdev_path = spa_strdup(svd->vdev_path);
2174 		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2175 		    (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
2176 	}
2177 }
2178 
2179 /*
2180  * Recursively copy vdev paths from one vdev to another. Source and destination
2181  * vdev trees must have same geometry otherwise return error. Intended to copy
2182  * paths from userland config into MOS config.
2183  */
2184 int
2185 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2186 {
2187 	if ((svd->vdev_ops == &vdev_missing_ops) ||
2188 	    (svd->vdev_ishole && dvd->vdev_ishole) ||
2189 	    (dvd->vdev_ops == &vdev_indirect_ops))
2190 		return (0);
2191 
2192 	if (svd->vdev_ops != dvd->vdev_ops) {
2193 		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2194 		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2195 		return (SET_ERROR(EINVAL));
2196 	}
2197 
2198 	if (svd->vdev_guid != dvd->vdev_guid) {
2199 		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2200 		    "%llu)", (u_longlong_t)svd->vdev_guid,
2201 		    (u_longlong_t)dvd->vdev_guid);
2202 		return (SET_ERROR(EINVAL));
2203 	}
2204 
2205 	if (svd->vdev_children != dvd->vdev_children) {
2206 		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2207 		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
2208 		    (u_longlong_t)dvd->vdev_children);
2209 		return (SET_ERROR(EINVAL));
2210 	}
2211 
2212 	for (uint64_t i = 0; i < svd->vdev_children; i++) {
2213 		int error = vdev_copy_path_strict(svd->vdev_child[i],
2214 		    dvd->vdev_child[i]);
2215 		if (error != 0)
2216 			return (error);
2217 	}
2218 
2219 	if (svd->vdev_ops->vdev_op_leaf)
2220 		vdev_copy_path_impl(svd, dvd);
2221 
2222 	return (0);
2223 }
2224 
2225 static void
2226 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2227 {
2228 	ASSERT(stvd->vdev_top == stvd);
2229 	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2230 
2231 	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2232 		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2233 	}
2234 
2235 	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2236 		return;
2237 
2238 	/*
2239 	 * The idea here is that while a vdev can shift positions within
2240 	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2241 	 * step outside of it.
2242 	 */
2243 	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2244 
2245 	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2246 		return;
2247 
2248 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2249 
2250 	vdev_copy_path_impl(vd, dvd);
2251 }
2252 
2253 /*
2254  * Recursively copy vdev paths from one root vdev to another. Source and
2255  * destination vdev trees may differ in geometry. For each destination leaf
2256  * vdev, search a vdev with the same guid and top vdev id in the source.
2257  * Intended to copy paths from userland config into MOS config.
2258  */
2259 void
2260 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2261 {
2262 	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2263 	ASSERT(srvd->vdev_ops == &vdev_root_ops);
2264 	ASSERT(drvd->vdev_ops == &vdev_root_ops);
2265 
2266 	for (uint64_t i = 0; i < children; i++) {
2267 		vdev_copy_path_search(srvd->vdev_child[i],
2268 		    drvd->vdev_child[i]);
2269 	}
2270 }
2271 
2272 /*
2273  * Close a virtual device.
2274  */
2275 void
2276 vdev_close(vdev_t *vd)
2277 {
2278 	vdev_t *pvd = vd->vdev_parent;
2279 	spa_t *spa __maybe_unused = vd->vdev_spa;
2280 
2281 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2282 
2283 	/*
2284 	 * If our parent is reopening, then we are as well, unless we are
2285 	 * going offline.
2286 	 */
2287 	if (pvd != NULL && pvd->vdev_reopening)
2288 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2289 
2290 	vd->vdev_ops->vdev_op_close(vd);
2291 
2292 	vdev_cache_purge(vd);
2293 
2294 	/*
2295 	 * We record the previous state before we close it, so that if we are
2296 	 * doing a reopen(), we don't generate FMA ereports if we notice that
2297 	 * it's still faulted.
2298 	 */
2299 	vd->vdev_prevstate = vd->vdev_state;
2300 
2301 	if (vd->vdev_offline)
2302 		vd->vdev_state = VDEV_STATE_OFFLINE;
2303 	else
2304 		vd->vdev_state = VDEV_STATE_CLOSED;
2305 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2306 }
2307 
2308 void
2309 vdev_hold(vdev_t *vd)
2310 {
2311 	spa_t *spa = vd->vdev_spa;
2312 
2313 	ASSERT(spa_is_root(spa));
2314 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2315 		return;
2316 
2317 	for (int c = 0; c < vd->vdev_children; c++)
2318 		vdev_hold(vd->vdev_child[c]);
2319 
2320 	if (vd->vdev_ops->vdev_op_leaf)
2321 		vd->vdev_ops->vdev_op_hold(vd);
2322 }
2323 
2324 void
2325 vdev_rele(vdev_t *vd)
2326 {
2327 	ASSERT(spa_is_root(vd->vdev_spa));
2328 	for (int c = 0; c < vd->vdev_children; c++)
2329 		vdev_rele(vd->vdev_child[c]);
2330 
2331 	if (vd->vdev_ops->vdev_op_leaf)
2332 		vd->vdev_ops->vdev_op_rele(vd);
2333 }
2334 
2335 /*
2336  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2337  * reopen leaf vdevs which had previously been opened as they might deadlock
2338  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2339  * If the leaf has never been opened then open it, as usual.
2340  */
2341 void
2342 vdev_reopen(vdev_t *vd)
2343 {
2344 	spa_t *spa = vd->vdev_spa;
2345 
2346 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2347 
2348 	/* set the reopening flag unless we're taking the vdev offline */
2349 	vd->vdev_reopening = !vd->vdev_offline;
2350 	vdev_close(vd);
2351 	(void) vdev_open(vd);
2352 
2353 	/*
2354 	 * Call vdev_validate() here to make sure we have the same device.
2355 	 * Otherwise, a device with an invalid label could be successfully
2356 	 * opened in response to vdev_reopen().
2357 	 */
2358 	if (vd->vdev_aux) {
2359 		(void) vdev_validate_aux(vd);
2360 		if (vdev_readable(vd) && vdev_writeable(vd) &&
2361 		    vd->vdev_aux == &spa->spa_l2cache) {
2362 			/*
2363 			 * In case the vdev is present we should evict all ARC
2364 			 * buffers and pointers to log blocks and reclaim their
2365 			 * space before restoring its contents to L2ARC.
2366 			 */
2367 			if (l2arc_vdev_present(vd)) {
2368 				l2arc_rebuild_vdev(vd, B_TRUE);
2369 			} else {
2370 				l2arc_add_vdev(spa, vd);
2371 			}
2372 			spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2373 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2374 		}
2375 	} else {
2376 		(void) vdev_validate(vd);
2377 	}
2378 
2379 	/*
2380 	 * Reassess parent vdev's health.
2381 	 */
2382 	vdev_propagate_state(vd);
2383 }
2384 
2385 int
2386 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2387 {
2388 	int error;
2389 
2390 	/*
2391 	 * Normally, partial opens (e.g. of a mirror) are allowed.
2392 	 * For a create, however, we want to fail the request if
2393 	 * there are any components we can't open.
2394 	 */
2395 	error = vdev_open(vd);
2396 
2397 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2398 		vdev_close(vd);
2399 		return (error ? error : SET_ERROR(ENXIO));
2400 	}
2401 
2402 	/*
2403 	 * Recursively load DTLs and initialize all labels.
2404 	 */
2405 	if ((error = vdev_dtl_load(vd)) != 0 ||
2406 	    (error = vdev_label_init(vd, txg, isreplacing ?
2407 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2408 		vdev_close(vd);
2409 		return (error);
2410 	}
2411 
2412 	return (0);
2413 }
2414 
2415 void
2416 vdev_metaslab_set_size(vdev_t *vd)
2417 {
2418 	uint64_t asize = vd->vdev_asize;
2419 	uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2420 	uint64_t ms_shift;
2421 
2422 	/*
2423 	 * There are two dimensions to the metaslab sizing calculation:
2424 	 * the size of the metaslab and the count of metaslabs per vdev.
2425 	 *
2426 	 * The default values used below are a good balance between memory
2427 	 * usage (larger metaslab size means more memory needed for loaded
2428 	 * metaslabs; more metaslabs means more memory needed for the
2429 	 * metaslab_t structs), metaslab load time (larger metaslabs take
2430 	 * longer to load), and metaslab sync time (more metaslabs means
2431 	 * more time spent syncing all of them).
2432 	 *
2433 	 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2434 	 * The range of the dimensions are as follows:
2435 	 *
2436 	 *	2^29 <= ms_size  <= 2^34
2437 	 *	  16 <= ms_count <= 131,072
2438 	 *
2439 	 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2440 	 * at least 512MB (2^29) to minimize fragmentation effects when
2441 	 * testing with smaller devices.  However, the count constraint
2442 	 * of at least 16 metaslabs will override this minimum size goal.
2443 	 *
2444 	 * On the upper end of vdev sizes, we aim for a maximum metaslab
2445 	 * size of 16GB.  However, we will cap the total count to 2^17
2446 	 * metaslabs to keep our memory footprint in check and let the
2447 	 * metaslab size grow from there if that limit is hit.
2448 	 *
2449 	 * The net effect of applying above constrains is summarized below.
2450 	 *
2451 	 *   vdev size       metaslab count
2452 	 *  --------------|-----------------
2453 	 *      < 8GB        ~16
2454 	 *  8GB   - 100GB   one per 512MB
2455 	 *  100GB - 3TB     ~200
2456 	 *  3TB   - 2PB     one per 16GB
2457 	 *      > 2PB       ~131,072
2458 	 *  --------------------------------
2459 	 *
2460 	 *  Finally, note that all of the above calculate the initial
2461 	 *  number of metaslabs. Expanding a top-level vdev will result
2462 	 *  in additional metaslabs being allocated making it possible
2463 	 *  to exceed the zfs_vdev_ms_count_limit.
2464 	 */
2465 
2466 	if (ms_count < zfs_vdev_min_ms_count)
2467 		ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2468 	else if (ms_count > zfs_vdev_default_ms_count)
2469 		ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2470 	else
2471 		ms_shift = zfs_vdev_default_ms_shift;
2472 
2473 	if (ms_shift < SPA_MAXBLOCKSHIFT) {
2474 		ms_shift = SPA_MAXBLOCKSHIFT;
2475 	} else if (ms_shift > zfs_vdev_max_ms_shift) {
2476 		ms_shift = zfs_vdev_max_ms_shift;
2477 		/* cap the total count to constrain memory footprint */
2478 		if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2479 			ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2480 	}
2481 
2482 	vd->vdev_ms_shift = ms_shift;
2483 	ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2484 }
2485 
2486 void
2487 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2488 {
2489 	ASSERT(vd == vd->vdev_top);
2490 	/* indirect vdevs don't have metaslabs or dtls */
2491 	ASSERT(vdev_is_concrete(vd) || flags == 0);
2492 	ASSERT(ISP2(flags));
2493 	ASSERT(spa_writeable(vd->vdev_spa));
2494 
2495 	if (flags & VDD_METASLAB)
2496 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2497 
2498 	if (flags & VDD_DTL)
2499 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2500 
2501 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2502 }
2503 
2504 void
2505 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2506 {
2507 	for (int c = 0; c < vd->vdev_children; c++)
2508 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2509 
2510 	if (vd->vdev_ops->vdev_op_leaf)
2511 		vdev_dirty(vd->vdev_top, flags, vd, txg);
2512 }
2513 
2514 /*
2515  * DTLs.
2516  *
2517  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2518  * the vdev has less than perfect replication.  There are four kinds of DTL:
2519  *
2520  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2521  *
2522  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2523  *
2524  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2525  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2526  *	txgs that was scrubbed.
2527  *
2528  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2529  *	persistent errors or just some device being offline.
2530  *	Unlike the other three, the DTL_OUTAGE map is not generally
2531  *	maintained; it's only computed when needed, typically to
2532  *	determine whether a device can be detached.
2533  *
2534  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2535  * either has the data or it doesn't.
2536  *
2537  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2538  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2539  * if any child is less than fully replicated, then so is its parent.
2540  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2541  * comprising only those txgs which appear in 'maxfaults' or more children;
2542  * those are the txgs we don't have enough replication to read.  For example,
2543  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2544  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2545  * two child DTL_MISSING maps.
2546  *
2547  * It should be clear from the above that to compute the DTLs and outage maps
2548  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2549  * Therefore, that is all we keep on disk.  When loading the pool, or after
2550  * a configuration change, we generate all other DTLs from first principles.
2551  */
2552 void
2553 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2554 {
2555 	range_tree_t *rt = vd->vdev_dtl[t];
2556 
2557 	ASSERT(t < DTL_TYPES);
2558 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2559 	ASSERT(spa_writeable(vd->vdev_spa));
2560 
2561 	mutex_enter(&vd->vdev_dtl_lock);
2562 	if (!range_tree_contains(rt, txg, size))
2563 		range_tree_add(rt, txg, size);
2564 	mutex_exit(&vd->vdev_dtl_lock);
2565 }
2566 
2567 boolean_t
2568 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2569 {
2570 	range_tree_t *rt = vd->vdev_dtl[t];
2571 	boolean_t dirty = B_FALSE;
2572 
2573 	ASSERT(t < DTL_TYPES);
2574 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2575 
2576 	/*
2577 	 * While we are loading the pool, the DTLs have not been loaded yet.
2578 	 * Ignore the DTLs and try all devices.  This avoids a recursive
2579 	 * mutex enter on the vdev_dtl_lock, and also makes us try hard
2580 	 * when loading the pool (relying on the checksum to ensure that
2581 	 * we get the right data -- note that we while loading, we are
2582 	 * only reading the MOS, which is always checksummed).
2583 	 */
2584 	if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2585 		return (B_FALSE);
2586 
2587 	mutex_enter(&vd->vdev_dtl_lock);
2588 	if (!range_tree_is_empty(rt))
2589 		dirty = range_tree_contains(rt, txg, size);
2590 	mutex_exit(&vd->vdev_dtl_lock);
2591 
2592 	return (dirty);
2593 }
2594 
2595 boolean_t
2596 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2597 {
2598 	range_tree_t *rt = vd->vdev_dtl[t];
2599 	boolean_t empty;
2600 
2601 	mutex_enter(&vd->vdev_dtl_lock);
2602 	empty = range_tree_is_empty(rt);
2603 	mutex_exit(&vd->vdev_dtl_lock);
2604 
2605 	return (empty);
2606 }
2607 
2608 /*
2609  * Returns B_TRUE if vdev determines offset needs to be resilvered.
2610  */
2611 boolean_t
2612 vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
2613 {
2614 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2615 
2616 	if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2617 	    vd->vdev_ops->vdev_op_leaf)
2618 		return (B_TRUE);
2619 
2620 	return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize));
2621 }
2622 
2623 /*
2624  * Returns the lowest txg in the DTL range.
2625  */
2626 static uint64_t
2627 vdev_dtl_min(vdev_t *vd)
2628 {
2629 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2630 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2631 	ASSERT0(vd->vdev_children);
2632 
2633 	return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
2634 }
2635 
2636 /*
2637  * Returns the highest txg in the DTL.
2638  */
2639 static uint64_t
2640 vdev_dtl_max(vdev_t *vd)
2641 {
2642 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2643 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2644 	ASSERT0(vd->vdev_children);
2645 
2646 	return (range_tree_max(vd->vdev_dtl[DTL_MISSING]));
2647 }
2648 
2649 /*
2650  * Determine if a resilvering vdev should remove any DTL entries from
2651  * its range. If the vdev was resilvering for the entire duration of the
2652  * scan then it should excise that range from its DTLs. Otherwise, this
2653  * vdev is considered partially resilvered and should leave its DTL
2654  * entries intact. The comment in vdev_dtl_reassess() describes how we
2655  * excise the DTLs.
2656  */
2657 static boolean_t
2658 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
2659 {
2660 	ASSERT0(vd->vdev_children);
2661 
2662 	if (vd->vdev_state < VDEV_STATE_DEGRADED)
2663 		return (B_FALSE);
2664 
2665 	if (vd->vdev_resilver_deferred)
2666 		return (B_FALSE);
2667 
2668 	if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2669 		return (B_TRUE);
2670 
2671 	if (rebuild_done) {
2672 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
2673 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
2674 
2675 		/* Rebuild not initiated by attach */
2676 		if (vd->vdev_rebuild_txg == 0)
2677 			return (B_TRUE);
2678 
2679 		/*
2680 		 * When a rebuild completes without error then all missing data
2681 		 * up to the rebuild max txg has been reconstructed and the DTL
2682 		 * is eligible for excision.
2683 		 */
2684 		if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
2685 		    vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
2686 			ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
2687 			ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
2688 			ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
2689 			return (B_TRUE);
2690 		}
2691 	} else {
2692 		dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
2693 		dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
2694 
2695 		/* Resilver not initiated by attach */
2696 		if (vd->vdev_resilver_txg == 0)
2697 			return (B_TRUE);
2698 
2699 		/*
2700 		 * When a resilver is initiated the scan will assign the
2701 		 * scn_max_txg value to the highest txg value that exists
2702 		 * in all DTLs. If this device's max DTL is not part of this
2703 		 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
2704 		 * then it is not eligible for excision.
2705 		 */
2706 		if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2707 			ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
2708 			ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
2709 			ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
2710 			return (B_TRUE);
2711 		}
2712 	}
2713 
2714 	return (B_FALSE);
2715 }
2716 
2717 /*
2718  * Reassess DTLs after a config change or scrub completion. If txg == 0 no
2719  * write operations will be issued to the pool.
2720  */
2721 void
2722 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
2723     boolean_t scrub_done, boolean_t rebuild_done)
2724 {
2725 	spa_t *spa = vd->vdev_spa;
2726 	avl_tree_t reftree;
2727 	int minref;
2728 
2729 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2730 
2731 	for (int c = 0; c < vd->vdev_children; c++)
2732 		vdev_dtl_reassess(vd->vdev_child[c], txg,
2733 		    scrub_txg, scrub_done, rebuild_done);
2734 
2735 	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2736 		return;
2737 
2738 	if (vd->vdev_ops->vdev_op_leaf) {
2739 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2740 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
2741 		boolean_t check_excise = B_FALSE;
2742 		boolean_t wasempty = B_TRUE;
2743 
2744 		mutex_enter(&vd->vdev_dtl_lock);
2745 
2746 		/*
2747 		 * If requested, pretend the scan or rebuild completed cleanly.
2748 		 */
2749 		if (zfs_scan_ignore_errors) {
2750 			if (scn != NULL)
2751 				scn->scn_phys.scn_errors = 0;
2752 			if (vr != NULL)
2753 				vr->vr_rebuild_phys.vrp_errors = 0;
2754 		}
2755 
2756 		if (scrub_txg != 0 &&
2757 		    !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
2758 			wasempty = B_FALSE;
2759 			zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
2760 			    "dtl:%llu/%llu errors:%llu",
2761 			    (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
2762 			    (u_longlong_t)scrub_txg, spa->spa_scrub_started,
2763 			    (u_longlong_t)vdev_dtl_min(vd),
2764 			    (u_longlong_t)vdev_dtl_max(vd),
2765 			    (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
2766 		}
2767 
2768 		/*
2769 		 * If we've completed a scrub/resilver or a rebuild cleanly
2770 		 * then determine if this vdev should remove any DTLs. We
2771 		 * only want to excise regions on vdevs that were available
2772 		 * during the entire duration of this scan.
2773 		 */
2774 		if (rebuild_done &&
2775 		    vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
2776 			check_excise = B_TRUE;
2777 		} else {
2778 			if (spa->spa_scrub_started ||
2779 			    (scn != NULL && scn->scn_phys.scn_errors == 0)) {
2780 				check_excise = B_TRUE;
2781 			}
2782 		}
2783 
2784 		if (scrub_txg && check_excise &&
2785 		    vdev_dtl_should_excise(vd, rebuild_done)) {
2786 			/*
2787 			 * We completed a scrub, resilver or rebuild up to
2788 			 * scrub_txg.  If we did it without rebooting, then
2789 			 * the scrub dtl will be valid, so excise the old
2790 			 * region and fold in the scrub dtl.  Otherwise,
2791 			 * leave the dtl as-is if there was an error.
2792 			 *
2793 			 * There's little trick here: to excise the beginning
2794 			 * of the DTL_MISSING map, we put it into a reference
2795 			 * tree and then add a segment with refcnt -1 that
2796 			 * covers the range [0, scrub_txg).  This means
2797 			 * that each txg in that range has refcnt -1 or 0.
2798 			 * We then add DTL_SCRUB with a refcnt of 2, so that
2799 			 * entries in the range [0, scrub_txg) will have a
2800 			 * positive refcnt -- either 1 or 2.  We then convert
2801 			 * the reference tree into the new DTL_MISSING map.
2802 			 */
2803 			space_reftree_create(&reftree);
2804 			space_reftree_add_map(&reftree,
2805 			    vd->vdev_dtl[DTL_MISSING], 1);
2806 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2807 			space_reftree_add_map(&reftree,
2808 			    vd->vdev_dtl[DTL_SCRUB], 2);
2809 			space_reftree_generate_map(&reftree,
2810 			    vd->vdev_dtl[DTL_MISSING], 1);
2811 			space_reftree_destroy(&reftree);
2812 
2813 			if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
2814 				zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
2815 				    (u_longlong_t)vdev_dtl_min(vd),
2816 				    (u_longlong_t)vdev_dtl_max(vd));
2817 			} else if (!wasempty) {
2818 				zfs_dbgmsg("DTL_MISSING is now empty");
2819 			}
2820 		}
2821 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2822 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2823 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2824 		if (scrub_done)
2825 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2826 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2827 		if (!vdev_readable(vd))
2828 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2829 		else
2830 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2831 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2832 
2833 		/*
2834 		 * If the vdev was resilvering or rebuilding and no longer
2835 		 * has any DTLs then reset the appropriate flag and dirty
2836 		 * the top level so that we persist the change.
2837 		 */
2838 		if (txg != 0 &&
2839 		    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2840 		    range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
2841 			if (vd->vdev_rebuild_txg != 0) {
2842 				vd->vdev_rebuild_txg = 0;
2843 				vdev_config_dirty(vd->vdev_top);
2844 			} else if (vd->vdev_resilver_txg != 0) {
2845 				vd->vdev_resilver_txg = 0;
2846 				vdev_config_dirty(vd->vdev_top);
2847 			}
2848 		}
2849 
2850 		mutex_exit(&vd->vdev_dtl_lock);
2851 
2852 		if (txg != 0)
2853 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2854 		return;
2855 	}
2856 
2857 	mutex_enter(&vd->vdev_dtl_lock);
2858 	for (int t = 0; t < DTL_TYPES; t++) {
2859 		/* account for child's outage in parent's missing map */
2860 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2861 		if (t == DTL_SCRUB)
2862 			continue;			/* leaf vdevs only */
2863 		if (t == DTL_PARTIAL)
2864 			minref = 1;			/* i.e. non-zero */
2865 		else if (vd->vdev_nparity != 0)
2866 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
2867 		else
2868 			minref = vd->vdev_children;	/* any kind of mirror */
2869 		space_reftree_create(&reftree);
2870 		for (int c = 0; c < vd->vdev_children; c++) {
2871 			vdev_t *cvd = vd->vdev_child[c];
2872 			mutex_enter(&cvd->vdev_dtl_lock);
2873 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2874 			mutex_exit(&cvd->vdev_dtl_lock);
2875 		}
2876 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2877 		space_reftree_destroy(&reftree);
2878 	}
2879 	mutex_exit(&vd->vdev_dtl_lock);
2880 }
2881 
2882 int
2883 vdev_dtl_load(vdev_t *vd)
2884 {
2885 	spa_t *spa = vd->vdev_spa;
2886 	objset_t *mos = spa->spa_meta_objset;
2887 	int error = 0;
2888 
2889 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2890 		ASSERT(vdev_is_concrete(vd));
2891 
2892 		error = space_map_open(&vd->vdev_dtl_sm, mos,
2893 		    vd->vdev_dtl_object, 0, -1ULL, 0);
2894 		if (error)
2895 			return (error);
2896 		ASSERT(vd->vdev_dtl_sm != NULL);
2897 
2898 		mutex_enter(&vd->vdev_dtl_lock);
2899 		error = space_map_load(vd->vdev_dtl_sm,
2900 		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2901 		mutex_exit(&vd->vdev_dtl_lock);
2902 
2903 		return (error);
2904 	}
2905 
2906 	for (int c = 0; c < vd->vdev_children; c++) {
2907 		error = vdev_dtl_load(vd->vdev_child[c]);
2908 		if (error != 0)
2909 			break;
2910 	}
2911 
2912 	return (error);
2913 }
2914 
2915 static void
2916 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
2917 {
2918 	spa_t *spa = vd->vdev_spa;
2919 	objset_t *mos = spa->spa_meta_objset;
2920 	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
2921 	const char *string;
2922 
2923 	ASSERT(alloc_bias != VDEV_BIAS_NONE);
2924 
2925 	string =
2926 	    (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
2927 	    (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
2928 	    (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
2929 
2930 	ASSERT(string != NULL);
2931 	VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
2932 	    1, strlen(string) + 1, string, tx));
2933 
2934 	if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
2935 		spa_activate_allocation_classes(spa, tx);
2936 	}
2937 }
2938 
2939 void
2940 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2941 {
2942 	spa_t *spa = vd->vdev_spa;
2943 
2944 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2945 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2946 	    zapobj, tx));
2947 }
2948 
2949 uint64_t
2950 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2951 {
2952 	spa_t *spa = vd->vdev_spa;
2953 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2954 	    DMU_OT_NONE, 0, tx);
2955 
2956 	ASSERT(zap != 0);
2957 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2958 	    zap, tx));
2959 
2960 	return (zap);
2961 }
2962 
2963 void
2964 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2965 {
2966 	if (vd->vdev_ops != &vdev_hole_ops &&
2967 	    vd->vdev_ops != &vdev_missing_ops &&
2968 	    vd->vdev_ops != &vdev_root_ops &&
2969 	    !vd->vdev_top->vdev_removing) {
2970 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2971 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2972 		}
2973 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2974 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2975 			if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
2976 				vdev_zap_allocation_data(vd, tx);
2977 		}
2978 	}
2979 
2980 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2981 		vdev_construct_zaps(vd->vdev_child[i], tx);
2982 	}
2983 }
2984 
2985 static void
2986 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2987 {
2988 	spa_t *spa = vd->vdev_spa;
2989 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2990 	objset_t *mos = spa->spa_meta_objset;
2991 	range_tree_t *rtsync;
2992 	dmu_tx_t *tx;
2993 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2994 
2995 	ASSERT(vdev_is_concrete(vd));
2996 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2997 
2998 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2999 
3000 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3001 		mutex_enter(&vd->vdev_dtl_lock);
3002 		space_map_free(vd->vdev_dtl_sm, tx);
3003 		space_map_close(vd->vdev_dtl_sm);
3004 		vd->vdev_dtl_sm = NULL;
3005 		mutex_exit(&vd->vdev_dtl_lock);
3006 
3007 		/*
3008 		 * We only destroy the leaf ZAP for detached leaves or for
3009 		 * removed log devices. Removed data devices handle leaf ZAP
3010 		 * cleanup later, once cancellation is no longer possible.
3011 		 */
3012 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3013 		    vd->vdev_top->vdev_islog)) {
3014 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3015 			vd->vdev_leaf_zap = 0;
3016 		}
3017 
3018 		dmu_tx_commit(tx);
3019 		return;
3020 	}
3021 
3022 	if (vd->vdev_dtl_sm == NULL) {
3023 		uint64_t new_object;
3024 
3025 		new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3026 		VERIFY3U(new_object, !=, 0);
3027 
3028 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3029 		    0, -1ULL, 0));
3030 		ASSERT(vd->vdev_dtl_sm != NULL);
3031 	}
3032 
3033 	rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3034 
3035 	mutex_enter(&vd->vdev_dtl_lock);
3036 	range_tree_walk(rt, range_tree_add, rtsync);
3037 	mutex_exit(&vd->vdev_dtl_lock);
3038 
3039 	space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3040 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3041 	range_tree_vacate(rtsync, NULL, NULL);
3042 
3043 	range_tree_destroy(rtsync);
3044 
3045 	/*
3046 	 * If the object for the space map has changed then dirty
3047 	 * the top level so that we update the config.
3048 	 */
3049 	if (object != space_map_object(vd->vdev_dtl_sm)) {
3050 		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3051 		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
3052 		    (u_longlong_t)object,
3053 		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3054 		vdev_config_dirty(vd->vdev_top);
3055 	}
3056 
3057 	dmu_tx_commit(tx);
3058 }
3059 
3060 /*
3061  * Determine whether the specified vdev can be offlined/detached/removed
3062  * without losing data.
3063  */
3064 boolean_t
3065 vdev_dtl_required(vdev_t *vd)
3066 {
3067 	spa_t *spa = vd->vdev_spa;
3068 	vdev_t *tvd = vd->vdev_top;
3069 	uint8_t cant_read = vd->vdev_cant_read;
3070 	boolean_t required;
3071 
3072 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3073 
3074 	if (vd == spa->spa_root_vdev || vd == tvd)
3075 		return (B_TRUE);
3076 
3077 	/*
3078 	 * Temporarily mark the device as unreadable, and then determine
3079 	 * whether this results in any DTL outages in the top-level vdev.
3080 	 * If not, we can safely offline/detach/remove the device.
3081 	 */
3082 	vd->vdev_cant_read = B_TRUE;
3083 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3084 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3085 	vd->vdev_cant_read = cant_read;
3086 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3087 
3088 	if (!required && zio_injection_enabled) {
3089 		required = !!zio_handle_device_injection(vd, NULL,
3090 		    SET_ERROR(ECHILD));
3091 	}
3092 
3093 	return (required);
3094 }
3095 
3096 /*
3097  * Determine if resilver is needed, and if so the txg range.
3098  */
3099 boolean_t
3100 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3101 {
3102 	boolean_t needed = B_FALSE;
3103 	uint64_t thismin = UINT64_MAX;
3104 	uint64_t thismax = 0;
3105 
3106 	if (vd->vdev_children == 0) {
3107 		mutex_enter(&vd->vdev_dtl_lock);
3108 		if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3109 		    vdev_writeable(vd)) {
3110 
3111 			thismin = vdev_dtl_min(vd);
3112 			thismax = vdev_dtl_max(vd);
3113 			needed = B_TRUE;
3114 		}
3115 		mutex_exit(&vd->vdev_dtl_lock);
3116 	} else {
3117 		for (int c = 0; c < vd->vdev_children; c++) {
3118 			vdev_t *cvd = vd->vdev_child[c];
3119 			uint64_t cmin, cmax;
3120 
3121 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3122 				thismin = MIN(thismin, cmin);
3123 				thismax = MAX(thismax, cmax);
3124 				needed = B_TRUE;
3125 			}
3126 		}
3127 	}
3128 
3129 	if (needed && minp) {
3130 		*minp = thismin;
3131 		*maxp = thismax;
3132 	}
3133 	return (needed);
3134 }
3135 
3136 /*
3137  * Gets the checkpoint space map object from the vdev's ZAP.  On success sm_obj
3138  * will contain either the checkpoint spacemap object or zero if none exists.
3139  * All other errors are returned to the caller.
3140  */
3141 int
3142 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3143 {
3144 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3145 
3146 	if (vd->vdev_top_zap == 0) {
3147 		*sm_obj = 0;
3148 		return (0);
3149 	}
3150 
3151 	int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3152 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3153 	if (error == ENOENT) {
3154 		*sm_obj = 0;
3155 		error = 0;
3156 	}
3157 
3158 	return (error);
3159 }
3160 
3161 int
3162 vdev_load(vdev_t *vd)
3163 {
3164 	int error = 0;
3165 
3166 	/*
3167 	 * Recursively load all children.
3168 	 */
3169 	for (int c = 0; c < vd->vdev_children; c++) {
3170 		error = vdev_load(vd->vdev_child[c]);
3171 		if (error != 0) {
3172 			return (error);
3173 		}
3174 	}
3175 
3176 	vdev_set_deflate_ratio(vd);
3177 
3178 	/*
3179 	 * On spa_load path, grab the allocation bias from our zap
3180 	 */
3181 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3182 		spa_t *spa = vd->vdev_spa;
3183 		char bias_str[64];
3184 
3185 		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3186 		    VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3187 		    bias_str);
3188 		if (error == 0) {
3189 			ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3190 			vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3191 		} else if (error != ENOENT) {
3192 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3193 			    VDEV_AUX_CORRUPT_DATA);
3194 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3195 			    "failed [error=%d]", vd->vdev_top_zap, error);
3196 			return (error);
3197 		}
3198 	}
3199 
3200 	/*
3201 	 * Load any rebuild state from the top-level vdev zap.
3202 	 */
3203 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3204 		error = vdev_rebuild_load(vd);
3205 		if (error && error != ENOTSUP) {
3206 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3207 			    VDEV_AUX_CORRUPT_DATA);
3208 			vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3209 			    "failed [error=%d]", error);
3210 			return (error);
3211 		}
3212 	}
3213 
3214 	/*
3215 	 * If this is a top-level vdev, initialize its metaslabs.
3216 	 */
3217 	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3218 		vdev_metaslab_group_create(vd);
3219 
3220 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3221 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3222 			    VDEV_AUX_CORRUPT_DATA);
3223 			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3224 			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3225 			    (u_longlong_t)vd->vdev_asize);
3226 			return (SET_ERROR(ENXIO));
3227 		}
3228 
3229 		error = vdev_metaslab_init(vd, 0);
3230 		if (error != 0) {
3231 			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3232 			    "[error=%d]", error);
3233 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3234 			    VDEV_AUX_CORRUPT_DATA);
3235 			return (error);
3236 		}
3237 
3238 		uint64_t checkpoint_sm_obj;
3239 		error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3240 		if (error == 0 && checkpoint_sm_obj != 0) {
3241 			objset_t *mos = spa_meta_objset(vd->vdev_spa);
3242 			ASSERT(vd->vdev_asize != 0);
3243 			ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3244 
3245 			error = space_map_open(&vd->vdev_checkpoint_sm,
3246 			    mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3247 			    vd->vdev_ashift);
3248 			if (error != 0) {
3249 				vdev_dbgmsg(vd, "vdev_load: space_map_open "
3250 				    "failed for checkpoint spacemap (obj %llu) "
3251 				    "[error=%d]",
3252 				    (u_longlong_t)checkpoint_sm_obj, error);
3253 				return (error);
3254 			}
3255 			ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3256 
3257 			/*
3258 			 * Since the checkpoint_sm contains free entries
3259 			 * exclusively we can use space_map_allocated() to
3260 			 * indicate the cumulative checkpointed space that
3261 			 * has been freed.
3262 			 */
3263 			vd->vdev_stat.vs_checkpoint_space =
3264 			    -space_map_allocated(vd->vdev_checkpoint_sm);
3265 			vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3266 			    vd->vdev_stat.vs_checkpoint_space;
3267 		} else if (error != 0) {
3268 			vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3269 			    "checkpoint space map object from vdev ZAP "
3270 			    "[error=%d]", error);
3271 			return (error);
3272 		}
3273 	}
3274 
3275 	/*
3276 	 * If this is a leaf vdev, load its DTL.
3277 	 */
3278 	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3279 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3280 		    VDEV_AUX_CORRUPT_DATA);
3281 		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3282 		    "[error=%d]", error);
3283 		return (error);
3284 	}
3285 
3286 	uint64_t obsolete_sm_object;
3287 	error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3288 	if (error == 0 && obsolete_sm_object != 0) {
3289 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
3290 		ASSERT(vd->vdev_asize != 0);
3291 		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3292 
3293 		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3294 		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3295 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3296 			    VDEV_AUX_CORRUPT_DATA);
3297 			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3298 			    "obsolete spacemap (obj %llu) [error=%d]",
3299 			    (u_longlong_t)obsolete_sm_object, error);
3300 			return (error);
3301 		}
3302 	} else if (error != 0) {
3303 		vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3304 		    "space map object from vdev ZAP [error=%d]", error);
3305 		return (error);
3306 	}
3307 
3308 	return (0);
3309 }
3310 
3311 /*
3312  * The special vdev case is used for hot spares and l2cache devices.  Its
3313  * sole purpose it to set the vdev state for the associated vdev.  To do this,
3314  * we make sure that we can open the underlying device, then try to read the
3315  * label, and make sure that the label is sane and that it hasn't been
3316  * repurposed to another pool.
3317  */
3318 int
3319 vdev_validate_aux(vdev_t *vd)
3320 {
3321 	nvlist_t *label;
3322 	uint64_t guid, version;
3323 	uint64_t state;
3324 
3325 	if (!vdev_readable(vd))
3326 		return (0);
3327 
3328 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3329 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3330 		    VDEV_AUX_CORRUPT_DATA);
3331 		return (-1);
3332 	}
3333 
3334 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3335 	    !SPA_VERSION_IS_SUPPORTED(version) ||
3336 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3337 	    guid != vd->vdev_guid ||
3338 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3339 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3340 		    VDEV_AUX_CORRUPT_DATA);
3341 		nvlist_free(label);
3342 		return (-1);
3343 	}
3344 
3345 	/*
3346 	 * We don't actually check the pool state here.  If it's in fact in
3347 	 * use by another pool, we update this fact on the fly when requested.
3348 	 */
3349 	nvlist_free(label);
3350 	return (0);
3351 }
3352 
3353 static void
3354 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3355 {
3356 	objset_t *mos = spa_meta_objset(vd->vdev_spa);
3357 
3358 	if (vd->vdev_top_zap == 0)
3359 		return;
3360 
3361 	uint64_t object = 0;
3362 	int err = zap_lookup(mos, vd->vdev_top_zap,
3363 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3364 	if (err == ENOENT)
3365 		return;
3366 	VERIFY0(err);
3367 
3368 	VERIFY0(dmu_object_free(mos, object, tx));
3369 	VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3370 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3371 }
3372 
3373 /*
3374  * Free the objects used to store this vdev's spacemaps, and the array
3375  * that points to them.
3376  */
3377 void
3378 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3379 {
3380 	if (vd->vdev_ms_array == 0)
3381 		return;
3382 
3383 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
3384 	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3385 	size_t array_bytes = array_count * sizeof (uint64_t);
3386 	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3387 	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3388 	    array_bytes, smobj_array, 0));
3389 
3390 	for (uint64_t i = 0; i < array_count; i++) {
3391 		uint64_t smobj = smobj_array[i];
3392 		if (smobj == 0)
3393 			continue;
3394 
3395 		space_map_free_obj(mos, smobj, tx);
3396 	}
3397 
3398 	kmem_free(smobj_array, array_bytes);
3399 	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3400 	vdev_destroy_ms_flush_data(vd, tx);
3401 	vd->vdev_ms_array = 0;
3402 }
3403 
3404 static void
3405 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3406 {
3407 	spa_t *spa = vd->vdev_spa;
3408 
3409 	ASSERT(vd->vdev_islog);
3410 	ASSERT(vd == vd->vdev_top);
3411 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
3412 
3413 	dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3414 
3415 	vdev_destroy_spacemaps(vd, tx);
3416 	if (vd->vdev_top_zap != 0) {
3417 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3418 		vd->vdev_top_zap = 0;
3419 	}
3420 
3421 	dmu_tx_commit(tx);
3422 }
3423 
3424 void
3425 vdev_sync_done(vdev_t *vd, uint64_t txg)
3426 {
3427 	metaslab_t *msp;
3428 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3429 
3430 	ASSERT(vdev_is_concrete(vd));
3431 
3432 	while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3433 	    != NULL)
3434 		metaslab_sync_done(msp, txg);
3435 
3436 	if (reassess)
3437 		metaslab_sync_reassess(vd->vdev_mg);
3438 }
3439 
3440 void
3441 vdev_sync(vdev_t *vd, uint64_t txg)
3442 {
3443 	spa_t *spa = vd->vdev_spa;
3444 	vdev_t *lvd;
3445 	metaslab_t *msp;
3446 
3447 	ASSERT3U(txg, ==, spa->spa_syncing_txg);
3448 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3449 	if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3450 		ASSERT(vd->vdev_removing ||
3451 		    vd->vdev_ops == &vdev_indirect_ops);
3452 
3453 		vdev_indirect_sync_obsolete(vd, tx);
3454 
3455 		/*
3456 		 * If the vdev is indirect, it can't have dirty
3457 		 * metaslabs or DTLs.
3458 		 */
3459 		if (vd->vdev_ops == &vdev_indirect_ops) {
3460 			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3461 			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3462 			dmu_tx_commit(tx);
3463 			return;
3464 		}
3465 	}
3466 
3467 	ASSERT(vdev_is_concrete(vd));
3468 
3469 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3470 	    !vd->vdev_removing) {
3471 		ASSERT(vd == vd->vdev_top);
3472 		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3473 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3474 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3475 		ASSERT(vd->vdev_ms_array != 0);
3476 		vdev_config_dirty(vd);
3477 	}
3478 
3479 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3480 		metaslab_sync(msp, txg);
3481 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3482 	}
3483 
3484 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3485 		vdev_dtl_sync(lvd, txg);
3486 
3487 	/*
3488 	 * If this is an empty log device being removed, destroy the
3489 	 * metadata associated with it.
3490 	 */
3491 	if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3492 		vdev_remove_empty_log(vd, txg);
3493 
3494 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3495 	dmu_tx_commit(tx);
3496 }
3497 
3498 uint64_t
3499 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3500 {
3501 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
3502 }
3503 
3504 /*
3505  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
3506  * not be opened, and no I/O is attempted.
3507  */
3508 int
3509 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3510 {
3511 	vdev_t *vd, *tvd;
3512 
3513 	spa_vdev_state_enter(spa, SCL_NONE);
3514 
3515 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3516 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3517 
3518 	if (!vd->vdev_ops->vdev_op_leaf)
3519 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3520 
3521 	tvd = vd->vdev_top;
3522 
3523 	/*
3524 	 * If user did a 'zpool offline -f' then make the fault persist across
3525 	 * reboots.
3526 	 */
3527 	if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
3528 		/*
3529 		 * There are two kinds of forced faults: temporary and
3530 		 * persistent.  Temporary faults go away at pool import, while
3531 		 * persistent faults stay set.  Both types of faults can be
3532 		 * cleared with a zpool clear.
3533 		 *
3534 		 * We tell if a vdev is persistently faulted by looking at the
3535 		 * ZPOOL_CONFIG_AUX_STATE nvpair.  If it's set to "external" at
3536 		 * import then it's a persistent fault.  Otherwise, it's
3537 		 * temporary.  We get ZPOOL_CONFIG_AUX_STATE set to "external"
3538 		 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL.  This
3539 		 * tells vdev_config_generate() (which gets run later) to set
3540 		 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
3541 		 */
3542 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
3543 		vd->vdev_tmpoffline = B_FALSE;
3544 		aux = VDEV_AUX_EXTERNAL;
3545 	} else {
3546 		vd->vdev_tmpoffline = B_TRUE;
3547 	}
3548 
3549 	/*
3550 	 * We don't directly use the aux state here, but if we do a
3551 	 * vdev_reopen(), we need this value to be present to remember why we
3552 	 * were faulted.
3553 	 */
3554 	vd->vdev_label_aux = aux;
3555 
3556 	/*
3557 	 * Faulted state takes precedence over degraded.
3558 	 */
3559 	vd->vdev_delayed_close = B_FALSE;
3560 	vd->vdev_faulted = 1ULL;
3561 	vd->vdev_degraded = 0ULL;
3562 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3563 
3564 	/*
3565 	 * If this device has the only valid copy of the data, then
3566 	 * back off and simply mark the vdev as degraded instead.
3567 	 */
3568 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3569 		vd->vdev_degraded = 1ULL;
3570 		vd->vdev_faulted = 0ULL;
3571 
3572 		/*
3573 		 * If we reopen the device and it's not dead, only then do we
3574 		 * mark it degraded.
3575 		 */
3576 		vdev_reopen(tvd);
3577 
3578 		if (vdev_readable(vd))
3579 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3580 	}
3581 
3582 	return (spa_vdev_state_exit(spa, vd, 0));
3583 }
3584 
3585 /*
3586  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
3587  * user that something is wrong.  The vdev continues to operate as normal as far
3588  * as I/O is concerned.
3589  */
3590 int
3591 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3592 {
3593 	vdev_t *vd;
3594 
3595 	spa_vdev_state_enter(spa, SCL_NONE);
3596 
3597 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3598 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3599 
3600 	if (!vd->vdev_ops->vdev_op_leaf)
3601 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3602 
3603 	/*
3604 	 * If the vdev is already faulted, then don't do anything.
3605 	 */
3606 	if (vd->vdev_faulted || vd->vdev_degraded)
3607 		return (spa_vdev_state_exit(spa, NULL, 0));
3608 
3609 	vd->vdev_degraded = 1ULL;
3610 	if (!vdev_is_dead(vd))
3611 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3612 		    aux);
3613 
3614 	return (spa_vdev_state_exit(spa, vd, 0));
3615 }
3616 
3617 /*
3618  * Online the given vdev.
3619  *
3620  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
3621  * spare device should be detached when the device finishes resilvering.
3622  * Second, the online should be treated like a 'test' online case, so no FMA
3623  * events are generated if the device fails to open.
3624  */
3625 int
3626 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3627 {
3628 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3629 	boolean_t wasoffline;
3630 	vdev_state_t oldstate;
3631 
3632 	spa_vdev_state_enter(spa, SCL_NONE);
3633 
3634 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3635 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3636 
3637 	if (!vd->vdev_ops->vdev_op_leaf)
3638 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3639 
3640 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3641 	oldstate = vd->vdev_state;
3642 
3643 	tvd = vd->vdev_top;
3644 	vd->vdev_offline = B_FALSE;
3645 	vd->vdev_tmpoffline = B_FALSE;
3646 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3647 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3648 
3649 	/* XXX - L2ARC 1.0 does not support expansion */
3650 	if (!vd->vdev_aux) {
3651 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3652 			pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
3653 			    spa->spa_autoexpand);
3654 		vd->vdev_expansion_time = gethrestime_sec();
3655 	}
3656 
3657 	vdev_reopen(tvd);
3658 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3659 
3660 	if (!vd->vdev_aux) {
3661 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3662 			pvd->vdev_expanding = B_FALSE;
3663 	}
3664 
3665 	if (newstate)
3666 		*newstate = vd->vdev_state;
3667 	if ((flags & ZFS_ONLINE_UNSPARE) &&
3668 	    !vdev_is_dead(vd) && vd->vdev_parent &&
3669 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3670 	    vd->vdev_parent->vdev_child[0] == vd)
3671 		vd->vdev_unspare = B_TRUE;
3672 
3673 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3674 
3675 		/* XXX - L2ARC 1.0 does not support expansion */
3676 		if (vd->vdev_aux)
3677 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3678 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3679 	}
3680 
3681 	/* Restart initializing if necessary */
3682 	mutex_enter(&vd->vdev_initialize_lock);
3683 	if (vdev_writeable(vd) &&
3684 	    vd->vdev_initialize_thread == NULL &&
3685 	    vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3686 		(void) vdev_initialize(vd);
3687 	}
3688 	mutex_exit(&vd->vdev_initialize_lock);
3689 
3690 	/*
3691 	 * Restart trimming if necessary. We do not restart trimming for cache
3692 	 * devices here. This is triggered by l2arc_rebuild_vdev()
3693 	 * asynchronously for the whole device or in l2arc_evict() as it evicts
3694 	 * space for upcoming writes.
3695 	 */
3696 	mutex_enter(&vd->vdev_trim_lock);
3697 	if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
3698 	    vd->vdev_trim_thread == NULL &&
3699 	    vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
3700 		(void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
3701 		    vd->vdev_trim_secure);
3702 	}
3703 	mutex_exit(&vd->vdev_trim_lock);
3704 
3705 	if (wasoffline ||
3706 	    (oldstate < VDEV_STATE_DEGRADED &&
3707 	    vd->vdev_state >= VDEV_STATE_DEGRADED))
3708 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3709 
3710 	return (spa_vdev_state_exit(spa, vd, 0));
3711 }
3712 
3713 static int
3714 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3715 {
3716 	vdev_t *vd, *tvd;
3717 	int error = 0;
3718 	uint64_t generation;
3719 	metaslab_group_t *mg;
3720 
3721 top:
3722 	spa_vdev_state_enter(spa, SCL_ALLOC);
3723 
3724 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3725 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3726 
3727 	if (!vd->vdev_ops->vdev_op_leaf)
3728 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3729 
3730 	tvd = vd->vdev_top;
3731 	mg = tvd->vdev_mg;
3732 	generation = spa->spa_config_generation + 1;
3733 
3734 	/*
3735 	 * If the device isn't already offline, try to offline it.
3736 	 */
3737 	if (!vd->vdev_offline) {
3738 		/*
3739 		 * If this device has the only valid copy of some data,
3740 		 * don't allow it to be offlined. Log devices are always
3741 		 * expendable.
3742 		 */
3743 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3744 		    vdev_dtl_required(vd))
3745 			return (spa_vdev_state_exit(spa, NULL,
3746 			    SET_ERROR(EBUSY)));
3747 
3748 		/*
3749 		 * If the top-level is a slog and it has had allocations
3750 		 * then proceed.  We check that the vdev's metaslab group
3751 		 * is not NULL since it's possible that we may have just
3752 		 * added this vdev but not yet initialized its metaslabs.
3753 		 */
3754 		if (tvd->vdev_islog && mg != NULL) {
3755 			/*
3756 			 * Prevent any future allocations.
3757 			 */
3758 			metaslab_group_passivate(mg);
3759 			(void) spa_vdev_state_exit(spa, vd, 0);
3760 
3761 			error = spa_reset_logs(spa);
3762 
3763 			/*
3764 			 * If the log device was successfully reset but has
3765 			 * checkpointed data, do not offline it.
3766 			 */
3767 			if (error == 0 &&
3768 			    tvd->vdev_checkpoint_sm != NULL) {
3769 				ASSERT3U(space_map_allocated(
3770 				    tvd->vdev_checkpoint_sm), !=, 0);
3771 				error = ZFS_ERR_CHECKPOINT_EXISTS;
3772 			}
3773 
3774 			spa_vdev_state_enter(spa, SCL_ALLOC);
3775 
3776 			/*
3777 			 * Check to see if the config has changed.
3778 			 */
3779 			if (error || generation != spa->spa_config_generation) {
3780 				metaslab_group_activate(mg);
3781 				if (error)
3782 					return (spa_vdev_state_exit(spa,
3783 					    vd, error));
3784 				(void) spa_vdev_state_exit(spa, vd, 0);
3785 				goto top;
3786 			}
3787 			ASSERT0(tvd->vdev_stat.vs_alloc);
3788 		}
3789 
3790 		/*
3791 		 * Offline this device and reopen its top-level vdev.
3792 		 * If the top-level vdev is a log device then just offline
3793 		 * it. Otherwise, if this action results in the top-level
3794 		 * vdev becoming unusable, undo it and fail the request.
3795 		 */
3796 		vd->vdev_offline = B_TRUE;
3797 		vdev_reopen(tvd);
3798 
3799 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3800 		    vdev_is_dead(tvd)) {
3801 			vd->vdev_offline = B_FALSE;
3802 			vdev_reopen(tvd);
3803 			return (spa_vdev_state_exit(spa, NULL,
3804 			    SET_ERROR(EBUSY)));
3805 		}
3806 
3807 		/*
3808 		 * Add the device back into the metaslab rotor so that
3809 		 * once we online the device it's open for business.
3810 		 */
3811 		if (tvd->vdev_islog && mg != NULL)
3812 			metaslab_group_activate(mg);
3813 	}
3814 
3815 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3816 
3817 	return (spa_vdev_state_exit(spa, vd, 0));
3818 }
3819 
3820 int
3821 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3822 {
3823 	int error;
3824 
3825 	mutex_enter(&spa->spa_vdev_top_lock);
3826 	error = vdev_offline_locked(spa, guid, flags);
3827 	mutex_exit(&spa->spa_vdev_top_lock);
3828 
3829 	return (error);
3830 }
3831 
3832 /*
3833  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
3834  * vdev_offline(), we assume the spa config is locked.  We also clear all
3835  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
3836  */
3837 void
3838 vdev_clear(spa_t *spa, vdev_t *vd)
3839 {
3840 	vdev_t *rvd = spa->spa_root_vdev;
3841 
3842 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3843 
3844 	if (vd == NULL)
3845 		vd = rvd;
3846 
3847 	vd->vdev_stat.vs_read_errors = 0;
3848 	vd->vdev_stat.vs_write_errors = 0;
3849 	vd->vdev_stat.vs_checksum_errors = 0;
3850 	vd->vdev_stat.vs_slow_ios = 0;
3851 
3852 	for (int c = 0; c < vd->vdev_children; c++)
3853 		vdev_clear(spa, vd->vdev_child[c]);
3854 
3855 	/*
3856 	 * It makes no sense to "clear" an indirect vdev.
3857 	 */
3858 	if (!vdev_is_concrete(vd))
3859 		return;
3860 
3861 	/*
3862 	 * If we're in the FAULTED state or have experienced failed I/O, then
3863 	 * clear the persistent state and attempt to reopen the device.  We
3864 	 * also mark the vdev config dirty, so that the new faulted state is
3865 	 * written out to disk.
3866 	 */
3867 	if (vd->vdev_faulted || vd->vdev_degraded ||
3868 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
3869 		/*
3870 		 * When reopening in response to a clear event, it may be due to
3871 		 * a fmadm repair request.  In this case, if the device is
3872 		 * still broken, we want to still post the ereport again.
3873 		 */
3874 		vd->vdev_forcefault = B_TRUE;
3875 
3876 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3877 		vd->vdev_cant_read = B_FALSE;
3878 		vd->vdev_cant_write = B_FALSE;
3879 		vd->vdev_stat.vs_aux = 0;
3880 
3881 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3882 
3883 		vd->vdev_forcefault = B_FALSE;
3884 
3885 		if (vd != rvd && vdev_writeable(vd->vdev_top))
3886 			vdev_state_dirty(vd->vdev_top);
3887 
3888 		/* If a resilver isn't required, check if vdevs can be culled */
3889 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
3890 		    !dsl_scan_resilvering(spa->spa_dsl_pool) &&
3891 		    !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
3892 			spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3893 
3894 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3895 	}
3896 
3897 	/*
3898 	 * When clearing a FMA-diagnosed fault, we always want to
3899 	 * unspare the device, as we assume that the original spare was
3900 	 * done in response to the FMA fault.
3901 	 */
3902 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3903 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3904 	    vd->vdev_parent->vdev_child[0] == vd)
3905 		vd->vdev_unspare = B_TRUE;
3906 }
3907 
3908 boolean_t
3909 vdev_is_dead(vdev_t *vd)
3910 {
3911 	/*
3912 	 * Holes and missing devices are always considered "dead".
3913 	 * This simplifies the code since we don't have to check for
3914 	 * these types of devices in the various code paths.
3915 	 * Instead we rely on the fact that we skip over dead devices
3916 	 * before issuing I/O to them.
3917 	 */
3918 	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3919 	    vd->vdev_ops == &vdev_hole_ops ||
3920 	    vd->vdev_ops == &vdev_missing_ops);
3921 }
3922 
3923 boolean_t
3924 vdev_readable(vdev_t *vd)
3925 {
3926 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3927 }
3928 
3929 boolean_t
3930 vdev_writeable(vdev_t *vd)
3931 {
3932 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3933 	    vdev_is_concrete(vd));
3934 }
3935 
3936 boolean_t
3937 vdev_allocatable(vdev_t *vd)
3938 {
3939 	uint64_t state = vd->vdev_state;
3940 
3941 	/*
3942 	 * We currently allow allocations from vdevs which may be in the
3943 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3944 	 * fails to reopen then we'll catch it later when we're holding
3945 	 * the proper locks.  Note that we have to get the vdev state
3946 	 * in a local variable because although it changes atomically,
3947 	 * we're asking two separate questions about it.
3948 	 */
3949 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3950 	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3951 	    vd->vdev_mg->mg_initialized);
3952 }
3953 
3954 boolean_t
3955 vdev_accessible(vdev_t *vd, zio_t *zio)
3956 {
3957 	ASSERT(zio->io_vd == vd);
3958 
3959 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3960 		return (B_FALSE);
3961 
3962 	if (zio->io_type == ZIO_TYPE_READ)
3963 		return (!vd->vdev_cant_read);
3964 
3965 	if (zio->io_type == ZIO_TYPE_WRITE)
3966 		return (!vd->vdev_cant_write);
3967 
3968 	return (B_TRUE);
3969 }
3970 
3971 static void
3972 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
3973 {
3974 	for (int t = 0; t < VS_ZIO_TYPES; t++) {
3975 		vs->vs_ops[t] += cvs->vs_ops[t];
3976 		vs->vs_bytes[t] += cvs->vs_bytes[t];
3977 	}
3978 
3979 	cvs->vs_scan_removing = cvd->vdev_removing;
3980 }
3981 
3982 /*
3983  * Get extended stats
3984  */
3985 static void
3986 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
3987 {
3988 	int t, b;
3989 	for (t = 0; t < ZIO_TYPES; t++) {
3990 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
3991 			vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
3992 
3993 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
3994 			vsx->vsx_total_histo[t][b] +=
3995 			    cvsx->vsx_total_histo[t][b];
3996 		}
3997 	}
3998 
3999 	for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4000 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4001 			vsx->vsx_queue_histo[t][b] +=
4002 			    cvsx->vsx_queue_histo[t][b];
4003 		}
4004 		vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4005 		vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4006 
4007 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4008 			vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4009 
4010 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4011 			vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4012 	}
4013 
4014 }
4015 
4016 boolean_t
4017 vdev_is_spacemap_addressable(vdev_t *vd)
4018 {
4019 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4020 		return (B_TRUE);
4021 
4022 	/*
4023 	 * If double-word space map entries are not enabled we assume
4024 	 * 47 bits of the space map entry are dedicated to the entry's
4025 	 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4026 	 * to calculate the maximum address that can be described by a
4027 	 * space map entry for the given device.
4028 	 */
4029 	uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4030 
4031 	if (shift >= 63) /* detect potential overflow */
4032 		return (B_TRUE);
4033 
4034 	return (vd->vdev_asize < (1ULL << shift));
4035 }
4036 
4037 /*
4038  * Get statistics for the given vdev.
4039  */
4040 static void
4041 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4042 {
4043 	int t;
4044 	/*
4045 	 * If we're getting stats on the root vdev, aggregate the I/O counts
4046 	 * over all top-level vdevs (i.e. the direct children of the root).
4047 	 */
4048 	if (!vd->vdev_ops->vdev_op_leaf) {
4049 		if (vs) {
4050 			memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4051 			memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4052 		}
4053 		if (vsx)
4054 			memset(vsx, 0, sizeof (*vsx));
4055 
4056 		for (int c = 0; c < vd->vdev_children; c++) {
4057 			vdev_t *cvd = vd->vdev_child[c];
4058 			vdev_stat_t *cvs = &cvd->vdev_stat;
4059 			vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4060 
4061 			vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4062 			if (vs)
4063 				vdev_get_child_stat(cvd, vs, cvs);
4064 			if (vsx)
4065 				vdev_get_child_stat_ex(cvd, vsx, cvsx);
4066 
4067 		}
4068 	} else {
4069 		/*
4070 		 * We're a leaf.  Just copy our ZIO active queue stats in.  The
4071 		 * other leaf stats are updated in vdev_stat_update().
4072 		 */
4073 		if (!vsx)
4074 			return;
4075 
4076 		memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4077 
4078 		for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
4079 			vsx->vsx_active_queue[t] =
4080 			    vd->vdev_queue.vq_class[t].vqc_active;
4081 			vsx->vsx_pend_queue[t] = avl_numnodes(
4082 			    &vd->vdev_queue.vq_class[t].vqc_queued_tree);
4083 		}
4084 	}
4085 }
4086 
4087 void
4088 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4089 {
4090 	vdev_t *tvd = vd->vdev_top;
4091 	mutex_enter(&vd->vdev_stat_lock);
4092 	if (vs) {
4093 		bcopy(&vd->vdev_stat, vs, sizeof (*vs));
4094 		vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4095 		vs->vs_state = vd->vdev_state;
4096 		vs->vs_rsize = vdev_get_min_asize(vd);
4097 
4098 		if (vd->vdev_ops->vdev_op_leaf) {
4099 			vs->vs_rsize += VDEV_LABEL_START_SIZE +
4100 			    VDEV_LABEL_END_SIZE;
4101 			/*
4102 			 * Report initializing progress. Since we don't
4103 			 * have the initializing locks held, this is only
4104 			 * an estimate (although a fairly accurate one).
4105 			 */
4106 			vs->vs_initialize_bytes_done =
4107 			    vd->vdev_initialize_bytes_done;
4108 			vs->vs_initialize_bytes_est =
4109 			    vd->vdev_initialize_bytes_est;
4110 			vs->vs_initialize_state = vd->vdev_initialize_state;
4111 			vs->vs_initialize_action_time =
4112 			    vd->vdev_initialize_action_time;
4113 
4114 			/*
4115 			 * Report manual TRIM progress. Since we don't have
4116 			 * the manual TRIM locks held, this is only an
4117 			 * estimate (although fairly accurate one).
4118 			 */
4119 			vs->vs_trim_notsup = !vd->vdev_has_trim;
4120 			vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4121 			vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4122 			vs->vs_trim_state = vd->vdev_trim_state;
4123 			vs->vs_trim_action_time = vd->vdev_trim_action_time;
4124 
4125 			/* Set when there is a deferred resilver. */
4126 			vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4127 		}
4128 
4129 		/*
4130 		 * Report expandable space on top-level, non-auxiliary devices
4131 		 * only. The expandable space is reported in terms of metaslab
4132 		 * sized units since that determines how much space the pool
4133 		 * can expand.
4134 		 */
4135 		if (vd->vdev_aux == NULL && tvd != NULL) {
4136 			vs->vs_esize = P2ALIGN(
4137 			    vd->vdev_max_asize - vd->vdev_asize,
4138 			    1ULL << tvd->vdev_ms_shift);
4139 		}
4140 
4141 		vs->vs_configured_ashift = vd->vdev_top != NULL
4142 		    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4143 		vs->vs_logical_ashift = vd->vdev_logical_ashift;
4144 		vs->vs_physical_ashift = vd->vdev_physical_ashift;
4145 
4146 		/*
4147 		 * Report fragmentation and rebuild progress for top-level,
4148 		 * non-auxiliary, concrete devices.
4149 		 */
4150 		if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4151 		    vdev_is_concrete(vd)) {
4152 			vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4153 			    vd->vdev_mg->mg_fragmentation : 0;
4154 		}
4155 	}
4156 
4157 	vdev_get_stats_ex_impl(vd, vs, vsx);
4158 	mutex_exit(&vd->vdev_stat_lock);
4159 }
4160 
4161 void
4162 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4163 {
4164 	return (vdev_get_stats_ex(vd, vs, NULL));
4165 }
4166 
4167 void
4168 vdev_clear_stats(vdev_t *vd)
4169 {
4170 	mutex_enter(&vd->vdev_stat_lock);
4171 	vd->vdev_stat.vs_space = 0;
4172 	vd->vdev_stat.vs_dspace = 0;
4173 	vd->vdev_stat.vs_alloc = 0;
4174 	mutex_exit(&vd->vdev_stat_lock);
4175 }
4176 
4177 void
4178 vdev_scan_stat_init(vdev_t *vd)
4179 {
4180 	vdev_stat_t *vs = &vd->vdev_stat;
4181 
4182 	for (int c = 0; c < vd->vdev_children; c++)
4183 		vdev_scan_stat_init(vd->vdev_child[c]);
4184 
4185 	mutex_enter(&vd->vdev_stat_lock);
4186 	vs->vs_scan_processed = 0;
4187 	mutex_exit(&vd->vdev_stat_lock);
4188 }
4189 
4190 void
4191 vdev_stat_update(zio_t *zio, uint64_t psize)
4192 {
4193 	spa_t *spa = zio->io_spa;
4194 	vdev_t *rvd = spa->spa_root_vdev;
4195 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4196 	vdev_t *pvd;
4197 	uint64_t txg = zio->io_txg;
4198 	vdev_stat_t *vs = &vd->vdev_stat;
4199 	vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
4200 	zio_type_t type = zio->io_type;
4201 	int flags = zio->io_flags;
4202 
4203 	/*
4204 	 * If this i/o is a gang leader, it didn't do any actual work.
4205 	 */
4206 	if (zio->io_gang_tree)
4207 		return;
4208 
4209 	if (zio->io_error == 0) {
4210 		/*
4211 		 * If this is a root i/o, don't count it -- we've already
4212 		 * counted the top-level vdevs, and vdev_get_stats() will
4213 		 * aggregate them when asked.  This reduces contention on
4214 		 * the root vdev_stat_lock and implicitly handles blocks
4215 		 * that compress away to holes, for which there is no i/o.
4216 		 * (Holes never create vdev children, so all the counters
4217 		 * remain zero, which is what we want.)
4218 		 *
4219 		 * Note: this only applies to successful i/o (io_error == 0)
4220 		 * because unlike i/o counts, errors are not additive.
4221 		 * When reading a ditto block, for example, failure of
4222 		 * one top-level vdev does not imply a root-level error.
4223 		 */
4224 		if (vd == rvd)
4225 			return;
4226 
4227 		ASSERT(vd == zio->io_vd);
4228 
4229 		if (flags & ZIO_FLAG_IO_BYPASS)
4230 			return;
4231 
4232 		mutex_enter(&vd->vdev_stat_lock);
4233 
4234 		if (flags & ZIO_FLAG_IO_REPAIR) {
4235 			/*
4236 			 * Repair is the result of a resilver issued by the
4237 			 * scan thread (spa_sync).
4238 			 */
4239 			if (flags & ZIO_FLAG_SCAN_THREAD) {
4240 				dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
4241 				dsl_scan_phys_t *scn_phys = &scn->scn_phys;
4242 				uint64_t *processed = &scn_phys->scn_processed;
4243 
4244 				if (vd->vdev_ops->vdev_op_leaf)
4245 					atomic_add_64(processed, psize);
4246 				vs->vs_scan_processed += psize;
4247 			}
4248 
4249 			/*
4250 			 * Repair is the result of a rebuild issued by the
4251 			 * rebuild thread (vdev_rebuild_thread).
4252 			 */
4253 			if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
4254 				vdev_t *tvd = vd->vdev_top;
4255 				vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
4256 				vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
4257 				uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
4258 
4259 				if (vd->vdev_ops->vdev_op_leaf)
4260 					atomic_add_64(rebuilt, psize);
4261 				vs->vs_rebuild_processed += psize;
4262 			}
4263 
4264 			if (flags & ZIO_FLAG_SELF_HEAL)
4265 				vs->vs_self_healed += psize;
4266 		}
4267 
4268 		/*
4269 		 * The bytes/ops/histograms are recorded at the leaf level and
4270 		 * aggregated into the higher level vdevs in vdev_get_stats().
4271 		 */
4272 		if (vd->vdev_ops->vdev_op_leaf &&
4273 		    (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4274 			zio_type_t vs_type = type;
4275 			zio_priority_t priority = zio->io_priority;
4276 
4277 			/*
4278 			 * TRIM ops and bytes are reported to user space as
4279 			 * ZIO_TYPE_IOCTL.  This is done to preserve the
4280 			 * vdev_stat_t structure layout for user space.
4281 			 */
4282 			if (type == ZIO_TYPE_TRIM)
4283 				vs_type = ZIO_TYPE_IOCTL;
4284 
4285 			/*
4286 			 * Solely for the purposes of 'zpool iostat -lqrw'
4287 			 * reporting use the priority to catagorize the IO.
4288 			 * Only the following are reported to user space:
4289 			 *
4290 			 *   ZIO_PRIORITY_SYNC_READ,
4291 			 *   ZIO_PRIORITY_SYNC_WRITE,
4292 			 *   ZIO_PRIORITY_ASYNC_READ,
4293 			 *   ZIO_PRIORITY_ASYNC_WRITE,
4294 			 *   ZIO_PRIORITY_SCRUB,
4295 			 *   ZIO_PRIORITY_TRIM.
4296 			 */
4297 			if (priority == ZIO_PRIORITY_REBUILD) {
4298 				priority = ((type == ZIO_TYPE_WRITE) ?
4299 				    ZIO_PRIORITY_ASYNC_WRITE :
4300 				    ZIO_PRIORITY_SCRUB);
4301 			} else if (priority == ZIO_PRIORITY_INITIALIZING) {
4302 				ASSERT3U(type, ==, ZIO_TYPE_WRITE);
4303 				priority = ZIO_PRIORITY_ASYNC_WRITE;
4304 			} else if (priority == ZIO_PRIORITY_REMOVAL) {
4305 				priority = ((type == ZIO_TYPE_WRITE) ?
4306 				    ZIO_PRIORITY_ASYNC_WRITE :
4307 				    ZIO_PRIORITY_ASYNC_READ);
4308 			}
4309 
4310 			vs->vs_ops[vs_type]++;
4311 			vs->vs_bytes[vs_type] += psize;
4312 
4313 			if (flags & ZIO_FLAG_DELEGATED) {
4314 				vsx->vsx_agg_histo[priority]
4315 				    [RQ_HISTO(zio->io_size)]++;
4316 			} else {
4317 				vsx->vsx_ind_histo[priority]
4318 				    [RQ_HISTO(zio->io_size)]++;
4319 			}
4320 
4321 			if (zio->io_delta && zio->io_delay) {
4322 				vsx->vsx_queue_histo[priority]
4323 				    [L_HISTO(zio->io_delta - zio->io_delay)]++;
4324 				vsx->vsx_disk_histo[type]
4325 				    [L_HISTO(zio->io_delay)]++;
4326 				vsx->vsx_total_histo[type]
4327 				    [L_HISTO(zio->io_delta)]++;
4328 			}
4329 		}
4330 
4331 		mutex_exit(&vd->vdev_stat_lock);
4332 		return;
4333 	}
4334 
4335 	if (flags & ZIO_FLAG_SPECULATIVE)
4336 		return;
4337 
4338 	/*
4339 	 * If this is an I/O error that is going to be retried, then ignore the
4340 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
4341 	 * hard errors, when in reality they can happen for any number of
4342 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
4343 	 */
4344 	if (zio->io_error == EIO &&
4345 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
4346 		return;
4347 
4348 	/*
4349 	 * Intent logs writes won't propagate their error to the root
4350 	 * I/O so don't mark these types of failures as pool-level
4351 	 * errors.
4352 	 */
4353 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
4354 		return;
4355 
4356 	if (spa->spa_load_state == SPA_LOAD_NONE &&
4357 	    type == ZIO_TYPE_WRITE && txg != 0 &&
4358 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
4359 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
4360 	    spa->spa_claiming)) {
4361 		/*
4362 		 * This is either a normal write (not a repair), or it's
4363 		 * a repair induced by the scrub thread, or it's a repair
4364 		 * made by zil_claim() during spa_load() in the first txg.
4365 		 * In the normal case, we commit the DTL change in the same
4366 		 * txg as the block was born.  In the scrub-induced repair
4367 		 * case, we know that scrubs run in first-pass syncing context,
4368 		 * so we commit the DTL change in spa_syncing_txg(spa).
4369 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
4370 		 *
4371 		 * We currently do not make DTL entries for failed spontaneous
4372 		 * self-healing writes triggered by normal (non-scrubbing)
4373 		 * reads, because we have no transactional context in which to
4374 		 * do so -- and it's not clear that it'd be desirable anyway.
4375 		 */
4376 		if (vd->vdev_ops->vdev_op_leaf) {
4377 			uint64_t commit_txg = txg;
4378 			if (flags & ZIO_FLAG_SCAN_THREAD) {
4379 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4380 				ASSERT(spa_sync_pass(spa) == 1);
4381 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
4382 				commit_txg = spa_syncing_txg(spa);
4383 			} else if (spa->spa_claiming) {
4384 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4385 				commit_txg = spa_first_txg(spa);
4386 			}
4387 			ASSERT(commit_txg >= spa_syncing_txg(spa));
4388 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
4389 				return;
4390 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4391 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
4392 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
4393 		}
4394 		if (vd != rvd)
4395 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
4396 	}
4397 }
4398 
4399 int64_t
4400 vdev_deflated_space(vdev_t *vd, int64_t space)
4401 {
4402 	ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
4403 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
4404 
4405 	return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
4406 }
4407 
4408 /*
4409  * Update the in-core space usage stats for this vdev, its metaslab class,
4410  * and the root vdev.
4411  */
4412 void
4413 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
4414     int64_t space_delta)
4415 {
4416 	int64_t dspace_delta;
4417 	spa_t *spa = vd->vdev_spa;
4418 	vdev_t *rvd = spa->spa_root_vdev;
4419 
4420 	ASSERT(vd == vd->vdev_top);
4421 
4422 	/*
4423 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
4424 	 * factor.  We must calculate this here and not at the root vdev
4425 	 * because the root vdev's psize-to-asize is simply the max of its
4426 	 * children's, thus not accurate enough for us.
4427 	 */
4428 	dspace_delta = vdev_deflated_space(vd, space_delta);
4429 
4430 	mutex_enter(&vd->vdev_stat_lock);
4431 	/* ensure we won't underflow */
4432 	if (alloc_delta < 0) {
4433 		ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
4434 	}
4435 
4436 	vd->vdev_stat.vs_alloc += alloc_delta;
4437 	vd->vdev_stat.vs_space += space_delta;
4438 	vd->vdev_stat.vs_dspace += dspace_delta;
4439 	mutex_exit(&vd->vdev_stat_lock);
4440 
4441 	/* every class but log contributes to root space stats */
4442 	if (vd->vdev_mg != NULL && !vd->vdev_islog) {
4443 		ASSERT(!vd->vdev_isl2cache);
4444 		mutex_enter(&rvd->vdev_stat_lock);
4445 		rvd->vdev_stat.vs_alloc += alloc_delta;
4446 		rvd->vdev_stat.vs_space += space_delta;
4447 		rvd->vdev_stat.vs_dspace += dspace_delta;
4448 		mutex_exit(&rvd->vdev_stat_lock);
4449 	}
4450 	/* Note: metaslab_class_space_update moved to metaslab_space_update */
4451 }
4452 
4453 /*
4454  * Mark a top-level vdev's config as dirty, placing it on the dirty list
4455  * so that it will be written out next time the vdev configuration is synced.
4456  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
4457  */
4458 void
4459 vdev_config_dirty(vdev_t *vd)
4460 {
4461 	spa_t *spa = vd->vdev_spa;
4462 	vdev_t *rvd = spa->spa_root_vdev;
4463 	int c;
4464 
4465 	ASSERT(spa_writeable(spa));
4466 
4467 	/*
4468 	 * If this is an aux vdev (as with l2cache and spare devices), then we
4469 	 * update the vdev config manually and set the sync flag.
4470 	 */
4471 	if (vd->vdev_aux != NULL) {
4472 		spa_aux_vdev_t *sav = vd->vdev_aux;
4473 		nvlist_t **aux;
4474 		uint_t naux;
4475 
4476 		for (c = 0; c < sav->sav_count; c++) {
4477 			if (sav->sav_vdevs[c] == vd)
4478 				break;
4479 		}
4480 
4481 		if (c == sav->sav_count) {
4482 			/*
4483 			 * We're being removed.  There's nothing more to do.
4484 			 */
4485 			ASSERT(sav->sav_sync == B_TRUE);
4486 			return;
4487 		}
4488 
4489 		sav->sav_sync = B_TRUE;
4490 
4491 		if (nvlist_lookup_nvlist_array(sav->sav_config,
4492 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
4493 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
4494 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
4495 		}
4496 
4497 		ASSERT(c < naux);
4498 
4499 		/*
4500 		 * Setting the nvlist in the middle if the array is a little
4501 		 * sketchy, but it will work.
4502 		 */
4503 		nvlist_free(aux[c]);
4504 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
4505 
4506 		return;
4507 	}
4508 
4509 	/*
4510 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
4511 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
4512 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
4513 	 * so this is sufficient to ensure mutual exclusion.
4514 	 */
4515 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4516 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4517 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
4518 
4519 	if (vd == rvd) {
4520 		for (c = 0; c < rvd->vdev_children; c++)
4521 			vdev_config_dirty(rvd->vdev_child[c]);
4522 	} else {
4523 		ASSERT(vd == vd->vdev_top);
4524 
4525 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
4526 		    vdev_is_concrete(vd)) {
4527 			list_insert_head(&spa->spa_config_dirty_list, vd);
4528 		}
4529 	}
4530 }
4531 
4532 void
4533 vdev_config_clean(vdev_t *vd)
4534 {
4535 	spa_t *spa = vd->vdev_spa;
4536 
4537 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4538 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4539 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
4540 
4541 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
4542 	list_remove(&spa->spa_config_dirty_list, vd);
4543 }
4544 
4545 /*
4546  * Mark a top-level vdev's state as dirty, so that the next pass of
4547  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
4548  * the state changes from larger config changes because they require
4549  * much less locking, and are often needed for administrative actions.
4550  */
4551 void
4552 vdev_state_dirty(vdev_t *vd)
4553 {
4554 	spa_t *spa = vd->vdev_spa;
4555 
4556 	ASSERT(spa_writeable(spa));
4557 	ASSERT(vd == vd->vdev_top);
4558 
4559 	/*
4560 	 * The state list is protected by the SCL_STATE lock.  The caller
4561 	 * must either hold SCL_STATE as writer, or must be the sync thread
4562 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
4563 	 * so this is sufficient to ensure mutual exclusion.
4564 	 */
4565 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4566 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4567 	    spa_config_held(spa, SCL_STATE, RW_READER)));
4568 
4569 	if (!list_link_active(&vd->vdev_state_dirty_node) &&
4570 	    vdev_is_concrete(vd))
4571 		list_insert_head(&spa->spa_state_dirty_list, vd);
4572 }
4573 
4574 void
4575 vdev_state_clean(vdev_t *vd)
4576 {
4577 	spa_t *spa = vd->vdev_spa;
4578 
4579 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4580 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4581 	    spa_config_held(spa, SCL_STATE, RW_READER)));
4582 
4583 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
4584 	list_remove(&spa->spa_state_dirty_list, vd);
4585 }
4586 
4587 /*
4588  * Propagate vdev state up from children to parent.
4589  */
4590 void
4591 vdev_propagate_state(vdev_t *vd)
4592 {
4593 	spa_t *spa = vd->vdev_spa;
4594 	vdev_t *rvd = spa->spa_root_vdev;
4595 	int degraded = 0, faulted = 0;
4596 	int corrupted = 0;
4597 	vdev_t *child;
4598 
4599 	if (vd->vdev_children > 0) {
4600 		for (int c = 0; c < vd->vdev_children; c++) {
4601 			child = vd->vdev_child[c];
4602 
4603 			/*
4604 			 * Don't factor holes or indirect vdevs into the
4605 			 * decision.
4606 			 */
4607 			if (!vdev_is_concrete(child))
4608 				continue;
4609 
4610 			if (!vdev_readable(child) ||
4611 			    (!vdev_writeable(child) && spa_writeable(spa))) {
4612 				/*
4613 				 * Root special: if there is a top-level log
4614 				 * device, treat the root vdev as if it were
4615 				 * degraded.
4616 				 */
4617 				if (child->vdev_islog && vd == rvd)
4618 					degraded++;
4619 				else
4620 					faulted++;
4621 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
4622 				degraded++;
4623 			}
4624 
4625 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
4626 				corrupted++;
4627 		}
4628 
4629 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
4630 
4631 		/*
4632 		 * Root special: if there is a top-level vdev that cannot be
4633 		 * opened due to corrupted metadata, then propagate the root
4634 		 * vdev's aux state as 'corrupt' rather than 'insufficient
4635 		 * replicas'.
4636 		 */
4637 		if (corrupted && vd == rvd &&
4638 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
4639 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
4640 			    VDEV_AUX_CORRUPT_DATA);
4641 	}
4642 
4643 	if (vd->vdev_parent)
4644 		vdev_propagate_state(vd->vdev_parent);
4645 }
4646 
4647 /*
4648  * Set a vdev's state.  If this is during an open, we don't update the parent
4649  * state, because we're in the process of opening children depth-first.
4650  * Otherwise, we propagate the change to the parent.
4651  *
4652  * If this routine places a device in a faulted state, an appropriate ereport is
4653  * generated.
4654  */
4655 void
4656 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
4657 {
4658 	uint64_t save_state;
4659 	spa_t *spa = vd->vdev_spa;
4660 
4661 	if (state == vd->vdev_state) {
4662 		/*
4663 		 * Since vdev_offline() code path is already in an offline
4664 		 * state we can miss a statechange event to OFFLINE. Check
4665 		 * the previous state to catch this condition.
4666 		 */
4667 		if (vd->vdev_ops->vdev_op_leaf &&
4668 		    (state == VDEV_STATE_OFFLINE) &&
4669 		    (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
4670 			/* post an offline state change */
4671 			zfs_post_state_change(spa, vd, vd->vdev_prevstate);
4672 		}
4673 		vd->vdev_stat.vs_aux = aux;
4674 		return;
4675 	}
4676 
4677 	save_state = vd->vdev_state;
4678 
4679 	vd->vdev_state = state;
4680 	vd->vdev_stat.vs_aux = aux;
4681 
4682 	/*
4683 	 * If we are setting the vdev state to anything but an open state, then
4684 	 * always close the underlying device unless the device has requested
4685 	 * a delayed close (i.e. we're about to remove or fault the device).
4686 	 * Otherwise, we keep accessible but invalid devices open forever.
4687 	 * We don't call vdev_close() itself, because that implies some extra
4688 	 * checks (offline, etc) that we don't want here.  This is limited to
4689 	 * leaf devices, because otherwise closing the device will affect other
4690 	 * children.
4691 	 */
4692 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
4693 	    vd->vdev_ops->vdev_op_leaf)
4694 		vd->vdev_ops->vdev_op_close(vd);
4695 
4696 	if (vd->vdev_removed &&
4697 	    state == VDEV_STATE_CANT_OPEN &&
4698 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
4699 		/*
4700 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
4701 		 * device was previously marked removed and someone attempted to
4702 		 * reopen it.  If this failed due to a nonexistent device, then
4703 		 * keep the device in the REMOVED state.  We also let this be if
4704 		 * it is one of our special test online cases, which is only
4705 		 * attempting to online the device and shouldn't generate an FMA
4706 		 * fault.
4707 		 */
4708 		vd->vdev_state = VDEV_STATE_REMOVED;
4709 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
4710 	} else if (state == VDEV_STATE_REMOVED) {
4711 		vd->vdev_removed = B_TRUE;
4712 	} else if (state == VDEV_STATE_CANT_OPEN) {
4713 		/*
4714 		 * If we fail to open a vdev during an import or recovery, we
4715 		 * mark it as "not available", which signifies that it was
4716 		 * never there to begin with.  Failure to open such a device
4717 		 * is not considered an error.
4718 		 */
4719 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
4720 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
4721 		    vd->vdev_ops->vdev_op_leaf)
4722 			vd->vdev_not_present = 1;
4723 
4724 		/*
4725 		 * Post the appropriate ereport.  If the 'prevstate' field is
4726 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
4727 		 * that this is part of a vdev_reopen().  In this case, we don't
4728 		 * want to post the ereport if the device was already in the
4729 		 * CANT_OPEN state beforehand.
4730 		 *
4731 		 * If the 'checkremove' flag is set, then this is an attempt to
4732 		 * online the device in response to an insertion event.  If we
4733 		 * hit this case, then we have detected an insertion event for a
4734 		 * faulted or offline device that wasn't in the removed state.
4735 		 * In this scenario, we don't post an ereport because we are
4736 		 * about to replace the device, or attempt an online with
4737 		 * vdev_forcefault, which will generate the fault for us.
4738 		 */
4739 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
4740 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
4741 		    vd != spa->spa_root_vdev) {
4742 			const char *class;
4743 
4744 			switch (aux) {
4745 			case VDEV_AUX_OPEN_FAILED:
4746 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
4747 				break;
4748 			case VDEV_AUX_CORRUPT_DATA:
4749 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
4750 				break;
4751 			case VDEV_AUX_NO_REPLICAS:
4752 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
4753 				break;
4754 			case VDEV_AUX_BAD_GUID_SUM:
4755 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
4756 				break;
4757 			case VDEV_AUX_TOO_SMALL:
4758 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
4759 				break;
4760 			case VDEV_AUX_BAD_LABEL:
4761 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
4762 				break;
4763 			case VDEV_AUX_BAD_ASHIFT:
4764 				class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
4765 				break;
4766 			default:
4767 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
4768 			}
4769 
4770 			(void) zfs_ereport_post(class, spa, vd, NULL, NULL,
4771 			    save_state);
4772 		}
4773 
4774 		/* Erase any notion of persistent removed state */
4775 		vd->vdev_removed = B_FALSE;
4776 	} else {
4777 		vd->vdev_removed = B_FALSE;
4778 	}
4779 
4780 	/*
4781 	 * Notify ZED of any significant state-change on a leaf vdev.
4782 	 *
4783 	 */
4784 	if (vd->vdev_ops->vdev_op_leaf) {
4785 		/* preserve original state from a vdev_reopen() */
4786 		if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
4787 		    (vd->vdev_prevstate != vd->vdev_state) &&
4788 		    (save_state <= VDEV_STATE_CLOSED))
4789 			save_state = vd->vdev_prevstate;
4790 
4791 		/* filter out state change due to initial vdev_open */
4792 		if (save_state > VDEV_STATE_CLOSED)
4793 			zfs_post_state_change(spa, vd, save_state);
4794 	}
4795 
4796 	if (!isopen && vd->vdev_parent)
4797 		vdev_propagate_state(vd->vdev_parent);
4798 }
4799 
4800 boolean_t
4801 vdev_children_are_offline(vdev_t *vd)
4802 {
4803 	ASSERT(!vd->vdev_ops->vdev_op_leaf);
4804 
4805 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
4806 		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
4807 			return (B_FALSE);
4808 	}
4809 
4810 	return (B_TRUE);
4811 }
4812 
4813 /*
4814  * Check the vdev configuration to ensure that it's capable of supporting
4815  * a root pool. We do not support partial configuration.
4816  */
4817 boolean_t
4818 vdev_is_bootable(vdev_t *vd)
4819 {
4820 	if (!vd->vdev_ops->vdev_op_leaf) {
4821 		const char *vdev_type = vd->vdev_ops->vdev_op_type;
4822 
4823 		if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
4824 		    strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
4825 			return (B_FALSE);
4826 		}
4827 	}
4828 
4829 	for (int c = 0; c < vd->vdev_children; c++) {
4830 		if (!vdev_is_bootable(vd->vdev_child[c]))
4831 			return (B_FALSE);
4832 	}
4833 	return (B_TRUE);
4834 }
4835 
4836 boolean_t
4837 vdev_is_concrete(vdev_t *vd)
4838 {
4839 	vdev_ops_t *ops = vd->vdev_ops;
4840 	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
4841 	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
4842 		return (B_FALSE);
4843 	} else {
4844 		return (B_TRUE);
4845 	}
4846 }
4847 
4848 /*
4849  * Determine if a log device has valid content.  If the vdev was
4850  * removed or faulted in the MOS config then we know that
4851  * the content on the log device has already been written to the pool.
4852  */
4853 boolean_t
4854 vdev_log_state_valid(vdev_t *vd)
4855 {
4856 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
4857 	    !vd->vdev_removed)
4858 		return (B_TRUE);
4859 
4860 	for (int c = 0; c < vd->vdev_children; c++)
4861 		if (vdev_log_state_valid(vd->vdev_child[c]))
4862 			return (B_TRUE);
4863 
4864 	return (B_FALSE);
4865 }
4866 
4867 /*
4868  * Expand a vdev if possible.
4869  */
4870 void
4871 vdev_expand(vdev_t *vd, uint64_t txg)
4872 {
4873 	ASSERT(vd->vdev_top == vd);
4874 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4875 	ASSERT(vdev_is_concrete(vd));
4876 
4877 	vdev_set_deflate_ratio(vd);
4878 
4879 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
4880 	    vdev_is_concrete(vd)) {
4881 		vdev_metaslab_group_create(vd);
4882 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
4883 		vdev_config_dirty(vd);
4884 	}
4885 }
4886 
4887 /*
4888  * Split a vdev.
4889  */
4890 void
4891 vdev_split(vdev_t *vd)
4892 {
4893 	vdev_t *cvd, *pvd = vd->vdev_parent;
4894 
4895 	vdev_remove_child(pvd, vd);
4896 	vdev_compact_children(pvd);
4897 
4898 	cvd = pvd->vdev_child[0];
4899 	if (pvd->vdev_children == 1) {
4900 		vdev_remove_parent(cvd);
4901 		cvd->vdev_splitting = B_TRUE;
4902 	}
4903 	vdev_propagate_state(cvd);
4904 }
4905 
4906 void
4907 vdev_deadman(vdev_t *vd, char *tag)
4908 {
4909 	for (int c = 0; c < vd->vdev_children; c++) {
4910 		vdev_t *cvd = vd->vdev_child[c];
4911 
4912 		vdev_deadman(cvd, tag);
4913 	}
4914 
4915 	if (vd->vdev_ops->vdev_op_leaf) {
4916 		vdev_queue_t *vq = &vd->vdev_queue;
4917 
4918 		mutex_enter(&vq->vq_lock);
4919 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
4920 			spa_t *spa = vd->vdev_spa;
4921 			zio_t *fio;
4922 			uint64_t delta;
4923 
4924 			zfs_dbgmsg("slow vdev: %s has %d active IOs",
4925 			    vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
4926 
4927 			/*
4928 			 * Look at the head of all the pending queues,
4929 			 * if any I/O has been outstanding for longer than
4930 			 * the spa_deadman_synctime invoke the deadman logic.
4931 			 */
4932 			fio = avl_first(&vq->vq_active_tree);
4933 			delta = gethrtime() - fio->io_timestamp;
4934 			if (delta > spa_deadman_synctime(spa))
4935 				zio_deadman(fio, tag);
4936 		}
4937 		mutex_exit(&vq->vq_lock);
4938 	}
4939 }
4940 
4941 void
4942 vdev_defer_resilver(vdev_t *vd)
4943 {
4944 	ASSERT(vd->vdev_ops->vdev_op_leaf);
4945 
4946 	vd->vdev_resilver_deferred = B_TRUE;
4947 	vd->vdev_spa->spa_resilver_deferred = B_TRUE;
4948 }
4949 
4950 /*
4951  * Clears the resilver deferred flag on all leaf devs under vd. Returns
4952  * B_TRUE if we have devices that need to be resilvered and are available to
4953  * accept resilver I/Os.
4954  */
4955 boolean_t
4956 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
4957 {
4958 	boolean_t resilver_needed = B_FALSE;
4959 	spa_t *spa = vd->vdev_spa;
4960 
4961 	for (int c = 0; c < vd->vdev_children; c++) {
4962 		vdev_t *cvd = vd->vdev_child[c];
4963 		resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
4964 	}
4965 
4966 	if (vd == spa->spa_root_vdev &&
4967 	    spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
4968 		spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
4969 		vdev_config_dirty(vd);
4970 		spa->spa_resilver_deferred = B_FALSE;
4971 		return (resilver_needed);
4972 	}
4973 
4974 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
4975 	    !vd->vdev_ops->vdev_op_leaf)
4976 		return (resilver_needed);
4977 
4978 	vd->vdev_resilver_deferred = B_FALSE;
4979 
4980 	return (!vdev_is_dead(vd) && !vd->vdev_offline &&
4981 	    vdev_resilver_needed(vd, NULL, NULL));
4982 }
4983 
4984 /*
4985  * Translate a logical range to the physical range for the specified vdev_t.
4986  * This function is initially called with a leaf vdev and will walk each
4987  * parent vdev until it reaches a top-level vdev. Once the top-level is
4988  * reached the physical range is initialized and the recursive function
4989  * begins to unwind. As it unwinds it calls the parent's vdev specific
4990  * translation function to do the real conversion.
4991  */
4992 void
4993 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
4994     range_seg64_t *physical_rs)
4995 {
4996 	/*
4997 	 * Walk up the vdev tree
4998 	 */
4999 	if (vd != vd->vdev_top) {
5000 		vdev_xlate(vd->vdev_parent, logical_rs, physical_rs);
5001 	} else {
5002 		/*
5003 		 * We've reached the top-level vdev, initialize the
5004 		 * physical range to the logical range and start to
5005 		 * unwind.
5006 		 */
5007 		physical_rs->rs_start = logical_rs->rs_start;
5008 		physical_rs->rs_end = logical_rs->rs_end;
5009 		return;
5010 	}
5011 
5012 	vdev_t *pvd = vd->vdev_parent;
5013 	ASSERT3P(pvd, !=, NULL);
5014 	ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5015 
5016 	/*
5017 	 * As this recursive function unwinds, translate the logical
5018 	 * range into its physical components by calling the
5019 	 * vdev specific translate function.
5020 	 */
5021 	range_seg64_t intermediate = { 0 };
5022 	pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate);
5023 
5024 	physical_rs->rs_start = intermediate.rs_start;
5025 	physical_rs->rs_end = intermediate.rs_end;
5026 }
5027 
5028 /*
5029  * Look at the vdev tree and determine whether any devices are currently being
5030  * replaced.
5031  */
5032 boolean_t
5033 vdev_replace_in_progress(vdev_t *vdev)
5034 {
5035 	ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5036 
5037 	if (vdev->vdev_ops == &vdev_replacing_ops)
5038 		return (B_TRUE);
5039 
5040 	/*
5041 	 * A 'spare' vdev indicates that we have a replace in progress, unless
5042 	 * it has exactly two children, and the second, the hot spare, has
5043 	 * finished being resilvered.
5044 	 */
5045 	if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5046 	    !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5047 		return (B_TRUE);
5048 
5049 	for (int i = 0; i < vdev->vdev_children; i++) {
5050 		if (vdev_replace_in_progress(vdev->vdev_child[i]))
5051 			return (B_TRUE);
5052 	}
5053 
5054 	return (B_FALSE);
5055 }
5056 
5057 EXPORT_SYMBOL(vdev_fault);
5058 EXPORT_SYMBOL(vdev_degrade);
5059 EXPORT_SYMBOL(vdev_online);
5060 EXPORT_SYMBOL(vdev_offline);
5061 EXPORT_SYMBOL(vdev_clear);
5062 
5063 /* BEGIN CSTYLED */
5064 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, INT, ZMOD_RW,
5065 	"Target number of metaslabs per top-level vdev");
5066 
5067 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, INT, ZMOD_RW,
5068 	"Default limit for metaslab size");
5069 
5070 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, INT, ZMOD_RW,
5071 	"Minimum number of metaslabs per top-level vdev");
5072 
5073 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, INT, ZMOD_RW,
5074 	"Practical upper limit of total metaslabs per top-level vdev");
5075 
5076 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
5077 	"Rate limit slow IO (delay) events to this many per second");
5078 
5079 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
5080 	"Rate limit checksum events to this many checksum errors per second "
5081 	"(do not set below zed threshold).");
5082 
5083 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
5084 	"Ignore errors during resilver/scrub");
5085 
5086 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
5087 	"Bypass vdev_validate()");
5088 
5089 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
5090 	"Disable cache flushes");
5091 
5092 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
5093 	param_set_min_auto_ashift, param_get_ulong, ZMOD_RW,
5094 	"Minimum ashift used when creating new top-level vdevs");
5095 
5096 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
5097 	param_set_max_auto_ashift, param_get_ulong, ZMOD_RW,
5098 	"Maximum ashift used when optimizing for logical -> physical sector "
5099 	"size on new top-level vdevs");
5100 /* END CSTYLED */
5101