1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 * Copyright 2017 Joyent, Inc. 29 * Copyright (c) 2017, Intel Corporation. 30 * Copyright (c) 2019, Datto Inc. All rights reserved. 31 * Copyright (c) 2021, Klara Inc. 32 * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP. 33 */ 34 35 #include <sys/zfs_context.h> 36 #include <sys/fm/fs/zfs.h> 37 #include <sys/spa.h> 38 #include <sys/spa_impl.h> 39 #include <sys/bpobj.h> 40 #include <sys/dmu.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_dir.h> 43 #include <sys/vdev_impl.h> 44 #include <sys/vdev_rebuild.h> 45 #include <sys/vdev_draid.h> 46 #include <sys/uberblock_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/space_map.h> 50 #include <sys/space_reftree.h> 51 #include <sys/zio.h> 52 #include <sys/zap.h> 53 #include <sys/fs/zfs.h> 54 #include <sys/arc.h> 55 #include <sys/zil.h> 56 #include <sys/dsl_scan.h> 57 #include <sys/vdev_raidz.h> 58 #include <sys/abd.h> 59 #include <sys/vdev_initialize.h> 60 #include <sys/vdev_trim.h> 61 #include <sys/vdev_raidz.h> 62 #include <sys/zvol.h> 63 #include <sys/zfs_ratelimit.h> 64 #include "zfs_prop.h" 65 66 /* 67 * One metaslab from each (normal-class) vdev is used by the ZIL. These are 68 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are 69 * part of the spa_embedded_log_class. The metaslab with the most free space 70 * in each vdev is selected for this purpose when the pool is opened (or a 71 * vdev is added). See vdev_metaslab_init(). 72 * 73 * Log blocks can be allocated from the following locations. Each one is tried 74 * in order until the allocation succeeds: 75 * 1. dedicated log vdevs, aka "slog" (spa_log_class) 76 * 2. embedded slog metaslabs (spa_embedded_log_class) 77 * 3. other metaslabs in normal vdevs (spa_normal_class) 78 * 79 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer 80 * than this number of metaslabs in the vdev. This ensures that we don't set 81 * aside an unreasonable amount of space for the ZIL. If set to less than 82 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced 83 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab. 84 */ 85 static uint_t zfs_embedded_slog_min_ms = 64; 86 87 /* default target for number of metaslabs per top-level vdev */ 88 static uint_t zfs_vdev_default_ms_count = 200; 89 90 /* minimum number of metaslabs per top-level vdev */ 91 static uint_t zfs_vdev_min_ms_count = 16; 92 93 /* practical upper limit of total metaslabs per top-level vdev */ 94 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17; 95 96 /* lower limit for metaslab size (512M) */ 97 static uint_t zfs_vdev_default_ms_shift = 29; 98 99 /* upper limit for metaslab size (16G) */ 100 static uint_t zfs_vdev_max_ms_shift = 34; 101 102 int vdev_validate_skip = B_FALSE; 103 104 /* 105 * Since the DTL space map of a vdev is not expected to have a lot of 106 * entries, we default its block size to 4K. 107 */ 108 int zfs_vdev_dtl_sm_blksz = (1 << 12); 109 110 /* 111 * Rate limit slow IO (delay) events to this many per second. 112 */ 113 static unsigned int zfs_slow_io_events_per_second = 20; 114 115 /* 116 * Rate limit checksum events after this many checksum errors per second. 117 */ 118 static unsigned int zfs_checksum_events_per_second = 20; 119 120 /* 121 * Ignore errors during scrub/resilver. Allows to work around resilver 122 * upon import when there are pool errors. 123 */ 124 static int zfs_scan_ignore_errors = 0; 125 126 /* 127 * vdev-wide space maps that have lots of entries written to them at 128 * the end of each transaction can benefit from a higher I/O bandwidth 129 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. 130 */ 131 int zfs_vdev_standard_sm_blksz = (1 << 17); 132 133 /* 134 * Tunable parameter for debugging or performance analysis. Setting this 135 * will cause pool corruption on power loss if a volatile out-of-order 136 * write cache is enabled. 137 */ 138 int zfs_nocacheflush = 0; 139 140 /* 141 * Maximum and minimum ashift values that can be automatically set based on 142 * vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX 143 * is higher than the maximum value, it is intentionally limited here to not 144 * excessively impact pool space efficiency. Higher ashift values may still 145 * be forced by vdev logical ashift or by user via ashift property, but won't 146 * be set automatically as a performance optimization. 147 */ 148 uint_t zfs_vdev_max_auto_ashift = 14; 149 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN; 150 151 void 152 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) 153 { 154 va_list adx; 155 char buf[256]; 156 157 va_start(adx, fmt); 158 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 159 va_end(adx); 160 161 if (vd->vdev_path != NULL) { 162 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, 163 vd->vdev_path, buf); 164 } else { 165 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", 166 vd->vdev_ops->vdev_op_type, 167 (u_longlong_t)vd->vdev_id, 168 (u_longlong_t)vd->vdev_guid, buf); 169 } 170 } 171 172 void 173 vdev_dbgmsg_print_tree(vdev_t *vd, int indent) 174 { 175 char state[20]; 176 177 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { 178 zfs_dbgmsg("%*svdev %llu: %s", indent, "", 179 (u_longlong_t)vd->vdev_id, 180 vd->vdev_ops->vdev_op_type); 181 return; 182 } 183 184 switch (vd->vdev_state) { 185 case VDEV_STATE_UNKNOWN: 186 (void) snprintf(state, sizeof (state), "unknown"); 187 break; 188 case VDEV_STATE_CLOSED: 189 (void) snprintf(state, sizeof (state), "closed"); 190 break; 191 case VDEV_STATE_OFFLINE: 192 (void) snprintf(state, sizeof (state), "offline"); 193 break; 194 case VDEV_STATE_REMOVED: 195 (void) snprintf(state, sizeof (state), "removed"); 196 break; 197 case VDEV_STATE_CANT_OPEN: 198 (void) snprintf(state, sizeof (state), "can't open"); 199 break; 200 case VDEV_STATE_FAULTED: 201 (void) snprintf(state, sizeof (state), "faulted"); 202 break; 203 case VDEV_STATE_DEGRADED: 204 (void) snprintf(state, sizeof (state), "degraded"); 205 break; 206 case VDEV_STATE_HEALTHY: 207 (void) snprintf(state, sizeof (state), "healthy"); 208 break; 209 default: 210 (void) snprintf(state, sizeof (state), "<state %u>", 211 (uint_t)vd->vdev_state); 212 } 213 214 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, 215 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, 216 vd->vdev_islog ? " (log)" : "", 217 (u_longlong_t)vd->vdev_guid, 218 vd->vdev_path ? vd->vdev_path : "N/A", state); 219 220 for (uint64_t i = 0; i < vd->vdev_children; i++) 221 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); 222 } 223 224 /* 225 * Virtual device management. 226 */ 227 228 static vdev_ops_t *const vdev_ops_table[] = { 229 &vdev_root_ops, 230 &vdev_raidz_ops, 231 &vdev_draid_ops, 232 &vdev_draid_spare_ops, 233 &vdev_mirror_ops, 234 &vdev_replacing_ops, 235 &vdev_spare_ops, 236 &vdev_disk_ops, 237 &vdev_file_ops, 238 &vdev_missing_ops, 239 &vdev_hole_ops, 240 &vdev_indirect_ops, 241 NULL 242 }; 243 244 /* 245 * Given a vdev type, return the appropriate ops vector. 246 */ 247 static vdev_ops_t * 248 vdev_getops(const char *type) 249 { 250 vdev_ops_t *ops, *const *opspp; 251 252 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 253 if (strcmp(ops->vdev_op_type, type) == 0) 254 break; 255 256 return (ops); 257 } 258 259 /* 260 * Given a vdev and a metaslab class, find which metaslab group we're 261 * interested in. All vdevs may belong to two different metaslab classes. 262 * Dedicated slog devices use only the primary metaslab group, rather than a 263 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL. 264 */ 265 metaslab_group_t * 266 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc) 267 { 268 if (mc == spa_embedded_log_class(vd->vdev_spa) && 269 vd->vdev_log_mg != NULL) 270 return (vd->vdev_log_mg); 271 else 272 return (vd->vdev_mg); 273 } 274 275 void 276 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 277 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 278 { 279 (void) vd, (void) remain_rs; 280 281 physical_rs->rs_start = logical_rs->rs_start; 282 physical_rs->rs_end = logical_rs->rs_end; 283 } 284 285 /* 286 * Derive the enumerated allocation bias from string input. 287 * String origin is either the per-vdev zap or zpool(8). 288 */ 289 static vdev_alloc_bias_t 290 vdev_derive_alloc_bias(const char *bias) 291 { 292 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 293 294 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0) 295 alloc_bias = VDEV_BIAS_LOG; 296 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) 297 alloc_bias = VDEV_BIAS_SPECIAL; 298 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) 299 alloc_bias = VDEV_BIAS_DEDUP; 300 301 return (alloc_bias); 302 } 303 304 /* 305 * Default asize function: return the MAX of psize with the asize of 306 * all children. This is what's used by anything other than RAID-Z. 307 */ 308 uint64_t 309 vdev_default_asize(vdev_t *vd, uint64_t psize, uint64_t txg) 310 { 311 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 312 uint64_t csize; 313 314 for (int c = 0; c < vd->vdev_children; c++) { 315 csize = vdev_psize_to_asize_txg(vd->vdev_child[c], psize, txg); 316 asize = MAX(asize, csize); 317 } 318 319 return (asize); 320 } 321 322 uint64_t 323 vdev_default_min_asize(vdev_t *vd) 324 { 325 return (vd->vdev_min_asize); 326 } 327 328 /* 329 * Get the minimum allocatable size. We define the allocatable size as 330 * the vdev's asize rounded to the nearest metaslab. This allows us to 331 * replace or attach devices which don't have the same physical size but 332 * can still satisfy the same number of allocations. 333 */ 334 uint64_t 335 vdev_get_min_asize(vdev_t *vd) 336 { 337 vdev_t *pvd = vd->vdev_parent; 338 339 /* 340 * If our parent is NULL (inactive spare or cache) or is the root, 341 * just return our own asize. 342 */ 343 if (pvd == NULL) 344 return (vd->vdev_asize); 345 346 /* 347 * The top-level vdev just returns the allocatable size rounded 348 * to the nearest metaslab. 349 */ 350 if (vd == vd->vdev_top) 351 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 352 353 return (pvd->vdev_ops->vdev_op_min_asize(pvd)); 354 } 355 356 void 357 vdev_set_min_asize(vdev_t *vd) 358 { 359 vd->vdev_min_asize = vdev_get_min_asize(vd); 360 361 for (int c = 0; c < vd->vdev_children; c++) 362 vdev_set_min_asize(vd->vdev_child[c]); 363 } 364 365 /* 366 * Get the minimal allocation size for the top-level vdev. 367 */ 368 uint64_t 369 vdev_get_min_alloc(vdev_t *vd) 370 { 371 uint64_t min_alloc = 1ULL << vd->vdev_ashift; 372 373 if (vd->vdev_ops->vdev_op_min_alloc != NULL) 374 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd); 375 376 return (min_alloc); 377 } 378 379 /* 380 * Get the parity level for a top-level vdev. 381 */ 382 uint64_t 383 vdev_get_nparity(vdev_t *vd) 384 { 385 uint64_t nparity = 0; 386 387 if (vd->vdev_ops->vdev_op_nparity != NULL) 388 nparity = vd->vdev_ops->vdev_op_nparity(vd); 389 390 return (nparity); 391 } 392 393 static int 394 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value) 395 { 396 spa_t *spa = vd->vdev_spa; 397 objset_t *mos = spa->spa_meta_objset; 398 uint64_t objid; 399 int err; 400 401 if (vd->vdev_root_zap != 0) { 402 objid = vd->vdev_root_zap; 403 } else if (vd->vdev_top_zap != 0) { 404 objid = vd->vdev_top_zap; 405 } else if (vd->vdev_leaf_zap != 0) { 406 objid = vd->vdev_leaf_zap; 407 } else { 408 return (EINVAL); 409 } 410 411 err = zap_lookup(mos, objid, vdev_prop_to_name(prop), 412 sizeof (uint64_t), 1, value); 413 414 if (err == ENOENT) 415 *value = vdev_prop_default_numeric(prop); 416 417 return (err); 418 } 419 420 /* 421 * Get the number of data disks for a top-level vdev. 422 */ 423 uint64_t 424 vdev_get_ndisks(vdev_t *vd) 425 { 426 uint64_t ndisks = 1; 427 428 if (vd->vdev_ops->vdev_op_ndisks != NULL) 429 ndisks = vd->vdev_ops->vdev_op_ndisks(vd); 430 431 return (ndisks); 432 } 433 434 vdev_t * 435 vdev_lookup_top(spa_t *spa, uint64_t vdev) 436 { 437 vdev_t *rvd = spa->spa_root_vdev; 438 439 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 440 441 if (vdev < rvd->vdev_children) { 442 ASSERT(rvd->vdev_child[vdev] != NULL); 443 return (rvd->vdev_child[vdev]); 444 } 445 446 return (NULL); 447 } 448 449 vdev_t * 450 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 451 { 452 vdev_t *mvd; 453 454 if (vd->vdev_guid == guid) 455 return (vd); 456 457 for (int c = 0; c < vd->vdev_children; c++) 458 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 459 NULL) 460 return (mvd); 461 462 return (NULL); 463 } 464 465 static int 466 vdev_count_leaves_impl(vdev_t *vd) 467 { 468 int n = 0; 469 470 if (vd->vdev_ops->vdev_op_leaf) 471 return (1); 472 473 for (int c = 0; c < vd->vdev_children; c++) 474 n += vdev_count_leaves_impl(vd->vdev_child[c]); 475 476 return (n); 477 } 478 479 int 480 vdev_count_leaves(spa_t *spa) 481 { 482 int rc; 483 484 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 485 rc = vdev_count_leaves_impl(spa->spa_root_vdev); 486 spa_config_exit(spa, SCL_VDEV, FTAG); 487 488 return (rc); 489 } 490 491 void 492 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 493 { 494 size_t oldsize, newsize; 495 uint64_t id = cvd->vdev_id; 496 vdev_t **newchild; 497 498 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 499 ASSERT(cvd->vdev_parent == NULL); 500 501 cvd->vdev_parent = pvd; 502 503 if (pvd == NULL) 504 return; 505 506 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 507 508 oldsize = pvd->vdev_children * sizeof (vdev_t *); 509 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 510 newsize = pvd->vdev_children * sizeof (vdev_t *); 511 512 newchild = kmem_alloc(newsize, KM_SLEEP); 513 if (pvd->vdev_child != NULL) { 514 memcpy(newchild, pvd->vdev_child, oldsize); 515 kmem_free(pvd->vdev_child, oldsize); 516 } 517 518 pvd->vdev_child = newchild; 519 pvd->vdev_child[id] = cvd; 520 521 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 522 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 523 524 /* 525 * Walk up all ancestors to update guid sum. 526 */ 527 for (; pvd != NULL; pvd = pvd->vdev_parent) 528 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 529 530 if (cvd->vdev_ops->vdev_op_leaf) { 531 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd); 532 cvd->vdev_spa->spa_leaf_list_gen++; 533 } 534 } 535 536 void 537 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 538 { 539 int c; 540 uint_t id = cvd->vdev_id; 541 542 ASSERT(cvd->vdev_parent == pvd); 543 544 if (pvd == NULL) 545 return; 546 547 ASSERT(id < pvd->vdev_children); 548 ASSERT(pvd->vdev_child[id] == cvd); 549 550 pvd->vdev_child[id] = NULL; 551 cvd->vdev_parent = NULL; 552 553 for (c = 0; c < pvd->vdev_children; c++) 554 if (pvd->vdev_child[c]) 555 break; 556 557 if (c == pvd->vdev_children) { 558 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 559 pvd->vdev_child = NULL; 560 pvd->vdev_children = 0; 561 } 562 563 if (cvd->vdev_ops->vdev_op_leaf) { 564 spa_t *spa = cvd->vdev_spa; 565 list_remove(&spa->spa_leaf_list, cvd); 566 spa->spa_leaf_list_gen++; 567 } 568 569 /* 570 * Walk up all ancestors to update guid sum. 571 */ 572 for (; pvd != NULL; pvd = pvd->vdev_parent) 573 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 574 } 575 576 /* 577 * Remove any holes in the child array. 578 */ 579 void 580 vdev_compact_children(vdev_t *pvd) 581 { 582 vdev_t **newchild, *cvd; 583 int oldc = pvd->vdev_children; 584 int newc; 585 586 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 587 588 if (oldc == 0) 589 return; 590 591 for (int c = newc = 0; c < oldc; c++) 592 if (pvd->vdev_child[c]) 593 newc++; 594 595 if (newc > 0) { 596 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP); 597 598 for (int c = newc = 0; c < oldc; c++) { 599 if ((cvd = pvd->vdev_child[c]) != NULL) { 600 newchild[newc] = cvd; 601 cvd->vdev_id = newc++; 602 } 603 } 604 } else { 605 newchild = NULL; 606 } 607 608 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 609 pvd->vdev_child = newchild; 610 pvd->vdev_children = newc; 611 } 612 613 /* 614 * Allocate and minimally initialize a vdev_t. 615 */ 616 vdev_t * 617 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 618 { 619 vdev_t *vd; 620 vdev_indirect_config_t *vic; 621 622 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 623 vic = &vd->vdev_indirect_config; 624 625 if (spa->spa_root_vdev == NULL) { 626 ASSERT(ops == &vdev_root_ops); 627 spa->spa_root_vdev = vd; 628 spa->spa_load_guid = spa_generate_guid(NULL); 629 } 630 631 if (guid == 0 && ops != &vdev_hole_ops) { 632 if (spa->spa_root_vdev == vd) { 633 /* 634 * The root vdev's guid will also be the pool guid, 635 * which must be unique among all pools. 636 */ 637 guid = spa_generate_guid(NULL); 638 } else { 639 /* 640 * Any other vdev's guid must be unique within the pool. 641 */ 642 guid = spa_generate_guid(spa); 643 } 644 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 645 } 646 647 vd->vdev_spa = spa; 648 vd->vdev_id = id; 649 vd->vdev_guid = guid; 650 vd->vdev_guid_sum = guid; 651 vd->vdev_ops = ops; 652 vd->vdev_state = VDEV_STATE_CLOSED; 653 vd->vdev_ishole = (ops == &vdev_hole_ops); 654 vic->vic_prev_indirect_vdev = UINT64_MAX; 655 656 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); 657 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); 658 vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL, 659 0, 0); 660 661 /* 662 * Initialize rate limit structs for events. We rate limit ZIO delay 663 * and checksum events so that we don't overwhelm ZED with thousands 664 * of events when a disk is acting up. 665 */ 666 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second, 667 1); 668 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_slow_io_events_per_second, 669 1); 670 zfs_ratelimit_init(&vd->vdev_checksum_rl, 671 &zfs_checksum_events_per_second, 1); 672 673 /* 674 * Default Thresholds for tuning ZED 675 */ 676 vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N); 677 vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T); 678 vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N); 679 vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T); 680 681 list_link_init(&vd->vdev_config_dirty_node); 682 list_link_init(&vd->vdev_state_dirty_node); 683 list_link_init(&vd->vdev_initialize_node); 684 list_link_init(&vd->vdev_leaf_node); 685 list_link_init(&vd->vdev_trim_node); 686 687 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL); 688 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 689 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 690 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL); 691 692 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); 693 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); 694 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); 695 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); 696 697 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL); 698 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL); 699 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL); 700 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL); 701 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL); 702 cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL); 703 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL); 704 705 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL); 706 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL); 707 708 for (int t = 0; t < DTL_TYPES; t++) { 709 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 710 0); 711 } 712 713 txg_list_create(&vd->vdev_ms_list, spa, 714 offsetof(struct metaslab, ms_txg_node)); 715 txg_list_create(&vd->vdev_dtl_list, spa, 716 offsetof(struct vdev, vdev_dtl_node)); 717 vd->vdev_stat.vs_timestamp = gethrtime(); 718 vdev_queue_init(vd); 719 720 return (vd); 721 } 722 723 /* 724 * Allocate a new vdev. The 'alloctype' is used to control whether we are 725 * creating a new vdev or loading an existing one - the behavior is slightly 726 * different for each case. 727 */ 728 int 729 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 730 int alloctype) 731 { 732 vdev_ops_t *ops; 733 const char *type; 734 uint64_t guid = 0, islog; 735 vdev_t *vd; 736 vdev_indirect_config_t *vic; 737 const char *tmp = NULL; 738 int rc; 739 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 740 boolean_t top_level = (parent && !parent->vdev_parent); 741 742 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 743 744 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 745 return (SET_ERROR(EINVAL)); 746 747 if ((ops = vdev_getops(type)) == NULL) 748 return (SET_ERROR(EINVAL)); 749 750 /* 751 * If this is a load, get the vdev guid from the nvlist. 752 * Otherwise, vdev_alloc_common() will generate one for us. 753 */ 754 if (alloctype == VDEV_ALLOC_LOAD) { 755 uint64_t label_id; 756 757 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 758 label_id != id) 759 return (SET_ERROR(EINVAL)); 760 761 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 762 return (SET_ERROR(EINVAL)); 763 } else if (alloctype == VDEV_ALLOC_SPARE) { 764 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 765 return (SET_ERROR(EINVAL)); 766 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 767 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 768 return (SET_ERROR(EINVAL)); 769 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 770 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 771 return (SET_ERROR(EINVAL)); 772 } 773 774 /* 775 * The first allocated vdev must be of type 'root'. 776 */ 777 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 778 return (SET_ERROR(EINVAL)); 779 780 /* 781 * Determine whether we're a log vdev. 782 */ 783 islog = 0; 784 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 785 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 786 return (SET_ERROR(ENOTSUP)); 787 788 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 789 return (SET_ERROR(ENOTSUP)); 790 791 if (top_level && alloctype == VDEV_ALLOC_ADD) { 792 const char *bias; 793 794 /* 795 * If creating a top-level vdev, check for allocation 796 * classes input. 797 */ 798 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 799 &bias) == 0) { 800 alloc_bias = vdev_derive_alloc_bias(bias); 801 802 /* spa_vdev_add() expects feature to be enabled */ 803 if (spa->spa_load_state != SPA_LOAD_CREATE && 804 !spa_feature_is_enabled(spa, 805 SPA_FEATURE_ALLOCATION_CLASSES)) { 806 return (SET_ERROR(ENOTSUP)); 807 } 808 } 809 810 /* spa_vdev_add() expects feature to be enabled */ 811 if (ops == &vdev_draid_ops && 812 spa->spa_load_state != SPA_LOAD_CREATE && 813 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) { 814 return (SET_ERROR(ENOTSUP)); 815 } 816 } 817 818 /* 819 * Initialize the vdev specific data. This is done before calling 820 * vdev_alloc_common() since it may fail and this simplifies the 821 * error reporting and cleanup code paths. 822 */ 823 void *tsd = NULL; 824 if (ops->vdev_op_init != NULL) { 825 rc = ops->vdev_op_init(spa, nv, &tsd); 826 if (rc != 0) { 827 return (rc); 828 } 829 } 830 831 vd = vdev_alloc_common(spa, id, guid, ops); 832 vd->vdev_tsd = tsd; 833 vd->vdev_islog = islog; 834 835 if (top_level && alloc_bias != VDEV_BIAS_NONE) 836 vd->vdev_alloc_bias = alloc_bias; 837 838 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0) 839 vd->vdev_path = spa_strdup(tmp); 840 841 /* 842 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a 843 * fault on a vdev and want it to persist across imports (like with 844 * zpool offline -f). 845 */ 846 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp); 847 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) { 848 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 849 vd->vdev_faulted = 1; 850 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 851 } 852 853 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0) 854 vd->vdev_devid = spa_strdup(tmp); 855 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0) 856 vd->vdev_physpath = spa_strdup(tmp); 857 858 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 859 &tmp) == 0) 860 vd->vdev_enc_sysfs_path = spa_strdup(tmp); 861 862 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0) 863 vd->vdev_fru = spa_strdup(tmp); 864 865 /* 866 * Set the whole_disk property. If it's not specified, leave the value 867 * as -1. 868 */ 869 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 870 &vd->vdev_wholedisk) != 0) 871 vd->vdev_wholedisk = -1ULL; 872 873 vic = &vd->vdev_indirect_config; 874 875 ASSERT0(vic->vic_mapping_object); 876 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 877 &vic->vic_mapping_object); 878 ASSERT0(vic->vic_births_object); 879 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 880 &vic->vic_births_object); 881 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); 882 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 883 &vic->vic_prev_indirect_vdev); 884 885 /* 886 * Look for the 'not present' flag. This will only be set if the device 887 * was not present at the time of import. 888 */ 889 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 890 &vd->vdev_not_present); 891 892 /* 893 * Get the alignment requirement. Ignore pool ashift for vdev 894 * attach case. 895 */ 896 if (alloctype != VDEV_ALLOC_ATTACH) { 897 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, 898 &vd->vdev_ashift); 899 } else { 900 vd->vdev_attaching = B_TRUE; 901 } 902 903 /* 904 * Retrieve the vdev creation time. 905 */ 906 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 907 &vd->vdev_crtxg); 908 909 if (vd->vdev_ops == &vdev_root_ops && 910 (alloctype == VDEV_ALLOC_LOAD || 911 alloctype == VDEV_ALLOC_SPLIT || 912 alloctype == VDEV_ALLOC_ROOTPOOL)) { 913 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP, 914 &vd->vdev_root_zap); 915 } 916 917 /* 918 * If we're a top-level vdev, try to load the allocation parameters. 919 */ 920 if (top_level && 921 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 922 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 923 &vd->vdev_ms_array); 924 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 925 &vd->vdev_ms_shift); 926 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 927 &vd->vdev_asize); 928 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING, 929 &vd->vdev_noalloc); 930 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 931 &vd->vdev_removing); 932 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 933 &vd->vdev_top_zap); 934 vd->vdev_rz_expanding = nvlist_exists(nv, 935 ZPOOL_CONFIG_RAIDZ_EXPANDING); 936 } else { 937 ASSERT0(vd->vdev_top_zap); 938 } 939 940 if (top_level && alloctype != VDEV_ALLOC_ATTACH) { 941 ASSERT(alloctype == VDEV_ALLOC_LOAD || 942 alloctype == VDEV_ALLOC_ADD || 943 alloctype == VDEV_ALLOC_SPLIT || 944 alloctype == VDEV_ALLOC_ROOTPOOL); 945 /* Note: metaslab_group_create() is now deferred */ 946 } 947 948 if (vd->vdev_ops->vdev_op_leaf && 949 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 950 (void) nvlist_lookup_uint64(nv, 951 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 952 } else { 953 ASSERT0(vd->vdev_leaf_zap); 954 } 955 956 /* 957 * If we're a leaf vdev, try to load the DTL object and other state. 958 */ 959 960 if (vd->vdev_ops->vdev_op_leaf && 961 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 962 alloctype == VDEV_ALLOC_ROOTPOOL)) { 963 if (alloctype == VDEV_ALLOC_LOAD) { 964 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 965 &vd->vdev_dtl_object); 966 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 967 &vd->vdev_unspare); 968 } 969 970 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 971 uint64_t spare = 0; 972 973 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 974 &spare) == 0 && spare) 975 spa_spare_add(vd); 976 } 977 978 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 979 &vd->vdev_offline); 980 981 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 982 &vd->vdev_resilver_txg); 983 984 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 985 &vd->vdev_rebuild_txg); 986 987 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER)) 988 vdev_defer_resilver(vd); 989 990 /* 991 * In general, when importing a pool we want to ignore the 992 * persistent fault state, as the diagnosis made on another 993 * system may not be valid in the current context. The only 994 * exception is if we forced a vdev to a persistently faulted 995 * state with 'zpool offline -f'. The persistent fault will 996 * remain across imports until cleared. 997 * 998 * Local vdevs will remain in the faulted state. 999 */ 1000 if (spa_load_state(spa) == SPA_LOAD_OPEN || 1001 spa_load_state(spa) == SPA_LOAD_IMPORT) { 1002 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 1003 &vd->vdev_faulted); 1004 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 1005 &vd->vdev_degraded); 1006 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 1007 &vd->vdev_removed); 1008 1009 if (vd->vdev_faulted || vd->vdev_degraded) { 1010 const char *aux; 1011 1012 vd->vdev_label_aux = 1013 VDEV_AUX_ERR_EXCEEDED; 1014 if (nvlist_lookup_string(nv, 1015 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 1016 strcmp(aux, "external") == 0) 1017 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 1018 else 1019 vd->vdev_faulted = 0ULL; 1020 } 1021 } 1022 } 1023 1024 /* 1025 * Add ourselves to the parent's list of children. 1026 */ 1027 vdev_add_child(parent, vd); 1028 1029 *vdp = vd; 1030 1031 return (0); 1032 } 1033 1034 void 1035 vdev_free(vdev_t *vd) 1036 { 1037 spa_t *spa = vd->vdev_spa; 1038 1039 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 1040 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1041 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); 1042 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL); 1043 1044 /* 1045 * Scan queues are normally destroyed at the end of a scan. If the 1046 * queue exists here, that implies the vdev is being removed while 1047 * the scan is still running. 1048 */ 1049 if (vd->vdev_scan_io_queue != NULL) { 1050 mutex_enter(&vd->vdev_scan_io_queue_lock); 1051 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue); 1052 vd->vdev_scan_io_queue = NULL; 1053 mutex_exit(&vd->vdev_scan_io_queue_lock); 1054 } 1055 1056 /* 1057 * vdev_free() implies closing the vdev first. This is simpler than 1058 * trying to ensure complicated semantics for all callers. 1059 */ 1060 vdev_close(vd); 1061 1062 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 1063 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 1064 1065 /* 1066 * Free all children. 1067 */ 1068 for (int c = 0; c < vd->vdev_children; c++) 1069 vdev_free(vd->vdev_child[c]); 1070 1071 ASSERT(vd->vdev_child == NULL); 1072 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 1073 1074 if (vd->vdev_ops->vdev_op_fini != NULL) 1075 vd->vdev_ops->vdev_op_fini(vd); 1076 1077 /* 1078 * Discard allocation state. 1079 */ 1080 if (vd->vdev_mg != NULL) { 1081 vdev_metaslab_fini(vd); 1082 metaslab_group_destroy(vd->vdev_mg); 1083 vd->vdev_mg = NULL; 1084 } 1085 if (vd->vdev_log_mg != NULL) { 1086 ASSERT0(vd->vdev_ms_count); 1087 metaslab_group_destroy(vd->vdev_log_mg); 1088 vd->vdev_log_mg = NULL; 1089 } 1090 1091 ASSERT0(vd->vdev_stat.vs_space); 1092 ASSERT0(vd->vdev_stat.vs_dspace); 1093 ASSERT0(vd->vdev_stat.vs_alloc); 1094 1095 /* 1096 * Remove this vdev from its parent's child list. 1097 */ 1098 vdev_remove_child(vd->vdev_parent, vd); 1099 1100 ASSERT(vd->vdev_parent == NULL); 1101 ASSERT(!list_link_active(&vd->vdev_leaf_node)); 1102 1103 /* 1104 * Clean up vdev structure. 1105 */ 1106 vdev_queue_fini(vd); 1107 1108 if (vd->vdev_path) 1109 spa_strfree(vd->vdev_path); 1110 if (vd->vdev_devid) 1111 spa_strfree(vd->vdev_devid); 1112 if (vd->vdev_physpath) 1113 spa_strfree(vd->vdev_physpath); 1114 1115 if (vd->vdev_enc_sysfs_path) 1116 spa_strfree(vd->vdev_enc_sysfs_path); 1117 1118 if (vd->vdev_fru) 1119 spa_strfree(vd->vdev_fru); 1120 1121 if (vd->vdev_isspare) 1122 spa_spare_remove(vd); 1123 if (vd->vdev_isl2cache) 1124 spa_l2cache_remove(vd); 1125 1126 txg_list_destroy(&vd->vdev_ms_list); 1127 txg_list_destroy(&vd->vdev_dtl_list); 1128 1129 mutex_enter(&vd->vdev_dtl_lock); 1130 space_map_close(vd->vdev_dtl_sm); 1131 for (int t = 0; t < DTL_TYPES; t++) { 1132 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 1133 range_tree_destroy(vd->vdev_dtl[t]); 1134 } 1135 mutex_exit(&vd->vdev_dtl_lock); 1136 1137 EQUIV(vd->vdev_indirect_births != NULL, 1138 vd->vdev_indirect_mapping != NULL); 1139 if (vd->vdev_indirect_births != NULL) { 1140 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 1141 vdev_indirect_births_close(vd->vdev_indirect_births); 1142 } 1143 1144 if (vd->vdev_obsolete_sm != NULL) { 1145 ASSERT(vd->vdev_removing || 1146 vd->vdev_ops == &vdev_indirect_ops); 1147 space_map_close(vd->vdev_obsolete_sm); 1148 vd->vdev_obsolete_sm = NULL; 1149 } 1150 range_tree_destroy(vd->vdev_obsolete_segments); 1151 rw_destroy(&vd->vdev_indirect_rwlock); 1152 mutex_destroy(&vd->vdev_obsolete_lock); 1153 1154 mutex_destroy(&vd->vdev_dtl_lock); 1155 mutex_destroy(&vd->vdev_stat_lock); 1156 mutex_destroy(&vd->vdev_probe_lock); 1157 mutex_destroy(&vd->vdev_scan_io_queue_lock); 1158 1159 mutex_destroy(&vd->vdev_initialize_lock); 1160 mutex_destroy(&vd->vdev_initialize_io_lock); 1161 cv_destroy(&vd->vdev_initialize_io_cv); 1162 cv_destroy(&vd->vdev_initialize_cv); 1163 1164 mutex_destroy(&vd->vdev_trim_lock); 1165 mutex_destroy(&vd->vdev_autotrim_lock); 1166 mutex_destroy(&vd->vdev_trim_io_lock); 1167 cv_destroy(&vd->vdev_trim_cv); 1168 cv_destroy(&vd->vdev_autotrim_cv); 1169 cv_destroy(&vd->vdev_autotrim_kick_cv); 1170 cv_destroy(&vd->vdev_trim_io_cv); 1171 1172 mutex_destroy(&vd->vdev_rebuild_lock); 1173 cv_destroy(&vd->vdev_rebuild_cv); 1174 1175 zfs_ratelimit_fini(&vd->vdev_delay_rl); 1176 zfs_ratelimit_fini(&vd->vdev_deadman_rl); 1177 zfs_ratelimit_fini(&vd->vdev_checksum_rl); 1178 1179 if (vd == spa->spa_root_vdev) 1180 spa->spa_root_vdev = NULL; 1181 1182 kmem_free(vd, sizeof (vdev_t)); 1183 } 1184 1185 /* 1186 * Transfer top-level vdev state from svd to tvd. 1187 */ 1188 static void 1189 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 1190 { 1191 spa_t *spa = svd->vdev_spa; 1192 metaslab_t *msp; 1193 vdev_t *vd; 1194 int t; 1195 1196 ASSERT(tvd == tvd->vdev_top); 1197 1198 tvd->vdev_ms_array = svd->vdev_ms_array; 1199 tvd->vdev_ms_shift = svd->vdev_ms_shift; 1200 tvd->vdev_ms_count = svd->vdev_ms_count; 1201 tvd->vdev_top_zap = svd->vdev_top_zap; 1202 1203 svd->vdev_ms_array = 0; 1204 svd->vdev_ms_shift = 0; 1205 svd->vdev_ms_count = 0; 1206 svd->vdev_top_zap = 0; 1207 1208 if (tvd->vdev_mg) 1209 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 1210 if (tvd->vdev_log_mg) 1211 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg); 1212 tvd->vdev_mg = svd->vdev_mg; 1213 tvd->vdev_log_mg = svd->vdev_log_mg; 1214 tvd->vdev_ms = svd->vdev_ms; 1215 1216 svd->vdev_mg = NULL; 1217 svd->vdev_log_mg = NULL; 1218 svd->vdev_ms = NULL; 1219 1220 if (tvd->vdev_mg != NULL) 1221 tvd->vdev_mg->mg_vd = tvd; 1222 if (tvd->vdev_log_mg != NULL) 1223 tvd->vdev_log_mg->mg_vd = tvd; 1224 1225 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; 1226 svd->vdev_checkpoint_sm = NULL; 1227 1228 tvd->vdev_alloc_bias = svd->vdev_alloc_bias; 1229 svd->vdev_alloc_bias = VDEV_BIAS_NONE; 1230 1231 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 1232 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 1233 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 1234 1235 svd->vdev_stat.vs_alloc = 0; 1236 svd->vdev_stat.vs_space = 0; 1237 svd->vdev_stat.vs_dspace = 0; 1238 1239 /* 1240 * State which may be set on a top-level vdev that's in the 1241 * process of being removed. 1242 */ 1243 ASSERT0(tvd->vdev_indirect_config.vic_births_object); 1244 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); 1245 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); 1246 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL); 1247 ASSERT3P(tvd->vdev_indirect_births, ==, NULL); 1248 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL); 1249 ASSERT0(tvd->vdev_noalloc); 1250 ASSERT0(tvd->vdev_removing); 1251 ASSERT0(tvd->vdev_rebuilding); 1252 tvd->vdev_noalloc = svd->vdev_noalloc; 1253 tvd->vdev_removing = svd->vdev_removing; 1254 tvd->vdev_rebuilding = svd->vdev_rebuilding; 1255 tvd->vdev_rebuild_config = svd->vdev_rebuild_config; 1256 tvd->vdev_indirect_config = svd->vdev_indirect_config; 1257 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; 1258 tvd->vdev_indirect_births = svd->vdev_indirect_births; 1259 range_tree_swap(&svd->vdev_obsolete_segments, 1260 &tvd->vdev_obsolete_segments); 1261 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; 1262 svd->vdev_indirect_config.vic_mapping_object = 0; 1263 svd->vdev_indirect_config.vic_births_object = 0; 1264 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; 1265 svd->vdev_indirect_mapping = NULL; 1266 svd->vdev_indirect_births = NULL; 1267 svd->vdev_obsolete_sm = NULL; 1268 svd->vdev_noalloc = 0; 1269 svd->vdev_removing = 0; 1270 svd->vdev_rebuilding = 0; 1271 1272 for (t = 0; t < TXG_SIZE; t++) { 1273 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 1274 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 1275 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 1276 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 1277 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 1278 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 1279 } 1280 1281 if (list_link_active(&svd->vdev_config_dirty_node)) { 1282 vdev_config_clean(svd); 1283 vdev_config_dirty(tvd); 1284 } 1285 1286 if (list_link_active(&svd->vdev_state_dirty_node)) { 1287 vdev_state_clean(svd); 1288 vdev_state_dirty(tvd); 1289 } 1290 1291 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 1292 svd->vdev_deflate_ratio = 0; 1293 1294 tvd->vdev_islog = svd->vdev_islog; 1295 svd->vdev_islog = 0; 1296 1297 dsl_scan_io_queue_vdev_xfer(svd, tvd); 1298 } 1299 1300 static void 1301 vdev_top_update(vdev_t *tvd, vdev_t *vd) 1302 { 1303 if (vd == NULL) 1304 return; 1305 1306 vd->vdev_top = tvd; 1307 1308 for (int c = 0; c < vd->vdev_children; c++) 1309 vdev_top_update(tvd, vd->vdev_child[c]); 1310 } 1311 1312 /* 1313 * Add a mirror/replacing vdev above an existing vdev. There is no need to 1314 * call .vdev_op_init() since mirror/replacing vdevs do not have private state. 1315 */ 1316 vdev_t * 1317 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 1318 { 1319 spa_t *spa = cvd->vdev_spa; 1320 vdev_t *pvd = cvd->vdev_parent; 1321 vdev_t *mvd; 1322 1323 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1324 1325 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 1326 1327 mvd->vdev_asize = cvd->vdev_asize; 1328 mvd->vdev_min_asize = cvd->vdev_min_asize; 1329 mvd->vdev_max_asize = cvd->vdev_max_asize; 1330 mvd->vdev_psize = cvd->vdev_psize; 1331 mvd->vdev_ashift = cvd->vdev_ashift; 1332 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift; 1333 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift; 1334 mvd->vdev_state = cvd->vdev_state; 1335 mvd->vdev_crtxg = cvd->vdev_crtxg; 1336 1337 vdev_remove_child(pvd, cvd); 1338 vdev_add_child(pvd, mvd); 1339 cvd->vdev_id = mvd->vdev_children; 1340 vdev_add_child(mvd, cvd); 1341 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1342 1343 if (mvd == mvd->vdev_top) 1344 vdev_top_transfer(cvd, mvd); 1345 1346 return (mvd); 1347 } 1348 1349 /* 1350 * Remove a 1-way mirror/replacing vdev from the tree. 1351 */ 1352 void 1353 vdev_remove_parent(vdev_t *cvd) 1354 { 1355 vdev_t *mvd = cvd->vdev_parent; 1356 vdev_t *pvd = mvd->vdev_parent; 1357 1358 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1359 1360 ASSERT(mvd->vdev_children == 1); 1361 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 1362 mvd->vdev_ops == &vdev_replacing_ops || 1363 mvd->vdev_ops == &vdev_spare_ops); 1364 cvd->vdev_ashift = mvd->vdev_ashift; 1365 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift; 1366 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift; 1367 vdev_remove_child(mvd, cvd); 1368 vdev_remove_child(pvd, mvd); 1369 1370 /* 1371 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 1372 * Otherwise, we could have detached an offline device, and when we 1373 * go to import the pool we'll think we have two top-level vdevs, 1374 * instead of a different version of the same top-level vdev. 1375 */ 1376 if (mvd->vdev_top == mvd) { 1377 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 1378 cvd->vdev_orig_guid = cvd->vdev_guid; 1379 cvd->vdev_guid += guid_delta; 1380 cvd->vdev_guid_sum += guid_delta; 1381 1382 /* 1383 * If pool not set for autoexpand, we need to also preserve 1384 * mvd's asize to prevent automatic expansion of cvd. 1385 * Otherwise if we are adjusting the mirror by attaching and 1386 * detaching children of non-uniform sizes, the mirror could 1387 * autoexpand, unexpectedly requiring larger devices to 1388 * re-establish the mirror. 1389 */ 1390 if (!cvd->vdev_spa->spa_autoexpand) 1391 cvd->vdev_asize = mvd->vdev_asize; 1392 } 1393 cvd->vdev_id = mvd->vdev_id; 1394 vdev_add_child(pvd, cvd); 1395 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1396 1397 if (cvd == cvd->vdev_top) 1398 vdev_top_transfer(mvd, cvd); 1399 1400 ASSERT(mvd->vdev_children == 0); 1401 vdev_free(mvd); 1402 } 1403 1404 /* 1405 * Choose GCD for spa_gcd_alloc. 1406 */ 1407 static uint64_t 1408 vdev_gcd(uint64_t a, uint64_t b) 1409 { 1410 while (b != 0) { 1411 uint64_t t = b; 1412 b = a % b; 1413 a = t; 1414 } 1415 return (a); 1416 } 1417 1418 /* 1419 * Set spa_min_alloc and spa_gcd_alloc. 1420 */ 1421 static void 1422 vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc) 1423 { 1424 if (min_alloc < spa->spa_min_alloc) 1425 spa->spa_min_alloc = min_alloc; 1426 if (spa->spa_gcd_alloc == INT_MAX) { 1427 spa->spa_gcd_alloc = min_alloc; 1428 } else { 1429 spa->spa_gcd_alloc = vdev_gcd(min_alloc, 1430 spa->spa_gcd_alloc); 1431 } 1432 } 1433 1434 void 1435 vdev_metaslab_group_create(vdev_t *vd) 1436 { 1437 spa_t *spa = vd->vdev_spa; 1438 1439 /* 1440 * metaslab_group_create was delayed until allocation bias was available 1441 */ 1442 if (vd->vdev_mg == NULL) { 1443 metaslab_class_t *mc; 1444 1445 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE) 1446 vd->vdev_alloc_bias = VDEV_BIAS_LOG; 1447 1448 ASSERT3U(vd->vdev_islog, ==, 1449 (vd->vdev_alloc_bias == VDEV_BIAS_LOG)); 1450 1451 switch (vd->vdev_alloc_bias) { 1452 case VDEV_BIAS_LOG: 1453 mc = spa_log_class(spa); 1454 break; 1455 case VDEV_BIAS_SPECIAL: 1456 mc = spa_special_class(spa); 1457 break; 1458 case VDEV_BIAS_DEDUP: 1459 mc = spa_dedup_class(spa); 1460 break; 1461 default: 1462 mc = spa_normal_class(spa); 1463 } 1464 1465 vd->vdev_mg = metaslab_group_create(mc, vd, 1466 spa->spa_alloc_count); 1467 1468 if (!vd->vdev_islog) { 1469 vd->vdev_log_mg = metaslab_group_create( 1470 spa_embedded_log_class(spa), vd, 1); 1471 } 1472 1473 /* 1474 * The spa ashift min/max only apply for the normal metaslab 1475 * class. Class destination is late binding so ashift boundary 1476 * setting had to wait until now. 1477 */ 1478 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1479 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) { 1480 if (vd->vdev_ashift > spa->spa_max_ashift) 1481 spa->spa_max_ashift = vd->vdev_ashift; 1482 if (vd->vdev_ashift < spa->spa_min_ashift) 1483 spa->spa_min_ashift = vd->vdev_ashift; 1484 1485 uint64_t min_alloc = vdev_get_min_alloc(vd); 1486 vdev_spa_set_alloc(spa, min_alloc); 1487 } 1488 } 1489 } 1490 1491 int 1492 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 1493 { 1494 spa_t *spa = vd->vdev_spa; 1495 uint64_t oldc = vd->vdev_ms_count; 1496 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 1497 metaslab_t **mspp; 1498 int error; 1499 boolean_t expanding = (oldc != 0); 1500 1501 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1502 1503 /* 1504 * This vdev is not being allocated from yet or is a hole. 1505 */ 1506 if (vd->vdev_ms_shift == 0) 1507 return (0); 1508 1509 ASSERT(!vd->vdev_ishole); 1510 1511 ASSERT(oldc <= newc); 1512 1513 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 1514 1515 if (expanding) { 1516 memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp)); 1517 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 1518 } 1519 1520 vd->vdev_ms = mspp; 1521 vd->vdev_ms_count = newc; 1522 1523 for (uint64_t m = oldc; m < newc; m++) { 1524 uint64_t object = 0; 1525 /* 1526 * vdev_ms_array may be 0 if we are creating the "fake" 1527 * metaslabs for an indirect vdev for zdb's leak detection. 1528 * See zdb_leak_init(). 1529 */ 1530 if (txg == 0 && vd->vdev_ms_array != 0) { 1531 error = dmu_read(spa->spa_meta_objset, 1532 vd->vdev_ms_array, 1533 m * sizeof (uint64_t), sizeof (uint64_t), &object, 1534 DMU_READ_PREFETCH); 1535 if (error != 0) { 1536 vdev_dbgmsg(vd, "unable to read the metaslab " 1537 "array [error=%d]", error); 1538 return (error); 1539 } 1540 } 1541 1542 error = metaslab_init(vd->vdev_mg, m, object, txg, 1543 &(vd->vdev_ms[m])); 1544 if (error != 0) { 1545 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", 1546 error); 1547 return (error); 1548 } 1549 } 1550 1551 /* 1552 * Find the emptiest metaslab on the vdev and mark it for use for 1553 * embedded slog by moving it from the regular to the log metaslab 1554 * group. 1555 */ 1556 if (vd->vdev_mg->mg_class == spa_normal_class(spa) && 1557 vd->vdev_ms_count > zfs_embedded_slog_min_ms && 1558 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) { 1559 uint64_t slog_msid = 0; 1560 uint64_t smallest = UINT64_MAX; 1561 1562 /* 1563 * Note, we only search the new metaslabs, because the old 1564 * (pre-existing) ones may be active (e.g. have non-empty 1565 * range_tree's), and we don't move them to the new 1566 * metaslab_t. 1567 */ 1568 for (uint64_t m = oldc; m < newc; m++) { 1569 uint64_t alloc = 1570 space_map_allocated(vd->vdev_ms[m]->ms_sm); 1571 if (alloc < smallest) { 1572 slog_msid = m; 1573 smallest = alloc; 1574 } 1575 } 1576 metaslab_t *slog_ms = vd->vdev_ms[slog_msid]; 1577 /* 1578 * The metaslab was marked as dirty at the end of 1579 * metaslab_init(). Remove it from the dirty list so that we 1580 * can uninitialize and reinitialize it to the new class. 1581 */ 1582 if (txg != 0) { 1583 (void) txg_list_remove_this(&vd->vdev_ms_list, 1584 slog_ms, txg); 1585 } 1586 uint64_t sm_obj = space_map_object(slog_ms->ms_sm); 1587 metaslab_fini(slog_ms); 1588 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg, 1589 &vd->vdev_ms[slog_msid])); 1590 } 1591 1592 if (txg == 0) 1593 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 1594 1595 /* 1596 * If the vdev is marked as non-allocating then don't 1597 * activate the metaslabs since we want to ensure that 1598 * no allocations are performed on this device. 1599 */ 1600 if (vd->vdev_noalloc) { 1601 /* track non-allocating vdev space */ 1602 spa->spa_nonallocating_dspace += spa_deflate(spa) ? 1603 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; 1604 } else if (!expanding) { 1605 metaslab_group_activate(vd->vdev_mg); 1606 if (vd->vdev_log_mg != NULL) 1607 metaslab_group_activate(vd->vdev_log_mg); 1608 } 1609 1610 if (txg == 0) 1611 spa_config_exit(spa, SCL_ALLOC, FTAG); 1612 1613 return (0); 1614 } 1615 1616 void 1617 vdev_metaslab_fini(vdev_t *vd) 1618 { 1619 if (vd->vdev_checkpoint_sm != NULL) { 1620 ASSERT(spa_feature_is_active(vd->vdev_spa, 1621 SPA_FEATURE_POOL_CHECKPOINT)); 1622 space_map_close(vd->vdev_checkpoint_sm); 1623 /* 1624 * Even though we close the space map, we need to set its 1625 * pointer to NULL. The reason is that vdev_metaslab_fini() 1626 * may be called multiple times for certain operations 1627 * (i.e. when destroying a pool) so we need to ensure that 1628 * this clause never executes twice. This logic is similar 1629 * to the one used for the vdev_ms clause below. 1630 */ 1631 vd->vdev_checkpoint_sm = NULL; 1632 } 1633 1634 if (vd->vdev_ms != NULL) { 1635 metaslab_group_t *mg = vd->vdev_mg; 1636 1637 metaslab_group_passivate(mg); 1638 if (vd->vdev_log_mg != NULL) { 1639 ASSERT(!vd->vdev_islog); 1640 metaslab_group_passivate(vd->vdev_log_mg); 1641 } 1642 1643 uint64_t count = vd->vdev_ms_count; 1644 for (uint64_t m = 0; m < count; m++) { 1645 metaslab_t *msp = vd->vdev_ms[m]; 1646 if (msp != NULL) 1647 metaslab_fini(msp); 1648 } 1649 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1650 vd->vdev_ms = NULL; 1651 vd->vdev_ms_count = 0; 1652 1653 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 1654 ASSERT0(mg->mg_histogram[i]); 1655 if (vd->vdev_log_mg != NULL) 1656 ASSERT0(vd->vdev_log_mg->mg_histogram[i]); 1657 } 1658 } 1659 ASSERT0(vd->vdev_ms_count); 1660 } 1661 1662 typedef struct vdev_probe_stats { 1663 boolean_t vps_readable; 1664 boolean_t vps_writeable; 1665 int vps_flags; 1666 } vdev_probe_stats_t; 1667 1668 static void 1669 vdev_probe_done(zio_t *zio) 1670 { 1671 spa_t *spa = zio->io_spa; 1672 vdev_t *vd = zio->io_vd; 1673 vdev_probe_stats_t *vps = zio->io_private; 1674 1675 ASSERT(vd->vdev_probe_zio != NULL); 1676 1677 if (zio->io_type == ZIO_TYPE_READ) { 1678 if (zio->io_error == 0) 1679 vps->vps_readable = 1; 1680 if (zio->io_error == 0 && spa_writeable(spa)) { 1681 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1682 zio->io_offset, zio->io_size, zio->io_abd, 1683 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1684 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1685 } else { 1686 abd_free(zio->io_abd); 1687 } 1688 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1689 if (zio->io_error == 0) 1690 vps->vps_writeable = 1; 1691 abd_free(zio->io_abd); 1692 } else if (zio->io_type == ZIO_TYPE_NULL) { 1693 zio_t *pio; 1694 zio_link_t *zl; 1695 1696 vd->vdev_cant_read |= !vps->vps_readable; 1697 vd->vdev_cant_write |= !vps->vps_writeable; 1698 vdev_dbgmsg(vd, "probe done, cant_read=%u cant_write=%u", 1699 vd->vdev_cant_read, vd->vdev_cant_write); 1700 1701 if (vdev_readable(vd) && 1702 (vdev_writeable(vd) || !spa_writeable(spa))) { 1703 zio->io_error = 0; 1704 } else { 1705 ASSERT(zio->io_error != 0); 1706 vdev_dbgmsg(vd, "failed probe"); 1707 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1708 spa, vd, NULL, NULL, 0); 1709 zio->io_error = SET_ERROR(ENXIO); 1710 } 1711 1712 mutex_enter(&vd->vdev_probe_lock); 1713 ASSERT(vd->vdev_probe_zio == zio); 1714 vd->vdev_probe_zio = NULL; 1715 mutex_exit(&vd->vdev_probe_lock); 1716 1717 zl = NULL; 1718 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1719 if (!vdev_accessible(vd, pio)) 1720 pio->io_error = SET_ERROR(ENXIO); 1721 1722 kmem_free(vps, sizeof (*vps)); 1723 } 1724 } 1725 1726 /* 1727 * Determine whether this device is accessible. 1728 * 1729 * Read and write to several known locations: the pad regions of each 1730 * vdev label but the first, which we leave alone in case it contains 1731 * a VTOC. 1732 */ 1733 zio_t * 1734 vdev_probe(vdev_t *vd, zio_t *zio) 1735 { 1736 spa_t *spa = vd->vdev_spa; 1737 vdev_probe_stats_t *vps = NULL; 1738 zio_t *pio; 1739 1740 ASSERT(vd->vdev_ops->vdev_op_leaf); 1741 1742 /* 1743 * Don't probe the probe. 1744 */ 1745 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1746 return (NULL); 1747 1748 /* 1749 * To prevent 'probe storms' when a device fails, we create 1750 * just one probe i/o at a time. All zios that want to probe 1751 * this vdev will become parents of the probe io. 1752 */ 1753 mutex_enter(&vd->vdev_probe_lock); 1754 1755 if ((pio = vd->vdev_probe_zio) == NULL) { 1756 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1757 1758 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1759 ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD; 1760 1761 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1762 /* 1763 * vdev_cant_read and vdev_cant_write can only 1764 * transition from TRUE to FALSE when we have the 1765 * SCL_ZIO lock as writer; otherwise they can only 1766 * transition from FALSE to TRUE. This ensures that 1767 * any zio looking at these values can assume that 1768 * failures persist for the life of the I/O. That's 1769 * important because when a device has intermittent 1770 * connectivity problems, we want to ensure that 1771 * they're ascribed to the device (ENXIO) and not 1772 * the zio (EIO). 1773 * 1774 * Since we hold SCL_ZIO as writer here, clear both 1775 * values so the probe can reevaluate from first 1776 * principles. 1777 */ 1778 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1779 vd->vdev_cant_read = B_FALSE; 1780 vd->vdev_cant_write = B_FALSE; 1781 } 1782 1783 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1784 vdev_probe_done, vps, 1785 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1786 1787 /* 1788 * We can't change the vdev state in this context, so we 1789 * kick off an async task to do it on our behalf. 1790 */ 1791 if (zio != NULL) { 1792 vd->vdev_probe_wanted = B_TRUE; 1793 spa_async_request(spa, SPA_ASYNC_PROBE); 1794 } 1795 } 1796 1797 if (zio != NULL) 1798 zio_add_child(zio, pio); 1799 1800 mutex_exit(&vd->vdev_probe_lock); 1801 1802 if (vps == NULL) { 1803 ASSERT(zio != NULL); 1804 return (NULL); 1805 } 1806 1807 for (int l = 1; l < VDEV_LABELS; l++) { 1808 zio_nowait(zio_read_phys(pio, vd, 1809 vdev_label_offset(vd->vdev_psize, l, 1810 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE, 1811 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1812 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1813 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1814 } 1815 1816 if (zio == NULL) 1817 return (pio); 1818 1819 zio_nowait(pio); 1820 return (NULL); 1821 } 1822 1823 static void 1824 vdev_load_child(void *arg) 1825 { 1826 vdev_t *vd = arg; 1827 1828 vd->vdev_load_error = vdev_load(vd); 1829 } 1830 1831 static void 1832 vdev_open_child(void *arg) 1833 { 1834 vdev_t *vd = arg; 1835 1836 vd->vdev_open_thread = curthread; 1837 vd->vdev_open_error = vdev_open(vd); 1838 vd->vdev_open_thread = NULL; 1839 } 1840 1841 static boolean_t 1842 vdev_uses_zvols(vdev_t *vd) 1843 { 1844 #ifdef _KERNEL 1845 if (zvol_is_zvol(vd->vdev_path)) 1846 return (B_TRUE); 1847 #endif 1848 1849 for (int c = 0; c < vd->vdev_children; c++) 1850 if (vdev_uses_zvols(vd->vdev_child[c])) 1851 return (B_TRUE); 1852 1853 return (B_FALSE); 1854 } 1855 1856 /* 1857 * Returns B_TRUE if the passed child should be opened. 1858 */ 1859 static boolean_t 1860 vdev_default_open_children_func(vdev_t *vd) 1861 { 1862 (void) vd; 1863 return (B_TRUE); 1864 } 1865 1866 /* 1867 * Open the requested child vdevs. If any of the leaf vdevs are using 1868 * a ZFS volume then do the opens in a single thread. This avoids a 1869 * deadlock when the current thread is holding the spa_namespace_lock. 1870 */ 1871 static void 1872 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func) 1873 { 1874 int children = vd->vdev_children; 1875 1876 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri, 1877 children, children, TASKQ_PREPOPULATE); 1878 vd->vdev_nonrot = B_TRUE; 1879 1880 for (int c = 0; c < children; c++) { 1881 vdev_t *cvd = vd->vdev_child[c]; 1882 1883 if (open_func(cvd) == B_FALSE) 1884 continue; 1885 1886 if (tq == NULL || vdev_uses_zvols(vd)) { 1887 cvd->vdev_open_error = vdev_open(cvd); 1888 } else { 1889 VERIFY(taskq_dispatch(tq, vdev_open_child, 1890 cvd, TQ_SLEEP) != TASKQID_INVALID); 1891 } 1892 1893 vd->vdev_nonrot &= cvd->vdev_nonrot; 1894 } 1895 1896 if (tq != NULL) { 1897 taskq_wait(tq); 1898 taskq_destroy(tq); 1899 } 1900 } 1901 1902 /* 1903 * Open all child vdevs. 1904 */ 1905 void 1906 vdev_open_children(vdev_t *vd) 1907 { 1908 vdev_open_children_impl(vd, vdev_default_open_children_func); 1909 } 1910 1911 /* 1912 * Conditionally open a subset of child vdevs. 1913 */ 1914 void 1915 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func) 1916 { 1917 vdev_open_children_impl(vd, open_func); 1918 } 1919 1920 /* 1921 * Compute the raidz-deflation ratio. Note, we hard-code 128k (1 << 17) 1922 * because it is the "typical" blocksize. Even though SPA_MAXBLOCKSIZE 1923 * changed, this algorithm can not change, otherwise it would inconsistently 1924 * account for existing bp's. We also hard-code txg 0 for the same reason 1925 * since expanded RAIDZ vdevs can use a different asize for different birth 1926 * txg's. 1927 */ 1928 static void 1929 vdev_set_deflate_ratio(vdev_t *vd) 1930 { 1931 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { 1932 vd->vdev_deflate_ratio = (1 << 17) / 1933 (vdev_psize_to_asize_txg(vd, 1 << 17, 0) >> 1934 SPA_MINBLOCKSHIFT); 1935 } 1936 } 1937 1938 /* 1939 * Choose the best of two ashifts, preferring one between logical ashift 1940 * (absolute minimum) and administrator defined maximum, otherwise take 1941 * the biggest of the two. 1942 */ 1943 uint64_t 1944 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b) 1945 { 1946 if (a > logical && a <= zfs_vdev_max_auto_ashift) { 1947 if (b <= logical || b > zfs_vdev_max_auto_ashift) 1948 return (a); 1949 else 1950 return (MAX(a, b)); 1951 } else if (b <= logical || b > zfs_vdev_max_auto_ashift) 1952 return (MAX(a, b)); 1953 return (b); 1954 } 1955 1956 /* 1957 * Maximize performance by inflating the configured ashift for top level 1958 * vdevs to be as close to the physical ashift as possible while maintaining 1959 * administrator defined limits and ensuring it doesn't go below the 1960 * logical ashift. 1961 */ 1962 static void 1963 vdev_ashift_optimize(vdev_t *vd) 1964 { 1965 ASSERT(vd == vd->vdev_top); 1966 1967 if (vd->vdev_ashift < vd->vdev_physical_ashift && 1968 vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) { 1969 vd->vdev_ashift = MIN( 1970 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift), 1971 MAX(zfs_vdev_min_auto_ashift, 1972 vd->vdev_physical_ashift)); 1973 } else { 1974 /* 1975 * If the logical and physical ashifts are the same, then 1976 * we ensure that the top-level vdev's ashift is not smaller 1977 * than our minimum ashift value. For the unusual case 1978 * where logical ashift > physical ashift, we can't cap 1979 * the calculated ashift based on max ashift as that 1980 * would cause failures. 1981 * We still check if we need to increase it to match 1982 * the min ashift. 1983 */ 1984 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift, 1985 vd->vdev_ashift); 1986 } 1987 } 1988 1989 /* 1990 * Prepare a virtual device for access. 1991 */ 1992 int 1993 vdev_open(vdev_t *vd) 1994 { 1995 spa_t *spa = vd->vdev_spa; 1996 int error; 1997 uint64_t osize = 0; 1998 uint64_t max_osize = 0; 1999 uint64_t asize, max_asize, psize; 2000 uint64_t logical_ashift = 0; 2001 uint64_t physical_ashift = 0; 2002 2003 ASSERT(vd->vdev_open_thread == curthread || 2004 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2005 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 2006 vd->vdev_state == VDEV_STATE_CANT_OPEN || 2007 vd->vdev_state == VDEV_STATE_OFFLINE); 2008 2009 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2010 vd->vdev_cant_read = B_FALSE; 2011 vd->vdev_cant_write = B_FALSE; 2012 vd->vdev_min_asize = vdev_get_min_asize(vd); 2013 2014 /* 2015 * If this vdev is not removed, check its fault status. If it's 2016 * faulted, bail out of the open. 2017 */ 2018 if (!vd->vdev_removed && vd->vdev_faulted) { 2019 ASSERT(vd->vdev_children == 0); 2020 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 2021 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 2022 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2023 vd->vdev_label_aux); 2024 return (SET_ERROR(ENXIO)); 2025 } else if (vd->vdev_offline) { 2026 ASSERT(vd->vdev_children == 0); 2027 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 2028 return (SET_ERROR(ENXIO)); 2029 } 2030 2031 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, 2032 &logical_ashift, &physical_ashift); 2033 2034 /* Keep the device in removed state if unplugged */ 2035 if (error == ENOENT && vd->vdev_removed) { 2036 vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED, 2037 VDEV_AUX_NONE); 2038 return (error); 2039 } 2040 2041 /* 2042 * Physical volume size should never be larger than its max size, unless 2043 * the disk has shrunk while we were reading it or the device is buggy 2044 * or damaged: either way it's not safe for use, bail out of the open. 2045 */ 2046 if (osize > max_osize) { 2047 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2048 VDEV_AUX_OPEN_FAILED); 2049 return (SET_ERROR(ENXIO)); 2050 } 2051 2052 /* 2053 * Reset the vdev_reopening flag so that we actually close 2054 * the vdev on error. 2055 */ 2056 vd->vdev_reopening = B_FALSE; 2057 if (zio_injection_enabled && error == 0) 2058 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO)); 2059 2060 if (error) { 2061 if (vd->vdev_removed && 2062 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 2063 vd->vdev_removed = B_FALSE; 2064 2065 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { 2066 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, 2067 vd->vdev_stat.vs_aux); 2068 } else { 2069 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2070 vd->vdev_stat.vs_aux); 2071 } 2072 return (error); 2073 } 2074 2075 vd->vdev_removed = B_FALSE; 2076 2077 /* 2078 * Recheck the faulted flag now that we have confirmed that 2079 * the vdev is accessible. If we're faulted, bail. 2080 */ 2081 if (vd->vdev_faulted) { 2082 ASSERT(vd->vdev_children == 0); 2083 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 2084 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 2085 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2086 vd->vdev_label_aux); 2087 return (SET_ERROR(ENXIO)); 2088 } 2089 2090 if (vd->vdev_degraded) { 2091 ASSERT(vd->vdev_children == 0); 2092 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 2093 VDEV_AUX_ERR_EXCEEDED); 2094 } else { 2095 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 2096 } 2097 2098 /* 2099 * For hole or missing vdevs we just return success. 2100 */ 2101 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 2102 return (0); 2103 2104 for (int c = 0; c < vd->vdev_children; c++) { 2105 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 2106 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 2107 VDEV_AUX_NONE); 2108 break; 2109 } 2110 } 2111 2112 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 2113 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 2114 2115 if (vd->vdev_children == 0) { 2116 if (osize < SPA_MINDEVSIZE) { 2117 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2118 VDEV_AUX_TOO_SMALL); 2119 return (SET_ERROR(EOVERFLOW)); 2120 } 2121 psize = osize; 2122 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 2123 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 2124 VDEV_LABEL_END_SIZE); 2125 } else { 2126 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 2127 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 2128 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2129 VDEV_AUX_TOO_SMALL); 2130 return (SET_ERROR(EOVERFLOW)); 2131 } 2132 psize = 0; 2133 asize = osize; 2134 max_asize = max_osize; 2135 } 2136 2137 /* 2138 * If the vdev was expanded, record this so that we can re-create the 2139 * uberblock rings in labels {2,3}, during the next sync. 2140 */ 2141 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0)) 2142 vd->vdev_copy_uberblocks = B_TRUE; 2143 2144 vd->vdev_psize = psize; 2145 2146 /* 2147 * Make sure the allocatable size hasn't shrunk too much. 2148 */ 2149 if (asize < vd->vdev_min_asize) { 2150 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2151 VDEV_AUX_BAD_LABEL); 2152 return (SET_ERROR(EINVAL)); 2153 } 2154 2155 /* 2156 * We can always set the logical/physical ashift members since 2157 * their values are only used to calculate the vdev_ashift when 2158 * the device is first added to the config. These values should 2159 * not be used for anything else since they may change whenever 2160 * the device is reopened and we don't store them in the label. 2161 */ 2162 vd->vdev_physical_ashift = 2163 MAX(physical_ashift, vd->vdev_physical_ashift); 2164 vd->vdev_logical_ashift = MAX(logical_ashift, 2165 vd->vdev_logical_ashift); 2166 2167 if (vd->vdev_asize == 0) { 2168 /* 2169 * This is the first-ever open, so use the computed values. 2170 * For compatibility, a different ashift can be requested. 2171 */ 2172 vd->vdev_asize = asize; 2173 vd->vdev_max_asize = max_asize; 2174 2175 /* 2176 * If the vdev_ashift was not overridden at creation time, 2177 * then set it the logical ashift and optimize the ashift. 2178 */ 2179 if (vd->vdev_ashift == 0) { 2180 vd->vdev_ashift = vd->vdev_logical_ashift; 2181 2182 if (vd->vdev_logical_ashift > ASHIFT_MAX) { 2183 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2184 VDEV_AUX_ASHIFT_TOO_BIG); 2185 return (SET_ERROR(EDOM)); 2186 } 2187 2188 if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE) 2189 vdev_ashift_optimize(vd); 2190 vd->vdev_attaching = B_FALSE; 2191 } 2192 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN || 2193 vd->vdev_ashift > ASHIFT_MAX)) { 2194 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2195 VDEV_AUX_BAD_ASHIFT); 2196 return (SET_ERROR(EDOM)); 2197 } 2198 } else { 2199 /* 2200 * Make sure the alignment required hasn't increased. 2201 */ 2202 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift && 2203 vd->vdev_ops->vdev_op_leaf) { 2204 (void) zfs_ereport_post( 2205 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT, 2206 spa, vd, NULL, NULL, 0); 2207 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2208 VDEV_AUX_BAD_LABEL); 2209 return (SET_ERROR(EDOM)); 2210 } 2211 vd->vdev_max_asize = max_asize; 2212 } 2213 2214 /* 2215 * If all children are healthy we update asize if either: 2216 * The asize has increased, due to a device expansion caused by dynamic 2217 * LUN growth or vdev replacement, and automatic expansion is enabled; 2218 * making the additional space available. 2219 * 2220 * The asize has decreased, due to a device shrink usually caused by a 2221 * vdev replace with a smaller device. This ensures that calculations 2222 * based of max_asize and asize e.g. esize are always valid. It's safe 2223 * to do this as we've already validated that asize is greater than 2224 * vdev_min_asize. 2225 */ 2226 if (vd->vdev_state == VDEV_STATE_HEALTHY && 2227 ((asize > vd->vdev_asize && 2228 (vd->vdev_expanding || spa->spa_autoexpand)) || 2229 (asize < vd->vdev_asize))) 2230 vd->vdev_asize = asize; 2231 2232 vdev_set_min_asize(vd); 2233 2234 /* 2235 * Ensure we can issue some IO before declaring the 2236 * vdev open for business. 2237 */ 2238 if (vd->vdev_ops->vdev_op_leaf && 2239 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 2240 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2241 VDEV_AUX_ERR_EXCEEDED); 2242 return (error); 2243 } 2244 2245 /* 2246 * Track the minimum allocation size. 2247 */ 2248 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 2249 vd->vdev_islog == 0 && vd->vdev_aux == NULL) { 2250 uint64_t min_alloc = vdev_get_min_alloc(vd); 2251 vdev_spa_set_alloc(spa, min_alloc); 2252 } 2253 2254 /* 2255 * If this is a leaf vdev, assess whether a resilver is needed. 2256 * But don't do this if we are doing a reopen for a scrub, since 2257 * this would just restart the scrub we are already doing. 2258 */ 2259 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen) 2260 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd); 2261 2262 return (0); 2263 } 2264 2265 static void 2266 vdev_validate_child(void *arg) 2267 { 2268 vdev_t *vd = arg; 2269 2270 vd->vdev_validate_thread = curthread; 2271 vd->vdev_validate_error = vdev_validate(vd); 2272 vd->vdev_validate_thread = NULL; 2273 } 2274 2275 /* 2276 * Called once the vdevs are all opened, this routine validates the label 2277 * contents. This needs to be done before vdev_load() so that we don't 2278 * inadvertently do repair I/Os to the wrong device. 2279 * 2280 * This function will only return failure if one of the vdevs indicates that it 2281 * has since been destroyed or exported. This is only possible if 2282 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 2283 * will be updated but the function will return 0. 2284 */ 2285 int 2286 vdev_validate(vdev_t *vd) 2287 { 2288 spa_t *spa = vd->vdev_spa; 2289 taskq_t *tq = NULL; 2290 nvlist_t *label; 2291 uint64_t guid = 0, aux_guid = 0, top_guid; 2292 uint64_t state; 2293 nvlist_t *nvl; 2294 uint64_t txg; 2295 int children = vd->vdev_children; 2296 2297 if (vdev_validate_skip) 2298 return (0); 2299 2300 if (children > 0) { 2301 tq = taskq_create("vdev_validate", children, minclsyspri, 2302 children, children, TASKQ_PREPOPULATE); 2303 } 2304 2305 for (uint64_t c = 0; c < children; c++) { 2306 vdev_t *cvd = vd->vdev_child[c]; 2307 2308 if (tq == NULL || vdev_uses_zvols(cvd)) { 2309 vdev_validate_child(cvd); 2310 } else { 2311 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd, 2312 TQ_SLEEP) != TASKQID_INVALID); 2313 } 2314 } 2315 if (tq != NULL) { 2316 taskq_wait(tq); 2317 taskq_destroy(tq); 2318 } 2319 for (int c = 0; c < children; c++) { 2320 int error = vd->vdev_child[c]->vdev_validate_error; 2321 2322 if (error != 0) 2323 return (SET_ERROR(EBADF)); 2324 } 2325 2326 2327 /* 2328 * If the device has already failed, or was marked offline, don't do 2329 * any further validation. Otherwise, label I/O will fail and we will 2330 * overwrite the previous state. 2331 */ 2332 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) 2333 return (0); 2334 2335 /* 2336 * If we are performing an extreme rewind, we allow for a label that 2337 * was modified at a point after the current txg. 2338 * If config lock is not held do not check for the txg. spa_sync could 2339 * be updating the vdev's label before updating spa_last_synced_txg. 2340 */ 2341 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || 2342 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) 2343 txg = UINT64_MAX; 2344 else 2345 txg = spa_last_synced_txg(spa); 2346 2347 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 2348 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2349 VDEV_AUX_BAD_LABEL); 2350 vdev_dbgmsg(vd, "vdev_validate: failed reading config for " 2351 "txg %llu", (u_longlong_t)txg); 2352 return (0); 2353 } 2354 2355 /* 2356 * Determine if this vdev has been split off into another 2357 * pool. If so, then refuse to open it. 2358 */ 2359 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 2360 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 2361 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2362 VDEV_AUX_SPLIT_POOL); 2363 nvlist_free(label); 2364 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); 2365 return (0); 2366 } 2367 2368 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { 2369 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2370 VDEV_AUX_CORRUPT_DATA); 2371 nvlist_free(label); 2372 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2373 ZPOOL_CONFIG_POOL_GUID); 2374 return (0); 2375 } 2376 2377 /* 2378 * If config is not trusted then ignore the spa guid check. This is 2379 * necessary because if the machine crashed during a re-guid the new 2380 * guid might have been written to all of the vdev labels, but not the 2381 * cached config. The check will be performed again once we have the 2382 * trusted config from the MOS. 2383 */ 2384 if (spa->spa_trust_config && guid != spa_guid(spa)) { 2385 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2386 VDEV_AUX_CORRUPT_DATA); 2387 nvlist_free(label); 2388 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " 2389 "match config (%llu != %llu)", (u_longlong_t)guid, 2390 (u_longlong_t)spa_guid(spa)); 2391 return (0); 2392 } 2393 2394 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 2395 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 2396 &aux_guid) != 0) 2397 aux_guid = 0; 2398 2399 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { 2400 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2401 VDEV_AUX_CORRUPT_DATA); 2402 nvlist_free(label); 2403 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2404 ZPOOL_CONFIG_GUID); 2405 return (0); 2406 } 2407 2408 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) 2409 != 0) { 2410 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2411 VDEV_AUX_CORRUPT_DATA); 2412 nvlist_free(label); 2413 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2414 ZPOOL_CONFIG_TOP_GUID); 2415 return (0); 2416 } 2417 2418 /* 2419 * If this vdev just became a top-level vdev because its sibling was 2420 * detached, it will have adopted the parent's vdev guid -- but the 2421 * label may or may not be on disk yet. Fortunately, either version 2422 * of the label will have the same top guid, so if we're a top-level 2423 * vdev, we can safely compare to that instead. 2424 * However, if the config comes from a cachefile that failed to update 2425 * after the detach, a top-level vdev will appear as a non top-level 2426 * vdev in the config. Also relax the constraints if we perform an 2427 * extreme rewind. 2428 * 2429 * If we split this vdev off instead, then we also check the 2430 * original pool's guid. We don't want to consider the vdev 2431 * corrupt if it is partway through a split operation. 2432 */ 2433 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { 2434 boolean_t mismatch = B_FALSE; 2435 if (spa->spa_trust_config && !spa->spa_extreme_rewind) { 2436 if (vd != vd->vdev_top || vd->vdev_guid != top_guid) 2437 mismatch = B_TRUE; 2438 } else { 2439 if (vd->vdev_guid != top_guid && 2440 vd->vdev_top->vdev_guid != guid) 2441 mismatch = B_TRUE; 2442 } 2443 2444 if (mismatch) { 2445 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2446 VDEV_AUX_CORRUPT_DATA); 2447 nvlist_free(label); 2448 vdev_dbgmsg(vd, "vdev_validate: config guid " 2449 "doesn't match label guid"); 2450 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", 2451 (u_longlong_t)vd->vdev_guid, 2452 (u_longlong_t)vd->vdev_top->vdev_guid); 2453 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " 2454 "aux_guid %llu", (u_longlong_t)guid, 2455 (u_longlong_t)top_guid, (u_longlong_t)aux_guid); 2456 return (0); 2457 } 2458 } 2459 2460 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 2461 &state) != 0) { 2462 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2463 VDEV_AUX_CORRUPT_DATA); 2464 nvlist_free(label); 2465 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2466 ZPOOL_CONFIG_POOL_STATE); 2467 return (0); 2468 } 2469 2470 nvlist_free(label); 2471 2472 /* 2473 * If this is a verbatim import, no need to check the 2474 * state of the pool. 2475 */ 2476 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 2477 spa_load_state(spa) == SPA_LOAD_OPEN && 2478 state != POOL_STATE_ACTIVE) { 2479 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " 2480 "for spa %s", (u_longlong_t)state, spa->spa_name); 2481 return (SET_ERROR(EBADF)); 2482 } 2483 2484 /* 2485 * If we were able to open and validate a vdev that was 2486 * previously marked permanently unavailable, clear that state 2487 * now. 2488 */ 2489 if (vd->vdev_not_present) 2490 vd->vdev_not_present = 0; 2491 2492 return (0); 2493 } 2494 2495 static void 2496 vdev_update_path(const char *prefix, char *svd, char **dvd, uint64_t guid) 2497 { 2498 if (svd != NULL && *dvd != NULL) { 2499 if (strcmp(svd, *dvd) != 0) { 2500 zfs_dbgmsg("vdev_copy_path: vdev %llu: %s changed " 2501 "from '%s' to '%s'", (u_longlong_t)guid, prefix, 2502 *dvd, svd); 2503 spa_strfree(*dvd); 2504 *dvd = spa_strdup(svd); 2505 } 2506 } else if (svd != NULL) { 2507 *dvd = spa_strdup(svd); 2508 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", 2509 (u_longlong_t)guid, *dvd); 2510 } 2511 } 2512 2513 static void 2514 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) 2515 { 2516 char *old, *new; 2517 2518 vdev_update_path("vdev_path", svd->vdev_path, &dvd->vdev_path, 2519 dvd->vdev_guid); 2520 2521 vdev_update_path("vdev_devid", svd->vdev_devid, &dvd->vdev_devid, 2522 dvd->vdev_guid); 2523 2524 vdev_update_path("vdev_physpath", svd->vdev_physpath, 2525 &dvd->vdev_physpath, dvd->vdev_guid); 2526 2527 /* 2528 * Our enclosure sysfs path may have changed between imports 2529 */ 2530 old = dvd->vdev_enc_sysfs_path; 2531 new = svd->vdev_enc_sysfs_path; 2532 if ((old != NULL && new == NULL) || 2533 (old == NULL && new != NULL) || 2534 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) { 2535 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path " 2536 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2537 old, new); 2538 2539 if (dvd->vdev_enc_sysfs_path) 2540 spa_strfree(dvd->vdev_enc_sysfs_path); 2541 2542 if (svd->vdev_enc_sysfs_path) { 2543 dvd->vdev_enc_sysfs_path = spa_strdup( 2544 svd->vdev_enc_sysfs_path); 2545 } else { 2546 dvd->vdev_enc_sysfs_path = NULL; 2547 } 2548 } 2549 } 2550 2551 /* 2552 * Recursively copy vdev paths from one vdev to another. Source and destination 2553 * vdev trees must have same geometry otherwise return error. Intended to copy 2554 * paths from userland config into MOS config. 2555 */ 2556 int 2557 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) 2558 { 2559 if ((svd->vdev_ops == &vdev_missing_ops) || 2560 (svd->vdev_ishole && dvd->vdev_ishole) || 2561 (dvd->vdev_ops == &vdev_indirect_ops)) 2562 return (0); 2563 2564 if (svd->vdev_ops != dvd->vdev_ops) { 2565 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", 2566 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); 2567 return (SET_ERROR(EINVAL)); 2568 } 2569 2570 if (svd->vdev_guid != dvd->vdev_guid) { 2571 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " 2572 "%llu)", (u_longlong_t)svd->vdev_guid, 2573 (u_longlong_t)dvd->vdev_guid); 2574 return (SET_ERROR(EINVAL)); 2575 } 2576 2577 if (svd->vdev_children != dvd->vdev_children) { 2578 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " 2579 "%llu != %llu", (u_longlong_t)svd->vdev_children, 2580 (u_longlong_t)dvd->vdev_children); 2581 return (SET_ERROR(EINVAL)); 2582 } 2583 2584 for (uint64_t i = 0; i < svd->vdev_children; i++) { 2585 int error = vdev_copy_path_strict(svd->vdev_child[i], 2586 dvd->vdev_child[i]); 2587 if (error != 0) 2588 return (error); 2589 } 2590 2591 if (svd->vdev_ops->vdev_op_leaf) 2592 vdev_copy_path_impl(svd, dvd); 2593 2594 return (0); 2595 } 2596 2597 static void 2598 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) 2599 { 2600 ASSERT(stvd->vdev_top == stvd); 2601 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); 2602 2603 for (uint64_t i = 0; i < dvd->vdev_children; i++) { 2604 vdev_copy_path_search(stvd, dvd->vdev_child[i]); 2605 } 2606 2607 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) 2608 return; 2609 2610 /* 2611 * The idea here is that while a vdev can shift positions within 2612 * a top vdev (when replacing, attaching mirror, etc.) it cannot 2613 * step outside of it. 2614 */ 2615 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); 2616 2617 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) 2618 return; 2619 2620 ASSERT(vd->vdev_ops->vdev_op_leaf); 2621 2622 vdev_copy_path_impl(vd, dvd); 2623 } 2624 2625 /* 2626 * Recursively copy vdev paths from one root vdev to another. Source and 2627 * destination vdev trees may differ in geometry. For each destination leaf 2628 * vdev, search a vdev with the same guid and top vdev id in the source. 2629 * Intended to copy paths from userland config into MOS config. 2630 */ 2631 void 2632 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) 2633 { 2634 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); 2635 ASSERT(srvd->vdev_ops == &vdev_root_ops); 2636 ASSERT(drvd->vdev_ops == &vdev_root_ops); 2637 2638 for (uint64_t i = 0; i < children; i++) { 2639 vdev_copy_path_search(srvd->vdev_child[i], 2640 drvd->vdev_child[i]); 2641 } 2642 } 2643 2644 /* 2645 * Close a virtual device. 2646 */ 2647 void 2648 vdev_close(vdev_t *vd) 2649 { 2650 vdev_t *pvd = vd->vdev_parent; 2651 spa_t *spa __maybe_unused = vd->vdev_spa; 2652 2653 ASSERT(vd != NULL); 2654 ASSERT(vd->vdev_open_thread == curthread || 2655 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2656 2657 /* 2658 * If our parent is reopening, then we are as well, unless we are 2659 * going offline. 2660 */ 2661 if (pvd != NULL && pvd->vdev_reopening) 2662 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 2663 2664 vd->vdev_ops->vdev_op_close(vd); 2665 2666 /* 2667 * We record the previous state before we close it, so that if we are 2668 * doing a reopen(), we don't generate FMA ereports if we notice that 2669 * it's still faulted. 2670 */ 2671 vd->vdev_prevstate = vd->vdev_state; 2672 2673 if (vd->vdev_offline) 2674 vd->vdev_state = VDEV_STATE_OFFLINE; 2675 else 2676 vd->vdev_state = VDEV_STATE_CLOSED; 2677 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2678 } 2679 2680 void 2681 vdev_hold(vdev_t *vd) 2682 { 2683 spa_t *spa = vd->vdev_spa; 2684 2685 ASSERT(spa_is_root(spa)); 2686 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 2687 return; 2688 2689 for (int c = 0; c < vd->vdev_children; c++) 2690 vdev_hold(vd->vdev_child[c]); 2691 2692 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL) 2693 vd->vdev_ops->vdev_op_hold(vd); 2694 } 2695 2696 void 2697 vdev_rele(vdev_t *vd) 2698 { 2699 ASSERT(spa_is_root(vd->vdev_spa)); 2700 for (int c = 0; c < vd->vdev_children; c++) 2701 vdev_rele(vd->vdev_child[c]); 2702 2703 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL) 2704 vd->vdev_ops->vdev_op_rele(vd); 2705 } 2706 2707 /* 2708 * Reopen all interior vdevs and any unopened leaves. We don't actually 2709 * reopen leaf vdevs which had previously been opened as they might deadlock 2710 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 2711 * If the leaf has never been opened then open it, as usual. 2712 */ 2713 void 2714 vdev_reopen(vdev_t *vd) 2715 { 2716 spa_t *spa = vd->vdev_spa; 2717 2718 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2719 2720 /* set the reopening flag unless we're taking the vdev offline */ 2721 vd->vdev_reopening = !vd->vdev_offline; 2722 vdev_close(vd); 2723 (void) vdev_open(vd); 2724 2725 /* 2726 * Call vdev_validate() here to make sure we have the same device. 2727 * Otherwise, a device with an invalid label could be successfully 2728 * opened in response to vdev_reopen(). 2729 */ 2730 if (vd->vdev_aux) { 2731 (void) vdev_validate_aux(vd); 2732 if (vdev_readable(vd) && vdev_writeable(vd) && 2733 vd->vdev_aux == &spa->spa_l2cache) { 2734 /* 2735 * In case the vdev is present we should evict all ARC 2736 * buffers and pointers to log blocks and reclaim their 2737 * space before restoring its contents to L2ARC. 2738 */ 2739 if (l2arc_vdev_present(vd)) { 2740 l2arc_rebuild_vdev(vd, B_TRUE); 2741 } else { 2742 l2arc_add_vdev(spa, vd); 2743 } 2744 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 2745 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 2746 } 2747 } else { 2748 (void) vdev_validate(vd); 2749 } 2750 2751 /* 2752 * Recheck if resilver is still needed and cancel any 2753 * scheduled resilver if resilver is unneeded. 2754 */ 2755 if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) && 2756 spa->spa_async_tasks & SPA_ASYNC_RESILVER) { 2757 mutex_enter(&spa->spa_async_lock); 2758 spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER; 2759 mutex_exit(&spa->spa_async_lock); 2760 } 2761 2762 /* 2763 * Reassess parent vdev's health. 2764 */ 2765 vdev_propagate_state(vd); 2766 } 2767 2768 int 2769 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 2770 { 2771 int error; 2772 2773 /* 2774 * Normally, partial opens (e.g. of a mirror) are allowed. 2775 * For a create, however, we want to fail the request if 2776 * there are any components we can't open. 2777 */ 2778 error = vdev_open(vd); 2779 2780 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 2781 vdev_close(vd); 2782 return (error ? error : SET_ERROR(ENXIO)); 2783 } 2784 2785 /* 2786 * Recursively load DTLs and initialize all labels. 2787 */ 2788 if ((error = vdev_dtl_load(vd)) != 0 || 2789 (error = vdev_label_init(vd, txg, isreplacing ? 2790 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 2791 vdev_close(vd); 2792 return (error); 2793 } 2794 2795 return (0); 2796 } 2797 2798 void 2799 vdev_metaslab_set_size(vdev_t *vd) 2800 { 2801 uint64_t asize = vd->vdev_asize; 2802 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; 2803 uint64_t ms_shift; 2804 2805 /* 2806 * There are two dimensions to the metaslab sizing calculation: 2807 * the size of the metaslab and the count of metaslabs per vdev. 2808 * 2809 * The default values used below are a good balance between memory 2810 * usage (larger metaslab size means more memory needed for loaded 2811 * metaslabs; more metaslabs means more memory needed for the 2812 * metaslab_t structs), metaslab load time (larger metaslabs take 2813 * longer to load), and metaslab sync time (more metaslabs means 2814 * more time spent syncing all of them). 2815 * 2816 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. 2817 * The range of the dimensions are as follows: 2818 * 2819 * 2^29 <= ms_size <= 2^34 2820 * 16 <= ms_count <= 131,072 2821 * 2822 * On the lower end of vdev sizes, we aim for metaslabs sizes of 2823 * at least 512MB (2^29) to minimize fragmentation effects when 2824 * testing with smaller devices. However, the count constraint 2825 * of at least 16 metaslabs will override this minimum size goal. 2826 * 2827 * On the upper end of vdev sizes, we aim for a maximum metaslab 2828 * size of 16GB. However, we will cap the total count to 2^17 2829 * metaslabs to keep our memory footprint in check and let the 2830 * metaslab size grow from there if that limit is hit. 2831 * 2832 * The net effect of applying above constrains is summarized below. 2833 * 2834 * vdev size metaslab count 2835 * --------------|----------------- 2836 * < 8GB ~16 2837 * 8GB - 100GB one per 512MB 2838 * 100GB - 3TB ~200 2839 * 3TB - 2PB one per 16GB 2840 * > 2PB ~131,072 2841 * -------------------------------- 2842 * 2843 * Finally, note that all of the above calculate the initial 2844 * number of metaslabs. Expanding a top-level vdev will result 2845 * in additional metaslabs being allocated making it possible 2846 * to exceed the zfs_vdev_ms_count_limit. 2847 */ 2848 2849 if (ms_count < zfs_vdev_min_ms_count) 2850 ms_shift = highbit64(asize / zfs_vdev_min_ms_count); 2851 else if (ms_count > zfs_vdev_default_ms_count) 2852 ms_shift = highbit64(asize / zfs_vdev_default_ms_count); 2853 else 2854 ms_shift = zfs_vdev_default_ms_shift; 2855 2856 if (ms_shift < SPA_MAXBLOCKSHIFT) { 2857 ms_shift = SPA_MAXBLOCKSHIFT; 2858 } else if (ms_shift > zfs_vdev_max_ms_shift) { 2859 ms_shift = zfs_vdev_max_ms_shift; 2860 /* cap the total count to constrain memory footprint */ 2861 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) 2862 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); 2863 } 2864 2865 vd->vdev_ms_shift = ms_shift; 2866 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); 2867 } 2868 2869 void 2870 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 2871 { 2872 ASSERT(vd == vd->vdev_top); 2873 /* indirect vdevs don't have metaslabs or dtls */ 2874 ASSERT(vdev_is_concrete(vd) || flags == 0); 2875 ASSERT(ISP2(flags)); 2876 ASSERT(spa_writeable(vd->vdev_spa)); 2877 2878 if (flags & VDD_METASLAB) 2879 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 2880 2881 if (flags & VDD_DTL) 2882 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 2883 2884 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 2885 } 2886 2887 void 2888 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 2889 { 2890 for (int c = 0; c < vd->vdev_children; c++) 2891 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 2892 2893 if (vd->vdev_ops->vdev_op_leaf) 2894 vdev_dirty(vd->vdev_top, flags, vd, txg); 2895 } 2896 2897 /* 2898 * DTLs. 2899 * 2900 * A vdev's DTL (dirty time log) is the set of transaction groups for which 2901 * the vdev has less than perfect replication. There are four kinds of DTL: 2902 * 2903 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 2904 * 2905 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 2906 * 2907 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 2908 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 2909 * txgs that was scrubbed. 2910 * 2911 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 2912 * persistent errors or just some device being offline. 2913 * Unlike the other three, the DTL_OUTAGE map is not generally 2914 * maintained; it's only computed when needed, typically to 2915 * determine whether a device can be detached. 2916 * 2917 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 2918 * either has the data or it doesn't. 2919 * 2920 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 2921 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 2922 * if any child is less than fully replicated, then so is its parent. 2923 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 2924 * comprising only those txgs which appear in 'maxfaults' or more children; 2925 * those are the txgs we don't have enough replication to read. For example, 2926 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 2927 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 2928 * two child DTL_MISSING maps. 2929 * 2930 * It should be clear from the above that to compute the DTLs and outage maps 2931 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 2932 * Therefore, that is all we keep on disk. When loading the pool, or after 2933 * a configuration change, we generate all other DTLs from first principles. 2934 */ 2935 void 2936 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2937 { 2938 range_tree_t *rt = vd->vdev_dtl[t]; 2939 2940 ASSERT(t < DTL_TYPES); 2941 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2942 ASSERT(spa_writeable(vd->vdev_spa)); 2943 2944 mutex_enter(&vd->vdev_dtl_lock); 2945 if (!range_tree_contains(rt, txg, size)) 2946 range_tree_add(rt, txg, size); 2947 mutex_exit(&vd->vdev_dtl_lock); 2948 } 2949 2950 boolean_t 2951 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2952 { 2953 range_tree_t *rt = vd->vdev_dtl[t]; 2954 boolean_t dirty = B_FALSE; 2955 2956 ASSERT(t < DTL_TYPES); 2957 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2958 2959 /* 2960 * While we are loading the pool, the DTLs have not been loaded yet. 2961 * This isn't a problem but it can result in devices being tried 2962 * which are known to not have the data. In which case, the import 2963 * is relying on the checksum to ensure that we get the right data. 2964 * Note that while importing we are only reading the MOS, which is 2965 * always checksummed. 2966 */ 2967 mutex_enter(&vd->vdev_dtl_lock); 2968 if (!range_tree_is_empty(rt)) 2969 dirty = range_tree_contains(rt, txg, size); 2970 mutex_exit(&vd->vdev_dtl_lock); 2971 2972 return (dirty); 2973 } 2974 2975 boolean_t 2976 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 2977 { 2978 range_tree_t *rt = vd->vdev_dtl[t]; 2979 boolean_t empty; 2980 2981 mutex_enter(&vd->vdev_dtl_lock); 2982 empty = range_tree_is_empty(rt); 2983 mutex_exit(&vd->vdev_dtl_lock); 2984 2985 return (empty); 2986 } 2987 2988 /* 2989 * Check if the txg falls within the range which must be 2990 * resilvered. DVAs outside this range can always be skipped. 2991 */ 2992 boolean_t 2993 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 2994 uint64_t phys_birth) 2995 { 2996 (void) dva, (void) psize; 2997 2998 /* Set by sequential resilver. */ 2999 if (phys_birth == TXG_UNKNOWN) 3000 return (B_TRUE); 3001 3002 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)); 3003 } 3004 3005 /* 3006 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered. 3007 */ 3008 boolean_t 3009 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 3010 uint64_t phys_birth) 3011 { 3012 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 3013 3014 if (vd->vdev_ops->vdev_op_need_resilver == NULL || 3015 vd->vdev_ops->vdev_op_leaf) 3016 return (B_TRUE); 3017 3018 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize, 3019 phys_birth)); 3020 } 3021 3022 /* 3023 * Returns the lowest txg in the DTL range. 3024 */ 3025 static uint64_t 3026 vdev_dtl_min(vdev_t *vd) 3027 { 3028 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 3029 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 3030 ASSERT0(vd->vdev_children); 3031 3032 return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1); 3033 } 3034 3035 /* 3036 * Returns the highest txg in the DTL. 3037 */ 3038 static uint64_t 3039 vdev_dtl_max(vdev_t *vd) 3040 { 3041 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 3042 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 3043 ASSERT0(vd->vdev_children); 3044 3045 return (range_tree_max(vd->vdev_dtl[DTL_MISSING])); 3046 } 3047 3048 /* 3049 * Determine if a resilvering vdev should remove any DTL entries from 3050 * its range. If the vdev was resilvering for the entire duration of the 3051 * scan then it should excise that range from its DTLs. Otherwise, this 3052 * vdev is considered partially resilvered and should leave its DTL 3053 * entries intact. The comment in vdev_dtl_reassess() describes how we 3054 * excise the DTLs. 3055 */ 3056 static boolean_t 3057 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done) 3058 { 3059 ASSERT0(vd->vdev_children); 3060 3061 if (vd->vdev_state < VDEV_STATE_DEGRADED) 3062 return (B_FALSE); 3063 3064 if (vd->vdev_resilver_deferred) 3065 return (B_FALSE); 3066 3067 if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) 3068 return (B_TRUE); 3069 3070 if (rebuild_done) { 3071 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3072 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 3073 3074 /* Rebuild not initiated by attach */ 3075 if (vd->vdev_rebuild_txg == 0) 3076 return (B_TRUE); 3077 3078 /* 3079 * When a rebuild completes without error then all missing data 3080 * up to the rebuild max txg has been reconstructed and the DTL 3081 * is eligible for excision. 3082 */ 3083 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE && 3084 vdev_dtl_max(vd) <= vrp->vrp_max_txg) { 3085 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd)); 3086 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg); 3087 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg); 3088 return (B_TRUE); 3089 } 3090 } else { 3091 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 3092 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys; 3093 3094 /* Resilver not initiated by attach */ 3095 if (vd->vdev_resilver_txg == 0) 3096 return (B_TRUE); 3097 3098 /* 3099 * When a resilver is initiated the scan will assign the 3100 * scn_max_txg value to the highest txg value that exists 3101 * in all DTLs. If this device's max DTL is not part of this 3102 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg] 3103 * then it is not eligible for excision. 3104 */ 3105 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 3106 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd)); 3107 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg); 3108 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg); 3109 return (B_TRUE); 3110 } 3111 } 3112 3113 return (B_FALSE); 3114 } 3115 3116 /* 3117 * Reassess DTLs after a config change or scrub completion. If txg == 0 no 3118 * write operations will be issued to the pool. 3119 */ 3120 void 3121 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, 3122 boolean_t scrub_done, boolean_t rebuild_done) 3123 { 3124 spa_t *spa = vd->vdev_spa; 3125 avl_tree_t reftree; 3126 int minref; 3127 3128 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 3129 3130 for (int c = 0; c < vd->vdev_children; c++) 3131 vdev_dtl_reassess(vd->vdev_child[c], txg, 3132 scrub_txg, scrub_done, rebuild_done); 3133 3134 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) 3135 return; 3136 3137 if (vd->vdev_ops->vdev_op_leaf) { 3138 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 3139 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3140 boolean_t check_excise = B_FALSE; 3141 boolean_t wasempty = B_TRUE; 3142 3143 mutex_enter(&vd->vdev_dtl_lock); 3144 3145 /* 3146 * If requested, pretend the scan or rebuild completed cleanly. 3147 */ 3148 if (zfs_scan_ignore_errors) { 3149 if (scn != NULL) 3150 scn->scn_phys.scn_errors = 0; 3151 if (vr != NULL) 3152 vr->vr_rebuild_phys.vrp_errors = 0; 3153 } 3154 3155 if (scrub_txg != 0 && 3156 !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3157 wasempty = B_FALSE; 3158 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d " 3159 "dtl:%llu/%llu errors:%llu", 3160 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg, 3161 (u_longlong_t)scrub_txg, spa->spa_scrub_started, 3162 (u_longlong_t)vdev_dtl_min(vd), 3163 (u_longlong_t)vdev_dtl_max(vd), 3164 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0)); 3165 } 3166 3167 /* 3168 * If we've completed a scrub/resilver or a rebuild cleanly 3169 * then determine if this vdev should remove any DTLs. We 3170 * only want to excise regions on vdevs that were available 3171 * during the entire duration of this scan. 3172 */ 3173 if (rebuild_done && 3174 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) { 3175 check_excise = B_TRUE; 3176 } else { 3177 if (spa->spa_scrub_started || 3178 (scn != NULL && scn->scn_phys.scn_errors == 0)) { 3179 check_excise = B_TRUE; 3180 } 3181 } 3182 3183 if (scrub_txg && check_excise && 3184 vdev_dtl_should_excise(vd, rebuild_done)) { 3185 /* 3186 * We completed a scrub, resilver or rebuild up to 3187 * scrub_txg. If we did it without rebooting, then 3188 * the scrub dtl will be valid, so excise the old 3189 * region and fold in the scrub dtl. Otherwise, 3190 * leave the dtl as-is if there was an error. 3191 * 3192 * There's little trick here: to excise the beginning 3193 * of the DTL_MISSING map, we put it into a reference 3194 * tree and then add a segment with refcnt -1 that 3195 * covers the range [0, scrub_txg). This means 3196 * that each txg in that range has refcnt -1 or 0. 3197 * We then add DTL_SCRUB with a refcnt of 2, so that 3198 * entries in the range [0, scrub_txg) will have a 3199 * positive refcnt -- either 1 or 2. We then convert 3200 * the reference tree into the new DTL_MISSING map. 3201 */ 3202 space_reftree_create(&reftree); 3203 space_reftree_add_map(&reftree, 3204 vd->vdev_dtl[DTL_MISSING], 1); 3205 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 3206 space_reftree_add_map(&reftree, 3207 vd->vdev_dtl[DTL_SCRUB], 2); 3208 space_reftree_generate_map(&reftree, 3209 vd->vdev_dtl[DTL_MISSING], 1); 3210 space_reftree_destroy(&reftree); 3211 3212 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3213 zfs_dbgmsg("update DTL_MISSING:%llu/%llu", 3214 (u_longlong_t)vdev_dtl_min(vd), 3215 (u_longlong_t)vdev_dtl_max(vd)); 3216 } else if (!wasempty) { 3217 zfs_dbgmsg("DTL_MISSING is now empty"); 3218 } 3219 } 3220 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 3221 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3222 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 3223 if (scrub_done) 3224 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 3225 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 3226 if (!vdev_readable(vd)) 3227 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 3228 else 3229 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3230 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 3231 3232 /* 3233 * If the vdev was resilvering or rebuilding and no longer 3234 * has any DTLs then reset the appropriate flag and dirty 3235 * the top level so that we persist the change. 3236 */ 3237 if (txg != 0 && 3238 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3239 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) { 3240 if (vd->vdev_rebuild_txg != 0) { 3241 vd->vdev_rebuild_txg = 0; 3242 vdev_config_dirty(vd->vdev_top); 3243 } else if (vd->vdev_resilver_txg != 0) { 3244 vd->vdev_resilver_txg = 0; 3245 vdev_config_dirty(vd->vdev_top); 3246 } 3247 } 3248 3249 mutex_exit(&vd->vdev_dtl_lock); 3250 3251 if (txg != 0) 3252 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 3253 } else { 3254 mutex_enter(&vd->vdev_dtl_lock); 3255 for (int t = 0; t < DTL_TYPES; t++) { 3256 /* account for child's outage in parent's missing map */ 3257 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 3258 if (t == DTL_SCRUB) { 3259 /* leaf vdevs only */ 3260 continue; 3261 } 3262 if (t == DTL_PARTIAL) { 3263 /* i.e. non-zero */ 3264 minref = 1; 3265 } else if (vdev_get_nparity(vd) != 0) { 3266 /* RAIDZ, DRAID */ 3267 minref = vdev_get_nparity(vd) + 1; 3268 } else { 3269 /* any kind of mirror */ 3270 minref = vd->vdev_children; 3271 } 3272 space_reftree_create(&reftree); 3273 for (int c = 0; c < vd->vdev_children; c++) { 3274 vdev_t *cvd = vd->vdev_child[c]; 3275 mutex_enter(&cvd->vdev_dtl_lock); 3276 space_reftree_add_map(&reftree, 3277 cvd->vdev_dtl[s], 1); 3278 mutex_exit(&cvd->vdev_dtl_lock); 3279 } 3280 space_reftree_generate_map(&reftree, 3281 vd->vdev_dtl[t], minref); 3282 space_reftree_destroy(&reftree); 3283 } 3284 mutex_exit(&vd->vdev_dtl_lock); 3285 } 3286 3287 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) { 3288 raidz_dtl_reassessed(vd); 3289 } 3290 } 3291 3292 /* 3293 * Iterate over all the vdevs except spare, and post kobj events 3294 */ 3295 void 3296 vdev_post_kobj_evt(vdev_t *vd) 3297 { 3298 if (vd->vdev_ops->vdev_op_kobj_evt_post && 3299 vd->vdev_kobj_flag == B_FALSE) { 3300 vd->vdev_kobj_flag = B_TRUE; 3301 vd->vdev_ops->vdev_op_kobj_evt_post(vd); 3302 } 3303 3304 for (int c = 0; c < vd->vdev_children; c++) 3305 vdev_post_kobj_evt(vd->vdev_child[c]); 3306 } 3307 3308 /* 3309 * Iterate over all the vdevs except spare, and clear kobj events 3310 */ 3311 void 3312 vdev_clear_kobj_evt(vdev_t *vd) 3313 { 3314 vd->vdev_kobj_flag = B_FALSE; 3315 3316 for (int c = 0; c < vd->vdev_children; c++) 3317 vdev_clear_kobj_evt(vd->vdev_child[c]); 3318 } 3319 3320 int 3321 vdev_dtl_load(vdev_t *vd) 3322 { 3323 spa_t *spa = vd->vdev_spa; 3324 objset_t *mos = spa->spa_meta_objset; 3325 range_tree_t *rt; 3326 int error = 0; 3327 3328 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 3329 ASSERT(vdev_is_concrete(vd)); 3330 3331 /* 3332 * If the dtl cannot be sync'd there is no need to open it. 3333 */ 3334 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps) 3335 return (0); 3336 3337 error = space_map_open(&vd->vdev_dtl_sm, mos, 3338 vd->vdev_dtl_object, 0, -1ULL, 0); 3339 if (error) 3340 return (error); 3341 ASSERT(vd->vdev_dtl_sm != NULL); 3342 3343 rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3344 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC); 3345 if (error == 0) { 3346 mutex_enter(&vd->vdev_dtl_lock); 3347 range_tree_walk(rt, range_tree_add, 3348 vd->vdev_dtl[DTL_MISSING]); 3349 mutex_exit(&vd->vdev_dtl_lock); 3350 } 3351 3352 range_tree_vacate(rt, NULL, NULL); 3353 range_tree_destroy(rt); 3354 3355 return (error); 3356 } 3357 3358 for (int c = 0; c < vd->vdev_children; c++) { 3359 error = vdev_dtl_load(vd->vdev_child[c]); 3360 if (error != 0) 3361 break; 3362 } 3363 3364 return (error); 3365 } 3366 3367 static void 3368 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx) 3369 { 3370 spa_t *spa = vd->vdev_spa; 3371 objset_t *mos = spa->spa_meta_objset; 3372 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 3373 const char *string; 3374 3375 ASSERT(alloc_bias != VDEV_BIAS_NONE); 3376 3377 string = 3378 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG : 3379 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL : 3380 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL; 3381 3382 ASSERT(string != NULL); 3383 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, 3384 1, strlen(string) + 1, string, tx)); 3385 3386 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) { 3387 spa_activate_allocation_classes(spa, tx); 3388 } 3389 } 3390 3391 void 3392 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 3393 { 3394 spa_t *spa = vd->vdev_spa; 3395 3396 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 3397 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3398 zapobj, tx)); 3399 } 3400 3401 uint64_t 3402 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 3403 { 3404 spa_t *spa = vd->vdev_spa; 3405 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 3406 DMU_OT_NONE, 0, tx); 3407 3408 ASSERT(zap != 0); 3409 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3410 zap, tx)); 3411 3412 return (zap); 3413 } 3414 3415 void 3416 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 3417 { 3418 if (vd->vdev_ops != &vdev_hole_ops && 3419 vd->vdev_ops != &vdev_missing_ops && 3420 vd->vdev_ops != &vdev_root_ops && 3421 !vd->vdev_top->vdev_removing) { 3422 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 3423 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 3424 } 3425 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 3426 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 3427 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE) 3428 vdev_zap_allocation_data(vd, tx); 3429 } 3430 } 3431 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 && 3432 spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) { 3433 if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) 3434 spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx); 3435 vd->vdev_root_zap = vdev_create_link_zap(vd, tx); 3436 } 3437 3438 for (uint64_t i = 0; i < vd->vdev_children; i++) { 3439 vdev_construct_zaps(vd->vdev_child[i], tx); 3440 } 3441 } 3442 3443 static void 3444 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 3445 { 3446 spa_t *spa = vd->vdev_spa; 3447 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 3448 objset_t *mos = spa->spa_meta_objset; 3449 range_tree_t *rtsync; 3450 dmu_tx_t *tx; 3451 uint64_t object = space_map_object(vd->vdev_dtl_sm); 3452 3453 ASSERT(vdev_is_concrete(vd)); 3454 ASSERT(vd->vdev_ops->vdev_op_leaf); 3455 3456 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3457 3458 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 3459 mutex_enter(&vd->vdev_dtl_lock); 3460 space_map_free(vd->vdev_dtl_sm, tx); 3461 space_map_close(vd->vdev_dtl_sm); 3462 vd->vdev_dtl_sm = NULL; 3463 mutex_exit(&vd->vdev_dtl_lock); 3464 3465 /* 3466 * We only destroy the leaf ZAP for detached leaves or for 3467 * removed log devices. Removed data devices handle leaf ZAP 3468 * cleanup later, once cancellation is no longer possible. 3469 */ 3470 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 3471 vd->vdev_top->vdev_islog)) { 3472 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 3473 vd->vdev_leaf_zap = 0; 3474 } 3475 3476 dmu_tx_commit(tx); 3477 return; 3478 } 3479 3480 if (vd->vdev_dtl_sm == NULL) { 3481 uint64_t new_object; 3482 3483 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx); 3484 VERIFY3U(new_object, !=, 0); 3485 3486 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 3487 0, -1ULL, 0)); 3488 ASSERT(vd->vdev_dtl_sm != NULL); 3489 } 3490 3491 rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3492 3493 mutex_enter(&vd->vdev_dtl_lock); 3494 range_tree_walk(rt, range_tree_add, rtsync); 3495 mutex_exit(&vd->vdev_dtl_lock); 3496 3497 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx); 3498 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); 3499 range_tree_vacate(rtsync, NULL, NULL); 3500 3501 range_tree_destroy(rtsync); 3502 3503 /* 3504 * If the object for the space map has changed then dirty 3505 * the top level so that we update the config. 3506 */ 3507 if (object != space_map_object(vd->vdev_dtl_sm)) { 3508 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " 3509 "new object %llu", (u_longlong_t)txg, spa_name(spa), 3510 (u_longlong_t)object, 3511 (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); 3512 vdev_config_dirty(vd->vdev_top); 3513 } 3514 3515 dmu_tx_commit(tx); 3516 } 3517 3518 /* 3519 * Determine whether the specified vdev can be offlined/detached/removed 3520 * without losing data. 3521 */ 3522 boolean_t 3523 vdev_dtl_required(vdev_t *vd) 3524 { 3525 spa_t *spa = vd->vdev_spa; 3526 vdev_t *tvd = vd->vdev_top; 3527 uint8_t cant_read = vd->vdev_cant_read; 3528 boolean_t required; 3529 3530 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3531 3532 if (vd == spa->spa_root_vdev || vd == tvd) 3533 return (B_TRUE); 3534 3535 /* 3536 * Temporarily mark the device as unreadable, and then determine 3537 * whether this results in any DTL outages in the top-level vdev. 3538 * If not, we can safely offline/detach/remove the device. 3539 */ 3540 vd->vdev_cant_read = B_TRUE; 3541 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3542 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 3543 vd->vdev_cant_read = cant_read; 3544 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3545 3546 if (!required && zio_injection_enabled) { 3547 required = !!zio_handle_device_injection(vd, NULL, 3548 SET_ERROR(ECHILD)); 3549 } 3550 3551 return (required); 3552 } 3553 3554 /* 3555 * Determine if resilver is needed, and if so the txg range. 3556 */ 3557 boolean_t 3558 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 3559 { 3560 boolean_t needed = B_FALSE; 3561 uint64_t thismin = UINT64_MAX; 3562 uint64_t thismax = 0; 3563 3564 if (vd->vdev_children == 0) { 3565 mutex_enter(&vd->vdev_dtl_lock); 3566 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3567 vdev_writeable(vd)) { 3568 3569 thismin = vdev_dtl_min(vd); 3570 thismax = vdev_dtl_max(vd); 3571 needed = B_TRUE; 3572 } 3573 mutex_exit(&vd->vdev_dtl_lock); 3574 } else { 3575 for (int c = 0; c < vd->vdev_children; c++) { 3576 vdev_t *cvd = vd->vdev_child[c]; 3577 uint64_t cmin, cmax; 3578 3579 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 3580 thismin = MIN(thismin, cmin); 3581 thismax = MAX(thismax, cmax); 3582 needed = B_TRUE; 3583 } 3584 } 3585 } 3586 3587 if (needed && minp) { 3588 *minp = thismin; 3589 *maxp = thismax; 3590 } 3591 return (needed); 3592 } 3593 3594 /* 3595 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj 3596 * will contain either the checkpoint spacemap object or zero if none exists. 3597 * All other errors are returned to the caller. 3598 */ 3599 int 3600 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj) 3601 { 3602 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 3603 3604 if (vd->vdev_top_zap == 0) { 3605 *sm_obj = 0; 3606 return (0); 3607 } 3608 3609 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, 3610 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj); 3611 if (error == ENOENT) { 3612 *sm_obj = 0; 3613 error = 0; 3614 } 3615 3616 return (error); 3617 } 3618 3619 int 3620 vdev_load(vdev_t *vd) 3621 { 3622 int children = vd->vdev_children; 3623 int error = 0; 3624 taskq_t *tq = NULL; 3625 3626 /* 3627 * It's only worthwhile to use the taskq for the root vdev, because the 3628 * slow part is metaslab_init, and that only happens for top-level 3629 * vdevs. 3630 */ 3631 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) { 3632 tq = taskq_create("vdev_load", children, minclsyspri, 3633 children, children, TASKQ_PREPOPULATE); 3634 } 3635 3636 /* 3637 * Recursively load all children. 3638 */ 3639 for (int c = 0; c < vd->vdev_children; c++) { 3640 vdev_t *cvd = vd->vdev_child[c]; 3641 3642 if (tq == NULL || vdev_uses_zvols(cvd)) { 3643 cvd->vdev_load_error = vdev_load(cvd); 3644 } else { 3645 VERIFY(taskq_dispatch(tq, vdev_load_child, 3646 cvd, TQ_SLEEP) != TASKQID_INVALID); 3647 } 3648 } 3649 3650 if (tq != NULL) { 3651 taskq_wait(tq); 3652 taskq_destroy(tq); 3653 } 3654 3655 for (int c = 0; c < vd->vdev_children; c++) { 3656 int error = vd->vdev_child[c]->vdev_load_error; 3657 3658 if (error != 0) 3659 return (error); 3660 } 3661 3662 vdev_set_deflate_ratio(vd); 3663 3664 if (vd->vdev_ops == &vdev_raidz_ops) { 3665 error = vdev_raidz_load(vd); 3666 if (error != 0) 3667 return (error); 3668 } 3669 3670 /* 3671 * On spa_load path, grab the allocation bias from our zap 3672 */ 3673 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3674 spa_t *spa = vd->vdev_spa; 3675 char bias_str[64]; 3676 3677 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3678 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str), 3679 bias_str); 3680 if (error == 0) { 3681 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE); 3682 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str); 3683 } else if (error != ENOENT) { 3684 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3685 VDEV_AUX_CORRUPT_DATA); 3686 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) " 3687 "failed [error=%d]", 3688 (u_longlong_t)vd->vdev_top_zap, error); 3689 return (error); 3690 } 3691 } 3692 3693 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3694 spa_t *spa = vd->vdev_spa; 3695 uint64_t failfast; 3696 3697 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3698 vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast), 3699 1, &failfast); 3700 if (error == 0) { 3701 vd->vdev_failfast = failfast & 1; 3702 } else if (error == ENOENT) { 3703 vd->vdev_failfast = vdev_prop_default_numeric( 3704 VDEV_PROP_FAILFAST); 3705 } else { 3706 vdev_dbgmsg(vd, 3707 "vdev_load: zap_lookup(top_zap=%llu) " 3708 "failed [error=%d]", 3709 (u_longlong_t)vd->vdev_top_zap, error); 3710 } 3711 } 3712 3713 /* 3714 * Load any rebuild state from the top-level vdev zap. 3715 */ 3716 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3717 error = vdev_rebuild_load(vd); 3718 if (error && error != ENOTSUP) { 3719 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3720 VDEV_AUX_CORRUPT_DATA); 3721 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load " 3722 "failed [error=%d]", error); 3723 return (error); 3724 } 3725 } 3726 3727 if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) { 3728 uint64_t zapobj; 3729 3730 if (vd->vdev_top_zap != 0) 3731 zapobj = vd->vdev_top_zap; 3732 else 3733 zapobj = vd->vdev_leaf_zap; 3734 3735 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N, 3736 &vd->vdev_checksum_n); 3737 if (error && error != ENOENT) 3738 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3739 "failed [error=%d]", (u_longlong_t)zapobj, error); 3740 3741 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T, 3742 &vd->vdev_checksum_t); 3743 if (error && error != ENOENT) 3744 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3745 "failed [error=%d]", (u_longlong_t)zapobj, error); 3746 3747 error = vdev_prop_get_int(vd, VDEV_PROP_IO_N, 3748 &vd->vdev_io_n); 3749 if (error && error != ENOENT) 3750 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3751 "failed [error=%d]", (u_longlong_t)zapobj, error); 3752 3753 error = vdev_prop_get_int(vd, VDEV_PROP_IO_T, 3754 &vd->vdev_io_t); 3755 if (error && error != ENOENT) 3756 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3757 "failed [error=%d]", (u_longlong_t)zapobj, error); 3758 } 3759 3760 /* 3761 * If this is a top-level vdev, initialize its metaslabs. 3762 */ 3763 if (vd == vd->vdev_top && vdev_is_concrete(vd)) { 3764 vdev_metaslab_group_create(vd); 3765 3766 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { 3767 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3768 VDEV_AUX_CORRUPT_DATA); 3769 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " 3770 "asize=%llu", (u_longlong_t)vd->vdev_ashift, 3771 (u_longlong_t)vd->vdev_asize); 3772 return (SET_ERROR(ENXIO)); 3773 } 3774 3775 error = vdev_metaslab_init(vd, 0); 3776 if (error != 0) { 3777 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " 3778 "[error=%d]", error); 3779 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3780 VDEV_AUX_CORRUPT_DATA); 3781 return (error); 3782 } 3783 3784 uint64_t checkpoint_sm_obj; 3785 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj); 3786 if (error == 0 && checkpoint_sm_obj != 0) { 3787 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3788 ASSERT(vd->vdev_asize != 0); 3789 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL); 3790 3791 error = space_map_open(&vd->vdev_checkpoint_sm, 3792 mos, checkpoint_sm_obj, 0, vd->vdev_asize, 3793 vd->vdev_ashift); 3794 if (error != 0) { 3795 vdev_dbgmsg(vd, "vdev_load: space_map_open " 3796 "failed for checkpoint spacemap (obj %llu) " 3797 "[error=%d]", 3798 (u_longlong_t)checkpoint_sm_obj, error); 3799 return (error); 3800 } 3801 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 3802 3803 /* 3804 * Since the checkpoint_sm contains free entries 3805 * exclusively we can use space_map_allocated() to 3806 * indicate the cumulative checkpointed space that 3807 * has been freed. 3808 */ 3809 vd->vdev_stat.vs_checkpoint_space = 3810 -space_map_allocated(vd->vdev_checkpoint_sm); 3811 vd->vdev_spa->spa_checkpoint_info.sci_dspace += 3812 vd->vdev_stat.vs_checkpoint_space; 3813 } else if (error != 0) { 3814 vdev_dbgmsg(vd, "vdev_load: failed to retrieve " 3815 "checkpoint space map object from vdev ZAP " 3816 "[error=%d]", error); 3817 return (error); 3818 } 3819 } 3820 3821 /* 3822 * If this is a leaf vdev, load its DTL. 3823 */ 3824 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { 3825 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3826 VDEV_AUX_CORRUPT_DATA); 3827 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " 3828 "[error=%d]", error); 3829 return (error); 3830 } 3831 3832 uint64_t obsolete_sm_object; 3833 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object); 3834 if (error == 0 && obsolete_sm_object != 0) { 3835 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3836 ASSERT(vd->vdev_asize != 0); 3837 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 3838 3839 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, 3840 obsolete_sm_object, 0, vd->vdev_asize, 0))) { 3841 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3842 VDEV_AUX_CORRUPT_DATA); 3843 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " 3844 "obsolete spacemap (obj %llu) [error=%d]", 3845 (u_longlong_t)obsolete_sm_object, error); 3846 return (error); 3847 } 3848 } else if (error != 0) { 3849 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete " 3850 "space map object from vdev ZAP [error=%d]", error); 3851 return (error); 3852 } 3853 3854 return (0); 3855 } 3856 3857 /* 3858 * The special vdev case is used for hot spares and l2cache devices. Its 3859 * sole purpose it to set the vdev state for the associated vdev. To do this, 3860 * we make sure that we can open the underlying device, then try to read the 3861 * label, and make sure that the label is sane and that it hasn't been 3862 * repurposed to another pool. 3863 */ 3864 int 3865 vdev_validate_aux(vdev_t *vd) 3866 { 3867 nvlist_t *label; 3868 uint64_t guid, version; 3869 uint64_t state; 3870 3871 if (!vdev_readable(vd)) 3872 return (0); 3873 3874 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 3875 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3876 VDEV_AUX_CORRUPT_DATA); 3877 return (-1); 3878 } 3879 3880 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 3881 !SPA_VERSION_IS_SUPPORTED(version) || 3882 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 3883 guid != vd->vdev_guid || 3884 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 3885 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3886 VDEV_AUX_CORRUPT_DATA); 3887 nvlist_free(label); 3888 return (-1); 3889 } 3890 3891 /* 3892 * We don't actually check the pool state here. If it's in fact in 3893 * use by another pool, we update this fact on the fly when requested. 3894 */ 3895 nvlist_free(label); 3896 return (0); 3897 } 3898 3899 static void 3900 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx) 3901 { 3902 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3903 3904 if (vd->vdev_top_zap == 0) 3905 return; 3906 3907 uint64_t object = 0; 3908 int err = zap_lookup(mos, vd->vdev_top_zap, 3909 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object); 3910 if (err == ENOENT) 3911 return; 3912 VERIFY0(err); 3913 3914 VERIFY0(dmu_object_free(mos, object, tx)); 3915 VERIFY0(zap_remove(mos, vd->vdev_top_zap, 3916 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx)); 3917 } 3918 3919 /* 3920 * Free the objects used to store this vdev's spacemaps, and the array 3921 * that points to them. 3922 */ 3923 void 3924 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) 3925 { 3926 if (vd->vdev_ms_array == 0) 3927 return; 3928 3929 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3930 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; 3931 size_t array_bytes = array_count * sizeof (uint64_t); 3932 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); 3933 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, 3934 array_bytes, smobj_array, 0)); 3935 3936 for (uint64_t i = 0; i < array_count; i++) { 3937 uint64_t smobj = smobj_array[i]; 3938 if (smobj == 0) 3939 continue; 3940 3941 space_map_free_obj(mos, smobj, tx); 3942 } 3943 3944 kmem_free(smobj_array, array_bytes); 3945 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); 3946 vdev_destroy_ms_flush_data(vd, tx); 3947 vd->vdev_ms_array = 0; 3948 } 3949 3950 static void 3951 vdev_remove_empty_log(vdev_t *vd, uint64_t txg) 3952 { 3953 spa_t *spa = vd->vdev_spa; 3954 3955 ASSERT(vd->vdev_islog); 3956 ASSERT(vd == vd->vdev_top); 3957 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 3958 3959 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 3960 3961 vdev_destroy_spacemaps(vd, tx); 3962 if (vd->vdev_top_zap != 0) { 3963 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 3964 vd->vdev_top_zap = 0; 3965 } 3966 3967 dmu_tx_commit(tx); 3968 } 3969 3970 void 3971 vdev_sync_done(vdev_t *vd, uint64_t txg) 3972 { 3973 metaslab_t *msp; 3974 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 3975 3976 ASSERT(vdev_is_concrete(vd)); 3977 3978 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 3979 != NULL) 3980 metaslab_sync_done(msp, txg); 3981 3982 if (reassess) { 3983 metaslab_sync_reassess(vd->vdev_mg); 3984 if (vd->vdev_log_mg != NULL) 3985 metaslab_sync_reassess(vd->vdev_log_mg); 3986 } 3987 } 3988 3989 void 3990 vdev_sync(vdev_t *vd, uint64_t txg) 3991 { 3992 spa_t *spa = vd->vdev_spa; 3993 vdev_t *lvd; 3994 metaslab_t *msp; 3995 3996 ASSERT3U(txg, ==, spa->spa_syncing_txg); 3997 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3998 if (range_tree_space(vd->vdev_obsolete_segments) > 0) { 3999 ASSERT(vd->vdev_removing || 4000 vd->vdev_ops == &vdev_indirect_ops); 4001 4002 vdev_indirect_sync_obsolete(vd, tx); 4003 4004 /* 4005 * If the vdev is indirect, it can't have dirty 4006 * metaslabs or DTLs. 4007 */ 4008 if (vd->vdev_ops == &vdev_indirect_ops) { 4009 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); 4010 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); 4011 dmu_tx_commit(tx); 4012 return; 4013 } 4014 } 4015 4016 ASSERT(vdev_is_concrete(vd)); 4017 4018 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && 4019 !vd->vdev_removing) { 4020 ASSERT(vd == vd->vdev_top); 4021 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 4022 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 4023 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 4024 ASSERT(vd->vdev_ms_array != 0); 4025 vdev_config_dirty(vd); 4026 } 4027 4028 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 4029 metaslab_sync(msp, txg); 4030 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 4031 } 4032 4033 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 4034 vdev_dtl_sync(lvd, txg); 4035 4036 /* 4037 * If this is an empty log device being removed, destroy the 4038 * metadata associated with it. 4039 */ 4040 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 4041 vdev_remove_empty_log(vd, txg); 4042 4043 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 4044 dmu_tx_commit(tx); 4045 } 4046 4047 /* 4048 * Return the amount of space that should be (or was) allocated for the given 4049 * psize (compressed block size) in the given TXG. Note that for expanded 4050 * RAIDZ vdevs, the size allocated for older BP's may be larger. See 4051 * vdev_raidz_asize(). 4052 */ 4053 uint64_t 4054 vdev_psize_to_asize_txg(vdev_t *vd, uint64_t psize, uint64_t txg) 4055 { 4056 return (vd->vdev_ops->vdev_op_asize(vd, psize, txg)); 4057 } 4058 4059 uint64_t 4060 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 4061 { 4062 return (vdev_psize_to_asize_txg(vd, psize, 0)); 4063 } 4064 4065 /* 4066 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 4067 * not be opened, and no I/O is attempted. 4068 */ 4069 int 4070 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 4071 { 4072 vdev_t *vd, *tvd; 4073 4074 spa_vdev_state_enter(spa, SCL_NONE); 4075 4076 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4077 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4078 4079 if (!vd->vdev_ops->vdev_op_leaf) 4080 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4081 4082 tvd = vd->vdev_top; 4083 4084 /* 4085 * If user did a 'zpool offline -f' then make the fault persist across 4086 * reboots. 4087 */ 4088 if (aux == VDEV_AUX_EXTERNAL_PERSIST) { 4089 /* 4090 * There are two kinds of forced faults: temporary and 4091 * persistent. Temporary faults go away at pool import, while 4092 * persistent faults stay set. Both types of faults can be 4093 * cleared with a zpool clear. 4094 * 4095 * We tell if a vdev is persistently faulted by looking at the 4096 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at 4097 * import then it's a persistent fault. Otherwise, it's 4098 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external" 4099 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This 4100 * tells vdev_config_generate() (which gets run later) to set 4101 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist. 4102 */ 4103 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 4104 vd->vdev_tmpoffline = B_FALSE; 4105 aux = VDEV_AUX_EXTERNAL; 4106 } else { 4107 vd->vdev_tmpoffline = B_TRUE; 4108 } 4109 4110 /* 4111 * We don't directly use the aux state here, but if we do a 4112 * vdev_reopen(), we need this value to be present to remember why we 4113 * were faulted. 4114 */ 4115 vd->vdev_label_aux = aux; 4116 4117 /* 4118 * Faulted state takes precedence over degraded. 4119 */ 4120 vd->vdev_delayed_close = B_FALSE; 4121 vd->vdev_faulted = 1ULL; 4122 vd->vdev_degraded = 0ULL; 4123 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 4124 4125 /* 4126 * If this device has the only valid copy of the data, then 4127 * back off and simply mark the vdev as degraded instead. 4128 */ 4129 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 4130 vd->vdev_degraded = 1ULL; 4131 vd->vdev_faulted = 0ULL; 4132 4133 /* 4134 * If we reopen the device and it's not dead, only then do we 4135 * mark it degraded. 4136 */ 4137 vdev_reopen(tvd); 4138 4139 if (vdev_readable(vd)) 4140 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 4141 } 4142 4143 return (spa_vdev_state_exit(spa, vd, 0)); 4144 } 4145 4146 /* 4147 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 4148 * user that something is wrong. The vdev continues to operate as normal as far 4149 * as I/O is concerned. 4150 */ 4151 int 4152 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 4153 { 4154 vdev_t *vd; 4155 4156 spa_vdev_state_enter(spa, SCL_NONE); 4157 4158 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4159 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4160 4161 if (!vd->vdev_ops->vdev_op_leaf) 4162 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4163 4164 /* 4165 * If the vdev is already faulted, then don't do anything. 4166 */ 4167 if (vd->vdev_faulted || vd->vdev_degraded) 4168 return (spa_vdev_state_exit(spa, NULL, 0)); 4169 4170 vd->vdev_degraded = 1ULL; 4171 if (!vdev_is_dead(vd)) 4172 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 4173 aux); 4174 4175 return (spa_vdev_state_exit(spa, vd, 0)); 4176 } 4177 4178 int 4179 vdev_remove_wanted(spa_t *spa, uint64_t guid) 4180 { 4181 vdev_t *vd; 4182 4183 spa_vdev_state_enter(spa, SCL_NONE); 4184 4185 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4186 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4187 4188 /* 4189 * If the vdev is already removed, or expanding which can trigger 4190 * repartition add/remove events, then don't do anything. 4191 */ 4192 if (vd->vdev_removed || vd->vdev_expanding) 4193 return (spa_vdev_state_exit(spa, NULL, 0)); 4194 4195 /* 4196 * Confirm the vdev has been removed, otherwise don't do anything. 4197 */ 4198 if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL))) 4199 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST))); 4200 4201 vd->vdev_remove_wanted = B_TRUE; 4202 spa_async_request(spa, SPA_ASYNC_REMOVE); 4203 4204 return (spa_vdev_state_exit(spa, vd, 0)); 4205 } 4206 4207 4208 /* 4209 * Online the given vdev. 4210 * 4211 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 4212 * spare device should be detached when the device finishes resilvering. 4213 * Second, the online should be treated like a 'test' online case, so no FMA 4214 * events are generated if the device fails to open. 4215 */ 4216 int 4217 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 4218 { 4219 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 4220 boolean_t wasoffline; 4221 vdev_state_t oldstate; 4222 4223 spa_vdev_state_enter(spa, SCL_NONE); 4224 4225 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4226 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4227 4228 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 4229 oldstate = vd->vdev_state; 4230 4231 tvd = vd->vdev_top; 4232 vd->vdev_offline = B_FALSE; 4233 vd->vdev_tmpoffline = B_FALSE; 4234 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 4235 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 4236 4237 /* XXX - L2ARC 1.0 does not support expansion */ 4238 if (!vd->vdev_aux) { 4239 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4240 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) || 4241 spa->spa_autoexpand); 4242 vd->vdev_expansion_time = gethrestime_sec(); 4243 } 4244 4245 vdev_reopen(tvd); 4246 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 4247 4248 if (!vd->vdev_aux) { 4249 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4250 pvd->vdev_expanding = B_FALSE; 4251 } 4252 4253 if (newstate) 4254 *newstate = vd->vdev_state; 4255 if ((flags & ZFS_ONLINE_UNSPARE) && 4256 !vdev_is_dead(vd) && vd->vdev_parent && 4257 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4258 vd->vdev_parent->vdev_child[0] == vd) 4259 vd->vdev_unspare = B_TRUE; 4260 4261 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 4262 4263 /* XXX - L2ARC 1.0 does not support expansion */ 4264 if (vd->vdev_aux) 4265 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 4266 spa->spa_ccw_fail_time = 0; 4267 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 4268 } 4269 4270 /* Restart initializing if necessary */ 4271 mutex_enter(&vd->vdev_initialize_lock); 4272 if (vdev_writeable(vd) && 4273 vd->vdev_initialize_thread == NULL && 4274 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { 4275 (void) vdev_initialize(vd); 4276 } 4277 mutex_exit(&vd->vdev_initialize_lock); 4278 4279 /* 4280 * Restart trimming if necessary. We do not restart trimming for cache 4281 * devices here. This is triggered by l2arc_rebuild_vdev() 4282 * asynchronously for the whole device or in l2arc_evict() as it evicts 4283 * space for upcoming writes. 4284 */ 4285 mutex_enter(&vd->vdev_trim_lock); 4286 if (vdev_writeable(vd) && !vd->vdev_isl2cache && 4287 vd->vdev_trim_thread == NULL && 4288 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) { 4289 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial, 4290 vd->vdev_trim_secure); 4291 } 4292 mutex_exit(&vd->vdev_trim_lock); 4293 4294 if (wasoffline || 4295 (oldstate < VDEV_STATE_DEGRADED && 4296 vd->vdev_state >= VDEV_STATE_DEGRADED)) { 4297 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 4298 4299 /* 4300 * Asynchronously detach spare vdev if resilver or 4301 * rebuild is not required 4302 */ 4303 if (vd->vdev_unspare && 4304 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4305 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) && 4306 !vdev_rebuild_active(tvd)) 4307 spa_async_request(spa, SPA_ASYNC_DETACH_SPARE); 4308 } 4309 return (spa_vdev_state_exit(spa, vd, 0)); 4310 } 4311 4312 static int 4313 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 4314 { 4315 vdev_t *vd, *tvd; 4316 int error = 0; 4317 uint64_t generation; 4318 metaslab_group_t *mg; 4319 4320 top: 4321 spa_vdev_state_enter(spa, SCL_ALLOC); 4322 4323 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4324 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4325 4326 if (!vd->vdev_ops->vdev_op_leaf) 4327 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4328 4329 if (vd->vdev_ops == &vdev_draid_spare_ops) 4330 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4331 4332 tvd = vd->vdev_top; 4333 mg = tvd->vdev_mg; 4334 generation = spa->spa_config_generation + 1; 4335 4336 /* 4337 * If the device isn't already offline, try to offline it. 4338 */ 4339 if (!vd->vdev_offline) { 4340 /* 4341 * If this device has the only valid copy of some data, 4342 * don't allow it to be offlined. Log devices are always 4343 * expendable. 4344 */ 4345 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4346 vdev_dtl_required(vd)) 4347 return (spa_vdev_state_exit(spa, NULL, 4348 SET_ERROR(EBUSY))); 4349 4350 /* 4351 * If the top-level is a slog and it has had allocations 4352 * then proceed. We check that the vdev's metaslab group 4353 * is not NULL since it's possible that we may have just 4354 * added this vdev but not yet initialized its metaslabs. 4355 */ 4356 if (tvd->vdev_islog && mg != NULL) { 4357 /* 4358 * Prevent any future allocations. 4359 */ 4360 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 4361 metaslab_group_passivate(mg); 4362 (void) spa_vdev_state_exit(spa, vd, 0); 4363 4364 error = spa_reset_logs(spa); 4365 4366 /* 4367 * If the log device was successfully reset but has 4368 * checkpointed data, do not offline it. 4369 */ 4370 if (error == 0 && 4371 tvd->vdev_checkpoint_sm != NULL) { 4372 ASSERT3U(space_map_allocated( 4373 tvd->vdev_checkpoint_sm), !=, 0); 4374 error = ZFS_ERR_CHECKPOINT_EXISTS; 4375 } 4376 4377 spa_vdev_state_enter(spa, SCL_ALLOC); 4378 4379 /* 4380 * Check to see if the config has changed. 4381 */ 4382 if (error || generation != spa->spa_config_generation) { 4383 metaslab_group_activate(mg); 4384 if (error) 4385 return (spa_vdev_state_exit(spa, 4386 vd, error)); 4387 (void) spa_vdev_state_exit(spa, vd, 0); 4388 goto top; 4389 } 4390 ASSERT0(tvd->vdev_stat.vs_alloc); 4391 } 4392 4393 /* 4394 * Offline this device and reopen its top-level vdev. 4395 * If the top-level vdev is a log device then just offline 4396 * it. Otherwise, if this action results in the top-level 4397 * vdev becoming unusable, undo it and fail the request. 4398 */ 4399 vd->vdev_offline = B_TRUE; 4400 vdev_reopen(tvd); 4401 4402 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4403 vdev_is_dead(tvd)) { 4404 vd->vdev_offline = B_FALSE; 4405 vdev_reopen(tvd); 4406 return (spa_vdev_state_exit(spa, NULL, 4407 SET_ERROR(EBUSY))); 4408 } 4409 4410 /* 4411 * Add the device back into the metaslab rotor so that 4412 * once we online the device it's open for business. 4413 */ 4414 if (tvd->vdev_islog && mg != NULL) 4415 metaslab_group_activate(mg); 4416 } 4417 4418 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 4419 4420 return (spa_vdev_state_exit(spa, vd, 0)); 4421 } 4422 4423 int 4424 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 4425 { 4426 int error; 4427 4428 mutex_enter(&spa->spa_vdev_top_lock); 4429 error = vdev_offline_locked(spa, guid, flags); 4430 mutex_exit(&spa->spa_vdev_top_lock); 4431 4432 return (error); 4433 } 4434 4435 /* 4436 * Clear the error counts associated with this vdev. Unlike vdev_online() and 4437 * vdev_offline(), we assume the spa config is locked. We also clear all 4438 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 4439 */ 4440 void 4441 vdev_clear(spa_t *spa, vdev_t *vd) 4442 { 4443 vdev_t *rvd = spa->spa_root_vdev; 4444 4445 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 4446 4447 if (vd == NULL) 4448 vd = rvd; 4449 4450 vd->vdev_stat.vs_read_errors = 0; 4451 vd->vdev_stat.vs_write_errors = 0; 4452 vd->vdev_stat.vs_checksum_errors = 0; 4453 vd->vdev_stat.vs_slow_ios = 0; 4454 4455 for (int c = 0; c < vd->vdev_children; c++) 4456 vdev_clear(spa, vd->vdev_child[c]); 4457 4458 /* 4459 * It makes no sense to "clear" an indirect or removed vdev. 4460 */ 4461 if (!vdev_is_concrete(vd) || vd->vdev_removed) 4462 return; 4463 4464 /* 4465 * If we're in the FAULTED state or have experienced failed I/O, then 4466 * clear the persistent state and attempt to reopen the device. We 4467 * also mark the vdev config dirty, so that the new faulted state is 4468 * written out to disk. 4469 */ 4470 if (vd->vdev_faulted || vd->vdev_degraded || 4471 !vdev_readable(vd) || !vdev_writeable(vd)) { 4472 /* 4473 * When reopening in response to a clear event, it may be due to 4474 * a fmadm repair request. In this case, if the device is 4475 * still broken, we want to still post the ereport again. 4476 */ 4477 vd->vdev_forcefault = B_TRUE; 4478 4479 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 4480 vd->vdev_cant_read = B_FALSE; 4481 vd->vdev_cant_write = B_FALSE; 4482 vd->vdev_stat.vs_aux = 0; 4483 4484 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 4485 4486 vd->vdev_forcefault = B_FALSE; 4487 4488 if (vd != rvd && vdev_writeable(vd->vdev_top)) 4489 vdev_state_dirty(vd->vdev_top); 4490 4491 /* If a resilver isn't required, check if vdevs can be culled */ 4492 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) && 4493 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4494 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool)) 4495 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4496 4497 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 4498 } 4499 4500 /* 4501 * When clearing a FMA-diagnosed fault, we always want to 4502 * unspare the device, as we assume that the original spare was 4503 * done in response to the FMA fault. 4504 */ 4505 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 4506 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4507 vd->vdev_parent->vdev_child[0] == vd) 4508 vd->vdev_unspare = B_TRUE; 4509 4510 /* Clear recent error events cache (i.e. duplicate events tracking) */ 4511 zfs_ereport_clear(spa, vd); 4512 } 4513 4514 boolean_t 4515 vdev_is_dead(vdev_t *vd) 4516 { 4517 /* 4518 * Holes and missing devices are always considered "dead". 4519 * This simplifies the code since we don't have to check for 4520 * these types of devices in the various code paths. 4521 * Instead we rely on the fact that we skip over dead devices 4522 * before issuing I/O to them. 4523 */ 4524 return (vd->vdev_state < VDEV_STATE_DEGRADED || 4525 vd->vdev_ops == &vdev_hole_ops || 4526 vd->vdev_ops == &vdev_missing_ops); 4527 } 4528 4529 boolean_t 4530 vdev_readable(vdev_t *vd) 4531 { 4532 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 4533 } 4534 4535 boolean_t 4536 vdev_writeable(vdev_t *vd) 4537 { 4538 return (!vdev_is_dead(vd) && !vd->vdev_cant_write && 4539 vdev_is_concrete(vd)); 4540 } 4541 4542 boolean_t 4543 vdev_allocatable(vdev_t *vd) 4544 { 4545 uint64_t state = vd->vdev_state; 4546 4547 /* 4548 * We currently allow allocations from vdevs which may be in the 4549 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 4550 * fails to reopen then we'll catch it later when we're holding 4551 * the proper locks. Note that we have to get the vdev state 4552 * in a local variable because although it changes atomically, 4553 * we're asking two separate questions about it. 4554 */ 4555 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 4556 !vd->vdev_cant_write && vdev_is_concrete(vd) && 4557 vd->vdev_mg->mg_initialized); 4558 } 4559 4560 boolean_t 4561 vdev_accessible(vdev_t *vd, zio_t *zio) 4562 { 4563 ASSERT(zio->io_vd == vd); 4564 4565 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 4566 return (B_FALSE); 4567 4568 if (zio->io_type == ZIO_TYPE_READ) 4569 return (!vd->vdev_cant_read); 4570 4571 if (zio->io_type == ZIO_TYPE_WRITE) 4572 return (!vd->vdev_cant_write); 4573 4574 return (B_TRUE); 4575 } 4576 4577 static void 4578 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs) 4579 { 4580 /* 4581 * Exclude the dRAID spare when aggregating to avoid double counting 4582 * the ops and bytes. These IOs are counted by the physical leaves. 4583 */ 4584 if (cvd->vdev_ops == &vdev_draid_spare_ops) 4585 return; 4586 4587 for (int t = 0; t < VS_ZIO_TYPES; t++) { 4588 vs->vs_ops[t] += cvs->vs_ops[t]; 4589 vs->vs_bytes[t] += cvs->vs_bytes[t]; 4590 } 4591 4592 cvs->vs_scan_removing = cvd->vdev_removing; 4593 } 4594 4595 /* 4596 * Get extended stats 4597 */ 4598 static void 4599 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx) 4600 { 4601 (void) cvd; 4602 4603 int t, b; 4604 for (t = 0; t < ZIO_TYPES; t++) { 4605 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++) 4606 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b]; 4607 4608 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) { 4609 vsx->vsx_total_histo[t][b] += 4610 cvsx->vsx_total_histo[t][b]; 4611 } 4612 } 4613 4614 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4615 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) { 4616 vsx->vsx_queue_histo[t][b] += 4617 cvsx->vsx_queue_histo[t][b]; 4618 } 4619 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t]; 4620 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t]; 4621 4622 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++) 4623 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b]; 4624 4625 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++) 4626 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b]; 4627 } 4628 4629 } 4630 4631 boolean_t 4632 vdev_is_spacemap_addressable(vdev_t *vd) 4633 { 4634 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) 4635 return (B_TRUE); 4636 4637 /* 4638 * If double-word space map entries are not enabled we assume 4639 * 47 bits of the space map entry are dedicated to the entry's 4640 * offset (see SM_OFFSET_BITS in space_map.h). We then use that 4641 * to calculate the maximum address that can be described by a 4642 * space map entry for the given device. 4643 */ 4644 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; 4645 4646 if (shift >= 63) /* detect potential overflow */ 4647 return (B_TRUE); 4648 4649 return (vd->vdev_asize < (1ULL << shift)); 4650 } 4651 4652 /* 4653 * Get statistics for the given vdev. 4654 */ 4655 static void 4656 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4657 { 4658 int t; 4659 /* 4660 * If we're getting stats on the root vdev, aggregate the I/O counts 4661 * over all top-level vdevs (i.e. the direct children of the root). 4662 */ 4663 if (!vd->vdev_ops->vdev_op_leaf) { 4664 if (vs) { 4665 memset(vs->vs_ops, 0, sizeof (vs->vs_ops)); 4666 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes)); 4667 } 4668 if (vsx) 4669 memset(vsx, 0, sizeof (*vsx)); 4670 4671 for (int c = 0; c < vd->vdev_children; c++) { 4672 vdev_t *cvd = vd->vdev_child[c]; 4673 vdev_stat_t *cvs = &cvd->vdev_stat; 4674 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex; 4675 4676 vdev_get_stats_ex_impl(cvd, cvs, cvsx); 4677 if (vs) 4678 vdev_get_child_stat(cvd, vs, cvs); 4679 if (vsx) 4680 vdev_get_child_stat_ex(cvd, vsx, cvsx); 4681 } 4682 } else { 4683 /* 4684 * We're a leaf. Just copy our ZIO active queue stats in. The 4685 * other leaf stats are updated in vdev_stat_update(). 4686 */ 4687 if (!vsx) 4688 return; 4689 4690 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex)); 4691 4692 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4693 vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t]; 4694 vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t); 4695 } 4696 } 4697 } 4698 4699 void 4700 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4701 { 4702 vdev_t *tvd = vd->vdev_top; 4703 mutex_enter(&vd->vdev_stat_lock); 4704 if (vs) { 4705 memcpy(vs, &vd->vdev_stat, sizeof (*vs)); 4706 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 4707 vs->vs_state = vd->vdev_state; 4708 vs->vs_rsize = vdev_get_min_asize(vd); 4709 4710 if (vd->vdev_ops->vdev_op_leaf) { 4711 vs->vs_pspace = vd->vdev_psize; 4712 vs->vs_rsize += VDEV_LABEL_START_SIZE + 4713 VDEV_LABEL_END_SIZE; 4714 /* 4715 * Report initializing progress. Since we don't 4716 * have the initializing locks held, this is only 4717 * an estimate (although a fairly accurate one). 4718 */ 4719 vs->vs_initialize_bytes_done = 4720 vd->vdev_initialize_bytes_done; 4721 vs->vs_initialize_bytes_est = 4722 vd->vdev_initialize_bytes_est; 4723 vs->vs_initialize_state = vd->vdev_initialize_state; 4724 vs->vs_initialize_action_time = 4725 vd->vdev_initialize_action_time; 4726 4727 /* 4728 * Report manual TRIM progress. Since we don't have 4729 * the manual TRIM locks held, this is only an 4730 * estimate (although fairly accurate one). 4731 */ 4732 vs->vs_trim_notsup = !vd->vdev_has_trim; 4733 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done; 4734 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est; 4735 vs->vs_trim_state = vd->vdev_trim_state; 4736 vs->vs_trim_action_time = vd->vdev_trim_action_time; 4737 4738 /* Set when there is a deferred resilver. */ 4739 vs->vs_resilver_deferred = vd->vdev_resilver_deferred; 4740 } 4741 4742 /* 4743 * Report expandable space on top-level, non-auxiliary devices 4744 * only. The expandable space is reported in terms of metaslab 4745 * sized units since that determines how much space the pool 4746 * can expand. 4747 */ 4748 if (vd->vdev_aux == NULL && tvd != NULL) { 4749 vs->vs_esize = P2ALIGN( 4750 vd->vdev_max_asize - vd->vdev_asize, 4751 1ULL << tvd->vdev_ms_shift); 4752 } 4753 4754 vs->vs_configured_ashift = vd->vdev_top != NULL 4755 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift; 4756 vs->vs_logical_ashift = vd->vdev_logical_ashift; 4757 if (vd->vdev_physical_ashift <= ASHIFT_MAX) 4758 vs->vs_physical_ashift = vd->vdev_physical_ashift; 4759 else 4760 vs->vs_physical_ashift = 0; 4761 4762 /* 4763 * Report fragmentation and rebuild progress for top-level, 4764 * non-auxiliary, concrete devices. 4765 */ 4766 if (vd->vdev_aux == NULL && vd == vd->vdev_top && 4767 vdev_is_concrete(vd)) { 4768 /* 4769 * The vdev fragmentation rating doesn't take into 4770 * account the embedded slog metaslab (vdev_log_mg). 4771 * Since it's only one metaslab, it would have a tiny 4772 * impact on the overall fragmentation. 4773 */ 4774 vs->vs_fragmentation = (vd->vdev_mg != NULL) ? 4775 vd->vdev_mg->mg_fragmentation : 0; 4776 } 4777 vs->vs_noalloc = MAX(vd->vdev_noalloc, 4778 tvd ? tvd->vdev_noalloc : 0); 4779 } 4780 4781 vdev_get_stats_ex_impl(vd, vs, vsx); 4782 mutex_exit(&vd->vdev_stat_lock); 4783 } 4784 4785 void 4786 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 4787 { 4788 return (vdev_get_stats_ex(vd, vs, NULL)); 4789 } 4790 4791 void 4792 vdev_clear_stats(vdev_t *vd) 4793 { 4794 mutex_enter(&vd->vdev_stat_lock); 4795 vd->vdev_stat.vs_space = 0; 4796 vd->vdev_stat.vs_dspace = 0; 4797 vd->vdev_stat.vs_alloc = 0; 4798 mutex_exit(&vd->vdev_stat_lock); 4799 } 4800 4801 void 4802 vdev_scan_stat_init(vdev_t *vd) 4803 { 4804 vdev_stat_t *vs = &vd->vdev_stat; 4805 4806 for (int c = 0; c < vd->vdev_children; c++) 4807 vdev_scan_stat_init(vd->vdev_child[c]); 4808 4809 mutex_enter(&vd->vdev_stat_lock); 4810 vs->vs_scan_processed = 0; 4811 mutex_exit(&vd->vdev_stat_lock); 4812 } 4813 4814 void 4815 vdev_stat_update(zio_t *zio, uint64_t psize) 4816 { 4817 spa_t *spa = zio->io_spa; 4818 vdev_t *rvd = spa->spa_root_vdev; 4819 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 4820 vdev_t *pvd; 4821 uint64_t txg = zio->io_txg; 4822 /* Suppress ASAN false positive */ 4823 #ifdef __SANITIZE_ADDRESS__ 4824 vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL; 4825 vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL; 4826 #else 4827 vdev_stat_t *vs = &vd->vdev_stat; 4828 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex; 4829 #endif 4830 zio_type_t type = zio->io_type; 4831 int flags = zio->io_flags; 4832 4833 /* 4834 * If this i/o is a gang leader, it didn't do any actual work. 4835 */ 4836 if (zio->io_gang_tree) 4837 return; 4838 4839 if (zio->io_error == 0) { 4840 /* 4841 * If this is a root i/o, don't count it -- we've already 4842 * counted the top-level vdevs, and vdev_get_stats() will 4843 * aggregate them when asked. This reduces contention on 4844 * the root vdev_stat_lock and implicitly handles blocks 4845 * that compress away to holes, for which there is no i/o. 4846 * (Holes never create vdev children, so all the counters 4847 * remain zero, which is what we want.) 4848 * 4849 * Note: this only applies to successful i/o (io_error == 0) 4850 * because unlike i/o counts, errors are not additive. 4851 * When reading a ditto block, for example, failure of 4852 * one top-level vdev does not imply a root-level error. 4853 */ 4854 if (vd == rvd) 4855 return; 4856 4857 ASSERT(vd == zio->io_vd); 4858 4859 if (flags & ZIO_FLAG_IO_BYPASS) 4860 return; 4861 4862 mutex_enter(&vd->vdev_stat_lock); 4863 4864 if (flags & ZIO_FLAG_IO_REPAIR) { 4865 /* 4866 * Repair is the result of a resilver issued by the 4867 * scan thread (spa_sync). 4868 */ 4869 if (flags & ZIO_FLAG_SCAN_THREAD) { 4870 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 4871 dsl_scan_phys_t *scn_phys = &scn->scn_phys; 4872 uint64_t *processed = &scn_phys->scn_processed; 4873 4874 if (vd->vdev_ops->vdev_op_leaf) 4875 atomic_add_64(processed, psize); 4876 vs->vs_scan_processed += psize; 4877 } 4878 4879 /* 4880 * Repair is the result of a rebuild issued by the 4881 * rebuild thread (vdev_rebuild_thread). To avoid 4882 * double counting repaired bytes the virtual dRAID 4883 * spare vdev is excluded from the processed bytes. 4884 */ 4885 if (zio->io_priority == ZIO_PRIORITY_REBUILD) { 4886 vdev_t *tvd = vd->vdev_top; 4887 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config; 4888 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 4889 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt; 4890 4891 if (vd->vdev_ops->vdev_op_leaf && 4892 vd->vdev_ops != &vdev_draid_spare_ops) { 4893 atomic_add_64(rebuilt, psize); 4894 } 4895 vs->vs_rebuild_processed += psize; 4896 } 4897 4898 if (flags & ZIO_FLAG_SELF_HEAL) 4899 vs->vs_self_healed += psize; 4900 } 4901 4902 /* 4903 * The bytes/ops/histograms are recorded at the leaf level and 4904 * aggregated into the higher level vdevs in vdev_get_stats(). 4905 */ 4906 if (vd->vdev_ops->vdev_op_leaf && 4907 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) { 4908 zio_type_t vs_type = type; 4909 zio_priority_t priority = zio->io_priority; 4910 4911 /* 4912 * TRIM ops and bytes are reported to user space as 4913 * ZIO_TYPE_IOCTL. This is done to preserve the 4914 * vdev_stat_t structure layout for user space. 4915 */ 4916 if (type == ZIO_TYPE_TRIM) 4917 vs_type = ZIO_TYPE_IOCTL; 4918 4919 /* 4920 * Solely for the purposes of 'zpool iostat -lqrw' 4921 * reporting use the priority to categorize the IO. 4922 * Only the following are reported to user space: 4923 * 4924 * ZIO_PRIORITY_SYNC_READ, 4925 * ZIO_PRIORITY_SYNC_WRITE, 4926 * ZIO_PRIORITY_ASYNC_READ, 4927 * ZIO_PRIORITY_ASYNC_WRITE, 4928 * ZIO_PRIORITY_SCRUB, 4929 * ZIO_PRIORITY_TRIM, 4930 * ZIO_PRIORITY_REBUILD. 4931 */ 4932 if (priority == ZIO_PRIORITY_INITIALIZING) { 4933 ASSERT3U(type, ==, ZIO_TYPE_WRITE); 4934 priority = ZIO_PRIORITY_ASYNC_WRITE; 4935 } else if (priority == ZIO_PRIORITY_REMOVAL) { 4936 priority = ((type == ZIO_TYPE_WRITE) ? 4937 ZIO_PRIORITY_ASYNC_WRITE : 4938 ZIO_PRIORITY_ASYNC_READ); 4939 } 4940 4941 vs->vs_ops[vs_type]++; 4942 vs->vs_bytes[vs_type] += psize; 4943 4944 if (flags & ZIO_FLAG_DELEGATED) { 4945 vsx->vsx_agg_histo[priority] 4946 [RQ_HISTO(zio->io_size)]++; 4947 } else { 4948 vsx->vsx_ind_histo[priority] 4949 [RQ_HISTO(zio->io_size)]++; 4950 } 4951 4952 if (zio->io_delta && zio->io_delay) { 4953 vsx->vsx_queue_histo[priority] 4954 [L_HISTO(zio->io_delta - zio->io_delay)]++; 4955 vsx->vsx_disk_histo[type] 4956 [L_HISTO(zio->io_delay)]++; 4957 vsx->vsx_total_histo[type] 4958 [L_HISTO(zio->io_delta)]++; 4959 } 4960 } 4961 4962 mutex_exit(&vd->vdev_stat_lock); 4963 return; 4964 } 4965 4966 if (flags & ZIO_FLAG_SPECULATIVE) 4967 return; 4968 4969 /* 4970 * If this is an I/O error that is going to be retried, then ignore the 4971 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 4972 * hard errors, when in reality they can happen for any number of 4973 * innocuous reasons (bus resets, MPxIO link failure, etc). 4974 */ 4975 if (zio->io_error == EIO && 4976 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 4977 return; 4978 4979 /* 4980 * Intent logs writes won't propagate their error to the root 4981 * I/O so don't mark these types of failures as pool-level 4982 * errors. 4983 */ 4984 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 4985 return; 4986 4987 if (type == ZIO_TYPE_WRITE && txg != 0 && 4988 (!(flags & ZIO_FLAG_IO_REPAIR) || 4989 (flags & ZIO_FLAG_SCAN_THREAD) || 4990 spa->spa_claiming)) { 4991 /* 4992 * This is either a normal write (not a repair), or it's 4993 * a repair induced by the scrub thread, or it's a repair 4994 * made by zil_claim() during spa_load() in the first txg. 4995 * In the normal case, we commit the DTL change in the same 4996 * txg as the block was born. In the scrub-induced repair 4997 * case, we know that scrubs run in first-pass syncing context, 4998 * so we commit the DTL change in spa_syncing_txg(spa). 4999 * In the zil_claim() case, we commit in spa_first_txg(spa). 5000 * 5001 * We currently do not make DTL entries for failed spontaneous 5002 * self-healing writes triggered by normal (non-scrubbing) 5003 * reads, because we have no transactional context in which to 5004 * do so -- and it's not clear that it'd be desirable anyway. 5005 */ 5006 if (vd->vdev_ops->vdev_op_leaf) { 5007 uint64_t commit_txg = txg; 5008 if (flags & ZIO_FLAG_SCAN_THREAD) { 5009 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 5010 ASSERT(spa_sync_pass(spa) == 1); 5011 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 5012 commit_txg = spa_syncing_txg(spa); 5013 } else if (spa->spa_claiming) { 5014 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 5015 commit_txg = spa_first_txg(spa); 5016 } 5017 ASSERT(commit_txg >= spa_syncing_txg(spa)); 5018 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 5019 return; 5020 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 5021 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 5022 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 5023 } 5024 if (vd != rvd) 5025 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 5026 } 5027 } 5028 5029 int64_t 5030 vdev_deflated_space(vdev_t *vd, int64_t space) 5031 { 5032 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0); 5033 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 5034 5035 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio); 5036 } 5037 5038 /* 5039 * Update the in-core space usage stats for this vdev, its metaslab class, 5040 * and the root vdev. 5041 */ 5042 void 5043 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 5044 int64_t space_delta) 5045 { 5046 (void) defer_delta; 5047 int64_t dspace_delta; 5048 spa_t *spa = vd->vdev_spa; 5049 vdev_t *rvd = spa->spa_root_vdev; 5050 5051 ASSERT(vd == vd->vdev_top); 5052 5053 /* 5054 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 5055 * factor. We must calculate this here and not at the root vdev 5056 * because the root vdev's psize-to-asize is simply the max of its 5057 * children's, thus not accurate enough for us. 5058 */ 5059 dspace_delta = vdev_deflated_space(vd, space_delta); 5060 5061 mutex_enter(&vd->vdev_stat_lock); 5062 /* ensure we won't underflow */ 5063 if (alloc_delta < 0) { 5064 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta); 5065 } 5066 5067 vd->vdev_stat.vs_alloc += alloc_delta; 5068 vd->vdev_stat.vs_space += space_delta; 5069 vd->vdev_stat.vs_dspace += dspace_delta; 5070 mutex_exit(&vd->vdev_stat_lock); 5071 5072 /* every class but log contributes to root space stats */ 5073 if (vd->vdev_mg != NULL && !vd->vdev_islog) { 5074 ASSERT(!vd->vdev_isl2cache); 5075 mutex_enter(&rvd->vdev_stat_lock); 5076 rvd->vdev_stat.vs_alloc += alloc_delta; 5077 rvd->vdev_stat.vs_space += space_delta; 5078 rvd->vdev_stat.vs_dspace += dspace_delta; 5079 mutex_exit(&rvd->vdev_stat_lock); 5080 } 5081 /* Note: metaslab_class_space_update moved to metaslab_space_update */ 5082 } 5083 5084 /* 5085 * Mark a top-level vdev's config as dirty, placing it on the dirty list 5086 * so that it will be written out next time the vdev configuration is synced. 5087 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 5088 */ 5089 void 5090 vdev_config_dirty(vdev_t *vd) 5091 { 5092 spa_t *spa = vd->vdev_spa; 5093 vdev_t *rvd = spa->spa_root_vdev; 5094 int c; 5095 5096 ASSERT(spa_writeable(spa)); 5097 5098 /* 5099 * If this is an aux vdev (as with l2cache and spare devices), then we 5100 * update the vdev config manually and set the sync flag. 5101 */ 5102 if (vd->vdev_aux != NULL) { 5103 spa_aux_vdev_t *sav = vd->vdev_aux; 5104 nvlist_t **aux; 5105 uint_t naux; 5106 5107 for (c = 0; c < sav->sav_count; c++) { 5108 if (sav->sav_vdevs[c] == vd) 5109 break; 5110 } 5111 5112 if (c == sav->sav_count) { 5113 /* 5114 * We're being removed. There's nothing more to do. 5115 */ 5116 ASSERT(sav->sav_sync == B_TRUE); 5117 return; 5118 } 5119 5120 sav->sav_sync = B_TRUE; 5121 5122 if (nvlist_lookup_nvlist_array(sav->sav_config, 5123 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 5124 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 5125 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 5126 } 5127 5128 ASSERT(c < naux); 5129 5130 /* 5131 * Setting the nvlist in the middle if the array is a little 5132 * sketchy, but it will work. 5133 */ 5134 nvlist_free(aux[c]); 5135 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 5136 5137 return; 5138 } 5139 5140 /* 5141 * The dirty list is protected by the SCL_CONFIG lock. The caller 5142 * must either hold SCL_CONFIG as writer, or must be the sync thread 5143 * (which holds SCL_CONFIG as reader). There's only one sync thread, 5144 * so this is sufficient to ensure mutual exclusion. 5145 */ 5146 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 5147 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5148 spa_config_held(spa, SCL_CONFIG, RW_READER))); 5149 5150 if (vd == rvd) { 5151 for (c = 0; c < rvd->vdev_children; c++) 5152 vdev_config_dirty(rvd->vdev_child[c]); 5153 } else { 5154 ASSERT(vd == vd->vdev_top); 5155 5156 if (!list_link_active(&vd->vdev_config_dirty_node) && 5157 vdev_is_concrete(vd)) { 5158 list_insert_head(&spa->spa_config_dirty_list, vd); 5159 } 5160 } 5161 } 5162 5163 void 5164 vdev_config_clean(vdev_t *vd) 5165 { 5166 spa_t *spa = vd->vdev_spa; 5167 5168 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 5169 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5170 spa_config_held(spa, SCL_CONFIG, RW_READER))); 5171 5172 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 5173 list_remove(&spa->spa_config_dirty_list, vd); 5174 } 5175 5176 /* 5177 * Mark a top-level vdev's state as dirty, so that the next pass of 5178 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 5179 * the state changes from larger config changes because they require 5180 * much less locking, and are often needed for administrative actions. 5181 */ 5182 void 5183 vdev_state_dirty(vdev_t *vd) 5184 { 5185 spa_t *spa = vd->vdev_spa; 5186 5187 ASSERT(spa_writeable(spa)); 5188 ASSERT(vd == vd->vdev_top); 5189 5190 /* 5191 * The state list is protected by the SCL_STATE lock. The caller 5192 * must either hold SCL_STATE as writer, or must be the sync thread 5193 * (which holds SCL_STATE as reader). There's only one sync thread, 5194 * so this is sufficient to ensure mutual exclusion. 5195 */ 5196 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 5197 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5198 spa_config_held(spa, SCL_STATE, RW_READER))); 5199 5200 if (!list_link_active(&vd->vdev_state_dirty_node) && 5201 vdev_is_concrete(vd)) 5202 list_insert_head(&spa->spa_state_dirty_list, vd); 5203 } 5204 5205 void 5206 vdev_state_clean(vdev_t *vd) 5207 { 5208 spa_t *spa = vd->vdev_spa; 5209 5210 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 5211 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5212 spa_config_held(spa, SCL_STATE, RW_READER))); 5213 5214 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 5215 list_remove(&spa->spa_state_dirty_list, vd); 5216 } 5217 5218 /* 5219 * Propagate vdev state up from children to parent. 5220 */ 5221 void 5222 vdev_propagate_state(vdev_t *vd) 5223 { 5224 spa_t *spa = vd->vdev_spa; 5225 vdev_t *rvd = spa->spa_root_vdev; 5226 int degraded = 0, faulted = 0; 5227 int corrupted = 0; 5228 vdev_t *child; 5229 5230 if (vd->vdev_children > 0) { 5231 for (int c = 0; c < vd->vdev_children; c++) { 5232 child = vd->vdev_child[c]; 5233 5234 /* 5235 * Don't factor holes or indirect vdevs into the 5236 * decision. 5237 */ 5238 if (!vdev_is_concrete(child)) 5239 continue; 5240 5241 if (!vdev_readable(child) || 5242 (!vdev_writeable(child) && spa_writeable(spa))) { 5243 /* 5244 * Root special: if there is a top-level log 5245 * device, treat the root vdev as if it were 5246 * degraded. 5247 */ 5248 if (child->vdev_islog && vd == rvd) 5249 degraded++; 5250 else 5251 faulted++; 5252 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 5253 degraded++; 5254 } 5255 5256 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 5257 corrupted++; 5258 } 5259 5260 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 5261 5262 /* 5263 * Root special: if there is a top-level vdev that cannot be 5264 * opened due to corrupted metadata, then propagate the root 5265 * vdev's aux state as 'corrupt' rather than 'insufficient 5266 * replicas'. 5267 */ 5268 if (corrupted && vd == rvd && 5269 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 5270 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 5271 VDEV_AUX_CORRUPT_DATA); 5272 } 5273 5274 if (vd->vdev_parent) 5275 vdev_propagate_state(vd->vdev_parent); 5276 } 5277 5278 /* 5279 * Set a vdev's state. If this is during an open, we don't update the parent 5280 * state, because we're in the process of opening children depth-first. 5281 * Otherwise, we propagate the change to the parent. 5282 * 5283 * If this routine places a device in a faulted state, an appropriate ereport is 5284 * generated. 5285 */ 5286 void 5287 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 5288 { 5289 uint64_t save_state; 5290 spa_t *spa = vd->vdev_spa; 5291 5292 if (state == vd->vdev_state) { 5293 /* 5294 * Since vdev_offline() code path is already in an offline 5295 * state we can miss a statechange event to OFFLINE. Check 5296 * the previous state to catch this condition. 5297 */ 5298 if (vd->vdev_ops->vdev_op_leaf && 5299 (state == VDEV_STATE_OFFLINE) && 5300 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) { 5301 /* post an offline state change */ 5302 zfs_post_state_change(spa, vd, vd->vdev_prevstate); 5303 } 5304 vd->vdev_stat.vs_aux = aux; 5305 return; 5306 } 5307 5308 save_state = vd->vdev_state; 5309 5310 vd->vdev_state = state; 5311 vd->vdev_stat.vs_aux = aux; 5312 5313 /* 5314 * If we are setting the vdev state to anything but an open state, then 5315 * always close the underlying device unless the device has requested 5316 * a delayed close (i.e. we're about to remove or fault the device). 5317 * Otherwise, we keep accessible but invalid devices open forever. 5318 * We don't call vdev_close() itself, because that implies some extra 5319 * checks (offline, etc) that we don't want here. This is limited to 5320 * leaf devices, because otherwise closing the device will affect other 5321 * children. 5322 */ 5323 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 5324 vd->vdev_ops->vdev_op_leaf) 5325 vd->vdev_ops->vdev_op_close(vd); 5326 5327 if (vd->vdev_removed && 5328 state == VDEV_STATE_CANT_OPEN && 5329 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 5330 /* 5331 * If the previous state is set to VDEV_STATE_REMOVED, then this 5332 * device was previously marked removed and someone attempted to 5333 * reopen it. If this failed due to a nonexistent device, then 5334 * keep the device in the REMOVED state. We also let this be if 5335 * it is one of our special test online cases, which is only 5336 * attempting to online the device and shouldn't generate an FMA 5337 * fault. 5338 */ 5339 vd->vdev_state = VDEV_STATE_REMOVED; 5340 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 5341 } else if (state == VDEV_STATE_REMOVED) { 5342 vd->vdev_removed = B_TRUE; 5343 } else if (state == VDEV_STATE_CANT_OPEN) { 5344 /* 5345 * If we fail to open a vdev during an import or recovery, we 5346 * mark it as "not available", which signifies that it was 5347 * never there to begin with. Failure to open such a device 5348 * is not considered an error. 5349 */ 5350 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 5351 spa_load_state(spa) == SPA_LOAD_RECOVER) && 5352 vd->vdev_ops->vdev_op_leaf) 5353 vd->vdev_not_present = 1; 5354 5355 /* 5356 * Post the appropriate ereport. If the 'prevstate' field is 5357 * set to something other than VDEV_STATE_UNKNOWN, it indicates 5358 * that this is part of a vdev_reopen(). In this case, we don't 5359 * want to post the ereport if the device was already in the 5360 * CANT_OPEN state beforehand. 5361 * 5362 * If the 'checkremove' flag is set, then this is an attempt to 5363 * online the device in response to an insertion event. If we 5364 * hit this case, then we have detected an insertion event for a 5365 * faulted or offline device that wasn't in the removed state. 5366 * In this scenario, we don't post an ereport because we are 5367 * about to replace the device, or attempt an online with 5368 * vdev_forcefault, which will generate the fault for us. 5369 */ 5370 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 5371 !vd->vdev_not_present && !vd->vdev_checkremove && 5372 vd != spa->spa_root_vdev) { 5373 const char *class; 5374 5375 switch (aux) { 5376 case VDEV_AUX_OPEN_FAILED: 5377 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 5378 break; 5379 case VDEV_AUX_CORRUPT_DATA: 5380 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 5381 break; 5382 case VDEV_AUX_NO_REPLICAS: 5383 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 5384 break; 5385 case VDEV_AUX_BAD_GUID_SUM: 5386 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 5387 break; 5388 case VDEV_AUX_TOO_SMALL: 5389 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 5390 break; 5391 case VDEV_AUX_BAD_LABEL: 5392 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 5393 break; 5394 case VDEV_AUX_BAD_ASHIFT: 5395 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT; 5396 break; 5397 default: 5398 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 5399 } 5400 5401 (void) zfs_ereport_post(class, spa, vd, NULL, NULL, 5402 save_state); 5403 } 5404 5405 /* Erase any notion of persistent removed state */ 5406 vd->vdev_removed = B_FALSE; 5407 } else { 5408 vd->vdev_removed = B_FALSE; 5409 } 5410 5411 /* 5412 * Notify ZED of any significant state-change on a leaf vdev. 5413 * 5414 */ 5415 if (vd->vdev_ops->vdev_op_leaf) { 5416 /* preserve original state from a vdev_reopen() */ 5417 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) && 5418 (vd->vdev_prevstate != vd->vdev_state) && 5419 (save_state <= VDEV_STATE_CLOSED)) 5420 save_state = vd->vdev_prevstate; 5421 5422 /* filter out state change due to initial vdev_open */ 5423 if (save_state > VDEV_STATE_CLOSED) 5424 zfs_post_state_change(spa, vd, save_state); 5425 } 5426 5427 if (!isopen && vd->vdev_parent) 5428 vdev_propagate_state(vd->vdev_parent); 5429 } 5430 5431 boolean_t 5432 vdev_children_are_offline(vdev_t *vd) 5433 { 5434 ASSERT(!vd->vdev_ops->vdev_op_leaf); 5435 5436 for (uint64_t i = 0; i < vd->vdev_children; i++) { 5437 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) 5438 return (B_FALSE); 5439 } 5440 5441 return (B_TRUE); 5442 } 5443 5444 /* 5445 * Check the vdev configuration to ensure that it's capable of supporting 5446 * a root pool. We do not support partial configuration. 5447 */ 5448 boolean_t 5449 vdev_is_bootable(vdev_t *vd) 5450 { 5451 if (!vd->vdev_ops->vdev_op_leaf) { 5452 const char *vdev_type = vd->vdev_ops->vdev_op_type; 5453 5454 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) 5455 return (B_FALSE); 5456 } 5457 5458 for (int c = 0; c < vd->vdev_children; c++) { 5459 if (!vdev_is_bootable(vd->vdev_child[c])) 5460 return (B_FALSE); 5461 } 5462 return (B_TRUE); 5463 } 5464 5465 boolean_t 5466 vdev_is_concrete(vdev_t *vd) 5467 { 5468 vdev_ops_t *ops = vd->vdev_ops; 5469 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || 5470 ops == &vdev_missing_ops || ops == &vdev_root_ops) { 5471 return (B_FALSE); 5472 } else { 5473 return (B_TRUE); 5474 } 5475 } 5476 5477 /* 5478 * Determine if a log device has valid content. If the vdev was 5479 * removed or faulted in the MOS config then we know that 5480 * the content on the log device has already been written to the pool. 5481 */ 5482 boolean_t 5483 vdev_log_state_valid(vdev_t *vd) 5484 { 5485 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 5486 !vd->vdev_removed) 5487 return (B_TRUE); 5488 5489 for (int c = 0; c < vd->vdev_children; c++) 5490 if (vdev_log_state_valid(vd->vdev_child[c])) 5491 return (B_TRUE); 5492 5493 return (B_FALSE); 5494 } 5495 5496 /* 5497 * Expand a vdev if possible. 5498 */ 5499 void 5500 vdev_expand(vdev_t *vd, uint64_t txg) 5501 { 5502 ASSERT(vd->vdev_top == vd); 5503 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5504 ASSERT(vdev_is_concrete(vd)); 5505 5506 vdev_set_deflate_ratio(vd); 5507 5508 if ((vd->vdev_spa->spa_raidz_expand == NULL || 5509 vd->vdev_spa->spa_raidz_expand->vre_vdev_id != vd->vdev_id) && 5510 (vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && 5511 vdev_is_concrete(vd)) { 5512 vdev_metaslab_group_create(vd); 5513 VERIFY(vdev_metaslab_init(vd, txg) == 0); 5514 vdev_config_dirty(vd); 5515 } 5516 } 5517 5518 /* 5519 * Split a vdev. 5520 */ 5521 void 5522 vdev_split(vdev_t *vd) 5523 { 5524 vdev_t *cvd, *pvd = vd->vdev_parent; 5525 5526 VERIFY3U(pvd->vdev_children, >, 1); 5527 5528 vdev_remove_child(pvd, vd); 5529 vdev_compact_children(pvd); 5530 5531 ASSERT3P(pvd->vdev_child, !=, NULL); 5532 5533 cvd = pvd->vdev_child[0]; 5534 if (pvd->vdev_children == 1) { 5535 vdev_remove_parent(cvd); 5536 cvd->vdev_splitting = B_TRUE; 5537 } 5538 vdev_propagate_state(cvd); 5539 } 5540 5541 void 5542 vdev_deadman(vdev_t *vd, const char *tag) 5543 { 5544 for (int c = 0; c < vd->vdev_children; c++) { 5545 vdev_t *cvd = vd->vdev_child[c]; 5546 5547 vdev_deadman(cvd, tag); 5548 } 5549 5550 if (vd->vdev_ops->vdev_op_leaf) { 5551 vdev_queue_t *vq = &vd->vdev_queue; 5552 5553 mutex_enter(&vq->vq_lock); 5554 if (vq->vq_active > 0) { 5555 spa_t *spa = vd->vdev_spa; 5556 zio_t *fio; 5557 uint64_t delta; 5558 5559 zfs_dbgmsg("slow vdev: %s has %u active IOs", 5560 vd->vdev_path, vq->vq_active); 5561 5562 /* 5563 * Look at the head of all the pending queues, 5564 * if any I/O has been outstanding for longer than 5565 * the spa_deadman_synctime invoke the deadman logic. 5566 */ 5567 fio = list_head(&vq->vq_active_list); 5568 delta = gethrtime() - fio->io_timestamp; 5569 if (delta > spa_deadman_synctime(spa)) 5570 zio_deadman(fio, tag); 5571 } 5572 mutex_exit(&vq->vq_lock); 5573 } 5574 } 5575 5576 void 5577 vdev_defer_resilver(vdev_t *vd) 5578 { 5579 ASSERT(vd->vdev_ops->vdev_op_leaf); 5580 5581 vd->vdev_resilver_deferred = B_TRUE; 5582 vd->vdev_spa->spa_resilver_deferred = B_TRUE; 5583 } 5584 5585 /* 5586 * Clears the resilver deferred flag on all leaf devs under vd. Returns 5587 * B_TRUE if we have devices that need to be resilvered and are available to 5588 * accept resilver I/Os. 5589 */ 5590 boolean_t 5591 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx) 5592 { 5593 boolean_t resilver_needed = B_FALSE; 5594 spa_t *spa = vd->vdev_spa; 5595 5596 for (int c = 0; c < vd->vdev_children; c++) { 5597 vdev_t *cvd = vd->vdev_child[c]; 5598 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx); 5599 } 5600 5601 if (vd == spa->spa_root_vdev && 5602 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) { 5603 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 5604 vdev_config_dirty(vd); 5605 spa->spa_resilver_deferred = B_FALSE; 5606 return (resilver_needed); 5607 } 5608 5609 if (!vdev_is_concrete(vd) || vd->vdev_aux || 5610 !vd->vdev_ops->vdev_op_leaf) 5611 return (resilver_needed); 5612 5613 vd->vdev_resilver_deferred = B_FALSE; 5614 5615 return (!vdev_is_dead(vd) && !vd->vdev_offline && 5616 vdev_resilver_needed(vd, NULL, NULL)); 5617 } 5618 5619 boolean_t 5620 vdev_xlate_is_empty(range_seg64_t *rs) 5621 { 5622 return (rs->rs_start == rs->rs_end); 5623 } 5624 5625 /* 5626 * Translate a logical range to the first contiguous physical range for the 5627 * specified vdev_t. This function is initially called with a leaf vdev and 5628 * will walk each parent vdev until it reaches a top-level vdev. Once the 5629 * top-level is reached the physical range is initialized and the recursive 5630 * function begins to unwind. As it unwinds it calls the parent's vdev 5631 * specific translation function to do the real conversion. 5632 */ 5633 void 5634 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 5635 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 5636 { 5637 /* 5638 * Walk up the vdev tree 5639 */ 5640 if (vd != vd->vdev_top) { 5641 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs, 5642 remain_rs); 5643 } else { 5644 /* 5645 * We've reached the top-level vdev, initialize the physical 5646 * range to the logical range and set an empty remaining 5647 * range then start to unwind. 5648 */ 5649 physical_rs->rs_start = logical_rs->rs_start; 5650 physical_rs->rs_end = logical_rs->rs_end; 5651 5652 remain_rs->rs_start = logical_rs->rs_start; 5653 remain_rs->rs_end = logical_rs->rs_start; 5654 5655 return; 5656 } 5657 5658 vdev_t *pvd = vd->vdev_parent; 5659 ASSERT3P(pvd, !=, NULL); 5660 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL); 5661 5662 /* 5663 * As this recursive function unwinds, translate the logical 5664 * range into its physical and any remaining components by calling 5665 * the vdev specific translate function. 5666 */ 5667 range_seg64_t intermediate = { 0 }; 5668 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs); 5669 5670 physical_rs->rs_start = intermediate.rs_start; 5671 physical_rs->rs_end = intermediate.rs_end; 5672 } 5673 5674 void 5675 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs, 5676 vdev_xlate_func_t *func, void *arg) 5677 { 5678 range_seg64_t iter_rs = *logical_rs; 5679 range_seg64_t physical_rs; 5680 range_seg64_t remain_rs; 5681 5682 while (!vdev_xlate_is_empty(&iter_rs)) { 5683 5684 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs); 5685 5686 /* 5687 * With raidz and dRAID, it's possible that the logical range 5688 * does not live on this leaf vdev. Only when there is a non- 5689 * zero physical size call the provided function. 5690 */ 5691 if (!vdev_xlate_is_empty(&physical_rs)) 5692 func(arg, &physical_rs); 5693 5694 iter_rs = remain_rs; 5695 } 5696 } 5697 5698 static char * 5699 vdev_name(vdev_t *vd, char *buf, int buflen) 5700 { 5701 if (vd->vdev_path == NULL) { 5702 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) { 5703 strlcpy(buf, vd->vdev_spa->spa_name, buflen); 5704 } else if (!vd->vdev_ops->vdev_op_leaf) { 5705 snprintf(buf, buflen, "%s-%llu", 5706 vd->vdev_ops->vdev_op_type, 5707 (u_longlong_t)vd->vdev_id); 5708 } 5709 } else { 5710 strlcpy(buf, vd->vdev_path, buflen); 5711 } 5712 return (buf); 5713 } 5714 5715 /* 5716 * Look at the vdev tree and determine whether any devices are currently being 5717 * replaced. 5718 */ 5719 boolean_t 5720 vdev_replace_in_progress(vdev_t *vdev) 5721 { 5722 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0); 5723 5724 if (vdev->vdev_ops == &vdev_replacing_ops) 5725 return (B_TRUE); 5726 5727 /* 5728 * A 'spare' vdev indicates that we have a replace in progress, unless 5729 * it has exactly two children, and the second, the hot spare, has 5730 * finished being resilvered. 5731 */ 5732 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 || 5733 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING))) 5734 return (B_TRUE); 5735 5736 for (int i = 0; i < vdev->vdev_children; i++) { 5737 if (vdev_replace_in_progress(vdev->vdev_child[i])) 5738 return (B_TRUE); 5739 } 5740 5741 return (B_FALSE); 5742 } 5743 5744 /* 5745 * Add a (source=src, propname=propval) list to an nvlist. 5746 */ 5747 static void 5748 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval, 5749 uint64_t intval, zprop_source_t src) 5750 { 5751 nvlist_t *propval; 5752 5753 propval = fnvlist_alloc(); 5754 fnvlist_add_uint64(propval, ZPROP_SOURCE, src); 5755 5756 if (strval != NULL) 5757 fnvlist_add_string(propval, ZPROP_VALUE, strval); 5758 else 5759 fnvlist_add_uint64(propval, ZPROP_VALUE, intval); 5760 5761 fnvlist_add_nvlist(nvl, propname, propval); 5762 nvlist_free(propval); 5763 } 5764 5765 static void 5766 vdev_props_set_sync(void *arg, dmu_tx_t *tx) 5767 { 5768 vdev_t *vd; 5769 nvlist_t *nvp = arg; 5770 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5771 objset_t *mos = spa->spa_meta_objset; 5772 nvpair_t *elem = NULL; 5773 uint64_t vdev_guid; 5774 uint64_t objid; 5775 nvlist_t *nvprops; 5776 5777 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV); 5778 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS); 5779 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE); 5780 5781 /* this vdev could get removed while waiting for this sync task */ 5782 if (vd == NULL) 5783 return; 5784 5785 /* 5786 * Set vdev property values in the vdev props mos object. 5787 */ 5788 if (vd->vdev_root_zap != 0) { 5789 objid = vd->vdev_root_zap; 5790 } else if (vd->vdev_top_zap != 0) { 5791 objid = vd->vdev_top_zap; 5792 } else if (vd->vdev_leaf_zap != 0) { 5793 objid = vd->vdev_leaf_zap; 5794 } else { 5795 panic("unexpected vdev type"); 5796 } 5797 5798 mutex_enter(&spa->spa_props_lock); 5799 5800 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5801 uint64_t intval; 5802 const char *strval; 5803 vdev_prop_t prop; 5804 const char *propname = nvpair_name(elem); 5805 zprop_type_t proptype; 5806 5807 switch (prop = vdev_name_to_prop(propname)) { 5808 case VDEV_PROP_USERPROP: 5809 if (vdev_prop_user(propname)) { 5810 strval = fnvpair_value_string(elem); 5811 if (strlen(strval) == 0) { 5812 /* remove the property if value == "" */ 5813 (void) zap_remove(mos, objid, propname, 5814 tx); 5815 } else { 5816 VERIFY0(zap_update(mos, objid, propname, 5817 1, strlen(strval) + 1, strval, tx)); 5818 } 5819 spa_history_log_internal(spa, "vdev set", tx, 5820 "vdev_guid=%llu: %s=%s", 5821 (u_longlong_t)vdev_guid, nvpair_name(elem), 5822 strval); 5823 } 5824 break; 5825 default: 5826 /* normalize the property name */ 5827 propname = vdev_prop_to_name(prop); 5828 proptype = vdev_prop_get_type(prop); 5829 5830 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5831 ASSERT(proptype == PROP_TYPE_STRING); 5832 strval = fnvpair_value_string(elem); 5833 VERIFY0(zap_update(mos, objid, propname, 5834 1, strlen(strval) + 1, strval, tx)); 5835 spa_history_log_internal(spa, "vdev set", tx, 5836 "vdev_guid=%llu: %s=%s", 5837 (u_longlong_t)vdev_guid, nvpair_name(elem), 5838 strval); 5839 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5840 intval = fnvpair_value_uint64(elem); 5841 5842 if (proptype == PROP_TYPE_INDEX) { 5843 const char *unused; 5844 VERIFY0(vdev_prop_index_to_string( 5845 prop, intval, &unused)); 5846 } 5847 VERIFY0(zap_update(mos, objid, propname, 5848 sizeof (uint64_t), 1, &intval, tx)); 5849 spa_history_log_internal(spa, "vdev set", tx, 5850 "vdev_guid=%llu: %s=%lld", 5851 (u_longlong_t)vdev_guid, 5852 nvpair_name(elem), (longlong_t)intval); 5853 } else { 5854 panic("invalid vdev property type %u", 5855 nvpair_type(elem)); 5856 } 5857 } 5858 5859 } 5860 5861 mutex_exit(&spa->spa_props_lock); 5862 } 5863 5864 int 5865 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 5866 { 5867 spa_t *spa = vd->vdev_spa; 5868 nvpair_t *elem = NULL; 5869 uint64_t vdev_guid; 5870 nvlist_t *nvprops; 5871 int error = 0; 5872 5873 ASSERT(vd != NULL); 5874 5875 /* Check that vdev has a zap we can use */ 5876 if (vd->vdev_root_zap == 0 && 5877 vd->vdev_top_zap == 0 && 5878 vd->vdev_leaf_zap == 0) 5879 return (SET_ERROR(EINVAL)); 5880 5881 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV, 5882 &vdev_guid) != 0) 5883 return (SET_ERROR(EINVAL)); 5884 5885 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS, 5886 &nvprops) != 0) 5887 return (SET_ERROR(EINVAL)); 5888 5889 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL) 5890 return (SET_ERROR(EINVAL)); 5891 5892 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5893 const char *propname = nvpair_name(elem); 5894 vdev_prop_t prop = vdev_name_to_prop(propname); 5895 uint64_t intval = 0; 5896 const char *strval = NULL; 5897 5898 if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) { 5899 error = EINVAL; 5900 goto end; 5901 } 5902 5903 if (vdev_prop_readonly(prop)) { 5904 error = EROFS; 5905 goto end; 5906 } 5907 5908 /* Special Processing */ 5909 switch (prop) { 5910 case VDEV_PROP_PATH: 5911 if (vd->vdev_path == NULL) { 5912 error = EROFS; 5913 break; 5914 } 5915 if (nvpair_value_string(elem, &strval) != 0) { 5916 error = EINVAL; 5917 break; 5918 } 5919 /* New path must start with /dev/ */ 5920 if (strncmp(strval, "/dev/", 5)) { 5921 error = EINVAL; 5922 break; 5923 } 5924 error = spa_vdev_setpath(spa, vdev_guid, strval); 5925 break; 5926 case VDEV_PROP_ALLOCATING: 5927 if (nvpair_value_uint64(elem, &intval) != 0) { 5928 error = EINVAL; 5929 break; 5930 } 5931 if (intval != vd->vdev_noalloc) 5932 break; 5933 if (intval == 0) 5934 error = spa_vdev_noalloc(spa, vdev_guid); 5935 else 5936 error = spa_vdev_alloc(spa, vdev_guid); 5937 break; 5938 case VDEV_PROP_FAILFAST: 5939 if (nvpair_value_uint64(elem, &intval) != 0) { 5940 error = EINVAL; 5941 break; 5942 } 5943 vd->vdev_failfast = intval & 1; 5944 break; 5945 case VDEV_PROP_CHECKSUM_N: 5946 if (nvpair_value_uint64(elem, &intval) != 0) { 5947 error = EINVAL; 5948 break; 5949 } 5950 vd->vdev_checksum_n = intval; 5951 break; 5952 case VDEV_PROP_CHECKSUM_T: 5953 if (nvpair_value_uint64(elem, &intval) != 0) { 5954 error = EINVAL; 5955 break; 5956 } 5957 vd->vdev_checksum_t = intval; 5958 break; 5959 case VDEV_PROP_IO_N: 5960 if (nvpair_value_uint64(elem, &intval) != 0) { 5961 error = EINVAL; 5962 break; 5963 } 5964 vd->vdev_io_n = intval; 5965 break; 5966 case VDEV_PROP_IO_T: 5967 if (nvpair_value_uint64(elem, &intval) != 0) { 5968 error = EINVAL; 5969 break; 5970 } 5971 vd->vdev_io_t = intval; 5972 break; 5973 default: 5974 /* Most processing is done in vdev_props_set_sync */ 5975 break; 5976 } 5977 end: 5978 if (error != 0) { 5979 intval = error; 5980 vdev_prop_add_list(outnvl, propname, strval, intval, 0); 5981 return (error); 5982 } 5983 } 5984 5985 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync, 5986 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 5987 } 5988 5989 int 5990 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 5991 { 5992 spa_t *spa = vd->vdev_spa; 5993 objset_t *mos = spa->spa_meta_objset; 5994 int err = 0; 5995 uint64_t objid; 5996 uint64_t vdev_guid; 5997 nvpair_t *elem = NULL; 5998 nvlist_t *nvprops = NULL; 5999 uint64_t intval = 0; 6000 char *strval = NULL; 6001 const char *propname = NULL; 6002 vdev_prop_t prop; 6003 6004 ASSERT(vd != NULL); 6005 ASSERT(mos != NULL); 6006 6007 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV, 6008 &vdev_guid) != 0) 6009 return (SET_ERROR(EINVAL)); 6010 6011 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops); 6012 6013 if (vd->vdev_root_zap != 0) { 6014 objid = vd->vdev_root_zap; 6015 } else if (vd->vdev_top_zap != 0) { 6016 objid = vd->vdev_top_zap; 6017 } else if (vd->vdev_leaf_zap != 0) { 6018 objid = vd->vdev_leaf_zap; 6019 } else { 6020 return (SET_ERROR(EINVAL)); 6021 } 6022 ASSERT(objid != 0); 6023 6024 mutex_enter(&spa->spa_props_lock); 6025 6026 if (nvprops != NULL) { 6027 char namebuf[64] = { 0 }; 6028 6029 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 6030 intval = 0; 6031 strval = NULL; 6032 propname = nvpair_name(elem); 6033 prop = vdev_name_to_prop(propname); 6034 zprop_source_t src = ZPROP_SRC_DEFAULT; 6035 uint64_t integer_size, num_integers; 6036 6037 switch (prop) { 6038 /* Special Read-only Properties */ 6039 case VDEV_PROP_NAME: 6040 strval = vdev_name(vd, namebuf, 6041 sizeof (namebuf)); 6042 if (strval == NULL) 6043 continue; 6044 vdev_prop_add_list(outnvl, propname, strval, 0, 6045 ZPROP_SRC_NONE); 6046 continue; 6047 case VDEV_PROP_CAPACITY: 6048 /* percent used */ 6049 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 : 6050 (vd->vdev_stat.vs_alloc * 100 / 6051 vd->vdev_stat.vs_dspace); 6052 vdev_prop_add_list(outnvl, propname, NULL, 6053 intval, ZPROP_SRC_NONE); 6054 continue; 6055 case VDEV_PROP_STATE: 6056 vdev_prop_add_list(outnvl, propname, NULL, 6057 vd->vdev_state, ZPROP_SRC_NONE); 6058 continue; 6059 case VDEV_PROP_GUID: 6060 vdev_prop_add_list(outnvl, propname, NULL, 6061 vd->vdev_guid, ZPROP_SRC_NONE); 6062 continue; 6063 case VDEV_PROP_ASIZE: 6064 vdev_prop_add_list(outnvl, propname, NULL, 6065 vd->vdev_asize, ZPROP_SRC_NONE); 6066 continue; 6067 case VDEV_PROP_PSIZE: 6068 vdev_prop_add_list(outnvl, propname, NULL, 6069 vd->vdev_psize, ZPROP_SRC_NONE); 6070 continue; 6071 case VDEV_PROP_ASHIFT: 6072 vdev_prop_add_list(outnvl, propname, NULL, 6073 vd->vdev_ashift, ZPROP_SRC_NONE); 6074 continue; 6075 case VDEV_PROP_SIZE: 6076 vdev_prop_add_list(outnvl, propname, NULL, 6077 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE); 6078 continue; 6079 case VDEV_PROP_FREE: 6080 vdev_prop_add_list(outnvl, propname, NULL, 6081 vd->vdev_stat.vs_dspace - 6082 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 6083 continue; 6084 case VDEV_PROP_ALLOCATED: 6085 vdev_prop_add_list(outnvl, propname, NULL, 6086 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 6087 continue; 6088 case VDEV_PROP_EXPANDSZ: 6089 vdev_prop_add_list(outnvl, propname, NULL, 6090 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE); 6091 continue; 6092 case VDEV_PROP_FRAGMENTATION: 6093 vdev_prop_add_list(outnvl, propname, NULL, 6094 vd->vdev_stat.vs_fragmentation, 6095 ZPROP_SRC_NONE); 6096 continue; 6097 case VDEV_PROP_PARITY: 6098 vdev_prop_add_list(outnvl, propname, NULL, 6099 vdev_get_nparity(vd), ZPROP_SRC_NONE); 6100 continue; 6101 case VDEV_PROP_PATH: 6102 if (vd->vdev_path == NULL) 6103 continue; 6104 vdev_prop_add_list(outnvl, propname, 6105 vd->vdev_path, 0, ZPROP_SRC_NONE); 6106 continue; 6107 case VDEV_PROP_DEVID: 6108 if (vd->vdev_devid == NULL) 6109 continue; 6110 vdev_prop_add_list(outnvl, propname, 6111 vd->vdev_devid, 0, ZPROP_SRC_NONE); 6112 continue; 6113 case VDEV_PROP_PHYS_PATH: 6114 if (vd->vdev_physpath == NULL) 6115 continue; 6116 vdev_prop_add_list(outnvl, propname, 6117 vd->vdev_physpath, 0, ZPROP_SRC_NONE); 6118 continue; 6119 case VDEV_PROP_ENC_PATH: 6120 if (vd->vdev_enc_sysfs_path == NULL) 6121 continue; 6122 vdev_prop_add_list(outnvl, propname, 6123 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE); 6124 continue; 6125 case VDEV_PROP_FRU: 6126 if (vd->vdev_fru == NULL) 6127 continue; 6128 vdev_prop_add_list(outnvl, propname, 6129 vd->vdev_fru, 0, ZPROP_SRC_NONE); 6130 continue; 6131 case VDEV_PROP_PARENT: 6132 if (vd->vdev_parent != NULL) { 6133 strval = vdev_name(vd->vdev_parent, 6134 namebuf, sizeof (namebuf)); 6135 vdev_prop_add_list(outnvl, propname, 6136 strval, 0, ZPROP_SRC_NONE); 6137 } 6138 continue; 6139 case VDEV_PROP_CHILDREN: 6140 if (vd->vdev_children > 0) 6141 strval = kmem_zalloc(ZAP_MAXVALUELEN, 6142 KM_SLEEP); 6143 for (uint64_t i = 0; i < vd->vdev_children; 6144 i++) { 6145 const char *vname; 6146 6147 vname = vdev_name(vd->vdev_child[i], 6148 namebuf, sizeof (namebuf)); 6149 if (vname == NULL) 6150 vname = "(unknown)"; 6151 if (strlen(strval) > 0) 6152 strlcat(strval, ",", 6153 ZAP_MAXVALUELEN); 6154 strlcat(strval, vname, ZAP_MAXVALUELEN); 6155 } 6156 if (strval != NULL) { 6157 vdev_prop_add_list(outnvl, propname, 6158 strval, 0, ZPROP_SRC_NONE); 6159 kmem_free(strval, ZAP_MAXVALUELEN); 6160 } 6161 continue; 6162 case VDEV_PROP_NUMCHILDREN: 6163 vdev_prop_add_list(outnvl, propname, NULL, 6164 vd->vdev_children, ZPROP_SRC_NONE); 6165 continue; 6166 case VDEV_PROP_READ_ERRORS: 6167 vdev_prop_add_list(outnvl, propname, NULL, 6168 vd->vdev_stat.vs_read_errors, 6169 ZPROP_SRC_NONE); 6170 continue; 6171 case VDEV_PROP_WRITE_ERRORS: 6172 vdev_prop_add_list(outnvl, propname, NULL, 6173 vd->vdev_stat.vs_write_errors, 6174 ZPROP_SRC_NONE); 6175 continue; 6176 case VDEV_PROP_CHECKSUM_ERRORS: 6177 vdev_prop_add_list(outnvl, propname, NULL, 6178 vd->vdev_stat.vs_checksum_errors, 6179 ZPROP_SRC_NONE); 6180 continue; 6181 case VDEV_PROP_INITIALIZE_ERRORS: 6182 vdev_prop_add_list(outnvl, propname, NULL, 6183 vd->vdev_stat.vs_initialize_errors, 6184 ZPROP_SRC_NONE); 6185 continue; 6186 case VDEV_PROP_OPS_NULL: 6187 vdev_prop_add_list(outnvl, propname, NULL, 6188 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL], 6189 ZPROP_SRC_NONE); 6190 continue; 6191 case VDEV_PROP_OPS_READ: 6192 vdev_prop_add_list(outnvl, propname, NULL, 6193 vd->vdev_stat.vs_ops[ZIO_TYPE_READ], 6194 ZPROP_SRC_NONE); 6195 continue; 6196 case VDEV_PROP_OPS_WRITE: 6197 vdev_prop_add_list(outnvl, propname, NULL, 6198 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE], 6199 ZPROP_SRC_NONE); 6200 continue; 6201 case VDEV_PROP_OPS_FREE: 6202 vdev_prop_add_list(outnvl, propname, NULL, 6203 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE], 6204 ZPROP_SRC_NONE); 6205 continue; 6206 case VDEV_PROP_OPS_CLAIM: 6207 vdev_prop_add_list(outnvl, propname, NULL, 6208 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM], 6209 ZPROP_SRC_NONE); 6210 continue; 6211 case VDEV_PROP_OPS_TRIM: 6212 /* 6213 * TRIM ops and bytes are reported to user 6214 * space as ZIO_TYPE_IOCTL. This is done to 6215 * preserve the vdev_stat_t structure layout 6216 * for user space. 6217 */ 6218 vdev_prop_add_list(outnvl, propname, NULL, 6219 vd->vdev_stat.vs_ops[ZIO_TYPE_IOCTL], 6220 ZPROP_SRC_NONE); 6221 continue; 6222 case VDEV_PROP_BYTES_NULL: 6223 vdev_prop_add_list(outnvl, propname, NULL, 6224 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL], 6225 ZPROP_SRC_NONE); 6226 continue; 6227 case VDEV_PROP_BYTES_READ: 6228 vdev_prop_add_list(outnvl, propname, NULL, 6229 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ], 6230 ZPROP_SRC_NONE); 6231 continue; 6232 case VDEV_PROP_BYTES_WRITE: 6233 vdev_prop_add_list(outnvl, propname, NULL, 6234 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE], 6235 ZPROP_SRC_NONE); 6236 continue; 6237 case VDEV_PROP_BYTES_FREE: 6238 vdev_prop_add_list(outnvl, propname, NULL, 6239 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE], 6240 ZPROP_SRC_NONE); 6241 continue; 6242 case VDEV_PROP_BYTES_CLAIM: 6243 vdev_prop_add_list(outnvl, propname, NULL, 6244 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM], 6245 ZPROP_SRC_NONE); 6246 continue; 6247 case VDEV_PROP_BYTES_TRIM: 6248 /* 6249 * TRIM ops and bytes are reported to user 6250 * space as ZIO_TYPE_IOCTL. This is done to 6251 * preserve the vdev_stat_t structure layout 6252 * for user space. 6253 */ 6254 vdev_prop_add_list(outnvl, propname, NULL, 6255 vd->vdev_stat.vs_bytes[ZIO_TYPE_IOCTL], 6256 ZPROP_SRC_NONE); 6257 continue; 6258 case VDEV_PROP_REMOVING: 6259 vdev_prop_add_list(outnvl, propname, NULL, 6260 vd->vdev_removing, ZPROP_SRC_NONE); 6261 continue; 6262 case VDEV_PROP_RAIDZ_EXPANDING: 6263 /* Only expose this for raidz */ 6264 if (vd->vdev_ops == &vdev_raidz_ops) { 6265 vdev_prop_add_list(outnvl, propname, 6266 NULL, vd->vdev_rz_expanding, 6267 ZPROP_SRC_NONE); 6268 } 6269 continue; 6270 /* Numeric Properites */ 6271 case VDEV_PROP_ALLOCATING: 6272 /* Leaf vdevs cannot have this property */ 6273 if (vd->vdev_mg == NULL && 6274 vd->vdev_top != NULL) { 6275 src = ZPROP_SRC_NONE; 6276 intval = ZPROP_BOOLEAN_NA; 6277 } else { 6278 err = vdev_prop_get_int(vd, prop, 6279 &intval); 6280 if (err && err != ENOENT) 6281 break; 6282 6283 if (intval == 6284 vdev_prop_default_numeric(prop)) 6285 src = ZPROP_SRC_DEFAULT; 6286 else 6287 src = ZPROP_SRC_LOCAL; 6288 } 6289 6290 vdev_prop_add_list(outnvl, propname, NULL, 6291 intval, src); 6292 break; 6293 case VDEV_PROP_FAILFAST: 6294 src = ZPROP_SRC_LOCAL; 6295 strval = NULL; 6296 6297 err = zap_lookup(mos, objid, nvpair_name(elem), 6298 sizeof (uint64_t), 1, &intval); 6299 if (err == ENOENT) { 6300 intval = vdev_prop_default_numeric( 6301 prop); 6302 err = 0; 6303 } else if (err) { 6304 break; 6305 } 6306 if (intval == vdev_prop_default_numeric(prop)) 6307 src = ZPROP_SRC_DEFAULT; 6308 6309 vdev_prop_add_list(outnvl, propname, strval, 6310 intval, src); 6311 break; 6312 case VDEV_PROP_CHECKSUM_N: 6313 case VDEV_PROP_CHECKSUM_T: 6314 case VDEV_PROP_IO_N: 6315 case VDEV_PROP_IO_T: 6316 err = vdev_prop_get_int(vd, prop, &intval); 6317 if (err && err != ENOENT) 6318 break; 6319 6320 if (intval == vdev_prop_default_numeric(prop)) 6321 src = ZPROP_SRC_DEFAULT; 6322 else 6323 src = ZPROP_SRC_LOCAL; 6324 6325 vdev_prop_add_list(outnvl, propname, NULL, 6326 intval, src); 6327 break; 6328 /* Text Properties */ 6329 case VDEV_PROP_COMMENT: 6330 /* Exists in the ZAP below */ 6331 /* FALLTHRU */ 6332 case VDEV_PROP_USERPROP: 6333 /* User Properites */ 6334 src = ZPROP_SRC_LOCAL; 6335 6336 err = zap_length(mos, objid, nvpair_name(elem), 6337 &integer_size, &num_integers); 6338 if (err) 6339 break; 6340 6341 switch (integer_size) { 6342 case 8: 6343 /* User properties cannot be integers */ 6344 err = EINVAL; 6345 break; 6346 case 1: 6347 /* string property */ 6348 strval = kmem_alloc(num_integers, 6349 KM_SLEEP); 6350 err = zap_lookup(mos, objid, 6351 nvpair_name(elem), 1, 6352 num_integers, strval); 6353 if (err) { 6354 kmem_free(strval, 6355 num_integers); 6356 break; 6357 } 6358 vdev_prop_add_list(outnvl, propname, 6359 strval, 0, src); 6360 kmem_free(strval, num_integers); 6361 break; 6362 } 6363 break; 6364 default: 6365 err = ENOENT; 6366 break; 6367 } 6368 if (err) 6369 break; 6370 } 6371 } else { 6372 /* 6373 * Get all properties from the MOS vdev property object. 6374 */ 6375 zap_cursor_t zc; 6376 zap_attribute_t za; 6377 for (zap_cursor_init(&zc, mos, objid); 6378 (err = zap_cursor_retrieve(&zc, &za)) == 0; 6379 zap_cursor_advance(&zc)) { 6380 intval = 0; 6381 strval = NULL; 6382 zprop_source_t src = ZPROP_SRC_DEFAULT; 6383 propname = za.za_name; 6384 6385 switch (za.za_integer_length) { 6386 case 8: 6387 /* We do not allow integer user properties */ 6388 /* This is likely an internal value */ 6389 break; 6390 case 1: 6391 /* string property */ 6392 strval = kmem_alloc(za.za_num_integers, 6393 KM_SLEEP); 6394 err = zap_lookup(mos, objid, za.za_name, 1, 6395 za.za_num_integers, strval); 6396 if (err) { 6397 kmem_free(strval, za.za_num_integers); 6398 break; 6399 } 6400 vdev_prop_add_list(outnvl, propname, strval, 0, 6401 src); 6402 kmem_free(strval, za.za_num_integers); 6403 break; 6404 6405 default: 6406 break; 6407 } 6408 } 6409 zap_cursor_fini(&zc); 6410 } 6411 6412 mutex_exit(&spa->spa_props_lock); 6413 if (err && err != ENOENT) { 6414 return (err); 6415 } 6416 6417 return (0); 6418 } 6419 6420 EXPORT_SYMBOL(vdev_fault); 6421 EXPORT_SYMBOL(vdev_degrade); 6422 EXPORT_SYMBOL(vdev_online); 6423 EXPORT_SYMBOL(vdev_offline); 6424 EXPORT_SYMBOL(vdev_clear); 6425 6426 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW, 6427 "Target number of metaslabs per top-level vdev"); 6428 6429 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW, 6430 "Default lower limit for metaslab size"); 6431 6432 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW, 6433 "Default upper limit for metaslab size"); 6434 6435 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW, 6436 "Minimum number of metaslabs per top-level vdev"); 6437 6438 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW, 6439 "Practical upper limit of total metaslabs per top-level vdev"); 6440 6441 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW, 6442 "Rate limit slow IO (delay) events to this many per second"); 6443 6444 /* BEGIN CSTYLED */ 6445 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW, 6446 "Rate limit checksum events to this many checksum errors per second " 6447 "(do not set below ZED threshold)."); 6448 /* END CSTYLED */ 6449 6450 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW, 6451 "Ignore errors during resilver/scrub"); 6452 6453 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW, 6454 "Bypass vdev_validate()"); 6455 6456 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW, 6457 "Disable cache flushes"); 6458 6459 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW, 6460 "Minimum number of metaslabs required to dedicate one for log blocks"); 6461 6462 /* BEGIN CSTYLED */ 6463 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift, 6464 param_set_min_auto_ashift, param_get_uint, ZMOD_RW, 6465 "Minimum ashift used when creating new top-level vdevs"); 6466 6467 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift, 6468 param_set_max_auto_ashift, param_get_uint, ZMOD_RW, 6469 "Maximum ashift used when optimizing for logical -> physical sector " 6470 "size on new top-level vdevs"); 6471 /* END CSTYLED */ 6472