1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 * Copyright 2017 Joyent, Inc. 29 * Copyright (c) 2017, Intel Corporation. 30 * Copyright (c) 2019, Datto Inc. All rights reserved. 31 * Copyright (c) 2021, Klara Inc. 32 * Copyright [2021] Hewlett Packard Enterprise Development LP 33 */ 34 35 #include <sys/zfs_context.h> 36 #include <sys/fm/fs/zfs.h> 37 #include <sys/spa.h> 38 #include <sys/spa_impl.h> 39 #include <sys/bpobj.h> 40 #include <sys/dmu.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_dir.h> 43 #include <sys/vdev_impl.h> 44 #include <sys/vdev_rebuild.h> 45 #include <sys/vdev_draid.h> 46 #include <sys/uberblock_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/space_map.h> 50 #include <sys/space_reftree.h> 51 #include <sys/zio.h> 52 #include <sys/zap.h> 53 #include <sys/fs/zfs.h> 54 #include <sys/arc.h> 55 #include <sys/zil.h> 56 #include <sys/dsl_scan.h> 57 #include <sys/vdev_raidz.h> 58 #include <sys/abd.h> 59 #include <sys/vdev_initialize.h> 60 #include <sys/vdev_trim.h> 61 #include <sys/zvol.h> 62 #include <sys/zfs_ratelimit.h> 63 #include "zfs_prop.h" 64 65 /* 66 * One metaslab from each (normal-class) vdev is used by the ZIL. These are 67 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are 68 * part of the spa_embedded_log_class. The metaslab with the most free space 69 * in each vdev is selected for this purpose when the pool is opened (or a 70 * vdev is added). See vdev_metaslab_init(). 71 * 72 * Log blocks can be allocated from the following locations. Each one is tried 73 * in order until the allocation succeeds: 74 * 1. dedicated log vdevs, aka "slog" (spa_log_class) 75 * 2. embedded slog metaslabs (spa_embedded_log_class) 76 * 3. other metaslabs in normal vdevs (spa_normal_class) 77 * 78 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer 79 * than this number of metaslabs in the vdev. This ensures that we don't set 80 * aside an unreasonable amount of space for the ZIL. If set to less than 81 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced 82 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab. 83 */ 84 static int zfs_embedded_slog_min_ms = 64; 85 86 /* default target for number of metaslabs per top-level vdev */ 87 static int zfs_vdev_default_ms_count = 200; 88 89 /* minimum number of metaslabs per top-level vdev */ 90 static int zfs_vdev_min_ms_count = 16; 91 92 /* practical upper limit of total metaslabs per top-level vdev */ 93 static int zfs_vdev_ms_count_limit = 1ULL << 17; 94 95 /* lower limit for metaslab size (512M) */ 96 static int zfs_vdev_default_ms_shift = 29; 97 98 /* upper limit for metaslab size (16G) */ 99 static const int zfs_vdev_max_ms_shift = 34; 100 101 int vdev_validate_skip = B_FALSE; 102 103 /* 104 * Since the DTL space map of a vdev is not expected to have a lot of 105 * entries, we default its block size to 4K. 106 */ 107 int zfs_vdev_dtl_sm_blksz = (1 << 12); 108 109 /* 110 * Rate limit slow IO (delay) events to this many per second. 111 */ 112 static unsigned int zfs_slow_io_events_per_second = 20; 113 114 /* 115 * Rate limit checksum events after this many checksum errors per second. 116 */ 117 static unsigned int zfs_checksum_events_per_second = 20; 118 119 /* 120 * Ignore errors during scrub/resilver. Allows to work around resilver 121 * upon import when there are pool errors. 122 */ 123 static int zfs_scan_ignore_errors = 0; 124 125 /* 126 * vdev-wide space maps that have lots of entries written to them at 127 * the end of each transaction can benefit from a higher I/O bandwidth 128 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. 129 */ 130 int zfs_vdev_standard_sm_blksz = (1 << 17); 131 132 /* 133 * Tunable parameter for debugging or performance analysis. Setting this 134 * will cause pool corruption on power loss if a volatile out-of-order 135 * write cache is enabled. 136 */ 137 int zfs_nocacheflush = 0; 138 139 uint64_t zfs_vdev_max_auto_ashift = ASHIFT_MAX; 140 uint64_t zfs_vdev_min_auto_ashift = ASHIFT_MIN; 141 142 void 143 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) 144 { 145 va_list adx; 146 char buf[256]; 147 148 va_start(adx, fmt); 149 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 150 va_end(adx); 151 152 if (vd->vdev_path != NULL) { 153 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, 154 vd->vdev_path, buf); 155 } else { 156 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", 157 vd->vdev_ops->vdev_op_type, 158 (u_longlong_t)vd->vdev_id, 159 (u_longlong_t)vd->vdev_guid, buf); 160 } 161 } 162 163 void 164 vdev_dbgmsg_print_tree(vdev_t *vd, int indent) 165 { 166 char state[20]; 167 168 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { 169 zfs_dbgmsg("%*svdev %llu: %s", indent, "", 170 (u_longlong_t)vd->vdev_id, 171 vd->vdev_ops->vdev_op_type); 172 return; 173 } 174 175 switch (vd->vdev_state) { 176 case VDEV_STATE_UNKNOWN: 177 (void) snprintf(state, sizeof (state), "unknown"); 178 break; 179 case VDEV_STATE_CLOSED: 180 (void) snprintf(state, sizeof (state), "closed"); 181 break; 182 case VDEV_STATE_OFFLINE: 183 (void) snprintf(state, sizeof (state), "offline"); 184 break; 185 case VDEV_STATE_REMOVED: 186 (void) snprintf(state, sizeof (state), "removed"); 187 break; 188 case VDEV_STATE_CANT_OPEN: 189 (void) snprintf(state, sizeof (state), "can't open"); 190 break; 191 case VDEV_STATE_FAULTED: 192 (void) snprintf(state, sizeof (state), "faulted"); 193 break; 194 case VDEV_STATE_DEGRADED: 195 (void) snprintf(state, sizeof (state), "degraded"); 196 break; 197 case VDEV_STATE_HEALTHY: 198 (void) snprintf(state, sizeof (state), "healthy"); 199 break; 200 default: 201 (void) snprintf(state, sizeof (state), "<state %u>", 202 (uint_t)vd->vdev_state); 203 } 204 205 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, 206 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, 207 vd->vdev_islog ? " (log)" : "", 208 (u_longlong_t)vd->vdev_guid, 209 vd->vdev_path ? vd->vdev_path : "N/A", state); 210 211 for (uint64_t i = 0; i < vd->vdev_children; i++) 212 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); 213 } 214 215 /* 216 * Virtual device management. 217 */ 218 219 static const vdev_ops_t *const vdev_ops_table[] = { 220 &vdev_root_ops, 221 &vdev_raidz_ops, 222 &vdev_draid_ops, 223 &vdev_draid_spare_ops, 224 &vdev_mirror_ops, 225 &vdev_replacing_ops, 226 &vdev_spare_ops, 227 &vdev_disk_ops, 228 &vdev_file_ops, 229 &vdev_missing_ops, 230 &vdev_hole_ops, 231 &vdev_indirect_ops, 232 NULL 233 }; 234 235 /* 236 * Given a vdev type, return the appropriate ops vector. 237 */ 238 static vdev_ops_t * 239 vdev_getops(const char *type) 240 { 241 const vdev_ops_t *ops, *const *opspp; 242 243 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 244 if (strcmp(ops->vdev_op_type, type) == 0) 245 break; 246 247 return (ops); 248 } 249 250 /* 251 * Given a vdev and a metaslab class, find which metaslab group we're 252 * interested in. All vdevs may belong to two different metaslab classes. 253 * Dedicated slog devices use only the primary metaslab group, rather than a 254 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL. 255 */ 256 metaslab_group_t * 257 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc) 258 { 259 if (mc == spa_embedded_log_class(vd->vdev_spa) && 260 vd->vdev_log_mg != NULL) 261 return (vd->vdev_log_mg); 262 else 263 return (vd->vdev_mg); 264 } 265 266 void 267 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 268 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 269 { 270 (void) vd, (void) remain_rs; 271 272 physical_rs->rs_start = logical_rs->rs_start; 273 physical_rs->rs_end = logical_rs->rs_end; 274 } 275 276 /* 277 * Derive the enumerated allocation bias from string input. 278 * String origin is either the per-vdev zap or zpool(8). 279 */ 280 static vdev_alloc_bias_t 281 vdev_derive_alloc_bias(const char *bias) 282 { 283 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 284 285 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0) 286 alloc_bias = VDEV_BIAS_LOG; 287 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) 288 alloc_bias = VDEV_BIAS_SPECIAL; 289 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) 290 alloc_bias = VDEV_BIAS_DEDUP; 291 292 return (alloc_bias); 293 } 294 295 /* 296 * Default asize function: return the MAX of psize with the asize of 297 * all children. This is what's used by anything other than RAID-Z. 298 */ 299 uint64_t 300 vdev_default_asize(vdev_t *vd, uint64_t psize) 301 { 302 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 303 uint64_t csize; 304 305 for (int c = 0; c < vd->vdev_children; c++) { 306 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 307 asize = MAX(asize, csize); 308 } 309 310 return (asize); 311 } 312 313 uint64_t 314 vdev_default_min_asize(vdev_t *vd) 315 { 316 return (vd->vdev_min_asize); 317 } 318 319 /* 320 * Get the minimum allocatable size. We define the allocatable size as 321 * the vdev's asize rounded to the nearest metaslab. This allows us to 322 * replace or attach devices which don't have the same physical size but 323 * can still satisfy the same number of allocations. 324 */ 325 uint64_t 326 vdev_get_min_asize(vdev_t *vd) 327 { 328 vdev_t *pvd = vd->vdev_parent; 329 330 /* 331 * If our parent is NULL (inactive spare or cache) or is the root, 332 * just return our own asize. 333 */ 334 if (pvd == NULL) 335 return (vd->vdev_asize); 336 337 /* 338 * The top-level vdev just returns the allocatable size rounded 339 * to the nearest metaslab. 340 */ 341 if (vd == vd->vdev_top) 342 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 343 344 return (pvd->vdev_ops->vdev_op_min_asize(pvd)); 345 } 346 347 void 348 vdev_set_min_asize(vdev_t *vd) 349 { 350 vd->vdev_min_asize = vdev_get_min_asize(vd); 351 352 for (int c = 0; c < vd->vdev_children; c++) 353 vdev_set_min_asize(vd->vdev_child[c]); 354 } 355 356 /* 357 * Get the minimal allocation size for the top-level vdev. 358 */ 359 uint64_t 360 vdev_get_min_alloc(vdev_t *vd) 361 { 362 uint64_t min_alloc = 1ULL << vd->vdev_ashift; 363 364 if (vd->vdev_ops->vdev_op_min_alloc != NULL) 365 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd); 366 367 return (min_alloc); 368 } 369 370 /* 371 * Get the parity level for a top-level vdev. 372 */ 373 uint64_t 374 vdev_get_nparity(vdev_t *vd) 375 { 376 uint64_t nparity = 0; 377 378 if (vd->vdev_ops->vdev_op_nparity != NULL) 379 nparity = vd->vdev_ops->vdev_op_nparity(vd); 380 381 return (nparity); 382 } 383 384 /* 385 * Get the number of data disks for a top-level vdev. 386 */ 387 uint64_t 388 vdev_get_ndisks(vdev_t *vd) 389 { 390 uint64_t ndisks = 1; 391 392 if (vd->vdev_ops->vdev_op_ndisks != NULL) 393 ndisks = vd->vdev_ops->vdev_op_ndisks(vd); 394 395 return (ndisks); 396 } 397 398 vdev_t * 399 vdev_lookup_top(spa_t *spa, uint64_t vdev) 400 { 401 vdev_t *rvd = spa->spa_root_vdev; 402 403 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 404 405 if (vdev < rvd->vdev_children) { 406 ASSERT(rvd->vdev_child[vdev] != NULL); 407 return (rvd->vdev_child[vdev]); 408 } 409 410 return (NULL); 411 } 412 413 vdev_t * 414 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 415 { 416 vdev_t *mvd; 417 418 if (vd->vdev_guid == guid) 419 return (vd); 420 421 for (int c = 0; c < vd->vdev_children; c++) 422 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 423 NULL) 424 return (mvd); 425 426 return (NULL); 427 } 428 429 static int 430 vdev_count_leaves_impl(vdev_t *vd) 431 { 432 int n = 0; 433 434 if (vd->vdev_ops->vdev_op_leaf) 435 return (1); 436 437 for (int c = 0; c < vd->vdev_children; c++) 438 n += vdev_count_leaves_impl(vd->vdev_child[c]); 439 440 return (n); 441 } 442 443 int 444 vdev_count_leaves(spa_t *spa) 445 { 446 int rc; 447 448 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 449 rc = vdev_count_leaves_impl(spa->spa_root_vdev); 450 spa_config_exit(spa, SCL_VDEV, FTAG); 451 452 return (rc); 453 } 454 455 void 456 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 457 { 458 size_t oldsize, newsize; 459 uint64_t id = cvd->vdev_id; 460 vdev_t **newchild; 461 462 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 463 ASSERT(cvd->vdev_parent == NULL); 464 465 cvd->vdev_parent = pvd; 466 467 if (pvd == NULL) 468 return; 469 470 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 471 472 oldsize = pvd->vdev_children * sizeof (vdev_t *); 473 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 474 newsize = pvd->vdev_children * sizeof (vdev_t *); 475 476 newchild = kmem_alloc(newsize, KM_SLEEP); 477 if (pvd->vdev_child != NULL) { 478 memcpy(newchild, pvd->vdev_child, oldsize); 479 kmem_free(pvd->vdev_child, oldsize); 480 } 481 482 pvd->vdev_child = newchild; 483 pvd->vdev_child[id] = cvd; 484 485 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 486 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 487 488 /* 489 * Walk up all ancestors to update guid sum. 490 */ 491 for (; pvd != NULL; pvd = pvd->vdev_parent) 492 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 493 494 if (cvd->vdev_ops->vdev_op_leaf) { 495 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd); 496 cvd->vdev_spa->spa_leaf_list_gen++; 497 } 498 } 499 500 void 501 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 502 { 503 int c; 504 uint_t id = cvd->vdev_id; 505 506 ASSERT(cvd->vdev_parent == pvd); 507 508 if (pvd == NULL) 509 return; 510 511 ASSERT(id < pvd->vdev_children); 512 ASSERT(pvd->vdev_child[id] == cvd); 513 514 pvd->vdev_child[id] = NULL; 515 cvd->vdev_parent = NULL; 516 517 for (c = 0; c < pvd->vdev_children; c++) 518 if (pvd->vdev_child[c]) 519 break; 520 521 if (c == pvd->vdev_children) { 522 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 523 pvd->vdev_child = NULL; 524 pvd->vdev_children = 0; 525 } 526 527 if (cvd->vdev_ops->vdev_op_leaf) { 528 spa_t *spa = cvd->vdev_spa; 529 list_remove(&spa->spa_leaf_list, cvd); 530 spa->spa_leaf_list_gen++; 531 } 532 533 /* 534 * Walk up all ancestors to update guid sum. 535 */ 536 for (; pvd != NULL; pvd = pvd->vdev_parent) 537 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 538 } 539 540 /* 541 * Remove any holes in the child array. 542 */ 543 void 544 vdev_compact_children(vdev_t *pvd) 545 { 546 vdev_t **newchild, *cvd; 547 int oldc = pvd->vdev_children; 548 int newc; 549 550 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 551 552 if (oldc == 0) 553 return; 554 555 for (int c = newc = 0; c < oldc; c++) 556 if (pvd->vdev_child[c]) 557 newc++; 558 559 if (newc > 0) { 560 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP); 561 562 for (int c = newc = 0; c < oldc; c++) { 563 if ((cvd = pvd->vdev_child[c]) != NULL) { 564 newchild[newc] = cvd; 565 cvd->vdev_id = newc++; 566 } 567 } 568 } else { 569 newchild = NULL; 570 } 571 572 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 573 pvd->vdev_child = newchild; 574 pvd->vdev_children = newc; 575 } 576 577 /* 578 * Allocate and minimally initialize a vdev_t. 579 */ 580 vdev_t * 581 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 582 { 583 vdev_t *vd; 584 vdev_indirect_config_t *vic; 585 586 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 587 vic = &vd->vdev_indirect_config; 588 589 if (spa->spa_root_vdev == NULL) { 590 ASSERT(ops == &vdev_root_ops); 591 spa->spa_root_vdev = vd; 592 spa->spa_load_guid = spa_generate_guid(NULL); 593 } 594 595 if (guid == 0 && ops != &vdev_hole_ops) { 596 if (spa->spa_root_vdev == vd) { 597 /* 598 * The root vdev's guid will also be the pool guid, 599 * which must be unique among all pools. 600 */ 601 guid = spa_generate_guid(NULL); 602 } else { 603 /* 604 * Any other vdev's guid must be unique within the pool. 605 */ 606 guid = spa_generate_guid(spa); 607 } 608 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 609 } 610 611 vd->vdev_spa = spa; 612 vd->vdev_id = id; 613 vd->vdev_guid = guid; 614 vd->vdev_guid_sum = guid; 615 vd->vdev_ops = ops; 616 vd->vdev_state = VDEV_STATE_CLOSED; 617 vd->vdev_ishole = (ops == &vdev_hole_ops); 618 vic->vic_prev_indirect_vdev = UINT64_MAX; 619 620 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); 621 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); 622 vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL, 623 0, 0); 624 625 /* 626 * Initialize rate limit structs for events. We rate limit ZIO delay 627 * and checksum events so that we don't overwhelm ZED with thousands 628 * of events when a disk is acting up. 629 */ 630 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second, 631 1); 632 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_slow_io_events_per_second, 633 1); 634 zfs_ratelimit_init(&vd->vdev_checksum_rl, 635 &zfs_checksum_events_per_second, 1); 636 637 list_link_init(&vd->vdev_config_dirty_node); 638 list_link_init(&vd->vdev_state_dirty_node); 639 list_link_init(&vd->vdev_initialize_node); 640 list_link_init(&vd->vdev_leaf_node); 641 list_link_init(&vd->vdev_trim_node); 642 643 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL); 644 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 645 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 646 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL); 647 648 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); 649 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); 650 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); 651 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); 652 653 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL); 654 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL); 655 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL); 656 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL); 657 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL); 658 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL); 659 660 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL); 661 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL); 662 663 for (int t = 0; t < DTL_TYPES; t++) { 664 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 665 0); 666 } 667 668 txg_list_create(&vd->vdev_ms_list, spa, 669 offsetof(struct metaslab, ms_txg_node)); 670 txg_list_create(&vd->vdev_dtl_list, spa, 671 offsetof(struct vdev, vdev_dtl_node)); 672 vd->vdev_stat.vs_timestamp = gethrtime(); 673 vdev_queue_init(vd); 674 vdev_cache_init(vd); 675 676 return (vd); 677 } 678 679 /* 680 * Allocate a new vdev. The 'alloctype' is used to control whether we are 681 * creating a new vdev or loading an existing one - the behavior is slightly 682 * different for each case. 683 */ 684 int 685 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 686 int alloctype) 687 { 688 vdev_ops_t *ops; 689 char *type; 690 uint64_t guid = 0, islog; 691 vdev_t *vd; 692 vdev_indirect_config_t *vic; 693 char *tmp = NULL; 694 int rc; 695 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 696 boolean_t top_level = (parent && !parent->vdev_parent); 697 698 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 699 700 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 701 return (SET_ERROR(EINVAL)); 702 703 if ((ops = vdev_getops(type)) == NULL) 704 return (SET_ERROR(EINVAL)); 705 706 /* 707 * If this is a load, get the vdev guid from the nvlist. 708 * Otherwise, vdev_alloc_common() will generate one for us. 709 */ 710 if (alloctype == VDEV_ALLOC_LOAD) { 711 uint64_t label_id; 712 713 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 714 label_id != id) 715 return (SET_ERROR(EINVAL)); 716 717 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 718 return (SET_ERROR(EINVAL)); 719 } else if (alloctype == VDEV_ALLOC_SPARE) { 720 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 721 return (SET_ERROR(EINVAL)); 722 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 723 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 724 return (SET_ERROR(EINVAL)); 725 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 726 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 727 return (SET_ERROR(EINVAL)); 728 } 729 730 /* 731 * The first allocated vdev must be of type 'root'. 732 */ 733 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 734 return (SET_ERROR(EINVAL)); 735 736 /* 737 * Determine whether we're a log vdev. 738 */ 739 islog = 0; 740 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 741 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 742 return (SET_ERROR(ENOTSUP)); 743 744 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 745 return (SET_ERROR(ENOTSUP)); 746 747 if (top_level && alloctype == VDEV_ALLOC_ADD) { 748 char *bias; 749 750 /* 751 * If creating a top-level vdev, check for allocation 752 * classes input. 753 */ 754 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 755 &bias) == 0) { 756 alloc_bias = vdev_derive_alloc_bias(bias); 757 758 /* spa_vdev_add() expects feature to be enabled */ 759 if (spa->spa_load_state != SPA_LOAD_CREATE && 760 !spa_feature_is_enabled(spa, 761 SPA_FEATURE_ALLOCATION_CLASSES)) { 762 return (SET_ERROR(ENOTSUP)); 763 } 764 } 765 766 /* spa_vdev_add() expects feature to be enabled */ 767 if (ops == &vdev_draid_ops && 768 spa->spa_load_state != SPA_LOAD_CREATE && 769 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) { 770 return (SET_ERROR(ENOTSUP)); 771 } 772 } 773 774 /* 775 * Initialize the vdev specific data. This is done before calling 776 * vdev_alloc_common() since it may fail and this simplifies the 777 * error reporting and cleanup code paths. 778 */ 779 void *tsd = NULL; 780 if (ops->vdev_op_init != NULL) { 781 rc = ops->vdev_op_init(spa, nv, &tsd); 782 if (rc != 0) { 783 return (rc); 784 } 785 } 786 787 vd = vdev_alloc_common(spa, id, guid, ops); 788 vd->vdev_tsd = tsd; 789 vd->vdev_islog = islog; 790 791 if (top_level && alloc_bias != VDEV_BIAS_NONE) 792 vd->vdev_alloc_bias = alloc_bias; 793 794 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 795 vd->vdev_path = spa_strdup(vd->vdev_path); 796 797 /* 798 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a 799 * fault on a vdev and want it to persist across imports (like with 800 * zpool offline -f). 801 */ 802 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp); 803 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) { 804 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 805 vd->vdev_faulted = 1; 806 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 807 } 808 809 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 810 vd->vdev_devid = spa_strdup(vd->vdev_devid); 811 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 812 &vd->vdev_physpath) == 0) 813 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 814 815 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 816 &vd->vdev_enc_sysfs_path) == 0) 817 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path); 818 819 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 820 vd->vdev_fru = spa_strdup(vd->vdev_fru); 821 822 /* 823 * Set the whole_disk property. If it's not specified, leave the value 824 * as -1. 825 */ 826 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 827 &vd->vdev_wholedisk) != 0) 828 vd->vdev_wholedisk = -1ULL; 829 830 vic = &vd->vdev_indirect_config; 831 832 ASSERT0(vic->vic_mapping_object); 833 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 834 &vic->vic_mapping_object); 835 ASSERT0(vic->vic_births_object); 836 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 837 &vic->vic_births_object); 838 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); 839 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 840 &vic->vic_prev_indirect_vdev); 841 842 /* 843 * Look for the 'not present' flag. This will only be set if the device 844 * was not present at the time of import. 845 */ 846 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 847 &vd->vdev_not_present); 848 849 /* 850 * Get the alignment requirement. 851 */ 852 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 853 854 /* 855 * Retrieve the vdev creation time. 856 */ 857 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 858 &vd->vdev_crtxg); 859 860 /* 861 * If we're a top-level vdev, try to load the allocation parameters. 862 */ 863 if (top_level && 864 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 865 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 866 &vd->vdev_ms_array); 867 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 868 &vd->vdev_ms_shift); 869 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 870 &vd->vdev_asize); 871 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING, 872 &vd->vdev_noalloc); 873 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 874 &vd->vdev_removing); 875 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 876 &vd->vdev_top_zap); 877 } else { 878 ASSERT0(vd->vdev_top_zap); 879 } 880 881 if (top_level && alloctype != VDEV_ALLOC_ATTACH) { 882 ASSERT(alloctype == VDEV_ALLOC_LOAD || 883 alloctype == VDEV_ALLOC_ADD || 884 alloctype == VDEV_ALLOC_SPLIT || 885 alloctype == VDEV_ALLOC_ROOTPOOL); 886 /* Note: metaslab_group_create() is now deferred */ 887 } 888 889 if (vd->vdev_ops->vdev_op_leaf && 890 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 891 (void) nvlist_lookup_uint64(nv, 892 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 893 } else { 894 ASSERT0(vd->vdev_leaf_zap); 895 } 896 897 /* 898 * If we're a leaf vdev, try to load the DTL object and other state. 899 */ 900 901 if (vd->vdev_ops->vdev_op_leaf && 902 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 903 alloctype == VDEV_ALLOC_ROOTPOOL)) { 904 if (alloctype == VDEV_ALLOC_LOAD) { 905 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 906 &vd->vdev_dtl_object); 907 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 908 &vd->vdev_unspare); 909 } 910 911 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 912 uint64_t spare = 0; 913 914 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 915 &spare) == 0 && spare) 916 spa_spare_add(vd); 917 } 918 919 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 920 &vd->vdev_offline); 921 922 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 923 &vd->vdev_resilver_txg); 924 925 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 926 &vd->vdev_rebuild_txg); 927 928 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER)) 929 vdev_defer_resilver(vd); 930 931 /* 932 * In general, when importing a pool we want to ignore the 933 * persistent fault state, as the diagnosis made on another 934 * system may not be valid in the current context. The only 935 * exception is if we forced a vdev to a persistently faulted 936 * state with 'zpool offline -f'. The persistent fault will 937 * remain across imports until cleared. 938 * 939 * Local vdevs will remain in the faulted state. 940 */ 941 if (spa_load_state(spa) == SPA_LOAD_OPEN || 942 spa_load_state(spa) == SPA_LOAD_IMPORT) { 943 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 944 &vd->vdev_faulted); 945 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 946 &vd->vdev_degraded); 947 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 948 &vd->vdev_removed); 949 950 if (vd->vdev_faulted || vd->vdev_degraded) { 951 char *aux; 952 953 vd->vdev_label_aux = 954 VDEV_AUX_ERR_EXCEEDED; 955 if (nvlist_lookup_string(nv, 956 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 957 strcmp(aux, "external") == 0) 958 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 959 else 960 vd->vdev_faulted = 0ULL; 961 } 962 } 963 } 964 965 /* 966 * Add ourselves to the parent's list of children. 967 */ 968 vdev_add_child(parent, vd); 969 970 *vdp = vd; 971 972 return (0); 973 } 974 975 void 976 vdev_free(vdev_t *vd) 977 { 978 spa_t *spa = vd->vdev_spa; 979 980 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 981 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 982 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); 983 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL); 984 985 /* 986 * Scan queues are normally destroyed at the end of a scan. If the 987 * queue exists here, that implies the vdev is being removed while 988 * the scan is still running. 989 */ 990 if (vd->vdev_scan_io_queue != NULL) { 991 mutex_enter(&vd->vdev_scan_io_queue_lock); 992 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue); 993 vd->vdev_scan_io_queue = NULL; 994 mutex_exit(&vd->vdev_scan_io_queue_lock); 995 } 996 997 /* 998 * vdev_free() implies closing the vdev first. This is simpler than 999 * trying to ensure complicated semantics for all callers. 1000 */ 1001 vdev_close(vd); 1002 1003 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 1004 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 1005 1006 /* 1007 * Free all children. 1008 */ 1009 for (int c = 0; c < vd->vdev_children; c++) 1010 vdev_free(vd->vdev_child[c]); 1011 1012 ASSERT(vd->vdev_child == NULL); 1013 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 1014 1015 if (vd->vdev_ops->vdev_op_fini != NULL) 1016 vd->vdev_ops->vdev_op_fini(vd); 1017 1018 /* 1019 * Discard allocation state. 1020 */ 1021 if (vd->vdev_mg != NULL) { 1022 vdev_metaslab_fini(vd); 1023 metaslab_group_destroy(vd->vdev_mg); 1024 vd->vdev_mg = NULL; 1025 } 1026 if (vd->vdev_log_mg != NULL) { 1027 ASSERT0(vd->vdev_ms_count); 1028 metaslab_group_destroy(vd->vdev_log_mg); 1029 vd->vdev_log_mg = NULL; 1030 } 1031 1032 ASSERT0(vd->vdev_stat.vs_space); 1033 ASSERT0(vd->vdev_stat.vs_dspace); 1034 ASSERT0(vd->vdev_stat.vs_alloc); 1035 1036 /* 1037 * Remove this vdev from its parent's child list. 1038 */ 1039 vdev_remove_child(vd->vdev_parent, vd); 1040 1041 ASSERT(vd->vdev_parent == NULL); 1042 ASSERT(!list_link_active(&vd->vdev_leaf_node)); 1043 1044 /* 1045 * Clean up vdev structure. 1046 */ 1047 vdev_queue_fini(vd); 1048 vdev_cache_fini(vd); 1049 1050 if (vd->vdev_path) 1051 spa_strfree(vd->vdev_path); 1052 if (vd->vdev_devid) 1053 spa_strfree(vd->vdev_devid); 1054 if (vd->vdev_physpath) 1055 spa_strfree(vd->vdev_physpath); 1056 1057 if (vd->vdev_enc_sysfs_path) 1058 spa_strfree(vd->vdev_enc_sysfs_path); 1059 1060 if (vd->vdev_fru) 1061 spa_strfree(vd->vdev_fru); 1062 1063 if (vd->vdev_isspare) 1064 spa_spare_remove(vd); 1065 if (vd->vdev_isl2cache) 1066 spa_l2cache_remove(vd); 1067 1068 txg_list_destroy(&vd->vdev_ms_list); 1069 txg_list_destroy(&vd->vdev_dtl_list); 1070 1071 mutex_enter(&vd->vdev_dtl_lock); 1072 space_map_close(vd->vdev_dtl_sm); 1073 for (int t = 0; t < DTL_TYPES; t++) { 1074 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 1075 range_tree_destroy(vd->vdev_dtl[t]); 1076 } 1077 mutex_exit(&vd->vdev_dtl_lock); 1078 1079 EQUIV(vd->vdev_indirect_births != NULL, 1080 vd->vdev_indirect_mapping != NULL); 1081 if (vd->vdev_indirect_births != NULL) { 1082 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 1083 vdev_indirect_births_close(vd->vdev_indirect_births); 1084 } 1085 1086 if (vd->vdev_obsolete_sm != NULL) { 1087 ASSERT(vd->vdev_removing || 1088 vd->vdev_ops == &vdev_indirect_ops); 1089 space_map_close(vd->vdev_obsolete_sm); 1090 vd->vdev_obsolete_sm = NULL; 1091 } 1092 range_tree_destroy(vd->vdev_obsolete_segments); 1093 rw_destroy(&vd->vdev_indirect_rwlock); 1094 mutex_destroy(&vd->vdev_obsolete_lock); 1095 1096 mutex_destroy(&vd->vdev_dtl_lock); 1097 mutex_destroy(&vd->vdev_stat_lock); 1098 mutex_destroy(&vd->vdev_probe_lock); 1099 mutex_destroy(&vd->vdev_scan_io_queue_lock); 1100 1101 mutex_destroy(&vd->vdev_initialize_lock); 1102 mutex_destroy(&vd->vdev_initialize_io_lock); 1103 cv_destroy(&vd->vdev_initialize_io_cv); 1104 cv_destroy(&vd->vdev_initialize_cv); 1105 1106 mutex_destroy(&vd->vdev_trim_lock); 1107 mutex_destroy(&vd->vdev_autotrim_lock); 1108 mutex_destroy(&vd->vdev_trim_io_lock); 1109 cv_destroy(&vd->vdev_trim_cv); 1110 cv_destroy(&vd->vdev_autotrim_cv); 1111 cv_destroy(&vd->vdev_trim_io_cv); 1112 1113 mutex_destroy(&vd->vdev_rebuild_lock); 1114 cv_destroy(&vd->vdev_rebuild_cv); 1115 1116 zfs_ratelimit_fini(&vd->vdev_delay_rl); 1117 zfs_ratelimit_fini(&vd->vdev_deadman_rl); 1118 zfs_ratelimit_fini(&vd->vdev_checksum_rl); 1119 1120 if (vd == spa->spa_root_vdev) 1121 spa->spa_root_vdev = NULL; 1122 1123 kmem_free(vd, sizeof (vdev_t)); 1124 } 1125 1126 /* 1127 * Transfer top-level vdev state from svd to tvd. 1128 */ 1129 static void 1130 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 1131 { 1132 spa_t *spa = svd->vdev_spa; 1133 metaslab_t *msp; 1134 vdev_t *vd; 1135 int t; 1136 1137 ASSERT(tvd == tvd->vdev_top); 1138 1139 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite; 1140 tvd->vdev_ms_array = svd->vdev_ms_array; 1141 tvd->vdev_ms_shift = svd->vdev_ms_shift; 1142 tvd->vdev_ms_count = svd->vdev_ms_count; 1143 tvd->vdev_top_zap = svd->vdev_top_zap; 1144 1145 svd->vdev_ms_array = 0; 1146 svd->vdev_ms_shift = 0; 1147 svd->vdev_ms_count = 0; 1148 svd->vdev_top_zap = 0; 1149 1150 if (tvd->vdev_mg) 1151 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 1152 if (tvd->vdev_log_mg) 1153 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg); 1154 tvd->vdev_mg = svd->vdev_mg; 1155 tvd->vdev_log_mg = svd->vdev_log_mg; 1156 tvd->vdev_ms = svd->vdev_ms; 1157 1158 svd->vdev_mg = NULL; 1159 svd->vdev_log_mg = NULL; 1160 svd->vdev_ms = NULL; 1161 1162 if (tvd->vdev_mg != NULL) 1163 tvd->vdev_mg->mg_vd = tvd; 1164 if (tvd->vdev_log_mg != NULL) 1165 tvd->vdev_log_mg->mg_vd = tvd; 1166 1167 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; 1168 svd->vdev_checkpoint_sm = NULL; 1169 1170 tvd->vdev_alloc_bias = svd->vdev_alloc_bias; 1171 svd->vdev_alloc_bias = VDEV_BIAS_NONE; 1172 1173 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 1174 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 1175 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 1176 1177 svd->vdev_stat.vs_alloc = 0; 1178 svd->vdev_stat.vs_space = 0; 1179 svd->vdev_stat.vs_dspace = 0; 1180 1181 /* 1182 * State which may be set on a top-level vdev that's in the 1183 * process of being removed. 1184 */ 1185 ASSERT0(tvd->vdev_indirect_config.vic_births_object); 1186 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); 1187 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); 1188 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL); 1189 ASSERT3P(tvd->vdev_indirect_births, ==, NULL); 1190 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL); 1191 ASSERT0(tvd->vdev_noalloc); 1192 ASSERT0(tvd->vdev_removing); 1193 ASSERT0(tvd->vdev_rebuilding); 1194 tvd->vdev_noalloc = svd->vdev_noalloc; 1195 tvd->vdev_removing = svd->vdev_removing; 1196 tvd->vdev_rebuilding = svd->vdev_rebuilding; 1197 tvd->vdev_rebuild_config = svd->vdev_rebuild_config; 1198 tvd->vdev_indirect_config = svd->vdev_indirect_config; 1199 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; 1200 tvd->vdev_indirect_births = svd->vdev_indirect_births; 1201 range_tree_swap(&svd->vdev_obsolete_segments, 1202 &tvd->vdev_obsolete_segments); 1203 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; 1204 svd->vdev_indirect_config.vic_mapping_object = 0; 1205 svd->vdev_indirect_config.vic_births_object = 0; 1206 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; 1207 svd->vdev_indirect_mapping = NULL; 1208 svd->vdev_indirect_births = NULL; 1209 svd->vdev_obsolete_sm = NULL; 1210 svd->vdev_noalloc = 0; 1211 svd->vdev_removing = 0; 1212 svd->vdev_rebuilding = 0; 1213 1214 for (t = 0; t < TXG_SIZE; t++) { 1215 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 1216 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 1217 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 1218 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 1219 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 1220 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 1221 } 1222 1223 if (list_link_active(&svd->vdev_config_dirty_node)) { 1224 vdev_config_clean(svd); 1225 vdev_config_dirty(tvd); 1226 } 1227 1228 if (list_link_active(&svd->vdev_state_dirty_node)) { 1229 vdev_state_clean(svd); 1230 vdev_state_dirty(tvd); 1231 } 1232 1233 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 1234 svd->vdev_deflate_ratio = 0; 1235 1236 tvd->vdev_islog = svd->vdev_islog; 1237 svd->vdev_islog = 0; 1238 1239 dsl_scan_io_queue_vdev_xfer(svd, tvd); 1240 } 1241 1242 static void 1243 vdev_top_update(vdev_t *tvd, vdev_t *vd) 1244 { 1245 if (vd == NULL) 1246 return; 1247 1248 vd->vdev_top = tvd; 1249 1250 for (int c = 0; c < vd->vdev_children; c++) 1251 vdev_top_update(tvd, vd->vdev_child[c]); 1252 } 1253 1254 /* 1255 * Add a mirror/replacing vdev above an existing vdev. There is no need to 1256 * call .vdev_op_init() since mirror/replacing vdevs do not have private state. 1257 */ 1258 vdev_t * 1259 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 1260 { 1261 spa_t *spa = cvd->vdev_spa; 1262 vdev_t *pvd = cvd->vdev_parent; 1263 vdev_t *mvd; 1264 1265 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1266 1267 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 1268 1269 mvd->vdev_asize = cvd->vdev_asize; 1270 mvd->vdev_min_asize = cvd->vdev_min_asize; 1271 mvd->vdev_max_asize = cvd->vdev_max_asize; 1272 mvd->vdev_psize = cvd->vdev_psize; 1273 mvd->vdev_ashift = cvd->vdev_ashift; 1274 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift; 1275 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift; 1276 mvd->vdev_state = cvd->vdev_state; 1277 mvd->vdev_crtxg = cvd->vdev_crtxg; 1278 1279 vdev_remove_child(pvd, cvd); 1280 vdev_add_child(pvd, mvd); 1281 cvd->vdev_id = mvd->vdev_children; 1282 vdev_add_child(mvd, cvd); 1283 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1284 1285 if (mvd == mvd->vdev_top) 1286 vdev_top_transfer(cvd, mvd); 1287 1288 return (mvd); 1289 } 1290 1291 /* 1292 * Remove a 1-way mirror/replacing vdev from the tree. 1293 */ 1294 void 1295 vdev_remove_parent(vdev_t *cvd) 1296 { 1297 vdev_t *mvd = cvd->vdev_parent; 1298 vdev_t *pvd = mvd->vdev_parent; 1299 1300 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1301 1302 ASSERT(mvd->vdev_children == 1); 1303 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 1304 mvd->vdev_ops == &vdev_replacing_ops || 1305 mvd->vdev_ops == &vdev_spare_ops); 1306 cvd->vdev_ashift = mvd->vdev_ashift; 1307 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift; 1308 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift; 1309 vdev_remove_child(mvd, cvd); 1310 vdev_remove_child(pvd, mvd); 1311 1312 /* 1313 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 1314 * Otherwise, we could have detached an offline device, and when we 1315 * go to import the pool we'll think we have two top-level vdevs, 1316 * instead of a different version of the same top-level vdev. 1317 */ 1318 if (mvd->vdev_top == mvd) { 1319 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 1320 cvd->vdev_orig_guid = cvd->vdev_guid; 1321 cvd->vdev_guid += guid_delta; 1322 cvd->vdev_guid_sum += guid_delta; 1323 1324 /* 1325 * If pool not set for autoexpand, we need to also preserve 1326 * mvd's asize to prevent automatic expansion of cvd. 1327 * Otherwise if we are adjusting the mirror by attaching and 1328 * detaching children of non-uniform sizes, the mirror could 1329 * autoexpand, unexpectedly requiring larger devices to 1330 * re-establish the mirror. 1331 */ 1332 if (!cvd->vdev_spa->spa_autoexpand) 1333 cvd->vdev_asize = mvd->vdev_asize; 1334 } 1335 cvd->vdev_id = mvd->vdev_id; 1336 vdev_add_child(pvd, cvd); 1337 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1338 1339 if (cvd == cvd->vdev_top) 1340 vdev_top_transfer(mvd, cvd); 1341 1342 ASSERT(mvd->vdev_children == 0); 1343 vdev_free(mvd); 1344 } 1345 1346 void 1347 vdev_metaslab_group_create(vdev_t *vd) 1348 { 1349 spa_t *spa = vd->vdev_spa; 1350 1351 /* 1352 * metaslab_group_create was delayed until allocation bias was available 1353 */ 1354 if (vd->vdev_mg == NULL) { 1355 metaslab_class_t *mc; 1356 1357 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE) 1358 vd->vdev_alloc_bias = VDEV_BIAS_LOG; 1359 1360 ASSERT3U(vd->vdev_islog, ==, 1361 (vd->vdev_alloc_bias == VDEV_BIAS_LOG)); 1362 1363 switch (vd->vdev_alloc_bias) { 1364 case VDEV_BIAS_LOG: 1365 mc = spa_log_class(spa); 1366 break; 1367 case VDEV_BIAS_SPECIAL: 1368 mc = spa_special_class(spa); 1369 break; 1370 case VDEV_BIAS_DEDUP: 1371 mc = spa_dedup_class(spa); 1372 break; 1373 default: 1374 mc = spa_normal_class(spa); 1375 } 1376 1377 vd->vdev_mg = metaslab_group_create(mc, vd, 1378 spa->spa_alloc_count); 1379 1380 if (!vd->vdev_islog) { 1381 vd->vdev_log_mg = metaslab_group_create( 1382 spa_embedded_log_class(spa), vd, 1); 1383 } 1384 1385 /* 1386 * The spa ashift min/max only apply for the normal metaslab 1387 * class. Class destination is late binding so ashift boundary 1388 * setting had to wait until now. 1389 */ 1390 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1391 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) { 1392 if (vd->vdev_ashift > spa->spa_max_ashift) 1393 spa->spa_max_ashift = vd->vdev_ashift; 1394 if (vd->vdev_ashift < spa->spa_min_ashift) 1395 spa->spa_min_ashift = vd->vdev_ashift; 1396 1397 uint64_t min_alloc = vdev_get_min_alloc(vd); 1398 if (min_alloc < spa->spa_min_alloc) 1399 spa->spa_min_alloc = min_alloc; 1400 } 1401 } 1402 } 1403 1404 int 1405 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 1406 { 1407 spa_t *spa = vd->vdev_spa; 1408 uint64_t oldc = vd->vdev_ms_count; 1409 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 1410 metaslab_t **mspp; 1411 int error; 1412 boolean_t expanding = (oldc != 0); 1413 1414 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1415 1416 /* 1417 * This vdev is not being allocated from yet or is a hole. 1418 */ 1419 if (vd->vdev_ms_shift == 0) 1420 return (0); 1421 1422 ASSERT(!vd->vdev_ishole); 1423 1424 ASSERT(oldc <= newc); 1425 1426 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 1427 1428 if (expanding) { 1429 memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp)); 1430 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 1431 } 1432 1433 vd->vdev_ms = mspp; 1434 vd->vdev_ms_count = newc; 1435 1436 for (uint64_t m = oldc; m < newc; m++) { 1437 uint64_t object = 0; 1438 /* 1439 * vdev_ms_array may be 0 if we are creating the "fake" 1440 * metaslabs for an indirect vdev for zdb's leak detection. 1441 * See zdb_leak_init(). 1442 */ 1443 if (txg == 0 && vd->vdev_ms_array != 0) { 1444 error = dmu_read(spa->spa_meta_objset, 1445 vd->vdev_ms_array, 1446 m * sizeof (uint64_t), sizeof (uint64_t), &object, 1447 DMU_READ_PREFETCH); 1448 if (error != 0) { 1449 vdev_dbgmsg(vd, "unable to read the metaslab " 1450 "array [error=%d]", error); 1451 return (error); 1452 } 1453 } 1454 1455 error = metaslab_init(vd->vdev_mg, m, object, txg, 1456 &(vd->vdev_ms[m])); 1457 if (error != 0) { 1458 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", 1459 error); 1460 return (error); 1461 } 1462 } 1463 1464 /* 1465 * Find the emptiest metaslab on the vdev and mark it for use for 1466 * embedded slog by moving it from the regular to the log metaslab 1467 * group. 1468 */ 1469 if (vd->vdev_mg->mg_class == spa_normal_class(spa) && 1470 vd->vdev_ms_count > zfs_embedded_slog_min_ms && 1471 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) { 1472 uint64_t slog_msid = 0; 1473 uint64_t smallest = UINT64_MAX; 1474 1475 /* 1476 * Note, we only search the new metaslabs, because the old 1477 * (pre-existing) ones may be active (e.g. have non-empty 1478 * range_tree's), and we don't move them to the new 1479 * metaslab_t. 1480 */ 1481 for (uint64_t m = oldc; m < newc; m++) { 1482 uint64_t alloc = 1483 space_map_allocated(vd->vdev_ms[m]->ms_sm); 1484 if (alloc < smallest) { 1485 slog_msid = m; 1486 smallest = alloc; 1487 } 1488 } 1489 metaslab_t *slog_ms = vd->vdev_ms[slog_msid]; 1490 /* 1491 * The metaslab was marked as dirty at the end of 1492 * metaslab_init(). Remove it from the dirty list so that we 1493 * can uninitialize and reinitialize it to the new class. 1494 */ 1495 if (txg != 0) { 1496 (void) txg_list_remove_this(&vd->vdev_ms_list, 1497 slog_ms, txg); 1498 } 1499 uint64_t sm_obj = space_map_object(slog_ms->ms_sm); 1500 metaslab_fini(slog_ms); 1501 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg, 1502 &vd->vdev_ms[slog_msid])); 1503 } 1504 1505 if (txg == 0) 1506 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 1507 1508 /* 1509 * If the vdev is marked as non-allocating then don't 1510 * activate the metaslabs since we want to ensure that 1511 * no allocations are performed on this device. 1512 */ 1513 if (vd->vdev_noalloc) { 1514 /* track non-allocating vdev space */ 1515 spa->spa_nonallocating_dspace += spa_deflate(spa) ? 1516 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; 1517 } else if (!expanding) { 1518 metaslab_group_activate(vd->vdev_mg); 1519 if (vd->vdev_log_mg != NULL) 1520 metaslab_group_activate(vd->vdev_log_mg); 1521 } 1522 1523 if (txg == 0) 1524 spa_config_exit(spa, SCL_ALLOC, FTAG); 1525 1526 return (0); 1527 } 1528 1529 void 1530 vdev_metaslab_fini(vdev_t *vd) 1531 { 1532 if (vd->vdev_checkpoint_sm != NULL) { 1533 ASSERT(spa_feature_is_active(vd->vdev_spa, 1534 SPA_FEATURE_POOL_CHECKPOINT)); 1535 space_map_close(vd->vdev_checkpoint_sm); 1536 /* 1537 * Even though we close the space map, we need to set its 1538 * pointer to NULL. The reason is that vdev_metaslab_fini() 1539 * may be called multiple times for certain operations 1540 * (i.e. when destroying a pool) so we need to ensure that 1541 * this clause never executes twice. This logic is similar 1542 * to the one used for the vdev_ms clause below. 1543 */ 1544 vd->vdev_checkpoint_sm = NULL; 1545 } 1546 1547 if (vd->vdev_ms != NULL) { 1548 metaslab_group_t *mg = vd->vdev_mg; 1549 1550 metaslab_group_passivate(mg); 1551 if (vd->vdev_log_mg != NULL) { 1552 ASSERT(!vd->vdev_islog); 1553 metaslab_group_passivate(vd->vdev_log_mg); 1554 } 1555 1556 uint64_t count = vd->vdev_ms_count; 1557 for (uint64_t m = 0; m < count; m++) { 1558 metaslab_t *msp = vd->vdev_ms[m]; 1559 if (msp != NULL) 1560 metaslab_fini(msp); 1561 } 1562 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1563 vd->vdev_ms = NULL; 1564 vd->vdev_ms_count = 0; 1565 1566 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 1567 ASSERT0(mg->mg_histogram[i]); 1568 if (vd->vdev_log_mg != NULL) 1569 ASSERT0(vd->vdev_log_mg->mg_histogram[i]); 1570 } 1571 } 1572 ASSERT0(vd->vdev_ms_count); 1573 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0); 1574 } 1575 1576 typedef struct vdev_probe_stats { 1577 boolean_t vps_readable; 1578 boolean_t vps_writeable; 1579 int vps_flags; 1580 } vdev_probe_stats_t; 1581 1582 static void 1583 vdev_probe_done(zio_t *zio) 1584 { 1585 spa_t *spa = zio->io_spa; 1586 vdev_t *vd = zio->io_vd; 1587 vdev_probe_stats_t *vps = zio->io_private; 1588 1589 ASSERT(vd->vdev_probe_zio != NULL); 1590 1591 if (zio->io_type == ZIO_TYPE_READ) { 1592 if (zio->io_error == 0) 1593 vps->vps_readable = 1; 1594 if (zio->io_error == 0 && spa_writeable(spa)) { 1595 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1596 zio->io_offset, zio->io_size, zio->io_abd, 1597 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1598 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1599 } else { 1600 abd_free(zio->io_abd); 1601 } 1602 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1603 if (zio->io_error == 0) 1604 vps->vps_writeable = 1; 1605 abd_free(zio->io_abd); 1606 } else if (zio->io_type == ZIO_TYPE_NULL) { 1607 zio_t *pio; 1608 zio_link_t *zl; 1609 1610 vd->vdev_cant_read |= !vps->vps_readable; 1611 vd->vdev_cant_write |= !vps->vps_writeable; 1612 1613 if (vdev_readable(vd) && 1614 (vdev_writeable(vd) || !spa_writeable(spa))) { 1615 zio->io_error = 0; 1616 } else { 1617 ASSERT(zio->io_error != 0); 1618 vdev_dbgmsg(vd, "failed probe"); 1619 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1620 spa, vd, NULL, NULL, 0); 1621 zio->io_error = SET_ERROR(ENXIO); 1622 } 1623 1624 mutex_enter(&vd->vdev_probe_lock); 1625 ASSERT(vd->vdev_probe_zio == zio); 1626 vd->vdev_probe_zio = NULL; 1627 mutex_exit(&vd->vdev_probe_lock); 1628 1629 zl = NULL; 1630 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1631 if (!vdev_accessible(vd, pio)) 1632 pio->io_error = SET_ERROR(ENXIO); 1633 1634 kmem_free(vps, sizeof (*vps)); 1635 } 1636 } 1637 1638 /* 1639 * Determine whether this device is accessible. 1640 * 1641 * Read and write to several known locations: the pad regions of each 1642 * vdev label but the first, which we leave alone in case it contains 1643 * a VTOC. 1644 */ 1645 zio_t * 1646 vdev_probe(vdev_t *vd, zio_t *zio) 1647 { 1648 spa_t *spa = vd->vdev_spa; 1649 vdev_probe_stats_t *vps = NULL; 1650 zio_t *pio; 1651 1652 ASSERT(vd->vdev_ops->vdev_op_leaf); 1653 1654 /* 1655 * Don't probe the probe. 1656 */ 1657 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1658 return (NULL); 1659 1660 /* 1661 * To prevent 'probe storms' when a device fails, we create 1662 * just one probe i/o at a time. All zios that want to probe 1663 * this vdev will become parents of the probe io. 1664 */ 1665 mutex_enter(&vd->vdev_probe_lock); 1666 1667 if ((pio = vd->vdev_probe_zio) == NULL) { 1668 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1669 1670 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1671 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1672 ZIO_FLAG_TRYHARD; 1673 1674 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1675 /* 1676 * vdev_cant_read and vdev_cant_write can only 1677 * transition from TRUE to FALSE when we have the 1678 * SCL_ZIO lock as writer; otherwise they can only 1679 * transition from FALSE to TRUE. This ensures that 1680 * any zio looking at these values can assume that 1681 * failures persist for the life of the I/O. That's 1682 * important because when a device has intermittent 1683 * connectivity problems, we want to ensure that 1684 * they're ascribed to the device (ENXIO) and not 1685 * the zio (EIO). 1686 * 1687 * Since we hold SCL_ZIO as writer here, clear both 1688 * values so the probe can reevaluate from first 1689 * principles. 1690 */ 1691 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1692 vd->vdev_cant_read = B_FALSE; 1693 vd->vdev_cant_write = B_FALSE; 1694 } 1695 1696 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1697 vdev_probe_done, vps, 1698 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1699 1700 /* 1701 * We can't change the vdev state in this context, so we 1702 * kick off an async task to do it on our behalf. 1703 */ 1704 if (zio != NULL) { 1705 vd->vdev_probe_wanted = B_TRUE; 1706 spa_async_request(spa, SPA_ASYNC_PROBE); 1707 } 1708 } 1709 1710 if (zio != NULL) 1711 zio_add_child(zio, pio); 1712 1713 mutex_exit(&vd->vdev_probe_lock); 1714 1715 if (vps == NULL) { 1716 ASSERT(zio != NULL); 1717 return (NULL); 1718 } 1719 1720 for (int l = 1; l < VDEV_LABELS; l++) { 1721 zio_nowait(zio_read_phys(pio, vd, 1722 vdev_label_offset(vd->vdev_psize, l, 1723 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE, 1724 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1725 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1726 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1727 } 1728 1729 if (zio == NULL) 1730 return (pio); 1731 1732 zio_nowait(pio); 1733 return (NULL); 1734 } 1735 1736 static void 1737 vdev_load_child(void *arg) 1738 { 1739 vdev_t *vd = arg; 1740 1741 vd->vdev_load_error = vdev_load(vd); 1742 } 1743 1744 static void 1745 vdev_open_child(void *arg) 1746 { 1747 vdev_t *vd = arg; 1748 1749 vd->vdev_open_thread = curthread; 1750 vd->vdev_open_error = vdev_open(vd); 1751 vd->vdev_open_thread = NULL; 1752 } 1753 1754 static boolean_t 1755 vdev_uses_zvols(vdev_t *vd) 1756 { 1757 #ifdef _KERNEL 1758 if (zvol_is_zvol(vd->vdev_path)) 1759 return (B_TRUE); 1760 #endif 1761 1762 for (int c = 0; c < vd->vdev_children; c++) 1763 if (vdev_uses_zvols(vd->vdev_child[c])) 1764 return (B_TRUE); 1765 1766 return (B_FALSE); 1767 } 1768 1769 /* 1770 * Returns B_TRUE if the passed child should be opened. 1771 */ 1772 static boolean_t 1773 vdev_default_open_children_func(vdev_t *vd) 1774 { 1775 (void) vd; 1776 return (B_TRUE); 1777 } 1778 1779 /* 1780 * Open the requested child vdevs. If any of the leaf vdevs are using 1781 * a ZFS volume then do the opens in a single thread. This avoids a 1782 * deadlock when the current thread is holding the spa_namespace_lock. 1783 */ 1784 static void 1785 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func) 1786 { 1787 int children = vd->vdev_children; 1788 1789 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri, 1790 children, children, TASKQ_PREPOPULATE); 1791 vd->vdev_nonrot = B_TRUE; 1792 1793 for (int c = 0; c < children; c++) { 1794 vdev_t *cvd = vd->vdev_child[c]; 1795 1796 if (open_func(cvd) == B_FALSE) 1797 continue; 1798 1799 if (tq == NULL || vdev_uses_zvols(vd)) { 1800 cvd->vdev_open_error = vdev_open(cvd); 1801 } else { 1802 VERIFY(taskq_dispatch(tq, vdev_open_child, 1803 cvd, TQ_SLEEP) != TASKQID_INVALID); 1804 } 1805 1806 vd->vdev_nonrot &= cvd->vdev_nonrot; 1807 } 1808 1809 if (tq != NULL) { 1810 taskq_wait(tq); 1811 taskq_destroy(tq); 1812 } 1813 } 1814 1815 /* 1816 * Open all child vdevs. 1817 */ 1818 void 1819 vdev_open_children(vdev_t *vd) 1820 { 1821 vdev_open_children_impl(vd, vdev_default_open_children_func); 1822 } 1823 1824 /* 1825 * Conditionally open a subset of child vdevs. 1826 */ 1827 void 1828 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func) 1829 { 1830 vdev_open_children_impl(vd, open_func); 1831 } 1832 1833 /* 1834 * Compute the raidz-deflation ratio. Note, we hard-code 1835 * in 128k (1 << 17) because it is the "typical" blocksize. 1836 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 1837 * otherwise it would inconsistently account for existing bp's. 1838 */ 1839 static void 1840 vdev_set_deflate_ratio(vdev_t *vd) 1841 { 1842 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { 1843 vd->vdev_deflate_ratio = (1 << 17) / 1844 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 1845 } 1846 } 1847 1848 /* 1849 * Maximize performance by inflating the configured ashift for top level 1850 * vdevs to be as close to the physical ashift as possible while maintaining 1851 * administrator defined limits and ensuring it doesn't go below the 1852 * logical ashift. 1853 */ 1854 static void 1855 vdev_ashift_optimize(vdev_t *vd) 1856 { 1857 ASSERT(vd == vd->vdev_top); 1858 1859 if (vd->vdev_ashift < vd->vdev_physical_ashift) { 1860 vd->vdev_ashift = MIN( 1861 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift), 1862 MAX(zfs_vdev_min_auto_ashift, 1863 vd->vdev_physical_ashift)); 1864 } else { 1865 /* 1866 * If the logical and physical ashifts are the same, then 1867 * we ensure that the top-level vdev's ashift is not smaller 1868 * than our minimum ashift value. For the unusual case 1869 * where logical ashift > physical ashift, we can't cap 1870 * the calculated ashift based on max ashift as that 1871 * would cause failures. 1872 * We still check if we need to increase it to match 1873 * the min ashift. 1874 */ 1875 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift, 1876 vd->vdev_ashift); 1877 } 1878 } 1879 1880 /* 1881 * Prepare a virtual device for access. 1882 */ 1883 int 1884 vdev_open(vdev_t *vd) 1885 { 1886 spa_t *spa = vd->vdev_spa; 1887 int error; 1888 uint64_t osize = 0; 1889 uint64_t max_osize = 0; 1890 uint64_t asize, max_asize, psize; 1891 uint64_t logical_ashift = 0; 1892 uint64_t physical_ashift = 0; 1893 1894 ASSERT(vd->vdev_open_thread == curthread || 1895 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1896 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1897 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1898 vd->vdev_state == VDEV_STATE_OFFLINE); 1899 1900 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1901 vd->vdev_cant_read = B_FALSE; 1902 vd->vdev_cant_write = B_FALSE; 1903 vd->vdev_min_asize = vdev_get_min_asize(vd); 1904 1905 /* 1906 * If this vdev is not removed, check its fault status. If it's 1907 * faulted, bail out of the open. 1908 */ 1909 if (!vd->vdev_removed && vd->vdev_faulted) { 1910 ASSERT(vd->vdev_children == 0); 1911 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1912 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1913 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1914 vd->vdev_label_aux); 1915 return (SET_ERROR(ENXIO)); 1916 } else if (vd->vdev_offline) { 1917 ASSERT(vd->vdev_children == 0); 1918 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1919 return (SET_ERROR(ENXIO)); 1920 } 1921 1922 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, 1923 &logical_ashift, &physical_ashift); 1924 /* 1925 * Physical volume size should never be larger than its max size, unless 1926 * the disk has shrunk while we were reading it or the device is buggy 1927 * or damaged: either way it's not safe for use, bail out of the open. 1928 */ 1929 if (osize > max_osize) { 1930 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1931 VDEV_AUX_OPEN_FAILED); 1932 return (SET_ERROR(ENXIO)); 1933 } 1934 1935 /* 1936 * Reset the vdev_reopening flag so that we actually close 1937 * the vdev on error. 1938 */ 1939 vd->vdev_reopening = B_FALSE; 1940 if (zio_injection_enabled && error == 0) 1941 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO)); 1942 1943 if (error) { 1944 if (vd->vdev_removed && 1945 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1946 vd->vdev_removed = B_FALSE; 1947 1948 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { 1949 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, 1950 vd->vdev_stat.vs_aux); 1951 } else { 1952 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1953 vd->vdev_stat.vs_aux); 1954 } 1955 return (error); 1956 } 1957 1958 vd->vdev_removed = B_FALSE; 1959 1960 /* 1961 * Recheck the faulted flag now that we have confirmed that 1962 * the vdev is accessible. If we're faulted, bail. 1963 */ 1964 if (vd->vdev_faulted) { 1965 ASSERT(vd->vdev_children == 0); 1966 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1967 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1968 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1969 vd->vdev_label_aux); 1970 return (SET_ERROR(ENXIO)); 1971 } 1972 1973 if (vd->vdev_degraded) { 1974 ASSERT(vd->vdev_children == 0); 1975 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1976 VDEV_AUX_ERR_EXCEEDED); 1977 } else { 1978 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1979 } 1980 1981 /* 1982 * For hole or missing vdevs we just return success. 1983 */ 1984 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1985 return (0); 1986 1987 for (int c = 0; c < vd->vdev_children; c++) { 1988 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1989 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1990 VDEV_AUX_NONE); 1991 break; 1992 } 1993 } 1994 1995 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1996 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1997 1998 if (vd->vdev_children == 0) { 1999 if (osize < SPA_MINDEVSIZE) { 2000 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2001 VDEV_AUX_TOO_SMALL); 2002 return (SET_ERROR(EOVERFLOW)); 2003 } 2004 psize = osize; 2005 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 2006 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 2007 VDEV_LABEL_END_SIZE); 2008 } else { 2009 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 2010 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 2011 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2012 VDEV_AUX_TOO_SMALL); 2013 return (SET_ERROR(EOVERFLOW)); 2014 } 2015 psize = 0; 2016 asize = osize; 2017 max_asize = max_osize; 2018 } 2019 2020 /* 2021 * If the vdev was expanded, record this so that we can re-create the 2022 * uberblock rings in labels {2,3}, during the next sync. 2023 */ 2024 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0)) 2025 vd->vdev_copy_uberblocks = B_TRUE; 2026 2027 vd->vdev_psize = psize; 2028 2029 /* 2030 * Make sure the allocatable size hasn't shrunk too much. 2031 */ 2032 if (asize < vd->vdev_min_asize) { 2033 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2034 VDEV_AUX_BAD_LABEL); 2035 return (SET_ERROR(EINVAL)); 2036 } 2037 2038 /* 2039 * We can always set the logical/physical ashift members since 2040 * their values are only used to calculate the vdev_ashift when 2041 * the device is first added to the config. These values should 2042 * not be used for anything else since they may change whenever 2043 * the device is reopened and we don't store them in the label. 2044 */ 2045 vd->vdev_physical_ashift = 2046 MAX(physical_ashift, vd->vdev_physical_ashift); 2047 vd->vdev_logical_ashift = MAX(logical_ashift, 2048 vd->vdev_logical_ashift); 2049 2050 if (vd->vdev_asize == 0) { 2051 /* 2052 * This is the first-ever open, so use the computed values. 2053 * For compatibility, a different ashift can be requested. 2054 */ 2055 vd->vdev_asize = asize; 2056 vd->vdev_max_asize = max_asize; 2057 2058 /* 2059 * If the vdev_ashift was not overridden at creation time, 2060 * then set it the logical ashift and optimize the ashift. 2061 */ 2062 if (vd->vdev_ashift == 0) { 2063 vd->vdev_ashift = vd->vdev_logical_ashift; 2064 2065 if (vd->vdev_logical_ashift > ASHIFT_MAX) { 2066 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2067 VDEV_AUX_ASHIFT_TOO_BIG); 2068 return (SET_ERROR(EDOM)); 2069 } 2070 2071 if (vd->vdev_top == vd) { 2072 vdev_ashift_optimize(vd); 2073 } 2074 } 2075 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN || 2076 vd->vdev_ashift > ASHIFT_MAX)) { 2077 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2078 VDEV_AUX_BAD_ASHIFT); 2079 return (SET_ERROR(EDOM)); 2080 } 2081 } else { 2082 /* 2083 * Make sure the alignment required hasn't increased. 2084 */ 2085 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift && 2086 vd->vdev_ops->vdev_op_leaf) { 2087 (void) zfs_ereport_post( 2088 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT, 2089 spa, vd, NULL, NULL, 0); 2090 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2091 VDEV_AUX_BAD_LABEL); 2092 return (SET_ERROR(EDOM)); 2093 } 2094 vd->vdev_max_asize = max_asize; 2095 } 2096 2097 /* 2098 * If all children are healthy we update asize if either: 2099 * The asize has increased, due to a device expansion caused by dynamic 2100 * LUN growth or vdev replacement, and automatic expansion is enabled; 2101 * making the additional space available. 2102 * 2103 * The asize has decreased, due to a device shrink usually caused by a 2104 * vdev replace with a smaller device. This ensures that calculations 2105 * based of max_asize and asize e.g. esize are always valid. It's safe 2106 * to do this as we've already validated that asize is greater than 2107 * vdev_min_asize. 2108 */ 2109 if (vd->vdev_state == VDEV_STATE_HEALTHY && 2110 ((asize > vd->vdev_asize && 2111 (vd->vdev_expanding || spa->spa_autoexpand)) || 2112 (asize < vd->vdev_asize))) 2113 vd->vdev_asize = asize; 2114 2115 vdev_set_min_asize(vd); 2116 2117 /* 2118 * Ensure we can issue some IO before declaring the 2119 * vdev open for business. 2120 */ 2121 if (vd->vdev_ops->vdev_op_leaf && 2122 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 2123 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2124 VDEV_AUX_ERR_EXCEEDED); 2125 return (error); 2126 } 2127 2128 /* 2129 * Track the minimum allocation size. 2130 */ 2131 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 2132 vd->vdev_islog == 0 && vd->vdev_aux == NULL) { 2133 uint64_t min_alloc = vdev_get_min_alloc(vd); 2134 if (min_alloc < spa->spa_min_alloc) 2135 spa->spa_min_alloc = min_alloc; 2136 } 2137 2138 /* 2139 * If this is a leaf vdev, assess whether a resilver is needed. 2140 * But don't do this if we are doing a reopen for a scrub, since 2141 * this would just restart the scrub we are already doing. 2142 */ 2143 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen) 2144 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd); 2145 2146 return (0); 2147 } 2148 2149 static void 2150 vdev_validate_child(void *arg) 2151 { 2152 vdev_t *vd = arg; 2153 2154 vd->vdev_validate_thread = curthread; 2155 vd->vdev_validate_error = vdev_validate(vd); 2156 vd->vdev_validate_thread = NULL; 2157 } 2158 2159 /* 2160 * Called once the vdevs are all opened, this routine validates the label 2161 * contents. This needs to be done before vdev_load() so that we don't 2162 * inadvertently do repair I/Os to the wrong device. 2163 * 2164 * This function will only return failure if one of the vdevs indicates that it 2165 * has since been destroyed or exported. This is only possible if 2166 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 2167 * will be updated but the function will return 0. 2168 */ 2169 int 2170 vdev_validate(vdev_t *vd) 2171 { 2172 spa_t *spa = vd->vdev_spa; 2173 taskq_t *tq = NULL; 2174 nvlist_t *label; 2175 uint64_t guid = 0, aux_guid = 0, top_guid; 2176 uint64_t state; 2177 nvlist_t *nvl; 2178 uint64_t txg; 2179 int children = vd->vdev_children; 2180 2181 if (vdev_validate_skip) 2182 return (0); 2183 2184 if (children > 0) { 2185 tq = taskq_create("vdev_validate", children, minclsyspri, 2186 children, children, TASKQ_PREPOPULATE); 2187 } 2188 2189 for (uint64_t c = 0; c < children; c++) { 2190 vdev_t *cvd = vd->vdev_child[c]; 2191 2192 if (tq == NULL || vdev_uses_zvols(cvd)) { 2193 vdev_validate_child(cvd); 2194 } else { 2195 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd, 2196 TQ_SLEEP) != TASKQID_INVALID); 2197 } 2198 } 2199 if (tq != NULL) { 2200 taskq_wait(tq); 2201 taskq_destroy(tq); 2202 } 2203 for (int c = 0; c < children; c++) { 2204 int error = vd->vdev_child[c]->vdev_validate_error; 2205 2206 if (error != 0) 2207 return (SET_ERROR(EBADF)); 2208 } 2209 2210 2211 /* 2212 * If the device has already failed, or was marked offline, don't do 2213 * any further validation. Otherwise, label I/O will fail and we will 2214 * overwrite the previous state. 2215 */ 2216 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) 2217 return (0); 2218 2219 /* 2220 * If we are performing an extreme rewind, we allow for a label that 2221 * was modified at a point after the current txg. 2222 * If config lock is not held do not check for the txg. spa_sync could 2223 * be updating the vdev's label before updating spa_last_synced_txg. 2224 */ 2225 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || 2226 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) 2227 txg = UINT64_MAX; 2228 else 2229 txg = spa_last_synced_txg(spa); 2230 2231 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 2232 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2233 VDEV_AUX_BAD_LABEL); 2234 vdev_dbgmsg(vd, "vdev_validate: failed reading config for " 2235 "txg %llu", (u_longlong_t)txg); 2236 return (0); 2237 } 2238 2239 /* 2240 * Determine if this vdev has been split off into another 2241 * pool. If so, then refuse to open it. 2242 */ 2243 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 2244 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 2245 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2246 VDEV_AUX_SPLIT_POOL); 2247 nvlist_free(label); 2248 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); 2249 return (0); 2250 } 2251 2252 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { 2253 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2254 VDEV_AUX_CORRUPT_DATA); 2255 nvlist_free(label); 2256 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2257 ZPOOL_CONFIG_POOL_GUID); 2258 return (0); 2259 } 2260 2261 /* 2262 * If config is not trusted then ignore the spa guid check. This is 2263 * necessary because if the machine crashed during a re-guid the new 2264 * guid might have been written to all of the vdev labels, but not the 2265 * cached config. The check will be performed again once we have the 2266 * trusted config from the MOS. 2267 */ 2268 if (spa->spa_trust_config && guid != spa_guid(spa)) { 2269 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2270 VDEV_AUX_CORRUPT_DATA); 2271 nvlist_free(label); 2272 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " 2273 "match config (%llu != %llu)", (u_longlong_t)guid, 2274 (u_longlong_t)spa_guid(spa)); 2275 return (0); 2276 } 2277 2278 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 2279 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 2280 &aux_guid) != 0) 2281 aux_guid = 0; 2282 2283 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { 2284 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2285 VDEV_AUX_CORRUPT_DATA); 2286 nvlist_free(label); 2287 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2288 ZPOOL_CONFIG_GUID); 2289 return (0); 2290 } 2291 2292 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) 2293 != 0) { 2294 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2295 VDEV_AUX_CORRUPT_DATA); 2296 nvlist_free(label); 2297 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2298 ZPOOL_CONFIG_TOP_GUID); 2299 return (0); 2300 } 2301 2302 /* 2303 * If this vdev just became a top-level vdev because its sibling was 2304 * detached, it will have adopted the parent's vdev guid -- but the 2305 * label may or may not be on disk yet. Fortunately, either version 2306 * of the label will have the same top guid, so if we're a top-level 2307 * vdev, we can safely compare to that instead. 2308 * However, if the config comes from a cachefile that failed to update 2309 * after the detach, a top-level vdev will appear as a non top-level 2310 * vdev in the config. Also relax the constraints if we perform an 2311 * extreme rewind. 2312 * 2313 * If we split this vdev off instead, then we also check the 2314 * original pool's guid. We don't want to consider the vdev 2315 * corrupt if it is partway through a split operation. 2316 */ 2317 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { 2318 boolean_t mismatch = B_FALSE; 2319 if (spa->spa_trust_config && !spa->spa_extreme_rewind) { 2320 if (vd != vd->vdev_top || vd->vdev_guid != top_guid) 2321 mismatch = B_TRUE; 2322 } else { 2323 if (vd->vdev_guid != top_guid && 2324 vd->vdev_top->vdev_guid != guid) 2325 mismatch = B_TRUE; 2326 } 2327 2328 if (mismatch) { 2329 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2330 VDEV_AUX_CORRUPT_DATA); 2331 nvlist_free(label); 2332 vdev_dbgmsg(vd, "vdev_validate: config guid " 2333 "doesn't match label guid"); 2334 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", 2335 (u_longlong_t)vd->vdev_guid, 2336 (u_longlong_t)vd->vdev_top->vdev_guid); 2337 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " 2338 "aux_guid %llu", (u_longlong_t)guid, 2339 (u_longlong_t)top_guid, (u_longlong_t)aux_guid); 2340 return (0); 2341 } 2342 } 2343 2344 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 2345 &state) != 0) { 2346 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2347 VDEV_AUX_CORRUPT_DATA); 2348 nvlist_free(label); 2349 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2350 ZPOOL_CONFIG_POOL_STATE); 2351 return (0); 2352 } 2353 2354 nvlist_free(label); 2355 2356 /* 2357 * If this is a verbatim import, no need to check the 2358 * state of the pool. 2359 */ 2360 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 2361 spa_load_state(spa) == SPA_LOAD_OPEN && 2362 state != POOL_STATE_ACTIVE) { 2363 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " 2364 "for spa %s", (u_longlong_t)state, spa->spa_name); 2365 return (SET_ERROR(EBADF)); 2366 } 2367 2368 /* 2369 * If we were able to open and validate a vdev that was 2370 * previously marked permanently unavailable, clear that state 2371 * now. 2372 */ 2373 if (vd->vdev_not_present) 2374 vd->vdev_not_present = 0; 2375 2376 return (0); 2377 } 2378 2379 static void 2380 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) 2381 { 2382 char *old, *new; 2383 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) { 2384 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) { 2385 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed " 2386 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2387 dvd->vdev_path, svd->vdev_path); 2388 spa_strfree(dvd->vdev_path); 2389 dvd->vdev_path = spa_strdup(svd->vdev_path); 2390 } 2391 } else if (svd->vdev_path != NULL) { 2392 dvd->vdev_path = spa_strdup(svd->vdev_path); 2393 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", 2394 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path); 2395 } 2396 2397 /* 2398 * Our enclosure sysfs path may have changed between imports 2399 */ 2400 old = dvd->vdev_enc_sysfs_path; 2401 new = svd->vdev_enc_sysfs_path; 2402 if ((old != NULL && new == NULL) || 2403 (old == NULL && new != NULL) || 2404 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) { 2405 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path " 2406 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2407 old, new); 2408 2409 if (dvd->vdev_enc_sysfs_path) 2410 spa_strfree(dvd->vdev_enc_sysfs_path); 2411 2412 if (svd->vdev_enc_sysfs_path) { 2413 dvd->vdev_enc_sysfs_path = spa_strdup( 2414 svd->vdev_enc_sysfs_path); 2415 } else { 2416 dvd->vdev_enc_sysfs_path = NULL; 2417 } 2418 } 2419 } 2420 2421 /* 2422 * Recursively copy vdev paths from one vdev to another. Source and destination 2423 * vdev trees must have same geometry otherwise return error. Intended to copy 2424 * paths from userland config into MOS config. 2425 */ 2426 int 2427 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) 2428 { 2429 if ((svd->vdev_ops == &vdev_missing_ops) || 2430 (svd->vdev_ishole && dvd->vdev_ishole) || 2431 (dvd->vdev_ops == &vdev_indirect_ops)) 2432 return (0); 2433 2434 if (svd->vdev_ops != dvd->vdev_ops) { 2435 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", 2436 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); 2437 return (SET_ERROR(EINVAL)); 2438 } 2439 2440 if (svd->vdev_guid != dvd->vdev_guid) { 2441 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " 2442 "%llu)", (u_longlong_t)svd->vdev_guid, 2443 (u_longlong_t)dvd->vdev_guid); 2444 return (SET_ERROR(EINVAL)); 2445 } 2446 2447 if (svd->vdev_children != dvd->vdev_children) { 2448 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " 2449 "%llu != %llu", (u_longlong_t)svd->vdev_children, 2450 (u_longlong_t)dvd->vdev_children); 2451 return (SET_ERROR(EINVAL)); 2452 } 2453 2454 for (uint64_t i = 0; i < svd->vdev_children; i++) { 2455 int error = vdev_copy_path_strict(svd->vdev_child[i], 2456 dvd->vdev_child[i]); 2457 if (error != 0) 2458 return (error); 2459 } 2460 2461 if (svd->vdev_ops->vdev_op_leaf) 2462 vdev_copy_path_impl(svd, dvd); 2463 2464 return (0); 2465 } 2466 2467 static void 2468 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) 2469 { 2470 ASSERT(stvd->vdev_top == stvd); 2471 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); 2472 2473 for (uint64_t i = 0; i < dvd->vdev_children; i++) { 2474 vdev_copy_path_search(stvd, dvd->vdev_child[i]); 2475 } 2476 2477 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) 2478 return; 2479 2480 /* 2481 * The idea here is that while a vdev can shift positions within 2482 * a top vdev (when replacing, attaching mirror, etc.) it cannot 2483 * step outside of it. 2484 */ 2485 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); 2486 2487 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) 2488 return; 2489 2490 ASSERT(vd->vdev_ops->vdev_op_leaf); 2491 2492 vdev_copy_path_impl(vd, dvd); 2493 } 2494 2495 /* 2496 * Recursively copy vdev paths from one root vdev to another. Source and 2497 * destination vdev trees may differ in geometry. For each destination leaf 2498 * vdev, search a vdev with the same guid and top vdev id in the source. 2499 * Intended to copy paths from userland config into MOS config. 2500 */ 2501 void 2502 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) 2503 { 2504 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); 2505 ASSERT(srvd->vdev_ops == &vdev_root_ops); 2506 ASSERT(drvd->vdev_ops == &vdev_root_ops); 2507 2508 for (uint64_t i = 0; i < children; i++) { 2509 vdev_copy_path_search(srvd->vdev_child[i], 2510 drvd->vdev_child[i]); 2511 } 2512 } 2513 2514 /* 2515 * Close a virtual device. 2516 */ 2517 void 2518 vdev_close(vdev_t *vd) 2519 { 2520 vdev_t *pvd = vd->vdev_parent; 2521 spa_t *spa __maybe_unused = vd->vdev_spa; 2522 2523 ASSERT(vd != NULL); 2524 ASSERT(vd->vdev_open_thread == curthread || 2525 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2526 2527 /* 2528 * If our parent is reopening, then we are as well, unless we are 2529 * going offline. 2530 */ 2531 if (pvd != NULL && pvd->vdev_reopening) 2532 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 2533 2534 vd->vdev_ops->vdev_op_close(vd); 2535 2536 vdev_cache_purge(vd); 2537 2538 /* 2539 * We record the previous state before we close it, so that if we are 2540 * doing a reopen(), we don't generate FMA ereports if we notice that 2541 * it's still faulted. 2542 */ 2543 vd->vdev_prevstate = vd->vdev_state; 2544 2545 if (vd->vdev_offline) 2546 vd->vdev_state = VDEV_STATE_OFFLINE; 2547 else 2548 vd->vdev_state = VDEV_STATE_CLOSED; 2549 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2550 } 2551 2552 void 2553 vdev_hold(vdev_t *vd) 2554 { 2555 spa_t *spa = vd->vdev_spa; 2556 2557 ASSERT(spa_is_root(spa)); 2558 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 2559 return; 2560 2561 for (int c = 0; c < vd->vdev_children; c++) 2562 vdev_hold(vd->vdev_child[c]); 2563 2564 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL) 2565 vd->vdev_ops->vdev_op_hold(vd); 2566 } 2567 2568 void 2569 vdev_rele(vdev_t *vd) 2570 { 2571 ASSERT(spa_is_root(vd->vdev_spa)); 2572 for (int c = 0; c < vd->vdev_children; c++) 2573 vdev_rele(vd->vdev_child[c]); 2574 2575 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL) 2576 vd->vdev_ops->vdev_op_rele(vd); 2577 } 2578 2579 /* 2580 * Reopen all interior vdevs and any unopened leaves. We don't actually 2581 * reopen leaf vdevs which had previously been opened as they might deadlock 2582 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 2583 * If the leaf has never been opened then open it, as usual. 2584 */ 2585 void 2586 vdev_reopen(vdev_t *vd) 2587 { 2588 spa_t *spa = vd->vdev_spa; 2589 2590 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2591 2592 /* set the reopening flag unless we're taking the vdev offline */ 2593 vd->vdev_reopening = !vd->vdev_offline; 2594 vdev_close(vd); 2595 (void) vdev_open(vd); 2596 2597 /* 2598 * Call vdev_validate() here to make sure we have the same device. 2599 * Otherwise, a device with an invalid label could be successfully 2600 * opened in response to vdev_reopen(). 2601 */ 2602 if (vd->vdev_aux) { 2603 (void) vdev_validate_aux(vd); 2604 if (vdev_readable(vd) && vdev_writeable(vd) && 2605 vd->vdev_aux == &spa->spa_l2cache) { 2606 /* 2607 * In case the vdev is present we should evict all ARC 2608 * buffers and pointers to log blocks and reclaim their 2609 * space before restoring its contents to L2ARC. 2610 */ 2611 if (l2arc_vdev_present(vd)) { 2612 l2arc_rebuild_vdev(vd, B_TRUE); 2613 } else { 2614 l2arc_add_vdev(spa, vd); 2615 } 2616 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 2617 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 2618 } 2619 } else { 2620 (void) vdev_validate(vd); 2621 } 2622 2623 /* 2624 * Reassess parent vdev's health. 2625 */ 2626 vdev_propagate_state(vd); 2627 } 2628 2629 int 2630 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 2631 { 2632 int error; 2633 2634 /* 2635 * Normally, partial opens (e.g. of a mirror) are allowed. 2636 * For a create, however, we want to fail the request if 2637 * there are any components we can't open. 2638 */ 2639 error = vdev_open(vd); 2640 2641 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 2642 vdev_close(vd); 2643 return (error ? error : SET_ERROR(ENXIO)); 2644 } 2645 2646 /* 2647 * Recursively load DTLs and initialize all labels. 2648 */ 2649 if ((error = vdev_dtl_load(vd)) != 0 || 2650 (error = vdev_label_init(vd, txg, isreplacing ? 2651 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 2652 vdev_close(vd); 2653 return (error); 2654 } 2655 2656 return (0); 2657 } 2658 2659 void 2660 vdev_metaslab_set_size(vdev_t *vd) 2661 { 2662 uint64_t asize = vd->vdev_asize; 2663 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; 2664 uint64_t ms_shift; 2665 2666 /* 2667 * There are two dimensions to the metaslab sizing calculation: 2668 * the size of the metaslab and the count of metaslabs per vdev. 2669 * 2670 * The default values used below are a good balance between memory 2671 * usage (larger metaslab size means more memory needed for loaded 2672 * metaslabs; more metaslabs means more memory needed for the 2673 * metaslab_t structs), metaslab load time (larger metaslabs take 2674 * longer to load), and metaslab sync time (more metaslabs means 2675 * more time spent syncing all of them). 2676 * 2677 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. 2678 * The range of the dimensions are as follows: 2679 * 2680 * 2^29 <= ms_size <= 2^34 2681 * 16 <= ms_count <= 131,072 2682 * 2683 * On the lower end of vdev sizes, we aim for metaslabs sizes of 2684 * at least 512MB (2^29) to minimize fragmentation effects when 2685 * testing with smaller devices. However, the count constraint 2686 * of at least 16 metaslabs will override this minimum size goal. 2687 * 2688 * On the upper end of vdev sizes, we aim for a maximum metaslab 2689 * size of 16GB. However, we will cap the total count to 2^17 2690 * metaslabs to keep our memory footprint in check and let the 2691 * metaslab size grow from there if that limit is hit. 2692 * 2693 * The net effect of applying above constrains is summarized below. 2694 * 2695 * vdev size metaslab count 2696 * --------------|----------------- 2697 * < 8GB ~16 2698 * 8GB - 100GB one per 512MB 2699 * 100GB - 3TB ~200 2700 * 3TB - 2PB one per 16GB 2701 * > 2PB ~131,072 2702 * -------------------------------- 2703 * 2704 * Finally, note that all of the above calculate the initial 2705 * number of metaslabs. Expanding a top-level vdev will result 2706 * in additional metaslabs being allocated making it possible 2707 * to exceed the zfs_vdev_ms_count_limit. 2708 */ 2709 2710 if (ms_count < zfs_vdev_min_ms_count) 2711 ms_shift = highbit64(asize / zfs_vdev_min_ms_count); 2712 else if (ms_count > zfs_vdev_default_ms_count) 2713 ms_shift = highbit64(asize / zfs_vdev_default_ms_count); 2714 else 2715 ms_shift = zfs_vdev_default_ms_shift; 2716 2717 if (ms_shift < SPA_MAXBLOCKSHIFT) { 2718 ms_shift = SPA_MAXBLOCKSHIFT; 2719 } else if (ms_shift > zfs_vdev_max_ms_shift) { 2720 ms_shift = zfs_vdev_max_ms_shift; 2721 /* cap the total count to constrain memory footprint */ 2722 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) 2723 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); 2724 } 2725 2726 vd->vdev_ms_shift = ms_shift; 2727 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); 2728 } 2729 2730 void 2731 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 2732 { 2733 ASSERT(vd == vd->vdev_top); 2734 /* indirect vdevs don't have metaslabs or dtls */ 2735 ASSERT(vdev_is_concrete(vd) || flags == 0); 2736 ASSERT(ISP2(flags)); 2737 ASSERT(spa_writeable(vd->vdev_spa)); 2738 2739 if (flags & VDD_METASLAB) 2740 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 2741 2742 if (flags & VDD_DTL) 2743 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 2744 2745 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 2746 } 2747 2748 void 2749 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 2750 { 2751 for (int c = 0; c < vd->vdev_children; c++) 2752 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 2753 2754 if (vd->vdev_ops->vdev_op_leaf) 2755 vdev_dirty(vd->vdev_top, flags, vd, txg); 2756 } 2757 2758 /* 2759 * DTLs. 2760 * 2761 * A vdev's DTL (dirty time log) is the set of transaction groups for which 2762 * the vdev has less than perfect replication. There are four kinds of DTL: 2763 * 2764 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 2765 * 2766 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 2767 * 2768 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 2769 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 2770 * txgs that was scrubbed. 2771 * 2772 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 2773 * persistent errors or just some device being offline. 2774 * Unlike the other three, the DTL_OUTAGE map is not generally 2775 * maintained; it's only computed when needed, typically to 2776 * determine whether a device can be detached. 2777 * 2778 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 2779 * either has the data or it doesn't. 2780 * 2781 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 2782 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 2783 * if any child is less than fully replicated, then so is its parent. 2784 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 2785 * comprising only those txgs which appear in 'maxfaults' or more children; 2786 * those are the txgs we don't have enough replication to read. For example, 2787 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 2788 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 2789 * two child DTL_MISSING maps. 2790 * 2791 * It should be clear from the above that to compute the DTLs and outage maps 2792 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 2793 * Therefore, that is all we keep on disk. When loading the pool, or after 2794 * a configuration change, we generate all other DTLs from first principles. 2795 */ 2796 void 2797 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2798 { 2799 range_tree_t *rt = vd->vdev_dtl[t]; 2800 2801 ASSERT(t < DTL_TYPES); 2802 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2803 ASSERT(spa_writeable(vd->vdev_spa)); 2804 2805 mutex_enter(&vd->vdev_dtl_lock); 2806 if (!range_tree_contains(rt, txg, size)) 2807 range_tree_add(rt, txg, size); 2808 mutex_exit(&vd->vdev_dtl_lock); 2809 } 2810 2811 boolean_t 2812 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2813 { 2814 range_tree_t *rt = vd->vdev_dtl[t]; 2815 boolean_t dirty = B_FALSE; 2816 2817 ASSERT(t < DTL_TYPES); 2818 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2819 2820 /* 2821 * While we are loading the pool, the DTLs have not been loaded yet. 2822 * This isn't a problem but it can result in devices being tried 2823 * which are known to not have the data. In which case, the import 2824 * is relying on the checksum to ensure that we get the right data. 2825 * Note that while importing we are only reading the MOS, which is 2826 * always checksummed. 2827 */ 2828 mutex_enter(&vd->vdev_dtl_lock); 2829 if (!range_tree_is_empty(rt)) 2830 dirty = range_tree_contains(rt, txg, size); 2831 mutex_exit(&vd->vdev_dtl_lock); 2832 2833 return (dirty); 2834 } 2835 2836 boolean_t 2837 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 2838 { 2839 range_tree_t *rt = vd->vdev_dtl[t]; 2840 boolean_t empty; 2841 2842 mutex_enter(&vd->vdev_dtl_lock); 2843 empty = range_tree_is_empty(rt); 2844 mutex_exit(&vd->vdev_dtl_lock); 2845 2846 return (empty); 2847 } 2848 2849 /* 2850 * Check if the txg falls within the range which must be 2851 * resilvered. DVAs outside this range can always be skipped. 2852 */ 2853 boolean_t 2854 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 2855 uint64_t phys_birth) 2856 { 2857 (void) dva, (void) psize; 2858 2859 /* Set by sequential resilver. */ 2860 if (phys_birth == TXG_UNKNOWN) 2861 return (B_TRUE); 2862 2863 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)); 2864 } 2865 2866 /* 2867 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered. 2868 */ 2869 boolean_t 2870 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 2871 uint64_t phys_birth) 2872 { 2873 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2874 2875 if (vd->vdev_ops->vdev_op_need_resilver == NULL || 2876 vd->vdev_ops->vdev_op_leaf) 2877 return (B_TRUE); 2878 2879 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize, 2880 phys_birth)); 2881 } 2882 2883 /* 2884 * Returns the lowest txg in the DTL range. 2885 */ 2886 static uint64_t 2887 vdev_dtl_min(vdev_t *vd) 2888 { 2889 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2890 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2891 ASSERT0(vd->vdev_children); 2892 2893 return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1); 2894 } 2895 2896 /* 2897 * Returns the highest txg in the DTL. 2898 */ 2899 static uint64_t 2900 vdev_dtl_max(vdev_t *vd) 2901 { 2902 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2903 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2904 ASSERT0(vd->vdev_children); 2905 2906 return (range_tree_max(vd->vdev_dtl[DTL_MISSING])); 2907 } 2908 2909 /* 2910 * Determine if a resilvering vdev should remove any DTL entries from 2911 * its range. If the vdev was resilvering for the entire duration of the 2912 * scan then it should excise that range from its DTLs. Otherwise, this 2913 * vdev is considered partially resilvered and should leave its DTL 2914 * entries intact. The comment in vdev_dtl_reassess() describes how we 2915 * excise the DTLs. 2916 */ 2917 static boolean_t 2918 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done) 2919 { 2920 ASSERT0(vd->vdev_children); 2921 2922 if (vd->vdev_state < VDEV_STATE_DEGRADED) 2923 return (B_FALSE); 2924 2925 if (vd->vdev_resilver_deferred) 2926 return (B_FALSE); 2927 2928 if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) 2929 return (B_TRUE); 2930 2931 if (rebuild_done) { 2932 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 2933 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 2934 2935 /* Rebuild not initiated by attach */ 2936 if (vd->vdev_rebuild_txg == 0) 2937 return (B_TRUE); 2938 2939 /* 2940 * When a rebuild completes without error then all missing data 2941 * up to the rebuild max txg has been reconstructed and the DTL 2942 * is eligible for excision. 2943 */ 2944 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE && 2945 vdev_dtl_max(vd) <= vrp->vrp_max_txg) { 2946 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd)); 2947 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg); 2948 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg); 2949 return (B_TRUE); 2950 } 2951 } else { 2952 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 2953 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys; 2954 2955 /* Resilver not initiated by attach */ 2956 if (vd->vdev_resilver_txg == 0) 2957 return (B_TRUE); 2958 2959 /* 2960 * When a resilver is initiated the scan will assign the 2961 * scn_max_txg value to the highest txg value that exists 2962 * in all DTLs. If this device's max DTL is not part of this 2963 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg] 2964 * then it is not eligible for excision. 2965 */ 2966 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 2967 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd)); 2968 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg); 2969 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg); 2970 return (B_TRUE); 2971 } 2972 } 2973 2974 return (B_FALSE); 2975 } 2976 2977 /* 2978 * Reassess DTLs after a config change or scrub completion. If txg == 0 no 2979 * write operations will be issued to the pool. 2980 */ 2981 void 2982 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, 2983 boolean_t scrub_done, boolean_t rebuild_done) 2984 { 2985 spa_t *spa = vd->vdev_spa; 2986 avl_tree_t reftree; 2987 int minref; 2988 2989 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2990 2991 for (int c = 0; c < vd->vdev_children; c++) 2992 vdev_dtl_reassess(vd->vdev_child[c], txg, 2993 scrub_txg, scrub_done, rebuild_done); 2994 2995 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) 2996 return; 2997 2998 if (vd->vdev_ops->vdev_op_leaf) { 2999 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 3000 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3001 boolean_t check_excise = B_FALSE; 3002 boolean_t wasempty = B_TRUE; 3003 3004 mutex_enter(&vd->vdev_dtl_lock); 3005 3006 /* 3007 * If requested, pretend the scan or rebuild completed cleanly. 3008 */ 3009 if (zfs_scan_ignore_errors) { 3010 if (scn != NULL) 3011 scn->scn_phys.scn_errors = 0; 3012 if (vr != NULL) 3013 vr->vr_rebuild_phys.vrp_errors = 0; 3014 } 3015 3016 if (scrub_txg != 0 && 3017 !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3018 wasempty = B_FALSE; 3019 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d " 3020 "dtl:%llu/%llu errors:%llu", 3021 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg, 3022 (u_longlong_t)scrub_txg, spa->spa_scrub_started, 3023 (u_longlong_t)vdev_dtl_min(vd), 3024 (u_longlong_t)vdev_dtl_max(vd), 3025 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0)); 3026 } 3027 3028 /* 3029 * If we've completed a scrub/resilver or a rebuild cleanly 3030 * then determine if this vdev should remove any DTLs. We 3031 * only want to excise regions on vdevs that were available 3032 * during the entire duration of this scan. 3033 */ 3034 if (rebuild_done && 3035 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) { 3036 check_excise = B_TRUE; 3037 } else { 3038 if (spa->spa_scrub_started || 3039 (scn != NULL && scn->scn_phys.scn_errors == 0)) { 3040 check_excise = B_TRUE; 3041 } 3042 } 3043 3044 if (scrub_txg && check_excise && 3045 vdev_dtl_should_excise(vd, rebuild_done)) { 3046 /* 3047 * We completed a scrub, resilver or rebuild up to 3048 * scrub_txg. If we did it without rebooting, then 3049 * the scrub dtl will be valid, so excise the old 3050 * region and fold in the scrub dtl. Otherwise, 3051 * leave the dtl as-is if there was an error. 3052 * 3053 * There's little trick here: to excise the beginning 3054 * of the DTL_MISSING map, we put it into a reference 3055 * tree and then add a segment with refcnt -1 that 3056 * covers the range [0, scrub_txg). This means 3057 * that each txg in that range has refcnt -1 or 0. 3058 * We then add DTL_SCRUB with a refcnt of 2, so that 3059 * entries in the range [0, scrub_txg) will have a 3060 * positive refcnt -- either 1 or 2. We then convert 3061 * the reference tree into the new DTL_MISSING map. 3062 */ 3063 space_reftree_create(&reftree); 3064 space_reftree_add_map(&reftree, 3065 vd->vdev_dtl[DTL_MISSING], 1); 3066 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 3067 space_reftree_add_map(&reftree, 3068 vd->vdev_dtl[DTL_SCRUB], 2); 3069 space_reftree_generate_map(&reftree, 3070 vd->vdev_dtl[DTL_MISSING], 1); 3071 space_reftree_destroy(&reftree); 3072 3073 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3074 zfs_dbgmsg("update DTL_MISSING:%llu/%llu", 3075 (u_longlong_t)vdev_dtl_min(vd), 3076 (u_longlong_t)vdev_dtl_max(vd)); 3077 } else if (!wasempty) { 3078 zfs_dbgmsg("DTL_MISSING is now empty"); 3079 } 3080 } 3081 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 3082 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3083 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 3084 if (scrub_done) 3085 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 3086 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 3087 if (!vdev_readable(vd)) 3088 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 3089 else 3090 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3091 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 3092 3093 /* 3094 * If the vdev was resilvering or rebuilding and no longer 3095 * has any DTLs then reset the appropriate flag and dirty 3096 * the top level so that we persist the change. 3097 */ 3098 if (txg != 0 && 3099 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3100 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) { 3101 if (vd->vdev_rebuild_txg != 0) { 3102 vd->vdev_rebuild_txg = 0; 3103 vdev_config_dirty(vd->vdev_top); 3104 } else if (vd->vdev_resilver_txg != 0) { 3105 vd->vdev_resilver_txg = 0; 3106 vdev_config_dirty(vd->vdev_top); 3107 } 3108 } 3109 3110 mutex_exit(&vd->vdev_dtl_lock); 3111 3112 if (txg != 0) 3113 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 3114 return; 3115 } 3116 3117 mutex_enter(&vd->vdev_dtl_lock); 3118 for (int t = 0; t < DTL_TYPES; t++) { 3119 /* account for child's outage in parent's missing map */ 3120 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 3121 if (t == DTL_SCRUB) 3122 continue; /* leaf vdevs only */ 3123 if (t == DTL_PARTIAL) 3124 minref = 1; /* i.e. non-zero */ 3125 else if (vdev_get_nparity(vd) != 0) 3126 minref = vdev_get_nparity(vd) + 1; /* RAID-Z, dRAID */ 3127 else 3128 minref = vd->vdev_children; /* any kind of mirror */ 3129 space_reftree_create(&reftree); 3130 for (int c = 0; c < vd->vdev_children; c++) { 3131 vdev_t *cvd = vd->vdev_child[c]; 3132 mutex_enter(&cvd->vdev_dtl_lock); 3133 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 3134 mutex_exit(&cvd->vdev_dtl_lock); 3135 } 3136 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 3137 space_reftree_destroy(&reftree); 3138 } 3139 mutex_exit(&vd->vdev_dtl_lock); 3140 } 3141 3142 int 3143 vdev_dtl_load(vdev_t *vd) 3144 { 3145 spa_t *spa = vd->vdev_spa; 3146 objset_t *mos = spa->spa_meta_objset; 3147 range_tree_t *rt; 3148 int error = 0; 3149 3150 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 3151 ASSERT(vdev_is_concrete(vd)); 3152 3153 /* 3154 * If the dtl cannot be sync'd there is no need to open it. 3155 */ 3156 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps) 3157 return (0); 3158 3159 error = space_map_open(&vd->vdev_dtl_sm, mos, 3160 vd->vdev_dtl_object, 0, -1ULL, 0); 3161 if (error) 3162 return (error); 3163 ASSERT(vd->vdev_dtl_sm != NULL); 3164 3165 rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3166 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC); 3167 if (error == 0) { 3168 mutex_enter(&vd->vdev_dtl_lock); 3169 range_tree_walk(rt, range_tree_add, 3170 vd->vdev_dtl[DTL_MISSING]); 3171 mutex_exit(&vd->vdev_dtl_lock); 3172 } 3173 3174 range_tree_vacate(rt, NULL, NULL); 3175 range_tree_destroy(rt); 3176 3177 return (error); 3178 } 3179 3180 for (int c = 0; c < vd->vdev_children; c++) { 3181 error = vdev_dtl_load(vd->vdev_child[c]); 3182 if (error != 0) 3183 break; 3184 } 3185 3186 return (error); 3187 } 3188 3189 static void 3190 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx) 3191 { 3192 spa_t *spa = vd->vdev_spa; 3193 objset_t *mos = spa->spa_meta_objset; 3194 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 3195 const char *string; 3196 3197 ASSERT(alloc_bias != VDEV_BIAS_NONE); 3198 3199 string = 3200 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG : 3201 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL : 3202 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL; 3203 3204 ASSERT(string != NULL); 3205 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, 3206 1, strlen(string) + 1, string, tx)); 3207 3208 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) { 3209 spa_activate_allocation_classes(spa, tx); 3210 } 3211 } 3212 3213 void 3214 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 3215 { 3216 spa_t *spa = vd->vdev_spa; 3217 3218 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 3219 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3220 zapobj, tx)); 3221 } 3222 3223 uint64_t 3224 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 3225 { 3226 spa_t *spa = vd->vdev_spa; 3227 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 3228 DMU_OT_NONE, 0, tx); 3229 3230 ASSERT(zap != 0); 3231 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3232 zap, tx)); 3233 3234 return (zap); 3235 } 3236 3237 void 3238 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 3239 { 3240 if (vd->vdev_ops != &vdev_hole_ops && 3241 vd->vdev_ops != &vdev_missing_ops && 3242 vd->vdev_ops != &vdev_root_ops && 3243 !vd->vdev_top->vdev_removing) { 3244 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 3245 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 3246 } 3247 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 3248 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 3249 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE) 3250 vdev_zap_allocation_data(vd, tx); 3251 } 3252 } 3253 3254 for (uint64_t i = 0; i < vd->vdev_children; i++) { 3255 vdev_construct_zaps(vd->vdev_child[i], tx); 3256 } 3257 } 3258 3259 static void 3260 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 3261 { 3262 spa_t *spa = vd->vdev_spa; 3263 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 3264 objset_t *mos = spa->spa_meta_objset; 3265 range_tree_t *rtsync; 3266 dmu_tx_t *tx; 3267 uint64_t object = space_map_object(vd->vdev_dtl_sm); 3268 3269 ASSERT(vdev_is_concrete(vd)); 3270 ASSERT(vd->vdev_ops->vdev_op_leaf); 3271 3272 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3273 3274 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 3275 mutex_enter(&vd->vdev_dtl_lock); 3276 space_map_free(vd->vdev_dtl_sm, tx); 3277 space_map_close(vd->vdev_dtl_sm); 3278 vd->vdev_dtl_sm = NULL; 3279 mutex_exit(&vd->vdev_dtl_lock); 3280 3281 /* 3282 * We only destroy the leaf ZAP for detached leaves or for 3283 * removed log devices. Removed data devices handle leaf ZAP 3284 * cleanup later, once cancellation is no longer possible. 3285 */ 3286 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 3287 vd->vdev_top->vdev_islog)) { 3288 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 3289 vd->vdev_leaf_zap = 0; 3290 } 3291 3292 dmu_tx_commit(tx); 3293 return; 3294 } 3295 3296 if (vd->vdev_dtl_sm == NULL) { 3297 uint64_t new_object; 3298 3299 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx); 3300 VERIFY3U(new_object, !=, 0); 3301 3302 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 3303 0, -1ULL, 0)); 3304 ASSERT(vd->vdev_dtl_sm != NULL); 3305 } 3306 3307 rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3308 3309 mutex_enter(&vd->vdev_dtl_lock); 3310 range_tree_walk(rt, range_tree_add, rtsync); 3311 mutex_exit(&vd->vdev_dtl_lock); 3312 3313 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx); 3314 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); 3315 range_tree_vacate(rtsync, NULL, NULL); 3316 3317 range_tree_destroy(rtsync); 3318 3319 /* 3320 * If the object for the space map has changed then dirty 3321 * the top level so that we update the config. 3322 */ 3323 if (object != space_map_object(vd->vdev_dtl_sm)) { 3324 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " 3325 "new object %llu", (u_longlong_t)txg, spa_name(spa), 3326 (u_longlong_t)object, 3327 (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); 3328 vdev_config_dirty(vd->vdev_top); 3329 } 3330 3331 dmu_tx_commit(tx); 3332 } 3333 3334 /* 3335 * Determine whether the specified vdev can be offlined/detached/removed 3336 * without losing data. 3337 */ 3338 boolean_t 3339 vdev_dtl_required(vdev_t *vd) 3340 { 3341 spa_t *spa = vd->vdev_spa; 3342 vdev_t *tvd = vd->vdev_top; 3343 uint8_t cant_read = vd->vdev_cant_read; 3344 boolean_t required; 3345 3346 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3347 3348 if (vd == spa->spa_root_vdev || vd == tvd) 3349 return (B_TRUE); 3350 3351 /* 3352 * Temporarily mark the device as unreadable, and then determine 3353 * whether this results in any DTL outages in the top-level vdev. 3354 * If not, we can safely offline/detach/remove the device. 3355 */ 3356 vd->vdev_cant_read = B_TRUE; 3357 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3358 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 3359 vd->vdev_cant_read = cant_read; 3360 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3361 3362 if (!required && zio_injection_enabled) { 3363 required = !!zio_handle_device_injection(vd, NULL, 3364 SET_ERROR(ECHILD)); 3365 } 3366 3367 return (required); 3368 } 3369 3370 /* 3371 * Determine if resilver is needed, and if so the txg range. 3372 */ 3373 boolean_t 3374 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 3375 { 3376 boolean_t needed = B_FALSE; 3377 uint64_t thismin = UINT64_MAX; 3378 uint64_t thismax = 0; 3379 3380 if (vd->vdev_children == 0) { 3381 mutex_enter(&vd->vdev_dtl_lock); 3382 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3383 vdev_writeable(vd)) { 3384 3385 thismin = vdev_dtl_min(vd); 3386 thismax = vdev_dtl_max(vd); 3387 needed = B_TRUE; 3388 } 3389 mutex_exit(&vd->vdev_dtl_lock); 3390 } else { 3391 for (int c = 0; c < vd->vdev_children; c++) { 3392 vdev_t *cvd = vd->vdev_child[c]; 3393 uint64_t cmin, cmax; 3394 3395 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 3396 thismin = MIN(thismin, cmin); 3397 thismax = MAX(thismax, cmax); 3398 needed = B_TRUE; 3399 } 3400 } 3401 } 3402 3403 if (needed && minp) { 3404 *minp = thismin; 3405 *maxp = thismax; 3406 } 3407 return (needed); 3408 } 3409 3410 /* 3411 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj 3412 * will contain either the checkpoint spacemap object or zero if none exists. 3413 * All other errors are returned to the caller. 3414 */ 3415 int 3416 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj) 3417 { 3418 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 3419 3420 if (vd->vdev_top_zap == 0) { 3421 *sm_obj = 0; 3422 return (0); 3423 } 3424 3425 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, 3426 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj); 3427 if (error == ENOENT) { 3428 *sm_obj = 0; 3429 error = 0; 3430 } 3431 3432 return (error); 3433 } 3434 3435 int 3436 vdev_load(vdev_t *vd) 3437 { 3438 int children = vd->vdev_children; 3439 int error = 0; 3440 taskq_t *tq = NULL; 3441 3442 /* 3443 * It's only worthwhile to use the taskq for the root vdev, because the 3444 * slow part is metaslab_init, and that only happens for top-level 3445 * vdevs. 3446 */ 3447 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) { 3448 tq = taskq_create("vdev_load", children, minclsyspri, 3449 children, children, TASKQ_PREPOPULATE); 3450 } 3451 3452 /* 3453 * Recursively load all children. 3454 */ 3455 for (int c = 0; c < vd->vdev_children; c++) { 3456 vdev_t *cvd = vd->vdev_child[c]; 3457 3458 if (tq == NULL || vdev_uses_zvols(cvd)) { 3459 cvd->vdev_load_error = vdev_load(cvd); 3460 } else { 3461 VERIFY(taskq_dispatch(tq, vdev_load_child, 3462 cvd, TQ_SLEEP) != TASKQID_INVALID); 3463 } 3464 } 3465 3466 if (tq != NULL) { 3467 taskq_wait(tq); 3468 taskq_destroy(tq); 3469 } 3470 3471 for (int c = 0; c < vd->vdev_children; c++) { 3472 int error = vd->vdev_child[c]->vdev_load_error; 3473 3474 if (error != 0) 3475 return (error); 3476 } 3477 3478 vdev_set_deflate_ratio(vd); 3479 3480 /* 3481 * On spa_load path, grab the allocation bias from our zap 3482 */ 3483 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3484 spa_t *spa = vd->vdev_spa; 3485 char bias_str[64]; 3486 3487 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3488 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str), 3489 bias_str); 3490 if (error == 0) { 3491 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE); 3492 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str); 3493 } else if (error != ENOENT) { 3494 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3495 VDEV_AUX_CORRUPT_DATA); 3496 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) " 3497 "failed [error=%d]", 3498 (u_longlong_t)vd->vdev_top_zap, error); 3499 return (error); 3500 } 3501 } 3502 3503 /* 3504 * Load any rebuild state from the top-level vdev zap. 3505 */ 3506 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3507 error = vdev_rebuild_load(vd); 3508 if (error && error != ENOTSUP) { 3509 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3510 VDEV_AUX_CORRUPT_DATA); 3511 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load " 3512 "failed [error=%d]", error); 3513 return (error); 3514 } 3515 } 3516 3517 /* 3518 * If this is a top-level vdev, initialize its metaslabs. 3519 */ 3520 if (vd == vd->vdev_top && vdev_is_concrete(vd)) { 3521 vdev_metaslab_group_create(vd); 3522 3523 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { 3524 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3525 VDEV_AUX_CORRUPT_DATA); 3526 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " 3527 "asize=%llu", (u_longlong_t)vd->vdev_ashift, 3528 (u_longlong_t)vd->vdev_asize); 3529 return (SET_ERROR(ENXIO)); 3530 } 3531 3532 error = vdev_metaslab_init(vd, 0); 3533 if (error != 0) { 3534 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " 3535 "[error=%d]", error); 3536 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3537 VDEV_AUX_CORRUPT_DATA); 3538 return (error); 3539 } 3540 3541 uint64_t checkpoint_sm_obj; 3542 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj); 3543 if (error == 0 && checkpoint_sm_obj != 0) { 3544 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3545 ASSERT(vd->vdev_asize != 0); 3546 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL); 3547 3548 error = space_map_open(&vd->vdev_checkpoint_sm, 3549 mos, checkpoint_sm_obj, 0, vd->vdev_asize, 3550 vd->vdev_ashift); 3551 if (error != 0) { 3552 vdev_dbgmsg(vd, "vdev_load: space_map_open " 3553 "failed for checkpoint spacemap (obj %llu) " 3554 "[error=%d]", 3555 (u_longlong_t)checkpoint_sm_obj, error); 3556 return (error); 3557 } 3558 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 3559 3560 /* 3561 * Since the checkpoint_sm contains free entries 3562 * exclusively we can use space_map_allocated() to 3563 * indicate the cumulative checkpointed space that 3564 * has been freed. 3565 */ 3566 vd->vdev_stat.vs_checkpoint_space = 3567 -space_map_allocated(vd->vdev_checkpoint_sm); 3568 vd->vdev_spa->spa_checkpoint_info.sci_dspace += 3569 vd->vdev_stat.vs_checkpoint_space; 3570 } else if (error != 0) { 3571 vdev_dbgmsg(vd, "vdev_load: failed to retrieve " 3572 "checkpoint space map object from vdev ZAP " 3573 "[error=%d]", error); 3574 return (error); 3575 } 3576 } 3577 3578 /* 3579 * If this is a leaf vdev, load its DTL. 3580 */ 3581 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { 3582 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3583 VDEV_AUX_CORRUPT_DATA); 3584 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " 3585 "[error=%d]", error); 3586 return (error); 3587 } 3588 3589 uint64_t obsolete_sm_object; 3590 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object); 3591 if (error == 0 && obsolete_sm_object != 0) { 3592 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3593 ASSERT(vd->vdev_asize != 0); 3594 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 3595 3596 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, 3597 obsolete_sm_object, 0, vd->vdev_asize, 0))) { 3598 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3599 VDEV_AUX_CORRUPT_DATA); 3600 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " 3601 "obsolete spacemap (obj %llu) [error=%d]", 3602 (u_longlong_t)obsolete_sm_object, error); 3603 return (error); 3604 } 3605 } else if (error != 0) { 3606 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete " 3607 "space map object from vdev ZAP [error=%d]", error); 3608 return (error); 3609 } 3610 3611 return (0); 3612 } 3613 3614 /* 3615 * The special vdev case is used for hot spares and l2cache devices. Its 3616 * sole purpose it to set the vdev state for the associated vdev. To do this, 3617 * we make sure that we can open the underlying device, then try to read the 3618 * label, and make sure that the label is sane and that it hasn't been 3619 * repurposed to another pool. 3620 */ 3621 int 3622 vdev_validate_aux(vdev_t *vd) 3623 { 3624 nvlist_t *label; 3625 uint64_t guid, version; 3626 uint64_t state; 3627 3628 if (!vdev_readable(vd)) 3629 return (0); 3630 3631 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 3632 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3633 VDEV_AUX_CORRUPT_DATA); 3634 return (-1); 3635 } 3636 3637 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 3638 !SPA_VERSION_IS_SUPPORTED(version) || 3639 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 3640 guid != vd->vdev_guid || 3641 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 3642 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3643 VDEV_AUX_CORRUPT_DATA); 3644 nvlist_free(label); 3645 return (-1); 3646 } 3647 3648 /* 3649 * We don't actually check the pool state here. If it's in fact in 3650 * use by another pool, we update this fact on the fly when requested. 3651 */ 3652 nvlist_free(label); 3653 return (0); 3654 } 3655 3656 static void 3657 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx) 3658 { 3659 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3660 3661 if (vd->vdev_top_zap == 0) 3662 return; 3663 3664 uint64_t object = 0; 3665 int err = zap_lookup(mos, vd->vdev_top_zap, 3666 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object); 3667 if (err == ENOENT) 3668 return; 3669 VERIFY0(err); 3670 3671 VERIFY0(dmu_object_free(mos, object, tx)); 3672 VERIFY0(zap_remove(mos, vd->vdev_top_zap, 3673 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx)); 3674 } 3675 3676 /* 3677 * Free the objects used to store this vdev's spacemaps, and the array 3678 * that points to them. 3679 */ 3680 void 3681 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) 3682 { 3683 if (vd->vdev_ms_array == 0) 3684 return; 3685 3686 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3687 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; 3688 size_t array_bytes = array_count * sizeof (uint64_t); 3689 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); 3690 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, 3691 array_bytes, smobj_array, 0)); 3692 3693 for (uint64_t i = 0; i < array_count; i++) { 3694 uint64_t smobj = smobj_array[i]; 3695 if (smobj == 0) 3696 continue; 3697 3698 space_map_free_obj(mos, smobj, tx); 3699 } 3700 3701 kmem_free(smobj_array, array_bytes); 3702 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); 3703 vdev_destroy_ms_flush_data(vd, tx); 3704 vd->vdev_ms_array = 0; 3705 } 3706 3707 static void 3708 vdev_remove_empty_log(vdev_t *vd, uint64_t txg) 3709 { 3710 spa_t *spa = vd->vdev_spa; 3711 3712 ASSERT(vd->vdev_islog); 3713 ASSERT(vd == vd->vdev_top); 3714 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 3715 3716 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 3717 3718 vdev_destroy_spacemaps(vd, tx); 3719 if (vd->vdev_top_zap != 0) { 3720 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 3721 vd->vdev_top_zap = 0; 3722 } 3723 3724 dmu_tx_commit(tx); 3725 } 3726 3727 void 3728 vdev_sync_done(vdev_t *vd, uint64_t txg) 3729 { 3730 metaslab_t *msp; 3731 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 3732 3733 ASSERT(vdev_is_concrete(vd)); 3734 3735 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 3736 != NULL) 3737 metaslab_sync_done(msp, txg); 3738 3739 if (reassess) { 3740 metaslab_sync_reassess(vd->vdev_mg); 3741 if (vd->vdev_log_mg != NULL) 3742 metaslab_sync_reassess(vd->vdev_log_mg); 3743 } 3744 } 3745 3746 void 3747 vdev_sync(vdev_t *vd, uint64_t txg) 3748 { 3749 spa_t *spa = vd->vdev_spa; 3750 vdev_t *lvd; 3751 metaslab_t *msp; 3752 3753 ASSERT3U(txg, ==, spa->spa_syncing_txg); 3754 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3755 if (range_tree_space(vd->vdev_obsolete_segments) > 0) { 3756 ASSERT(vd->vdev_removing || 3757 vd->vdev_ops == &vdev_indirect_ops); 3758 3759 vdev_indirect_sync_obsolete(vd, tx); 3760 3761 /* 3762 * If the vdev is indirect, it can't have dirty 3763 * metaslabs or DTLs. 3764 */ 3765 if (vd->vdev_ops == &vdev_indirect_ops) { 3766 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); 3767 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); 3768 dmu_tx_commit(tx); 3769 return; 3770 } 3771 } 3772 3773 ASSERT(vdev_is_concrete(vd)); 3774 3775 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && 3776 !vd->vdev_removing) { 3777 ASSERT(vd == vd->vdev_top); 3778 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 3779 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 3780 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 3781 ASSERT(vd->vdev_ms_array != 0); 3782 vdev_config_dirty(vd); 3783 } 3784 3785 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 3786 metaslab_sync(msp, txg); 3787 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 3788 } 3789 3790 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 3791 vdev_dtl_sync(lvd, txg); 3792 3793 /* 3794 * If this is an empty log device being removed, destroy the 3795 * metadata associated with it. 3796 */ 3797 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 3798 vdev_remove_empty_log(vd, txg); 3799 3800 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 3801 dmu_tx_commit(tx); 3802 } 3803 3804 uint64_t 3805 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 3806 { 3807 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 3808 } 3809 3810 /* 3811 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 3812 * not be opened, and no I/O is attempted. 3813 */ 3814 int 3815 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3816 { 3817 vdev_t *vd, *tvd; 3818 3819 spa_vdev_state_enter(spa, SCL_NONE); 3820 3821 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3822 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 3823 3824 if (!vd->vdev_ops->vdev_op_leaf) 3825 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 3826 3827 tvd = vd->vdev_top; 3828 3829 /* 3830 * If user did a 'zpool offline -f' then make the fault persist across 3831 * reboots. 3832 */ 3833 if (aux == VDEV_AUX_EXTERNAL_PERSIST) { 3834 /* 3835 * There are two kinds of forced faults: temporary and 3836 * persistent. Temporary faults go away at pool import, while 3837 * persistent faults stay set. Both types of faults can be 3838 * cleared with a zpool clear. 3839 * 3840 * We tell if a vdev is persistently faulted by looking at the 3841 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at 3842 * import then it's a persistent fault. Otherwise, it's 3843 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external" 3844 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This 3845 * tells vdev_config_generate() (which gets run later) to set 3846 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist. 3847 */ 3848 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 3849 vd->vdev_tmpoffline = B_FALSE; 3850 aux = VDEV_AUX_EXTERNAL; 3851 } else { 3852 vd->vdev_tmpoffline = B_TRUE; 3853 } 3854 3855 /* 3856 * We don't directly use the aux state here, but if we do a 3857 * vdev_reopen(), we need this value to be present to remember why we 3858 * were faulted. 3859 */ 3860 vd->vdev_label_aux = aux; 3861 3862 /* 3863 * Faulted state takes precedence over degraded. 3864 */ 3865 vd->vdev_delayed_close = B_FALSE; 3866 vd->vdev_faulted = 1ULL; 3867 vd->vdev_degraded = 0ULL; 3868 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 3869 3870 /* 3871 * If this device has the only valid copy of the data, then 3872 * back off and simply mark the vdev as degraded instead. 3873 */ 3874 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 3875 vd->vdev_degraded = 1ULL; 3876 vd->vdev_faulted = 0ULL; 3877 3878 /* 3879 * If we reopen the device and it's not dead, only then do we 3880 * mark it degraded. 3881 */ 3882 vdev_reopen(tvd); 3883 3884 if (vdev_readable(vd)) 3885 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 3886 } 3887 3888 return (spa_vdev_state_exit(spa, vd, 0)); 3889 } 3890 3891 /* 3892 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 3893 * user that something is wrong. The vdev continues to operate as normal as far 3894 * as I/O is concerned. 3895 */ 3896 int 3897 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3898 { 3899 vdev_t *vd; 3900 3901 spa_vdev_state_enter(spa, SCL_NONE); 3902 3903 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3904 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 3905 3906 if (!vd->vdev_ops->vdev_op_leaf) 3907 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 3908 3909 /* 3910 * If the vdev is already faulted, then don't do anything. 3911 */ 3912 if (vd->vdev_faulted || vd->vdev_degraded) 3913 return (spa_vdev_state_exit(spa, NULL, 0)); 3914 3915 vd->vdev_degraded = 1ULL; 3916 if (!vdev_is_dead(vd)) 3917 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 3918 aux); 3919 3920 return (spa_vdev_state_exit(spa, vd, 0)); 3921 } 3922 3923 /* 3924 * Online the given vdev. 3925 * 3926 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 3927 * spare device should be detached when the device finishes resilvering. 3928 * Second, the online should be treated like a 'test' online case, so no FMA 3929 * events are generated if the device fails to open. 3930 */ 3931 int 3932 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 3933 { 3934 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 3935 boolean_t wasoffline; 3936 vdev_state_t oldstate; 3937 3938 spa_vdev_state_enter(spa, SCL_NONE); 3939 3940 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3941 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 3942 3943 if (!vd->vdev_ops->vdev_op_leaf) 3944 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 3945 3946 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 3947 oldstate = vd->vdev_state; 3948 3949 tvd = vd->vdev_top; 3950 vd->vdev_offline = B_FALSE; 3951 vd->vdev_tmpoffline = B_FALSE; 3952 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 3953 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 3954 3955 /* XXX - L2ARC 1.0 does not support expansion */ 3956 if (!vd->vdev_aux) { 3957 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3958 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) || 3959 spa->spa_autoexpand); 3960 vd->vdev_expansion_time = gethrestime_sec(); 3961 } 3962 3963 vdev_reopen(tvd); 3964 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 3965 3966 if (!vd->vdev_aux) { 3967 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3968 pvd->vdev_expanding = B_FALSE; 3969 } 3970 3971 if (newstate) 3972 *newstate = vd->vdev_state; 3973 if ((flags & ZFS_ONLINE_UNSPARE) && 3974 !vdev_is_dead(vd) && vd->vdev_parent && 3975 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 3976 vd->vdev_parent->vdev_child[0] == vd) 3977 vd->vdev_unspare = B_TRUE; 3978 3979 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 3980 3981 /* XXX - L2ARC 1.0 does not support expansion */ 3982 if (vd->vdev_aux) 3983 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 3984 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 3985 } 3986 3987 /* Restart initializing if necessary */ 3988 mutex_enter(&vd->vdev_initialize_lock); 3989 if (vdev_writeable(vd) && 3990 vd->vdev_initialize_thread == NULL && 3991 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { 3992 (void) vdev_initialize(vd); 3993 } 3994 mutex_exit(&vd->vdev_initialize_lock); 3995 3996 /* 3997 * Restart trimming if necessary. We do not restart trimming for cache 3998 * devices here. This is triggered by l2arc_rebuild_vdev() 3999 * asynchronously for the whole device or in l2arc_evict() as it evicts 4000 * space for upcoming writes. 4001 */ 4002 mutex_enter(&vd->vdev_trim_lock); 4003 if (vdev_writeable(vd) && !vd->vdev_isl2cache && 4004 vd->vdev_trim_thread == NULL && 4005 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) { 4006 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial, 4007 vd->vdev_trim_secure); 4008 } 4009 mutex_exit(&vd->vdev_trim_lock); 4010 4011 if (wasoffline || 4012 (oldstate < VDEV_STATE_DEGRADED && 4013 vd->vdev_state >= VDEV_STATE_DEGRADED)) 4014 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 4015 4016 return (spa_vdev_state_exit(spa, vd, 0)); 4017 } 4018 4019 static int 4020 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 4021 { 4022 vdev_t *vd, *tvd; 4023 int error = 0; 4024 uint64_t generation; 4025 metaslab_group_t *mg; 4026 4027 top: 4028 spa_vdev_state_enter(spa, SCL_ALLOC); 4029 4030 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4031 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4032 4033 if (!vd->vdev_ops->vdev_op_leaf) 4034 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4035 4036 if (vd->vdev_ops == &vdev_draid_spare_ops) 4037 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4038 4039 tvd = vd->vdev_top; 4040 mg = tvd->vdev_mg; 4041 generation = spa->spa_config_generation + 1; 4042 4043 /* 4044 * If the device isn't already offline, try to offline it. 4045 */ 4046 if (!vd->vdev_offline) { 4047 /* 4048 * If this device has the only valid copy of some data, 4049 * don't allow it to be offlined. Log devices are always 4050 * expendable. 4051 */ 4052 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4053 vdev_dtl_required(vd)) 4054 return (spa_vdev_state_exit(spa, NULL, 4055 SET_ERROR(EBUSY))); 4056 4057 /* 4058 * If the top-level is a slog and it has had allocations 4059 * then proceed. We check that the vdev's metaslab group 4060 * is not NULL since it's possible that we may have just 4061 * added this vdev but not yet initialized its metaslabs. 4062 */ 4063 if (tvd->vdev_islog && mg != NULL) { 4064 /* 4065 * Prevent any future allocations. 4066 */ 4067 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 4068 metaslab_group_passivate(mg); 4069 (void) spa_vdev_state_exit(spa, vd, 0); 4070 4071 error = spa_reset_logs(spa); 4072 4073 /* 4074 * If the log device was successfully reset but has 4075 * checkpointed data, do not offline it. 4076 */ 4077 if (error == 0 && 4078 tvd->vdev_checkpoint_sm != NULL) { 4079 ASSERT3U(space_map_allocated( 4080 tvd->vdev_checkpoint_sm), !=, 0); 4081 error = ZFS_ERR_CHECKPOINT_EXISTS; 4082 } 4083 4084 spa_vdev_state_enter(spa, SCL_ALLOC); 4085 4086 /* 4087 * Check to see if the config has changed. 4088 */ 4089 if (error || generation != spa->spa_config_generation) { 4090 metaslab_group_activate(mg); 4091 if (error) 4092 return (spa_vdev_state_exit(spa, 4093 vd, error)); 4094 (void) spa_vdev_state_exit(spa, vd, 0); 4095 goto top; 4096 } 4097 ASSERT0(tvd->vdev_stat.vs_alloc); 4098 } 4099 4100 /* 4101 * Offline this device and reopen its top-level vdev. 4102 * If the top-level vdev is a log device then just offline 4103 * it. Otherwise, if this action results in the top-level 4104 * vdev becoming unusable, undo it and fail the request. 4105 */ 4106 vd->vdev_offline = B_TRUE; 4107 vdev_reopen(tvd); 4108 4109 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4110 vdev_is_dead(tvd)) { 4111 vd->vdev_offline = B_FALSE; 4112 vdev_reopen(tvd); 4113 return (spa_vdev_state_exit(spa, NULL, 4114 SET_ERROR(EBUSY))); 4115 } 4116 4117 /* 4118 * Add the device back into the metaslab rotor so that 4119 * once we online the device it's open for business. 4120 */ 4121 if (tvd->vdev_islog && mg != NULL) 4122 metaslab_group_activate(mg); 4123 } 4124 4125 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 4126 4127 return (spa_vdev_state_exit(spa, vd, 0)); 4128 } 4129 4130 int 4131 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 4132 { 4133 int error; 4134 4135 mutex_enter(&spa->spa_vdev_top_lock); 4136 error = vdev_offline_locked(spa, guid, flags); 4137 mutex_exit(&spa->spa_vdev_top_lock); 4138 4139 return (error); 4140 } 4141 4142 /* 4143 * Clear the error counts associated with this vdev. Unlike vdev_online() and 4144 * vdev_offline(), we assume the spa config is locked. We also clear all 4145 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 4146 */ 4147 void 4148 vdev_clear(spa_t *spa, vdev_t *vd) 4149 { 4150 vdev_t *rvd = spa->spa_root_vdev; 4151 4152 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 4153 4154 if (vd == NULL) 4155 vd = rvd; 4156 4157 vd->vdev_stat.vs_read_errors = 0; 4158 vd->vdev_stat.vs_write_errors = 0; 4159 vd->vdev_stat.vs_checksum_errors = 0; 4160 vd->vdev_stat.vs_slow_ios = 0; 4161 4162 for (int c = 0; c < vd->vdev_children; c++) 4163 vdev_clear(spa, vd->vdev_child[c]); 4164 4165 /* 4166 * It makes no sense to "clear" an indirect vdev. 4167 */ 4168 if (!vdev_is_concrete(vd)) 4169 return; 4170 4171 /* 4172 * If we're in the FAULTED state or have experienced failed I/O, then 4173 * clear the persistent state and attempt to reopen the device. We 4174 * also mark the vdev config dirty, so that the new faulted state is 4175 * written out to disk. 4176 */ 4177 if (vd->vdev_faulted || vd->vdev_degraded || 4178 !vdev_readable(vd) || !vdev_writeable(vd)) { 4179 /* 4180 * When reopening in response to a clear event, it may be due to 4181 * a fmadm repair request. In this case, if the device is 4182 * still broken, we want to still post the ereport again. 4183 */ 4184 vd->vdev_forcefault = B_TRUE; 4185 4186 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 4187 vd->vdev_cant_read = B_FALSE; 4188 vd->vdev_cant_write = B_FALSE; 4189 vd->vdev_stat.vs_aux = 0; 4190 4191 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 4192 4193 vd->vdev_forcefault = B_FALSE; 4194 4195 if (vd != rvd && vdev_writeable(vd->vdev_top)) 4196 vdev_state_dirty(vd->vdev_top); 4197 4198 /* If a resilver isn't required, check if vdevs can be culled */ 4199 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) && 4200 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4201 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool)) 4202 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4203 4204 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 4205 } 4206 4207 /* 4208 * When clearing a FMA-diagnosed fault, we always want to 4209 * unspare the device, as we assume that the original spare was 4210 * done in response to the FMA fault. 4211 */ 4212 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 4213 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4214 vd->vdev_parent->vdev_child[0] == vd) 4215 vd->vdev_unspare = B_TRUE; 4216 4217 /* Clear recent error events cache (i.e. duplicate events tracking) */ 4218 zfs_ereport_clear(spa, vd); 4219 } 4220 4221 boolean_t 4222 vdev_is_dead(vdev_t *vd) 4223 { 4224 /* 4225 * Holes and missing devices are always considered "dead". 4226 * This simplifies the code since we don't have to check for 4227 * these types of devices in the various code paths. 4228 * Instead we rely on the fact that we skip over dead devices 4229 * before issuing I/O to them. 4230 */ 4231 return (vd->vdev_state < VDEV_STATE_DEGRADED || 4232 vd->vdev_ops == &vdev_hole_ops || 4233 vd->vdev_ops == &vdev_missing_ops); 4234 } 4235 4236 boolean_t 4237 vdev_readable(vdev_t *vd) 4238 { 4239 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 4240 } 4241 4242 boolean_t 4243 vdev_writeable(vdev_t *vd) 4244 { 4245 return (!vdev_is_dead(vd) && !vd->vdev_cant_write && 4246 vdev_is_concrete(vd)); 4247 } 4248 4249 boolean_t 4250 vdev_allocatable(vdev_t *vd) 4251 { 4252 uint64_t state = vd->vdev_state; 4253 4254 /* 4255 * We currently allow allocations from vdevs which may be in the 4256 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 4257 * fails to reopen then we'll catch it later when we're holding 4258 * the proper locks. Note that we have to get the vdev state 4259 * in a local variable because although it changes atomically, 4260 * we're asking two separate questions about it. 4261 */ 4262 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 4263 !vd->vdev_cant_write && vdev_is_concrete(vd) && 4264 vd->vdev_mg->mg_initialized); 4265 } 4266 4267 boolean_t 4268 vdev_accessible(vdev_t *vd, zio_t *zio) 4269 { 4270 ASSERT(zio->io_vd == vd); 4271 4272 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 4273 return (B_FALSE); 4274 4275 if (zio->io_type == ZIO_TYPE_READ) 4276 return (!vd->vdev_cant_read); 4277 4278 if (zio->io_type == ZIO_TYPE_WRITE) 4279 return (!vd->vdev_cant_write); 4280 4281 return (B_TRUE); 4282 } 4283 4284 static void 4285 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs) 4286 { 4287 /* 4288 * Exclude the dRAID spare when aggregating to avoid double counting 4289 * the ops and bytes. These IOs are counted by the physical leaves. 4290 */ 4291 if (cvd->vdev_ops == &vdev_draid_spare_ops) 4292 return; 4293 4294 for (int t = 0; t < VS_ZIO_TYPES; t++) { 4295 vs->vs_ops[t] += cvs->vs_ops[t]; 4296 vs->vs_bytes[t] += cvs->vs_bytes[t]; 4297 } 4298 4299 cvs->vs_scan_removing = cvd->vdev_removing; 4300 } 4301 4302 /* 4303 * Get extended stats 4304 */ 4305 static void 4306 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx) 4307 { 4308 (void) cvd; 4309 4310 int t, b; 4311 for (t = 0; t < ZIO_TYPES; t++) { 4312 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++) 4313 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b]; 4314 4315 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) { 4316 vsx->vsx_total_histo[t][b] += 4317 cvsx->vsx_total_histo[t][b]; 4318 } 4319 } 4320 4321 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4322 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) { 4323 vsx->vsx_queue_histo[t][b] += 4324 cvsx->vsx_queue_histo[t][b]; 4325 } 4326 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t]; 4327 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t]; 4328 4329 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++) 4330 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b]; 4331 4332 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++) 4333 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b]; 4334 } 4335 4336 } 4337 4338 boolean_t 4339 vdev_is_spacemap_addressable(vdev_t *vd) 4340 { 4341 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) 4342 return (B_TRUE); 4343 4344 /* 4345 * If double-word space map entries are not enabled we assume 4346 * 47 bits of the space map entry are dedicated to the entry's 4347 * offset (see SM_OFFSET_BITS in space_map.h). We then use that 4348 * to calculate the maximum address that can be described by a 4349 * space map entry for the given device. 4350 */ 4351 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; 4352 4353 if (shift >= 63) /* detect potential overflow */ 4354 return (B_TRUE); 4355 4356 return (vd->vdev_asize < (1ULL << shift)); 4357 } 4358 4359 /* 4360 * Get statistics for the given vdev. 4361 */ 4362 static void 4363 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4364 { 4365 int t; 4366 /* 4367 * If we're getting stats on the root vdev, aggregate the I/O counts 4368 * over all top-level vdevs (i.e. the direct children of the root). 4369 */ 4370 if (!vd->vdev_ops->vdev_op_leaf) { 4371 if (vs) { 4372 memset(vs->vs_ops, 0, sizeof (vs->vs_ops)); 4373 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes)); 4374 } 4375 if (vsx) 4376 memset(vsx, 0, sizeof (*vsx)); 4377 4378 for (int c = 0; c < vd->vdev_children; c++) { 4379 vdev_t *cvd = vd->vdev_child[c]; 4380 vdev_stat_t *cvs = &cvd->vdev_stat; 4381 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex; 4382 4383 vdev_get_stats_ex_impl(cvd, cvs, cvsx); 4384 if (vs) 4385 vdev_get_child_stat(cvd, vs, cvs); 4386 if (vsx) 4387 vdev_get_child_stat_ex(cvd, vsx, cvsx); 4388 } 4389 } else { 4390 /* 4391 * We're a leaf. Just copy our ZIO active queue stats in. The 4392 * other leaf stats are updated in vdev_stat_update(). 4393 */ 4394 if (!vsx) 4395 return; 4396 4397 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex)); 4398 4399 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) { 4400 vsx->vsx_active_queue[t] = 4401 vd->vdev_queue.vq_class[t].vqc_active; 4402 vsx->vsx_pend_queue[t] = avl_numnodes( 4403 &vd->vdev_queue.vq_class[t].vqc_queued_tree); 4404 } 4405 } 4406 } 4407 4408 void 4409 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4410 { 4411 vdev_t *tvd = vd->vdev_top; 4412 mutex_enter(&vd->vdev_stat_lock); 4413 if (vs) { 4414 memcpy(vs, &vd->vdev_stat, sizeof (*vs)); 4415 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 4416 vs->vs_state = vd->vdev_state; 4417 vs->vs_rsize = vdev_get_min_asize(vd); 4418 4419 if (vd->vdev_ops->vdev_op_leaf) { 4420 vs->vs_pspace = vd->vdev_psize; 4421 vs->vs_rsize += VDEV_LABEL_START_SIZE + 4422 VDEV_LABEL_END_SIZE; 4423 /* 4424 * Report initializing progress. Since we don't 4425 * have the initializing locks held, this is only 4426 * an estimate (although a fairly accurate one). 4427 */ 4428 vs->vs_initialize_bytes_done = 4429 vd->vdev_initialize_bytes_done; 4430 vs->vs_initialize_bytes_est = 4431 vd->vdev_initialize_bytes_est; 4432 vs->vs_initialize_state = vd->vdev_initialize_state; 4433 vs->vs_initialize_action_time = 4434 vd->vdev_initialize_action_time; 4435 4436 /* 4437 * Report manual TRIM progress. Since we don't have 4438 * the manual TRIM locks held, this is only an 4439 * estimate (although fairly accurate one). 4440 */ 4441 vs->vs_trim_notsup = !vd->vdev_has_trim; 4442 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done; 4443 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est; 4444 vs->vs_trim_state = vd->vdev_trim_state; 4445 vs->vs_trim_action_time = vd->vdev_trim_action_time; 4446 4447 /* Set when there is a deferred resilver. */ 4448 vs->vs_resilver_deferred = vd->vdev_resilver_deferred; 4449 } 4450 4451 /* 4452 * Report expandable space on top-level, non-auxiliary devices 4453 * only. The expandable space is reported in terms of metaslab 4454 * sized units since that determines how much space the pool 4455 * can expand. 4456 */ 4457 if (vd->vdev_aux == NULL && tvd != NULL) { 4458 vs->vs_esize = P2ALIGN( 4459 vd->vdev_max_asize - vd->vdev_asize, 4460 1ULL << tvd->vdev_ms_shift); 4461 } 4462 4463 vs->vs_configured_ashift = vd->vdev_top != NULL 4464 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift; 4465 vs->vs_logical_ashift = vd->vdev_logical_ashift; 4466 vs->vs_physical_ashift = vd->vdev_physical_ashift; 4467 4468 /* 4469 * Report fragmentation and rebuild progress for top-level, 4470 * non-auxiliary, concrete devices. 4471 */ 4472 if (vd->vdev_aux == NULL && vd == vd->vdev_top && 4473 vdev_is_concrete(vd)) { 4474 /* 4475 * The vdev fragmentation rating doesn't take into 4476 * account the embedded slog metaslab (vdev_log_mg). 4477 * Since it's only one metaslab, it would have a tiny 4478 * impact on the overall fragmentation. 4479 */ 4480 vs->vs_fragmentation = (vd->vdev_mg != NULL) ? 4481 vd->vdev_mg->mg_fragmentation : 0; 4482 } 4483 vs->vs_noalloc = MAX(vd->vdev_noalloc, 4484 tvd ? tvd->vdev_noalloc : 0); 4485 } 4486 4487 vdev_get_stats_ex_impl(vd, vs, vsx); 4488 mutex_exit(&vd->vdev_stat_lock); 4489 } 4490 4491 void 4492 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 4493 { 4494 return (vdev_get_stats_ex(vd, vs, NULL)); 4495 } 4496 4497 void 4498 vdev_clear_stats(vdev_t *vd) 4499 { 4500 mutex_enter(&vd->vdev_stat_lock); 4501 vd->vdev_stat.vs_space = 0; 4502 vd->vdev_stat.vs_dspace = 0; 4503 vd->vdev_stat.vs_alloc = 0; 4504 mutex_exit(&vd->vdev_stat_lock); 4505 } 4506 4507 void 4508 vdev_scan_stat_init(vdev_t *vd) 4509 { 4510 vdev_stat_t *vs = &vd->vdev_stat; 4511 4512 for (int c = 0; c < vd->vdev_children; c++) 4513 vdev_scan_stat_init(vd->vdev_child[c]); 4514 4515 mutex_enter(&vd->vdev_stat_lock); 4516 vs->vs_scan_processed = 0; 4517 mutex_exit(&vd->vdev_stat_lock); 4518 } 4519 4520 void 4521 vdev_stat_update(zio_t *zio, uint64_t psize) 4522 { 4523 spa_t *spa = zio->io_spa; 4524 vdev_t *rvd = spa->spa_root_vdev; 4525 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 4526 vdev_t *pvd; 4527 uint64_t txg = zio->io_txg; 4528 vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL; 4529 vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL; 4530 zio_type_t type = zio->io_type; 4531 int flags = zio->io_flags; 4532 4533 /* 4534 * If this i/o is a gang leader, it didn't do any actual work. 4535 */ 4536 if (zio->io_gang_tree) 4537 return; 4538 4539 if (zio->io_error == 0) { 4540 /* 4541 * If this is a root i/o, don't count it -- we've already 4542 * counted the top-level vdevs, and vdev_get_stats() will 4543 * aggregate them when asked. This reduces contention on 4544 * the root vdev_stat_lock and implicitly handles blocks 4545 * that compress away to holes, for which there is no i/o. 4546 * (Holes never create vdev children, so all the counters 4547 * remain zero, which is what we want.) 4548 * 4549 * Note: this only applies to successful i/o (io_error == 0) 4550 * because unlike i/o counts, errors are not additive. 4551 * When reading a ditto block, for example, failure of 4552 * one top-level vdev does not imply a root-level error. 4553 */ 4554 if (vd == rvd) 4555 return; 4556 4557 ASSERT(vd == zio->io_vd); 4558 4559 if (flags & ZIO_FLAG_IO_BYPASS) 4560 return; 4561 4562 mutex_enter(&vd->vdev_stat_lock); 4563 4564 if (flags & ZIO_FLAG_IO_REPAIR) { 4565 /* 4566 * Repair is the result of a resilver issued by the 4567 * scan thread (spa_sync). 4568 */ 4569 if (flags & ZIO_FLAG_SCAN_THREAD) { 4570 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 4571 dsl_scan_phys_t *scn_phys = &scn->scn_phys; 4572 uint64_t *processed = &scn_phys->scn_processed; 4573 4574 if (vd->vdev_ops->vdev_op_leaf) 4575 atomic_add_64(processed, psize); 4576 vs->vs_scan_processed += psize; 4577 } 4578 4579 /* 4580 * Repair is the result of a rebuild issued by the 4581 * rebuild thread (vdev_rebuild_thread). To avoid 4582 * double counting repaired bytes the virtual dRAID 4583 * spare vdev is excluded from the processed bytes. 4584 */ 4585 if (zio->io_priority == ZIO_PRIORITY_REBUILD) { 4586 vdev_t *tvd = vd->vdev_top; 4587 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config; 4588 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 4589 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt; 4590 4591 if (vd->vdev_ops->vdev_op_leaf && 4592 vd->vdev_ops != &vdev_draid_spare_ops) { 4593 atomic_add_64(rebuilt, psize); 4594 } 4595 vs->vs_rebuild_processed += psize; 4596 } 4597 4598 if (flags & ZIO_FLAG_SELF_HEAL) 4599 vs->vs_self_healed += psize; 4600 } 4601 4602 /* 4603 * The bytes/ops/histograms are recorded at the leaf level and 4604 * aggregated into the higher level vdevs in vdev_get_stats(). 4605 */ 4606 if (vd->vdev_ops->vdev_op_leaf && 4607 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) { 4608 zio_type_t vs_type = type; 4609 zio_priority_t priority = zio->io_priority; 4610 4611 /* 4612 * TRIM ops and bytes are reported to user space as 4613 * ZIO_TYPE_IOCTL. This is done to preserve the 4614 * vdev_stat_t structure layout for user space. 4615 */ 4616 if (type == ZIO_TYPE_TRIM) 4617 vs_type = ZIO_TYPE_IOCTL; 4618 4619 /* 4620 * Solely for the purposes of 'zpool iostat -lqrw' 4621 * reporting use the priority to categorize the IO. 4622 * Only the following are reported to user space: 4623 * 4624 * ZIO_PRIORITY_SYNC_READ, 4625 * ZIO_PRIORITY_SYNC_WRITE, 4626 * ZIO_PRIORITY_ASYNC_READ, 4627 * ZIO_PRIORITY_ASYNC_WRITE, 4628 * ZIO_PRIORITY_SCRUB, 4629 * ZIO_PRIORITY_TRIM, 4630 * ZIO_PRIORITY_REBUILD. 4631 */ 4632 if (priority == ZIO_PRIORITY_INITIALIZING) { 4633 ASSERT3U(type, ==, ZIO_TYPE_WRITE); 4634 priority = ZIO_PRIORITY_ASYNC_WRITE; 4635 } else if (priority == ZIO_PRIORITY_REMOVAL) { 4636 priority = ((type == ZIO_TYPE_WRITE) ? 4637 ZIO_PRIORITY_ASYNC_WRITE : 4638 ZIO_PRIORITY_ASYNC_READ); 4639 } 4640 4641 vs->vs_ops[vs_type]++; 4642 vs->vs_bytes[vs_type] += psize; 4643 4644 if (flags & ZIO_FLAG_DELEGATED) { 4645 vsx->vsx_agg_histo[priority] 4646 [RQ_HISTO(zio->io_size)]++; 4647 } else { 4648 vsx->vsx_ind_histo[priority] 4649 [RQ_HISTO(zio->io_size)]++; 4650 } 4651 4652 if (zio->io_delta && zio->io_delay) { 4653 vsx->vsx_queue_histo[priority] 4654 [L_HISTO(zio->io_delta - zio->io_delay)]++; 4655 vsx->vsx_disk_histo[type] 4656 [L_HISTO(zio->io_delay)]++; 4657 vsx->vsx_total_histo[type] 4658 [L_HISTO(zio->io_delta)]++; 4659 } 4660 } 4661 4662 mutex_exit(&vd->vdev_stat_lock); 4663 return; 4664 } 4665 4666 if (flags & ZIO_FLAG_SPECULATIVE) 4667 return; 4668 4669 /* 4670 * If this is an I/O error that is going to be retried, then ignore the 4671 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 4672 * hard errors, when in reality they can happen for any number of 4673 * innocuous reasons (bus resets, MPxIO link failure, etc). 4674 */ 4675 if (zio->io_error == EIO && 4676 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 4677 return; 4678 4679 /* 4680 * Intent logs writes won't propagate their error to the root 4681 * I/O so don't mark these types of failures as pool-level 4682 * errors. 4683 */ 4684 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 4685 return; 4686 4687 if (type == ZIO_TYPE_WRITE && txg != 0 && 4688 (!(flags & ZIO_FLAG_IO_REPAIR) || 4689 (flags & ZIO_FLAG_SCAN_THREAD) || 4690 spa->spa_claiming)) { 4691 /* 4692 * This is either a normal write (not a repair), or it's 4693 * a repair induced by the scrub thread, or it's a repair 4694 * made by zil_claim() during spa_load() in the first txg. 4695 * In the normal case, we commit the DTL change in the same 4696 * txg as the block was born. In the scrub-induced repair 4697 * case, we know that scrubs run in first-pass syncing context, 4698 * so we commit the DTL change in spa_syncing_txg(spa). 4699 * In the zil_claim() case, we commit in spa_first_txg(spa). 4700 * 4701 * We currently do not make DTL entries for failed spontaneous 4702 * self-healing writes triggered by normal (non-scrubbing) 4703 * reads, because we have no transactional context in which to 4704 * do so -- and it's not clear that it'd be desirable anyway. 4705 */ 4706 if (vd->vdev_ops->vdev_op_leaf) { 4707 uint64_t commit_txg = txg; 4708 if (flags & ZIO_FLAG_SCAN_THREAD) { 4709 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 4710 ASSERT(spa_sync_pass(spa) == 1); 4711 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 4712 commit_txg = spa_syncing_txg(spa); 4713 } else if (spa->spa_claiming) { 4714 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 4715 commit_txg = spa_first_txg(spa); 4716 } 4717 ASSERT(commit_txg >= spa_syncing_txg(spa)); 4718 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 4719 return; 4720 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4721 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 4722 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 4723 } 4724 if (vd != rvd) 4725 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 4726 } 4727 } 4728 4729 int64_t 4730 vdev_deflated_space(vdev_t *vd, int64_t space) 4731 { 4732 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0); 4733 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 4734 4735 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio); 4736 } 4737 4738 /* 4739 * Update the in-core space usage stats for this vdev, its metaslab class, 4740 * and the root vdev. 4741 */ 4742 void 4743 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 4744 int64_t space_delta) 4745 { 4746 (void) defer_delta; 4747 int64_t dspace_delta; 4748 spa_t *spa = vd->vdev_spa; 4749 vdev_t *rvd = spa->spa_root_vdev; 4750 4751 ASSERT(vd == vd->vdev_top); 4752 4753 /* 4754 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 4755 * factor. We must calculate this here and not at the root vdev 4756 * because the root vdev's psize-to-asize is simply the max of its 4757 * children's, thus not accurate enough for us. 4758 */ 4759 dspace_delta = vdev_deflated_space(vd, space_delta); 4760 4761 mutex_enter(&vd->vdev_stat_lock); 4762 /* ensure we won't underflow */ 4763 if (alloc_delta < 0) { 4764 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta); 4765 } 4766 4767 vd->vdev_stat.vs_alloc += alloc_delta; 4768 vd->vdev_stat.vs_space += space_delta; 4769 vd->vdev_stat.vs_dspace += dspace_delta; 4770 mutex_exit(&vd->vdev_stat_lock); 4771 4772 /* every class but log contributes to root space stats */ 4773 if (vd->vdev_mg != NULL && !vd->vdev_islog) { 4774 ASSERT(!vd->vdev_isl2cache); 4775 mutex_enter(&rvd->vdev_stat_lock); 4776 rvd->vdev_stat.vs_alloc += alloc_delta; 4777 rvd->vdev_stat.vs_space += space_delta; 4778 rvd->vdev_stat.vs_dspace += dspace_delta; 4779 mutex_exit(&rvd->vdev_stat_lock); 4780 } 4781 /* Note: metaslab_class_space_update moved to metaslab_space_update */ 4782 } 4783 4784 /* 4785 * Mark a top-level vdev's config as dirty, placing it on the dirty list 4786 * so that it will be written out next time the vdev configuration is synced. 4787 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 4788 */ 4789 void 4790 vdev_config_dirty(vdev_t *vd) 4791 { 4792 spa_t *spa = vd->vdev_spa; 4793 vdev_t *rvd = spa->spa_root_vdev; 4794 int c; 4795 4796 ASSERT(spa_writeable(spa)); 4797 4798 /* 4799 * If this is an aux vdev (as with l2cache and spare devices), then we 4800 * update the vdev config manually and set the sync flag. 4801 */ 4802 if (vd->vdev_aux != NULL) { 4803 spa_aux_vdev_t *sav = vd->vdev_aux; 4804 nvlist_t **aux; 4805 uint_t naux; 4806 4807 for (c = 0; c < sav->sav_count; c++) { 4808 if (sav->sav_vdevs[c] == vd) 4809 break; 4810 } 4811 4812 if (c == sav->sav_count) { 4813 /* 4814 * We're being removed. There's nothing more to do. 4815 */ 4816 ASSERT(sav->sav_sync == B_TRUE); 4817 return; 4818 } 4819 4820 sav->sav_sync = B_TRUE; 4821 4822 if (nvlist_lookup_nvlist_array(sav->sav_config, 4823 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 4824 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 4825 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 4826 } 4827 4828 ASSERT(c < naux); 4829 4830 /* 4831 * Setting the nvlist in the middle if the array is a little 4832 * sketchy, but it will work. 4833 */ 4834 nvlist_free(aux[c]); 4835 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 4836 4837 return; 4838 } 4839 4840 /* 4841 * The dirty list is protected by the SCL_CONFIG lock. The caller 4842 * must either hold SCL_CONFIG as writer, or must be the sync thread 4843 * (which holds SCL_CONFIG as reader). There's only one sync thread, 4844 * so this is sufficient to ensure mutual exclusion. 4845 */ 4846 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 4847 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4848 spa_config_held(spa, SCL_CONFIG, RW_READER))); 4849 4850 if (vd == rvd) { 4851 for (c = 0; c < rvd->vdev_children; c++) 4852 vdev_config_dirty(rvd->vdev_child[c]); 4853 } else { 4854 ASSERT(vd == vd->vdev_top); 4855 4856 if (!list_link_active(&vd->vdev_config_dirty_node) && 4857 vdev_is_concrete(vd)) { 4858 list_insert_head(&spa->spa_config_dirty_list, vd); 4859 } 4860 } 4861 } 4862 4863 void 4864 vdev_config_clean(vdev_t *vd) 4865 { 4866 spa_t *spa = vd->vdev_spa; 4867 4868 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 4869 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4870 spa_config_held(spa, SCL_CONFIG, RW_READER))); 4871 4872 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 4873 list_remove(&spa->spa_config_dirty_list, vd); 4874 } 4875 4876 /* 4877 * Mark a top-level vdev's state as dirty, so that the next pass of 4878 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 4879 * the state changes from larger config changes because they require 4880 * much less locking, and are often needed for administrative actions. 4881 */ 4882 void 4883 vdev_state_dirty(vdev_t *vd) 4884 { 4885 spa_t *spa = vd->vdev_spa; 4886 4887 ASSERT(spa_writeable(spa)); 4888 ASSERT(vd == vd->vdev_top); 4889 4890 /* 4891 * The state list is protected by the SCL_STATE lock. The caller 4892 * must either hold SCL_STATE as writer, or must be the sync thread 4893 * (which holds SCL_STATE as reader). There's only one sync thread, 4894 * so this is sufficient to ensure mutual exclusion. 4895 */ 4896 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 4897 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4898 spa_config_held(spa, SCL_STATE, RW_READER))); 4899 4900 if (!list_link_active(&vd->vdev_state_dirty_node) && 4901 vdev_is_concrete(vd)) 4902 list_insert_head(&spa->spa_state_dirty_list, vd); 4903 } 4904 4905 void 4906 vdev_state_clean(vdev_t *vd) 4907 { 4908 spa_t *spa = vd->vdev_spa; 4909 4910 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 4911 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4912 spa_config_held(spa, SCL_STATE, RW_READER))); 4913 4914 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 4915 list_remove(&spa->spa_state_dirty_list, vd); 4916 } 4917 4918 /* 4919 * Propagate vdev state up from children to parent. 4920 */ 4921 void 4922 vdev_propagate_state(vdev_t *vd) 4923 { 4924 spa_t *spa = vd->vdev_spa; 4925 vdev_t *rvd = spa->spa_root_vdev; 4926 int degraded = 0, faulted = 0; 4927 int corrupted = 0; 4928 vdev_t *child; 4929 4930 if (vd->vdev_children > 0) { 4931 for (int c = 0; c < vd->vdev_children; c++) { 4932 child = vd->vdev_child[c]; 4933 4934 /* 4935 * Don't factor holes or indirect vdevs into the 4936 * decision. 4937 */ 4938 if (!vdev_is_concrete(child)) 4939 continue; 4940 4941 if (!vdev_readable(child) || 4942 (!vdev_writeable(child) && spa_writeable(spa))) { 4943 /* 4944 * Root special: if there is a top-level log 4945 * device, treat the root vdev as if it were 4946 * degraded. 4947 */ 4948 if (child->vdev_islog && vd == rvd) 4949 degraded++; 4950 else 4951 faulted++; 4952 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 4953 degraded++; 4954 } 4955 4956 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 4957 corrupted++; 4958 } 4959 4960 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 4961 4962 /* 4963 * Root special: if there is a top-level vdev that cannot be 4964 * opened due to corrupted metadata, then propagate the root 4965 * vdev's aux state as 'corrupt' rather than 'insufficient 4966 * replicas'. 4967 */ 4968 if (corrupted && vd == rvd && 4969 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 4970 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 4971 VDEV_AUX_CORRUPT_DATA); 4972 } 4973 4974 if (vd->vdev_parent) 4975 vdev_propagate_state(vd->vdev_parent); 4976 } 4977 4978 /* 4979 * Set a vdev's state. If this is during an open, we don't update the parent 4980 * state, because we're in the process of opening children depth-first. 4981 * Otherwise, we propagate the change to the parent. 4982 * 4983 * If this routine places a device in a faulted state, an appropriate ereport is 4984 * generated. 4985 */ 4986 void 4987 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 4988 { 4989 uint64_t save_state; 4990 spa_t *spa = vd->vdev_spa; 4991 4992 if (state == vd->vdev_state) { 4993 /* 4994 * Since vdev_offline() code path is already in an offline 4995 * state we can miss a statechange event to OFFLINE. Check 4996 * the previous state to catch this condition. 4997 */ 4998 if (vd->vdev_ops->vdev_op_leaf && 4999 (state == VDEV_STATE_OFFLINE) && 5000 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) { 5001 /* post an offline state change */ 5002 zfs_post_state_change(spa, vd, vd->vdev_prevstate); 5003 } 5004 vd->vdev_stat.vs_aux = aux; 5005 return; 5006 } 5007 5008 save_state = vd->vdev_state; 5009 5010 vd->vdev_state = state; 5011 vd->vdev_stat.vs_aux = aux; 5012 5013 /* 5014 * If we are setting the vdev state to anything but an open state, then 5015 * always close the underlying device unless the device has requested 5016 * a delayed close (i.e. we're about to remove or fault the device). 5017 * Otherwise, we keep accessible but invalid devices open forever. 5018 * We don't call vdev_close() itself, because that implies some extra 5019 * checks (offline, etc) that we don't want here. This is limited to 5020 * leaf devices, because otherwise closing the device will affect other 5021 * children. 5022 */ 5023 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 5024 vd->vdev_ops->vdev_op_leaf) 5025 vd->vdev_ops->vdev_op_close(vd); 5026 5027 if (vd->vdev_removed && 5028 state == VDEV_STATE_CANT_OPEN && 5029 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 5030 /* 5031 * If the previous state is set to VDEV_STATE_REMOVED, then this 5032 * device was previously marked removed and someone attempted to 5033 * reopen it. If this failed due to a nonexistent device, then 5034 * keep the device in the REMOVED state. We also let this be if 5035 * it is one of our special test online cases, which is only 5036 * attempting to online the device and shouldn't generate an FMA 5037 * fault. 5038 */ 5039 vd->vdev_state = VDEV_STATE_REMOVED; 5040 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 5041 } else if (state == VDEV_STATE_REMOVED) { 5042 vd->vdev_removed = B_TRUE; 5043 } else if (state == VDEV_STATE_CANT_OPEN) { 5044 /* 5045 * If we fail to open a vdev during an import or recovery, we 5046 * mark it as "not available", which signifies that it was 5047 * never there to begin with. Failure to open such a device 5048 * is not considered an error. 5049 */ 5050 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 5051 spa_load_state(spa) == SPA_LOAD_RECOVER) && 5052 vd->vdev_ops->vdev_op_leaf) 5053 vd->vdev_not_present = 1; 5054 5055 /* 5056 * Post the appropriate ereport. If the 'prevstate' field is 5057 * set to something other than VDEV_STATE_UNKNOWN, it indicates 5058 * that this is part of a vdev_reopen(). In this case, we don't 5059 * want to post the ereport if the device was already in the 5060 * CANT_OPEN state beforehand. 5061 * 5062 * If the 'checkremove' flag is set, then this is an attempt to 5063 * online the device in response to an insertion event. If we 5064 * hit this case, then we have detected an insertion event for a 5065 * faulted or offline device that wasn't in the removed state. 5066 * In this scenario, we don't post an ereport because we are 5067 * about to replace the device, or attempt an online with 5068 * vdev_forcefault, which will generate the fault for us. 5069 */ 5070 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 5071 !vd->vdev_not_present && !vd->vdev_checkremove && 5072 vd != spa->spa_root_vdev) { 5073 const char *class; 5074 5075 switch (aux) { 5076 case VDEV_AUX_OPEN_FAILED: 5077 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 5078 break; 5079 case VDEV_AUX_CORRUPT_DATA: 5080 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 5081 break; 5082 case VDEV_AUX_NO_REPLICAS: 5083 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 5084 break; 5085 case VDEV_AUX_BAD_GUID_SUM: 5086 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 5087 break; 5088 case VDEV_AUX_TOO_SMALL: 5089 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 5090 break; 5091 case VDEV_AUX_BAD_LABEL: 5092 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 5093 break; 5094 case VDEV_AUX_BAD_ASHIFT: 5095 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT; 5096 break; 5097 default: 5098 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 5099 } 5100 5101 (void) zfs_ereport_post(class, spa, vd, NULL, NULL, 5102 save_state); 5103 } 5104 5105 /* Erase any notion of persistent removed state */ 5106 vd->vdev_removed = B_FALSE; 5107 } else { 5108 vd->vdev_removed = B_FALSE; 5109 } 5110 5111 /* 5112 * Notify ZED of any significant state-change on a leaf vdev. 5113 * 5114 */ 5115 if (vd->vdev_ops->vdev_op_leaf) { 5116 /* preserve original state from a vdev_reopen() */ 5117 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) && 5118 (vd->vdev_prevstate != vd->vdev_state) && 5119 (save_state <= VDEV_STATE_CLOSED)) 5120 save_state = vd->vdev_prevstate; 5121 5122 /* filter out state change due to initial vdev_open */ 5123 if (save_state > VDEV_STATE_CLOSED) 5124 zfs_post_state_change(spa, vd, save_state); 5125 } 5126 5127 if (!isopen && vd->vdev_parent) 5128 vdev_propagate_state(vd->vdev_parent); 5129 } 5130 5131 boolean_t 5132 vdev_children_are_offline(vdev_t *vd) 5133 { 5134 ASSERT(!vd->vdev_ops->vdev_op_leaf); 5135 5136 for (uint64_t i = 0; i < vd->vdev_children; i++) { 5137 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) 5138 return (B_FALSE); 5139 } 5140 5141 return (B_TRUE); 5142 } 5143 5144 /* 5145 * Check the vdev configuration to ensure that it's capable of supporting 5146 * a root pool. We do not support partial configuration. 5147 */ 5148 boolean_t 5149 vdev_is_bootable(vdev_t *vd) 5150 { 5151 if (!vd->vdev_ops->vdev_op_leaf) { 5152 const char *vdev_type = vd->vdev_ops->vdev_op_type; 5153 5154 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) 5155 return (B_FALSE); 5156 } 5157 5158 for (int c = 0; c < vd->vdev_children; c++) { 5159 if (!vdev_is_bootable(vd->vdev_child[c])) 5160 return (B_FALSE); 5161 } 5162 return (B_TRUE); 5163 } 5164 5165 boolean_t 5166 vdev_is_concrete(vdev_t *vd) 5167 { 5168 vdev_ops_t *ops = vd->vdev_ops; 5169 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || 5170 ops == &vdev_missing_ops || ops == &vdev_root_ops) { 5171 return (B_FALSE); 5172 } else { 5173 return (B_TRUE); 5174 } 5175 } 5176 5177 /* 5178 * Determine if a log device has valid content. If the vdev was 5179 * removed or faulted in the MOS config then we know that 5180 * the content on the log device has already been written to the pool. 5181 */ 5182 boolean_t 5183 vdev_log_state_valid(vdev_t *vd) 5184 { 5185 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 5186 !vd->vdev_removed) 5187 return (B_TRUE); 5188 5189 for (int c = 0; c < vd->vdev_children; c++) 5190 if (vdev_log_state_valid(vd->vdev_child[c])) 5191 return (B_TRUE); 5192 5193 return (B_FALSE); 5194 } 5195 5196 /* 5197 * Expand a vdev if possible. 5198 */ 5199 void 5200 vdev_expand(vdev_t *vd, uint64_t txg) 5201 { 5202 ASSERT(vd->vdev_top == vd); 5203 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5204 ASSERT(vdev_is_concrete(vd)); 5205 5206 vdev_set_deflate_ratio(vd); 5207 5208 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && 5209 vdev_is_concrete(vd)) { 5210 vdev_metaslab_group_create(vd); 5211 VERIFY(vdev_metaslab_init(vd, txg) == 0); 5212 vdev_config_dirty(vd); 5213 } 5214 } 5215 5216 /* 5217 * Split a vdev. 5218 */ 5219 void 5220 vdev_split(vdev_t *vd) 5221 { 5222 vdev_t *cvd, *pvd = vd->vdev_parent; 5223 5224 vdev_remove_child(pvd, vd); 5225 vdev_compact_children(pvd); 5226 5227 cvd = pvd->vdev_child[0]; 5228 if (pvd->vdev_children == 1) { 5229 vdev_remove_parent(cvd); 5230 cvd->vdev_splitting = B_TRUE; 5231 } 5232 vdev_propagate_state(cvd); 5233 } 5234 5235 void 5236 vdev_deadman(vdev_t *vd, const char *tag) 5237 { 5238 for (int c = 0; c < vd->vdev_children; c++) { 5239 vdev_t *cvd = vd->vdev_child[c]; 5240 5241 vdev_deadman(cvd, tag); 5242 } 5243 5244 if (vd->vdev_ops->vdev_op_leaf) { 5245 vdev_queue_t *vq = &vd->vdev_queue; 5246 5247 mutex_enter(&vq->vq_lock); 5248 if (avl_numnodes(&vq->vq_active_tree) > 0) { 5249 spa_t *spa = vd->vdev_spa; 5250 zio_t *fio; 5251 uint64_t delta; 5252 5253 zfs_dbgmsg("slow vdev: %s has %lu active IOs", 5254 vd->vdev_path, avl_numnodes(&vq->vq_active_tree)); 5255 5256 /* 5257 * Look at the head of all the pending queues, 5258 * if any I/O has been outstanding for longer than 5259 * the spa_deadman_synctime invoke the deadman logic. 5260 */ 5261 fio = avl_first(&vq->vq_active_tree); 5262 delta = gethrtime() - fio->io_timestamp; 5263 if (delta > spa_deadman_synctime(spa)) 5264 zio_deadman(fio, tag); 5265 } 5266 mutex_exit(&vq->vq_lock); 5267 } 5268 } 5269 5270 void 5271 vdev_defer_resilver(vdev_t *vd) 5272 { 5273 ASSERT(vd->vdev_ops->vdev_op_leaf); 5274 5275 vd->vdev_resilver_deferred = B_TRUE; 5276 vd->vdev_spa->spa_resilver_deferred = B_TRUE; 5277 } 5278 5279 /* 5280 * Clears the resilver deferred flag on all leaf devs under vd. Returns 5281 * B_TRUE if we have devices that need to be resilvered and are available to 5282 * accept resilver I/Os. 5283 */ 5284 boolean_t 5285 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx) 5286 { 5287 boolean_t resilver_needed = B_FALSE; 5288 spa_t *spa = vd->vdev_spa; 5289 5290 for (int c = 0; c < vd->vdev_children; c++) { 5291 vdev_t *cvd = vd->vdev_child[c]; 5292 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx); 5293 } 5294 5295 if (vd == spa->spa_root_vdev && 5296 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) { 5297 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 5298 vdev_config_dirty(vd); 5299 spa->spa_resilver_deferred = B_FALSE; 5300 return (resilver_needed); 5301 } 5302 5303 if (!vdev_is_concrete(vd) || vd->vdev_aux || 5304 !vd->vdev_ops->vdev_op_leaf) 5305 return (resilver_needed); 5306 5307 vd->vdev_resilver_deferred = B_FALSE; 5308 5309 return (!vdev_is_dead(vd) && !vd->vdev_offline && 5310 vdev_resilver_needed(vd, NULL, NULL)); 5311 } 5312 5313 boolean_t 5314 vdev_xlate_is_empty(range_seg64_t *rs) 5315 { 5316 return (rs->rs_start == rs->rs_end); 5317 } 5318 5319 /* 5320 * Translate a logical range to the first contiguous physical range for the 5321 * specified vdev_t. This function is initially called with a leaf vdev and 5322 * will walk each parent vdev until it reaches a top-level vdev. Once the 5323 * top-level is reached the physical range is initialized and the recursive 5324 * function begins to unwind. As it unwinds it calls the parent's vdev 5325 * specific translation function to do the real conversion. 5326 */ 5327 void 5328 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 5329 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 5330 { 5331 /* 5332 * Walk up the vdev tree 5333 */ 5334 if (vd != vd->vdev_top) { 5335 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs, 5336 remain_rs); 5337 } else { 5338 /* 5339 * We've reached the top-level vdev, initialize the physical 5340 * range to the logical range and set an empty remaining 5341 * range then start to unwind. 5342 */ 5343 physical_rs->rs_start = logical_rs->rs_start; 5344 physical_rs->rs_end = logical_rs->rs_end; 5345 5346 remain_rs->rs_start = logical_rs->rs_start; 5347 remain_rs->rs_end = logical_rs->rs_start; 5348 5349 return; 5350 } 5351 5352 vdev_t *pvd = vd->vdev_parent; 5353 ASSERT3P(pvd, !=, NULL); 5354 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL); 5355 5356 /* 5357 * As this recursive function unwinds, translate the logical 5358 * range into its physical and any remaining components by calling 5359 * the vdev specific translate function. 5360 */ 5361 range_seg64_t intermediate = { 0 }; 5362 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs); 5363 5364 physical_rs->rs_start = intermediate.rs_start; 5365 physical_rs->rs_end = intermediate.rs_end; 5366 } 5367 5368 void 5369 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs, 5370 vdev_xlate_func_t *func, void *arg) 5371 { 5372 range_seg64_t iter_rs = *logical_rs; 5373 range_seg64_t physical_rs; 5374 range_seg64_t remain_rs; 5375 5376 while (!vdev_xlate_is_empty(&iter_rs)) { 5377 5378 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs); 5379 5380 /* 5381 * With raidz and dRAID, it's possible that the logical range 5382 * does not live on this leaf vdev. Only when there is a non- 5383 * zero physical size call the provided function. 5384 */ 5385 if (!vdev_xlate_is_empty(&physical_rs)) 5386 func(arg, &physical_rs); 5387 5388 iter_rs = remain_rs; 5389 } 5390 } 5391 5392 static char * 5393 vdev_name(vdev_t *vd, char *buf, int buflen) 5394 { 5395 if (vd->vdev_path == NULL) { 5396 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) { 5397 strlcpy(buf, vd->vdev_spa->spa_name, buflen); 5398 } else if (!vd->vdev_ops->vdev_op_leaf) { 5399 snprintf(buf, buflen, "%s-%llu", 5400 vd->vdev_ops->vdev_op_type, 5401 (u_longlong_t)vd->vdev_id); 5402 } 5403 } else { 5404 strlcpy(buf, vd->vdev_path, buflen); 5405 } 5406 return (buf); 5407 } 5408 5409 /* 5410 * Look at the vdev tree and determine whether any devices are currently being 5411 * replaced. 5412 */ 5413 boolean_t 5414 vdev_replace_in_progress(vdev_t *vdev) 5415 { 5416 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0); 5417 5418 if (vdev->vdev_ops == &vdev_replacing_ops) 5419 return (B_TRUE); 5420 5421 /* 5422 * A 'spare' vdev indicates that we have a replace in progress, unless 5423 * it has exactly two children, and the second, the hot spare, has 5424 * finished being resilvered. 5425 */ 5426 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 || 5427 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING))) 5428 return (B_TRUE); 5429 5430 for (int i = 0; i < vdev->vdev_children; i++) { 5431 if (vdev_replace_in_progress(vdev->vdev_child[i])) 5432 return (B_TRUE); 5433 } 5434 5435 return (B_FALSE); 5436 } 5437 5438 /* 5439 * Add a (source=src, propname=propval) list to an nvlist. 5440 */ 5441 static void 5442 vdev_prop_add_list(nvlist_t *nvl, const char *propname, char *strval, 5443 uint64_t intval, zprop_source_t src) 5444 { 5445 nvlist_t *propval; 5446 5447 propval = fnvlist_alloc(); 5448 fnvlist_add_uint64(propval, ZPROP_SOURCE, src); 5449 5450 if (strval != NULL) 5451 fnvlist_add_string(propval, ZPROP_VALUE, strval); 5452 else 5453 fnvlist_add_uint64(propval, ZPROP_VALUE, intval); 5454 5455 fnvlist_add_nvlist(nvl, propname, propval); 5456 nvlist_free(propval); 5457 } 5458 5459 static void 5460 vdev_props_set_sync(void *arg, dmu_tx_t *tx) 5461 { 5462 vdev_t *vd; 5463 nvlist_t *nvp = arg; 5464 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5465 objset_t *mos = spa->spa_meta_objset; 5466 nvpair_t *elem = NULL; 5467 uint64_t vdev_guid; 5468 nvlist_t *nvprops; 5469 5470 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV); 5471 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS); 5472 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE); 5473 5474 /* this vdev could get removed while waiting for this sync task */ 5475 if (vd == NULL) 5476 return; 5477 5478 mutex_enter(&spa->spa_props_lock); 5479 5480 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5481 uint64_t intval, objid = 0; 5482 char *strval; 5483 vdev_prop_t prop; 5484 const char *propname = nvpair_name(elem); 5485 zprop_type_t proptype; 5486 5487 /* 5488 * Set vdev property values in the vdev props mos object. 5489 */ 5490 if (vd->vdev_top_zap != 0) { 5491 objid = vd->vdev_top_zap; 5492 } else if (vd->vdev_leaf_zap != 0) { 5493 objid = vd->vdev_leaf_zap; 5494 } else { 5495 panic("vdev not top or leaf"); 5496 } 5497 5498 switch (prop = vdev_name_to_prop(propname)) { 5499 case VDEV_PROP_USERPROP: 5500 if (vdev_prop_user(propname)) { 5501 strval = fnvpair_value_string(elem); 5502 if (strlen(strval) == 0) { 5503 /* remove the property if value == "" */ 5504 (void) zap_remove(mos, objid, propname, 5505 tx); 5506 } else { 5507 VERIFY0(zap_update(mos, objid, propname, 5508 1, strlen(strval) + 1, strval, tx)); 5509 } 5510 spa_history_log_internal(spa, "vdev set", tx, 5511 "vdev_guid=%llu: %s=%s", 5512 (u_longlong_t)vdev_guid, nvpair_name(elem), 5513 strval); 5514 } 5515 break; 5516 default: 5517 /* normalize the property name */ 5518 propname = vdev_prop_to_name(prop); 5519 proptype = vdev_prop_get_type(prop); 5520 5521 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5522 ASSERT(proptype == PROP_TYPE_STRING); 5523 strval = fnvpair_value_string(elem); 5524 VERIFY0(zap_update(mos, objid, propname, 5525 1, strlen(strval) + 1, strval, tx)); 5526 spa_history_log_internal(spa, "vdev set", tx, 5527 "vdev_guid=%llu: %s=%s", 5528 (u_longlong_t)vdev_guid, nvpair_name(elem), 5529 strval); 5530 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5531 intval = fnvpair_value_uint64(elem); 5532 5533 if (proptype == PROP_TYPE_INDEX) { 5534 const char *unused; 5535 VERIFY0(vdev_prop_index_to_string( 5536 prop, intval, &unused)); 5537 } 5538 VERIFY0(zap_update(mos, objid, propname, 5539 sizeof (uint64_t), 1, &intval, tx)); 5540 spa_history_log_internal(spa, "vdev set", tx, 5541 "vdev_guid=%llu: %s=%lld", 5542 (u_longlong_t)vdev_guid, 5543 nvpair_name(elem), (longlong_t)intval); 5544 } else { 5545 panic("invalid vdev property type %u", 5546 nvpair_type(elem)); 5547 } 5548 } 5549 5550 } 5551 5552 mutex_exit(&spa->spa_props_lock); 5553 } 5554 5555 int 5556 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 5557 { 5558 spa_t *spa = vd->vdev_spa; 5559 nvpair_t *elem = NULL; 5560 uint64_t vdev_guid; 5561 nvlist_t *nvprops; 5562 int error; 5563 5564 ASSERT(vd != NULL); 5565 5566 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV, 5567 &vdev_guid) != 0) 5568 return (SET_ERROR(EINVAL)); 5569 5570 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS, 5571 &nvprops) != 0) 5572 return (SET_ERROR(EINVAL)); 5573 5574 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL) 5575 return (SET_ERROR(EINVAL)); 5576 5577 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5578 char *propname = nvpair_name(elem); 5579 vdev_prop_t prop = vdev_name_to_prop(propname); 5580 uint64_t intval = 0; 5581 char *strval = NULL; 5582 5583 if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) { 5584 error = EINVAL; 5585 goto end; 5586 } 5587 5588 if (vdev_prop_readonly(prop)) { 5589 error = EROFS; 5590 goto end; 5591 } 5592 5593 /* Special Processing */ 5594 switch (prop) { 5595 case VDEV_PROP_PATH: 5596 if (vd->vdev_path == NULL) { 5597 error = EROFS; 5598 break; 5599 } 5600 if (nvpair_value_string(elem, &strval) != 0) { 5601 error = EINVAL; 5602 break; 5603 } 5604 /* New path must start with /dev/ */ 5605 if (strncmp(strval, "/dev/", 5)) { 5606 error = EINVAL; 5607 break; 5608 } 5609 error = spa_vdev_setpath(spa, vdev_guid, strval); 5610 break; 5611 case VDEV_PROP_ALLOCATING: 5612 if (nvpair_value_uint64(elem, &intval) != 0) { 5613 error = EINVAL; 5614 break; 5615 } 5616 if (intval != vd->vdev_noalloc) 5617 break; 5618 if (intval == 0) 5619 error = spa_vdev_noalloc(spa, vdev_guid); 5620 else 5621 error = spa_vdev_alloc(spa, vdev_guid); 5622 break; 5623 default: 5624 /* Most processing is done in vdev_props_set_sync */ 5625 break; 5626 } 5627 end: 5628 if (error != 0) { 5629 intval = error; 5630 vdev_prop_add_list(outnvl, propname, strval, intval, 0); 5631 return (error); 5632 } 5633 } 5634 5635 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync, 5636 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 5637 } 5638 5639 int 5640 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 5641 { 5642 spa_t *spa = vd->vdev_spa; 5643 objset_t *mos = spa->spa_meta_objset; 5644 int err = 0; 5645 uint64_t objid; 5646 uint64_t vdev_guid; 5647 nvpair_t *elem = NULL; 5648 nvlist_t *nvprops = NULL; 5649 uint64_t intval = 0; 5650 char *strval = NULL; 5651 const char *propname = NULL; 5652 vdev_prop_t prop; 5653 5654 ASSERT(vd != NULL); 5655 ASSERT(mos != NULL); 5656 5657 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV, 5658 &vdev_guid) != 0) 5659 return (SET_ERROR(EINVAL)); 5660 5661 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops); 5662 5663 if (vd->vdev_top_zap != 0) { 5664 objid = vd->vdev_top_zap; 5665 } else if (vd->vdev_leaf_zap != 0) { 5666 objid = vd->vdev_leaf_zap; 5667 } else { 5668 return (SET_ERROR(EINVAL)); 5669 } 5670 ASSERT(objid != 0); 5671 5672 mutex_enter(&spa->spa_props_lock); 5673 5674 if (nvprops != NULL) { 5675 char namebuf[64] = { 0 }; 5676 5677 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5678 intval = 0; 5679 strval = NULL; 5680 propname = nvpair_name(elem); 5681 prop = vdev_name_to_prop(propname); 5682 zprop_source_t src = ZPROP_SRC_DEFAULT; 5683 uint64_t integer_size, num_integers; 5684 5685 switch (prop) { 5686 /* Special Read-only Properties */ 5687 case VDEV_PROP_NAME: 5688 strval = vdev_name(vd, namebuf, 5689 sizeof (namebuf)); 5690 if (strval == NULL) 5691 continue; 5692 vdev_prop_add_list(outnvl, propname, strval, 0, 5693 ZPROP_SRC_NONE); 5694 continue; 5695 case VDEV_PROP_CAPACITY: 5696 /* percent used */ 5697 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 : 5698 (vd->vdev_stat.vs_alloc * 100 / 5699 vd->vdev_stat.vs_dspace); 5700 vdev_prop_add_list(outnvl, propname, NULL, 5701 intval, ZPROP_SRC_NONE); 5702 continue; 5703 case VDEV_PROP_STATE: 5704 vdev_prop_add_list(outnvl, propname, NULL, 5705 vd->vdev_state, ZPROP_SRC_NONE); 5706 continue; 5707 case VDEV_PROP_GUID: 5708 vdev_prop_add_list(outnvl, propname, NULL, 5709 vd->vdev_guid, ZPROP_SRC_NONE); 5710 continue; 5711 case VDEV_PROP_ASIZE: 5712 vdev_prop_add_list(outnvl, propname, NULL, 5713 vd->vdev_asize, ZPROP_SRC_NONE); 5714 continue; 5715 case VDEV_PROP_PSIZE: 5716 vdev_prop_add_list(outnvl, propname, NULL, 5717 vd->vdev_psize, ZPROP_SRC_NONE); 5718 continue; 5719 case VDEV_PROP_ASHIFT: 5720 vdev_prop_add_list(outnvl, propname, NULL, 5721 vd->vdev_ashift, ZPROP_SRC_NONE); 5722 continue; 5723 case VDEV_PROP_SIZE: 5724 vdev_prop_add_list(outnvl, propname, NULL, 5725 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE); 5726 continue; 5727 case VDEV_PROP_FREE: 5728 vdev_prop_add_list(outnvl, propname, NULL, 5729 vd->vdev_stat.vs_dspace - 5730 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 5731 continue; 5732 case VDEV_PROP_ALLOCATED: 5733 vdev_prop_add_list(outnvl, propname, NULL, 5734 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 5735 continue; 5736 case VDEV_PROP_EXPANDSZ: 5737 vdev_prop_add_list(outnvl, propname, NULL, 5738 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE); 5739 continue; 5740 case VDEV_PROP_FRAGMENTATION: 5741 vdev_prop_add_list(outnvl, propname, NULL, 5742 vd->vdev_stat.vs_fragmentation, 5743 ZPROP_SRC_NONE); 5744 continue; 5745 case VDEV_PROP_PARITY: 5746 vdev_prop_add_list(outnvl, propname, NULL, 5747 vdev_get_nparity(vd), ZPROP_SRC_NONE); 5748 continue; 5749 case VDEV_PROP_PATH: 5750 if (vd->vdev_path == NULL) 5751 continue; 5752 vdev_prop_add_list(outnvl, propname, 5753 vd->vdev_path, 0, ZPROP_SRC_NONE); 5754 continue; 5755 case VDEV_PROP_DEVID: 5756 if (vd->vdev_devid == NULL) 5757 continue; 5758 vdev_prop_add_list(outnvl, propname, 5759 vd->vdev_devid, 0, ZPROP_SRC_NONE); 5760 continue; 5761 case VDEV_PROP_PHYS_PATH: 5762 if (vd->vdev_physpath == NULL) 5763 continue; 5764 vdev_prop_add_list(outnvl, propname, 5765 vd->vdev_physpath, 0, ZPROP_SRC_NONE); 5766 continue; 5767 case VDEV_PROP_ENC_PATH: 5768 if (vd->vdev_enc_sysfs_path == NULL) 5769 continue; 5770 vdev_prop_add_list(outnvl, propname, 5771 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE); 5772 continue; 5773 case VDEV_PROP_FRU: 5774 if (vd->vdev_fru == NULL) 5775 continue; 5776 vdev_prop_add_list(outnvl, propname, 5777 vd->vdev_fru, 0, ZPROP_SRC_NONE); 5778 continue; 5779 case VDEV_PROP_PARENT: 5780 if (vd->vdev_parent != NULL) { 5781 strval = vdev_name(vd->vdev_parent, 5782 namebuf, sizeof (namebuf)); 5783 vdev_prop_add_list(outnvl, propname, 5784 strval, 0, ZPROP_SRC_NONE); 5785 } 5786 continue; 5787 case VDEV_PROP_CHILDREN: 5788 if (vd->vdev_children > 0) 5789 strval = kmem_zalloc(ZAP_MAXVALUELEN, 5790 KM_SLEEP); 5791 for (uint64_t i = 0; i < vd->vdev_children; 5792 i++) { 5793 const char *vname; 5794 5795 vname = vdev_name(vd->vdev_child[i], 5796 namebuf, sizeof (namebuf)); 5797 if (vname == NULL) 5798 vname = "(unknown)"; 5799 if (strlen(strval) > 0) 5800 strlcat(strval, ",", 5801 ZAP_MAXVALUELEN); 5802 strlcat(strval, vname, ZAP_MAXVALUELEN); 5803 } 5804 if (strval != NULL) { 5805 vdev_prop_add_list(outnvl, propname, 5806 strval, 0, ZPROP_SRC_NONE); 5807 kmem_free(strval, ZAP_MAXVALUELEN); 5808 } 5809 continue; 5810 case VDEV_PROP_NUMCHILDREN: 5811 vdev_prop_add_list(outnvl, propname, NULL, 5812 vd->vdev_children, ZPROP_SRC_NONE); 5813 continue; 5814 case VDEV_PROP_READ_ERRORS: 5815 vdev_prop_add_list(outnvl, propname, NULL, 5816 vd->vdev_stat.vs_read_errors, 5817 ZPROP_SRC_NONE); 5818 continue; 5819 case VDEV_PROP_WRITE_ERRORS: 5820 vdev_prop_add_list(outnvl, propname, NULL, 5821 vd->vdev_stat.vs_write_errors, 5822 ZPROP_SRC_NONE); 5823 continue; 5824 case VDEV_PROP_CHECKSUM_ERRORS: 5825 vdev_prop_add_list(outnvl, propname, NULL, 5826 vd->vdev_stat.vs_checksum_errors, 5827 ZPROP_SRC_NONE); 5828 continue; 5829 case VDEV_PROP_INITIALIZE_ERRORS: 5830 vdev_prop_add_list(outnvl, propname, NULL, 5831 vd->vdev_stat.vs_initialize_errors, 5832 ZPROP_SRC_NONE); 5833 continue; 5834 case VDEV_PROP_OPS_NULL: 5835 vdev_prop_add_list(outnvl, propname, NULL, 5836 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL], 5837 ZPROP_SRC_NONE); 5838 continue; 5839 case VDEV_PROP_OPS_READ: 5840 vdev_prop_add_list(outnvl, propname, NULL, 5841 vd->vdev_stat.vs_ops[ZIO_TYPE_READ], 5842 ZPROP_SRC_NONE); 5843 continue; 5844 case VDEV_PROP_OPS_WRITE: 5845 vdev_prop_add_list(outnvl, propname, NULL, 5846 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE], 5847 ZPROP_SRC_NONE); 5848 continue; 5849 case VDEV_PROP_OPS_FREE: 5850 vdev_prop_add_list(outnvl, propname, NULL, 5851 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE], 5852 ZPROP_SRC_NONE); 5853 continue; 5854 case VDEV_PROP_OPS_CLAIM: 5855 vdev_prop_add_list(outnvl, propname, NULL, 5856 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM], 5857 ZPROP_SRC_NONE); 5858 continue; 5859 case VDEV_PROP_OPS_TRIM: 5860 /* 5861 * TRIM ops and bytes are reported to user 5862 * space as ZIO_TYPE_IOCTL. This is done to 5863 * preserve the vdev_stat_t structure layout 5864 * for user space. 5865 */ 5866 vdev_prop_add_list(outnvl, propname, NULL, 5867 vd->vdev_stat.vs_ops[ZIO_TYPE_IOCTL], 5868 ZPROP_SRC_NONE); 5869 continue; 5870 case VDEV_PROP_BYTES_NULL: 5871 vdev_prop_add_list(outnvl, propname, NULL, 5872 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL], 5873 ZPROP_SRC_NONE); 5874 continue; 5875 case VDEV_PROP_BYTES_READ: 5876 vdev_prop_add_list(outnvl, propname, NULL, 5877 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ], 5878 ZPROP_SRC_NONE); 5879 continue; 5880 case VDEV_PROP_BYTES_WRITE: 5881 vdev_prop_add_list(outnvl, propname, NULL, 5882 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE], 5883 ZPROP_SRC_NONE); 5884 continue; 5885 case VDEV_PROP_BYTES_FREE: 5886 vdev_prop_add_list(outnvl, propname, NULL, 5887 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE], 5888 ZPROP_SRC_NONE); 5889 continue; 5890 case VDEV_PROP_BYTES_CLAIM: 5891 vdev_prop_add_list(outnvl, propname, NULL, 5892 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM], 5893 ZPROP_SRC_NONE); 5894 continue; 5895 case VDEV_PROP_BYTES_TRIM: 5896 /* 5897 * TRIM ops and bytes are reported to user 5898 * space as ZIO_TYPE_IOCTL. This is done to 5899 * preserve the vdev_stat_t structure layout 5900 * for user space. 5901 */ 5902 vdev_prop_add_list(outnvl, propname, NULL, 5903 vd->vdev_stat.vs_bytes[ZIO_TYPE_IOCTL], 5904 ZPROP_SRC_NONE); 5905 continue; 5906 case VDEV_PROP_REMOVING: 5907 vdev_prop_add_list(outnvl, propname, NULL, 5908 vd->vdev_removing, ZPROP_SRC_NONE); 5909 continue; 5910 /* Numeric Properites */ 5911 case VDEV_PROP_ALLOCATING: 5912 src = ZPROP_SRC_LOCAL; 5913 strval = NULL; 5914 5915 err = zap_lookup(mos, objid, nvpair_name(elem), 5916 sizeof (uint64_t), 1, &intval); 5917 if (err == ENOENT) { 5918 intval = 5919 vdev_prop_default_numeric(prop); 5920 err = 0; 5921 } else if (err) 5922 break; 5923 if (intval == vdev_prop_default_numeric(prop)) 5924 src = ZPROP_SRC_DEFAULT; 5925 5926 /* Leaf vdevs cannot have this property */ 5927 if (vd->vdev_mg == NULL && 5928 vd->vdev_top != NULL) { 5929 src = ZPROP_SRC_NONE; 5930 intval = ZPROP_BOOLEAN_NA; 5931 } 5932 5933 vdev_prop_add_list(outnvl, propname, strval, 5934 intval, src); 5935 break; 5936 /* Text Properties */ 5937 case VDEV_PROP_COMMENT: 5938 /* Exists in the ZAP below */ 5939 /* FALLTHRU */ 5940 case VDEV_PROP_USERPROP: 5941 /* User Properites */ 5942 src = ZPROP_SRC_LOCAL; 5943 5944 err = zap_length(mos, objid, nvpair_name(elem), 5945 &integer_size, &num_integers); 5946 if (err) 5947 break; 5948 5949 switch (integer_size) { 5950 case 8: 5951 /* User properties cannot be integers */ 5952 err = EINVAL; 5953 break; 5954 case 1: 5955 /* string property */ 5956 strval = kmem_alloc(num_integers, 5957 KM_SLEEP); 5958 err = zap_lookup(mos, objid, 5959 nvpair_name(elem), 1, 5960 num_integers, strval); 5961 if (err) { 5962 kmem_free(strval, 5963 num_integers); 5964 break; 5965 } 5966 vdev_prop_add_list(outnvl, propname, 5967 strval, 0, src); 5968 kmem_free(strval, num_integers); 5969 break; 5970 } 5971 break; 5972 default: 5973 err = ENOENT; 5974 break; 5975 } 5976 if (err) 5977 break; 5978 } 5979 } else { 5980 /* 5981 * Get all properties from the MOS vdev property object. 5982 */ 5983 zap_cursor_t zc; 5984 zap_attribute_t za; 5985 for (zap_cursor_init(&zc, mos, objid); 5986 (err = zap_cursor_retrieve(&zc, &za)) == 0; 5987 zap_cursor_advance(&zc)) { 5988 intval = 0; 5989 strval = NULL; 5990 zprop_source_t src = ZPROP_SRC_DEFAULT; 5991 propname = za.za_name; 5992 prop = vdev_name_to_prop(propname); 5993 5994 switch (za.za_integer_length) { 5995 case 8: 5996 /* We do not allow integer user properties */ 5997 /* This is likely an internal value */ 5998 break; 5999 case 1: 6000 /* string property */ 6001 strval = kmem_alloc(za.za_num_integers, 6002 KM_SLEEP); 6003 err = zap_lookup(mos, objid, za.za_name, 1, 6004 za.za_num_integers, strval); 6005 if (err) { 6006 kmem_free(strval, za.za_num_integers); 6007 break; 6008 } 6009 vdev_prop_add_list(outnvl, propname, strval, 0, 6010 src); 6011 kmem_free(strval, za.za_num_integers); 6012 break; 6013 6014 default: 6015 break; 6016 } 6017 } 6018 zap_cursor_fini(&zc); 6019 } 6020 6021 mutex_exit(&spa->spa_props_lock); 6022 if (err && err != ENOENT) { 6023 return (err); 6024 } 6025 6026 return (0); 6027 } 6028 6029 EXPORT_SYMBOL(vdev_fault); 6030 EXPORT_SYMBOL(vdev_degrade); 6031 EXPORT_SYMBOL(vdev_online); 6032 EXPORT_SYMBOL(vdev_offline); 6033 EXPORT_SYMBOL(vdev_clear); 6034 6035 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, INT, ZMOD_RW, 6036 "Target number of metaslabs per top-level vdev"); 6037 6038 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, INT, ZMOD_RW, 6039 "Default limit for metaslab size"); 6040 6041 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, INT, ZMOD_RW, 6042 "Minimum number of metaslabs per top-level vdev"); 6043 6044 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, INT, ZMOD_RW, 6045 "Practical upper limit of total metaslabs per top-level vdev"); 6046 6047 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW, 6048 "Rate limit slow IO (delay) events to this many per second"); 6049 6050 /* BEGIN CSTYLED */ 6051 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW, 6052 "Rate limit checksum events to this many checksum errors per second " 6053 "(do not set below ZED threshold)."); 6054 /* END CSTYLED */ 6055 6056 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW, 6057 "Ignore errors during resilver/scrub"); 6058 6059 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW, 6060 "Bypass vdev_validate()"); 6061 6062 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW, 6063 "Disable cache flushes"); 6064 6065 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, INT, ZMOD_RW, 6066 "Minimum number of metaslabs required to dedicate one for log blocks"); 6067 6068 /* BEGIN CSTYLED */ 6069 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift, 6070 param_set_min_auto_ashift, param_get_ulong, ZMOD_RW, 6071 "Minimum ashift used when creating new top-level vdevs"); 6072 6073 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift, 6074 param_set_max_auto_ashift, param_get_ulong, ZMOD_RW, 6075 "Maximum ashift used when optimizing for logical -> physical sector " 6076 "size on new top-level vdevs"); 6077 /* END CSTYLED */ 6078