1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 * Copyright 2017 Joyent, Inc.
29 * Copyright (c) 2017, Intel Corporation.
30 * Copyright (c) 2019, Datto Inc. All rights reserved.
31 * Copyright (c) 2021, Klara Inc.
32 * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP.
33 */
34
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa.h>
38 #include <sys/spa_impl.h>
39 #include <sys/bpobj.h>
40 #include <sys/dmu.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/vdev_rebuild.h>
45 #include <sys/vdev_draid.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/metaslab.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/space_map.h>
50 #include <sys/space_reftree.h>
51 #include <sys/zio.h>
52 #include <sys/zap.h>
53 #include <sys/fs/zfs.h>
54 #include <sys/arc.h>
55 #include <sys/zil.h>
56 #include <sys/dsl_scan.h>
57 #include <sys/vdev_raidz.h>
58 #include <sys/abd.h>
59 #include <sys/vdev_initialize.h>
60 #include <sys/vdev_trim.h>
61 #include <sys/vdev_raidz.h>
62 #include <sys/zvol.h>
63 #include <sys/zfs_ratelimit.h>
64 #include "zfs_prop.h"
65
66 /*
67 * One metaslab from each (normal-class) vdev is used by the ZIL. These are
68 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
69 * part of the spa_embedded_log_class. The metaslab with the most free space
70 * in each vdev is selected for this purpose when the pool is opened (or a
71 * vdev is added). See vdev_metaslab_init().
72 *
73 * Log blocks can be allocated from the following locations. Each one is tried
74 * in order until the allocation succeeds:
75 * 1. dedicated log vdevs, aka "slog" (spa_log_class)
76 * 2. embedded slog metaslabs (spa_embedded_log_class)
77 * 3. other metaslabs in normal vdevs (spa_normal_class)
78 *
79 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
80 * than this number of metaslabs in the vdev. This ensures that we don't set
81 * aside an unreasonable amount of space for the ZIL. If set to less than
82 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
83 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
84 */
85 static uint_t zfs_embedded_slog_min_ms = 64;
86
87 /* default target for number of metaslabs per top-level vdev */
88 static uint_t zfs_vdev_default_ms_count = 200;
89
90 /* minimum number of metaslabs per top-level vdev */
91 static uint_t zfs_vdev_min_ms_count = 16;
92
93 /* practical upper limit of total metaslabs per top-level vdev */
94 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17;
95
96 /* lower limit for metaslab size (512M) */
97 static uint_t zfs_vdev_default_ms_shift = 29;
98
99 /* upper limit for metaslab size (16G) */
100 static uint_t zfs_vdev_max_ms_shift = 34;
101
102 int vdev_validate_skip = B_FALSE;
103
104 /*
105 * Since the DTL space map of a vdev is not expected to have a lot of
106 * entries, we default its block size to 4K.
107 */
108 int zfs_vdev_dtl_sm_blksz = (1 << 12);
109
110 /*
111 * Rate limit slow IO (delay) events to this many per second.
112 */
113 static unsigned int zfs_slow_io_events_per_second = 20;
114
115 /*
116 * Rate limit deadman "hung IO" events to this many per second.
117 */
118 static unsigned int zfs_deadman_events_per_second = 1;
119
120 /*
121 * Rate limit direct write IO verify failures to this many per scond.
122 */
123 static unsigned int zfs_dio_write_verify_events_per_second = 20;
124
125 /*
126 * Rate limit checksum events after this many checksum errors per second.
127 */
128 static unsigned int zfs_checksum_events_per_second = 20;
129
130 /*
131 * Ignore errors during scrub/resilver. Allows to work around resilver
132 * upon import when there are pool errors.
133 */
134 static int zfs_scan_ignore_errors = 0;
135
136 /*
137 * vdev-wide space maps that have lots of entries written to them at
138 * the end of each transaction can benefit from a higher I/O bandwidth
139 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
140 */
141 int zfs_vdev_standard_sm_blksz = (1 << 17);
142
143 /*
144 * Tunable parameter for debugging or performance analysis. Setting this
145 * will cause pool corruption on power loss if a volatile out-of-order
146 * write cache is enabled.
147 */
148 int zfs_nocacheflush = 0;
149
150 /*
151 * Maximum and minimum ashift values that can be automatically set based on
152 * vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX
153 * is higher than the maximum value, it is intentionally limited here to not
154 * excessively impact pool space efficiency. Higher ashift values may still
155 * be forced by vdev logical ashift or by user via ashift property, but won't
156 * be set automatically as a performance optimization.
157 */
158 uint_t zfs_vdev_max_auto_ashift = 14;
159 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
160
161 /*
162 * VDEV checksum verification for Direct I/O writes. This is neccessary for
163 * Linux, because anonymous pages can not be placed under write protection
164 * during Direct I/O writes.
165 */
166 #if !defined(__FreeBSD__)
167 uint_t zfs_vdev_direct_write_verify = 1;
168 #else
169 uint_t zfs_vdev_direct_write_verify = 0;
170 #endif
171
172 void
vdev_dbgmsg(vdev_t * vd,const char * fmt,...)173 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
174 {
175 va_list adx;
176 char buf[256];
177
178 va_start(adx, fmt);
179 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
180 va_end(adx);
181
182 if (vd->vdev_path != NULL) {
183 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
184 vd->vdev_path, buf);
185 } else {
186 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
187 vd->vdev_ops->vdev_op_type,
188 (u_longlong_t)vd->vdev_id,
189 (u_longlong_t)vd->vdev_guid, buf);
190 }
191 }
192
193 void
vdev_dbgmsg_print_tree(vdev_t * vd,int indent)194 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
195 {
196 char state[20];
197
198 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
199 zfs_dbgmsg("%*svdev %llu: %s", indent, "",
200 (u_longlong_t)vd->vdev_id,
201 vd->vdev_ops->vdev_op_type);
202 return;
203 }
204
205 switch (vd->vdev_state) {
206 case VDEV_STATE_UNKNOWN:
207 (void) snprintf(state, sizeof (state), "unknown");
208 break;
209 case VDEV_STATE_CLOSED:
210 (void) snprintf(state, sizeof (state), "closed");
211 break;
212 case VDEV_STATE_OFFLINE:
213 (void) snprintf(state, sizeof (state), "offline");
214 break;
215 case VDEV_STATE_REMOVED:
216 (void) snprintf(state, sizeof (state), "removed");
217 break;
218 case VDEV_STATE_CANT_OPEN:
219 (void) snprintf(state, sizeof (state), "can't open");
220 break;
221 case VDEV_STATE_FAULTED:
222 (void) snprintf(state, sizeof (state), "faulted");
223 break;
224 case VDEV_STATE_DEGRADED:
225 (void) snprintf(state, sizeof (state), "degraded");
226 break;
227 case VDEV_STATE_HEALTHY:
228 (void) snprintf(state, sizeof (state), "healthy");
229 break;
230 default:
231 (void) snprintf(state, sizeof (state), "<state %u>",
232 (uint_t)vd->vdev_state);
233 }
234
235 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
236 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
237 vd->vdev_islog ? " (log)" : "",
238 (u_longlong_t)vd->vdev_guid,
239 vd->vdev_path ? vd->vdev_path : "N/A", state);
240
241 for (uint64_t i = 0; i < vd->vdev_children; i++)
242 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
243 }
244
245 /*
246 * Virtual device management.
247 */
248
249 static vdev_ops_t *const vdev_ops_table[] = {
250 &vdev_root_ops,
251 &vdev_raidz_ops,
252 &vdev_draid_ops,
253 &vdev_draid_spare_ops,
254 &vdev_mirror_ops,
255 &vdev_replacing_ops,
256 &vdev_spare_ops,
257 &vdev_disk_ops,
258 &vdev_file_ops,
259 &vdev_missing_ops,
260 &vdev_hole_ops,
261 &vdev_indirect_ops,
262 NULL
263 };
264
265 /*
266 * Given a vdev type, return the appropriate ops vector.
267 */
268 static vdev_ops_t *
vdev_getops(const char * type)269 vdev_getops(const char *type)
270 {
271 vdev_ops_t *ops, *const *opspp;
272
273 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
274 if (strcmp(ops->vdev_op_type, type) == 0)
275 break;
276
277 return (ops);
278 }
279
280 /*
281 * Given a vdev and a metaslab class, find which metaslab group we're
282 * interested in. All vdevs may belong to two different metaslab classes.
283 * Dedicated slog devices use only the primary metaslab group, rather than a
284 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL.
285 */
286 metaslab_group_t *
vdev_get_mg(vdev_t * vd,metaslab_class_t * mc)287 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
288 {
289 if (mc == spa_embedded_log_class(vd->vdev_spa) &&
290 vd->vdev_log_mg != NULL)
291 return (vd->vdev_log_mg);
292 else
293 return (vd->vdev_mg);
294 }
295
296 void
vdev_default_xlate(vdev_t * vd,const range_seg64_t * logical_rs,range_seg64_t * physical_rs,range_seg64_t * remain_rs)297 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
298 range_seg64_t *physical_rs, range_seg64_t *remain_rs)
299 {
300 (void) vd, (void) remain_rs;
301
302 physical_rs->rs_start = logical_rs->rs_start;
303 physical_rs->rs_end = logical_rs->rs_end;
304 }
305
306 /*
307 * Derive the enumerated allocation bias from string input.
308 * String origin is either the per-vdev zap or zpool(8).
309 */
310 static vdev_alloc_bias_t
vdev_derive_alloc_bias(const char * bias)311 vdev_derive_alloc_bias(const char *bias)
312 {
313 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
314
315 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
316 alloc_bias = VDEV_BIAS_LOG;
317 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
318 alloc_bias = VDEV_BIAS_SPECIAL;
319 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
320 alloc_bias = VDEV_BIAS_DEDUP;
321
322 return (alloc_bias);
323 }
324
325 /*
326 * Default asize function: return the MAX of psize with the asize of
327 * all children. This is what's used by anything other than RAID-Z.
328 */
329 uint64_t
vdev_default_asize(vdev_t * vd,uint64_t psize,uint64_t txg)330 vdev_default_asize(vdev_t *vd, uint64_t psize, uint64_t txg)
331 {
332 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
333 uint64_t csize;
334
335 for (int c = 0; c < vd->vdev_children; c++) {
336 csize = vdev_psize_to_asize_txg(vd->vdev_child[c], psize, txg);
337 asize = MAX(asize, csize);
338 }
339
340 return (asize);
341 }
342
343 uint64_t
vdev_default_min_asize(vdev_t * vd)344 vdev_default_min_asize(vdev_t *vd)
345 {
346 return (vd->vdev_min_asize);
347 }
348
349 /*
350 * Get the minimum allocatable size. We define the allocatable size as
351 * the vdev's asize rounded to the nearest metaslab. This allows us to
352 * replace or attach devices which don't have the same physical size but
353 * can still satisfy the same number of allocations.
354 */
355 uint64_t
vdev_get_min_asize(vdev_t * vd)356 vdev_get_min_asize(vdev_t *vd)
357 {
358 vdev_t *pvd = vd->vdev_parent;
359
360 /*
361 * If our parent is NULL (inactive spare or cache) or is the root,
362 * just return our own asize.
363 */
364 if (pvd == NULL)
365 return (vd->vdev_asize);
366
367 /*
368 * The top-level vdev just returns the allocatable size rounded
369 * to the nearest metaslab.
370 */
371 if (vd == vd->vdev_top)
372 return (P2ALIGN_TYPED(vd->vdev_asize, 1ULL << vd->vdev_ms_shift,
373 uint64_t));
374
375 return (pvd->vdev_ops->vdev_op_min_asize(pvd));
376 }
377
378 void
vdev_set_min_asize(vdev_t * vd)379 vdev_set_min_asize(vdev_t *vd)
380 {
381 vd->vdev_min_asize = vdev_get_min_asize(vd);
382
383 for (int c = 0; c < vd->vdev_children; c++)
384 vdev_set_min_asize(vd->vdev_child[c]);
385 }
386
387 /*
388 * Get the minimal allocation size for the top-level vdev.
389 */
390 uint64_t
vdev_get_min_alloc(vdev_t * vd)391 vdev_get_min_alloc(vdev_t *vd)
392 {
393 uint64_t min_alloc = 1ULL << vd->vdev_ashift;
394
395 if (vd->vdev_ops->vdev_op_min_alloc != NULL)
396 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
397
398 return (min_alloc);
399 }
400
401 /*
402 * Get the parity level for a top-level vdev.
403 */
404 uint64_t
vdev_get_nparity(vdev_t * vd)405 vdev_get_nparity(vdev_t *vd)
406 {
407 uint64_t nparity = 0;
408
409 if (vd->vdev_ops->vdev_op_nparity != NULL)
410 nparity = vd->vdev_ops->vdev_op_nparity(vd);
411
412 return (nparity);
413 }
414
415 static int
vdev_prop_get_int(vdev_t * vd,vdev_prop_t prop,uint64_t * value)416 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value)
417 {
418 spa_t *spa = vd->vdev_spa;
419 objset_t *mos = spa->spa_meta_objset;
420 uint64_t objid;
421 int err;
422
423 if (vd->vdev_root_zap != 0) {
424 objid = vd->vdev_root_zap;
425 } else if (vd->vdev_top_zap != 0) {
426 objid = vd->vdev_top_zap;
427 } else if (vd->vdev_leaf_zap != 0) {
428 objid = vd->vdev_leaf_zap;
429 } else {
430 return (EINVAL);
431 }
432
433 err = zap_lookup(mos, objid, vdev_prop_to_name(prop),
434 sizeof (uint64_t), 1, value);
435
436 if (err == ENOENT)
437 *value = vdev_prop_default_numeric(prop);
438
439 return (err);
440 }
441
442 /*
443 * Get the number of data disks for a top-level vdev.
444 */
445 uint64_t
vdev_get_ndisks(vdev_t * vd)446 vdev_get_ndisks(vdev_t *vd)
447 {
448 uint64_t ndisks = 1;
449
450 if (vd->vdev_ops->vdev_op_ndisks != NULL)
451 ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
452
453 return (ndisks);
454 }
455
456 vdev_t *
vdev_lookup_top(spa_t * spa,uint64_t vdev)457 vdev_lookup_top(spa_t *spa, uint64_t vdev)
458 {
459 vdev_t *rvd = spa->spa_root_vdev;
460
461 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
462
463 if (vdev < rvd->vdev_children) {
464 ASSERT(rvd->vdev_child[vdev] != NULL);
465 return (rvd->vdev_child[vdev]);
466 }
467
468 return (NULL);
469 }
470
471 vdev_t *
vdev_lookup_by_guid(vdev_t * vd,uint64_t guid)472 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
473 {
474 vdev_t *mvd;
475
476 if (vd->vdev_guid == guid)
477 return (vd);
478
479 for (int c = 0; c < vd->vdev_children; c++)
480 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
481 NULL)
482 return (mvd);
483
484 return (NULL);
485 }
486
487 static int
vdev_count_leaves_impl(vdev_t * vd)488 vdev_count_leaves_impl(vdev_t *vd)
489 {
490 int n = 0;
491
492 if (vd->vdev_ops->vdev_op_leaf)
493 return (1);
494
495 for (int c = 0; c < vd->vdev_children; c++)
496 n += vdev_count_leaves_impl(vd->vdev_child[c]);
497
498 return (n);
499 }
500
501 int
vdev_count_leaves(spa_t * spa)502 vdev_count_leaves(spa_t *spa)
503 {
504 int rc;
505
506 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
507 rc = vdev_count_leaves_impl(spa->spa_root_vdev);
508 spa_config_exit(spa, SCL_VDEV, FTAG);
509
510 return (rc);
511 }
512
513 void
vdev_add_child(vdev_t * pvd,vdev_t * cvd)514 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
515 {
516 size_t oldsize, newsize;
517 uint64_t id = cvd->vdev_id;
518 vdev_t **newchild;
519
520 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
521 ASSERT(cvd->vdev_parent == NULL);
522
523 cvd->vdev_parent = pvd;
524
525 if (pvd == NULL)
526 return;
527
528 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
529
530 oldsize = pvd->vdev_children * sizeof (vdev_t *);
531 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
532 newsize = pvd->vdev_children * sizeof (vdev_t *);
533
534 newchild = kmem_alloc(newsize, KM_SLEEP);
535 if (pvd->vdev_child != NULL) {
536 memcpy(newchild, pvd->vdev_child, oldsize);
537 kmem_free(pvd->vdev_child, oldsize);
538 }
539
540 pvd->vdev_child = newchild;
541 pvd->vdev_child[id] = cvd;
542
543 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
544 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
545
546 /*
547 * Walk up all ancestors to update guid sum.
548 */
549 for (; pvd != NULL; pvd = pvd->vdev_parent)
550 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
551
552 if (cvd->vdev_ops->vdev_op_leaf) {
553 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
554 cvd->vdev_spa->spa_leaf_list_gen++;
555 }
556 }
557
558 void
vdev_remove_child(vdev_t * pvd,vdev_t * cvd)559 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
560 {
561 int c;
562 uint_t id = cvd->vdev_id;
563
564 ASSERT(cvd->vdev_parent == pvd);
565
566 if (pvd == NULL)
567 return;
568
569 ASSERT(id < pvd->vdev_children);
570 ASSERT(pvd->vdev_child[id] == cvd);
571
572 pvd->vdev_child[id] = NULL;
573 cvd->vdev_parent = NULL;
574
575 for (c = 0; c < pvd->vdev_children; c++)
576 if (pvd->vdev_child[c])
577 break;
578
579 if (c == pvd->vdev_children) {
580 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
581 pvd->vdev_child = NULL;
582 pvd->vdev_children = 0;
583 }
584
585 if (cvd->vdev_ops->vdev_op_leaf) {
586 spa_t *spa = cvd->vdev_spa;
587 list_remove(&spa->spa_leaf_list, cvd);
588 spa->spa_leaf_list_gen++;
589 }
590
591 /*
592 * Walk up all ancestors to update guid sum.
593 */
594 for (; pvd != NULL; pvd = pvd->vdev_parent)
595 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
596 }
597
598 /*
599 * Remove any holes in the child array.
600 */
601 void
vdev_compact_children(vdev_t * pvd)602 vdev_compact_children(vdev_t *pvd)
603 {
604 vdev_t **newchild, *cvd;
605 int oldc = pvd->vdev_children;
606 int newc;
607
608 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
609
610 if (oldc == 0)
611 return;
612
613 for (int c = newc = 0; c < oldc; c++)
614 if (pvd->vdev_child[c])
615 newc++;
616
617 if (newc > 0) {
618 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
619
620 for (int c = newc = 0; c < oldc; c++) {
621 if ((cvd = pvd->vdev_child[c]) != NULL) {
622 newchild[newc] = cvd;
623 cvd->vdev_id = newc++;
624 }
625 }
626 } else {
627 newchild = NULL;
628 }
629
630 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
631 pvd->vdev_child = newchild;
632 pvd->vdev_children = newc;
633 }
634
635 /*
636 * Allocate and minimally initialize a vdev_t.
637 */
638 vdev_t *
vdev_alloc_common(spa_t * spa,uint_t id,uint64_t guid,vdev_ops_t * ops)639 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
640 {
641 vdev_t *vd;
642 vdev_indirect_config_t *vic;
643
644 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
645 vic = &vd->vdev_indirect_config;
646
647 if (spa->spa_root_vdev == NULL) {
648 ASSERT(ops == &vdev_root_ops);
649 spa->spa_root_vdev = vd;
650 spa->spa_load_guid = spa_generate_load_guid();
651 }
652
653 if (guid == 0 && ops != &vdev_hole_ops) {
654 if (spa->spa_root_vdev == vd) {
655 /*
656 * The root vdev's guid will also be the pool guid,
657 * which must be unique among all pools.
658 */
659 guid = spa_generate_guid(NULL);
660 } else {
661 /*
662 * Any other vdev's guid must be unique within the pool.
663 */
664 guid = spa_generate_guid(spa);
665 }
666 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
667 }
668
669 vd->vdev_spa = spa;
670 vd->vdev_id = id;
671 vd->vdev_guid = guid;
672 vd->vdev_guid_sum = guid;
673 vd->vdev_ops = ops;
674 vd->vdev_state = VDEV_STATE_CLOSED;
675 vd->vdev_ishole = (ops == &vdev_hole_ops);
676 vic->vic_prev_indirect_vdev = UINT64_MAX;
677
678 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
679 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
680 vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL,
681 0, 0);
682
683 /*
684 * Initialize rate limit structs for events. We rate limit ZIO delay
685 * and checksum events so that we don't overwhelm ZED with thousands
686 * of events when a disk is acting up.
687 */
688 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
689 1);
690 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_deadman_events_per_second,
691 1);
692 zfs_ratelimit_init(&vd->vdev_dio_verify_rl,
693 &zfs_dio_write_verify_events_per_second, 1);
694 zfs_ratelimit_init(&vd->vdev_checksum_rl,
695 &zfs_checksum_events_per_second, 1);
696
697 /*
698 * Default Thresholds for tuning ZED
699 */
700 vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N);
701 vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T);
702 vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N);
703 vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T);
704 vd->vdev_slow_io_n = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N);
705 vd->vdev_slow_io_t = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T);
706
707 list_link_init(&vd->vdev_config_dirty_node);
708 list_link_init(&vd->vdev_state_dirty_node);
709 list_link_init(&vd->vdev_initialize_node);
710 list_link_init(&vd->vdev_leaf_node);
711 list_link_init(&vd->vdev_trim_node);
712
713 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
714 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
715 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
716 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
717
718 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
719 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
720 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
721 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
722
723 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
724 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
725 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
726 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
727 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
728 cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL);
729 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
730
731 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
732 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
733
734 for (int t = 0; t < DTL_TYPES; t++) {
735 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
736 0);
737 }
738
739 txg_list_create(&vd->vdev_ms_list, spa,
740 offsetof(struct metaslab, ms_txg_node));
741 txg_list_create(&vd->vdev_dtl_list, spa,
742 offsetof(struct vdev, vdev_dtl_node));
743 vd->vdev_stat.vs_timestamp = gethrtime();
744 vdev_queue_init(vd);
745
746 return (vd);
747 }
748
749 /*
750 * Allocate a new vdev. The 'alloctype' is used to control whether we are
751 * creating a new vdev or loading an existing one - the behavior is slightly
752 * different for each case.
753 */
754 int
vdev_alloc(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int alloctype)755 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
756 int alloctype)
757 {
758 vdev_ops_t *ops;
759 const char *type;
760 uint64_t guid = 0, islog;
761 vdev_t *vd;
762 vdev_indirect_config_t *vic;
763 const char *tmp = NULL;
764 int rc;
765 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
766 boolean_t top_level = (parent && !parent->vdev_parent);
767
768 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
769
770 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
771 return (SET_ERROR(EINVAL));
772
773 if ((ops = vdev_getops(type)) == NULL)
774 return (SET_ERROR(EINVAL));
775
776 /*
777 * If this is a load, get the vdev guid from the nvlist.
778 * Otherwise, vdev_alloc_common() will generate one for us.
779 */
780 if (alloctype == VDEV_ALLOC_LOAD) {
781 uint64_t label_id;
782
783 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
784 label_id != id)
785 return (SET_ERROR(EINVAL));
786
787 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
788 return (SET_ERROR(EINVAL));
789 } else if (alloctype == VDEV_ALLOC_SPARE) {
790 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
791 return (SET_ERROR(EINVAL));
792 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
793 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
794 return (SET_ERROR(EINVAL));
795 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
796 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
797 return (SET_ERROR(EINVAL));
798 }
799
800 /*
801 * The first allocated vdev must be of type 'root'.
802 */
803 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
804 return (SET_ERROR(EINVAL));
805
806 /*
807 * Determine whether we're a log vdev.
808 */
809 islog = 0;
810 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
811 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
812 return (SET_ERROR(ENOTSUP));
813
814 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
815 return (SET_ERROR(ENOTSUP));
816
817 if (top_level && alloctype == VDEV_ALLOC_ADD) {
818 const char *bias;
819
820 /*
821 * If creating a top-level vdev, check for allocation
822 * classes input.
823 */
824 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
825 &bias) == 0) {
826 alloc_bias = vdev_derive_alloc_bias(bias);
827
828 /* spa_vdev_add() expects feature to be enabled */
829 if (spa->spa_load_state != SPA_LOAD_CREATE &&
830 !spa_feature_is_enabled(spa,
831 SPA_FEATURE_ALLOCATION_CLASSES)) {
832 return (SET_ERROR(ENOTSUP));
833 }
834 }
835
836 /* spa_vdev_add() expects feature to be enabled */
837 if (ops == &vdev_draid_ops &&
838 spa->spa_load_state != SPA_LOAD_CREATE &&
839 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
840 return (SET_ERROR(ENOTSUP));
841 }
842 }
843
844 /*
845 * Initialize the vdev specific data. This is done before calling
846 * vdev_alloc_common() since it may fail and this simplifies the
847 * error reporting and cleanup code paths.
848 */
849 void *tsd = NULL;
850 if (ops->vdev_op_init != NULL) {
851 rc = ops->vdev_op_init(spa, nv, &tsd);
852 if (rc != 0) {
853 return (rc);
854 }
855 }
856
857 vd = vdev_alloc_common(spa, id, guid, ops);
858 vd->vdev_tsd = tsd;
859 vd->vdev_islog = islog;
860
861 if (top_level && alloc_bias != VDEV_BIAS_NONE)
862 vd->vdev_alloc_bias = alloc_bias;
863
864 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0)
865 vd->vdev_path = spa_strdup(tmp);
866
867 /*
868 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
869 * fault on a vdev and want it to persist across imports (like with
870 * zpool offline -f).
871 */
872 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
873 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
874 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
875 vd->vdev_faulted = 1;
876 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
877 }
878
879 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0)
880 vd->vdev_devid = spa_strdup(tmp);
881 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0)
882 vd->vdev_physpath = spa_strdup(tmp);
883
884 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
885 &tmp) == 0)
886 vd->vdev_enc_sysfs_path = spa_strdup(tmp);
887
888 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0)
889 vd->vdev_fru = spa_strdup(tmp);
890
891 /*
892 * Set the whole_disk property. If it's not specified, leave the value
893 * as -1.
894 */
895 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
896 &vd->vdev_wholedisk) != 0)
897 vd->vdev_wholedisk = -1ULL;
898
899 vic = &vd->vdev_indirect_config;
900
901 ASSERT0(vic->vic_mapping_object);
902 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
903 &vic->vic_mapping_object);
904 ASSERT0(vic->vic_births_object);
905 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
906 &vic->vic_births_object);
907 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
908 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
909 &vic->vic_prev_indirect_vdev);
910
911 /*
912 * Look for the 'not present' flag. This will only be set if the device
913 * was not present at the time of import.
914 */
915 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
916 &vd->vdev_not_present);
917
918 /*
919 * Get the alignment requirement. Ignore pool ashift for vdev
920 * attach case.
921 */
922 if (alloctype != VDEV_ALLOC_ATTACH) {
923 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT,
924 &vd->vdev_ashift);
925 } else {
926 vd->vdev_attaching = B_TRUE;
927 }
928
929 /*
930 * Retrieve the vdev creation time.
931 */
932 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
933 &vd->vdev_crtxg);
934
935 if (vd->vdev_ops == &vdev_root_ops &&
936 (alloctype == VDEV_ALLOC_LOAD ||
937 alloctype == VDEV_ALLOC_SPLIT ||
938 alloctype == VDEV_ALLOC_ROOTPOOL)) {
939 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP,
940 &vd->vdev_root_zap);
941 }
942
943 /*
944 * If we're a top-level vdev, try to load the allocation parameters.
945 */
946 if (top_level &&
947 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
948 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
949 &vd->vdev_ms_array);
950 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
951 &vd->vdev_ms_shift);
952 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
953 &vd->vdev_asize);
954 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
955 &vd->vdev_noalloc);
956 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
957 &vd->vdev_removing);
958 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
959 &vd->vdev_top_zap);
960 vd->vdev_rz_expanding = nvlist_exists(nv,
961 ZPOOL_CONFIG_RAIDZ_EXPANDING);
962 } else {
963 ASSERT0(vd->vdev_top_zap);
964 }
965
966 if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
967 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
968 alloctype == VDEV_ALLOC_ADD ||
969 alloctype == VDEV_ALLOC_SPLIT ||
970 alloctype == VDEV_ALLOC_ROOTPOOL);
971 /* Note: metaslab_group_create() is now deferred */
972 }
973
974 if (vd->vdev_ops->vdev_op_leaf &&
975 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
976 (void) nvlist_lookup_uint64(nv,
977 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
978 } else {
979 ASSERT0(vd->vdev_leaf_zap);
980 }
981
982 /*
983 * If we're a leaf vdev, try to load the DTL object and other state.
984 */
985
986 if (vd->vdev_ops->vdev_op_leaf &&
987 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
988 alloctype == VDEV_ALLOC_ROOTPOOL)) {
989 if (alloctype == VDEV_ALLOC_LOAD) {
990 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
991 &vd->vdev_dtl_object);
992 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
993 &vd->vdev_unspare);
994 }
995
996 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
997 uint64_t spare = 0;
998
999 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
1000 &spare) == 0 && spare)
1001 spa_spare_add(vd);
1002 }
1003
1004 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
1005 &vd->vdev_offline);
1006
1007 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
1008 &vd->vdev_resilver_txg);
1009
1010 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
1011 &vd->vdev_rebuild_txg);
1012
1013 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
1014 vdev_defer_resilver(vd);
1015
1016 /*
1017 * In general, when importing a pool we want to ignore the
1018 * persistent fault state, as the diagnosis made on another
1019 * system may not be valid in the current context. The only
1020 * exception is if we forced a vdev to a persistently faulted
1021 * state with 'zpool offline -f'. The persistent fault will
1022 * remain across imports until cleared.
1023 *
1024 * Local vdevs will remain in the faulted state.
1025 */
1026 if (spa_load_state(spa) == SPA_LOAD_OPEN ||
1027 spa_load_state(spa) == SPA_LOAD_IMPORT) {
1028 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
1029 &vd->vdev_faulted);
1030 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
1031 &vd->vdev_degraded);
1032 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
1033 &vd->vdev_removed);
1034
1035 if (vd->vdev_faulted || vd->vdev_degraded) {
1036 const char *aux;
1037
1038 vd->vdev_label_aux =
1039 VDEV_AUX_ERR_EXCEEDED;
1040 if (nvlist_lookup_string(nv,
1041 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
1042 strcmp(aux, "external") == 0)
1043 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
1044 else
1045 vd->vdev_faulted = 0ULL;
1046 }
1047 }
1048 }
1049
1050 /*
1051 * Add ourselves to the parent's list of children.
1052 */
1053 vdev_add_child(parent, vd);
1054
1055 *vdp = vd;
1056
1057 return (0);
1058 }
1059
1060 void
vdev_free(vdev_t * vd)1061 vdev_free(vdev_t *vd)
1062 {
1063 spa_t *spa = vd->vdev_spa;
1064
1065 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1066 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1067 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1068 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
1069
1070 /*
1071 * Scan queues are normally destroyed at the end of a scan. If the
1072 * queue exists here, that implies the vdev is being removed while
1073 * the scan is still running.
1074 */
1075 if (vd->vdev_scan_io_queue != NULL) {
1076 mutex_enter(&vd->vdev_scan_io_queue_lock);
1077 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
1078 vd->vdev_scan_io_queue = NULL;
1079 mutex_exit(&vd->vdev_scan_io_queue_lock);
1080 }
1081
1082 /*
1083 * vdev_free() implies closing the vdev first. This is simpler than
1084 * trying to ensure complicated semantics for all callers.
1085 */
1086 vdev_close(vd);
1087
1088 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
1089 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1090
1091 /*
1092 * Free all children.
1093 */
1094 for (int c = 0; c < vd->vdev_children; c++)
1095 vdev_free(vd->vdev_child[c]);
1096
1097 ASSERT(vd->vdev_child == NULL);
1098 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1099
1100 if (vd->vdev_ops->vdev_op_fini != NULL)
1101 vd->vdev_ops->vdev_op_fini(vd);
1102
1103 /*
1104 * Discard allocation state.
1105 */
1106 if (vd->vdev_mg != NULL) {
1107 vdev_metaslab_fini(vd);
1108 metaslab_group_destroy(vd->vdev_mg);
1109 vd->vdev_mg = NULL;
1110 }
1111 if (vd->vdev_log_mg != NULL) {
1112 ASSERT0(vd->vdev_ms_count);
1113 metaslab_group_destroy(vd->vdev_log_mg);
1114 vd->vdev_log_mg = NULL;
1115 }
1116
1117 ASSERT0(vd->vdev_stat.vs_space);
1118 ASSERT0(vd->vdev_stat.vs_dspace);
1119 ASSERT0(vd->vdev_stat.vs_alloc);
1120
1121 /*
1122 * Remove this vdev from its parent's child list.
1123 */
1124 vdev_remove_child(vd->vdev_parent, vd);
1125
1126 ASSERT(vd->vdev_parent == NULL);
1127 ASSERT(!list_link_active(&vd->vdev_leaf_node));
1128
1129 /*
1130 * Clean up vdev structure.
1131 */
1132 vdev_queue_fini(vd);
1133
1134 if (vd->vdev_path)
1135 spa_strfree(vd->vdev_path);
1136 if (vd->vdev_devid)
1137 spa_strfree(vd->vdev_devid);
1138 if (vd->vdev_physpath)
1139 spa_strfree(vd->vdev_physpath);
1140
1141 if (vd->vdev_enc_sysfs_path)
1142 spa_strfree(vd->vdev_enc_sysfs_path);
1143
1144 if (vd->vdev_fru)
1145 spa_strfree(vd->vdev_fru);
1146
1147 if (vd->vdev_isspare)
1148 spa_spare_remove(vd);
1149 if (vd->vdev_isl2cache)
1150 spa_l2cache_remove(vd);
1151
1152 txg_list_destroy(&vd->vdev_ms_list);
1153 txg_list_destroy(&vd->vdev_dtl_list);
1154
1155 mutex_enter(&vd->vdev_dtl_lock);
1156 space_map_close(vd->vdev_dtl_sm);
1157 for (int t = 0; t < DTL_TYPES; t++) {
1158 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1159 range_tree_destroy(vd->vdev_dtl[t]);
1160 }
1161 mutex_exit(&vd->vdev_dtl_lock);
1162
1163 EQUIV(vd->vdev_indirect_births != NULL,
1164 vd->vdev_indirect_mapping != NULL);
1165 if (vd->vdev_indirect_births != NULL) {
1166 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1167 vdev_indirect_births_close(vd->vdev_indirect_births);
1168 }
1169
1170 if (vd->vdev_obsolete_sm != NULL) {
1171 ASSERT(vd->vdev_removing ||
1172 vd->vdev_ops == &vdev_indirect_ops);
1173 space_map_close(vd->vdev_obsolete_sm);
1174 vd->vdev_obsolete_sm = NULL;
1175 }
1176 range_tree_destroy(vd->vdev_obsolete_segments);
1177 rw_destroy(&vd->vdev_indirect_rwlock);
1178 mutex_destroy(&vd->vdev_obsolete_lock);
1179
1180 mutex_destroy(&vd->vdev_dtl_lock);
1181 mutex_destroy(&vd->vdev_stat_lock);
1182 mutex_destroy(&vd->vdev_probe_lock);
1183 mutex_destroy(&vd->vdev_scan_io_queue_lock);
1184
1185 mutex_destroy(&vd->vdev_initialize_lock);
1186 mutex_destroy(&vd->vdev_initialize_io_lock);
1187 cv_destroy(&vd->vdev_initialize_io_cv);
1188 cv_destroy(&vd->vdev_initialize_cv);
1189
1190 mutex_destroy(&vd->vdev_trim_lock);
1191 mutex_destroy(&vd->vdev_autotrim_lock);
1192 mutex_destroy(&vd->vdev_trim_io_lock);
1193 cv_destroy(&vd->vdev_trim_cv);
1194 cv_destroy(&vd->vdev_autotrim_cv);
1195 cv_destroy(&vd->vdev_autotrim_kick_cv);
1196 cv_destroy(&vd->vdev_trim_io_cv);
1197
1198 mutex_destroy(&vd->vdev_rebuild_lock);
1199 cv_destroy(&vd->vdev_rebuild_cv);
1200
1201 zfs_ratelimit_fini(&vd->vdev_delay_rl);
1202 zfs_ratelimit_fini(&vd->vdev_deadman_rl);
1203 zfs_ratelimit_fini(&vd->vdev_dio_verify_rl);
1204 zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1205
1206 if (vd == spa->spa_root_vdev)
1207 spa->spa_root_vdev = NULL;
1208
1209 kmem_free(vd, sizeof (vdev_t));
1210 }
1211
1212 /*
1213 * Transfer top-level vdev state from svd to tvd.
1214 */
1215 static void
vdev_top_transfer(vdev_t * svd,vdev_t * tvd)1216 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1217 {
1218 spa_t *spa = svd->vdev_spa;
1219 metaslab_t *msp;
1220 vdev_t *vd;
1221 int t;
1222
1223 ASSERT(tvd == tvd->vdev_top);
1224
1225 tvd->vdev_ms_array = svd->vdev_ms_array;
1226 tvd->vdev_ms_shift = svd->vdev_ms_shift;
1227 tvd->vdev_ms_count = svd->vdev_ms_count;
1228 tvd->vdev_top_zap = svd->vdev_top_zap;
1229
1230 svd->vdev_ms_array = 0;
1231 svd->vdev_ms_shift = 0;
1232 svd->vdev_ms_count = 0;
1233 svd->vdev_top_zap = 0;
1234
1235 if (tvd->vdev_mg)
1236 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1237 if (tvd->vdev_log_mg)
1238 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1239 tvd->vdev_mg = svd->vdev_mg;
1240 tvd->vdev_log_mg = svd->vdev_log_mg;
1241 tvd->vdev_ms = svd->vdev_ms;
1242
1243 svd->vdev_mg = NULL;
1244 svd->vdev_log_mg = NULL;
1245 svd->vdev_ms = NULL;
1246
1247 if (tvd->vdev_mg != NULL)
1248 tvd->vdev_mg->mg_vd = tvd;
1249 if (tvd->vdev_log_mg != NULL)
1250 tvd->vdev_log_mg->mg_vd = tvd;
1251
1252 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1253 svd->vdev_checkpoint_sm = NULL;
1254
1255 tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1256 svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1257
1258 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1259 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1260 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1261
1262 svd->vdev_stat.vs_alloc = 0;
1263 svd->vdev_stat.vs_space = 0;
1264 svd->vdev_stat.vs_dspace = 0;
1265
1266 /*
1267 * State which may be set on a top-level vdev that's in the
1268 * process of being removed.
1269 */
1270 ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1271 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1272 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1273 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1274 ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1275 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1276 ASSERT0(tvd->vdev_noalloc);
1277 ASSERT0(tvd->vdev_removing);
1278 ASSERT0(tvd->vdev_rebuilding);
1279 tvd->vdev_noalloc = svd->vdev_noalloc;
1280 tvd->vdev_removing = svd->vdev_removing;
1281 tvd->vdev_rebuilding = svd->vdev_rebuilding;
1282 tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1283 tvd->vdev_indirect_config = svd->vdev_indirect_config;
1284 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1285 tvd->vdev_indirect_births = svd->vdev_indirect_births;
1286 range_tree_swap(&svd->vdev_obsolete_segments,
1287 &tvd->vdev_obsolete_segments);
1288 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1289 svd->vdev_indirect_config.vic_mapping_object = 0;
1290 svd->vdev_indirect_config.vic_births_object = 0;
1291 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1292 svd->vdev_indirect_mapping = NULL;
1293 svd->vdev_indirect_births = NULL;
1294 svd->vdev_obsolete_sm = NULL;
1295 svd->vdev_noalloc = 0;
1296 svd->vdev_removing = 0;
1297 svd->vdev_rebuilding = 0;
1298
1299 for (t = 0; t < TXG_SIZE; t++) {
1300 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1301 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1302 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1303 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1304 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1305 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1306 }
1307
1308 if (list_link_active(&svd->vdev_config_dirty_node)) {
1309 vdev_config_clean(svd);
1310 vdev_config_dirty(tvd);
1311 }
1312
1313 if (list_link_active(&svd->vdev_state_dirty_node)) {
1314 vdev_state_clean(svd);
1315 vdev_state_dirty(tvd);
1316 }
1317
1318 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1319 svd->vdev_deflate_ratio = 0;
1320
1321 tvd->vdev_islog = svd->vdev_islog;
1322 svd->vdev_islog = 0;
1323
1324 dsl_scan_io_queue_vdev_xfer(svd, tvd);
1325 }
1326
1327 static void
vdev_top_update(vdev_t * tvd,vdev_t * vd)1328 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1329 {
1330 if (vd == NULL)
1331 return;
1332
1333 vd->vdev_top = tvd;
1334
1335 for (int c = 0; c < vd->vdev_children; c++)
1336 vdev_top_update(tvd, vd->vdev_child[c]);
1337 }
1338
1339 /*
1340 * Add a mirror/replacing vdev above an existing vdev. There is no need to
1341 * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1342 */
1343 vdev_t *
vdev_add_parent(vdev_t * cvd,vdev_ops_t * ops)1344 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1345 {
1346 spa_t *spa = cvd->vdev_spa;
1347 vdev_t *pvd = cvd->vdev_parent;
1348 vdev_t *mvd;
1349
1350 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1351
1352 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1353
1354 mvd->vdev_asize = cvd->vdev_asize;
1355 mvd->vdev_min_asize = cvd->vdev_min_asize;
1356 mvd->vdev_max_asize = cvd->vdev_max_asize;
1357 mvd->vdev_psize = cvd->vdev_psize;
1358 mvd->vdev_ashift = cvd->vdev_ashift;
1359 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1360 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1361 mvd->vdev_state = cvd->vdev_state;
1362 mvd->vdev_crtxg = cvd->vdev_crtxg;
1363
1364 vdev_remove_child(pvd, cvd);
1365 vdev_add_child(pvd, mvd);
1366 cvd->vdev_id = mvd->vdev_children;
1367 vdev_add_child(mvd, cvd);
1368 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1369
1370 if (mvd == mvd->vdev_top)
1371 vdev_top_transfer(cvd, mvd);
1372
1373 return (mvd);
1374 }
1375
1376 /*
1377 * Remove a 1-way mirror/replacing vdev from the tree.
1378 */
1379 void
vdev_remove_parent(vdev_t * cvd)1380 vdev_remove_parent(vdev_t *cvd)
1381 {
1382 vdev_t *mvd = cvd->vdev_parent;
1383 vdev_t *pvd = mvd->vdev_parent;
1384
1385 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1386
1387 ASSERT(mvd->vdev_children == 1);
1388 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1389 mvd->vdev_ops == &vdev_replacing_ops ||
1390 mvd->vdev_ops == &vdev_spare_ops);
1391 cvd->vdev_ashift = mvd->vdev_ashift;
1392 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1393 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1394 vdev_remove_child(mvd, cvd);
1395 vdev_remove_child(pvd, mvd);
1396
1397 /*
1398 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1399 * Otherwise, we could have detached an offline device, and when we
1400 * go to import the pool we'll think we have two top-level vdevs,
1401 * instead of a different version of the same top-level vdev.
1402 */
1403 if (mvd->vdev_top == mvd) {
1404 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1405 cvd->vdev_orig_guid = cvd->vdev_guid;
1406 cvd->vdev_guid += guid_delta;
1407 cvd->vdev_guid_sum += guid_delta;
1408
1409 /*
1410 * If pool not set for autoexpand, we need to also preserve
1411 * mvd's asize to prevent automatic expansion of cvd.
1412 * Otherwise if we are adjusting the mirror by attaching and
1413 * detaching children of non-uniform sizes, the mirror could
1414 * autoexpand, unexpectedly requiring larger devices to
1415 * re-establish the mirror.
1416 */
1417 if (!cvd->vdev_spa->spa_autoexpand)
1418 cvd->vdev_asize = mvd->vdev_asize;
1419 }
1420 cvd->vdev_id = mvd->vdev_id;
1421 vdev_add_child(pvd, cvd);
1422 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1423
1424 if (cvd == cvd->vdev_top)
1425 vdev_top_transfer(mvd, cvd);
1426
1427 ASSERT(mvd->vdev_children == 0);
1428 vdev_free(mvd);
1429 }
1430
1431 /*
1432 * Choose GCD for spa_gcd_alloc.
1433 */
1434 static uint64_t
vdev_gcd(uint64_t a,uint64_t b)1435 vdev_gcd(uint64_t a, uint64_t b)
1436 {
1437 while (b != 0) {
1438 uint64_t t = b;
1439 b = a % b;
1440 a = t;
1441 }
1442 return (a);
1443 }
1444
1445 /*
1446 * Set spa_min_alloc and spa_gcd_alloc.
1447 */
1448 static void
vdev_spa_set_alloc(spa_t * spa,uint64_t min_alloc)1449 vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc)
1450 {
1451 if (min_alloc < spa->spa_min_alloc)
1452 spa->spa_min_alloc = min_alloc;
1453 if (spa->spa_gcd_alloc == INT_MAX) {
1454 spa->spa_gcd_alloc = min_alloc;
1455 } else {
1456 spa->spa_gcd_alloc = vdev_gcd(min_alloc,
1457 spa->spa_gcd_alloc);
1458 }
1459 }
1460
1461 void
vdev_metaslab_group_create(vdev_t * vd)1462 vdev_metaslab_group_create(vdev_t *vd)
1463 {
1464 spa_t *spa = vd->vdev_spa;
1465
1466 /*
1467 * metaslab_group_create was delayed until allocation bias was available
1468 */
1469 if (vd->vdev_mg == NULL) {
1470 metaslab_class_t *mc;
1471
1472 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1473 vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1474
1475 ASSERT3U(vd->vdev_islog, ==,
1476 (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1477
1478 switch (vd->vdev_alloc_bias) {
1479 case VDEV_BIAS_LOG:
1480 mc = spa_log_class(spa);
1481 break;
1482 case VDEV_BIAS_SPECIAL:
1483 mc = spa_special_class(spa);
1484 break;
1485 case VDEV_BIAS_DEDUP:
1486 mc = spa_dedup_class(spa);
1487 break;
1488 default:
1489 mc = spa_normal_class(spa);
1490 }
1491
1492 vd->vdev_mg = metaslab_group_create(mc, vd,
1493 spa->spa_alloc_count);
1494
1495 if (!vd->vdev_islog) {
1496 vd->vdev_log_mg = metaslab_group_create(
1497 spa_embedded_log_class(spa), vd, 1);
1498 }
1499
1500 /*
1501 * The spa ashift min/max only apply for the normal metaslab
1502 * class. Class destination is late binding so ashift boundary
1503 * setting had to wait until now.
1504 */
1505 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1506 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1507 if (vd->vdev_ashift > spa->spa_max_ashift)
1508 spa->spa_max_ashift = vd->vdev_ashift;
1509 if (vd->vdev_ashift < spa->spa_min_ashift)
1510 spa->spa_min_ashift = vd->vdev_ashift;
1511
1512 uint64_t min_alloc = vdev_get_min_alloc(vd);
1513 vdev_spa_set_alloc(spa, min_alloc);
1514 }
1515 }
1516 }
1517
1518 int
vdev_metaslab_init(vdev_t * vd,uint64_t txg)1519 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1520 {
1521 spa_t *spa = vd->vdev_spa;
1522 uint64_t oldc = vd->vdev_ms_count;
1523 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1524 metaslab_t **mspp;
1525 int error;
1526 boolean_t expanding = (oldc != 0);
1527
1528 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1529
1530 /*
1531 * This vdev is not being allocated from yet or is a hole.
1532 */
1533 if (vd->vdev_ms_shift == 0)
1534 return (0);
1535
1536 ASSERT(!vd->vdev_ishole);
1537
1538 ASSERT(oldc <= newc);
1539
1540 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1541
1542 if (expanding) {
1543 memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp));
1544 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1545 }
1546
1547 vd->vdev_ms = mspp;
1548 vd->vdev_ms_count = newc;
1549
1550 for (uint64_t m = oldc; m < newc; m++) {
1551 uint64_t object = 0;
1552 /*
1553 * vdev_ms_array may be 0 if we are creating the "fake"
1554 * metaslabs for an indirect vdev for zdb's leak detection.
1555 * See zdb_leak_init().
1556 */
1557 if (txg == 0 && vd->vdev_ms_array != 0) {
1558 error = dmu_read(spa->spa_meta_objset,
1559 vd->vdev_ms_array,
1560 m * sizeof (uint64_t), sizeof (uint64_t), &object,
1561 DMU_READ_PREFETCH);
1562 if (error != 0) {
1563 vdev_dbgmsg(vd, "unable to read the metaslab "
1564 "array [error=%d]", error);
1565 return (error);
1566 }
1567 }
1568
1569 error = metaslab_init(vd->vdev_mg, m, object, txg,
1570 &(vd->vdev_ms[m]));
1571 if (error != 0) {
1572 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1573 error);
1574 return (error);
1575 }
1576 }
1577
1578 /*
1579 * Find the emptiest metaslab on the vdev and mark it for use for
1580 * embedded slog by moving it from the regular to the log metaslab
1581 * group.
1582 */
1583 if (vd->vdev_mg->mg_class == spa_normal_class(spa) &&
1584 vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1585 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1586 uint64_t slog_msid = 0;
1587 uint64_t smallest = UINT64_MAX;
1588
1589 /*
1590 * Note, we only search the new metaslabs, because the old
1591 * (pre-existing) ones may be active (e.g. have non-empty
1592 * range_tree's), and we don't move them to the new
1593 * metaslab_t.
1594 */
1595 for (uint64_t m = oldc; m < newc; m++) {
1596 uint64_t alloc =
1597 space_map_allocated(vd->vdev_ms[m]->ms_sm);
1598 if (alloc < smallest) {
1599 slog_msid = m;
1600 smallest = alloc;
1601 }
1602 }
1603 metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1604 /*
1605 * The metaslab was marked as dirty at the end of
1606 * metaslab_init(). Remove it from the dirty list so that we
1607 * can uninitialize and reinitialize it to the new class.
1608 */
1609 if (txg != 0) {
1610 (void) txg_list_remove_this(&vd->vdev_ms_list,
1611 slog_ms, txg);
1612 }
1613 uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1614 metaslab_fini(slog_ms);
1615 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1616 &vd->vdev_ms[slog_msid]));
1617 }
1618
1619 if (txg == 0)
1620 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1621
1622 /*
1623 * If the vdev is marked as non-allocating then don't
1624 * activate the metaslabs since we want to ensure that
1625 * no allocations are performed on this device.
1626 */
1627 if (vd->vdev_noalloc) {
1628 /* track non-allocating vdev space */
1629 spa->spa_nonallocating_dspace += spa_deflate(spa) ?
1630 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1631 } else if (!expanding) {
1632 metaslab_group_activate(vd->vdev_mg);
1633 if (vd->vdev_log_mg != NULL)
1634 metaslab_group_activate(vd->vdev_log_mg);
1635 }
1636
1637 if (txg == 0)
1638 spa_config_exit(spa, SCL_ALLOC, FTAG);
1639
1640 return (0);
1641 }
1642
1643 void
vdev_metaslab_fini(vdev_t * vd)1644 vdev_metaslab_fini(vdev_t *vd)
1645 {
1646 if (vd->vdev_checkpoint_sm != NULL) {
1647 ASSERT(spa_feature_is_active(vd->vdev_spa,
1648 SPA_FEATURE_POOL_CHECKPOINT));
1649 space_map_close(vd->vdev_checkpoint_sm);
1650 /*
1651 * Even though we close the space map, we need to set its
1652 * pointer to NULL. The reason is that vdev_metaslab_fini()
1653 * may be called multiple times for certain operations
1654 * (i.e. when destroying a pool) so we need to ensure that
1655 * this clause never executes twice. This logic is similar
1656 * to the one used for the vdev_ms clause below.
1657 */
1658 vd->vdev_checkpoint_sm = NULL;
1659 }
1660
1661 if (vd->vdev_ms != NULL) {
1662 metaslab_group_t *mg = vd->vdev_mg;
1663
1664 metaslab_group_passivate(mg);
1665 if (vd->vdev_log_mg != NULL) {
1666 ASSERT(!vd->vdev_islog);
1667 metaslab_group_passivate(vd->vdev_log_mg);
1668 }
1669
1670 uint64_t count = vd->vdev_ms_count;
1671 for (uint64_t m = 0; m < count; m++) {
1672 metaslab_t *msp = vd->vdev_ms[m];
1673 if (msp != NULL)
1674 metaslab_fini(msp);
1675 }
1676 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1677 vd->vdev_ms = NULL;
1678 vd->vdev_ms_count = 0;
1679
1680 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1681 ASSERT0(mg->mg_histogram[i]);
1682 if (vd->vdev_log_mg != NULL)
1683 ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1684 }
1685 }
1686 ASSERT0(vd->vdev_ms_count);
1687 }
1688
1689 typedef struct vdev_probe_stats {
1690 boolean_t vps_readable;
1691 boolean_t vps_writeable;
1692 boolean_t vps_zio_done_probe;
1693 int vps_flags;
1694 } vdev_probe_stats_t;
1695
1696 static void
vdev_probe_done(zio_t * zio)1697 vdev_probe_done(zio_t *zio)
1698 {
1699 spa_t *spa = zio->io_spa;
1700 vdev_t *vd = zio->io_vd;
1701 vdev_probe_stats_t *vps = zio->io_private;
1702
1703 ASSERT(vd->vdev_probe_zio != NULL);
1704
1705 if (zio->io_type == ZIO_TYPE_READ) {
1706 if (zio->io_error == 0)
1707 vps->vps_readable = 1;
1708 if (zio->io_error == 0 && spa_writeable(spa)) {
1709 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1710 zio->io_offset, zio->io_size, zio->io_abd,
1711 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1712 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1713 } else {
1714 abd_free(zio->io_abd);
1715 }
1716 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1717 if (zio->io_error == 0)
1718 vps->vps_writeable = 1;
1719 abd_free(zio->io_abd);
1720 } else if (zio->io_type == ZIO_TYPE_NULL) {
1721 zio_t *pio;
1722 zio_link_t *zl;
1723
1724 vd->vdev_cant_read |= !vps->vps_readable;
1725 vd->vdev_cant_write |= !vps->vps_writeable;
1726 vdev_dbgmsg(vd, "probe done, cant_read=%u cant_write=%u",
1727 vd->vdev_cant_read, vd->vdev_cant_write);
1728
1729 if (vdev_readable(vd) &&
1730 (vdev_writeable(vd) || !spa_writeable(spa))) {
1731 zio->io_error = 0;
1732 } else {
1733 ASSERT(zio->io_error != 0);
1734 vdev_dbgmsg(vd, "failed probe");
1735 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1736 spa, vd, NULL, NULL, 0);
1737 zio->io_error = SET_ERROR(ENXIO);
1738
1739 /*
1740 * If this probe was initiated from zio pipeline, then
1741 * change the state in a spa_async_request. Probes that
1742 * were initiated from a vdev_open can change the state
1743 * as part of the open call.
1744 */
1745 if (vps->vps_zio_done_probe) {
1746 vd->vdev_fault_wanted = B_TRUE;
1747 spa_async_request(spa, SPA_ASYNC_FAULT_VDEV);
1748 }
1749 }
1750
1751 mutex_enter(&vd->vdev_probe_lock);
1752 ASSERT(vd->vdev_probe_zio == zio);
1753 vd->vdev_probe_zio = NULL;
1754 mutex_exit(&vd->vdev_probe_lock);
1755
1756 zl = NULL;
1757 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1758 if (!vdev_accessible(vd, pio))
1759 pio->io_error = SET_ERROR(ENXIO);
1760
1761 kmem_free(vps, sizeof (*vps));
1762 }
1763 }
1764
1765 /*
1766 * Determine whether this device is accessible.
1767 *
1768 * Read and write to several known locations: the pad regions of each
1769 * vdev label but the first, which we leave alone in case it contains
1770 * a VTOC.
1771 */
1772 zio_t *
vdev_probe(vdev_t * vd,zio_t * zio)1773 vdev_probe(vdev_t *vd, zio_t *zio)
1774 {
1775 spa_t *spa = vd->vdev_spa;
1776 vdev_probe_stats_t *vps = NULL;
1777 zio_t *pio;
1778
1779 ASSERT(vd->vdev_ops->vdev_op_leaf);
1780
1781 /*
1782 * Don't probe the probe.
1783 */
1784 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1785 return (NULL);
1786
1787 /*
1788 * To prevent 'probe storms' when a device fails, we create
1789 * just one probe i/o at a time. All zios that want to probe
1790 * this vdev will become parents of the probe io.
1791 */
1792 mutex_enter(&vd->vdev_probe_lock);
1793
1794 if ((pio = vd->vdev_probe_zio) == NULL) {
1795 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1796
1797 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1798 ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD;
1799 vps->vps_zio_done_probe = (zio != NULL);
1800
1801 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1802 /*
1803 * vdev_cant_read and vdev_cant_write can only
1804 * transition from TRUE to FALSE when we have the
1805 * SCL_ZIO lock as writer; otherwise they can only
1806 * transition from FALSE to TRUE. This ensures that
1807 * any zio looking at these values can assume that
1808 * failures persist for the life of the I/O. That's
1809 * important because when a device has intermittent
1810 * connectivity problems, we want to ensure that
1811 * they're ascribed to the device (ENXIO) and not
1812 * the zio (EIO).
1813 *
1814 * Since we hold SCL_ZIO as writer here, clear both
1815 * values so the probe can reevaluate from first
1816 * principles.
1817 */
1818 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1819 vd->vdev_cant_read = B_FALSE;
1820 vd->vdev_cant_write = B_FALSE;
1821 }
1822
1823 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1824 vdev_probe_done, vps,
1825 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1826 }
1827
1828 if (zio != NULL)
1829 zio_add_child(zio, pio);
1830
1831 mutex_exit(&vd->vdev_probe_lock);
1832
1833 if (vps == NULL) {
1834 ASSERT(zio != NULL);
1835 return (NULL);
1836 }
1837
1838 for (int l = 1; l < VDEV_LABELS; l++) {
1839 zio_nowait(zio_read_phys(pio, vd,
1840 vdev_label_offset(vd->vdev_psize, l,
1841 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1842 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1843 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1844 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1845 }
1846
1847 if (zio == NULL)
1848 return (pio);
1849
1850 zio_nowait(pio);
1851 return (NULL);
1852 }
1853
1854 static void
vdev_load_child(void * arg)1855 vdev_load_child(void *arg)
1856 {
1857 vdev_t *vd = arg;
1858
1859 vd->vdev_load_error = vdev_load(vd);
1860 }
1861
1862 static void
vdev_open_child(void * arg)1863 vdev_open_child(void *arg)
1864 {
1865 vdev_t *vd = arg;
1866
1867 vd->vdev_open_thread = curthread;
1868 vd->vdev_open_error = vdev_open(vd);
1869 vd->vdev_open_thread = NULL;
1870 }
1871
1872 static boolean_t
vdev_uses_zvols(vdev_t * vd)1873 vdev_uses_zvols(vdev_t *vd)
1874 {
1875 #ifdef _KERNEL
1876 if (zvol_is_zvol(vd->vdev_path))
1877 return (B_TRUE);
1878 #endif
1879
1880 for (int c = 0; c < vd->vdev_children; c++)
1881 if (vdev_uses_zvols(vd->vdev_child[c]))
1882 return (B_TRUE);
1883
1884 return (B_FALSE);
1885 }
1886
1887 /*
1888 * Returns B_TRUE if the passed child should be opened.
1889 */
1890 static boolean_t
vdev_default_open_children_func(vdev_t * vd)1891 vdev_default_open_children_func(vdev_t *vd)
1892 {
1893 (void) vd;
1894 return (B_TRUE);
1895 }
1896
1897 /*
1898 * Open the requested child vdevs. If any of the leaf vdevs are using
1899 * a ZFS volume then do the opens in a single thread. This avoids a
1900 * deadlock when the current thread is holding the spa_namespace_lock.
1901 */
1902 static void
vdev_open_children_impl(vdev_t * vd,vdev_open_children_func_t * open_func)1903 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
1904 {
1905 int children = vd->vdev_children;
1906
1907 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
1908 children, children, TASKQ_PREPOPULATE);
1909 vd->vdev_nonrot = B_TRUE;
1910
1911 for (int c = 0; c < children; c++) {
1912 vdev_t *cvd = vd->vdev_child[c];
1913
1914 if (open_func(cvd) == B_FALSE)
1915 continue;
1916
1917 if (tq == NULL || vdev_uses_zvols(vd)) {
1918 cvd->vdev_open_error = vdev_open(cvd);
1919 } else {
1920 VERIFY(taskq_dispatch(tq, vdev_open_child,
1921 cvd, TQ_SLEEP) != TASKQID_INVALID);
1922 }
1923
1924 vd->vdev_nonrot &= cvd->vdev_nonrot;
1925 }
1926
1927 if (tq != NULL) {
1928 taskq_wait(tq);
1929 taskq_destroy(tq);
1930 }
1931 }
1932
1933 /*
1934 * Open all child vdevs.
1935 */
1936 void
vdev_open_children(vdev_t * vd)1937 vdev_open_children(vdev_t *vd)
1938 {
1939 vdev_open_children_impl(vd, vdev_default_open_children_func);
1940 }
1941
1942 /*
1943 * Conditionally open a subset of child vdevs.
1944 */
1945 void
vdev_open_children_subset(vdev_t * vd,vdev_open_children_func_t * open_func)1946 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
1947 {
1948 vdev_open_children_impl(vd, open_func);
1949 }
1950
1951 /*
1952 * Compute the raidz-deflation ratio. Note, we hard-code 128k (1 << 17)
1953 * because it is the "typical" blocksize. Even though SPA_MAXBLOCKSIZE
1954 * changed, this algorithm can not change, otherwise it would inconsistently
1955 * account for existing bp's. We also hard-code txg 0 for the same reason
1956 * since expanded RAIDZ vdevs can use a different asize for different birth
1957 * txg's.
1958 */
1959 static void
vdev_set_deflate_ratio(vdev_t * vd)1960 vdev_set_deflate_ratio(vdev_t *vd)
1961 {
1962 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1963 vd->vdev_deflate_ratio = (1 << 17) /
1964 (vdev_psize_to_asize_txg(vd, 1 << 17, 0) >>
1965 SPA_MINBLOCKSHIFT);
1966 }
1967 }
1968
1969 /*
1970 * Choose the best of two ashifts, preferring one between logical ashift
1971 * (absolute minimum) and administrator defined maximum, otherwise take
1972 * the biggest of the two.
1973 */
1974 uint64_t
vdev_best_ashift(uint64_t logical,uint64_t a,uint64_t b)1975 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b)
1976 {
1977 if (a > logical && a <= zfs_vdev_max_auto_ashift) {
1978 if (b <= logical || b > zfs_vdev_max_auto_ashift)
1979 return (a);
1980 else
1981 return (MAX(a, b));
1982 } else if (b <= logical || b > zfs_vdev_max_auto_ashift)
1983 return (MAX(a, b));
1984 return (b);
1985 }
1986
1987 /*
1988 * Maximize performance by inflating the configured ashift for top level
1989 * vdevs to be as close to the physical ashift as possible while maintaining
1990 * administrator defined limits and ensuring it doesn't go below the
1991 * logical ashift.
1992 */
1993 static void
vdev_ashift_optimize(vdev_t * vd)1994 vdev_ashift_optimize(vdev_t *vd)
1995 {
1996 ASSERT(vd == vd->vdev_top);
1997
1998 if (vd->vdev_ashift < vd->vdev_physical_ashift &&
1999 vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) {
2000 vd->vdev_ashift = MIN(
2001 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
2002 MAX(zfs_vdev_min_auto_ashift,
2003 vd->vdev_physical_ashift));
2004 } else {
2005 /*
2006 * If the logical and physical ashifts are the same, then
2007 * we ensure that the top-level vdev's ashift is not smaller
2008 * than our minimum ashift value. For the unusual case
2009 * where logical ashift > physical ashift, we can't cap
2010 * the calculated ashift based on max ashift as that
2011 * would cause failures.
2012 * We still check if we need to increase it to match
2013 * the min ashift.
2014 */
2015 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
2016 vd->vdev_ashift);
2017 }
2018 }
2019
2020 /*
2021 * Prepare a virtual device for access.
2022 */
2023 int
vdev_open(vdev_t * vd)2024 vdev_open(vdev_t *vd)
2025 {
2026 spa_t *spa = vd->vdev_spa;
2027 int error;
2028 uint64_t osize = 0;
2029 uint64_t max_osize = 0;
2030 uint64_t asize, max_asize, psize;
2031 uint64_t logical_ashift = 0;
2032 uint64_t physical_ashift = 0;
2033
2034 ASSERT(vd->vdev_open_thread == curthread ||
2035 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2036 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
2037 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
2038 vd->vdev_state == VDEV_STATE_OFFLINE);
2039
2040 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2041 vd->vdev_cant_read = B_FALSE;
2042 vd->vdev_cant_write = B_FALSE;
2043 vd->vdev_fault_wanted = B_FALSE;
2044 vd->vdev_remove_wanted = B_FALSE;
2045 vd->vdev_min_asize = vdev_get_min_asize(vd);
2046
2047 /*
2048 * If this vdev is not removed, check its fault status. If it's
2049 * faulted, bail out of the open.
2050 */
2051 if (!vd->vdev_removed && vd->vdev_faulted) {
2052 ASSERT(vd->vdev_children == 0);
2053 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2054 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2055 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2056 vd->vdev_label_aux);
2057 return (SET_ERROR(ENXIO));
2058 } else if (vd->vdev_offline) {
2059 ASSERT(vd->vdev_children == 0);
2060 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
2061 return (SET_ERROR(ENXIO));
2062 }
2063
2064 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
2065 &logical_ashift, &physical_ashift);
2066
2067 /* Keep the device in removed state if unplugged */
2068 if (error == ENOENT && vd->vdev_removed) {
2069 vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED,
2070 VDEV_AUX_NONE);
2071 return (error);
2072 }
2073
2074 /*
2075 * Physical volume size should never be larger than its max size, unless
2076 * the disk has shrunk while we were reading it or the device is buggy
2077 * or damaged: either way it's not safe for use, bail out of the open.
2078 */
2079 if (osize > max_osize) {
2080 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2081 VDEV_AUX_OPEN_FAILED);
2082 return (SET_ERROR(ENXIO));
2083 }
2084
2085 /*
2086 * Reset the vdev_reopening flag so that we actually close
2087 * the vdev on error.
2088 */
2089 vd->vdev_reopening = B_FALSE;
2090 if (zio_injection_enabled && error == 0)
2091 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
2092
2093 if (error) {
2094 if (vd->vdev_removed &&
2095 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
2096 vd->vdev_removed = B_FALSE;
2097
2098 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
2099 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
2100 vd->vdev_stat.vs_aux);
2101 } else {
2102 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2103 vd->vdev_stat.vs_aux);
2104 }
2105 return (error);
2106 }
2107
2108 vd->vdev_removed = B_FALSE;
2109
2110 /*
2111 * Recheck the faulted flag now that we have confirmed that
2112 * the vdev is accessible. If we're faulted, bail.
2113 */
2114 if (vd->vdev_faulted) {
2115 ASSERT(vd->vdev_children == 0);
2116 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2117 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2118 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2119 vd->vdev_label_aux);
2120 return (SET_ERROR(ENXIO));
2121 }
2122
2123 if (vd->vdev_degraded) {
2124 ASSERT(vd->vdev_children == 0);
2125 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2126 VDEV_AUX_ERR_EXCEEDED);
2127 } else {
2128 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
2129 }
2130
2131 /*
2132 * For hole or missing vdevs we just return success.
2133 */
2134 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
2135 return (0);
2136
2137 for (int c = 0; c < vd->vdev_children; c++) {
2138 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
2139 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2140 VDEV_AUX_NONE);
2141 break;
2142 }
2143 }
2144
2145 osize = P2ALIGN_TYPED(osize, sizeof (vdev_label_t), uint64_t);
2146 max_osize = P2ALIGN_TYPED(max_osize, sizeof (vdev_label_t), uint64_t);
2147
2148 if (vd->vdev_children == 0) {
2149 if (osize < SPA_MINDEVSIZE) {
2150 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2151 VDEV_AUX_TOO_SMALL);
2152 return (SET_ERROR(EOVERFLOW));
2153 }
2154 psize = osize;
2155 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
2156 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
2157 VDEV_LABEL_END_SIZE);
2158 } else {
2159 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
2160 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
2161 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2162 VDEV_AUX_TOO_SMALL);
2163 return (SET_ERROR(EOVERFLOW));
2164 }
2165 psize = 0;
2166 asize = osize;
2167 max_asize = max_osize;
2168 }
2169
2170 /*
2171 * If the vdev was expanded, record this so that we can re-create the
2172 * uberblock rings in labels {2,3}, during the next sync.
2173 */
2174 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2175 vd->vdev_copy_uberblocks = B_TRUE;
2176
2177 vd->vdev_psize = psize;
2178
2179 /*
2180 * Make sure the allocatable size hasn't shrunk too much.
2181 */
2182 if (asize < vd->vdev_min_asize) {
2183 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2184 VDEV_AUX_BAD_LABEL);
2185 return (SET_ERROR(EINVAL));
2186 }
2187
2188 /*
2189 * We can always set the logical/physical ashift members since
2190 * their values are only used to calculate the vdev_ashift when
2191 * the device is first added to the config. These values should
2192 * not be used for anything else since they may change whenever
2193 * the device is reopened and we don't store them in the label.
2194 */
2195 vd->vdev_physical_ashift =
2196 MAX(physical_ashift, vd->vdev_physical_ashift);
2197 vd->vdev_logical_ashift = MAX(logical_ashift,
2198 vd->vdev_logical_ashift);
2199
2200 if (vd->vdev_asize == 0) {
2201 /*
2202 * This is the first-ever open, so use the computed values.
2203 * For compatibility, a different ashift can be requested.
2204 */
2205 vd->vdev_asize = asize;
2206 vd->vdev_max_asize = max_asize;
2207
2208 /*
2209 * If the vdev_ashift was not overridden at creation time
2210 * (0) or the override value is impossible for the device,
2211 * then set it the logical ashift and optimize the ashift.
2212 */
2213 if (vd->vdev_ashift < vd->vdev_logical_ashift) {
2214 vd->vdev_ashift = vd->vdev_logical_ashift;
2215
2216 if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2217 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2218 VDEV_AUX_ASHIFT_TOO_BIG);
2219 return (SET_ERROR(EDOM));
2220 }
2221
2222 if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE)
2223 vdev_ashift_optimize(vd);
2224 vd->vdev_attaching = B_FALSE;
2225 }
2226 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2227 vd->vdev_ashift > ASHIFT_MAX)) {
2228 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2229 VDEV_AUX_BAD_ASHIFT);
2230 return (SET_ERROR(EDOM));
2231 }
2232 } else {
2233 /*
2234 * Make sure the alignment required hasn't increased.
2235 */
2236 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2237 vd->vdev_ops->vdev_op_leaf) {
2238 (void) zfs_ereport_post(
2239 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2240 spa, vd, NULL, NULL, 0);
2241 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2242 VDEV_AUX_BAD_LABEL);
2243 return (SET_ERROR(EDOM));
2244 }
2245 vd->vdev_max_asize = max_asize;
2246 }
2247
2248 /*
2249 * If all children are healthy we update asize if either:
2250 * The asize has increased, due to a device expansion caused by dynamic
2251 * LUN growth or vdev replacement, and automatic expansion is enabled;
2252 * making the additional space available.
2253 *
2254 * The asize has decreased, due to a device shrink usually caused by a
2255 * vdev replace with a smaller device. This ensures that calculations
2256 * based of max_asize and asize e.g. esize are always valid. It's safe
2257 * to do this as we've already validated that asize is greater than
2258 * vdev_min_asize.
2259 */
2260 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2261 ((asize > vd->vdev_asize &&
2262 (vd->vdev_expanding || spa->spa_autoexpand)) ||
2263 (asize < vd->vdev_asize)))
2264 vd->vdev_asize = asize;
2265
2266 vdev_set_min_asize(vd);
2267
2268 /*
2269 * Ensure we can issue some IO before declaring the
2270 * vdev open for business.
2271 */
2272 if (vd->vdev_ops->vdev_op_leaf &&
2273 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2274 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2275 VDEV_AUX_ERR_EXCEEDED);
2276 return (error);
2277 }
2278
2279 /*
2280 * Track the minimum allocation size.
2281 */
2282 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2283 vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2284 uint64_t min_alloc = vdev_get_min_alloc(vd);
2285 vdev_spa_set_alloc(spa, min_alloc);
2286 }
2287
2288 /*
2289 * If this is a leaf vdev, assess whether a resilver is needed.
2290 * But don't do this if we are doing a reopen for a scrub, since
2291 * this would just restart the scrub we are already doing.
2292 */
2293 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2294 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2295
2296 return (0);
2297 }
2298
2299 static void
vdev_validate_child(void * arg)2300 vdev_validate_child(void *arg)
2301 {
2302 vdev_t *vd = arg;
2303
2304 vd->vdev_validate_thread = curthread;
2305 vd->vdev_validate_error = vdev_validate(vd);
2306 vd->vdev_validate_thread = NULL;
2307 }
2308
2309 /*
2310 * Called once the vdevs are all opened, this routine validates the label
2311 * contents. This needs to be done before vdev_load() so that we don't
2312 * inadvertently do repair I/Os to the wrong device.
2313 *
2314 * This function will only return failure if one of the vdevs indicates that it
2315 * has since been destroyed or exported. This is only possible if
2316 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
2317 * will be updated but the function will return 0.
2318 */
2319 int
vdev_validate(vdev_t * vd)2320 vdev_validate(vdev_t *vd)
2321 {
2322 spa_t *spa = vd->vdev_spa;
2323 taskq_t *tq = NULL;
2324 nvlist_t *label;
2325 uint64_t guid = 0, aux_guid = 0, top_guid;
2326 uint64_t state;
2327 nvlist_t *nvl;
2328 uint64_t txg;
2329 int children = vd->vdev_children;
2330
2331 if (vdev_validate_skip)
2332 return (0);
2333
2334 if (children > 0) {
2335 tq = taskq_create("vdev_validate", children, minclsyspri,
2336 children, children, TASKQ_PREPOPULATE);
2337 }
2338
2339 for (uint64_t c = 0; c < children; c++) {
2340 vdev_t *cvd = vd->vdev_child[c];
2341
2342 if (tq == NULL || vdev_uses_zvols(cvd)) {
2343 vdev_validate_child(cvd);
2344 } else {
2345 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
2346 TQ_SLEEP) != TASKQID_INVALID);
2347 }
2348 }
2349 if (tq != NULL) {
2350 taskq_wait(tq);
2351 taskq_destroy(tq);
2352 }
2353 for (int c = 0; c < children; c++) {
2354 int error = vd->vdev_child[c]->vdev_validate_error;
2355
2356 if (error != 0)
2357 return (SET_ERROR(EBADF));
2358 }
2359
2360
2361 /*
2362 * If the device has already failed, or was marked offline, don't do
2363 * any further validation. Otherwise, label I/O will fail and we will
2364 * overwrite the previous state.
2365 */
2366 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2367 return (0);
2368
2369 /*
2370 * If we are performing an extreme rewind, we allow for a label that
2371 * was modified at a point after the current txg.
2372 * If config lock is not held do not check for the txg. spa_sync could
2373 * be updating the vdev's label before updating spa_last_synced_txg.
2374 */
2375 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2376 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2377 txg = UINT64_MAX;
2378 else
2379 txg = spa_last_synced_txg(spa);
2380
2381 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2382 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2383 VDEV_AUX_BAD_LABEL);
2384 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2385 "txg %llu", (u_longlong_t)txg);
2386 return (0);
2387 }
2388
2389 /*
2390 * Determine if this vdev has been split off into another
2391 * pool. If so, then refuse to open it.
2392 */
2393 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2394 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2395 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2396 VDEV_AUX_SPLIT_POOL);
2397 nvlist_free(label);
2398 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2399 return (0);
2400 }
2401
2402 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2403 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2404 VDEV_AUX_CORRUPT_DATA);
2405 nvlist_free(label);
2406 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2407 ZPOOL_CONFIG_POOL_GUID);
2408 return (0);
2409 }
2410
2411 /*
2412 * If config is not trusted then ignore the spa guid check. This is
2413 * necessary because if the machine crashed during a re-guid the new
2414 * guid might have been written to all of the vdev labels, but not the
2415 * cached config. The check will be performed again once we have the
2416 * trusted config from the MOS.
2417 */
2418 if (spa->spa_trust_config && guid != spa_guid(spa)) {
2419 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2420 VDEV_AUX_CORRUPT_DATA);
2421 nvlist_free(label);
2422 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2423 "match config (%llu != %llu)", (u_longlong_t)guid,
2424 (u_longlong_t)spa_guid(spa));
2425 return (0);
2426 }
2427
2428 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2429 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2430 &aux_guid) != 0)
2431 aux_guid = 0;
2432
2433 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2434 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2435 VDEV_AUX_CORRUPT_DATA);
2436 nvlist_free(label);
2437 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2438 ZPOOL_CONFIG_GUID);
2439 return (0);
2440 }
2441
2442 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2443 != 0) {
2444 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2445 VDEV_AUX_CORRUPT_DATA);
2446 nvlist_free(label);
2447 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2448 ZPOOL_CONFIG_TOP_GUID);
2449 return (0);
2450 }
2451
2452 /*
2453 * If this vdev just became a top-level vdev because its sibling was
2454 * detached, it will have adopted the parent's vdev guid -- but the
2455 * label may or may not be on disk yet. Fortunately, either version
2456 * of the label will have the same top guid, so if we're a top-level
2457 * vdev, we can safely compare to that instead.
2458 * However, if the config comes from a cachefile that failed to update
2459 * after the detach, a top-level vdev will appear as a non top-level
2460 * vdev in the config. Also relax the constraints if we perform an
2461 * extreme rewind.
2462 *
2463 * If we split this vdev off instead, then we also check the
2464 * original pool's guid. We don't want to consider the vdev
2465 * corrupt if it is partway through a split operation.
2466 */
2467 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2468 boolean_t mismatch = B_FALSE;
2469 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2470 if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2471 mismatch = B_TRUE;
2472 } else {
2473 if (vd->vdev_guid != top_guid &&
2474 vd->vdev_top->vdev_guid != guid)
2475 mismatch = B_TRUE;
2476 }
2477
2478 if (mismatch) {
2479 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2480 VDEV_AUX_CORRUPT_DATA);
2481 nvlist_free(label);
2482 vdev_dbgmsg(vd, "vdev_validate: config guid "
2483 "doesn't match label guid");
2484 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2485 (u_longlong_t)vd->vdev_guid,
2486 (u_longlong_t)vd->vdev_top->vdev_guid);
2487 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2488 "aux_guid %llu", (u_longlong_t)guid,
2489 (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2490 return (0);
2491 }
2492 }
2493
2494 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2495 &state) != 0) {
2496 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2497 VDEV_AUX_CORRUPT_DATA);
2498 nvlist_free(label);
2499 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2500 ZPOOL_CONFIG_POOL_STATE);
2501 return (0);
2502 }
2503
2504 nvlist_free(label);
2505
2506 /*
2507 * If this is a verbatim import, no need to check the
2508 * state of the pool.
2509 */
2510 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2511 spa_load_state(spa) == SPA_LOAD_OPEN &&
2512 state != POOL_STATE_ACTIVE) {
2513 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2514 "for spa %s", (u_longlong_t)state, spa->spa_name);
2515 return (SET_ERROR(EBADF));
2516 }
2517
2518 /*
2519 * If we were able to open and validate a vdev that was
2520 * previously marked permanently unavailable, clear that state
2521 * now.
2522 */
2523 if (vd->vdev_not_present)
2524 vd->vdev_not_present = 0;
2525
2526 return (0);
2527 }
2528
2529 static void
vdev_update_path(const char * prefix,char * svd,char ** dvd,uint64_t guid)2530 vdev_update_path(const char *prefix, char *svd, char **dvd, uint64_t guid)
2531 {
2532 if (svd != NULL && *dvd != NULL) {
2533 if (strcmp(svd, *dvd) != 0) {
2534 zfs_dbgmsg("vdev_copy_path: vdev %llu: %s changed "
2535 "from '%s' to '%s'", (u_longlong_t)guid, prefix,
2536 *dvd, svd);
2537 spa_strfree(*dvd);
2538 *dvd = spa_strdup(svd);
2539 }
2540 } else if (svd != NULL) {
2541 *dvd = spa_strdup(svd);
2542 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2543 (u_longlong_t)guid, *dvd);
2544 }
2545 }
2546
2547 static void
vdev_copy_path_impl(vdev_t * svd,vdev_t * dvd)2548 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2549 {
2550 char *old, *new;
2551
2552 vdev_update_path("vdev_path", svd->vdev_path, &dvd->vdev_path,
2553 dvd->vdev_guid);
2554
2555 vdev_update_path("vdev_devid", svd->vdev_devid, &dvd->vdev_devid,
2556 dvd->vdev_guid);
2557
2558 vdev_update_path("vdev_physpath", svd->vdev_physpath,
2559 &dvd->vdev_physpath, dvd->vdev_guid);
2560
2561 /*
2562 * Our enclosure sysfs path may have changed between imports
2563 */
2564 old = dvd->vdev_enc_sysfs_path;
2565 new = svd->vdev_enc_sysfs_path;
2566 if ((old != NULL && new == NULL) ||
2567 (old == NULL && new != NULL) ||
2568 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) {
2569 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
2570 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2571 old, new);
2572
2573 if (dvd->vdev_enc_sysfs_path)
2574 spa_strfree(dvd->vdev_enc_sysfs_path);
2575
2576 if (svd->vdev_enc_sysfs_path) {
2577 dvd->vdev_enc_sysfs_path = spa_strdup(
2578 svd->vdev_enc_sysfs_path);
2579 } else {
2580 dvd->vdev_enc_sysfs_path = NULL;
2581 }
2582 }
2583 }
2584
2585 /*
2586 * Recursively copy vdev paths from one vdev to another. Source and destination
2587 * vdev trees must have same geometry otherwise return error. Intended to copy
2588 * paths from userland config into MOS config.
2589 */
2590 int
vdev_copy_path_strict(vdev_t * svd,vdev_t * dvd)2591 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2592 {
2593 if ((svd->vdev_ops == &vdev_missing_ops) ||
2594 (svd->vdev_ishole && dvd->vdev_ishole) ||
2595 (dvd->vdev_ops == &vdev_indirect_ops))
2596 return (0);
2597
2598 if (svd->vdev_ops != dvd->vdev_ops) {
2599 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2600 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2601 return (SET_ERROR(EINVAL));
2602 }
2603
2604 if (svd->vdev_guid != dvd->vdev_guid) {
2605 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2606 "%llu)", (u_longlong_t)svd->vdev_guid,
2607 (u_longlong_t)dvd->vdev_guid);
2608 return (SET_ERROR(EINVAL));
2609 }
2610
2611 if (svd->vdev_children != dvd->vdev_children) {
2612 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2613 "%llu != %llu", (u_longlong_t)svd->vdev_children,
2614 (u_longlong_t)dvd->vdev_children);
2615 return (SET_ERROR(EINVAL));
2616 }
2617
2618 for (uint64_t i = 0; i < svd->vdev_children; i++) {
2619 int error = vdev_copy_path_strict(svd->vdev_child[i],
2620 dvd->vdev_child[i]);
2621 if (error != 0)
2622 return (error);
2623 }
2624
2625 if (svd->vdev_ops->vdev_op_leaf)
2626 vdev_copy_path_impl(svd, dvd);
2627
2628 return (0);
2629 }
2630
2631 static void
vdev_copy_path_search(vdev_t * stvd,vdev_t * dvd)2632 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2633 {
2634 ASSERT(stvd->vdev_top == stvd);
2635 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2636
2637 for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2638 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2639 }
2640
2641 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2642 return;
2643
2644 /*
2645 * The idea here is that while a vdev can shift positions within
2646 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2647 * step outside of it.
2648 */
2649 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2650
2651 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2652 return;
2653
2654 ASSERT(vd->vdev_ops->vdev_op_leaf);
2655
2656 vdev_copy_path_impl(vd, dvd);
2657 }
2658
2659 /*
2660 * Recursively copy vdev paths from one root vdev to another. Source and
2661 * destination vdev trees may differ in geometry. For each destination leaf
2662 * vdev, search a vdev with the same guid and top vdev id in the source.
2663 * Intended to copy paths from userland config into MOS config.
2664 */
2665 void
vdev_copy_path_relaxed(vdev_t * srvd,vdev_t * drvd)2666 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2667 {
2668 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2669 ASSERT(srvd->vdev_ops == &vdev_root_ops);
2670 ASSERT(drvd->vdev_ops == &vdev_root_ops);
2671
2672 for (uint64_t i = 0; i < children; i++) {
2673 vdev_copy_path_search(srvd->vdev_child[i],
2674 drvd->vdev_child[i]);
2675 }
2676 }
2677
2678 /*
2679 * Close a virtual device.
2680 */
2681 void
vdev_close(vdev_t * vd)2682 vdev_close(vdev_t *vd)
2683 {
2684 vdev_t *pvd = vd->vdev_parent;
2685 spa_t *spa __maybe_unused = vd->vdev_spa;
2686
2687 ASSERT(vd != NULL);
2688 ASSERT(vd->vdev_open_thread == curthread ||
2689 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2690
2691 /*
2692 * If our parent is reopening, then we are as well, unless we are
2693 * going offline.
2694 */
2695 if (pvd != NULL && pvd->vdev_reopening)
2696 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2697
2698 vd->vdev_ops->vdev_op_close(vd);
2699
2700 /*
2701 * We record the previous state before we close it, so that if we are
2702 * doing a reopen(), we don't generate FMA ereports if we notice that
2703 * it's still faulted.
2704 */
2705 vd->vdev_prevstate = vd->vdev_state;
2706
2707 if (vd->vdev_offline)
2708 vd->vdev_state = VDEV_STATE_OFFLINE;
2709 else
2710 vd->vdev_state = VDEV_STATE_CLOSED;
2711 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2712 }
2713
2714 void
vdev_hold(vdev_t * vd)2715 vdev_hold(vdev_t *vd)
2716 {
2717 spa_t *spa = vd->vdev_spa;
2718
2719 ASSERT(spa_is_root(spa));
2720 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2721 return;
2722
2723 for (int c = 0; c < vd->vdev_children; c++)
2724 vdev_hold(vd->vdev_child[c]);
2725
2726 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL)
2727 vd->vdev_ops->vdev_op_hold(vd);
2728 }
2729
2730 void
vdev_rele(vdev_t * vd)2731 vdev_rele(vdev_t *vd)
2732 {
2733 ASSERT(spa_is_root(vd->vdev_spa));
2734 for (int c = 0; c < vd->vdev_children; c++)
2735 vdev_rele(vd->vdev_child[c]);
2736
2737 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL)
2738 vd->vdev_ops->vdev_op_rele(vd);
2739 }
2740
2741 /*
2742 * Reopen all interior vdevs and any unopened leaves. We don't actually
2743 * reopen leaf vdevs which had previously been opened as they might deadlock
2744 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
2745 * If the leaf has never been opened then open it, as usual.
2746 */
2747 void
vdev_reopen(vdev_t * vd)2748 vdev_reopen(vdev_t *vd)
2749 {
2750 spa_t *spa = vd->vdev_spa;
2751
2752 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2753
2754 /* set the reopening flag unless we're taking the vdev offline */
2755 vd->vdev_reopening = !vd->vdev_offline;
2756 vdev_close(vd);
2757 (void) vdev_open(vd);
2758
2759 /*
2760 * Call vdev_validate() here to make sure we have the same device.
2761 * Otherwise, a device with an invalid label could be successfully
2762 * opened in response to vdev_reopen().
2763 */
2764 if (vd->vdev_aux) {
2765 (void) vdev_validate_aux(vd);
2766 if (vdev_readable(vd) && vdev_writeable(vd) &&
2767 vd->vdev_aux == &spa->spa_l2cache) {
2768 /*
2769 * In case the vdev is present we should evict all ARC
2770 * buffers and pointers to log blocks and reclaim their
2771 * space before restoring its contents to L2ARC.
2772 */
2773 if (l2arc_vdev_present(vd)) {
2774 l2arc_rebuild_vdev(vd, B_TRUE);
2775 } else {
2776 l2arc_add_vdev(spa, vd);
2777 }
2778 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2779 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2780 }
2781 } else {
2782 (void) vdev_validate(vd);
2783 }
2784
2785 /*
2786 * Recheck if resilver is still needed and cancel any
2787 * scheduled resilver if resilver is unneeded.
2788 */
2789 if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) &&
2790 spa->spa_async_tasks & SPA_ASYNC_RESILVER) {
2791 mutex_enter(&spa->spa_async_lock);
2792 spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER;
2793 mutex_exit(&spa->spa_async_lock);
2794 }
2795
2796 /*
2797 * Reassess parent vdev's health.
2798 */
2799 vdev_propagate_state(vd);
2800 }
2801
2802 int
vdev_create(vdev_t * vd,uint64_t txg,boolean_t isreplacing)2803 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2804 {
2805 int error;
2806
2807 /*
2808 * Normally, partial opens (e.g. of a mirror) are allowed.
2809 * For a create, however, we want to fail the request if
2810 * there are any components we can't open.
2811 */
2812 error = vdev_open(vd);
2813
2814 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2815 vdev_close(vd);
2816 return (error ? error : SET_ERROR(ENXIO));
2817 }
2818
2819 /*
2820 * Recursively load DTLs and initialize all labels.
2821 */
2822 if ((error = vdev_dtl_load(vd)) != 0 ||
2823 (error = vdev_label_init(vd, txg, isreplacing ?
2824 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2825 vdev_close(vd);
2826 return (error);
2827 }
2828
2829 return (0);
2830 }
2831
2832 void
vdev_metaslab_set_size(vdev_t * vd)2833 vdev_metaslab_set_size(vdev_t *vd)
2834 {
2835 uint64_t asize = vd->vdev_asize;
2836 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2837 uint64_t ms_shift;
2838
2839 /*
2840 * There are two dimensions to the metaslab sizing calculation:
2841 * the size of the metaslab and the count of metaslabs per vdev.
2842 *
2843 * The default values used below are a good balance between memory
2844 * usage (larger metaslab size means more memory needed for loaded
2845 * metaslabs; more metaslabs means more memory needed for the
2846 * metaslab_t structs), metaslab load time (larger metaslabs take
2847 * longer to load), and metaslab sync time (more metaslabs means
2848 * more time spent syncing all of them).
2849 *
2850 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2851 * The range of the dimensions are as follows:
2852 *
2853 * 2^29 <= ms_size <= 2^34
2854 * 16 <= ms_count <= 131,072
2855 *
2856 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2857 * at least 512MB (2^29) to minimize fragmentation effects when
2858 * testing with smaller devices. However, the count constraint
2859 * of at least 16 metaslabs will override this minimum size goal.
2860 *
2861 * On the upper end of vdev sizes, we aim for a maximum metaslab
2862 * size of 16GB. However, we will cap the total count to 2^17
2863 * metaslabs to keep our memory footprint in check and let the
2864 * metaslab size grow from there if that limit is hit.
2865 *
2866 * The net effect of applying above constrains is summarized below.
2867 *
2868 * vdev size metaslab count
2869 * --------------|-----------------
2870 * < 8GB ~16
2871 * 8GB - 100GB one per 512MB
2872 * 100GB - 3TB ~200
2873 * 3TB - 2PB one per 16GB
2874 * > 2PB ~131,072
2875 * --------------------------------
2876 *
2877 * Finally, note that all of the above calculate the initial
2878 * number of metaslabs. Expanding a top-level vdev will result
2879 * in additional metaslabs being allocated making it possible
2880 * to exceed the zfs_vdev_ms_count_limit.
2881 */
2882
2883 if (ms_count < zfs_vdev_min_ms_count)
2884 ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2885 else if (ms_count > zfs_vdev_default_ms_count)
2886 ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2887 else
2888 ms_shift = zfs_vdev_default_ms_shift;
2889
2890 if (ms_shift < SPA_MAXBLOCKSHIFT) {
2891 ms_shift = SPA_MAXBLOCKSHIFT;
2892 } else if (ms_shift > zfs_vdev_max_ms_shift) {
2893 ms_shift = zfs_vdev_max_ms_shift;
2894 /* cap the total count to constrain memory footprint */
2895 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2896 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2897 }
2898
2899 vd->vdev_ms_shift = ms_shift;
2900 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2901 }
2902
2903 void
vdev_dirty(vdev_t * vd,int flags,void * arg,uint64_t txg)2904 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2905 {
2906 ASSERT(vd == vd->vdev_top);
2907 /* indirect vdevs don't have metaslabs or dtls */
2908 ASSERT(vdev_is_concrete(vd) || flags == 0);
2909 ASSERT(ISP2(flags));
2910 ASSERT(spa_writeable(vd->vdev_spa));
2911
2912 if (flags & VDD_METASLAB)
2913 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2914
2915 if (flags & VDD_DTL)
2916 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2917
2918 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2919 }
2920
2921 void
vdev_dirty_leaves(vdev_t * vd,int flags,uint64_t txg)2922 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2923 {
2924 for (int c = 0; c < vd->vdev_children; c++)
2925 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2926
2927 if (vd->vdev_ops->vdev_op_leaf)
2928 vdev_dirty(vd->vdev_top, flags, vd, txg);
2929 }
2930
2931 /*
2932 * DTLs.
2933 *
2934 * A vdev's DTL (dirty time log) is the set of transaction groups for which
2935 * the vdev has less than perfect replication. There are four kinds of DTL:
2936 *
2937 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2938 *
2939 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2940 *
2941 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2942 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2943 * txgs that was scrubbed.
2944 *
2945 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2946 * persistent errors or just some device being offline.
2947 * Unlike the other three, the DTL_OUTAGE map is not generally
2948 * maintained; it's only computed when needed, typically to
2949 * determine whether a device can be detached.
2950 *
2951 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2952 * either has the data or it doesn't.
2953 *
2954 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2955 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2956 * if any child is less than fully replicated, then so is its parent.
2957 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2958 * comprising only those txgs which appear in 'maxfaults' or more children;
2959 * those are the txgs we don't have enough replication to read. For example,
2960 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2961 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2962 * two child DTL_MISSING maps.
2963 *
2964 * It should be clear from the above that to compute the DTLs and outage maps
2965 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2966 * Therefore, that is all we keep on disk. When loading the pool, or after
2967 * a configuration change, we generate all other DTLs from first principles.
2968 */
2969 void
vdev_dtl_dirty(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)2970 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2971 {
2972 range_tree_t *rt = vd->vdev_dtl[t];
2973
2974 ASSERT(t < DTL_TYPES);
2975 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2976 ASSERT(spa_writeable(vd->vdev_spa));
2977
2978 mutex_enter(&vd->vdev_dtl_lock);
2979 if (!range_tree_contains(rt, txg, size))
2980 range_tree_add(rt, txg, size);
2981 mutex_exit(&vd->vdev_dtl_lock);
2982 }
2983
2984 boolean_t
vdev_dtl_contains(vdev_t * vd,vdev_dtl_type_t t,uint64_t txg,uint64_t size)2985 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2986 {
2987 range_tree_t *rt = vd->vdev_dtl[t];
2988 boolean_t dirty = B_FALSE;
2989
2990 ASSERT(t < DTL_TYPES);
2991 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2992
2993 /*
2994 * While we are loading the pool, the DTLs have not been loaded yet.
2995 * This isn't a problem but it can result in devices being tried
2996 * which are known to not have the data. In which case, the import
2997 * is relying on the checksum to ensure that we get the right data.
2998 * Note that while importing we are only reading the MOS, which is
2999 * always checksummed.
3000 */
3001 mutex_enter(&vd->vdev_dtl_lock);
3002 if (!range_tree_is_empty(rt))
3003 dirty = range_tree_contains(rt, txg, size);
3004 mutex_exit(&vd->vdev_dtl_lock);
3005
3006 return (dirty);
3007 }
3008
3009 boolean_t
vdev_dtl_empty(vdev_t * vd,vdev_dtl_type_t t)3010 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
3011 {
3012 range_tree_t *rt = vd->vdev_dtl[t];
3013 boolean_t empty;
3014
3015 mutex_enter(&vd->vdev_dtl_lock);
3016 empty = range_tree_is_empty(rt);
3017 mutex_exit(&vd->vdev_dtl_lock);
3018
3019 return (empty);
3020 }
3021
3022 /*
3023 * Check if the txg falls within the range which must be
3024 * resilvered. DVAs outside this range can always be skipped.
3025 */
3026 boolean_t
vdev_default_need_resilver(vdev_t * vd,const dva_t * dva,size_t psize,uint64_t phys_birth)3027 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3028 uint64_t phys_birth)
3029 {
3030 (void) dva, (void) psize;
3031
3032 /* Set by sequential resilver. */
3033 if (phys_birth == TXG_UNKNOWN)
3034 return (B_TRUE);
3035
3036 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
3037 }
3038
3039 /*
3040 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
3041 */
3042 boolean_t
vdev_dtl_need_resilver(vdev_t * vd,const dva_t * dva,size_t psize,uint64_t phys_birth)3043 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3044 uint64_t phys_birth)
3045 {
3046 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3047
3048 if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
3049 vd->vdev_ops->vdev_op_leaf)
3050 return (B_TRUE);
3051
3052 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
3053 phys_birth));
3054 }
3055
3056 /*
3057 * Returns the lowest txg in the DTL range.
3058 */
3059 static uint64_t
vdev_dtl_min(vdev_t * vd)3060 vdev_dtl_min(vdev_t *vd)
3061 {
3062 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3063 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3064 ASSERT0(vd->vdev_children);
3065
3066 return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
3067 }
3068
3069 /*
3070 * Returns the highest txg in the DTL.
3071 */
3072 static uint64_t
vdev_dtl_max(vdev_t * vd)3073 vdev_dtl_max(vdev_t *vd)
3074 {
3075 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3076 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3077 ASSERT0(vd->vdev_children);
3078
3079 return (range_tree_max(vd->vdev_dtl[DTL_MISSING]));
3080 }
3081
3082 /*
3083 * Determine if a resilvering vdev should remove any DTL entries from
3084 * its range. If the vdev was resilvering for the entire duration of the
3085 * scan then it should excise that range from its DTLs. Otherwise, this
3086 * vdev is considered partially resilvered and should leave its DTL
3087 * entries intact. The comment in vdev_dtl_reassess() describes how we
3088 * excise the DTLs.
3089 */
3090 static boolean_t
vdev_dtl_should_excise(vdev_t * vd,boolean_t rebuild_done)3091 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
3092 {
3093 ASSERT0(vd->vdev_children);
3094
3095 if (vd->vdev_state < VDEV_STATE_DEGRADED)
3096 return (B_FALSE);
3097
3098 if (vd->vdev_resilver_deferred)
3099 return (B_FALSE);
3100
3101 if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
3102 return (B_TRUE);
3103
3104 if (rebuild_done) {
3105 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3106 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
3107
3108 /* Rebuild not initiated by attach */
3109 if (vd->vdev_rebuild_txg == 0)
3110 return (B_TRUE);
3111
3112 /*
3113 * When a rebuild completes without error then all missing data
3114 * up to the rebuild max txg has been reconstructed and the DTL
3115 * is eligible for excision.
3116 */
3117 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
3118 vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
3119 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
3120 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
3121 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
3122 return (B_TRUE);
3123 }
3124 } else {
3125 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
3126 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
3127
3128 /* Resilver not initiated by attach */
3129 if (vd->vdev_resilver_txg == 0)
3130 return (B_TRUE);
3131
3132 /*
3133 * When a resilver is initiated the scan will assign the
3134 * scn_max_txg value to the highest txg value that exists
3135 * in all DTLs. If this device's max DTL is not part of this
3136 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
3137 * then it is not eligible for excision.
3138 */
3139 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
3140 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
3141 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
3142 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
3143 return (B_TRUE);
3144 }
3145 }
3146
3147 return (B_FALSE);
3148 }
3149
3150 /*
3151 * Reassess DTLs after a config change or scrub completion. If txg == 0 no
3152 * write operations will be issued to the pool.
3153 */
3154 static void
vdev_dtl_reassess_impl(vdev_t * vd,uint64_t txg,uint64_t scrub_txg,boolean_t scrub_done,boolean_t rebuild_done,boolean_t faulting)3155 vdev_dtl_reassess_impl(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3156 boolean_t scrub_done, boolean_t rebuild_done, boolean_t faulting)
3157 {
3158 spa_t *spa = vd->vdev_spa;
3159 avl_tree_t reftree;
3160 int minref;
3161
3162 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3163
3164 for (int c = 0; c < vd->vdev_children; c++)
3165 vdev_dtl_reassess_impl(vd->vdev_child[c], txg,
3166 scrub_txg, scrub_done, rebuild_done, faulting);
3167
3168 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
3169 return;
3170
3171 if (vd->vdev_ops->vdev_op_leaf) {
3172 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
3173 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3174 boolean_t check_excise = B_FALSE;
3175 boolean_t wasempty = B_TRUE;
3176
3177 mutex_enter(&vd->vdev_dtl_lock);
3178
3179 /*
3180 * If requested, pretend the scan or rebuild completed cleanly.
3181 */
3182 if (zfs_scan_ignore_errors) {
3183 if (scn != NULL)
3184 scn->scn_phys.scn_errors = 0;
3185 if (vr != NULL)
3186 vr->vr_rebuild_phys.vrp_errors = 0;
3187 }
3188
3189 if (scrub_txg != 0 &&
3190 !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3191 wasempty = B_FALSE;
3192 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
3193 "dtl:%llu/%llu errors:%llu",
3194 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
3195 (u_longlong_t)scrub_txg, spa->spa_scrub_started,
3196 (u_longlong_t)vdev_dtl_min(vd),
3197 (u_longlong_t)vdev_dtl_max(vd),
3198 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
3199 }
3200
3201 /*
3202 * If we've completed a scrub/resilver or a rebuild cleanly
3203 * then determine if this vdev should remove any DTLs. We
3204 * only want to excise regions on vdevs that were available
3205 * during the entire duration of this scan.
3206 */
3207 if (rebuild_done &&
3208 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
3209 check_excise = B_TRUE;
3210 } else {
3211 if (spa->spa_scrub_started ||
3212 (scn != NULL && scn->scn_phys.scn_errors == 0)) {
3213 check_excise = B_TRUE;
3214 }
3215 }
3216
3217 if (scrub_txg && check_excise &&
3218 vdev_dtl_should_excise(vd, rebuild_done)) {
3219 /*
3220 * We completed a scrub, resilver or rebuild up to
3221 * scrub_txg. If we did it without rebooting, then
3222 * the scrub dtl will be valid, so excise the old
3223 * region and fold in the scrub dtl. Otherwise,
3224 * leave the dtl as-is if there was an error.
3225 *
3226 * There's little trick here: to excise the beginning
3227 * of the DTL_MISSING map, we put it into a reference
3228 * tree and then add a segment with refcnt -1 that
3229 * covers the range [0, scrub_txg). This means
3230 * that each txg in that range has refcnt -1 or 0.
3231 * We then add DTL_SCRUB with a refcnt of 2, so that
3232 * entries in the range [0, scrub_txg) will have a
3233 * positive refcnt -- either 1 or 2. We then convert
3234 * the reference tree into the new DTL_MISSING map.
3235 */
3236 space_reftree_create(&reftree);
3237 space_reftree_add_map(&reftree,
3238 vd->vdev_dtl[DTL_MISSING], 1);
3239 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
3240 space_reftree_add_map(&reftree,
3241 vd->vdev_dtl[DTL_SCRUB], 2);
3242 space_reftree_generate_map(&reftree,
3243 vd->vdev_dtl[DTL_MISSING], 1);
3244 space_reftree_destroy(&reftree);
3245
3246 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3247 zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3248 (u_longlong_t)vdev_dtl_min(vd),
3249 (u_longlong_t)vdev_dtl_max(vd));
3250 } else if (!wasempty) {
3251 zfs_dbgmsg("DTL_MISSING is now empty");
3252 }
3253 }
3254 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3255 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3256 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3257 if (scrub_done)
3258 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
3259 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3260
3261 /*
3262 * For the faulting case, treat members of a replacing vdev
3263 * as if they are not available. It's more likely than not that
3264 * a vdev in a replacing vdev could encounter read errors so
3265 * treat it as not being able to contribute.
3266 */
3267 if (!vdev_readable(vd) ||
3268 (faulting && vd->vdev_parent != NULL &&
3269 vd->vdev_parent->vdev_ops == &vdev_replacing_ops)) {
3270 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3271 } else {
3272 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3273 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3274 }
3275
3276 /*
3277 * If the vdev was resilvering or rebuilding and no longer
3278 * has any DTLs then reset the appropriate flag and dirty
3279 * the top level so that we persist the change.
3280 */
3281 if (txg != 0 &&
3282 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3283 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3284 if (vd->vdev_rebuild_txg != 0) {
3285 vd->vdev_rebuild_txg = 0;
3286 vdev_config_dirty(vd->vdev_top);
3287 } else if (vd->vdev_resilver_txg != 0) {
3288 vd->vdev_resilver_txg = 0;
3289 vdev_config_dirty(vd->vdev_top);
3290 }
3291 }
3292
3293 mutex_exit(&vd->vdev_dtl_lock);
3294
3295 if (txg != 0)
3296 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3297 } else {
3298 mutex_enter(&vd->vdev_dtl_lock);
3299 for (int t = 0; t < DTL_TYPES; t++) {
3300 /* account for child's outage in parent's missing map */
3301 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3302 if (t == DTL_SCRUB) {
3303 /* leaf vdevs only */
3304 continue;
3305 }
3306 if (t == DTL_PARTIAL) {
3307 /* i.e. non-zero */
3308 minref = 1;
3309 } else if (vdev_get_nparity(vd) != 0) {
3310 /* RAIDZ, DRAID */
3311 minref = vdev_get_nparity(vd) + 1;
3312 } else {
3313 /* any kind of mirror */
3314 minref = vd->vdev_children;
3315 }
3316 space_reftree_create(&reftree);
3317 for (int c = 0; c < vd->vdev_children; c++) {
3318 vdev_t *cvd = vd->vdev_child[c];
3319 mutex_enter(&cvd->vdev_dtl_lock);
3320 space_reftree_add_map(&reftree,
3321 cvd->vdev_dtl[s], 1);
3322 mutex_exit(&cvd->vdev_dtl_lock);
3323 }
3324 space_reftree_generate_map(&reftree,
3325 vd->vdev_dtl[t], minref);
3326 space_reftree_destroy(&reftree);
3327 }
3328 mutex_exit(&vd->vdev_dtl_lock);
3329 }
3330
3331 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) {
3332 raidz_dtl_reassessed(vd);
3333 }
3334 }
3335
3336 void
vdev_dtl_reassess(vdev_t * vd,uint64_t txg,uint64_t scrub_txg,boolean_t scrub_done,boolean_t rebuild_done)3337 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3338 boolean_t scrub_done, boolean_t rebuild_done)
3339 {
3340 return (vdev_dtl_reassess_impl(vd, txg, scrub_txg, scrub_done,
3341 rebuild_done, B_FALSE));
3342 }
3343
3344 /*
3345 * Iterate over all the vdevs except spare, and post kobj events
3346 */
3347 void
vdev_post_kobj_evt(vdev_t * vd)3348 vdev_post_kobj_evt(vdev_t *vd)
3349 {
3350 if (vd->vdev_ops->vdev_op_kobj_evt_post &&
3351 vd->vdev_kobj_flag == B_FALSE) {
3352 vd->vdev_kobj_flag = B_TRUE;
3353 vd->vdev_ops->vdev_op_kobj_evt_post(vd);
3354 }
3355
3356 for (int c = 0; c < vd->vdev_children; c++)
3357 vdev_post_kobj_evt(vd->vdev_child[c]);
3358 }
3359
3360 /*
3361 * Iterate over all the vdevs except spare, and clear kobj events
3362 */
3363 void
vdev_clear_kobj_evt(vdev_t * vd)3364 vdev_clear_kobj_evt(vdev_t *vd)
3365 {
3366 vd->vdev_kobj_flag = B_FALSE;
3367
3368 for (int c = 0; c < vd->vdev_children; c++)
3369 vdev_clear_kobj_evt(vd->vdev_child[c]);
3370 }
3371
3372 int
vdev_dtl_load(vdev_t * vd)3373 vdev_dtl_load(vdev_t *vd)
3374 {
3375 spa_t *spa = vd->vdev_spa;
3376 objset_t *mos = spa->spa_meta_objset;
3377 range_tree_t *rt;
3378 int error = 0;
3379
3380 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3381 ASSERT(vdev_is_concrete(vd));
3382
3383 /*
3384 * If the dtl cannot be sync'd there is no need to open it.
3385 */
3386 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps)
3387 return (0);
3388
3389 error = space_map_open(&vd->vdev_dtl_sm, mos,
3390 vd->vdev_dtl_object, 0, -1ULL, 0);
3391 if (error)
3392 return (error);
3393 ASSERT(vd->vdev_dtl_sm != NULL);
3394
3395 rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3396 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3397 if (error == 0) {
3398 mutex_enter(&vd->vdev_dtl_lock);
3399 range_tree_walk(rt, range_tree_add,
3400 vd->vdev_dtl[DTL_MISSING]);
3401 mutex_exit(&vd->vdev_dtl_lock);
3402 }
3403
3404 range_tree_vacate(rt, NULL, NULL);
3405 range_tree_destroy(rt);
3406
3407 return (error);
3408 }
3409
3410 for (int c = 0; c < vd->vdev_children; c++) {
3411 error = vdev_dtl_load(vd->vdev_child[c]);
3412 if (error != 0)
3413 break;
3414 }
3415
3416 return (error);
3417 }
3418
3419 static void
vdev_zap_allocation_data(vdev_t * vd,dmu_tx_t * tx)3420 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3421 {
3422 spa_t *spa = vd->vdev_spa;
3423 objset_t *mos = spa->spa_meta_objset;
3424 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3425 const char *string;
3426
3427 ASSERT(alloc_bias != VDEV_BIAS_NONE);
3428
3429 string =
3430 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3431 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3432 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3433
3434 ASSERT(string != NULL);
3435 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3436 1, strlen(string) + 1, string, tx));
3437
3438 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3439 spa_activate_allocation_classes(spa, tx);
3440 }
3441 }
3442
3443 void
vdev_destroy_unlink_zap(vdev_t * vd,uint64_t zapobj,dmu_tx_t * tx)3444 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3445 {
3446 spa_t *spa = vd->vdev_spa;
3447
3448 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3449 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3450 zapobj, tx));
3451 }
3452
3453 uint64_t
vdev_create_link_zap(vdev_t * vd,dmu_tx_t * tx)3454 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3455 {
3456 spa_t *spa = vd->vdev_spa;
3457 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3458 DMU_OT_NONE, 0, tx);
3459
3460 ASSERT(zap != 0);
3461 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3462 zap, tx));
3463
3464 return (zap);
3465 }
3466
3467 void
vdev_construct_zaps(vdev_t * vd,dmu_tx_t * tx)3468 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3469 {
3470 if (vd->vdev_ops != &vdev_hole_ops &&
3471 vd->vdev_ops != &vdev_missing_ops &&
3472 vd->vdev_ops != &vdev_root_ops &&
3473 !vd->vdev_top->vdev_removing) {
3474 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3475 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3476 }
3477 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3478 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3479 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3480 vdev_zap_allocation_data(vd, tx);
3481 }
3482 }
3483 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 &&
3484 spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) {
3485 if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2))
3486 spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx);
3487 vd->vdev_root_zap = vdev_create_link_zap(vd, tx);
3488 }
3489
3490 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3491 vdev_construct_zaps(vd->vdev_child[i], tx);
3492 }
3493 }
3494
3495 static void
vdev_dtl_sync(vdev_t * vd,uint64_t txg)3496 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3497 {
3498 spa_t *spa = vd->vdev_spa;
3499 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3500 objset_t *mos = spa->spa_meta_objset;
3501 range_tree_t *rtsync;
3502 dmu_tx_t *tx;
3503 uint64_t object = space_map_object(vd->vdev_dtl_sm);
3504
3505 ASSERT(vdev_is_concrete(vd));
3506 ASSERT(vd->vdev_ops->vdev_op_leaf);
3507
3508 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3509
3510 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3511 mutex_enter(&vd->vdev_dtl_lock);
3512 space_map_free(vd->vdev_dtl_sm, tx);
3513 space_map_close(vd->vdev_dtl_sm);
3514 vd->vdev_dtl_sm = NULL;
3515 mutex_exit(&vd->vdev_dtl_lock);
3516
3517 /*
3518 * We only destroy the leaf ZAP for detached leaves or for
3519 * removed log devices. Removed data devices handle leaf ZAP
3520 * cleanup later, once cancellation is no longer possible.
3521 */
3522 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3523 vd->vdev_top->vdev_islog)) {
3524 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3525 vd->vdev_leaf_zap = 0;
3526 }
3527
3528 dmu_tx_commit(tx);
3529 return;
3530 }
3531
3532 if (vd->vdev_dtl_sm == NULL) {
3533 uint64_t new_object;
3534
3535 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3536 VERIFY3U(new_object, !=, 0);
3537
3538 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3539 0, -1ULL, 0));
3540 ASSERT(vd->vdev_dtl_sm != NULL);
3541 }
3542
3543 rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3544
3545 mutex_enter(&vd->vdev_dtl_lock);
3546 range_tree_walk(rt, range_tree_add, rtsync);
3547 mutex_exit(&vd->vdev_dtl_lock);
3548
3549 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3550 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3551 range_tree_vacate(rtsync, NULL, NULL);
3552
3553 range_tree_destroy(rtsync);
3554
3555 /*
3556 * If the object for the space map has changed then dirty
3557 * the top level so that we update the config.
3558 */
3559 if (object != space_map_object(vd->vdev_dtl_sm)) {
3560 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3561 "new object %llu", (u_longlong_t)txg, spa_name(spa),
3562 (u_longlong_t)object,
3563 (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3564 vdev_config_dirty(vd->vdev_top);
3565 }
3566
3567 dmu_tx_commit(tx);
3568 }
3569
3570 /*
3571 * Determine whether the specified vdev can be
3572 * - offlined
3573 * - detached
3574 * - removed
3575 * - faulted
3576 * without losing data.
3577 */
3578 boolean_t
vdev_dtl_required(vdev_t * vd)3579 vdev_dtl_required(vdev_t *vd)
3580 {
3581 spa_t *spa = vd->vdev_spa;
3582 vdev_t *tvd = vd->vdev_top;
3583 uint8_t cant_read = vd->vdev_cant_read;
3584 boolean_t required;
3585 boolean_t faulting = vd->vdev_state == VDEV_STATE_FAULTED;
3586
3587 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3588
3589 if (vd == spa->spa_root_vdev || vd == tvd)
3590 return (B_TRUE);
3591
3592 /*
3593 * Temporarily mark the device as unreadable, and then determine
3594 * whether this results in any DTL outages in the top-level vdev.
3595 * If not, we can safely offline/detach/remove the device.
3596 */
3597 vd->vdev_cant_read = B_TRUE;
3598 vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting);
3599 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3600 vd->vdev_cant_read = cant_read;
3601 vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting);
3602
3603 if (!required && zio_injection_enabled) {
3604 required = !!zio_handle_device_injection(vd, NULL,
3605 SET_ERROR(ECHILD));
3606 }
3607
3608 return (required);
3609 }
3610
3611 /*
3612 * Determine if resilver is needed, and if so the txg range.
3613 */
3614 boolean_t
vdev_resilver_needed(vdev_t * vd,uint64_t * minp,uint64_t * maxp)3615 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3616 {
3617 boolean_t needed = B_FALSE;
3618 uint64_t thismin = UINT64_MAX;
3619 uint64_t thismax = 0;
3620
3621 if (vd->vdev_children == 0) {
3622 mutex_enter(&vd->vdev_dtl_lock);
3623 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3624 vdev_writeable(vd)) {
3625
3626 thismin = vdev_dtl_min(vd);
3627 thismax = vdev_dtl_max(vd);
3628 needed = B_TRUE;
3629 }
3630 mutex_exit(&vd->vdev_dtl_lock);
3631 } else {
3632 for (int c = 0; c < vd->vdev_children; c++) {
3633 vdev_t *cvd = vd->vdev_child[c];
3634 uint64_t cmin, cmax;
3635
3636 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3637 thismin = MIN(thismin, cmin);
3638 thismax = MAX(thismax, cmax);
3639 needed = B_TRUE;
3640 }
3641 }
3642 }
3643
3644 if (needed && minp) {
3645 *minp = thismin;
3646 *maxp = thismax;
3647 }
3648 return (needed);
3649 }
3650
3651 /*
3652 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj
3653 * will contain either the checkpoint spacemap object or zero if none exists.
3654 * All other errors are returned to the caller.
3655 */
3656 int
vdev_checkpoint_sm_object(vdev_t * vd,uint64_t * sm_obj)3657 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3658 {
3659 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3660
3661 if (vd->vdev_top_zap == 0) {
3662 *sm_obj = 0;
3663 return (0);
3664 }
3665
3666 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3667 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3668 if (error == ENOENT) {
3669 *sm_obj = 0;
3670 error = 0;
3671 }
3672
3673 return (error);
3674 }
3675
3676 int
vdev_load(vdev_t * vd)3677 vdev_load(vdev_t *vd)
3678 {
3679 int children = vd->vdev_children;
3680 int error = 0;
3681 taskq_t *tq = NULL;
3682
3683 /*
3684 * It's only worthwhile to use the taskq for the root vdev, because the
3685 * slow part is metaslab_init, and that only happens for top-level
3686 * vdevs.
3687 */
3688 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
3689 tq = taskq_create("vdev_load", children, minclsyspri,
3690 children, children, TASKQ_PREPOPULATE);
3691 }
3692
3693 /*
3694 * Recursively load all children.
3695 */
3696 for (int c = 0; c < vd->vdev_children; c++) {
3697 vdev_t *cvd = vd->vdev_child[c];
3698
3699 if (tq == NULL || vdev_uses_zvols(cvd)) {
3700 cvd->vdev_load_error = vdev_load(cvd);
3701 } else {
3702 VERIFY(taskq_dispatch(tq, vdev_load_child,
3703 cvd, TQ_SLEEP) != TASKQID_INVALID);
3704 }
3705 }
3706
3707 if (tq != NULL) {
3708 taskq_wait(tq);
3709 taskq_destroy(tq);
3710 }
3711
3712 for (int c = 0; c < vd->vdev_children; c++) {
3713 int error = vd->vdev_child[c]->vdev_load_error;
3714
3715 if (error != 0)
3716 return (error);
3717 }
3718
3719 vdev_set_deflate_ratio(vd);
3720
3721 if (vd->vdev_ops == &vdev_raidz_ops) {
3722 error = vdev_raidz_load(vd);
3723 if (error != 0)
3724 return (error);
3725 }
3726
3727 /*
3728 * On spa_load path, grab the allocation bias from our zap
3729 */
3730 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3731 spa_t *spa = vd->vdev_spa;
3732 char bias_str[64];
3733
3734 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3735 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3736 bias_str);
3737 if (error == 0) {
3738 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3739 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3740 } else if (error != ENOENT) {
3741 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3742 VDEV_AUX_CORRUPT_DATA);
3743 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3744 "failed [error=%d]",
3745 (u_longlong_t)vd->vdev_top_zap, error);
3746 return (error);
3747 }
3748 }
3749
3750 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3751 spa_t *spa = vd->vdev_spa;
3752 uint64_t failfast;
3753
3754 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3755 vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast),
3756 1, &failfast);
3757 if (error == 0) {
3758 vd->vdev_failfast = failfast & 1;
3759 } else if (error == ENOENT) {
3760 vd->vdev_failfast = vdev_prop_default_numeric(
3761 VDEV_PROP_FAILFAST);
3762 } else {
3763 vdev_dbgmsg(vd,
3764 "vdev_load: zap_lookup(top_zap=%llu) "
3765 "failed [error=%d]",
3766 (u_longlong_t)vd->vdev_top_zap, error);
3767 }
3768 }
3769
3770 /*
3771 * Load any rebuild state from the top-level vdev zap.
3772 */
3773 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3774 error = vdev_rebuild_load(vd);
3775 if (error && error != ENOTSUP) {
3776 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3777 VDEV_AUX_CORRUPT_DATA);
3778 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3779 "failed [error=%d]", error);
3780 return (error);
3781 }
3782 }
3783
3784 if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) {
3785 uint64_t zapobj;
3786
3787 if (vd->vdev_top_zap != 0)
3788 zapobj = vd->vdev_top_zap;
3789 else
3790 zapobj = vd->vdev_leaf_zap;
3791
3792 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N,
3793 &vd->vdev_checksum_n);
3794 if (error && error != ENOENT)
3795 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3796 "failed [error=%d]", (u_longlong_t)zapobj, error);
3797
3798 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T,
3799 &vd->vdev_checksum_t);
3800 if (error && error != ENOENT)
3801 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3802 "failed [error=%d]", (u_longlong_t)zapobj, error);
3803
3804 error = vdev_prop_get_int(vd, VDEV_PROP_IO_N,
3805 &vd->vdev_io_n);
3806 if (error && error != ENOENT)
3807 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3808 "failed [error=%d]", (u_longlong_t)zapobj, error);
3809
3810 error = vdev_prop_get_int(vd, VDEV_PROP_IO_T,
3811 &vd->vdev_io_t);
3812 if (error && error != ENOENT)
3813 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3814 "failed [error=%d]", (u_longlong_t)zapobj, error);
3815
3816 error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_N,
3817 &vd->vdev_slow_io_n);
3818 if (error && error != ENOENT)
3819 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3820 "failed [error=%d]", (u_longlong_t)zapobj, error);
3821
3822 error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_T,
3823 &vd->vdev_slow_io_t);
3824 if (error && error != ENOENT)
3825 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3826 "failed [error=%d]", (u_longlong_t)zapobj, error);
3827 }
3828
3829 /*
3830 * If this is a top-level vdev, initialize its metaslabs.
3831 */
3832 if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3833 vdev_metaslab_group_create(vd);
3834
3835 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3836 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3837 VDEV_AUX_CORRUPT_DATA);
3838 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3839 "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3840 (u_longlong_t)vd->vdev_asize);
3841 return (SET_ERROR(ENXIO));
3842 }
3843
3844 error = vdev_metaslab_init(vd, 0);
3845 if (error != 0) {
3846 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3847 "[error=%d]", error);
3848 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3849 VDEV_AUX_CORRUPT_DATA);
3850 return (error);
3851 }
3852
3853 uint64_t checkpoint_sm_obj;
3854 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3855 if (error == 0 && checkpoint_sm_obj != 0) {
3856 objset_t *mos = spa_meta_objset(vd->vdev_spa);
3857 ASSERT(vd->vdev_asize != 0);
3858 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3859
3860 error = space_map_open(&vd->vdev_checkpoint_sm,
3861 mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3862 vd->vdev_ashift);
3863 if (error != 0) {
3864 vdev_dbgmsg(vd, "vdev_load: space_map_open "
3865 "failed for checkpoint spacemap (obj %llu) "
3866 "[error=%d]",
3867 (u_longlong_t)checkpoint_sm_obj, error);
3868 return (error);
3869 }
3870 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3871
3872 /*
3873 * Since the checkpoint_sm contains free entries
3874 * exclusively we can use space_map_allocated() to
3875 * indicate the cumulative checkpointed space that
3876 * has been freed.
3877 */
3878 vd->vdev_stat.vs_checkpoint_space =
3879 -space_map_allocated(vd->vdev_checkpoint_sm);
3880 vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3881 vd->vdev_stat.vs_checkpoint_space;
3882 } else if (error != 0) {
3883 vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3884 "checkpoint space map object from vdev ZAP "
3885 "[error=%d]", error);
3886 return (error);
3887 }
3888 }
3889
3890 /*
3891 * If this is a leaf vdev, load its DTL.
3892 */
3893 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3894 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3895 VDEV_AUX_CORRUPT_DATA);
3896 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3897 "[error=%d]", error);
3898 return (error);
3899 }
3900
3901 uint64_t obsolete_sm_object;
3902 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3903 if (error == 0 && obsolete_sm_object != 0) {
3904 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3905 ASSERT(vd->vdev_asize != 0);
3906 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3907
3908 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3909 obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3910 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3911 VDEV_AUX_CORRUPT_DATA);
3912 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3913 "obsolete spacemap (obj %llu) [error=%d]",
3914 (u_longlong_t)obsolete_sm_object, error);
3915 return (error);
3916 }
3917 } else if (error != 0) {
3918 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3919 "space map object from vdev ZAP [error=%d]", error);
3920 return (error);
3921 }
3922
3923 return (0);
3924 }
3925
3926 /*
3927 * The special vdev case is used for hot spares and l2cache devices. Its
3928 * sole purpose it to set the vdev state for the associated vdev. To do this,
3929 * we make sure that we can open the underlying device, then try to read the
3930 * label, and make sure that the label is sane and that it hasn't been
3931 * repurposed to another pool.
3932 */
3933 int
vdev_validate_aux(vdev_t * vd)3934 vdev_validate_aux(vdev_t *vd)
3935 {
3936 nvlist_t *label;
3937 uint64_t guid, version;
3938 uint64_t state;
3939
3940 if (!vdev_readable(vd))
3941 return (0);
3942
3943 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3944 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3945 VDEV_AUX_CORRUPT_DATA);
3946 return (-1);
3947 }
3948
3949 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3950 !SPA_VERSION_IS_SUPPORTED(version) ||
3951 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3952 guid != vd->vdev_guid ||
3953 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3954 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3955 VDEV_AUX_CORRUPT_DATA);
3956 nvlist_free(label);
3957 return (-1);
3958 }
3959
3960 /*
3961 * We don't actually check the pool state here. If it's in fact in
3962 * use by another pool, we update this fact on the fly when requested.
3963 */
3964 nvlist_free(label);
3965 return (0);
3966 }
3967
3968 static void
vdev_destroy_ms_flush_data(vdev_t * vd,dmu_tx_t * tx)3969 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3970 {
3971 objset_t *mos = spa_meta_objset(vd->vdev_spa);
3972
3973 if (vd->vdev_top_zap == 0)
3974 return;
3975
3976 uint64_t object = 0;
3977 int err = zap_lookup(mos, vd->vdev_top_zap,
3978 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3979 if (err == ENOENT)
3980 return;
3981 VERIFY0(err);
3982
3983 VERIFY0(dmu_object_free(mos, object, tx));
3984 VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3985 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3986 }
3987
3988 /*
3989 * Free the objects used to store this vdev's spacemaps, and the array
3990 * that points to them.
3991 */
3992 void
vdev_destroy_spacemaps(vdev_t * vd,dmu_tx_t * tx)3993 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3994 {
3995 if (vd->vdev_ms_array == 0)
3996 return;
3997
3998 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3999 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
4000 size_t array_bytes = array_count * sizeof (uint64_t);
4001 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
4002 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
4003 array_bytes, smobj_array, 0));
4004
4005 for (uint64_t i = 0; i < array_count; i++) {
4006 uint64_t smobj = smobj_array[i];
4007 if (smobj == 0)
4008 continue;
4009
4010 space_map_free_obj(mos, smobj, tx);
4011 }
4012
4013 kmem_free(smobj_array, array_bytes);
4014 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
4015 vdev_destroy_ms_flush_data(vd, tx);
4016 vd->vdev_ms_array = 0;
4017 }
4018
4019 static void
vdev_remove_empty_log(vdev_t * vd,uint64_t txg)4020 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
4021 {
4022 spa_t *spa = vd->vdev_spa;
4023
4024 ASSERT(vd->vdev_islog);
4025 ASSERT(vd == vd->vdev_top);
4026 ASSERT3U(txg, ==, spa_syncing_txg(spa));
4027
4028 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
4029
4030 vdev_destroy_spacemaps(vd, tx);
4031 if (vd->vdev_top_zap != 0) {
4032 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
4033 vd->vdev_top_zap = 0;
4034 }
4035
4036 dmu_tx_commit(tx);
4037 }
4038
4039 void
vdev_sync_done(vdev_t * vd,uint64_t txg)4040 vdev_sync_done(vdev_t *vd, uint64_t txg)
4041 {
4042 metaslab_t *msp;
4043 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
4044
4045 ASSERT(vdev_is_concrete(vd));
4046
4047 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
4048 != NULL)
4049 metaslab_sync_done(msp, txg);
4050
4051 if (reassess) {
4052 metaslab_sync_reassess(vd->vdev_mg);
4053 if (vd->vdev_log_mg != NULL)
4054 metaslab_sync_reassess(vd->vdev_log_mg);
4055 }
4056 }
4057
4058 void
vdev_sync(vdev_t * vd,uint64_t txg)4059 vdev_sync(vdev_t *vd, uint64_t txg)
4060 {
4061 spa_t *spa = vd->vdev_spa;
4062 vdev_t *lvd;
4063 metaslab_t *msp;
4064
4065 ASSERT3U(txg, ==, spa->spa_syncing_txg);
4066 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
4067 if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
4068 ASSERT(vd->vdev_removing ||
4069 vd->vdev_ops == &vdev_indirect_ops);
4070
4071 vdev_indirect_sync_obsolete(vd, tx);
4072
4073 /*
4074 * If the vdev is indirect, it can't have dirty
4075 * metaslabs or DTLs.
4076 */
4077 if (vd->vdev_ops == &vdev_indirect_ops) {
4078 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
4079 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
4080 dmu_tx_commit(tx);
4081 return;
4082 }
4083 }
4084
4085 ASSERT(vdev_is_concrete(vd));
4086
4087 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
4088 !vd->vdev_removing) {
4089 ASSERT(vd == vd->vdev_top);
4090 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
4091 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
4092 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
4093 ASSERT(vd->vdev_ms_array != 0);
4094 vdev_config_dirty(vd);
4095 }
4096
4097 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
4098 metaslab_sync(msp, txg);
4099 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
4100 }
4101
4102 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
4103 vdev_dtl_sync(lvd, txg);
4104
4105 /*
4106 * If this is an empty log device being removed, destroy the
4107 * metadata associated with it.
4108 */
4109 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
4110 vdev_remove_empty_log(vd, txg);
4111
4112 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
4113 dmu_tx_commit(tx);
4114 }
4115
4116 /*
4117 * Return the amount of space that should be (or was) allocated for the given
4118 * psize (compressed block size) in the given TXG. Note that for expanded
4119 * RAIDZ vdevs, the size allocated for older BP's may be larger. See
4120 * vdev_raidz_asize().
4121 */
4122 uint64_t
vdev_psize_to_asize_txg(vdev_t * vd,uint64_t psize,uint64_t txg)4123 vdev_psize_to_asize_txg(vdev_t *vd, uint64_t psize, uint64_t txg)
4124 {
4125 return (vd->vdev_ops->vdev_op_asize(vd, psize, txg));
4126 }
4127
4128 uint64_t
vdev_psize_to_asize(vdev_t * vd,uint64_t psize)4129 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
4130 {
4131 return (vdev_psize_to_asize_txg(vd, psize, 0));
4132 }
4133
4134 /*
4135 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
4136 * not be opened, and no I/O is attempted.
4137 */
4138 int
vdev_fault(spa_t * spa,uint64_t guid,vdev_aux_t aux)4139 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4140 {
4141 vdev_t *vd, *tvd;
4142
4143 spa_vdev_state_enter(spa, SCL_NONE);
4144
4145 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4146 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4147
4148 if (!vd->vdev_ops->vdev_op_leaf)
4149 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4150
4151 tvd = vd->vdev_top;
4152
4153 /*
4154 * If user did a 'zpool offline -f' then make the fault persist across
4155 * reboots.
4156 */
4157 if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
4158 /*
4159 * There are two kinds of forced faults: temporary and
4160 * persistent. Temporary faults go away at pool import, while
4161 * persistent faults stay set. Both types of faults can be
4162 * cleared with a zpool clear.
4163 *
4164 * We tell if a vdev is persistently faulted by looking at the
4165 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at
4166 * import then it's a persistent fault. Otherwise, it's
4167 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external"
4168 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This
4169 * tells vdev_config_generate() (which gets run later) to set
4170 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
4171 */
4172 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
4173 vd->vdev_tmpoffline = B_FALSE;
4174 aux = VDEV_AUX_EXTERNAL;
4175 } else {
4176 vd->vdev_tmpoffline = B_TRUE;
4177 }
4178
4179 /*
4180 * We don't directly use the aux state here, but if we do a
4181 * vdev_reopen(), we need this value to be present to remember why we
4182 * were faulted.
4183 */
4184 vd->vdev_label_aux = aux;
4185
4186 /*
4187 * Faulted state takes precedence over degraded.
4188 */
4189 vd->vdev_delayed_close = B_FALSE;
4190 vd->vdev_faulted = 1ULL;
4191 vd->vdev_degraded = 0ULL;
4192 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
4193
4194 /*
4195 * If this device has the only valid copy of the data, then
4196 * back off and simply mark the vdev as degraded instead.
4197 */
4198 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
4199 vd->vdev_degraded = 1ULL;
4200 vd->vdev_faulted = 0ULL;
4201
4202 /*
4203 * If we reopen the device and it's not dead, only then do we
4204 * mark it degraded.
4205 */
4206 vdev_reopen(tvd);
4207
4208 if (vdev_readable(vd))
4209 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
4210 }
4211
4212 return (spa_vdev_state_exit(spa, vd, 0));
4213 }
4214
4215 /*
4216 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
4217 * user that something is wrong. The vdev continues to operate as normal as far
4218 * as I/O is concerned.
4219 */
4220 int
vdev_degrade(spa_t * spa,uint64_t guid,vdev_aux_t aux)4221 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4222 {
4223 vdev_t *vd;
4224
4225 spa_vdev_state_enter(spa, SCL_NONE);
4226
4227 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4228 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4229
4230 if (!vd->vdev_ops->vdev_op_leaf)
4231 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4232
4233 /*
4234 * If the vdev is already faulted, then don't do anything.
4235 */
4236 if (vd->vdev_faulted || vd->vdev_degraded)
4237 return (spa_vdev_state_exit(spa, NULL, 0));
4238
4239 vd->vdev_degraded = 1ULL;
4240 if (!vdev_is_dead(vd))
4241 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
4242 aux);
4243
4244 return (spa_vdev_state_exit(spa, vd, 0));
4245 }
4246
4247 int
vdev_remove_wanted(spa_t * spa,uint64_t guid)4248 vdev_remove_wanted(spa_t *spa, uint64_t guid)
4249 {
4250 vdev_t *vd;
4251
4252 spa_vdev_state_enter(spa, SCL_NONE);
4253
4254 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4255 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4256
4257 /*
4258 * If the vdev is already removed, or expanding which can trigger
4259 * repartition add/remove events, then don't do anything.
4260 */
4261 if (vd->vdev_removed || vd->vdev_expanding)
4262 return (spa_vdev_state_exit(spa, NULL, 0));
4263
4264 /*
4265 * Confirm the vdev has been removed, otherwise don't do anything.
4266 */
4267 if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL)))
4268 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST)));
4269
4270 vd->vdev_remove_wanted = B_TRUE;
4271 spa_async_request(spa, SPA_ASYNC_REMOVE);
4272
4273 return (spa_vdev_state_exit(spa, vd, 0));
4274 }
4275
4276
4277 /*
4278 * Online the given vdev.
4279 *
4280 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
4281 * spare device should be detached when the device finishes resilvering.
4282 * Second, the online should be treated like a 'test' online case, so no FMA
4283 * events are generated if the device fails to open.
4284 */
4285 int
vdev_online(spa_t * spa,uint64_t guid,uint64_t flags,vdev_state_t * newstate)4286 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
4287 {
4288 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
4289 boolean_t wasoffline;
4290 vdev_state_t oldstate;
4291
4292 spa_vdev_state_enter(spa, SCL_NONE);
4293
4294 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4295 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4296
4297 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
4298 oldstate = vd->vdev_state;
4299
4300 tvd = vd->vdev_top;
4301 vd->vdev_offline = B_FALSE;
4302 vd->vdev_tmpoffline = B_FALSE;
4303 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
4304 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
4305
4306 /* XXX - L2ARC 1.0 does not support expansion */
4307 if (!vd->vdev_aux) {
4308 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4309 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
4310 spa->spa_autoexpand);
4311 vd->vdev_expansion_time = gethrestime_sec();
4312 }
4313
4314 vdev_reopen(tvd);
4315 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
4316
4317 if (!vd->vdev_aux) {
4318 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4319 pvd->vdev_expanding = B_FALSE;
4320 }
4321
4322 if (newstate)
4323 *newstate = vd->vdev_state;
4324 if ((flags & ZFS_ONLINE_UNSPARE) &&
4325 !vdev_is_dead(vd) && vd->vdev_parent &&
4326 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4327 vd->vdev_parent->vdev_child[0] == vd)
4328 vd->vdev_unspare = B_TRUE;
4329
4330 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
4331
4332 /* XXX - L2ARC 1.0 does not support expansion */
4333 if (vd->vdev_aux)
4334 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
4335 spa->spa_ccw_fail_time = 0;
4336 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4337 }
4338
4339 /* Restart initializing if necessary */
4340 mutex_enter(&vd->vdev_initialize_lock);
4341 if (vdev_writeable(vd) &&
4342 vd->vdev_initialize_thread == NULL &&
4343 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
4344 (void) vdev_initialize(vd);
4345 }
4346 mutex_exit(&vd->vdev_initialize_lock);
4347
4348 /*
4349 * Restart trimming if necessary. We do not restart trimming for cache
4350 * devices here. This is triggered by l2arc_rebuild_vdev()
4351 * asynchronously for the whole device or in l2arc_evict() as it evicts
4352 * space for upcoming writes.
4353 */
4354 mutex_enter(&vd->vdev_trim_lock);
4355 if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
4356 vd->vdev_trim_thread == NULL &&
4357 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
4358 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
4359 vd->vdev_trim_secure);
4360 }
4361 mutex_exit(&vd->vdev_trim_lock);
4362
4363 if (wasoffline ||
4364 (oldstate < VDEV_STATE_DEGRADED &&
4365 vd->vdev_state >= VDEV_STATE_DEGRADED)) {
4366 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
4367
4368 /*
4369 * Asynchronously detach spare vdev if resilver or
4370 * rebuild is not required
4371 */
4372 if (vd->vdev_unspare &&
4373 !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4374 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) &&
4375 !vdev_rebuild_active(tvd))
4376 spa_async_request(spa, SPA_ASYNC_DETACH_SPARE);
4377 }
4378 return (spa_vdev_state_exit(spa, vd, 0));
4379 }
4380
4381 static int
vdev_offline_locked(spa_t * spa,uint64_t guid,uint64_t flags)4382 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
4383 {
4384 vdev_t *vd, *tvd;
4385 int error = 0;
4386 uint64_t generation;
4387 metaslab_group_t *mg;
4388
4389 top:
4390 spa_vdev_state_enter(spa, SCL_ALLOC);
4391
4392 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4393 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4394
4395 if (!vd->vdev_ops->vdev_op_leaf)
4396 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4397
4398 if (vd->vdev_ops == &vdev_draid_spare_ops)
4399 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4400
4401 tvd = vd->vdev_top;
4402 mg = tvd->vdev_mg;
4403 generation = spa->spa_config_generation + 1;
4404
4405 /*
4406 * If the device isn't already offline, try to offline it.
4407 */
4408 if (!vd->vdev_offline) {
4409 /*
4410 * If this device has the only valid copy of some data,
4411 * don't allow it to be offlined. Log devices are always
4412 * expendable.
4413 */
4414 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4415 vdev_dtl_required(vd))
4416 return (spa_vdev_state_exit(spa, NULL,
4417 SET_ERROR(EBUSY)));
4418
4419 /*
4420 * If the top-level is a slog and it has had allocations
4421 * then proceed. We check that the vdev's metaslab group
4422 * is not NULL since it's possible that we may have just
4423 * added this vdev but not yet initialized its metaslabs.
4424 */
4425 if (tvd->vdev_islog && mg != NULL) {
4426 /*
4427 * Prevent any future allocations.
4428 */
4429 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
4430 metaslab_group_passivate(mg);
4431 (void) spa_vdev_state_exit(spa, vd, 0);
4432
4433 error = spa_reset_logs(spa);
4434
4435 /*
4436 * If the log device was successfully reset but has
4437 * checkpointed data, do not offline it.
4438 */
4439 if (error == 0 &&
4440 tvd->vdev_checkpoint_sm != NULL) {
4441 ASSERT3U(space_map_allocated(
4442 tvd->vdev_checkpoint_sm), !=, 0);
4443 error = ZFS_ERR_CHECKPOINT_EXISTS;
4444 }
4445
4446 spa_vdev_state_enter(spa, SCL_ALLOC);
4447
4448 /*
4449 * Check to see if the config has changed.
4450 */
4451 if (error || generation != spa->spa_config_generation) {
4452 metaslab_group_activate(mg);
4453 if (error)
4454 return (spa_vdev_state_exit(spa,
4455 vd, error));
4456 (void) spa_vdev_state_exit(spa, vd, 0);
4457 goto top;
4458 }
4459 ASSERT0(tvd->vdev_stat.vs_alloc);
4460 }
4461
4462 /*
4463 * Offline this device and reopen its top-level vdev.
4464 * If the top-level vdev is a log device then just offline
4465 * it. Otherwise, if this action results in the top-level
4466 * vdev becoming unusable, undo it and fail the request.
4467 */
4468 vd->vdev_offline = B_TRUE;
4469 vdev_reopen(tvd);
4470
4471 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4472 vdev_is_dead(tvd)) {
4473 vd->vdev_offline = B_FALSE;
4474 vdev_reopen(tvd);
4475 return (spa_vdev_state_exit(spa, NULL,
4476 SET_ERROR(EBUSY)));
4477 }
4478
4479 /*
4480 * Add the device back into the metaslab rotor so that
4481 * once we online the device it's open for business.
4482 */
4483 if (tvd->vdev_islog && mg != NULL)
4484 metaslab_group_activate(mg);
4485 }
4486
4487 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4488
4489 return (spa_vdev_state_exit(spa, vd, 0));
4490 }
4491
4492 int
vdev_offline(spa_t * spa,uint64_t guid,uint64_t flags)4493 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4494 {
4495 int error;
4496
4497 mutex_enter(&spa->spa_vdev_top_lock);
4498 error = vdev_offline_locked(spa, guid, flags);
4499 mutex_exit(&spa->spa_vdev_top_lock);
4500
4501 return (error);
4502 }
4503
4504 /*
4505 * Clear the error counts associated with this vdev. Unlike vdev_online() and
4506 * vdev_offline(), we assume the spa config is locked. We also clear all
4507 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
4508 */
4509 void
vdev_clear(spa_t * spa,vdev_t * vd)4510 vdev_clear(spa_t *spa, vdev_t *vd)
4511 {
4512 vdev_t *rvd = spa->spa_root_vdev;
4513
4514 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4515
4516 if (vd == NULL)
4517 vd = rvd;
4518
4519 vd->vdev_stat.vs_read_errors = 0;
4520 vd->vdev_stat.vs_write_errors = 0;
4521 vd->vdev_stat.vs_checksum_errors = 0;
4522 vd->vdev_stat.vs_dio_verify_errors = 0;
4523 vd->vdev_stat.vs_slow_ios = 0;
4524
4525 for (int c = 0; c < vd->vdev_children; c++)
4526 vdev_clear(spa, vd->vdev_child[c]);
4527
4528 /*
4529 * It makes no sense to "clear" an indirect or removed vdev.
4530 */
4531 if (!vdev_is_concrete(vd) || vd->vdev_removed)
4532 return;
4533
4534 /*
4535 * If we're in the FAULTED state or have experienced failed I/O, then
4536 * clear the persistent state and attempt to reopen the device. We
4537 * also mark the vdev config dirty, so that the new faulted state is
4538 * written out to disk.
4539 */
4540 if (vd->vdev_faulted || vd->vdev_degraded ||
4541 !vdev_readable(vd) || !vdev_writeable(vd)) {
4542 /*
4543 * When reopening in response to a clear event, it may be due to
4544 * a fmadm repair request. In this case, if the device is
4545 * still broken, we want to still post the ereport again.
4546 */
4547 vd->vdev_forcefault = B_TRUE;
4548
4549 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4550 vd->vdev_cant_read = B_FALSE;
4551 vd->vdev_cant_write = B_FALSE;
4552 vd->vdev_stat.vs_aux = 0;
4553
4554 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4555
4556 vd->vdev_forcefault = B_FALSE;
4557
4558 if (vd != rvd && vdev_writeable(vd->vdev_top))
4559 vdev_state_dirty(vd->vdev_top);
4560
4561 /* If a resilver isn't required, check if vdevs can be culled */
4562 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4563 !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4564 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4565 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4566
4567 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4568 }
4569
4570 /*
4571 * When clearing a FMA-diagnosed fault, we always want to
4572 * unspare the device, as we assume that the original spare was
4573 * done in response to the FMA fault.
4574 */
4575 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4576 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4577 vd->vdev_parent->vdev_child[0] == vd)
4578 vd->vdev_unspare = B_TRUE;
4579
4580 /* Clear recent error events cache (i.e. duplicate events tracking) */
4581 zfs_ereport_clear(spa, vd);
4582 }
4583
4584 boolean_t
vdev_is_dead(vdev_t * vd)4585 vdev_is_dead(vdev_t *vd)
4586 {
4587 /*
4588 * Holes and missing devices are always considered "dead".
4589 * This simplifies the code since we don't have to check for
4590 * these types of devices in the various code paths.
4591 * Instead we rely on the fact that we skip over dead devices
4592 * before issuing I/O to them.
4593 */
4594 return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4595 vd->vdev_ops == &vdev_hole_ops ||
4596 vd->vdev_ops == &vdev_missing_ops);
4597 }
4598
4599 boolean_t
vdev_readable(vdev_t * vd)4600 vdev_readable(vdev_t *vd)
4601 {
4602 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4603 }
4604
4605 boolean_t
vdev_writeable(vdev_t * vd)4606 vdev_writeable(vdev_t *vd)
4607 {
4608 return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4609 vdev_is_concrete(vd));
4610 }
4611
4612 boolean_t
vdev_allocatable(vdev_t * vd)4613 vdev_allocatable(vdev_t *vd)
4614 {
4615 uint64_t state = vd->vdev_state;
4616
4617 /*
4618 * We currently allow allocations from vdevs which may be in the
4619 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4620 * fails to reopen then we'll catch it later when we're holding
4621 * the proper locks. Note that we have to get the vdev state
4622 * in a local variable because although it changes atomically,
4623 * we're asking two separate questions about it.
4624 */
4625 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4626 !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4627 vd->vdev_mg->mg_initialized);
4628 }
4629
4630 boolean_t
vdev_accessible(vdev_t * vd,zio_t * zio)4631 vdev_accessible(vdev_t *vd, zio_t *zio)
4632 {
4633 ASSERT(zio->io_vd == vd);
4634
4635 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4636 return (B_FALSE);
4637
4638 if (zio->io_type == ZIO_TYPE_READ)
4639 return (!vd->vdev_cant_read);
4640
4641 if (zio->io_type == ZIO_TYPE_WRITE)
4642 return (!vd->vdev_cant_write);
4643
4644 return (B_TRUE);
4645 }
4646
4647 static void
vdev_get_child_stat(vdev_t * cvd,vdev_stat_t * vs,vdev_stat_t * cvs)4648 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4649 {
4650 /*
4651 * Exclude the dRAID spare when aggregating to avoid double counting
4652 * the ops and bytes. These IOs are counted by the physical leaves.
4653 */
4654 if (cvd->vdev_ops == &vdev_draid_spare_ops)
4655 return;
4656
4657 for (int t = 0; t < VS_ZIO_TYPES; t++) {
4658 vs->vs_ops[t] += cvs->vs_ops[t];
4659 vs->vs_bytes[t] += cvs->vs_bytes[t];
4660 }
4661
4662 cvs->vs_scan_removing = cvd->vdev_removing;
4663 }
4664
4665 /*
4666 * Get extended stats
4667 */
4668 static void
vdev_get_child_stat_ex(vdev_t * cvd,vdev_stat_ex_t * vsx,vdev_stat_ex_t * cvsx)4669 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4670 {
4671 (void) cvd;
4672
4673 int t, b;
4674 for (t = 0; t < ZIO_TYPES; t++) {
4675 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4676 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4677
4678 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4679 vsx->vsx_total_histo[t][b] +=
4680 cvsx->vsx_total_histo[t][b];
4681 }
4682 }
4683
4684 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4685 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4686 vsx->vsx_queue_histo[t][b] +=
4687 cvsx->vsx_queue_histo[t][b];
4688 }
4689 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4690 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4691
4692 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4693 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4694
4695 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4696 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4697 }
4698
4699 }
4700
4701 boolean_t
vdev_is_spacemap_addressable(vdev_t * vd)4702 vdev_is_spacemap_addressable(vdev_t *vd)
4703 {
4704 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4705 return (B_TRUE);
4706
4707 /*
4708 * If double-word space map entries are not enabled we assume
4709 * 47 bits of the space map entry are dedicated to the entry's
4710 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4711 * to calculate the maximum address that can be described by a
4712 * space map entry for the given device.
4713 */
4714 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4715
4716 if (shift >= 63) /* detect potential overflow */
4717 return (B_TRUE);
4718
4719 return (vd->vdev_asize < (1ULL << shift));
4720 }
4721
4722 /*
4723 * Get statistics for the given vdev.
4724 */
4725 static void
vdev_get_stats_ex_impl(vdev_t * vd,vdev_stat_t * vs,vdev_stat_ex_t * vsx)4726 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4727 {
4728 int t;
4729 /*
4730 * If we're getting stats on the root vdev, aggregate the I/O counts
4731 * over all top-level vdevs (i.e. the direct children of the root).
4732 */
4733 if (!vd->vdev_ops->vdev_op_leaf) {
4734 if (vs) {
4735 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4736 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4737 }
4738 if (vsx)
4739 memset(vsx, 0, sizeof (*vsx));
4740
4741 for (int c = 0; c < vd->vdev_children; c++) {
4742 vdev_t *cvd = vd->vdev_child[c];
4743 vdev_stat_t *cvs = &cvd->vdev_stat;
4744 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4745
4746 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4747 if (vs)
4748 vdev_get_child_stat(cvd, vs, cvs);
4749 if (vsx)
4750 vdev_get_child_stat_ex(cvd, vsx, cvsx);
4751 }
4752 } else {
4753 /*
4754 * We're a leaf. Just copy our ZIO active queue stats in. The
4755 * other leaf stats are updated in vdev_stat_update().
4756 */
4757 if (!vsx)
4758 return;
4759
4760 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4761
4762 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4763 vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t];
4764 vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t);
4765 }
4766 }
4767 }
4768
4769 void
vdev_get_stats_ex(vdev_t * vd,vdev_stat_t * vs,vdev_stat_ex_t * vsx)4770 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4771 {
4772 vdev_t *tvd = vd->vdev_top;
4773 mutex_enter(&vd->vdev_stat_lock);
4774 if (vs) {
4775 memcpy(vs, &vd->vdev_stat, sizeof (*vs));
4776 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4777 vs->vs_state = vd->vdev_state;
4778 vs->vs_rsize = vdev_get_min_asize(vd);
4779
4780 if (vd->vdev_ops->vdev_op_leaf) {
4781 vs->vs_pspace = vd->vdev_psize;
4782 vs->vs_rsize += VDEV_LABEL_START_SIZE +
4783 VDEV_LABEL_END_SIZE;
4784 /*
4785 * Report initializing progress. Since we don't
4786 * have the initializing locks held, this is only
4787 * an estimate (although a fairly accurate one).
4788 */
4789 vs->vs_initialize_bytes_done =
4790 vd->vdev_initialize_bytes_done;
4791 vs->vs_initialize_bytes_est =
4792 vd->vdev_initialize_bytes_est;
4793 vs->vs_initialize_state = vd->vdev_initialize_state;
4794 vs->vs_initialize_action_time =
4795 vd->vdev_initialize_action_time;
4796
4797 /*
4798 * Report manual TRIM progress. Since we don't have
4799 * the manual TRIM locks held, this is only an
4800 * estimate (although fairly accurate one).
4801 */
4802 vs->vs_trim_notsup = !vd->vdev_has_trim;
4803 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4804 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4805 vs->vs_trim_state = vd->vdev_trim_state;
4806 vs->vs_trim_action_time = vd->vdev_trim_action_time;
4807
4808 /* Set when there is a deferred resilver. */
4809 vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4810 }
4811
4812 /*
4813 * Report expandable space on top-level, non-auxiliary devices
4814 * only. The expandable space is reported in terms of metaslab
4815 * sized units since that determines how much space the pool
4816 * can expand.
4817 */
4818 if (vd->vdev_aux == NULL && tvd != NULL) {
4819 vs->vs_esize = P2ALIGN_TYPED(
4820 vd->vdev_max_asize - vd->vdev_asize,
4821 1ULL << tvd->vdev_ms_shift, uint64_t);
4822 }
4823
4824 vs->vs_configured_ashift = vd->vdev_top != NULL
4825 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4826 vs->vs_logical_ashift = vd->vdev_logical_ashift;
4827 if (vd->vdev_physical_ashift <= ASHIFT_MAX)
4828 vs->vs_physical_ashift = vd->vdev_physical_ashift;
4829 else
4830 vs->vs_physical_ashift = 0;
4831
4832 /*
4833 * Report fragmentation and rebuild progress for top-level,
4834 * non-auxiliary, concrete devices.
4835 */
4836 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4837 vdev_is_concrete(vd)) {
4838 /*
4839 * The vdev fragmentation rating doesn't take into
4840 * account the embedded slog metaslab (vdev_log_mg).
4841 * Since it's only one metaslab, it would have a tiny
4842 * impact on the overall fragmentation.
4843 */
4844 vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4845 vd->vdev_mg->mg_fragmentation : 0;
4846 }
4847 vs->vs_noalloc = MAX(vd->vdev_noalloc,
4848 tvd ? tvd->vdev_noalloc : 0);
4849 }
4850
4851 vdev_get_stats_ex_impl(vd, vs, vsx);
4852 mutex_exit(&vd->vdev_stat_lock);
4853 }
4854
4855 void
vdev_get_stats(vdev_t * vd,vdev_stat_t * vs)4856 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4857 {
4858 return (vdev_get_stats_ex(vd, vs, NULL));
4859 }
4860
4861 void
vdev_clear_stats(vdev_t * vd)4862 vdev_clear_stats(vdev_t *vd)
4863 {
4864 mutex_enter(&vd->vdev_stat_lock);
4865 vd->vdev_stat.vs_space = 0;
4866 vd->vdev_stat.vs_dspace = 0;
4867 vd->vdev_stat.vs_alloc = 0;
4868 mutex_exit(&vd->vdev_stat_lock);
4869 }
4870
4871 void
vdev_scan_stat_init(vdev_t * vd)4872 vdev_scan_stat_init(vdev_t *vd)
4873 {
4874 vdev_stat_t *vs = &vd->vdev_stat;
4875
4876 for (int c = 0; c < vd->vdev_children; c++)
4877 vdev_scan_stat_init(vd->vdev_child[c]);
4878
4879 mutex_enter(&vd->vdev_stat_lock);
4880 vs->vs_scan_processed = 0;
4881 mutex_exit(&vd->vdev_stat_lock);
4882 }
4883
4884 void
vdev_stat_update(zio_t * zio,uint64_t psize)4885 vdev_stat_update(zio_t *zio, uint64_t psize)
4886 {
4887 spa_t *spa = zio->io_spa;
4888 vdev_t *rvd = spa->spa_root_vdev;
4889 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4890 vdev_t *pvd;
4891 uint64_t txg = zio->io_txg;
4892 /* Suppress ASAN false positive */
4893 #ifdef __SANITIZE_ADDRESS__
4894 vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL;
4895 vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL;
4896 #else
4897 vdev_stat_t *vs = &vd->vdev_stat;
4898 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
4899 #endif
4900 zio_type_t type = zio->io_type;
4901 int flags = zio->io_flags;
4902
4903 /*
4904 * If this i/o is a gang leader, it didn't do any actual work.
4905 */
4906 if (zio->io_gang_tree)
4907 return;
4908
4909 if (zio->io_error == 0) {
4910 /*
4911 * If this is a root i/o, don't count it -- we've already
4912 * counted the top-level vdevs, and vdev_get_stats() will
4913 * aggregate them when asked. This reduces contention on
4914 * the root vdev_stat_lock and implicitly handles blocks
4915 * that compress away to holes, for which there is no i/o.
4916 * (Holes never create vdev children, so all the counters
4917 * remain zero, which is what we want.)
4918 *
4919 * Note: this only applies to successful i/o (io_error == 0)
4920 * because unlike i/o counts, errors are not additive.
4921 * When reading a ditto block, for example, failure of
4922 * one top-level vdev does not imply a root-level error.
4923 */
4924 if (vd == rvd)
4925 return;
4926
4927 ASSERT(vd == zio->io_vd);
4928
4929 if (flags & ZIO_FLAG_IO_BYPASS)
4930 return;
4931
4932 mutex_enter(&vd->vdev_stat_lock);
4933
4934 if (flags & ZIO_FLAG_IO_REPAIR) {
4935 /*
4936 * Repair is the result of a resilver issued by the
4937 * scan thread (spa_sync).
4938 */
4939 if (flags & ZIO_FLAG_SCAN_THREAD) {
4940 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
4941 dsl_scan_phys_t *scn_phys = &scn->scn_phys;
4942 uint64_t *processed = &scn_phys->scn_processed;
4943
4944 if (vd->vdev_ops->vdev_op_leaf)
4945 atomic_add_64(processed, psize);
4946 vs->vs_scan_processed += psize;
4947 }
4948
4949 /*
4950 * Repair is the result of a rebuild issued by the
4951 * rebuild thread (vdev_rebuild_thread). To avoid
4952 * double counting repaired bytes the virtual dRAID
4953 * spare vdev is excluded from the processed bytes.
4954 */
4955 if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
4956 vdev_t *tvd = vd->vdev_top;
4957 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
4958 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
4959 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
4960
4961 if (vd->vdev_ops->vdev_op_leaf &&
4962 vd->vdev_ops != &vdev_draid_spare_ops) {
4963 atomic_add_64(rebuilt, psize);
4964 }
4965 vs->vs_rebuild_processed += psize;
4966 }
4967
4968 if (flags & ZIO_FLAG_SELF_HEAL)
4969 vs->vs_self_healed += psize;
4970 }
4971
4972 /*
4973 * The bytes/ops/histograms are recorded at the leaf level and
4974 * aggregated into the higher level vdevs in vdev_get_stats().
4975 */
4976 if (vd->vdev_ops->vdev_op_leaf &&
4977 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4978 zio_type_t vs_type = type;
4979 zio_priority_t priority = zio->io_priority;
4980
4981 /*
4982 * TRIM ops and bytes are reported to user space as
4983 * ZIO_TYPE_FLUSH. This is done to preserve the
4984 * vdev_stat_t structure layout for user space.
4985 */
4986 if (type == ZIO_TYPE_TRIM)
4987 vs_type = ZIO_TYPE_FLUSH;
4988
4989 /*
4990 * Solely for the purposes of 'zpool iostat -lqrw'
4991 * reporting use the priority to categorize the IO.
4992 * Only the following are reported to user space:
4993 *
4994 * ZIO_PRIORITY_SYNC_READ,
4995 * ZIO_PRIORITY_SYNC_WRITE,
4996 * ZIO_PRIORITY_ASYNC_READ,
4997 * ZIO_PRIORITY_ASYNC_WRITE,
4998 * ZIO_PRIORITY_SCRUB,
4999 * ZIO_PRIORITY_TRIM,
5000 * ZIO_PRIORITY_REBUILD.
5001 */
5002 if (priority == ZIO_PRIORITY_INITIALIZING) {
5003 ASSERT3U(type, ==, ZIO_TYPE_WRITE);
5004 priority = ZIO_PRIORITY_ASYNC_WRITE;
5005 } else if (priority == ZIO_PRIORITY_REMOVAL) {
5006 priority = ((type == ZIO_TYPE_WRITE) ?
5007 ZIO_PRIORITY_ASYNC_WRITE :
5008 ZIO_PRIORITY_ASYNC_READ);
5009 }
5010
5011 vs->vs_ops[vs_type]++;
5012 vs->vs_bytes[vs_type] += psize;
5013
5014 if (flags & ZIO_FLAG_DELEGATED) {
5015 vsx->vsx_agg_histo[priority]
5016 [RQ_HISTO(zio->io_size)]++;
5017 } else {
5018 vsx->vsx_ind_histo[priority]
5019 [RQ_HISTO(zio->io_size)]++;
5020 }
5021
5022 if (zio->io_delta && zio->io_delay) {
5023 vsx->vsx_queue_histo[priority]
5024 [L_HISTO(zio->io_delta - zio->io_delay)]++;
5025 vsx->vsx_disk_histo[type]
5026 [L_HISTO(zio->io_delay)]++;
5027 vsx->vsx_total_histo[type]
5028 [L_HISTO(zio->io_delta)]++;
5029 }
5030 }
5031
5032 mutex_exit(&vd->vdev_stat_lock);
5033 return;
5034 }
5035
5036 if (flags & ZIO_FLAG_SPECULATIVE)
5037 return;
5038
5039 /*
5040 * If this is an I/O error that is going to be retried, then ignore the
5041 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
5042 * hard errors, when in reality they can happen for any number of
5043 * innocuous reasons (bus resets, MPxIO link failure, etc).
5044 */
5045 if (zio->io_error == EIO &&
5046 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
5047 return;
5048
5049 /*
5050 * Intent logs writes won't propagate their error to the root
5051 * I/O so don't mark these types of failures as pool-level
5052 * errors.
5053 */
5054 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
5055 return;
5056
5057 if (type == ZIO_TYPE_WRITE && txg != 0 &&
5058 (!(flags & ZIO_FLAG_IO_REPAIR) ||
5059 (flags & ZIO_FLAG_SCAN_THREAD) ||
5060 spa->spa_claiming)) {
5061 /*
5062 * This is either a normal write (not a repair), or it's
5063 * a repair induced by the scrub thread, or it's a repair
5064 * made by zil_claim() during spa_load() in the first txg.
5065 * In the normal case, we commit the DTL change in the same
5066 * txg as the block was born. In the scrub-induced repair
5067 * case, we know that scrubs run in first-pass syncing context,
5068 * so we commit the DTL change in spa_syncing_txg(spa).
5069 * In the zil_claim() case, we commit in spa_first_txg(spa).
5070 *
5071 * We currently do not make DTL entries for failed spontaneous
5072 * self-healing writes triggered by normal (non-scrubbing)
5073 * reads, because we have no transactional context in which to
5074 * do so -- and it's not clear that it'd be desirable anyway.
5075 */
5076 if (vd->vdev_ops->vdev_op_leaf) {
5077 uint64_t commit_txg = txg;
5078 if (flags & ZIO_FLAG_SCAN_THREAD) {
5079 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5080 ASSERT(spa_sync_pass(spa) == 1);
5081 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
5082 commit_txg = spa_syncing_txg(spa);
5083 } else if (spa->spa_claiming) {
5084 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5085 commit_txg = spa_first_txg(spa);
5086 }
5087 ASSERT(commit_txg >= spa_syncing_txg(spa));
5088 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
5089 return;
5090 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
5091 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
5092 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
5093 }
5094 if (vd != rvd)
5095 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
5096 }
5097 }
5098
5099 int64_t
vdev_deflated_space(vdev_t * vd,int64_t space)5100 vdev_deflated_space(vdev_t *vd, int64_t space)
5101 {
5102 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
5103 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
5104
5105 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
5106 }
5107
5108 /*
5109 * Update the in-core space usage stats for this vdev, its metaslab class,
5110 * and the root vdev.
5111 */
5112 void
vdev_space_update(vdev_t * vd,int64_t alloc_delta,int64_t defer_delta,int64_t space_delta)5113 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
5114 int64_t space_delta)
5115 {
5116 (void) defer_delta;
5117 int64_t dspace_delta;
5118 spa_t *spa = vd->vdev_spa;
5119 vdev_t *rvd = spa->spa_root_vdev;
5120
5121 ASSERT(vd == vd->vdev_top);
5122
5123 /*
5124 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
5125 * factor. We must calculate this here and not at the root vdev
5126 * because the root vdev's psize-to-asize is simply the max of its
5127 * children's, thus not accurate enough for us.
5128 */
5129 dspace_delta = vdev_deflated_space(vd, space_delta);
5130
5131 mutex_enter(&vd->vdev_stat_lock);
5132 /* ensure we won't underflow */
5133 if (alloc_delta < 0) {
5134 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
5135 }
5136
5137 vd->vdev_stat.vs_alloc += alloc_delta;
5138 vd->vdev_stat.vs_space += space_delta;
5139 vd->vdev_stat.vs_dspace += dspace_delta;
5140 mutex_exit(&vd->vdev_stat_lock);
5141
5142 /* every class but log contributes to root space stats */
5143 if (vd->vdev_mg != NULL && !vd->vdev_islog) {
5144 ASSERT(!vd->vdev_isl2cache);
5145 mutex_enter(&rvd->vdev_stat_lock);
5146 rvd->vdev_stat.vs_alloc += alloc_delta;
5147 rvd->vdev_stat.vs_space += space_delta;
5148 rvd->vdev_stat.vs_dspace += dspace_delta;
5149 mutex_exit(&rvd->vdev_stat_lock);
5150 }
5151 /* Note: metaslab_class_space_update moved to metaslab_space_update */
5152 }
5153
5154 /*
5155 * Mark a top-level vdev's config as dirty, placing it on the dirty list
5156 * so that it will be written out next time the vdev configuration is synced.
5157 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
5158 */
5159 void
vdev_config_dirty(vdev_t * vd)5160 vdev_config_dirty(vdev_t *vd)
5161 {
5162 spa_t *spa = vd->vdev_spa;
5163 vdev_t *rvd = spa->spa_root_vdev;
5164 int c;
5165
5166 ASSERT(spa_writeable(spa));
5167
5168 /*
5169 * If this is an aux vdev (as with l2cache and spare devices), then we
5170 * update the vdev config manually and set the sync flag.
5171 */
5172 if (vd->vdev_aux != NULL) {
5173 spa_aux_vdev_t *sav = vd->vdev_aux;
5174 nvlist_t **aux;
5175 uint_t naux;
5176
5177 for (c = 0; c < sav->sav_count; c++) {
5178 if (sav->sav_vdevs[c] == vd)
5179 break;
5180 }
5181
5182 if (c == sav->sav_count) {
5183 /*
5184 * We're being removed. There's nothing more to do.
5185 */
5186 ASSERT(sav->sav_sync == B_TRUE);
5187 return;
5188 }
5189
5190 sav->sav_sync = B_TRUE;
5191
5192 if (nvlist_lookup_nvlist_array(sav->sav_config,
5193 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
5194 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
5195 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
5196 }
5197
5198 ASSERT(c < naux);
5199
5200 /*
5201 * Setting the nvlist in the middle if the array is a little
5202 * sketchy, but it will work.
5203 */
5204 nvlist_free(aux[c]);
5205 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
5206
5207 return;
5208 }
5209
5210 /*
5211 * The dirty list is protected by the SCL_CONFIG lock. The caller
5212 * must either hold SCL_CONFIG as writer, or must be the sync thread
5213 * (which holds SCL_CONFIG as reader). There's only one sync thread,
5214 * so this is sufficient to ensure mutual exclusion.
5215 */
5216 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5217 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5218 spa_config_held(spa, SCL_CONFIG, RW_READER)));
5219
5220 if (vd == rvd) {
5221 for (c = 0; c < rvd->vdev_children; c++)
5222 vdev_config_dirty(rvd->vdev_child[c]);
5223 } else {
5224 ASSERT(vd == vd->vdev_top);
5225
5226 if (!list_link_active(&vd->vdev_config_dirty_node) &&
5227 vdev_is_concrete(vd)) {
5228 list_insert_head(&spa->spa_config_dirty_list, vd);
5229 }
5230 }
5231 }
5232
5233 void
vdev_config_clean(vdev_t * vd)5234 vdev_config_clean(vdev_t *vd)
5235 {
5236 spa_t *spa = vd->vdev_spa;
5237
5238 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5239 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5240 spa_config_held(spa, SCL_CONFIG, RW_READER)));
5241
5242 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
5243 list_remove(&spa->spa_config_dirty_list, vd);
5244 }
5245
5246 /*
5247 * Mark a top-level vdev's state as dirty, so that the next pass of
5248 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
5249 * the state changes from larger config changes because they require
5250 * much less locking, and are often needed for administrative actions.
5251 */
5252 void
vdev_state_dirty(vdev_t * vd)5253 vdev_state_dirty(vdev_t *vd)
5254 {
5255 spa_t *spa = vd->vdev_spa;
5256
5257 ASSERT(spa_writeable(spa));
5258 ASSERT(vd == vd->vdev_top);
5259
5260 /*
5261 * The state list is protected by the SCL_STATE lock. The caller
5262 * must either hold SCL_STATE as writer, or must be the sync thread
5263 * (which holds SCL_STATE as reader). There's only one sync thread,
5264 * so this is sufficient to ensure mutual exclusion.
5265 */
5266 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5267 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5268 spa_config_held(spa, SCL_STATE, RW_READER)));
5269
5270 if (!list_link_active(&vd->vdev_state_dirty_node) &&
5271 vdev_is_concrete(vd))
5272 list_insert_head(&spa->spa_state_dirty_list, vd);
5273 }
5274
5275 void
vdev_state_clean(vdev_t * vd)5276 vdev_state_clean(vdev_t *vd)
5277 {
5278 spa_t *spa = vd->vdev_spa;
5279
5280 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5281 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5282 spa_config_held(spa, SCL_STATE, RW_READER)));
5283
5284 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
5285 list_remove(&spa->spa_state_dirty_list, vd);
5286 }
5287
5288 /*
5289 * Propagate vdev state up from children to parent.
5290 */
5291 void
vdev_propagate_state(vdev_t * vd)5292 vdev_propagate_state(vdev_t *vd)
5293 {
5294 spa_t *spa = vd->vdev_spa;
5295 vdev_t *rvd = spa->spa_root_vdev;
5296 int degraded = 0, faulted = 0;
5297 int corrupted = 0;
5298 vdev_t *child;
5299
5300 if (vd->vdev_children > 0) {
5301 for (int c = 0; c < vd->vdev_children; c++) {
5302 child = vd->vdev_child[c];
5303
5304 /*
5305 * Don't factor holes or indirect vdevs into the
5306 * decision.
5307 */
5308 if (!vdev_is_concrete(child))
5309 continue;
5310
5311 if (!vdev_readable(child) ||
5312 (!vdev_writeable(child) && spa_writeable(spa))) {
5313 /*
5314 * Root special: if there is a top-level log
5315 * device, treat the root vdev as if it were
5316 * degraded.
5317 */
5318 if (child->vdev_islog && vd == rvd)
5319 degraded++;
5320 else
5321 faulted++;
5322 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
5323 degraded++;
5324 }
5325
5326 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
5327 corrupted++;
5328 }
5329
5330 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
5331
5332 /*
5333 * Root special: if there is a top-level vdev that cannot be
5334 * opened due to corrupted metadata, then propagate the root
5335 * vdev's aux state as 'corrupt' rather than 'insufficient
5336 * replicas'.
5337 */
5338 if (corrupted && vd == rvd &&
5339 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
5340 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
5341 VDEV_AUX_CORRUPT_DATA);
5342 }
5343
5344 if (vd->vdev_parent)
5345 vdev_propagate_state(vd->vdev_parent);
5346 }
5347
5348 /*
5349 * Set a vdev's state. If this is during an open, we don't update the parent
5350 * state, because we're in the process of opening children depth-first.
5351 * Otherwise, we propagate the change to the parent.
5352 *
5353 * If this routine places a device in a faulted state, an appropriate ereport is
5354 * generated.
5355 */
5356 void
vdev_set_state(vdev_t * vd,boolean_t isopen,vdev_state_t state,vdev_aux_t aux)5357 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
5358 {
5359 uint64_t save_state;
5360 spa_t *spa = vd->vdev_spa;
5361
5362 if (state == vd->vdev_state) {
5363 /*
5364 * Since vdev_offline() code path is already in an offline
5365 * state we can miss a statechange event to OFFLINE. Check
5366 * the previous state to catch this condition.
5367 */
5368 if (vd->vdev_ops->vdev_op_leaf &&
5369 (state == VDEV_STATE_OFFLINE) &&
5370 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
5371 /* post an offline state change */
5372 zfs_post_state_change(spa, vd, vd->vdev_prevstate);
5373 }
5374 vd->vdev_stat.vs_aux = aux;
5375 return;
5376 }
5377
5378 save_state = vd->vdev_state;
5379
5380 vd->vdev_state = state;
5381 vd->vdev_stat.vs_aux = aux;
5382
5383 /*
5384 * If we are setting the vdev state to anything but an open state, then
5385 * always close the underlying device unless the device has requested
5386 * a delayed close (i.e. we're about to remove or fault the device).
5387 * Otherwise, we keep accessible but invalid devices open forever.
5388 * We don't call vdev_close() itself, because that implies some extra
5389 * checks (offline, etc) that we don't want here. This is limited to
5390 * leaf devices, because otherwise closing the device will affect other
5391 * children.
5392 */
5393 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
5394 vd->vdev_ops->vdev_op_leaf)
5395 vd->vdev_ops->vdev_op_close(vd);
5396
5397 if (vd->vdev_removed &&
5398 state == VDEV_STATE_CANT_OPEN &&
5399 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
5400 /*
5401 * If the previous state is set to VDEV_STATE_REMOVED, then this
5402 * device was previously marked removed and someone attempted to
5403 * reopen it. If this failed due to a nonexistent device, then
5404 * keep the device in the REMOVED state. We also let this be if
5405 * it is one of our special test online cases, which is only
5406 * attempting to online the device and shouldn't generate an FMA
5407 * fault.
5408 */
5409 vd->vdev_state = VDEV_STATE_REMOVED;
5410 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
5411 } else if (state == VDEV_STATE_REMOVED) {
5412 vd->vdev_removed = B_TRUE;
5413 } else if (state == VDEV_STATE_CANT_OPEN) {
5414 /*
5415 * If we fail to open a vdev during an import or recovery, we
5416 * mark it as "not available", which signifies that it was
5417 * never there to begin with. Failure to open such a device
5418 * is not considered an error.
5419 */
5420 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
5421 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
5422 vd->vdev_ops->vdev_op_leaf)
5423 vd->vdev_not_present = 1;
5424
5425 /*
5426 * Post the appropriate ereport. If the 'prevstate' field is
5427 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5428 * that this is part of a vdev_reopen(). In this case, we don't
5429 * want to post the ereport if the device was already in the
5430 * CANT_OPEN state beforehand.
5431 *
5432 * If the 'checkremove' flag is set, then this is an attempt to
5433 * online the device in response to an insertion event. If we
5434 * hit this case, then we have detected an insertion event for a
5435 * faulted or offline device that wasn't in the removed state.
5436 * In this scenario, we don't post an ereport because we are
5437 * about to replace the device, or attempt an online with
5438 * vdev_forcefault, which will generate the fault for us.
5439 */
5440 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
5441 !vd->vdev_not_present && !vd->vdev_checkremove &&
5442 vd != spa->spa_root_vdev) {
5443 const char *class;
5444
5445 switch (aux) {
5446 case VDEV_AUX_OPEN_FAILED:
5447 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
5448 break;
5449 case VDEV_AUX_CORRUPT_DATA:
5450 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
5451 break;
5452 case VDEV_AUX_NO_REPLICAS:
5453 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
5454 break;
5455 case VDEV_AUX_BAD_GUID_SUM:
5456 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
5457 break;
5458 case VDEV_AUX_TOO_SMALL:
5459 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
5460 break;
5461 case VDEV_AUX_BAD_LABEL:
5462 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
5463 break;
5464 case VDEV_AUX_BAD_ASHIFT:
5465 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
5466 break;
5467 default:
5468 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
5469 }
5470
5471 (void) zfs_ereport_post(class, spa, vd, NULL, NULL,
5472 save_state);
5473 }
5474
5475 /* Erase any notion of persistent removed state */
5476 vd->vdev_removed = B_FALSE;
5477 } else {
5478 vd->vdev_removed = B_FALSE;
5479 }
5480
5481 /*
5482 * Notify ZED of any significant state-change on a leaf vdev.
5483 *
5484 */
5485 if (vd->vdev_ops->vdev_op_leaf) {
5486 /* preserve original state from a vdev_reopen() */
5487 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
5488 (vd->vdev_prevstate != vd->vdev_state) &&
5489 (save_state <= VDEV_STATE_CLOSED))
5490 save_state = vd->vdev_prevstate;
5491
5492 /* filter out state change due to initial vdev_open */
5493 if (save_state > VDEV_STATE_CLOSED)
5494 zfs_post_state_change(spa, vd, save_state);
5495 }
5496
5497 if (!isopen && vd->vdev_parent)
5498 vdev_propagate_state(vd->vdev_parent);
5499 }
5500
5501 boolean_t
vdev_children_are_offline(vdev_t * vd)5502 vdev_children_are_offline(vdev_t *vd)
5503 {
5504 ASSERT(!vd->vdev_ops->vdev_op_leaf);
5505
5506 for (uint64_t i = 0; i < vd->vdev_children; i++) {
5507 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5508 return (B_FALSE);
5509 }
5510
5511 return (B_TRUE);
5512 }
5513
5514 /*
5515 * Check the vdev configuration to ensure that it's capable of supporting
5516 * a root pool. We do not support partial configuration.
5517 */
5518 boolean_t
vdev_is_bootable(vdev_t * vd)5519 vdev_is_bootable(vdev_t *vd)
5520 {
5521 if (!vd->vdev_ops->vdev_op_leaf) {
5522 const char *vdev_type = vd->vdev_ops->vdev_op_type;
5523
5524 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
5525 return (B_FALSE);
5526 }
5527
5528 for (int c = 0; c < vd->vdev_children; c++) {
5529 if (!vdev_is_bootable(vd->vdev_child[c]))
5530 return (B_FALSE);
5531 }
5532 return (B_TRUE);
5533 }
5534
5535 boolean_t
vdev_is_concrete(vdev_t * vd)5536 vdev_is_concrete(vdev_t *vd)
5537 {
5538 vdev_ops_t *ops = vd->vdev_ops;
5539 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5540 ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5541 return (B_FALSE);
5542 } else {
5543 return (B_TRUE);
5544 }
5545 }
5546
5547 /*
5548 * Determine if a log device has valid content. If the vdev was
5549 * removed or faulted in the MOS config then we know that
5550 * the content on the log device has already been written to the pool.
5551 */
5552 boolean_t
vdev_log_state_valid(vdev_t * vd)5553 vdev_log_state_valid(vdev_t *vd)
5554 {
5555 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5556 !vd->vdev_removed)
5557 return (B_TRUE);
5558
5559 for (int c = 0; c < vd->vdev_children; c++)
5560 if (vdev_log_state_valid(vd->vdev_child[c]))
5561 return (B_TRUE);
5562
5563 return (B_FALSE);
5564 }
5565
5566 /*
5567 * Expand a vdev if possible.
5568 */
5569 void
vdev_expand(vdev_t * vd,uint64_t txg)5570 vdev_expand(vdev_t *vd, uint64_t txg)
5571 {
5572 ASSERT(vd->vdev_top == vd);
5573 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5574 ASSERT(vdev_is_concrete(vd));
5575
5576 vdev_set_deflate_ratio(vd);
5577
5578 if ((vd->vdev_spa->spa_raidz_expand == NULL ||
5579 vd->vdev_spa->spa_raidz_expand->vre_vdev_id != vd->vdev_id) &&
5580 (vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5581 vdev_is_concrete(vd)) {
5582 vdev_metaslab_group_create(vd);
5583 VERIFY(vdev_metaslab_init(vd, txg) == 0);
5584 vdev_config_dirty(vd);
5585 }
5586 }
5587
5588 /*
5589 * Split a vdev.
5590 */
5591 void
vdev_split(vdev_t * vd)5592 vdev_split(vdev_t *vd)
5593 {
5594 vdev_t *cvd, *pvd = vd->vdev_parent;
5595
5596 VERIFY3U(pvd->vdev_children, >, 1);
5597
5598 vdev_remove_child(pvd, vd);
5599 vdev_compact_children(pvd);
5600
5601 ASSERT3P(pvd->vdev_child, !=, NULL);
5602
5603 cvd = pvd->vdev_child[0];
5604 if (pvd->vdev_children == 1) {
5605 vdev_remove_parent(cvd);
5606 cvd->vdev_splitting = B_TRUE;
5607 }
5608 vdev_propagate_state(cvd);
5609 }
5610
5611 void
vdev_deadman(vdev_t * vd,const char * tag)5612 vdev_deadman(vdev_t *vd, const char *tag)
5613 {
5614 for (int c = 0; c < vd->vdev_children; c++) {
5615 vdev_t *cvd = vd->vdev_child[c];
5616
5617 vdev_deadman(cvd, tag);
5618 }
5619
5620 if (vd->vdev_ops->vdev_op_leaf) {
5621 vdev_queue_t *vq = &vd->vdev_queue;
5622
5623 mutex_enter(&vq->vq_lock);
5624 if (vq->vq_active > 0) {
5625 spa_t *spa = vd->vdev_spa;
5626 zio_t *fio;
5627 uint64_t delta;
5628
5629 zfs_dbgmsg("slow vdev: %s has %u active IOs",
5630 vd->vdev_path, vq->vq_active);
5631
5632 /*
5633 * Look at the head of all the pending queues,
5634 * if any I/O has been outstanding for longer than
5635 * the spa_deadman_synctime invoke the deadman logic.
5636 */
5637 fio = list_head(&vq->vq_active_list);
5638 delta = gethrtime() - fio->io_timestamp;
5639 if (delta > spa_deadman_synctime(spa))
5640 zio_deadman(fio, tag);
5641 }
5642 mutex_exit(&vq->vq_lock);
5643 }
5644 }
5645
5646 void
vdev_defer_resilver(vdev_t * vd)5647 vdev_defer_resilver(vdev_t *vd)
5648 {
5649 ASSERT(vd->vdev_ops->vdev_op_leaf);
5650
5651 vd->vdev_resilver_deferred = B_TRUE;
5652 vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5653 }
5654
5655 /*
5656 * Clears the resilver deferred flag on all leaf devs under vd. Returns
5657 * B_TRUE if we have devices that need to be resilvered and are available to
5658 * accept resilver I/Os.
5659 */
5660 boolean_t
vdev_clear_resilver_deferred(vdev_t * vd,dmu_tx_t * tx)5661 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5662 {
5663 boolean_t resilver_needed = B_FALSE;
5664 spa_t *spa = vd->vdev_spa;
5665
5666 for (int c = 0; c < vd->vdev_children; c++) {
5667 vdev_t *cvd = vd->vdev_child[c];
5668 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5669 }
5670
5671 if (vd == spa->spa_root_vdev &&
5672 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5673 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5674 vdev_config_dirty(vd);
5675 spa->spa_resilver_deferred = B_FALSE;
5676 return (resilver_needed);
5677 }
5678
5679 if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5680 !vd->vdev_ops->vdev_op_leaf)
5681 return (resilver_needed);
5682
5683 vd->vdev_resilver_deferred = B_FALSE;
5684
5685 return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5686 vdev_resilver_needed(vd, NULL, NULL));
5687 }
5688
5689 boolean_t
vdev_xlate_is_empty(range_seg64_t * rs)5690 vdev_xlate_is_empty(range_seg64_t *rs)
5691 {
5692 return (rs->rs_start == rs->rs_end);
5693 }
5694
5695 /*
5696 * Translate a logical range to the first contiguous physical range for the
5697 * specified vdev_t. This function is initially called with a leaf vdev and
5698 * will walk each parent vdev until it reaches a top-level vdev. Once the
5699 * top-level is reached the physical range is initialized and the recursive
5700 * function begins to unwind. As it unwinds it calls the parent's vdev
5701 * specific translation function to do the real conversion.
5702 */
5703 void
vdev_xlate(vdev_t * vd,const range_seg64_t * logical_rs,range_seg64_t * physical_rs,range_seg64_t * remain_rs)5704 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
5705 range_seg64_t *physical_rs, range_seg64_t *remain_rs)
5706 {
5707 /*
5708 * Walk up the vdev tree
5709 */
5710 if (vd != vd->vdev_top) {
5711 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5712 remain_rs);
5713 } else {
5714 /*
5715 * We've reached the top-level vdev, initialize the physical
5716 * range to the logical range and set an empty remaining
5717 * range then start to unwind.
5718 */
5719 physical_rs->rs_start = logical_rs->rs_start;
5720 physical_rs->rs_end = logical_rs->rs_end;
5721
5722 remain_rs->rs_start = logical_rs->rs_start;
5723 remain_rs->rs_end = logical_rs->rs_start;
5724
5725 return;
5726 }
5727
5728 vdev_t *pvd = vd->vdev_parent;
5729 ASSERT3P(pvd, !=, NULL);
5730 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5731
5732 /*
5733 * As this recursive function unwinds, translate the logical
5734 * range into its physical and any remaining components by calling
5735 * the vdev specific translate function.
5736 */
5737 range_seg64_t intermediate = { 0 };
5738 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5739
5740 physical_rs->rs_start = intermediate.rs_start;
5741 physical_rs->rs_end = intermediate.rs_end;
5742 }
5743
5744 void
vdev_xlate_walk(vdev_t * vd,const range_seg64_t * logical_rs,vdev_xlate_func_t * func,void * arg)5745 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs,
5746 vdev_xlate_func_t *func, void *arg)
5747 {
5748 range_seg64_t iter_rs = *logical_rs;
5749 range_seg64_t physical_rs;
5750 range_seg64_t remain_rs;
5751
5752 while (!vdev_xlate_is_empty(&iter_rs)) {
5753
5754 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5755
5756 /*
5757 * With raidz and dRAID, it's possible that the logical range
5758 * does not live on this leaf vdev. Only when there is a non-
5759 * zero physical size call the provided function.
5760 */
5761 if (!vdev_xlate_is_empty(&physical_rs))
5762 func(arg, &physical_rs);
5763
5764 iter_rs = remain_rs;
5765 }
5766 }
5767
5768 static char *
vdev_name(vdev_t * vd,char * buf,int buflen)5769 vdev_name(vdev_t *vd, char *buf, int buflen)
5770 {
5771 if (vd->vdev_path == NULL) {
5772 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) {
5773 strlcpy(buf, vd->vdev_spa->spa_name, buflen);
5774 } else if (!vd->vdev_ops->vdev_op_leaf) {
5775 snprintf(buf, buflen, "%s-%llu",
5776 vd->vdev_ops->vdev_op_type,
5777 (u_longlong_t)vd->vdev_id);
5778 }
5779 } else {
5780 strlcpy(buf, vd->vdev_path, buflen);
5781 }
5782 return (buf);
5783 }
5784
5785 /*
5786 * Look at the vdev tree and determine whether any devices are currently being
5787 * replaced.
5788 */
5789 boolean_t
vdev_replace_in_progress(vdev_t * vdev)5790 vdev_replace_in_progress(vdev_t *vdev)
5791 {
5792 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5793
5794 if (vdev->vdev_ops == &vdev_replacing_ops)
5795 return (B_TRUE);
5796
5797 /*
5798 * A 'spare' vdev indicates that we have a replace in progress, unless
5799 * it has exactly two children, and the second, the hot spare, has
5800 * finished being resilvered.
5801 */
5802 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5803 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5804 return (B_TRUE);
5805
5806 for (int i = 0; i < vdev->vdev_children; i++) {
5807 if (vdev_replace_in_progress(vdev->vdev_child[i]))
5808 return (B_TRUE);
5809 }
5810
5811 return (B_FALSE);
5812 }
5813
5814 /*
5815 * Add a (source=src, propname=propval) list to an nvlist.
5816 */
5817 static void
vdev_prop_add_list(nvlist_t * nvl,const char * propname,const char * strval,uint64_t intval,zprop_source_t src)5818 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval,
5819 uint64_t intval, zprop_source_t src)
5820 {
5821 nvlist_t *propval;
5822
5823 propval = fnvlist_alloc();
5824 fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
5825
5826 if (strval != NULL)
5827 fnvlist_add_string(propval, ZPROP_VALUE, strval);
5828 else
5829 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
5830
5831 fnvlist_add_nvlist(nvl, propname, propval);
5832 nvlist_free(propval);
5833 }
5834
5835 static void
vdev_props_set_sync(void * arg,dmu_tx_t * tx)5836 vdev_props_set_sync(void *arg, dmu_tx_t *tx)
5837 {
5838 vdev_t *vd;
5839 nvlist_t *nvp = arg;
5840 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5841 objset_t *mos = spa->spa_meta_objset;
5842 nvpair_t *elem = NULL;
5843 uint64_t vdev_guid;
5844 uint64_t objid;
5845 nvlist_t *nvprops;
5846
5847 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV);
5848 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS);
5849 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE);
5850
5851 /* this vdev could get removed while waiting for this sync task */
5852 if (vd == NULL)
5853 return;
5854
5855 /*
5856 * Set vdev property values in the vdev props mos object.
5857 */
5858 if (vd->vdev_root_zap != 0) {
5859 objid = vd->vdev_root_zap;
5860 } else if (vd->vdev_top_zap != 0) {
5861 objid = vd->vdev_top_zap;
5862 } else if (vd->vdev_leaf_zap != 0) {
5863 objid = vd->vdev_leaf_zap;
5864 } else {
5865 panic("unexpected vdev type");
5866 }
5867
5868 mutex_enter(&spa->spa_props_lock);
5869
5870 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5871 uint64_t intval;
5872 const char *strval;
5873 vdev_prop_t prop;
5874 const char *propname = nvpair_name(elem);
5875 zprop_type_t proptype;
5876
5877 switch (prop = vdev_name_to_prop(propname)) {
5878 case VDEV_PROP_USERPROP:
5879 if (vdev_prop_user(propname)) {
5880 strval = fnvpair_value_string(elem);
5881 if (strlen(strval) == 0) {
5882 /* remove the property if value == "" */
5883 (void) zap_remove(mos, objid, propname,
5884 tx);
5885 } else {
5886 VERIFY0(zap_update(mos, objid, propname,
5887 1, strlen(strval) + 1, strval, tx));
5888 }
5889 spa_history_log_internal(spa, "vdev set", tx,
5890 "vdev_guid=%llu: %s=%s",
5891 (u_longlong_t)vdev_guid, nvpair_name(elem),
5892 strval);
5893 }
5894 break;
5895 default:
5896 /* normalize the property name */
5897 propname = vdev_prop_to_name(prop);
5898 proptype = vdev_prop_get_type(prop);
5899
5900 if (nvpair_type(elem) == DATA_TYPE_STRING) {
5901 ASSERT(proptype == PROP_TYPE_STRING);
5902 strval = fnvpair_value_string(elem);
5903 VERIFY0(zap_update(mos, objid, propname,
5904 1, strlen(strval) + 1, strval, tx));
5905 spa_history_log_internal(spa, "vdev set", tx,
5906 "vdev_guid=%llu: %s=%s",
5907 (u_longlong_t)vdev_guid, nvpair_name(elem),
5908 strval);
5909 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5910 intval = fnvpair_value_uint64(elem);
5911
5912 if (proptype == PROP_TYPE_INDEX) {
5913 const char *unused;
5914 VERIFY0(vdev_prop_index_to_string(
5915 prop, intval, &unused));
5916 }
5917 VERIFY0(zap_update(mos, objid, propname,
5918 sizeof (uint64_t), 1, &intval, tx));
5919 spa_history_log_internal(spa, "vdev set", tx,
5920 "vdev_guid=%llu: %s=%lld",
5921 (u_longlong_t)vdev_guid,
5922 nvpair_name(elem), (longlong_t)intval);
5923 } else {
5924 panic("invalid vdev property type %u",
5925 nvpair_type(elem));
5926 }
5927 }
5928
5929 }
5930
5931 mutex_exit(&spa->spa_props_lock);
5932 }
5933
5934 int
vdev_prop_set(vdev_t * vd,nvlist_t * innvl,nvlist_t * outnvl)5935 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
5936 {
5937 spa_t *spa = vd->vdev_spa;
5938 nvpair_t *elem = NULL;
5939 uint64_t vdev_guid;
5940 nvlist_t *nvprops;
5941 int error = 0;
5942
5943 ASSERT(vd != NULL);
5944
5945 /* Check that vdev has a zap we can use */
5946 if (vd->vdev_root_zap == 0 &&
5947 vd->vdev_top_zap == 0 &&
5948 vd->vdev_leaf_zap == 0)
5949 return (SET_ERROR(EINVAL));
5950
5951 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV,
5952 &vdev_guid) != 0)
5953 return (SET_ERROR(EINVAL));
5954
5955 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS,
5956 &nvprops) != 0)
5957 return (SET_ERROR(EINVAL));
5958
5959 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL)
5960 return (SET_ERROR(EINVAL));
5961
5962 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5963 const char *propname = nvpair_name(elem);
5964 vdev_prop_t prop = vdev_name_to_prop(propname);
5965 uint64_t intval = 0;
5966 const char *strval = NULL;
5967
5968 if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) {
5969 error = EINVAL;
5970 goto end;
5971 }
5972
5973 if (prop != VDEV_PROP_USERPROP && vdev_prop_readonly(prop)) {
5974 error = EROFS;
5975 goto end;
5976 }
5977
5978 /* Special Processing */
5979 switch (prop) {
5980 case VDEV_PROP_PATH:
5981 if (vd->vdev_path == NULL) {
5982 error = EROFS;
5983 break;
5984 }
5985 if (nvpair_value_string(elem, &strval) != 0) {
5986 error = EINVAL;
5987 break;
5988 }
5989 /* New path must start with /dev/ */
5990 if (strncmp(strval, "/dev/", 5)) {
5991 error = EINVAL;
5992 break;
5993 }
5994 error = spa_vdev_setpath(spa, vdev_guid, strval);
5995 break;
5996 case VDEV_PROP_ALLOCATING:
5997 if (nvpair_value_uint64(elem, &intval) != 0) {
5998 error = EINVAL;
5999 break;
6000 }
6001 if (intval != vd->vdev_noalloc)
6002 break;
6003 if (intval == 0)
6004 error = spa_vdev_noalloc(spa, vdev_guid);
6005 else
6006 error = spa_vdev_alloc(spa, vdev_guid);
6007 break;
6008 case VDEV_PROP_FAILFAST:
6009 if (nvpair_value_uint64(elem, &intval) != 0) {
6010 error = EINVAL;
6011 break;
6012 }
6013 vd->vdev_failfast = intval & 1;
6014 break;
6015 case VDEV_PROP_CHECKSUM_N:
6016 if (nvpair_value_uint64(elem, &intval) != 0) {
6017 error = EINVAL;
6018 break;
6019 }
6020 vd->vdev_checksum_n = intval;
6021 break;
6022 case VDEV_PROP_CHECKSUM_T:
6023 if (nvpair_value_uint64(elem, &intval) != 0) {
6024 error = EINVAL;
6025 break;
6026 }
6027 vd->vdev_checksum_t = intval;
6028 break;
6029 case VDEV_PROP_IO_N:
6030 if (nvpair_value_uint64(elem, &intval) != 0) {
6031 error = EINVAL;
6032 break;
6033 }
6034 vd->vdev_io_n = intval;
6035 break;
6036 case VDEV_PROP_IO_T:
6037 if (nvpair_value_uint64(elem, &intval) != 0) {
6038 error = EINVAL;
6039 break;
6040 }
6041 vd->vdev_io_t = intval;
6042 break;
6043 case VDEV_PROP_SLOW_IO_N:
6044 if (nvpair_value_uint64(elem, &intval) != 0) {
6045 error = EINVAL;
6046 break;
6047 }
6048 vd->vdev_slow_io_n = intval;
6049 break;
6050 case VDEV_PROP_SLOW_IO_T:
6051 if (nvpair_value_uint64(elem, &intval) != 0) {
6052 error = EINVAL;
6053 break;
6054 }
6055 vd->vdev_slow_io_t = intval;
6056 break;
6057 default:
6058 /* Most processing is done in vdev_props_set_sync */
6059 break;
6060 }
6061 end:
6062 if (error != 0) {
6063 intval = error;
6064 vdev_prop_add_list(outnvl, propname, strval, intval, 0);
6065 return (error);
6066 }
6067 }
6068
6069 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync,
6070 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED));
6071 }
6072
6073 int
vdev_prop_get(vdev_t * vd,nvlist_t * innvl,nvlist_t * outnvl)6074 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
6075 {
6076 spa_t *spa = vd->vdev_spa;
6077 objset_t *mos = spa->spa_meta_objset;
6078 int err = 0;
6079 uint64_t objid;
6080 uint64_t vdev_guid;
6081 nvpair_t *elem = NULL;
6082 nvlist_t *nvprops = NULL;
6083 uint64_t intval = 0;
6084 char *strval = NULL;
6085 const char *propname = NULL;
6086 vdev_prop_t prop;
6087
6088 ASSERT(vd != NULL);
6089 ASSERT(mos != NULL);
6090
6091 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV,
6092 &vdev_guid) != 0)
6093 return (SET_ERROR(EINVAL));
6094
6095 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops);
6096
6097 if (vd->vdev_root_zap != 0) {
6098 objid = vd->vdev_root_zap;
6099 } else if (vd->vdev_top_zap != 0) {
6100 objid = vd->vdev_top_zap;
6101 } else if (vd->vdev_leaf_zap != 0) {
6102 objid = vd->vdev_leaf_zap;
6103 } else {
6104 return (SET_ERROR(EINVAL));
6105 }
6106 ASSERT(objid != 0);
6107
6108 mutex_enter(&spa->spa_props_lock);
6109
6110 if (nvprops != NULL) {
6111 char namebuf[64] = { 0 };
6112
6113 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
6114 intval = 0;
6115 strval = NULL;
6116 propname = nvpair_name(elem);
6117 prop = vdev_name_to_prop(propname);
6118 zprop_source_t src = ZPROP_SRC_DEFAULT;
6119 uint64_t integer_size, num_integers;
6120
6121 switch (prop) {
6122 /* Special Read-only Properties */
6123 case VDEV_PROP_NAME:
6124 strval = vdev_name(vd, namebuf,
6125 sizeof (namebuf));
6126 if (strval == NULL)
6127 continue;
6128 vdev_prop_add_list(outnvl, propname, strval, 0,
6129 ZPROP_SRC_NONE);
6130 continue;
6131 case VDEV_PROP_CAPACITY:
6132 /* percent used */
6133 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 :
6134 (vd->vdev_stat.vs_alloc * 100 /
6135 vd->vdev_stat.vs_dspace);
6136 vdev_prop_add_list(outnvl, propname, NULL,
6137 intval, ZPROP_SRC_NONE);
6138 continue;
6139 case VDEV_PROP_STATE:
6140 vdev_prop_add_list(outnvl, propname, NULL,
6141 vd->vdev_state, ZPROP_SRC_NONE);
6142 continue;
6143 case VDEV_PROP_GUID:
6144 vdev_prop_add_list(outnvl, propname, NULL,
6145 vd->vdev_guid, ZPROP_SRC_NONE);
6146 continue;
6147 case VDEV_PROP_ASIZE:
6148 vdev_prop_add_list(outnvl, propname, NULL,
6149 vd->vdev_asize, ZPROP_SRC_NONE);
6150 continue;
6151 case VDEV_PROP_PSIZE:
6152 vdev_prop_add_list(outnvl, propname, NULL,
6153 vd->vdev_psize, ZPROP_SRC_NONE);
6154 continue;
6155 case VDEV_PROP_ASHIFT:
6156 vdev_prop_add_list(outnvl, propname, NULL,
6157 vd->vdev_ashift, ZPROP_SRC_NONE);
6158 continue;
6159 case VDEV_PROP_SIZE:
6160 vdev_prop_add_list(outnvl, propname, NULL,
6161 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE);
6162 continue;
6163 case VDEV_PROP_FREE:
6164 vdev_prop_add_list(outnvl, propname, NULL,
6165 vd->vdev_stat.vs_dspace -
6166 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6167 continue;
6168 case VDEV_PROP_ALLOCATED:
6169 vdev_prop_add_list(outnvl, propname, NULL,
6170 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6171 continue;
6172 case VDEV_PROP_EXPANDSZ:
6173 vdev_prop_add_list(outnvl, propname, NULL,
6174 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE);
6175 continue;
6176 case VDEV_PROP_FRAGMENTATION:
6177 vdev_prop_add_list(outnvl, propname, NULL,
6178 vd->vdev_stat.vs_fragmentation,
6179 ZPROP_SRC_NONE);
6180 continue;
6181 case VDEV_PROP_PARITY:
6182 vdev_prop_add_list(outnvl, propname, NULL,
6183 vdev_get_nparity(vd), ZPROP_SRC_NONE);
6184 continue;
6185 case VDEV_PROP_PATH:
6186 if (vd->vdev_path == NULL)
6187 continue;
6188 vdev_prop_add_list(outnvl, propname,
6189 vd->vdev_path, 0, ZPROP_SRC_NONE);
6190 continue;
6191 case VDEV_PROP_DEVID:
6192 if (vd->vdev_devid == NULL)
6193 continue;
6194 vdev_prop_add_list(outnvl, propname,
6195 vd->vdev_devid, 0, ZPROP_SRC_NONE);
6196 continue;
6197 case VDEV_PROP_PHYS_PATH:
6198 if (vd->vdev_physpath == NULL)
6199 continue;
6200 vdev_prop_add_list(outnvl, propname,
6201 vd->vdev_physpath, 0, ZPROP_SRC_NONE);
6202 continue;
6203 case VDEV_PROP_ENC_PATH:
6204 if (vd->vdev_enc_sysfs_path == NULL)
6205 continue;
6206 vdev_prop_add_list(outnvl, propname,
6207 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE);
6208 continue;
6209 case VDEV_PROP_FRU:
6210 if (vd->vdev_fru == NULL)
6211 continue;
6212 vdev_prop_add_list(outnvl, propname,
6213 vd->vdev_fru, 0, ZPROP_SRC_NONE);
6214 continue;
6215 case VDEV_PROP_PARENT:
6216 if (vd->vdev_parent != NULL) {
6217 strval = vdev_name(vd->vdev_parent,
6218 namebuf, sizeof (namebuf));
6219 vdev_prop_add_list(outnvl, propname,
6220 strval, 0, ZPROP_SRC_NONE);
6221 }
6222 continue;
6223 case VDEV_PROP_CHILDREN:
6224 if (vd->vdev_children > 0)
6225 strval = kmem_zalloc(ZAP_MAXVALUELEN,
6226 KM_SLEEP);
6227 for (uint64_t i = 0; i < vd->vdev_children;
6228 i++) {
6229 const char *vname;
6230
6231 vname = vdev_name(vd->vdev_child[i],
6232 namebuf, sizeof (namebuf));
6233 if (vname == NULL)
6234 vname = "(unknown)";
6235 if (strlen(strval) > 0)
6236 strlcat(strval, ",",
6237 ZAP_MAXVALUELEN);
6238 strlcat(strval, vname, ZAP_MAXVALUELEN);
6239 }
6240 if (strval != NULL) {
6241 vdev_prop_add_list(outnvl, propname,
6242 strval, 0, ZPROP_SRC_NONE);
6243 kmem_free(strval, ZAP_MAXVALUELEN);
6244 }
6245 continue;
6246 case VDEV_PROP_NUMCHILDREN:
6247 vdev_prop_add_list(outnvl, propname, NULL,
6248 vd->vdev_children, ZPROP_SRC_NONE);
6249 continue;
6250 case VDEV_PROP_READ_ERRORS:
6251 vdev_prop_add_list(outnvl, propname, NULL,
6252 vd->vdev_stat.vs_read_errors,
6253 ZPROP_SRC_NONE);
6254 continue;
6255 case VDEV_PROP_WRITE_ERRORS:
6256 vdev_prop_add_list(outnvl, propname, NULL,
6257 vd->vdev_stat.vs_write_errors,
6258 ZPROP_SRC_NONE);
6259 continue;
6260 case VDEV_PROP_CHECKSUM_ERRORS:
6261 vdev_prop_add_list(outnvl, propname, NULL,
6262 vd->vdev_stat.vs_checksum_errors,
6263 ZPROP_SRC_NONE);
6264 continue;
6265 case VDEV_PROP_INITIALIZE_ERRORS:
6266 vdev_prop_add_list(outnvl, propname, NULL,
6267 vd->vdev_stat.vs_initialize_errors,
6268 ZPROP_SRC_NONE);
6269 continue;
6270 case VDEV_PROP_TRIM_ERRORS:
6271 vdev_prop_add_list(outnvl, propname, NULL,
6272 vd->vdev_stat.vs_trim_errors,
6273 ZPROP_SRC_NONE);
6274 continue;
6275 case VDEV_PROP_SLOW_IOS:
6276 vdev_prop_add_list(outnvl, propname, NULL,
6277 vd->vdev_stat.vs_slow_ios,
6278 ZPROP_SRC_NONE);
6279 continue;
6280 case VDEV_PROP_OPS_NULL:
6281 vdev_prop_add_list(outnvl, propname, NULL,
6282 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL],
6283 ZPROP_SRC_NONE);
6284 continue;
6285 case VDEV_PROP_OPS_READ:
6286 vdev_prop_add_list(outnvl, propname, NULL,
6287 vd->vdev_stat.vs_ops[ZIO_TYPE_READ],
6288 ZPROP_SRC_NONE);
6289 continue;
6290 case VDEV_PROP_OPS_WRITE:
6291 vdev_prop_add_list(outnvl, propname, NULL,
6292 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE],
6293 ZPROP_SRC_NONE);
6294 continue;
6295 case VDEV_PROP_OPS_FREE:
6296 vdev_prop_add_list(outnvl, propname, NULL,
6297 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE],
6298 ZPROP_SRC_NONE);
6299 continue;
6300 case VDEV_PROP_OPS_CLAIM:
6301 vdev_prop_add_list(outnvl, propname, NULL,
6302 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM],
6303 ZPROP_SRC_NONE);
6304 continue;
6305 case VDEV_PROP_OPS_TRIM:
6306 /*
6307 * TRIM ops and bytes are reported to user
6308 * space as ZIO_TYPE_FLUSH. This is done to
6309 * preserve the vdev_stat_t structure layout
6310 * for user space.
6311 */
6312 vdev_prop_add_list(outnvl, propname, NULL,
6313 vd->vdev_stat.vs_ops[ZIO_TYPE_FLUSH],
6314 ZPROP_SRC_NONE);
6315 continue;
6316 case VDEV_PROP_BYTES_NULL:
6317 vdev_prop_add_list(outnvl, propname, NULL,
6318 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL],
6319 ZPROP_SRC_NONE);
6320 continue;
6321 case VDEV_PROP_BYTES_READ:
6322 vdev_prop_add_list(outnvl, propname, NULL,
6323 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ],
6324 ZPROP_SRC_NONE);
6325 continue;
6326 case VDEV_PROP_BYTES_WRITE:
6327 vdev_prop_add_list(outnvl, propname, NULL,
6328 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE],
6329 ZPROP_SRC_NONE);
6330 continue;
6331 case VDEV_PROP_BYTES_FREE:
6332 vdev_prop_add_list(outnvl, propname, NULL,
6333 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE],
6334 ZPROP_SRC_NONE);
6335 continue;
6336 case VDEV_PROP_BYTES_CLAIM:
6337 vdev_prop_add_list(outnvl, propname, NULL,
6338 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM],
6339 ZPROP_SRC_NONE);
6340 continue;
6341 case VDEV_PROP_BYTES_TRIM:
6342 /*
6343 * TRIM ops and bytes are reported to user
6344 * space as ZIO_TYPE_FLUSH. This is done to
6345 * preserve the vdev_stat_t structure layout
6346 * for user space.
6347 */
6348 vdev_prop_add_list(outnvl, propname, NULL,
6349 vd->vdev_stat.vs_bytes[ZIO_TYPE_FLUSH],
6350 ZPROP_SRC_NONE);
6351 continue;
6352 case VDEV_PROP_REMOVING:
6353 vdev_prop_add_list(outnvl, propname, NULL,
6354 vd->vdev_removing, ZPROP_SRC_NONE);
6355 continue;
6356 case VDEV_PROP_RAIDZ_EXPANDING:
6357 /* Only expose this for raidz */
6358 if (vd->vdev_ops == &vdev_raidz_ops) {
6359 vdev_prop_add_list(outnvl, propname,
6360 NULL, vd->vdev_rz_expanding,
6361 ZPROP_SRC_NONE);
6362 }
6363 continue;
6364 case VDEV_PROP_TRIM_SUPPORT:
6365 /* only valid for leaf vdevs */
6366 if (vd->vdev_ops->vdev_op_leaf) {
6367 vdev_prop_add_list(outnvl, propname,
6368 NULL, vd->vdev_has_trim,
6369 ZPROP_SRC_NONE);
6370 }
6371 continue;
6372 /* Numeric Properites */
6373 case VDEV_PROP_ALLOCATING:
6374 /* Leaf vdevs cannot have this property */
6375 if (vd->vdev_mg == NULL &&
6376 vd->vdev_top != NULL) {
6377 src = ZPROP_SRC_NONE;
6378 intval = ZPROP_BOOLEAN_NA;
6379 } else {
6380 err = vdev_prop_get_int(vd, prop,
6381 &intval);
6382 if (err && err != ENOENT)
6383 break;
6384
6385 if (intval ==
6386 vdev_prop_default_numeric(prop))
6387 src = ZPROP_SRC_DEFAULT;
6388 else
6389 src = ZPROP_SRC_LOCAL;
6390 }
6391
6392 vdev_prop_add_list(outnvl, propname, NULL,
6393 intval, src);
6394 break;
6395 case VDEV_PROP_FAILFAST:
6396 src = ZPROP_SRC_LOCAL;
6397 strval = NULL;
6398
6399 err = zap_lookup(mos, objid, nvpair_name(elem),
6400 sizeof (uint64_t), 1, &intval);
6401 if (err == ENOENT) {
6402 intval = vdev_prop_default_numeric(
6403 prop);
6404 err = 0;
6405 } else if (err) {
6406 break;
6407 }
6408 if (intval == vdev_prop_default_numeric(prop))
6409 src = ZPROP_SRC_DEFAULT;
6410
6411 vdev_prop_add_list(outnvl, propname, strval,
6412 intval, src);
6413 break;
6414 case VDEV_PROP_CHECKSUM_N:
6415 case VDEV_PROP_CHECKSUM_T:
6416 case VDEV_PROP_IO_N:
6417 case VDEV_PROP_IO_T:
6418 case VDEV_PROP_SLOW_IO_N:
6419 case VDEV_PROP_SLOW_IO_T:
6420 err = vdev_prop_get_int(vd, prop, &intval);
6421 if (err && err != ENOENT)
6422 break;
6423
6424 if (intval == vdev_prop_default_numeric(prop))
6425 src = ZPROP_SRC_DEFAULT;
6426 else
6427 src = ZPROP_SRC_LOCAL;
6428
6429 vdev_prop_add_list(outnvl, propname, NULL,
6430 intval, src);
6431 break;
6432 /* Text Properties */
6433 case VDEV_PROP_COMMENT:
6434 /* Exists in the ZAP below */
6435 /* FALLTHRU */
6436 case VDEV_PROP_USERPROP:
6437 /* User Properites */
6438 src = ZPROP_SRC_LOCAL;
6439
6440 err = zap_length(mos, objid, nvpair_name(elem),
6441 &integer_size, &num_integers);
6442 if (err)
6443 break;
6444
6445 switch (integer_size) {
6446 case 8:
6447 /* User properties cannot be integers */
6448 err = EINVAL;
6449 break;
6450 case 1:
6451 /* string property */
6452 strval = kmem_alloc(num_integers,
6453 KM_SLEEP);
6454 err = zap_lookup(mos, objid,
6455 nvpair_name(elem), 1,
6456 num_integers, strval);
6457 if (err) {
6458 kmem_free(strval,
6459 num_integers);
6460 break;
6461 }
6462 vdev_prop_add_list(outnvl, propname,
6463 strval, 0, src);
6464 kmem_free(strval, num_integers);
6465 break;
6466 }
6467 break;
6468 default:
6469 err = ENOENT;
6470 break;
6471 }
6472 if (err)
6473 break;
6474 }
6475 } else {
6476 /*
6477 * Get all properties from the MOS vdev property object.
6478 */
6479 zap_cursor_t zc;
6480 zap_attribute_t *za = zap_attribute_alloc();
6481 for (zap_cursor_init(&zc, mos, objid);
6482 (err = zap_cursor_retrieve(&zc, za)) == 0;
6483 zap_cursor_advance(&zc)) {
6484 intval = 0;
6485 strval = NULL;
6486 zprop_source_t src = ZPROP_SRC_DEFAULT;
6487 propname = za->za_name;
6488
6489 switch (za->za_integer_length) {
6490 case 8:
6491 /* We do not allow integer user properties */
6492 /* This is likely an internal value */
6493 break;
6494 case 1:
6495 /* string property */
6496 strval = kmem_alloc(za->za_num_integers,
6497 KM_SLEEP);
6498 err = zap_lookup(mos, objid, za->za_name, 1,
6499 za->za_num_integers, strval);
6500 if (err) {
6501 kmem_free(strval, za->za_num_integers);
6502 break;
6503 }
6504 vdev_prop_add_list(outnvl, propname, strval, 0,
6505 src);
6506 kmem_free(strval, za->za_num_integers);
6507 break;
6508
6509 default:
6510 break;
6511 }
6512 }
6513 zap_cursor_fini(&zc);
6514 zap_attribute_free(za);
6515 }
6516
6517 mutex_exit(&spa->spa_props_lock);
6518 if (err && err != ENOENT) {
6519 return (err);
6520 }
6521
6522 return (0);
6523 }
6524
6525 EXPORT_SYMBOL(vdev_fault);
6526 EXPORT_SYMBOL(vdev_degrade);
6527 EXPORT_SYMBOL(vdev_online);
6528 EXPORT_SYMBOL(vdev_offline);
6529 EXPORT_SYMBOL(vdev_clear);
6530
6531 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW,
6532 "Target number of metaslabs per top-level vdev");
6533
6534 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW,
6535 "Default lower limit for metaslab size");
6536
6537 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW,
6538 "Default upper limit for metaslab size");
6539
6540 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW,
6541 "Minimum number of metaslabs per top-level vdev");
6542
6543 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW,
6544 "Practical upper limit of total metaslabs per top-level vdev");
6545
6546 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
6547 "Rate limit slow IO (delay) events to this many per second");
6548
6549 ZFS_MODULE_PARAM(zfs, zfs_, deadman_events_per_second, UINT, ZMOD_RW,
6550 "Rate limit hung IO (deadman) events to this many per second");
6551
6552 ZFS_MODULE_PARAM(zfs, zfs_, dio_write_verify_events_per_second, UINT, ZMOD_RW,
6553 "Rate Direct I/O write verify events to this many per second");
6554
6555 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, direct_write_verify, UINT, ZMOD_RW,
6556 "Direct I/O writes will perform for checksum verification before "
6557 "commiting write");
6558
6559 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
6560 "Rate limit checksum events to this many checksum errors per second "
6561 "(do not set below ZED threshold).");
6562
6563 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
6564 "Ignore errors during resilver/scrub");
6565
6566 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
6567 "Bypass vdev_validate()");
6568
6569 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
6570 "Disable cache flushes");
6571
6572 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW,
6573 "Minimum number of metaslabs required to dedicate one for log blocks");
6574
6575 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
6576 param_set_min_auto_ashift, param_get_uint, ZMOD_RW,
6577 "Minimum ashift used when creating new top-level vdevs");
6578
6579 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
6580 param_set_max_auto_ashift, param_get_uint, ZMOD_RW,
6581 "Maximum ashift used when optimizing for logical -> physical sector "
6582 "size on new top-level vdevs");
6583