xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev.c (revision c6989859ae9388eeb46a24fe88f9b8d07101c710)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  * Copyright 2017 Joyent, Inc.
29  * Copyright (c) 2017, Intel Corporation.
30  * Copyright (c) 2019, Datto Inc. All rights reserved.
31  */
32 
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/spa.h>
36 #include <sys/spa_impl.h>
37 #include <sys/bpobj.h>
38 #include <sys/dmu.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/vdev_rebuild.h>
43 #include <sys/uberblock_impl.h>
44 #include <sys/metaslab.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/space_map.h>
47 #include <sys/space_reftree.h>
48 #include <sys/zio.h>
49 #include <sys/zap.h>
50 #include <sys/fs/zfs.h>
51 #include <sys/arc.h>
52 #include <sys/zil.h>
53 #include <sys/dsl_scan.h>
54 #include <sys/abd.h>
55 #include <sys/vdev_initialize.h>
56 #include <sys/vdev_trim.h>
57 #include <sys/zvol.h>
58 #include <sys/zfs_ratelimit.h>
59 
60 /* default target for number of metaslabs per top-level vdev */
61 int zfs_vdev_default_ms_count = 200;
62 
63 /* minimum number of metaslabs per top-level vdev */
64 int zfs_vdev_min_ms_count = 16;
65 
66 /* practical upper limit of total metaslabs per top-level vdev */
67 int zfs_vdev_ms_count_limit = 1ULL << 17;
68 
69 /* lower limit for metaslab size (512M) */
70 int zfs_vdev_default_ms_shift = 29;
71 
72 /* upper limit for metaslab size (16G) */
73 int zfs_vdev_max_ms_shift = 34;
74 
75 int vdev_validate_skip = B_FALSE;
76 
77 /*
78  * Since the DTL space map of a vdev is not expected to have a lot of
79  * entries, we default its block size to 4K.
80  */
81 int zfs_vdev_dtl_sm_blksz = (1 << 12);
82 
83 /*
84  * Rate limit slow IO (delay) events to this many per second.
85  */
86 unsigned int zfs_slow_io_events_per_second = 20;
87 
88 /*
89  * Rate limit checksum events after this many checksum errors per second.
90  */
91 unsigned int zfs_checksum_events_per_second = 20;
92 
93 /*
94  * Ignore errors during scrub/resilver.  Allows to work around resilver
95  * upon import when there are pool errors.
96  */
97 int zfs_scan_ignore_errors = 0;
98 
99 /*
100  * vdev-wide space maps that have lots of entries written to them at
101  * the end of each transaction can benefit from a higher I/O bandwidth
102  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
103  */
104 int zfs_vdev_standard_sm_blksz = (1 << 17);
105 
106 /*
107  * Tunable parameter for debugging or performance analysis. Setting this
108  * will cause pool corruption on power loss if a volatile out-of-order
109  * write cache is enabled.
110  */
111 int zfs_nocacheflush = 0;
112 
113 uint64_t zfs_vdev_max_auto_ashift = ASHIFT_MAX;
114 uint64_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
115 
116 /*PRINTFLIKE2*/
117 void
118 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
119 {
120 	va_list adx;
121 	char buf[256];
122 
123 	va_start(adx, fmt);
124 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
125 	va_end(adx);
126 
127 	if (vd->vdev_path != NULL) {
128 		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
129 		    vd->vdev_path, buf);
130 	} else {
131 		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
132 		    vd->vdev_ops->vdev_op_type,
133 		    (u_longlong_t)vd->vdev_id,
134 		    (u_longlong_t)vd->vdev_guid, buf);
135 	}
136 }
137 
138 void
139 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
140 {
141 	char state[20];
142 
143 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
144 		zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
145 		    vd->vdev_ops->vdev_op_type);
146 		return;
147 	}
148 
149 	switch (vd->vdev_state) {
150 	case VDEV_STATE_UNKNOWN:
151 		(void) snprintf(state, sizeof (state), "unknown");
152 		break;
153 	case VDEV_STATE_CLOSED:
154 		(void) snprintf(state, sizeof (state), "closed");
155 		break;
156 	case VDEV_STATE_OFFLINE:
157 		(void) snprintf(state, sizeof (state), "offline");
158 		break;
159 	case VDEV_STATE_REMOVED:
160 		(void) snprintf(state, sizeof (state), "removed");
161 		break;
162 	case VDEV_STATE_CANT_OPEN:
163 		(void) snprintf(state, sizeof (state), "can't open");
164 		break;
165 	case VDEV_STATE_FAULTED:
166 		(void) snprintf(state, sizeof (state), "faulted");
167 		break;
168 	case VDEV_STATE_DEGRADED:
169 		(void) snprintf(state, sizeof (state), "degraded");
170 		break;
171 	case VDEV_STATE_HEALTHY:
172 		(void) snprintf(state, sizeof (state), "healthy");
173 		break;
174 	default:
175 		(void) snprintf(state, sizeof (state), "<state %u>",
176 		    (uint_t)vd->vdev_state);
177 	}
178 
179 	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
180 	    "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
181 	    vd->vdev_islog ? " (log)" : "",
182 	    (u_longlong_t)vd->vdev_guid,
183 	    vd->vdev_path ? vd->vdev_path : "N/A", state);
184 
185 	for (uint64_t i = 0; i < vd->vdev_children; i++)
186 		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
187 }
188 
189 /*
190  * Virtual device management.
191  */
192 
193 static vdev_ops_t *vdev_ops_table[] = {
194 	&vdev_root_ops,
195 	&vdev_raidz_ops,
196 	&vdev_mirror_ops,
197 	&vdev_replacing_ops,
198 	&vdev_spare_ops,
199 	&vdev_disk_ops,
200 	&vdev_file_ops,
201 	&vdev_missing_ops,
202 	&vdev_hole_ops,
203 	&vdev_indirect_ops,
204 	NULL
205 };
206 
207 /*
208  * Given a vdev type, return the appropriate ops vector.
209  */
210 static vdev_ops_t *
211 vdev_getops(const char *type)
212 {
213 	vdev_ops_t *ops, **opspp;
214 
215 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
216 		if (strcmp(ops->vdev_op_type, type) == 0)
217 			break;
218 
219 	return (ops);
220 }
221 
222 /* ARGSUSED */
223 void
224 vdev_default_xlate(vdev_t *vd, const range_seg64_t *in, range_seg64_t *res)
225 {
226 	res->rs_start = in->rs_start;
227 	res->rs_end = in->rs_end;
228 }
229 
230 /*
231  * Derive the enumerated allocation bias from string input.
232  * String origin is either the per-vdev zap or zpool(1M).
233  */
234 static vdev_alloc_bias_t
235 vdev_derive_alloc_bias(const char *bias)
236 {
237 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
238 
239 	if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
240 		alloc_bias = VDEV_BIAS_LOG;
241 	else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
242 		alloc_bias = VDEV_BIAS_SPECIAL;
243 	else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
244 		alloc_bias = VDEV_BIAS_DEDUP;
245 
246 	return (alloc_bias);
247 }
248 
249 /*
250  * Default asize function: return the MAX of psize with the asize of
251  * all children.  This is what's used by anything other than RAID-Z.
252  */
253 uint64_t
254 vdev_default_asize(vdev_t *vd, uint64_t psize)
255 {
256 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
257 	uint64_t csize;
258 
259 	for (int c = 0; c < vd->vdev_children; c++) {
260 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
261 		asize = MAX(asize, csize);
262 	}
263 
264 	return (asize);
265 }
266 
267 /*
268  * Get the minimum allocatable size. We define the allocatable size as
269  * the vdev's asize rounded to the nearest metaslab. This allows us to
270  * replace or attach devices which don't have the same physical size but
271  * can still satisfy the same number of allocations.
272  */
273 uint64_t
274 vdev_get_min_asize(vdev_t *vd)
275 {
276 	vdev_t *pvd = vd->vdev_parent;
277 
278 	/*
279 	 * If our parent is NULL (inactive spare or cache) or is the root,
280 	 * just return our own asize.
281 	 */
282 	if (pvd == NULL)
283 		return (vd->vdev_asize);
284 
285 	/*
286 	 * The top-level vdev just returns the allocatable size rounded
287 	 * to the nearest metaslab.
288 	 */
289 	if (vd == vd->vdev_top)
290 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
291 
292 	/*
293 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
294 	 * so each child must provide at least 1/Nth of its asize.
295 	 */
296 	if (pvd->vdev_ops == &vdev_raidz_ops)
297 		return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
298 		    pvd->vdev_children);
299 
300 	return (pvd->vdev_min_asize);
301 }
302 
303 void
304 vdev_set_min_asize(vdev_t *vd)
305 {
306 	vd->vdev_min_asize = vdev_get_min_asize(vd);
307 
308 	for (int c = 0; c < vd->vdev_children; c++)
309 		vdev_set_min_asize(vd->vdev_child[c]);
310 }
311 
312 vdev_t *
313 vdev_lookup_top(spa_t *spa, uint64_t vdev)
314 {
315 	vdev_t *rvd = spa->spa_root_vdev;
316 
317 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
318 
319 	if (vdev < rvd->vdev_children) {
320 		ASSERT(rvd->vdev_child[vdev] != NULL);
321 		return (rvd->vdev_child[vdev]);
322 	}
323 
324 	return (NULL);
325 }
326 
327 vdev_t *
328 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
329 {
330 	vdev_t *mvd;
331 
332 	if (vd->vdev_guid == guid)
333 		return (vd);
334 
335 	for (int c = 0; c < vd->vdev_children; c++)
336 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
337 		    NULL)
338 			return (mvd);
339 
340 	return (NULL);
341 }
342 
343 static int
344 vdev_count_leaves_impl(vdev_t *vd)
345 {
346 	int n = 0;
347 
348 	if (vd->vdev_ops->vdev_op_leaf)
349 		return (1);
350 
351 	for (int c = 0; c < vd->vdev_children; c++)
352 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
353 
354 	return (n);
355 }
356 
357 int
358 vdev_count_leaves(spa_t *spa)
359 {
360 	int rc;
361 
362 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
363 	rc = vdev_count_leaves_impl(spa->spa_root_vdev);
364 	spa_config_exit(spa, SCL_VDEV, FTAG);
365 
366 	return (rc);
367 }
368 
369 void
370 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
371 {
372 	size_t oldsize, newsize;
373 	uint64_t id = cvd->vdev_id;
374 	vdev_t **newchild;
375 
376 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
377 	ASSERT(cvd->vdev_parent == NULL);
378 
379 	cvd->vdev_parent = pvd;
380 
381 	if (pvd == NULL)
382 		return;
383 
384 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
385 
386 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
387 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
388 	newsize = pvd->vdev_children * sizeof (vdev_t *);
389 
390 	newchild = kmem_alloc(newsize, KM_SLEEP);
391 	if (pvd->vdev_child != NULL) {
392 		bcopy(pvd->vdev_child, newchild, oldsize);
393 		kmem_free(pvd->vdev_child, oldsize);
394 	}
395 
396 	pvd->vdev_child = newchild;
397 	pvd->vdev_child[id] = cvd;
398 
399 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
400 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
401 
402 	/*
403 	 * Walk up all ancestors to update guid sum.
404 	 */
405 	for (; pvd != NULL; pvd = pvd->vdev_parent)
406 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
407 
408 	if (cvd->vdev_ops->vdev_op_leaf) {
409 		list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
410 		cvd->vdev_spa->spa_leaf_list_gen++;
411 	}
412 }
413 
414 void
415 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
416 {
417 	int c;
418 	uint_t id = cvd->vdev_id;
419 
420 	ASSERT(cvd->vdev_parent == pvd);
421 
422 	if (pvd == NULL)
423 		return;
424 
425 	ASSERT(id < pvd->vdev_children);
426 	ASSERT(pvd->vdev_child[id] == cvd);
427 
428 	pvd->vdev_child[id] = NULL;
429 	cvd->vdev_parent = NULL;
430 
431 	for (c = 0; c < pvd->vdev_children; c++)
432 		if (pvd->vdev_child[c])
433 			break;
434 
435 	if (c == pvd->vdev_children) {
436 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
437 		pvd->vdev_child = NULL;
438 		pvd->vdev_children = 0;
439 	}
440 
441 	if (cvd->vdev_ops->vdev_op_leaf) {
442 		spa_t *spa = cvd->vdev_spa;
443 		list_remove(&spa->spa_leaf_list, cvd);
444 		spa->spa_leaf_list_gen++;
445 	}
446 
447 	/*
448 	 * Walk up all ancestors to update guid sum.
449 	 */
450 	for (; pvd != NULL; pvd = pvd->vdev_parent)
451 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
452 }
453 
454 /*
455  * Remove any holes in the child array.
456  */
457 void
458 vdev_compact_children(vdev_t *pvd)
459 {
460 	vdev_t **newchild, *cvd;
461 	int oldc = pvd->vdev_children;
462 	int newc;
463 
464 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
465 
466 	if (oldc == 0)
467 		return;
468 
469 	for (int c = newc = 0; c < oldc; c++)
470 		if (pvd->vdev_child[c])
471 			newc++;
472 
473 	if (newc > 0) {
474 		newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
475 
476 		for (int c = newc = 0; c < oldc; c++) {
477 			if ((cvd = pvd->vdev_child[c]) != NULL) {
478 				newchild[newc] = cvd;
479 				cvd->vdev_id = newc++;
480 			}
481 		}
482 	} else {
483 		newchild = NULL;
484 	}
485 
486 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
487 	pvd->vdev_child = newchild;
488 	pvd->vdev_children = newc;
489 }
490 
491 /*
492  * Allocate and minimally initialize a vdev_t.
493  */
494 vdev_t *
495 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
496 {
497 	vdev_t *vd;
498 	vdev_indirect_config_t *vic;
499 
500 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
501 	vic = &vd->vdev_indirect_config;
502 
503 	if (spa->spa_root_vdev == NULL) {
504 		ASSERT(ops == &vdev_root_ops);
505 		spa->spa_root_vdev = vd;
506 		spa->spa_load_guid = spa_generate_guid(NULL);
507 	}
508 
509 	if (guid == 0 && ops != &vdev_hole_ops) {
510 		if (spa->spa_root_vdev == vd) {
511 			/*
512 			 * The root vdev's guid will also be the pool guid,
513 			 * which must be unique among all pools.
514 			 */
515 			guid = spa_generate_guid(NULL);
516 		} else {
517 			/*
518 			 * Any other vdev's guid must be unique within the pool.
519 			 */
520 			guid = spa_generate_guid(spa);
521 		}
522 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
523 	}
524 
525 	vd->vdev_spa = spa;
526 	vd->vdev_id = id;
527 	vd->vdev_guid = guid;
528 	vd->vdev_guid_sum = guid;
529 	vd->vdev_ops = ops;
530 	vd->vdev_state = VDEV_STATE_CLOSED;
531 	vd->vdev_ishole = (ops == &vdev_hole_ops);
532 	vic->vic_prev_indirect_vdev = UINT64_MAX;
533 
534 	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
535 	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
536 	vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL,
537 	    0, 0);
538 
539 	/*
540 	 * Initialize rate limit structs for events.  We rate limit ZIO delay
541 	 * and checksum events so that we don't overwhelm ZED with thousands
542 	 * of events when a disk is acting up.
543 	 */
544 	zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
545 	    1);
546 	zfs_ratelimit_init(&vd->vdev_checksum_rl,
547 	    &zfs_checksum_events_per_second, 1);
548 
549 	list_link_init(&vd->vdev_config_dirty_node);
550 	list_link_init(&vd->vdev_state_dirty_node);
551 	list_link_init(&vd->vdev_initialize_node);
552 	list_link_init(&vd->vdev_leaf_node);
553 	list_link_init(&vd->vdev_trim_node);
554 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
555 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
556 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
557 	mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
558 
559 	mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
560 	mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
561 	cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
562 	cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
563 
564 	mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
565 	mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
566 	mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
567 	cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
568 	cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
569 	cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
570 
571 	mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
572 	mutex_init(&vd->vdev_rebuild_io_lock, NULL, MUTEX_DEFAULT, NULL);
573 	cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
574 	cv_init(&vd->vdev_rebuild_io_cv, NULL, CV_DEFAULT, NULL);
575 
576 	for (int t = 0; t < DTL_TYPES; t++) {
577 		vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
578 		    0);
579 	}
580 
581 	txg_list_create(&vd->vdev_ms_list, spa,
582 	    offsetof(struct metaslab, ms_txg_node));
583 	txg_list_create(&vd->vdev_dtl_list, spa,
584 	    offsetof(struct vdev, vdev_dtl_node));
585 	vd->vdev_stat.vs_timestamp = gethrtime();
586 	vdev_queue_init(vd);
587 	vdev_cache_init(vd);
588 
589 	return (vd);
590 }
591 
592 /*
593  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
594  * creating a new vdev or loading an existing one - the behavior is slightly
595  * different for each case.
596  */
597 int
598 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
599     int alloctype)
600 {
601 	vdev_ops_t *ops;
602 	char *type;
603 	uint64_t guid = 0, islog, nparity;
604 	vdev_t *vd;
605 	vdev_indirect_config_t *vic;
606 	char *tmp = NULL;
607 	int rc;
608 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
609 	boolean_t top_level = (parent && !parent->vdev_parent);
610 
611 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
612 
613 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
614 		return (SET_ERROR(EINVAL));
615 
616 	if ((ops = vdev_getops(type)) == NULL)
617 		return (SET_ERROR(EINVAL));
618 
619 	/*
620 	 * If this is a load, get the vdev guid from the nvlist.
621 	 * Otherwise, vdev_alloc_common() will generate one for us.
622 	 */
623 	if (alloctype == VDEV_ALLOC_LOAD) {
624 		uint64_t label_id;
625 
626 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
627 		    label_id != id)
628 			return (SET_ERROR(EINVAL));
629 
630 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
631 			return (SET_ERROR(EINVAL));
632 	} else if (alloctype == VDEV_ALLOC_SPARE) {
633 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
634 			return (SET_ERROR(EINVAL));
635 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
636 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
637 			return (SET_ERROR(EINVAL));
638 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
639 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
640 			return (SET_ERROR(EINVAL));
641 	}
642 
643 	/*
644 	 * The first allocated vdev must be of type 'root'.
645 	 */
646 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
647 		return (SET_ERROR(EINVAL));
648 
649 	/*
650 	 * Determine whether we're a log vdev.
651 	 */
652 	islog = 0;
653 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
654 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
655 		return (SET_ERROR(ENOTSUP));
656 
657 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
658 		return (SET_ERROR(ENOTSUP));
659 
660 	/*
661 	 * Set the nparity property for RAID-Z vdevs.
662 	 */
663 	nparity = -1ULL;
664 	if (ops == &vdev_raidz_ops) {
665 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
666 		    &nparity) == 0) {
667 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
668 				return (SET_ERROR(EINVAL));
669 			/*
670 			 * Previous versions could only support 1 or 2 parity
671 			 * device.
672 			 */
673 			if (nparity > 1 &&
674 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
675 				return (SET_ERROR(ENOTSUP));
676 			if (nparity > 2 &&
677 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
678 				return (SET_ERROR(ENOTSUP));
679 		} else {
680 			/*
681 			 * We require the parity to be specified for SPAs that
682 			 * support multiple parity levels.
683 			 */
684 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
685 				return (SET_ERROR(EINVAL));
686 			/*
687 			 * Otherwise, we default to 1 parity device for RAID-Z.
688 			 */
689 			nparity = 1;
690 		}
691 	} else {
692 		nparity = 0;
693 	}
694 	ASSERT(nparity != -1ULL);
695 
696 	/*
697 	 * If creating a top-level vdev, check for allocation classes input
698 	 */
699 	if (top_level && alloctype == VDEV_ALLOC_ADD) {
700 		char *bias;
701 
702 		if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
703 		    &bias) == 0) {
704 			alloc_bias = vdev_derive_alloc_bias(bias);
705 
706 			/* spa_vdev_add() expects feature to be enabled */
707 			if (spa->spa_load_state != SPA_LOAD_CREATE &&
708 			    !spa_feature_is_enabled(spa,
709 			    SPA_FEATURE_ALLOCATION_CLASSES)) {
710 				return (SET_ERROR(ENOTSUP));
711 			}
712 		}
713 	}
714 
715 	vd = vdev_alloc_common(spa, id, guid, ops);
716 	vic = &vd->vdev_indirect_config;
717 
718 	vd->vdev_islog = islog;
719 	vd->vdev_nparity = nparity;
720 	if (top_level && alloc_bias != VDEV_BIAS_NONE)
721 		vd->vdev_alloc_bias = alloc_bias;
722 
723 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
724 		vd->vdev_path = spa_strdup(vd->vdev_path);
725 
726 	/*
727 	 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
728 	 * fault on a vdev and want it to persist across imports (like with
729 	 * zpool offline -f).
730 	 */
731 	rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
732 	if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
733 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
734 		vd->vdev_faulted = 1;
735 		vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
736 	}
737 
738 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
739 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
740 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
741 	    &vd->vdev_physpath) == 0)
742 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
743 
744 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
745 	    &vd->vdev_enc_sysfs_path) == 0)
746 		vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
747 
748 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
749 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
750 
751 	/*
752 	 * Set the whole_disk property.  If it's not specified, leave the value
753 	 * as -1.
754 	 */
755 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
756 	    &vd->vdev_wholedisk) != 0)
757 		vd->vdev_wholedisk = -1ULL;
758 
759 	ASSERT0(vic->vic_mapping_object);
760 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
761 	    &vic->vic_mapping_object);
762 	ASSERT0(vic->vic_births_object);
763 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
764 	    &vic->vic_births_object);
765 	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
766 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
767 	    &vic->vic_prev_indirect_vdev);
768 
769 	/*
770 	 * Look for the 'not present' flag.  This will only be set if the device
771 	 * was not present at the time of import.
772 	 */
773 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
774 	    &vd->vdev_not_present);
775 
776 	/*
777 	 * Get the alignment requirement.
778 	 */
779 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
780 
781 	/*
782 	 * Retrieve the vdev creation time.
783 	 */
784 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
785 	    &vd->vdev_crtxg);
786 
787 	/*
788 	 * If we're a top-level vdev, try to load the allocation parameters.
789 	 */
790 	if (top_level &&
791 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
792 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
793 		    &vd->vdev_ms_array);
794 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
795 		    &vd->vdev_ms_shift);
796 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
797 		    &vd->vdev_asize);
798 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
799 		    &vd->vdev_removing);
800 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
801 		    &vd->vdev_top_zap);
802 	} else {
803 		ASSERT0(vd->vdev_top_zap);
804 	}
805 
806 	if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
807 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
808 		    alloctype == VDEV_ALLOC_ADD ||
809 		    alloctype == VDEV_ALLOC_SPLIT ||
810 		    alloctype == VDEV_ALLOC_ROOTPOOL);
811 		/* Note: metaslab_group_create() is now deferred */
812 	}
813 
814 	if (vd->vdev_ops->vdev_op_leaf &&
815 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
816 		(void) nvlist_lookup_uint64(nv,
817 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
818 	} else {
819 		ASSERT0(vd->vdev_leaf_zap);
820 	}
821 
822 	/*
823 	 * If we're a leaf vdev, try to load the DTL object and other state.
824 	 */
825 
826 	if (vd->vdev_ops->vdev_op_leaf &&
827 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
828 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
829 		if (alloctype == VDEV_ALLOC_LOAD) {
830 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
831 			    &vd->vdev_dtl_object);
832 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
833 			    &vd->vdev_unspare);
834 		}
835 
836 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
837 			uint64_t spare = 0;
838 
839 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
840 			    &spare) == 0 && spare)
841 				spa_spare_add(vd);
842 		}
843 
844 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
845 		    &vd->vdev_offline);
846 
847 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
848 		    &vd->vdev_resilver_txg);
849 
850 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
851 		    &vd->vdev_rebuild_txg);
852 
853 		if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
854 			vdev_defer_resilver(vd);
855 
856 		/*
857 		 * In general, when importing a pool we want to ignore the
858 		 * persistent fault state, as the diagnosis made on another
859 		 * system may not be valid in the current context.  The only
860 		 * exception is if we forced a vdev to a persistently faulted
861 		 * state with 'zpool offline -f'.  The persistent fault will
862 		 * remain across imports until cleared.
863 		 *
864 		 * Local vdevs will remain in the faulted state.
865 		 */
866 		if (spa_load_state(spa) == SPA_LOAD_OPEN ||
867 		    spa_load_state(spa) == SPA_LOAD_IMPORT) {
868 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
869 			    &vd->vdev_faulted);
870 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
871 			    &vd->vdev_degraded);
872 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
873 			    &vd->vdev_removed);
874 
875 			if (vd->vdev_faulted || vd->vdev_degraded) {
876 				char *aux;
877 
878 				vd->vdev_label_aux =
879 				    VDEV_AUX_ERR_EXCEEDED;
880 				if (nvlist_lookup_string(nv,
881 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
882 				    strcmp(aux, "external") == 0)
883 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
884 				else
885 					vd->vdev_faulted = 0ULL;
886 			}
887 		}
888 	}
889 
890 	/*
891 	 * Add ourselves to the parent's list of children.
892 	 */
893 	vdev_add_child(parent, vd);
894 
895 	*vdp = vd;
896 
897 	return (0);
898 }
899 
900 void
901 vdev_free(vdev_t *vd)
902 {
903 	spa_t *spa = vd->vdev_spa;
904 
905 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
906 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
907 	ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
908 	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
909 
910 	/*
911 	 * Scan queues are normally destroyed at the end of a scan. If the
912 	 * queue exists here, that implies the vdev is being removed while
913 	 * the scan is still running.
914 	 */
915 	if (vd->vdev_scan_io_queue != NULL) {
916 		mutex_enter(&vd->vdev_scan_io_queue_lock);
917 		dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
918 		vd->vdev_scan_io_queue = NULL;
919 		mutex_exit(&vd->vdev_scan_io_queue_lock);
920 	}
921 
922 	/*
923 	 * vdev_free() implies closing the vdev first.  This is simpler than
924 	 * trying to ensure complicated semantics for all callers.
925 	 */
926 	vdev_close(vd);
927 
928 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
929 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
930 
931 	/*
932 	 * Free all children.
933 	 */
934 	for (int c = 0; c < vd->vdev_children; c++)
935 		vdev_free(vd->vdev_child[c]);
936 
937 	ASSERT(vd->vdev_child == NULL);
938 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
939 
940 	/*
941 	 * Discard allocation state.
942 	 */
943 	if (vd->vdev_mg != NULL) {
944 		vdev_metaslab_fini(vd);
945 		metaslab_group_destroy(vd->vdev_mg);
946 		vd->vdev_mg = NULL;
947 	}
948 
949 	ASSERT0(vd->vdev_stat.vs_space);
950 	ASSERT0(vd->vdev_stat.vs_dspace);
951 	ASSERT0(vd->vdev_stat.vs_alloc);
952 
953 	/*
954 	 * Remove this vdev from its parent's child list.
955 	 */
956 	vdev_remove_child(vd->vdev_parent, vd);
957 
958 	ASSERT(vd->vdev_parent == NULL);
959 	ASSERT(!list_link_active(&vd->vdev_leaf_node));
960 
961 	/*
962 	 * Clean up vdev structure.
963 	 */
964 	vdev_queue_fini(vd);
965 	vdev_cache_fini(vd);
966 
967 	if (vd->vdev_path)
968 		spa_strfree(vd->vdev_path);
969 	if (vd->vdev_devid)
970 		spa_strfree(vd->vdev_devid);
971 	if (vd->vdev_physpath)
972 		spa_strfree(vd->vdev_physpath);
973 
974 	if (vd->vdev_enc_sysfs_path)
975 		spa_strfree(vd->vdev_enc_sysfs_path);
976 
977 	if (vd->vdev_fru)
978 		spa_strfree(vd->vdev_fru);
979 
980 	if (vd->vdev_isspare)
981 		spa_spare_remove(vd);
982 	if (vd->vdev_isl2cache)
983 		spa_l2cache_remove(vd);
984 
985 	txg_list_destroy(&vd->vdev_ms_list);
986 	txg_list_destroy(&vd->vdev_dtl_list);
987 
988 	mutex_enter(&vd->vdev_dtl_lock);
989 	space_map_close(vd->vdev_dtl_sm);
990 	for (int t = 0; t < DTL_TYPES; t++) {
991 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
992 		range_tree_destroy(vd->vdev_dtl[t]);
993 	}
994 	mutex_exit(&vd->vdev_dtl_lock);
995 
996 	EQUIV(vd->vdev_indirect_births != NULL,
997 	    vd->vdev_indirect_mapping != NULL);
998 	if (vd->vdev_indirect_births != NULL) {
999 		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1000 		vdev_indirect_births_close(vd->vdev_indirect_births);
1001 	}
1002 
1003 	if (vd->vdev_obsolete_sm != NULL) {
1004 		ASSERT(vd->vdev_removing ||
1005 		    vd->vdev_ops == &vdev_indirect_ops);
1006 		space_map_close(vd->vdev_obsolete_sm);
1007 		vd->vdev_obsolete_sm = NULL;
1008 	}
1009 	range_tree_destroy(vd->vdev_obsolete_segments);
1010 	rw_destroy(&vd->vdev_indirect_rwlock);
1011 	mutex_destroy(&vd->vdev_obsolete_lock);
1012 
1013 	mutex_destroy(&vd->vdev_dtl_lock);
1014 	mutex_destroy(&vd->vdev_stat_lock);
1015 	mutex_destroy(&vd->vdev_probe_lock);
1016 	mutex_destroy(&vd->vdev_scan_io_queue_lock);
1017 
1018 	mutex_destroy(&vd->vdev_initialize_lock);
1019 	mutex_destroy(&vd->vdev_initialize_io_lock);
1020 	cv_destroy(&vd->vdev_initialize_io_cv);
1021 	cv_destroy(&vd->vdev_initialize_cv);
1022 
1023 	mutex_destroy(&vd->vdev_trim_lock);
1024 	mutex_destroy(&vd->vdev_autotrim_lock);
1025 	mutex_destroy(&vd->vdev_trim_io_lock);
1026 	cv_destroy(&vd->vdev_trim_cv);
1027 	cv_destroy(&vd->vdev_autotrim_cv);
1028 	cv_destroy(&vd->vdev_trim_io_cv);
1029 
1030 	mutex_destroy(&vd->vdev_rebuild_lock);
1031 	mutex_destroy(&vd->vdev_rebuild_io_lock);
1032 	cv_destroy(&vd->vdev_rebuild_cv);
1033 	cv_destroy(&vd->vdev_rebuild_io_cv);
1034 
1035 	zfs_ratelimit_fini(&vd->vdev_delay_rl);
1036 	zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1037 
1038 	if (vd == spa->spa_root_vdev)
1039 		spa->spa_root_vdev = NULL;
1040 
1041 	kmem_free(vd, sizeof (vdev_t));
1042 }
1043 
1044 /*
1045  * Transfer top-level vdev state from svd to tvd.
1046  */
1047 static void
1048 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1049 {
1050 	spa_t *spa = svd->vdev_spa;
1051 	metaslab_t *msp;
1052 	vdev_t *vd;
1053 	int t;
1054 
1055 	ASSERT(tvd == tvd->vdev_top);
1056 
1057 	tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
1058 	tvd->vdev_ms_array = svd->vdev_ms_array;
1059 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
1060 	tvd->vdev_ms_count = svd->vdev_ms_count;
1061 	tvd->vdev_top_zap = svd->vdev_top_zap;
1062 
1063 	svd->vdev_ms_array = 0;
1064 	svd->vdev_ms_shift = 0;
1065 	svd->vdev_ms_count = 0;
1066 	svd->vdev_top_zap = 0;
1067 
1068 	if (tvd->vdev_mg)
1069 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1070 	tvd->vdev_mg = svd->vdev_mg;
1071 	tvd->vdev_ms = svd->vdev_ms;
1072 
1073 	svd->vdev_mg = NULL;
1074 	svd->vdev_ms = NULL;
1075 
1076 	if (tvd->vdev_mg != NULL)
1077 		tvd->vdev_mg->mg_vd = tvd;
1078 
1079 	tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1080 	svd->vdev_checkpoint_sm = NULL;
1081 
1082 	tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1083 	svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1084 
1085 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1086 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1087 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1088 
1089 	svd->vdev_stat.vs_alloc = 0;
1090 	svd->vdev_stat.vs_space = 0;
1091 	svd->vdev_stat.vs_dspace = 0;
1092 
1093 	/*
1094 	 * State which may be set on a top-level vdev that's in the
1095 	 * process of being removed.
1096 	 */
1097 	ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1098 	ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1099 	ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1100 	ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1101 	ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1102 	ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1103 	ASSERT0(tvd->vdev_removing);
1104 	ASSERT0(tvd->vdev_rebuilding);
1105 	tvd->vdev_removing = svd->vdev_removing;
1106 	tvd->vdev_rebuilding = svd->vdev_rebuilding;
1107 	tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1108 	tvd->vdev_indirect_config = svd->vdev_indirect_config;
1109 	tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1110 	tvd->vdev_indirect_births = svd->vdev_indirect_births;
1111 	range_tree_swap(&svd->vdev_obsolete_segments,
1112 	    &tvd->vdev_obsolete_segments);
1113 	tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1114 	svd->vdev_indirect_config.vic_mapping_object = 0;
1115 	svd->vdev_indirect_config.vic_births_object = 0;
1116 	svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1117 	svd->vdev_indirect_mapping = NULL;
1118 	svd->vdev_indirect_births = NULL;
1119 	svd->vdev_obsolete_sm = NULL;
1120 	svd->vdev_removing = 0;
1121 	svd->vdev_rebuilding = 0;
1122 
1123 	for (t = 0; t < TXG_SIZE; t++) {
1124 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1125 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1126 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1127 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1128 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1129 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1130 	}
1131 
1132 	if (list_link_active(&svd->vdev_config_dirty_node)) {
1133 		vdev_config_clean(svd);
1134 		vdev_config_dirty(tvd);
1135 	}
1136 
1137 	if (list_link_active(&svd->vdev_state_dirty_node)) {
1138 		vdev_state_clean(svd);
1139 		vdev_state_dirty(tvd);
1140 	}
1141 
1142 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1143 	svd->vdev_deflate_ratio = 0;
1144 
1145 	tvd->vdev_islog = svd->vdev_islog;
1146 	svd->vdev_islog = 0;
1147 
1148 	dsl_scan_io_queue_vdev_xfer(svd, tvd);
1149 }
1150 
1151 static void
1152 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1153 {
1154 	if (vd == NULL)
1155 		return;
1156 
1157 	vd->vdev_top = tvd;
1158 
1159 	for (int c = 0; c < vd->vdev_children; c++)
1160 		vdev_top_update(tvd, vd->vdev_child[c]);
1161 }
1162 
1163 /*
1164  * Add a mirror/replacing vdev above an existing vdev.
1165  */
1166 vdev_t *
1167 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1168 {
1169 	spa_t *spa = cvd->vdev_spa;
1170 	vdev_t *pvd = cvd->vdev_parent;
1171 	vdev_t *mvd;
1172 
1173 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1174 
1175 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1176 
1177 	mvd->vdev_asize = cvd->vdev_asize;
1178 	mvd->vdev_min_asize = cvd->vdev_min_asize;
1179 	mvd->vdev_max_asize = cvd->vdev_max_asize;
1180 	mvd->vdev_psize = cvd->vdev_psize;
1181 	mvd->vdev_ashift = cvd->vdev_ashift;
1182 	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1183 	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1184 	mvd->vdev_state = cvd->vdev_state;
1185 	mvd->vdev_crtxg = cvd->vdev_crtxg;
1186 
1187 	vdev_remove_child(pvd, cvd);
1188 	vdev_add_child(pvd, mvd);
1189 	cvd->vdev_id = mvd->vdev_children;
1190 	vdev_add_child(mvd, cvd);
1191 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1192 
1193 	if (mvd == mvd->vdev_top)
1194 		vdev_top_transfer(cvd, mvd);
1195 
1196 	return (mvd);
1197 }
1198 
1199 /*
1200  * Remove a 1-way mirror/replacing vdev from the tree.
1201  */
1202 void
1203 vdev_remove_parent(vdev_t *cvd)
1204 {
1205 	vdev_t *mvd = cvd->vdev_parent;
1206 	vdev_t *pvd = mvd->vdev_parent;
1207 
1208 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1209 
1210 	ASSERT(mvd->vdev_children == 1);
1211 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1212 	    mvd->vdev_ops == &vdev_replacing_ops ||
1213 	    mvd->vdev_ops == &vdev_spare_ops);
1214 	cvd->vdev_ashift = mvd->vdev_ashift;
1215 	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1216 	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1217 	vdev_remove_child(mvd, cvd);
1218 	vdev_remove_child(pvd, mvd);
1219 
1220 	/*
1221 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1222 	 * Otherwise, we could have detached an offline device, and when we
1223 	 * go to import the pool we'll think we have two top-level vdevs,
1224 	 * instead of a different version of the same top-level vdev.
1225 	 */
1226 	if (mvd->vdev_top == mvd) {
1227 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1228 		cvd->vdev_orig_guid = cvd->vdev_guid;
1229 		cvd->vdev_guid += guid_delta;
1230 		cvd->vdev_guid_sum += guid_delta;
1231 
1232 		/*
1233 		 * If pool not set for autoexpand, we need to also preserve
1234 		 * mvd's asize to prevent automatic expansion of cvd.
1235 		 * Otherwise if we are adjusting the mirror by attaching and
1236 		 * detaching children of non-uniform sizes, the mirror could
1237 		 * autoexpand, unexpectedly requiring larger devices to
1238 		 * re-establish the mirror.
1239 		 */
1240 		if (!cvd->vdev_spa->spa_autoexpand)
1241 			cvd->vdev_asize = mvd->vdev_asize;
1242 	}
1243 	cvd->vdev_id = mvd->vdev_id;
1244 	vdev_add_child(pvd, cvd);
1245 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1246 
1247 	if (cvd == cvd->vdev_top)
1248 		vdev_top_transfer(mvd, cvd);
1249 
1250 	ASSERT(mvd->vdev_children == 0);
1251 	vdev_free(mvd);
1252 }
1253 
1254 static void
1255 vdev_metaslab_group_create(vdev_t *vd)
1256 {
1257 	spa_t *spa = vd->vdev_spa;
1258 
1259 	/*
1260 	 * metaslab_group_create was delayed until allocation bias was available
1261 	 */
1262 	if (vd->vdev_mg == NULL) {
1263 		metaslab_class_t *mc;
1264 
1265 		if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1266 			vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1267 
1268 		ASSERT3U(vd->vdev_islog, ==,
1269 		    (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1270 
1271 		switch (vd->vdev_alloc_bias) {
1272 		case VDEV_BIAS_LOG:
1273 			mc = spa_log_class(spa);
1274 			break;
1275 		case VDEV_BIAS_SPECIAL:
1276 			mc = spa_special_class(spa);
1277 			break;
1278 		case VDEV_BIAS_DEDUP:
1279 			mc = spa_dedup_class(spa);
1280 			break;
1281 		default:
1282 			mc = spa_normal_class(spa);
1283 		}
1284 
1285 		vd->vdev_mg = metaslab_group_create(mc, vd,
1286 		    spa->spa_alloc_count);
1287 
1288 		/*
1289 		 * The spa ashift values currently only reflect the
1290 		 * general vdev classes. Class destination is late
1291 		 * binding so ashift checking had to wait until now
1292 		 */
1293 		if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1294 		    mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1295 			if (vd->vdev_ashift > spa->spa_max_ashift)
1296 				spa->spa_max_ashift = vd->vdev_ashift;
1297 			if (vd->vdev_ashift < spa->spa_min_ashift)
1298 				spa->spa_min_ashift = vd->vdev_ashift;
1299 		}
1300 	}
1301 }
1302 
1303 int
1304 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1305 {
1306 	spa_t *spa = vd->vdev_spa;
1307 	objset_t *mos = spa->spa_meta_objset;
1308 	uint64_t m;
1309 	uint64_t oldc = vd->vdev_ms_count;
1310 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1311 	metaslab_t **mspp;
1312 	int error;
1313 	boolean_t expanding = (oldc != 0);
1314 
1315 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1316 
1317 	/*
1318 	 * This vdev is not being allocated from yet or is a hole.
1319 	 */
1320 	if (vd->vdev_ms_shift == 0)
1321 		return (0);
1322 
1323 	ASSERT(!vd->vdev_ishole);
1324 
1325 	ASSERT(oldc <= newc);
1326 
1327 	mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1328 
1329 	if (expanding) {
1330 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1331 		vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1332 	}
1333 
1334 	vd->vdev_ms = mspp;
1335 	vd->vdev_ms_count = newc;
1336 	for (m = oldc; m < newc; m++) {
1337 		uint64_t object = 0;
1338 
1339 		/*
1340 		 * vdev_ms_array may be 0 if we are creating the "fake"
1341 		 * metaslabs for an indirect vdev for zdb's leak detection.
1342 		 * See zdb_leak_init().
1343 		 */
1344 		if (txg == 0 && vd->vdev_ms_array != 0) {
1345 			error = dmu_read(mos, vd->vdev_ms_array,
1346 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1347 			    DMU_READ_PREFETCH);
1348 			if (error != 0) {
1349 				vdev_dbgmsg(vd, "unable to read the metaslab "
1350 				    "array [error=%d]", error);
1351 				return (error);
1352 			}
1353 		}
1354 
1355 #ifndef _KERNEL
1356 		/*
1357 		 * To accommodate zdb_leak_init() fake indirect
1358 		 * metaslabs, we allocate a metaslab group for
1359 		 * indirect vdevs which normally don't have one.
1360 		 */
1361 		if (vd->vdev_mg == NULL) {
1362 			ASSERT0(vdev_is_concrete(vd));
1363 			vdev_metaslab_group_create(vd);
1364 		}
1365 #endif
1366 		error = metaslab_init(vd->vdev_mg, m, object, txg,
1367 		    &(vd->vdev_ms[m]));
1368 		if (error != 0) {
1369 			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1370 			    error);
1371 			return (error);
1372 		}
1373 	}
1374 
1375 	if (txg == 0)
1376 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1377 
1378 	/*
1379 	 * If the vdev is being removed we don't activate
1380 	 * the metaslabs since we want to ensure that no new
1381 	 * allocations are performed on this device.
1382 	 */
1383 	if (!expanding && !vd->vdev_removing) {
1384 		metaslab_group_activate(vd->vdev_mg);
1385 	}
1386 
1387 	if (txg == 0)
1388 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1389 
1390 	/*
1391 	 * Regardless whether this vdev was just added or it is being
1392 	 * expanded, the metaslab count has changed. Recalculate the
1393 	 * block limit.
1394 	 */
1395 	spa_log_sm_set_blocklimit(spa);
1396 
1397 	return (0);
1398 }
1399 
1400 void
1401 vdev_metaslab_fini(vdev_t *vd)
1402 {
1403 	if (vd->vdev_checkpoint_sm != NULL) {
1404 		ASSERT(spa_feature_is_active(vd->vdev_spa,
1405 		    SPA_FEATURE_POOL_CHECKPOINT));
1406 		space_map_close(vd->vdev_checkpoint_sm);
1407 		/*
1408 		 * Even though we close the space map, we need to set its
1409 		 * pointer to NULL. The reason is that vdev_metaslab_fini()
1410 		 * may be called multiple times for certain operations
1411 		 * (i.e. when destroying a pool) so we need to ensure that
1412 		 * this clause never executes twice. This logic is similar
1413 		 * to the one used for the vdev_ms clause below.
1414 		 */
1415 		vd->vdev_checkpoint_sm = NULL;
1416 	}
1417 
1418 	if (vd->vdev_ms != NULL) {
1419 		metaslab_group_t *mg = vd->vdev_mg;
1420 		metaslab_group_passivate(mg);
1421 
1422 		uint64_t count = vd->vdev_ms_count;
1423 		for (uint64_t m = 0; m < count; m++) {
1424 			metaslab_t *msp = vd->vdev_ms[m];
1425 			if (msp != NULL)
1426 				metaslab_fini(msp);
1427 		}
1428 		vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1429 		vd->vdev_ms = NULL;
1430 
1431 		vd->vdev_ms_count = 0;
1432 
1433 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
1434 			ASSERT0(mg->mg_histogram[i]);
1435 	}
1436 	ASSERT0(vd->vdev_ms_count);
1437 	ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
1438 }
1439 
1440 typedef struct vdev_probe_stats {
1441 	boolean_t	vps_readable;
1442 	boolean_t	vps_writeable;
1443 	int		vps_flags;
1444 } vdev_probe_stats_t;
1445 
1446 static void
1447 vdev_probe_done(zio_t *zio)
1448 {
1449 	spa_t *spa = zio->io_spa;
1450 	vdev_t *vd = zio->io_vd;
1451 	vdev_probe_stats_t *vps = zio->io_private;
1452 
1453 	ASSERT(vd->vdev_probe_zio != NULL);
1454 
1455 	if (zio->io_type == ZIO_TYPE_READ) {
1456 		if (zio->io_error == 0)
1457 			vps->vps_readable = 1;
1458 		if (zio->io_error == 0 && spa_writeable(spa)) {
1459 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1460 			    zio->io_offset, zio->io_size, zio->io_abd,
1461 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1462 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1463 		} else {
1464 			abd_free(zio->io_abd);
1465 		}
1466 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1467 		if (zio->io_error == 0)
1468 			vps->vps_writeable = 1;
1469 		abd_free(zio->io_abd);
1470 	} else if (zio->io_type == ZIO_TYPE_NULL) {
1471 		zio_t *pio;
1472 		zio_link_t *zl;
1473 
1474 		vd->vdev_cant_read |= !vps->vps_readable;
1475 		vd->vdev_cant_write |= !vps->vps_writeable;
1476 
1477 		if (vdev_readable(vd) &&
1478 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1479 			zio->io_error = 0;
1480 		} else {
1481 			ASSERT(zio->io_error != 0);
1482 			vdev_dbgmsg(vd, "failed probe");
1483 			(void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1484 			    spa, vd, NULL, NULL, 0);
1485 			zio->io_error = SET_ERROR(ENXIO);
1486 		}
1487 
1488 		mutex_enter(&vd->vdev_probe_lock);
1489 		ASSERT(vd->vdev_probe_zio == zio);
1490 		vd->vdev_probe_zio = NULL;
1491 		mutex_exit(&vd->vdev_probe_lock);
1492 
1493 		zl = NULL;
1494 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1495 			if (!vdev_accessible(vd, pio))
1496 				pio->io_error = SET_ERROR(ENXIO);
1497 
1498 		kmem_free(vps, sizeof (*vps));
1499 	}
1500 }
1501 
1502 /*
1503  * Determine whether this device is accessible.
1504  *
1505  * Read and write to several known locations: the pad regions of each
1506  * vdev label but the first, which we leave alone in case it contains
1507  * a VTOC.
1508  */
1509 zio_t *
1510 vdev_probe(vdev_t *vd, zio_t *zio)
1511 {
1512 	spa_t *spa = vd->vdev_spa;
1513 	vdev_probe_stats_t *vps = NULL;
1514 	zio_t *pio;
1515 
1516 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1517 
1518 	/*
1519 	 * Don't probe the probe.
1520 	 */
1521 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1522 		return (NULL);
1523 
1524 	/*
1525 	 * To prevent 'probe storms' when a device fails, we create
1526 	 * just one probe i/o at a time.  All zios that want to probe
1527 	 * this vdev will become parents of the probe io.
1528 	 */
1529 	mutex_enter(&vd->vdev_probe_lock);
1530 
1531 	if ((pio = vd->vdev_probe_zio) == NULL) {
1532 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1533 
1534 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1535 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1536 		    ZIO_FLAG_TRYHARD;
1537 
1538 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1539 			/*
1540 			 * vdev_cant_read and vdev_cant_write can only
1541 			 * transition from TRUE to FALSE when we have the
1542 			 * SCL_ZIO lock as writer; otherwise they can only
1543 			 * transition from FALSE to TRUE.  This ensures that
1544 			 * any zio looking at these values can assume that
1545 			 * failures persist for the life of the I/O.  That's
1546 			 * important because when a device has intermittent
1547 			 * connectivity problems, we want to ensure that
1548 			 * they're ascribed to the device (ENXIO) and not
1549 			 * the zio (EIO).
1550 			 *
1551 			 * Since we hold SCL_ZIO as writer here, clear both
1552 			 * values so the probe can reevaluate from first
1553 			 * principles.
1554 			 */
1555 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1556 			vd->vdev_cant_read = B_FALSE;
1557 			vd->vdev_cant_write = B_FALSE;
1558 		}
1559 
1560 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1561 		    vdev_probe_done, vps,
1562 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1563 
1564 		/*
1565 		 * We can't change the vdev state in this context, so we
1566 		 * kick off an async task to do it on our behalf.
1567 		 */
1568 		if (zio != NULL) {
1569 			vd->vdev_probe_wanted = B_TRUE;
1570 			spa_async_request(spa, SPA_ASYNC_PROBE);
1571 		}
1572 	}
1573 
1574 	if (zio != NULL)
1575 		zio_add_child(zio, pio);
1576 
1577 	mutex_exit(&vd->vdev_probe_lock);
1578 
1579 	if (vps == NULL) {
1580 		ASSERT(zio != NULL);
1581 		return (NULL);
1582 	}
1583 
1584 	for (int l = 1; l < VDEV_LABELS; l++) {
1585 		zio_nowait(zio_read_phys(pio, vd,
1586 		    vdev_label_offset(vd->vdev_psize, l,
1587 		    offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1588 		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1589 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1590 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1591 	}
1592 
1593 	if (zio == NULL)
1594 		return (pio);
1595 
1596 	zio_nowait(pio);
1597 	return (NULL);
1598 }
1599 
1600 static void
1601 vdev_open_child(void *arg)
1602 {
1603 	vdev_t *vd = arg;
1604 
1605 	vd->vdev_open_thread = curthread;
1606 	vd->vdev_open_error = vdev_open(vd);
1607 	vd->vdev_open_thread = NULL;
1608 }
1609 
1610 static boolean_t
1611 vdev_uses_zvols(vdev_t *vd)
1612 {
1613 #ifdef _KERNEL
1614 	if (zvol_is_zvol(vd->vdev_path))
1615 		return (B_TRUE);
1616 #endif
1617 
1618 	for (int c = 0; c < vd->vdev_children; c++)
1619 		if (vdev_uses_zvols(vd->vdev_child[c]))
1620 			return (B_TRUE);
1621 
1622 	return (B_FALSE);
1623 }
1624 
1625 void
1626 vdev_open_children(vdev_t *vd)
1627 {
1628 	taskq_t *tq;
1629 	int children = vd->vdev_children;
1630 
1631 	/*
1632 	 * in order to handle pools on top of zvols, do the opens
1633 	 * in a single thread so that the same thread holds the
1634 	 * spa_namespace_lock
1635 	 */
1636 	if (vdev_uses_zvols(vd)) {
1637 retry_sync:
1638 		for (int c = 0; c < children; c++)
1639 			vd->vdev_child[c]->vdev_open_error =
1640 			    vdev_open(vd->vdev_child[c]);
1641 	} else {
1642 		tq = taskq_create("vdev_open", children, minclsyspri,
1643 		    children, children, TASKQ_PREPOPULATE);
1644 		if (tq == NULL)
1645 			goto retry_sync;
1646 
1647 		for (int c = 0; c < children; c++)
1648 			VERIFY(taskq_dispatch(tq, vdev_open_child,
1649 			    vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
1650 
1651 		taskq_destroy(tq);
1652 	}
1653 
1654 	vd->vdev_nonrot = B_TRUE;
1655 
1656 	for (int c = 0; c < children; c++)
1657 		vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1658 }
1659 
1660 /*
1661  * Compute the raidz-deflation ratio.  Note, we hard-code
1662  * in 128k (1 << 17) because it is the "typical" blocksize.
1663  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1664  * otherwise it would inconsistently account for existing bp's.
1665  */
1666 static void
1667 vdev_set_deflate_ratio(vdev_t *vd)
1668 {
1669 	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1670 		vd->vdev_deflate_ratio = (1 << 17) /
1671 		    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1672 	}
1673 }
1674 
1675 /*
1676  * Maximize performance by inflating the configured ashift for top level
1677  * vdevs to be as close to the physical ashift as possible while maintaining
1678  * administrator defined limits and ensuring it doesn't go below the
1679  * logical ashift.
1680  */
1681 static void
1682 vdev_ashift_optimize(vdev_t *vd)
1683 {
1684 	ASSERT(vd == vd->vdev_top);
1685 
1686 	if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1687 		vd->vdev_ashift = MIN(
1688 		    MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
1689 		    MAX(zfs_vdev_min_auto_ashift,
1690 		    vd->vdev_physical_ashift));
1691 	} else {
1692 		/*
1693 		 * If the logical and physical ashifts are the same, then
1694 		 * we ensure that the top-level vdev's ashift is not smaller
1695 		 * than our minimum ashift value. For the unusual case
1696 		 * where logical ashift > physical ashift, we can't cap
1697 		 * the calculated ashift based on max ashift as that
1698 		 * would cause failures.
1699 		 * We still check if we need to increase it to match
1700 		 * the min ashift.
1701 		 */
1702 		vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
1703 		    vd->vdev_ashift);
1704 	}
1705 }
1706 
1707 /*
1708  * Prepare a virtual device for access.
1709  */
1710 int
1711 vdev_open(vdev_t *vd)
1712 {
1713 	spa_t *spa = vd->vdev_spa;
1714 	int error;
1715 	uint64_t osize = 0;
1716 	uint64_t max_osize = 0;
1717 	uint64_t asize, max_asize, psize;
1718 	uint64_t logical_ashift = 0;
1719 	uint64_t physical_ashift = 0;
1720 
1721 	ASSERT(vd->vdev_open_thread == curthread ||
1722 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1723 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1724 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1725 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1726 
1727 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1728 	vd->vdev_cant_read = B_FALSE;
1729 	vd->vdev_cant_write = B_FALSE;
1730 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1731 
1732 	/*
1733 	 * If this vdev is not removed, check its fault status.  If it's
1734 	 * faulted, bail out of the open.
1735 	 */
1736 	if (!vd->vdev_removed && vd->vdev_faulted) {
1737 		ASSERT(vd->vdev_children == 0);
1738 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1739 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1740 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1741 		    vd->vdev_label_aux);
1742 		return (SET_ERROR(ENXIO));
1743 	} else if (vd->vdev_offline) {
1744 		ASSERT(vd->vdev_children == 0);
1745 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1746 		return (SET_ERROR(ENXIO));
1747 	}
1748 
1749 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1750 	    &logical_ashift, &physical_ashift);
1751 	/*
1752 	 * Physical volume size should never be larger than its max size, unless
1753 	 * the disk has shrunk while we were reading it or the device is buggy
1754 	 * or damaged: either way it's not safe for use, bail out of the open.
1755 	 */
1756 	if (osize > max_osize) {
1757 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1758 		    VDEV_AUX_OPEN_FAILED);
1759 		return (SET_ERROR(ENXIO));
1760 	}
1761 
1762 	/*
1763 	 * Reset the vdev_reopening flag so that we actually close
1764 	 * the vdev on error.
1765 	 */
1766 	vd->vdev_reopening = B_FALSE;
1767 	if (zio_injection_enabled && error == 0)
1768 		error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
1769 
1770 	if (error) {
1771 		if (vd->vdev_removed &&
1772 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1773 			vd->vdev_removed = B_FALSE;
1774 
1775 		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1776 			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1777 			    vd->vdev_stat.vs_aux);
1778 		} else {
1779 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1780 			    vd->vdev_stat.vs_aux);
1781 		}
1782 		return (error);
1783 	}
1784 
1785 	vd->vdev_removed = B_FALSE;
1786 
1787 	/*
1788 	 * Recheck the faulted flag now that we have confirmed that
1789 	 * the vdev is accessible.  If we're faulted, bail.
1790 	 */
1791 	if (vd->vdev_faulted) {
1792 		ASSERT(vd->vdev_children == 0);
1793 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1794 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1795 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1796 		    vd->vdev_label_aux);
1797 		return (SET_ERROR(ENXIO));
1798 	}
1799 
1800 	if (vd->vdev_degraded) {
1801 		ASSERT(vd->vdev_children == 0);
1802 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1803 		    VDEV_AUX_ERR_EXCEEDED);
1804 	} else {
1805 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1806 	}
1807 
1808 	/*
1809 	 * For hole or missing vdevs we just return success.
1810 	 */
1811 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1812 		return (0);
1813 
1814 	for (int c = 0; c < vd->vdev_children; c++) {
1815 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1816 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1817 			    VDEV_AUX_NONE);
1818 			break;
1819 		}
1820 	}
1821 
1822 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1823 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1824 
1825 	if (vd->vdev_children == 0) {
1826 		if (osize < SPA_MINDEVSIZE) {
1827 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1828 			    VDEV_AUX_TOO_SMALL);
1829 			return (SET_ERROR(EOVERFLOW));
1830 		}
1831 		psize = osize;
1832 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1833 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1834 		    VDEV_LABEL_END_SIZE);
1835 	} else {
1836 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1837 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1838 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1839 			    VDEV_AUX_TOO_SMALL);
1840 			return (SET_ERROR(EOVERFLOW));
1841 		}
1842 		psize = 0;
1843 		asize = osize;
1844 		max_asize = max_osize;
1845 	}
1846 
1847 	/*
1848 	 * If the vdev was expanded, record this so that we can re-create the
1849 	 * uberblock rings in labels {2,3}, during the next sync.
1850 	 */
1851 	if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
1852 		vd->vdev_copy_uberblocks = B_TRUE;
1853 
1854 	vd->vdev_psize = psize;
1855 
1856 	/*
1857 	 * Make sure the allocatable size hasn't shrunk too much.
1858 	 */
1859 	if (asize < vd->vdev_min_asize) {
1860 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1861 		    VDEV_AUX_BAD_LABEL);
1862 		return (SET_ERROR(EINVAL));
1863 	}
1864 
1865 	/*
1866 	 * We can always set the logical/physical ashift members since
1867 	 * their values are only used to calculate the vdev_ashift when
1868 	 * the device is first added to the config. These values should
1869 	 * not be used for anything else since they may change whenever
1870 	 * the device is reopened and we don't store them in the label.
1871 	 */
1872 	vd->vdev_physical_ashift =
1873 	    MAX(physical_ashift, vd->vdev_physical_ashift);
1874 	vd->vdev_logical_ashift = MAX(logical_ashift,
1875 	    vd->vdev_logical_ashift);
1876 
1877 	if (vd->vdev_asize == 0) {
1878 		/*
1879 		 * This is the first-ever open, so use the computed values.
1880 		 * For compatibility, a different ashift can be requested.
1881 		 */
1882 		vd->vdev_asize = asize;
1883 		vd->vdev_max_asize = max_asize;
1884 
1885 		/*
1886 		 * If the vdev_ashift was not overriden at creation time,
1887 		 * then set it the logical ashift and optimize the ashift.
1888 		 */
1889 		if (vd->vdev_ashift == 0) {
1890 			vd->vdev_ashift = vd->vdev_logical_ashift;
1891 
1892 			if (vd->vdev_logical_ashift > ASHIFT_MAX) {
1893 				vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1894 				    VDEV_AUX_ASHIFT_TOO_BIG);
1895 				return (SET_ERROR(EDOM));
1896 			}
1897 
1898 			if (vd->vdev_top == vd) {
1899 				vdev_ashift_optimize(vd);
1900 			}
1901 		}
1902 		if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
1903 		    vd->vdev_ashift > ASHIFT_MAX)) {
1904 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1905 			    VDEV_AUX_BAD_ASHIFT);
1906 			return (SET_ERROR(EDOM));
1907 		}
1908 	} else {
1909 		/*
1910 		 * Make sure the alignment required hasn't increased.
1911 		 */
1912 		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1913 		    vd->vdev_ops->vdev_op_leaf) {
1914 			(void) zfs_ereport_post(
1915 			    FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1916 			    spa, vd, NULL, NULL, 0);
1917 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1918 			    VDEV_AUX_BAD_LABEL);
1919 			return (SET_ERROR(EDOM));
1920 		}
1921 		vd->vdev_max_asize = max_asize;
1922 	}
1923 
1924 	/*
1925 	 * If all children are healthy we update asize if either:
1926 	 * The asize has increased, due to a device expansion caused by dynamic
1927 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
1928 	 * making the additional space available.
1929 	 *
1930 	 * The asize has decreased, due to a device shrink usually caused by a
1931 	 * vdev replace with a smaller device. This ensures that calculations
1932 	 * based of max_asize and asize e.g. esize are always valid. It's safe
1933 	 * to do this as we've already validated that asize is greater than
1934 	 * vdev_min_asize.
1935 	 */
1936 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1937 	    ((asize > vd->vdev_asize &&
1938 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
1939 	    (asize < vd->vdev_asize)))
1940 		vd->vdev_asize = asize;
1941 
1942 	vdev_set_min_asize(vd);
1943 
1944 	/*
1945 	 * Ensure we can issue some IO before declaring the
1946 	 * vdev open for business.
1947 	 */
1948 	if (vd->vdev_ops->vdev_op_leaf &&
1949 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1950 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1951 		    VDEV_AUX_ERR_EXCEEDED);
1952 		return (error);
1953 	}
1954 
1955 	/*
1956 	 * Track the min and max ashift values for normal data devices.
1957 	 */
1958 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1959 	    vd->vdev_alloc_bias == VDEV_BIAS_NONE &&
1960 	    vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
1961 		if (vd->vdev_ashift > spa->spa_max_ashift)
1962 			spa->spa_max_ashift = vd->vdev_ashift;
1963 		if (vd->vdev_ashift < spa->spa_min_ashift)
1964 			spa->spa_min_ashift = vd->vdev_ashift;
1965 	}
1966 
1967 	/*
1968 	 * If this is a leaf vdev, assess whether a resilver is needed.
1969 	 * But don't do this if we are doing a reopen for a scrub, since
1970 	 * this would just restart the scrub we are already doing.
1971 	 */
1972 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
1973 		dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
1974 
1975 	return (0);
1976 }
1977 
1978 /*
1979  * Called once the vdevs are all opened, this routine validates the label
1980  * contents. This needs to be done before vdev_load() so that we don't
1981  * inadvertently do repair I/Os to the wrong device.
1982  *
1983  * This function will only return failure if one of the vdevs indicates that it
1984  * has since been destroyed or exported.  This is only possible if
1985  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1986  * will be updated but the function will return 0.
1987  */
1988 int
1989 vdev_validate(vdev_t *vd)
1990 {
1991 	spa_t *spa = vd->vdev_spa;
1992 	nvlist_t *label;
1993 	uint64_t guid = 0, aux_guid = 0, top_guid;
1994 	uint64_t state;
1995 	nvlist_t *nvl;
1996 	uint64_t txg;
1997 
1998 	if (vdev_validate_skip)
1999 		return (0);
2000 
2001 	for (uint64_t c = 0; c < vd->vdev_children; c++)
2002 		if (vdev_validate(vd->vdev_child[c]) != 0)
2003 			return (SET_ERROR(EBADF));
2004 
2005 	/*
2006 	 * If the device has already failed, or was marked offline, don't do
2007 	 * any further validation.  Otherwise, label I/O will fail and we will
2008 	 * overwrite the previous state.
2009 	 */
2010 	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2011 		return (0);
2012 
2013 	/*
2014 	 * If we are performing an extreme rewind, we allow for a label that
2015 	 * was modified at a point after the current txg.
2016 	 * If config lock is not held do not check for the txg. spa_sync could
2017 	 * be updating the vdev's label before updating spa_last_synced_txg.
2018 	 */
2019 	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2020 	    spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2021 		txg = UINT64_MAX;
2022 	else
2023 		txg = spa_last_synced_txg(spa);
2024 
2025 	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2026 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2027 		    VDEV_AUX_BAD_LABEL);
2028 		vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2029 		    "txg %llu", (u_longlong_t)txg);
2030 		return (0);
2031 	}
2032 
2033 	/*
2034 	 * Determine if this vdev has been split off into another
2035 	 * pool.  If so, then refuse to open it.
2036 	 */
2037 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2038 	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2039 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2040 		    VDEV_AUX_SPLIT_POOL);
2041 		nvlist_free(label);
2042 		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2043 		return (0);
2044 	}
2045 
2046 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2047 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2048 		    VDEV_AUX_CORRUPT_DATA);
2049 		nvlist_free(label);
2050 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2051 		    ZPOOL_CONFIG_POOL_GUID);
2052 		return (0);
2053 	}
2054 
2055 	/*
2056 	 * If config is not trusted then ignore the spa guid check. This is
2057 	 * necessary because if the machine crashed during a re-guid the new
2058 	 * guid might have been written to all of the vdev labels, but not the
2059 	 * cached config. The check will be performed again once we have the
2060 	 * trusted config from the MOS.
2061 	 */
2062 	if (spa->spa_trust_config && guid != spa_guid(spa)) {
2063 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2064 		    VDEV_AUX_CORRUPT_DATA);
2065 		nvlist_free(label);
2066 		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2067 		    "match config (%llu != %llu)", (u_longlong_t)guid,
2068 		    (u_longlong_t)spa_guid(spa));
2069 		return (0);
2070 	}
2071 
2072 	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2073 	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2074 	    &aux_guid) != 0)
2075 		aux_guid = 0;
2076 
2077 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2078 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2079 		    VDEV_AUX_CORRUPT_DATA);
2080 		nvlist_free(label);
2081 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2082 		    ZPOOL_CONFIG_GUID);
2083 		return (0);
2084 	}
2085 
2086 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2087 	    != 0) {
2088 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2089 		    VDEV_AUX_CORRUPT_DATA);
2090 		nvlist_free(label);
2091 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2092 		    ZPOOL_CONFIG_TOP_GUID);
2093 		return (0);
2094 	}
2095 
2096 	/*
2097 	 * If this vdev just became a top-level vdev because its sibling was
2098 	 * detached, it will have adopted the parent's vdev guid -- but the
2099 	 * label may or may not be on disk yet. Fortunately, either version
2100 	 * of the label will have the same top guid, so if we're a top-level
2101 	 * vdev, we can safely compare to that instead.
2102 	 * However, if the config comes from a cachefile that failed to update
2103 	 * after the detach, a top-level vdev will appear as a non top-level
2104 	 * vdev in the config. Also relax the constraints if we perform an
2105 	 * extreme rewind.
2106 	 *
2107 	 * If we split this vdev off instead, then we also check the
2108 	 * original pool's guid. We don't want to consider the vdev
2109 	 * corrupt if it is partway through a split operation.
2110 	 */
2111 	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2112 		boolean_t mismatch = B_FALSE;
2113 		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2114 			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2115 				mismatch = B_TRUE;
2116 		} else {
2117 			if (vd->vdev_guid != top_guid &&
2118 			    vd->vdev_top->vdev_guid != guid)
2119 				mismatch = B_TRUE;
2120 		}
2121 
2122 		if (mismatch) {
2123 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2124 			    VDEV_AUX_CORRUPT_DATA);
2125 			nvlist_free(label);
2126 			vdev_dbgmsg(vd, "vdev_validate: config guid "
2127 			    "doesn't match label guid");
2128 			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2129 			    (u_longlong_t)vd->vdev_guid,
2130 			    (u_longlong_t)vd->vdev_top->vdev_guid);
2131 			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2132 			    "aux_guid %llu", (u_longlong_t)guid,
2133 			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2134 			return (0);
2135 		}
2136 	}
2137 
2138 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2139 	    &state) != 0) {
2140 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2141 		    VDEV_AUX_CORRUPT_DATA);
2142 		nvlist_free(label);
2143 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2144 		    ZPOOL_CONFIG_POOL_STATE);
2145 		return (0);
2146 	}
2147 
2148 	nvlist_free(label);
2149 
2150 	/*
2151 	 * If this is a verbatim import, no need to check the
2152 	 * state of the pool.
2153 	 */
2154 	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2155 	    spa_load_state(spa) == SPA_LOAD_OPEN &&
2156 	    state != POOL_STATE_ACTIVE) {
2157 		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2158 		    "for spa %s", (u_longlong_t)state, spa->spa_name);
2159 		return (SET_ERROR(EBADF));
2160 	}
2161 
2162 	/*
2163 	 * If we were able to open and validate a vdev that was
2164 	 * previously marked permanently unavailable, clear that state
2165 	 * now.
2166 	 */
2167 	if (vd->vdev_not_present)
2168 		vd->vdev_not_present = 0;
2169 
2170 	return (0);
2171 }
2172 
2173 static void
2174 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2175 {
2176 	if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
2177 		if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
2178 			zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
2179 			    "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2180 			    dvd->vdev_path, svd->vdev_path);
2181 			spa_strfree(dvd->vdev_path);
2182 			dvd->vdev_path = spa_strdup(svd->vdev_path);
2183 		}
2184 	} else if (svd->vdev_path != NULL) {
2185 		dvd->vdev_path = spa_strdup(svd->vdev_path);
2186 		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2187 		    (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
2188 	}
2189 }
2190 
2191 /*
2192  * Recursively copy vdev paths from one vdev to another. Source and destination
2193  * vdev trees must have same geometry otherwise return error. Intended to copy
2194  * paths from userland config into MOS config.
2195  */
2196 int
2197 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2198 {
2199 	if ((svd->vdev_ops == &vdev_missing_ops) ||
2200 	    (svd->vdev_ishole && dvd->vdev_ishole) ||
2201 	    (dvd->vdev_ops == &vdev_indirect_ops))
2202 		return (0);
2203 
2204 	if (svd->vdev_ops != dvd->vdev_ops) {
2205 		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2206 		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2207 		return (SET_ERROR(EINVAL));
2208 	}
2209 
2210 	if (svd->vdev_guid != dvd->vdev_guid) {
2211 		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2212 		    "%llu)", (u_longlong_t)svd->vdev_guid,
2213 		    (u_longlong_t)dvd->vdev_guid);
2214 		return (SET_ERROR(EINVAL));
2215 	}
2216 
2217 	if (svd->vdev_children != dvd->vdev_children) {
2218 		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2219 		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
2220 		    (u_longlong_t)dvd->vdev_children);
2221 		return (SET_ERROR(EINVAL));
2222 	}
2223 
2224 	for (uint64_t i = 0; i < svd->vdev_children; i++) {
2225 		int error = vdev_copy_path_strict(svd->vdev_child[i],
2226 		    dvd->vdev_child[i]);
2227 		if (error != 0)
2228 			return (error);
2229 	}
2230 
2231 	if (svd->vdev_ops->vdev_op_leaf)
2232 		vdev_copy_path_impl(svd, dvd);
2233 
2234 	return (0);
2235 }
2236 
2237 static void
2238 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2239 {
2240 	ASSERT(stvd->vdev_top == stvd);
2241 	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2242 
2243 	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2244 		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2245 	}
2246 
2247 	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2248 		return;
2249 
2250 	/*
2251 	 * The idea here is that while a vdev can shift positions within
2252 	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2253 	 * step outside of it.
2254 	 */
2255 	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2256 
2257 	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2258 		return;
2259 
2260 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2261 
2262 	vdev_copy_path_impl(vd, dvd);
2263 }
2264 
2265 /*
2266  * Recursively copy vdev paths from one root vdev to another. Source and
2267  * destination vdev trees may differ in geometry. For each destination leaf
2268  * vdev, search a vdev with the same guid and top vdev id in the source.
2269  * Intended to copy paths from userland config into MOS config.
2270  */
2271 void
2272 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2273 {
2274 	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2275 	ASSERT(srvd->vdev_ops == &vdev_root_ops);
2276 	ASSERT(drvd->vdev_ops == &vdev_root_ops);
2277 
2278 	for (uint64_t i = 0; i < children; i++) {
2279 		vdev_copy_path_search(srvd->vdev_child[i],
2280 		    drvd->vdev_child[i]);
2281 	}
2282 }
2283 
2284 /*
2285  * Close a virtual device.
2286  */
2287 void
2288 vdev_close(vdev_t *vd)
2289 {
2290 	vdev_t *pvd = vd->vdev_parent;
2291 	spa_t *spa __maybe_unused = vd->vdev_spa;
2292 
2293 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2294 
2295 	/*
2296 	 * If our parent is reopening, then we are as well, unless we are
2297 	 * going offline.
2298 	 */
2299 	if (pvd != NULL && pvd->vdev_reopening)
2300 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2301 
2302 	vd->vdev_ops->vdev_op_close(vd);
2303 
2304 	vdev_cache_purge(vd);
2305 
2306 	/*
2307 	 * We record the previous state before we close it, so that if we are
2308 	 * doing a reopen(), we don't generate FMA ereports if we notice that
2309 	 * it's still faulted.
2310 	 */
2311 	vd->vdev_prevstate = vd->vdev_state;
2312 
2313 	if (vd->vdev_offline)
2314 		vd->vdev_state = VDEV_STATE_OFFLINE;
2315 	else
2316 		vd->vdev_state = VDEV_STATE_CLOSED;
2317 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2318 }
2319 
2320 void
2321 vdev_hold(vdev_t *vd)
2322 {
2323 	spa_t *spa = vd->vdev_spa;
2324 
2325 	ASSERT(spa_is_root(spa));
2326 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2327 		return;
2328 
2329 	for (int c = 0; c < vd->vdev_children; c++)
2330 		vdev_hold(vd->vdev_child[c]);
2331 
2332 	if (vd->vdev_ops->vdev_op_leaf)
2333 		vd->vdev_ops->vdev_op_hold(vd);
2334 }
2335 
2336 void
2337 vdev_rele(vdev_t *vd)
2338 {
2339 	ASSERT(spa_is_root(vd->vdev_spa));
2340 	for (int c = 0; c < vd->vdev_children; c++)
2341 		vdev_rele(vd->vdev_child[c]);
2342 
2343 	if (vd->vdev_ops->vdev_op_leaf)
2344 		vd->vdev_ops->vdev_op_rele(vd);
2345 }
2346 
2347 /*
2348  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2349  * reopen leaf vdevs which had previously been opened as they might deadlock
2350  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2351  * If the leaf has never been opened then open it, as usual.
2352  */
2353 void
2354 vdev_reopen(vdev_t *vd)
2355 {
2356 	spa_t *spa = vd->vdev_spa;
2357 
2358 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2359 
2360 	/* set the reopening flag unless we're taking the vdev offline */
2361 	vd->vdev_reopening = !vd->vdev_offline;
2362 	vdev_close(vd);
2363 	(void) vdev_open(vd);
2364 
2365 	/*
2366 	 * Call vdev_validate() here to make sure we have the same device.
2367 	 * Otherwise, a device with an invalid label could be successfully
2368 	 * opened in response to vdev_reopen().
2369 	 */
2370 	if (vd->vdev_aux) {
2371 		(void) vdev_validate_aux(vd);
2372 		if (vdev_readable(vd) && vdev_writeable(vd) &&
2373 		    vd->vdev_aux == &spa->spa_l2cache) {
2374 			/*
2375 			 * In case the vdev is present we should evict all ARC
2376 			 * buffers and pointers to log blocks and reclaim their
2377 			 * space before restoring its contents to L2ARC.
2378 			 */
2379 			if (l2arc_vdev_present(vd)) {
2380 				l2arc_rebuild_vdev(vd, B_TRUE);
2381 			} else {
2382 				l2arc_add_vdev(spa, vd);
2383 			}
2384 			spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2385 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2386 		}
2387 	} else {
2388 		(void) vdev_validate(vd);
2389 	}
2390 
2391 	/*
2392 	 * Reassess parent vdev's health.
2393 	 */
2394 	vdev_propagate_state(vd);
2395 }
2396 
2397 int
2398 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2399 {
2400 	int error;
2401 
2402 	/*
2403 	 * Normally, partial opens (e.g. of a mirror) are allowed.
2404 	 * For a create, however, we want to fail the request if
2405 	 * there are any components we can't open.
2406 	 */
2407 	error = vdev_open(vd);
2408 
2409 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2410 		vdev_close(vd);
2411 		return (error ? error : SET_ERROR(ENXIO));
2412 	}
2413 
2414 	/*
2415 	 * Recursively load DTLs and initialize all labels.
2416 	 */
2417 	if ((error = vdev_dtl_load(vd)) != 0 ||
2418 	    (error = vdev_label_init(vd, txg, isreplacing ?
2419 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2420 		vdev_close(vd);
2421 		return (error);
2422 	}
2423 
2424 	return (0);
2425 }
2426 
2427 void
2428 vdev_metaslab_set_size(vdev_t *vd)
2429 {
2430 	uint64_t asize = vd->vdev_asize;
2431 	uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2432 	uint64_t ms_shift;
2433 
2434 	/*
2435 	 * There are two dimensions to the metaslab sizing calculation:
2436 	 * the size of the metaslab and the count of metaslabs per vdev.
2437 	 *
2438 	 * The default values used below are a good balance between memory
2439 	 * usage (larger metaslab size means more memory needed for loaded
2440 	 * metaslabs; more metaslabs means more memory needed for the
2441 	 * metaslab_t structs), metaslab load time (larger metaslabs take
2442 	 * longer to load), and metaslab sync time (more metaslabs means
2443 	 * more time spent syncing all of them).
2444 	 *
2445 	 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2446 	 * The range of the dimensions are as follows:
2447 	 *
2448 	 *	2^29 <= ms_size  <= 2^34
2449 	 *	  16 <= ms_count <= 131,072
2450 	 *
2451 	 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2452 	 * at least 512MB (2^29) to minimize fragmentation effects when
2453 	 * testing with smaller devices.  However, the count constraint
2454 	 * of at least 16 metaslabs will override this minimum size goal.
2455 	 *
2456 	 * On the upper end of vdev sizes, we aim for a maximum metaslab
2457 	 * size of 16GB.  However, we will cap the total count to 2^17
2458 	 * metaslabs to keep our memory footprint in check and let the
2459 	 * metaslab size grow from there if that limit is hit.
2460 	 *
2461 	 * The net effect of applying above constrains is summarized below.
2462 	 *
2463 	 *   vdev size       metaslab count
2464 	 *  --------------|-----------------
2465 	 *      < 8GB        ~16
2466 	 *  8GB   - 100GB   one per 512MB
2467 	 *  100GB - 3TB     ~200
2468 	 *  3TB   - 2PB     one per 16GB
2469 	 *      > 2PB       ~131,072
2470 	 *  --------------------------------
2471 	 *
2472 	 *  Finally, note that all of the above calculate the initial
2473 	 *  number of metaslabs. Expanding a top-level vdev will result
2474 	 *  in additional metaslabs being allocated making it possible
2475 	 *  to exceed the zfs_vdev_ms_count_limit.
2476 	 */
2477 
2478 	if (ms_count < zfs_vdev_min_ms_count)
2479 		ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2480 	else if (ms_count > zfs_vdev_default_ms_count)
2481 		ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2482 	else
2483 		ms_shift = zfs_vdev_default_ms_shift;
2484 
2485 	if (ms_shift < SPA_MAXBLOCKSHIFT) {
2486 		ms_shift = SPA_MAXBLOCKSHIFT;
2487 	} else if (ms_shift > zfs_vdev_max_ms_shift) {
2488 		ms_shift = zfs_vdev_max_ms_shift;
2489 		/* cap the total count to constrain memory footprint */
2490 		if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2491 			ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2492 	}
2493 
2494 	vd->vdev_ms_shift = ms_shift;
2495 	ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2496 }
2497 
2498 void
2499 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2500 {
2501 	ASSERT(vd == vd->vdev_top);
2502 	/* indirect vdevs don't have metaslabs or dtls */
2503 	ASSERT(vdev_is_concrete(vd) || flags == 0);
2504 	ASSERT(ISP2(flags));
2505 	ASSERT(spa_writeable(vd->vdev_spa));
2506 
2507 	if (flags & VDD_METASLAB)
2508 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2509 
2510 	if (flags & VDD_DTL)
2511 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2512 
2513 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2514 }
2515 
2516 void
2517 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2518 {
2519 	for (int c = 0; c < vd->vdev_children; c++)
2520 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2521 
2522 	if (vd->vdev_ops->vdev_op_leaf)
2523 		vdev_dirty(vd->vdev_top, flags, vd, txg);
2524 }
2525 
2526 /*
2527  * DTLs.
2528  *
2529  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2530  * the vdev has less than perfect replication.  There are four kinds of DTL:
2531  *
2532  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2533  *
2534  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2535  *
2536  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2537  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2538  *	txgs that was scrubbed.
2539  *
2540  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2541  *	persistent errors or just some device being offline.
2542  *	Unlike the other three, the DTL_OUTAGE map is not generally
2543  *	maintained; it's only computed when needed, typically to
2544  *	determine whether a device can be detached.
2545  *
2546  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2547  * either has the data or it doesn't.
2548  *
2549  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2550  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2551  * if any child is less than fully replicated, then so is its parent.
2552  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2553  * comprising only those txgs which appear in 'maxfaults' or more children;
2554  * those are the txgs we don't have enough replication to read.  For example,
2555  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2556  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2557  * two child DTL_MISSING maps.
2558  *
2559  * It should be clear from the above that to compute the DTLs and outage maps
2560  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2561  * Therefore, that is all we keep on disk.  When loading the pool, or after
2562  * a configuration change, we generate all other DTLs from first principles.
2563  */
2564 void
2565 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2566 {
2567 	range_tree_t *rt = vd->vdev_dtl[t];
2568 
2569 	ASSERT(t < DTL_TYPES);
2570 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2571 	ASSERT(spa_writeable(vd->vdev_spa));
2572 
2573 	mutex_enter(&vd->vdev_dtl_lock);
2574 	if (!range_tree_contains(rt, txg, size))
2575 		range_tree_add(rt, txg, size);
2576 	mutex_exit(&vd->vdev_dtl_lock);
2577 }
2578 
2579 boolean_t
2580 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2581 {
2582 	range_tree_t *rt = vd->vdev_dtl[t];
2583 	boolean_t dirty = B_FALSE;
2584 
2585 	ASSERT(t < DTL_TYPES);
2586 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2587 
2588 	/*
2589 	 * While we are loading the pool, the DTLs have not been loaded yet.
2590 	 * Ignore the DTLs and try all devices.  This avoids a recursive
2591 	 * mutex enter on the vdev_dtl_lock, and also makes us try hard
2592 	 * when loading the pool (relying on the checksum to ensure that
2593 	 * we get the right data -- note that we while loading, we are
2594 	 * only reading the MOS, which is always checksummed).
2595 	 */
2596 	if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2597 		return (B_FALSE);
2598 
2599 	mutex_enter(&vd->vdev_dtl_lock);
2600 	if (!range_tree_is_empty(rt))
2601 		dirty = range_tree_contains(rt, txg, size);
2602 	mutex_exit(&vd->vdev_dtl_lock);
2603 
2604 	return (dirty);
2605 }
2606 
2607 boolean_t
2608 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2609 {
2610 	range_tree_t *rt = vd->vdev_dtl[t];
2611 	boolean_t empty;
2612 
2613 	mutex_enter(&vd->vdev_dtl_lock);
2614 	empty = range_tree_is_empty(rt);
2615 	mutex_exit(&vd->vdev_dtl_lock);
2616 
2617 	return (empty);
2618 }
2619 
2620 /*
2621  * Returns B_TRUE if vdev determines offset needs to be resilvered.
2622  */
2623 boolean_t
2624 vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
2625 {
2626 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2627 
2628 	if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2629 	    vd->vdev_ops->vdev_op_leaf)
2630 		return (B_TRUE);
2631 
2632 	return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize));
2633 }
2634 
2635 /*
2636  * Returns the lowest txg in the DTL range.
2637  */
2638 static uint64_t
2639 vdev_dtl_min(vdev_t *vd)
2640 {
2641 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2642 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2643 	ASSERT0(vd->vdev_children);
2644 
2645 	return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
2646 }
2647 
2648 /*
2649  * Returns the highest txg in the DTL.
2650  */
2651 static uint64_t
2652 vdev_dtl_max(vdev_t *vd)
2653 {
2654 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2655 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2656 	ASSERT0(vd->vdev_children);
2657 
2658 	return (range_tree_max(vd->vdev_dtl[DTL_MISSING]));
2659 }
2660 
2661 /*
2662  * Determine if a resilvering vdev should remove any DTL entries from
2663  * its range. If the vdev was resilvering for the entire duration of the
2664  * scan then it should excise that range from its DTLs. Otherwise, this
2665  * vdev is considered partially resilvered and should leave its DTL
2666  * entries intact. The comment in vdev_dtl_reassess() describes how we
2667  * excise the DTLs.
2668  */
2669 static boolean_t
2670 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
2671 {
2672 	ASSERT0(vd->vdev_children);
2673 
2674 	if (vd->vdev_state < VDEV_STATE_DEGRADED)
2675 		return (B_FALSE);
2676 
2677 	if (vd->vdev_resilver_deferred)
2678 		return (B_FALSE);
2679 
2680 	if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2681 		return (B_TRUE);
2682 
2683 	if (rebuild_done) {
2684 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
2685 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
2686 
2687 		/* Rebuild not initiated by attach */
2688 		if (vd->vdev_rebuild_txg == 0)
2689 			return (B_TRUE);
2690 
2691 		/*
2692 		 * When a rebuild completes without error then all missing data
2693 		 * up to the rebuild max txg has been reconstructed and the DTL
2694 		 * is eligible for excision.
2695 		 */
2696 		if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
2697 		    vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
2698 			ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
2699 			ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
2700 			ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
2701 			return (B_TRUE);
2702 		}
2703 	} else {
2704 		dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
2705 		dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
2706 
2707 		/* Resilver not initiated by attach */
2708 		if (vd->vdev_resilver_txg == 0)
2709 			return (B_TRUE);
2710 
2711 		/*
2712 		 * When a resilver is initiated the scan will assign the
2713 		 * scn_max_txg value to the highest txg value that exists
2714 		 * in all DTLs. If this device's max DTL is not part of this
2715 		 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
2716 		 * then it is not eligible for excision.
2717 		 */
2718 		if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2719 			ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
2720 			ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
2721 			ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
2722 			return (B_TRUE);
2723 		}
2724 	}
2725 
2726 	return (B_FALSE);
2727 }
2728 
2729 /*
2730  * Reassess DTLs after a config change or scrub completion. If txg == 0 no
2731  * write operations will be issued to the pool.
2732  */
2733 void
2734 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
2735     boolean_t scrub_done, boolean_t rebuild_done)
2736 {
2737 	spa_t *spa = vd->vdev_spa;
2738 	avl_tree_t reftree;
2739 	int minref;
2740 
2741 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2742 
2743 	for (int c = 0; c < vd->vdev_children; c++)
2744 		vdev_dtl_reassess(vd->vdev_child[c], txg,
2745 		    scrub_txg, scrub_done, rebuild_done);
2746 
2747 	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2748 		return;
2749 
2750 	if (vd->vdev_ops->vdev_op_leaf) {
2751 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2752 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
2753 		boolean_t check_excise = B_FALSE;
2754 		boolean_t wasempty = B_TRUE;
2755 
2756 		mutex_enter(&vd->vdev_dtl_lock);
2757 
2758 		/*
2759 		 * If requested, pretend the scan or rebuild completed cleanly.
2760 		 */
2761 		if (zfs_scan_ignore_errors) {
2762 			if (scn != NULL)
2763 				scn->scn_phys.scn_errors = 0;
2764 			if (vr != NULL)
2765 				vr->vr_rebuild_phys.vrp_errors = 0;
2766 		}
2767 
2768 		if (scrub_txg != 0 &&
2769 		    !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
2770 			wasempty = B_FALSE;
2771 			zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
2772 			    "dtl:%llu/%llu errors:%llu",
2773 			    (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
2774 			    (u_longlong_t)scrub_txg, spa->spa_scrub_started,
2775 			    (u_longlong_t)vdev_dtl_min(vd),
2776 			    (u_longlong_t)vdev_dtl_max(vd),
2777 			    (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
2778 		}
2779 
2780 		/*
2781 		 * If we've completed a scrub/resilver or a rebuild cleanly
2782 		 * then determine if this vdev should remove any DTLs. We
2783 		 * only want to excise regions on vdevs that were available
2784 		 * during the entire duration of this scan.
2785 		 */
2786 		if (rebuild_done &&
2787 		    vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
2788 			check_excise = B_TRUE;
2789 		} else {
2790 			if (spa->spa_scrub_started ||
2791 			    (scn != NULL && scn->scn_phys.scn_errors == 0)) {
2792 				check_excise = B_TRUE;
2793 			}
2794 		}
2795 
2796 		if (scrub_txg && check_excise &&
2797 		    vdev_dtl_should_excise(vd, rebuild_done)) {
2798 			/*
2799 			 * We completed a scrub, resilver or rebuild up to
2800 			 * scrub_txg.  If we did it without rebooting, then
2801 			 * the scrub dtl will be valid, so excise the old
2802 			 * region and fold in the scrub dtl.  Otherwise,
2803 			 * leave the dtl as-is if there was an error.
2804 			 *
2805 			 * There's little trick here: to excise the beginning
2806 			 * of the DTL_MISSING map, we put it into a reference
2807 			 * tree and then add a segment with refcnt -1 that
2808 			 * covers the range [0, scrub_txg).  This means
2809 			 * that each txg in that range has refcnt -1 or 0.
2810 			 * We then add DTL_SCRUB with a refcnt of 2, so that
2811 			 * entries in the range [0, scrub_txg) will have a
2812 			 * positive refcnt -- either 1 or 2.  We then convert
2813 			 * the reference tree into the new DTL_MISSING map.
2814 			 */
2815 			space_reftree_create(&reftree);
2816 			space_reftree_add_map(&reftree,
2817 			    vd->vdev_dtl[DTL_MISSING], 1);
2818 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2819 			space_reftree_add_map(&reftree,
2820 			    vd->vdev_dtl[DTL_SCRUB], 2);
2821 			space_reftree_generate_map(&reftree,
2822 			    vd->vdev_dtl[DTL_MISSING], 1);
2823 			space_reftree_destroy(&reftree);
2824 
2825 			if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
2826 				zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
2827 				    (u_longlong_t)vdev_dtl_min(vd),
2828 				    (u_longlong_t)vdev_dtl_max(vd));
2829 			} else if (!wasempty) {
2830 				zfs_dbgmsg("DTL_MISSING is now empty");
2831 			}
2832 		}
2833 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2834 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2835 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2836 		if (scrub_done)
2837 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2838 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2839 		if (!vdev_readable(vd))
2840 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2841 		else
2842 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2843 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2844 
2845 		/*
2846 		 * If the vdev was resilvering or rebuilding and no longer
2847 		 * has any DTLs then reset the appropriate flag and dirty
2848 		 * the top level so that we persist the change.
2849 		 */
2850 		if (txg != 0 &&
2851 		    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2852 		    range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
2853 			if (vd->vdev_rebuild_txg != 0) {
2854 				vd->vdev_rebuild_txg = 0;
2855 				vdev_config_dirty(vd->vdev_top);
2856 			} else if (vd->vdev_resilver_txg != 0) {
2857 				vd->vdev_resilver_txg = 0;
2858 				vdev_config_dirty(vd->vdev_top);
2859 			}
2860 		}
2861 
2862 		mutex_exit(&vd->vdev_dtl_lock);
2863 
2864 		if (txg != 0)
2865 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2866 		return;
2867 	}
2868 
2869 	mutex_enter(&vd->vdev_dtl_lock);
2870 	for (int t = 0; t < DTL_TYPES; t++) {
2871 		/* account for child's outage in parent's missing map */
2872 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2873 		if (t == DTL_SCRUB)
2874 			continue;			/* leaf vdevs only */
2875 		if (t == DTL_PARTIAL)
2876 			minref = 1;			/* i.e. non-zero */
2877 		else if (vd->vdev_nparity != 0)
2878 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
2879 		else
2880 			minref = vd->vdev_children;	/* any kind of mirror */
2881 		space_reftree_create(&reftree);
2882 		for (int c = 0; c < vd->vdev_children; c++) {
2883 			vdev_t *cvd = vd->vdev_child[c];
2884 			mutex_enter(&cvd->vdev_dtl_lock);
2885 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2886 			mutex_exit(&cvd->vdev_dtl_lock);
2887 		}
2888 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2889 		space_reftree_destroy(&reftree);
2890 	}
2891 	mutex_exit(&vd->vdev_dtl_lock);
2892 }
2893 
2894 int
2895 vdev_dtl_load(vdev_t *vd)
2896 {
2897 	spa_t *spa = vd->vdev_spa;
2898 	objset_t *mos = spa->spa_meta_objset;
2899 	int error = 0;
2900 
2901 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2902 		ASSERT(vdev_is_concrete(vd));
2903 
2904 		error = space_map_open(&vd->vdev_dtl_sm, mos,
2905 		    vd->vdev_dtl_object, 0, -1ULL, 0);
2906 		if (error)
2907 			return (error);
2908 		ASSERT(vd->vdev_dtl_sm != NULL);
2909 
2910 		mutex_enter(&vd->vdev_dtl_lock);
2911 		error = space_map_load(vd->vdev_dtl_sm,
2912 		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2913 		mutex_exit(&vd->vdev_dtl_lock);
2914 
2915 		return (error);
2916 	}
2917 
2918 	for (int c = 0; c < vd->vdev_children; c++) {
2919 		error = vdev_dtl_load(vd->vdev_child[c]);
2920 		if (error != 0)
2921 			break;
2922 	}
2923 
2924 	return (error);
2925 }
2926 
2927 static void
2928 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
2929 {
2930 	spa_t *spa = vd->vdev_spa;
2931 	objset_t *mos = spa->spa_meta_objset;
2932 	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
2933 	const char *string;
2934 
2935 	ASSERT(alloc_bias != VDEV_BIAS_NONE);
2936 
2937 	string =
2938 	    (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
2939 	    (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
2940 	    (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
2941 
2942 	ASSERT(string != NULL);
2943 	VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
2944 	    1, strlen(string) + 1, string, tx));
2945 
2946 	if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
2947 		spa_activate_allocation_classes(spa, tx);
2948 	}
2949 }
2950 
2951 void
2952 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2953 {
2954 	spa_t *spa = vd->vdev_spa;
2955 
2956 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2957 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2958 	    zapobj, tx));
2959 }
2960 
2961 uint64_t
2962 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2963 {
2964 	spa_t *spa = vd->vdev_spa;
2965 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2966 	    DMU_OT_NONE, 0, tx);
2967 
2968 	ASSERT(zap != 0);
2969 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2970 	    zap, tx));
2971 
2972 	return (zap);
2973 }
2974 
2975 void
2976 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2977 {
2978 	if (vd->vdev_ops != &vdev_hole_ops &&
2979 	    vd->vdev_ops != &vdev_missing_ops &&
2980 	    vd->vdev_ops != &vdev_root_ops &&
2981 	    !vd->vdev_top->vdev_removing) {
2982 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2983 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2984 		}
2985 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2986 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2987 			if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
2988 				vdev_zap_allocation_data(vd, tx);
2989 		}
2990 	}
2991 
2992 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2993 		vdev_construct_zaps(vd->vdev_child[i], tx);
2994 	}
2995 }
2996 
2997 static void
2998 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2999 {
3000 	spa_t *spa = vd->vdev_spa;
3001 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3002 	objset_t *mos = spa->spa_meta_objset;
3003 	range_tree_t *rtsync;
3004 	dmu_tx_t *tx;
3005 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
3006 
3007 	ASSERT(vdev_is_concrete(vd));
3008 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3009 
3010 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3011 
3012 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3013 		mutex_enter(&vd->vdev_dtl_lock);
3014 		space_map_free(vd->vdev_dtl_sm, tx);
3015 		space_map_close(vd->vdev_dtl_sm);
3016 		vd->vdev_dtl_sm = NULL;
3017 		mutex_exit(&vd->vdev_dtl_lock);
3018 
3019 		/*
3020 		 * We only destroy the leaf ZAP for detached leaves or for
3021 		 * removed log devices. Removed data devices handle leaf ZAP
3022 		 * cleanup later, once cancellation is no longer possible.
3023 		 */
3024 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3025 		    vd->vdev_top->vdev_islog)) {
3026 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3027 			vd->vdev_leaf_zap = 0;
3028 		}
3029 
3030 		dmu_tx_commit(tx);
3031 		return;
3032 	}
3033 
3034 	if (vd->vdev_dtl_sm == NULL) {
3035 		uint64_t new_object;
3036 
3037 		new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3038 		VERIFY3U(new_object, !=, 0);
3039 
3040 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3041 		    0, -1ULL, 0));
3042 		ASSERT(vd->vdev_dtl_sm != NULL);
3043 	}
3044 
3045 	rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3046 
3047 	mutex_enter(&vd->vdev_dtl_lock);
3048 	range_tree_walk(rt, range_tree_add, rtsync);
3049 	mutex_exit(&vd->vdev_dtl_lock);
3050 
3051 	space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3052 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3053 	range_tree_vacate(rtsync, NULL, NULL);
3054 
3055 	range_tree_destroy(rtsync);
3056 
3057 	/*
3058 	 * If the object for the space map has changed then dirty
3059 	 * the top level so that we update the config.
3060 	 */
3061 	if (object != space_map_object(vd->vdev_dtl_sm)) {
3062 		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3063 		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
3064 		    (u_longlong_t)object,
3065 		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3066 		vdev_config_dirty(vd->vdev_top);
3067 	}
3068 
3069 	dmu_tx_commit(tx);
3070 }
3071 
3072 /*
3073  * Determine whether the specified vdev can be offlined/detached/removed
3074  * without losing data.
3075  */
3076 boolean_t
3077 vdev_dtl_required(vdev_t *vd)
3078 {
3079 	spa_t *spa = vd->vdev_spa;
3080 	vdev_t *tvd = vd->vdev_top;
3081 	uint8_t cant_read = vd->vdev_cant_read;
3082 	boolean_t required;
3083 
3084 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3085 
3086 	if (vd == spa->spa_root_vdev || vd == tvd)
3087 		return (B_TRUE);
3088 
3089 	/*
3090 	 * Temporarily mark the device as unreadable, and then determine
3091 	 * whether this results in any DTL outages in the top-level vdev.
3092 	 * If not, we can safely offline/detach/remove the device.
3093 	 */
3094 	vd->vdev_cant_read = B_TRUE;
3095 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3096 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3097 	vd->vdev_cant_read = cant_read;
3098 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3099 
3100 	if (!required && zio_injection_enabled) {
3101 		required = !!zio_handle_device_injection(vd, NULL,
3102 		    SET_ERROR(ECHILD));
3103 	}
3104 
3105 	return (required);
3106 }
3107 
3108 /*
3109  * Determine if resilver is needed, and if so the txg range.
3110  */
3111 boolean_t
3112 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3113 {
3114 	boolean_t needed = B_FALSE;
3115 	uint64_t thismin = UINT64_MAX;
3116 	uint64_t thismax = 0;
3117 
3118 	if (vd->vdev_children == 0) {
3119 		mutex_enter(&vd->vdev_dtl_lock);
3120 		if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3121 		    vdev_writeable(vd)) {
3122 
3123 			thismin = vdev_dtl_min(vd);
3124 			thismax = vdev_dtl_max(vd);
3125 			needed = B_TRUE;
3126 		}
3127 		mutex_exit(&vd->vdev_dtl_lock);
3128 	} else {
3129 		for (int c = 0; c < vd->vdev_children; c++) {
3130 			vdev_t *cvd = vd->vdev_child[c];
3131 			uint64_t cmin, cmax;
3132 
3133 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3134 				thismin = MIN(thismin, cmin);
3135 				thismax = MAX(thismax, cmax);
3136 				needed = B_TRUE;
3137 			}
3138 		}
3139 	}
3140 
3141 	if (needed && minp) {
3142 		*minp = thismin;
3143 		*maxp = thismax;
3144 	}
3145 	return (needed);
3146 }
3147 
3148 /*
3149  * Gets the checkpoint space map object from the vdev's ZAP.  On success sm_obj
3150  * will contain either the checkpoint spacemap object or zero if none exists.
3151  * All other errors are returned to the caller.
3152  */
3153 int
3154 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3155 {
3156 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3157 
3158 	if (vd->vdev_top_zap == 0) {
3159 		*sm_obj = 0;
3160 		return (0);
3161 	}
3162 
3163 	int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3164 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3165 	if (error == ENOENT) {
3166 		*sm_obj = 0;
3167 		error = 0;
3168 	}
3169 
3170 	return (error);
3171 }
3172 
3173 int
3174 vdev_load(vdev_t *vd)
3175 {
3176 	int error = 0;
3177 
3178 	/*
3179 	 * Recursively load all children.
3180 	 */
3181 	for (int c = 0; c < vd->vdev_children; c++) {
3182 		error = vdev_load(vd->vdev_child[c]);
3183 		if (error != 0) {
3184 			return (error);
3185 		}
3186 	}
3187 
3188 	vdev_set_deflate_ratio(vd);
3189 
3190 	/*
3191 	 * On spa_load path, grab the allocation bias from our zap
3192 	 */
3193 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3194 		spa_t *spa = vd->vdev_spa;
3195 		char bias_str[64];
3196 
3197 		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3198 		    VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3199 		    bias_str);
3200 		if (error == 0) {
3201 			ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3202 			vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3203 		} else if (error != ENOENT) {
3204 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3205 			    VDEV_AUX_CORRUPT_DATA);
3206 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3207 			    "failed [error=%d]", vd->vdev_top_zap, error);
3208 			return (error);
3209 		}
3210 	}
3211 
3212 	/*
3213 	 * Load any rebuild state from the top-level vdev zap.
3214 	 */
3215 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3216 		error = vdev_rebuild_load(vd);
3217 		if (error && error != ENOTSUP) {
3218 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3219 			    VDEV_AUX_CORRUPT_DATA);
3220 			vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3221 			    "failed [error=%d]", error);
3222 			return (error);
3223 		}
3224 	}
3225 
3226 	/*
3227 	 * If this is a top-level vdev, initialize its metaslabs.
3228 	 */
3229 	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3230 		vdev_metaslab_group_create(vd);
3231 
3232 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3233 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3234 			    VDEV_AUX_CORRUPT_DATA);
3235 			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3236 			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3237 			    (u_longlong_t)vd->vdev_asize);
3238 			return (SET_ERROR(ENXIO));
3239 		}
3240 
3241 		error = vdev_metaslab_init(vd, 0);
3242 		if (error != 0) {
3243 			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3244 			    "[error=%d]", error);
3245 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3246 			    VDEV_AUX_CORRUPT_DATA);
3247 			return (error);
3248 		}
3249 
3250 		uint64_t checkpoint_sm_obj;
3251 		error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3252 		if (error == 0 && checkpoint_sm_obj != 0) {
3253 			objset_t *mos = spa_meta_objset(vd->vdev_spa);
3254 			ASSERT(vd->vdev_asize != 0);
3255 			ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3256 
3257 			error = space_map_open(&vd->vdev_checkpoint_sm,
3258 			    mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3259 			    vd->vdev_ashift);
3260 			if (error != 0) {
3261 				vdev_dbgmsg(vd, "vdev_load: space_map_open "
3262 				    "failed for checkpoint spacemap (obj %llu) "
3263 				    "[error=%d]",
3264 				    (u_longlong_t)checkpoint_sm_obj, error);
3265 				return (error);
3266 			}
3267 			ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3268 
3269 			/*
3270 			 * Since the checkpoint_sm contains free entries
3271 			 * exclusively we can use space_map_allocated() to
3272 			 * indicate the cumulative checkpointed space that
3273 			 * has been freed.
3274 			 */
3275 			vd->vdev_stat.vs_checkpoint_space =
3276 			    -space_map_allocated(vd->vdev_checkpoint_sm);
3277 			vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3278 			    vd->vdev_stat.vs_checkpoint_space;
3279 		} else if (error != 0) {
3280 			vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3281 			    "checkpoint space map object from vdev ZAP "
3282 			    "[error=%d]", error);
3283 			return (error);
3284 		}
3285 	}
3286 
3287 	/*
3288 	 * If this is a leaf vdev, load its DTL.
3289 	 */
3290 	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3291 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3292 		    VDEV_AUX_CORRUPT_DATA);
3293 		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3294 		    "[error=%d]", error);
3295 		return (error);
3296 	}
3297 
3298 	uint64_t obsolete_sm_object;
3299 	error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3300 	if (error == 0 && obsolete_sm_object != 0) {
3301 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
3302 		ASSERT(vd->vdev_asize != 0);
3303 		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3304 
3305 		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3306 		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3307 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3308 			    VDEV_AUX_CORRUPT_DATA);
3309 			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3310 			    "obsolete spacemap (obj %llu) [error=%d]",
3311 			    (u_longlong_t)obsolete_sm_object, error);
3312 			return (error);
3313 		}
3314 	} else if (error != 0) {
3315 		vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3316 		    "space map object from vdev ZAP [error=%d]", error);
3317 		return (error);
3318 	}
3319 
3320 	return (0);
3321 }
3322 
3323 /*
3324  * The special vdev case is used for hot spares and l2cache devices.  Its
3325  * sole purpose it to set the vdev state for the associated vdev.  To do this,
3326  * we make sure that we can open the underlying device, then try to read the
3327  * label, and make sure that the label is sane and that it hasn't been
3328  * repurposed to another pool.
3329  */
3330 int
3331 vdev_validate_aux(vdev_t *vd)
3332 {
3333 	nvlist_t *label;
3334 	uint64_t guid, version;
3335 	uint64_t state;
3336 
3337 	if (!vdev_readable(vd))
3338 		return (0);
3339 
3340 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3341 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3342 		    VDEV_AUX_CORRUPT_DATA);
3343 		return (-1);
3344 	}
3345 
3346 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3347 	    !SPA_VERSION_IS_SUPPORTED(version) ||
3348 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3349 	    guid != vd->vdev_guid ||
3350 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3351 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3352 		    VDEV_AUX_CORRUPT_DATA);
3353 		nvlist_free(label);
3354 		return (-1);
3355 	}
3356 
3357 	/*
3358 	 * We don't actually check the pool state here.  If it's in fact in
3359 	 * use by another pool, we update this fact on the fly when requested.
3360 	 */
3361 	nvlist_free(label);
3362 	return (0);
3363 }
3364 
3365 static void
3366 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3367 {
3368 	objset_t *mos = spa_meta_objset(vd->vdev_spa);
3369 
3370 	if (vd->vdev_top_zap == 0)
3371 		return;
3372 
3373 	uint64_t object = 0;
3374 	int err = zap_lookup(mos, vd->vdev_top_zap,
3375 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3376 	if (err == ENOENT)
3377 		return;
3378 	VERIFY0(err);
3379 
3380 	VERIFY0(dmu_object_free(mos, object, tx));
3381 	VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3382 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3383 }
3384 
3385 /*
3386  * Free the objects used to store this vdev's spacemaps, and the array
3387  * that points to them.
3388  */
3389 void
3390 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3391 {
3392 	if (vd->vdev_ms_array == 0)
3393 		return;
3394 
3395 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
3396 	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3397 	size_t array_bytes = array_count * sizeof (uint64_t);
3398 	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3399 	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3400 	    array_bytes, smobj_array, 0));
3401 
3402 	for (uint64_t i = 0; i < array_count; i++) {
3403 		uint64_t smobj = smobj_array[i];
3404 		if (smobj == 0)
3405 			continue;
3406 
3407 		space_map_free_obj(mos, smobj, tx);
3408 	}
3409 
3410 	kmem_free(smobj_array, array_bytes);
3411 	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3412 	vdev_destroy_ms_flush_data(vd, tx);
3413 	vd->vdev_ms_array = 0;
3414 }
3415 
3416 static void
3417 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3418 {
3419 	spa_t *spa = vd->vdev_spa;
3420 
3421 	ASSERT(vd->vdev_islog);
3422 	ASSERT(vd == vd->vdev_top);
3423 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
3424 
3425 	dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3426 
3427 	vdev_destroy_spacemaps(vd, tx);
3428 	if (vd->vdev_top_zap != 0) {
3429 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3430 		vd->vdev_top_zap = 0;
3431 	}
3432 
3433 	dmu_tx_commit(tx);
3434 }
3435 
3436 void
3437 vdev_sync_done(vdev_t *vd, uint64_t txg)
3438 {
3439 	metaslab_t *msp;
3440 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3441 
3442 	ASSERT(vdev_is_concrete(vd));
3443 
3444 	while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3445 	    != NULL)
3446 		metaslab_sync_done(msp, txg);
3447 
3448 	if (reassess)
3449 		metaslab_sync_reassess(vd->vdev_mg);
3450 }
3451 
3452 void
3453 vdev_sync(vdev_t *vd, uint64_t txg)
3454 {
3455 	spa_t *spa = vd->vdev_spa;
3456 	vdev_t *lvd;
3457 	metaslab_t *msp;
3458 
3459 	ASSERT3U(txg, ==, spa->spa_syncing_txg);
3460 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3461 	if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3462 		ASSERT(vd->vdev_removing ||
3463 		    vd->vdev_ops == &vdev_indirect_ops);
3464 
3465 		vdev_indirect_sync_obsolete(vd, tx);
3466 
3467 		/*
3468 		 * If the vdev is indirect, it can't have dirty
3469 		 * metaslabs or DTLs.
3470 		 */
3471 		if (vd->vdev_ops == &vdev_indirect_ops) {
3472 			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3473 			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3474 			dmu_tx_commit(tx);
3475 			return;
3476 		}
3477 	}
3478 
3479 	ASSERT(vdev_is_concrete(vd));
3480 
3481 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3482 	    !vd->vdev_removing) {
3483 		ASSERT(vd == vd->vdev_top);
3484 		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3485 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3486 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3487 		ASSERT(vd->vdev_ms_array != 0);
3488 		vdev_config_dirty(vd);
3489 	}
3490 
3491 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3492 		metaslab_sync(msp, txg);
3493 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3494 	}
3495 
3496 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3497 		vdev_dtl_sync(lvd, txg);
3498 
3499 	/*
3500 	 * If this is an empty log device being removed, destroy the
3501 	 * metadata associated with it.
3502 	 */
3503 	if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3504 		vdev_remove_empty_log(vd, txg);
3505 
3506 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3507 	dmu_tx_commit(tx);
3508 }
3509 
3510 uint64_t
3511 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3512 {
3513 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
3514 }
3515 
3516 /*
3517  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
3518  * not be opened, and no I/O is attempted.
3519  */
3520 int
3521 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3522 {
3523 	vdev_t *vd, *tvd;
3524 
3525 	spa_vdev_state_enter(spa, SCL_NONE);
3526 
3527 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3528 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3529 
3530 	if (!vd->vdev_ops->vdev_op_leaf)
3531 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3532 
3533 	tvd = vd->vdev_top;
3534 
3535 	/*
3536 	 * If user did a 'zpool offline -f' then make the fault persist across
3537 	 * reboots.
3538 	 */
3539 	if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
3540 		/*
3541 		 * There are two kinds of forced faults: temporary and
3542 		 * persistent.  Temporary faults go away at pool import, while
3543 		 * persistent faults stay set.  Both types of faults can be
3544 		 * cleared with a zpool clear.
3545 		 *
3546 		 * We tell if a vdev is persistently faulted by looking at the
3547 		 * ZPOOL_CONFIG_AUX_STATE nvpair.  If it's set to "external" at
3548 		 * import then it's a persistent fault.  Otherwise, it's
3549 		 * temporary.  We get ZPOOL_CONFIG_AUX_STATE set to "external"
3550 		 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL.  This
3551 		 * tells vdev_config_generate() (which gets run later) to set
3552 		 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
3553 		 */
3554 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
3555 		vd->vdev_tmpoffline = B_FALSE;
3556 		aux = VDEV_AUX_EXTERNAL;
3557 	} else {
3558 		vd->vdev_tmpoffline = B_TRUE;
3559 	}
3560 
3561 	/*
3562 	 * We don't directly use the aux state here, but if we do a
3563 	 * vdev_reopen(), we need this value to be present to remember why we
3564 	 * were faulted.
3565 	 */
3566 	vd->vdev_label_aux = aux;
3567 
3568 	/*
3569 	 * Faulted state takes precedence over degraded.
3570 	 */
3571 	vd->vdev_delayed_close = B_FALSE;
3572 	vd->vdev_faulted = 1ULL;
3573 	vd->vdev_degraded = 0ULL;
3574 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3575 
3576 	/*
3577 	 * If this device has the only valid copy of the data, then
3578 	 * back off and simply mark the vdev as degraded instead.
3579 	 */
3580 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3581 		vd->vdev_degraded = 1ULL;
3582 		vd->vdev_faulted = 0ULL;
3583 
3584 		/*
3585 		 * If we reopen the device and it's not dead, only then do we
3586 		 * mark it degraded.
3587 		 */
3588 		vdev_reopen(tvd);
3589 
3590 		if (vdev_readable(vd))
3591 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3592 	}
3593 
3594 	return (spa_vdev_state_exit(spa, vd, 0));
3595 }
3596 
3597 /*
3598  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
3599  * user that something is wrong.  The vdev continues to operate as normal as far
3600  * as I/O is concerned.
3601  */
3602 int
3603 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3604 {
3605 	vdev_t *vd;
3606 
3607 	spa_vdev_state_enter(spa, SCL_NONE);
3608 
3609 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3610 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3611 
3612 	if (!vd->vdev_ops->vdev_op_leaf)
3613 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3614 
3615 	/*
3616 	 * If the vdev is already faulted, then don't do anything.
3617 	 */
3618 	if (vd->vdev_faulted || vd->vdev_degraded)
3619 		return (spa_vdev_state_exit(spa, NULL, 0));
3620 
3621 	vd->vdev_degraded = 1ULL;
3622 	if (!vdev_is_dead(vd))
3623 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3624 		    aux);
3625 
3626 	return (spa_vdev_state_exit(spa, vd, 0));
3627 }
3628 
3629 /*
3630  * Online the given vdev.
3631  *
3632  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
3633  * spare device should be detached when the device finishes resilvering.
3634  * Second, the online should be treated like a 'test' online case, so no FMA
3635  * events are generated if the device fails to open.
3636  */
3637 int
3638 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3639 {
3640 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3641 	boolean_t wasoffline;
3642 	vdev_state_t oldstate;
3643 
3644 	spa_vdev_state_enter(spa, SCL_NONE);
3645 
3646 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3647 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3648 
3649 	if (!vd->vdev_ops->vdev_op_leaf)
3650 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3651 
3652 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3653 	oldstate = vd->vdev_state;
3654 
3655 	tvd = vd->vdev_top;
3656 	vd->vdev_offline = B_FALSE;
3657 	vd->vdev_tmpoffline = B_FALSE;
3658 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3659 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3660 
3661 	/* XXX - L2ARC 1.0 does not support expansion */
3662 	if (!vd->vdev_aux) {
3663 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3664 			pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
3665 			    spa->spa_autoexpand);
3666 		vd->vdev_expansion_time = gethrestime_sec();
3667 	}
3668 
3669 	vdev_reopen(tvd);
3670 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3671 
3672 	if (!vd->vdev_aux) {
3673 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3674 			pvd->vdev_expanding = B_FALSE;
3675 	}
3676 
3677 	if (newstate)
3678 		*newstate = vd->vdev_state;
3679 	if ((flags & ZFS_ONLINE_UNSPARE) &&
3680 	    !vdev_is_dead(vd) && vd->vdev_parent &&
3681 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3682 	    vd->vdev_parent->vdev_child[0] == vd)
3683 		vd->vdev_unspare = B_TRUE;
3684 
3685 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3686 
3687 		/* XXX - L2ARC 1.0 does not support expansion */
3688 		if (vd->vdev_aux)
3689 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3690 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3691 	}
3692 
3693 	/* Restart initializing if necessary */
3694 	mutex_enter(&vd->vdev_initialize_lock);
3695 	if (vdev_writeable(vd) &&
3696 	    vd->vdev_initialize_thread == NULL &&
3697 	    vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3698 		(void) vdev_initialize(vd);
3699 	}
3700 	mutex_exit(&vd->vdev_initialize_lock);
3701 
3702 	/*
3703 	 * Restart trimming if necessary. We do not restart trimming for cache
3704 	 * devices here. This is triggered by l2arc_rebuild_vdev()
3705 	 * asynchronously for the whole device or in l2arc_evict() as it evicts
3706 	 * space for upcoming writes.
3707 	 */
3708 	mutex_enter(&vd->vdev_trim_lock);
3709 	if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
3710 	    vd->vdev_trim_thread == NULL &&
3711 	    vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
3712 		(void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
3713 		    vd->vdev_trim_secure);
3714 	}
3715 	mutex_exit(&vd->vdev_trim_lock);
3716 
3717 	if (wasoffline ||
3718 	    (oldstate < VDEV_STATE_DEGRADED &&
3719 	    vd->vdev_state >= VDEV_STATE_DEGRADED))
3720 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3721 
3722 	return (spa_vdev_state_exit(spa, vd, 0));
3723 }
3724 
3725 static int
3726 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3727 {
3728 	vdev_t *vd, *tvd;
3729 	int error = 0;
3730 	uint64_t generation;
3731 	metaslab_group_t *mg;
3732 
3733 top:
3734 	spa_vdev_state_enter(spa, SCL_ALLOC);
3735 
3736 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3737 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3738 
3739 	if (!vd->vdev_ops->vdev_op_leaf)
3740 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3741 
3742 	tvd = vd->vdev_top;
3743 	mg = tvd->vdev_mg;
3744 	generation = spa->spa_config_generation + 1;
3745 
3746 	/*
3747 	 * If the device isn't already offline, try to offline it.
3748 	 */
3749 	if (!vd->vdev_offline) {
3750 		/*
3751 		 * If this device has the only valid copy of some data,
3752 		 * don't allow it to be offlined. Log devices are always
3753 		 * expendable.
3754 		 */
3755 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3756 		    vdev_dtl_required(vd))
3757 			return (spa_vdev_state_exit(spa, NULL,
3758 			    SET_ERROR(EBUSY)));
3759 
3760 		/*
3761 		 * If the top-level is a slog and it has had allocations
3762 		 * then proceed.  We check that the vdev's metaslab group
3763 		 * is not NULL since it's possible that we may have just
3764 		 * added this vdev but not yet initialized its metaslabs.
3765 		 */
3766 		if (tvd->vdev_islog && mg != NULL) {
3767 			/*
3768 			 * Prevent any future allocations.
3769 			 */
3770 			metaslab_group_passivate(mg);
3771 			(void) spa_vdev_state_exit(spa, vd, 0);
3772 
3773 			error = spa_reset_logs(spa);
3774 
3775 			/*
3776 			 * If the log device was successfully reset but has
3777 			 * checkpointed data, do not offline it.
3778 			 */
3779 			if (error == 0 &&
3780 			    tvd->vdev_checkpoint_sm != NULL) {
3781 				ASSERT3U(space_map_allocated(
3782 				    tvd->vdev_checkpoint_sm), !=, 0);
3783 				error = ZFS_ERR_CHECKPOINT_EXISTS;
3784 			}
3785 
3786 			spa_vdev_state_enter(spa, SCL_ALLOC);
3787 
3788 			/*
3789 			 * Check to see if the config has changed.
3790 			 */
3791 			if (error || generation != spa->spa_config_generation) {
3792 				metaslab_group_activate(mg);
3793 				if (error)
3794 					return (spa_vdev_state_exit(spa,
3795 					    vd, error));
3796 				(void) spa_vdev_state_exit(spa, vd, 0);
3797 				goto top;
3798 			}
3799 			ASSERT0(tvd->vdev_stat.vs_alloc);
3800 		}
3801 
3802 		/*
3803 		 * Offline this device and reopen its top-level vdev.
3804 		 * If the top-level vdev is a log device then just offline
3805 		 * it. Otherwise, if this action results in the top-level
3806 		 * vdev becoming unusable, undo it and fail the request.
3807 		 */
3808 		vd->vdev_offline = B_TRUE;
3809 		vdev_reopen(tvd);
3810 
3811 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3812 		    vdev_is_dead(tvd)) {
3813 			vd->vdev_offline = B_FALSE;
3814 			vdev_reopen(tvd);
3815 			return (spa_vdev_state_exit(spa, NULL,
3816 			    SET_ERROR(EBUSY)));
3817 		}
3818 
3819 		/*
3820 		 * Add the device back into the metaslab rotor so that
3821 		 * once we online the device it's open for business.
3822 		 */
3823 		if (tvd->vdev_islog && mg != NULL)
3824 			metaslab_group_activate(mg);
3825 	}
3826 
3827 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3828 
3829 	return (spa_vdev_state_exit(spa, vd, 0));
3830 }
3831 
3832 int
3833 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3834 {
3835 	int error;
3836 
3837 	mutex_enter(&spa->spa_vdev_top_lock);
3838 	error = vdev_offline_locked(spa, guid, flags);
3839 	mutex_exit(&spa->spa_vdev_top_lock);
3840 
3841 	return (error);
3842 }
3843 
3844 /*
3845  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
3846  * vdev_offline(), we assume the spa config is locked.  We also clear all
3847  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
3848  */
3849 void
3850 vdev_clear(spa_t *spa, vdev_t *vd)
3851 {
3852 	vdev_t *rvd = spa->spa_root_vdev;
3853 
3854 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3855 
3856 	if (vd == NULL)
3857 		vd = rvd;
3858 
3859 	vd->vdev_stat.vs_read_errors = 0;
3860 	vd->vdev_stat.vs_write_errors = 0;
3861 	vd->vdev_stat.vs_checksum_errors = 0;
3862 	vd->vdev_stat.vs_slow_ios = 0;
3863 
3864 	for (int c = 0; c < vd->vdev_children; c++)
3865 		vdev_clear(spa, vd->vdev_child[c]);
3866 
3867 	/*
3868 	 * It makes no sense to "clear" an indirect vdev.
3869 	 */
3870 	if (!vdev_is_concrete(vd))
3871 		return;
3872 
3873 	/*
3874 	 * If we're in the FAULTED state or have experienced failed I/O, then
3875 	 * clear the persistent state and attempt to reopen the device.  We
3876 	 * also mark the vdev config dirty, so that the new faulted state is
3877 	 * written out to disk.
3878 	 */
3879 	if (vd->vdev_faulted || vd->vdev_degraded ||
3880 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
3881 		/*
3882 		 * When reopening in response to a clear event, it may be due to
3883 		 * a fmadm repair request.  In this case, if the device is
3884 		 * still broken, we want to still post the ereport again.
3885 		 */
3886 		vd->vdev_forcefault = B_TRUE;
3887 
3888 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3889 		vd->vdev_cant_read = B_FALSE;
3890 		vd->vdev_cant_write = B_FALSE;
3891 		vd->vdev_stat.vs_aux = 0;
3892 
3893 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3894 
3895 		vd->vdev_forcefault = B_FALSE;
3896 
3897 		if (vd != rvd && vdev_writeable(vd->vdev_top))
3898 			vdev_state_dirty(vd->vdev_top);
3899 
3900 		/* If a resilver isn't required, check if vdevs can be culled */
3901 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
3902 		    !dsl_scan_resilvering(spa->spa_dsl_pool) &&
3903 		    !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
3904 			spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3905 
3906 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3907 	}
3908 
3909 	/*
3910 	 * When clearing a FMA-diagnosed fault, we always want to
3911 	 * unspare the device, as we assume that the original spare was
3912 	 * done in response to the FMA fault.
3913 	 */
3914 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3915 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3916 	    vd->vdev_parent->vdev_child[0] == vd)
3917 		vd->vdev_unspare = B_TRUE;
3918 }
3919 
3920 boolean_t
3921 vdev_is_dead(vdev_t *vd)
3922 {
3923 	/*
3924 	 * Holes and missing devices are always considered "dead".
3925 	 * This simplifies the code since we don't have to check for
3926 	 * these types of devices in the various code paths.
3927 	 * Instead we rely on the fact that we skip over dead devices
3928 	 * before issuing I/O to them.
3929 	 */
3930 	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3931 	    vd->vdev_ops == &vdev_hole_ops ||
3932 	    vd->vdev_ops == &vdev_missing_ops);
3933 }
3934 
3935 boolean_t
3936 vdev_readable(vdev_t *vd)
3937 {
3938 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3939 }
3940 
3941 boolean_t
3942 vdev_writeable(vdev_t *vd)
3943 {
3944 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3945 	    vdev_is_concrete(vd));
3946 }
3947 
3948 boolean_t
3949 vdev_allocatable(vdev_t *vd)
3950 {
3951 	uint64_t state = vd->vdev_state;
3952 
3953 	/*
3954 	 * We currently allow allocations from vdevs which may be in the
3955 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3956 	 * fails to reopen then we'll catch it later when we're holding
3957 	 * the proper locks.  Note that we have to get the vdev state
3958 	 * in a local variable because although it changes atomically,
3959 	 * we're asking two separate questions about it.
3960 	 */
3961 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3962 	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3963 	    vd->vdev_mg->mg_initialized);
3964 }
3965 
3966 boolean_t
3967 vdev_accessible(vdev_t *vd, zio_t *zio)
3968 {
3969 	ASSERT(zio->io_vd == vd);
3970 
3971 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3972 		return (B_FALSE);
3973 
3974 	if (zio->io_type == ZIO_TYPE_READ)
3975 		return (!vd->vdev_cant_read);
3976 
3977 	if (zio->io_type == ZIO_TYPE_WRITE)
3978 		return (!vd->vdev_cant_write);
3979 
3980 	return (B_TRUE);
3981 }
3982 
3983 static void
3984 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
3985 {
3986 	for (int t = 0; t < VS_ZIO_TYPES; t++) {
3987 		vs->vs_ops[t] += cvs->vs_ops[t];
3988 		vs->vs_bytes[t] += cvs->vs_bytes[t];
3989 	}
3990 
3991 	cvs->vs_scan_removing = cvd->vdev_removing;
3992 }
3993 
3994 /*
3995  * Get extended stats
3996  */
3997 static void
3998 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
3999 {
4000 	int t, b;
4001 	for (t = 0; t < ZIO_TYPES; t++) {
4002 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4003 			vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4004 
4005 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4006 			vsx->vsx_total_histo[t][b] +=
4007 			    cvsx->vsx_total_histo[t][b];
4008 		}
4009 	}
4010 
4011 	for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4012 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4013 			vsx->vsx_queue_histo[t][b] +=
4014 			    cvsx->vsx_queue_histo[t][b];
4015 		}
4016 		vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4017 		vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4018 
4019 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4020 			vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4021 
4022 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4023 			vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4024 	}
4025 
4026 }
4027 
4028 boolean_t
4029 vdev_is_spacemap_addressable(vdev_t *vd)
4030 {
4031 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4032 		return (B_TRUE);
4033 
4034 	/*
4035 	 * If double-word space map entries are not enabled we assume
4036 	 * 47 bits of the space map entry are dedicated to the entry's
4037 	 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4038 	 * to calculate the maximum address that can be described by a
4039 	 * space map entry for the given device.
4040 	 */
4041 	uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4042 
4043 	if (shift >= 63) /* detect potential overflow */
4044 		return (B_TRUE);
4045 
4046 	return (vd->vdev_asize < (1ULL << shift));
4047 }
4048 
4049 /*
4050  * Get statistics for the given vdev.
4051  */
4052 static void
4053 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4054 {
4055 	int t;
4056 	/*
4057 	 * If we're getting stats on the root vdev, aggregate the I/O counts
4058 	 * over all top-level vdevs (i.e. the direct children of the root).
4059 	 */
4060 	if (!vd->vdev_ops->vdev_op_leaf) {
4061 		if (vs) {
4062 			memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4063 			memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4064 		}
4065 		if (vsx)
4066 			memset(vsx, 0, sizeof (*vsx));
4067 
4068 		for (int c = 0; c < vd->vdev_children; c++) {
4069 			vdev_t *cvd = vd->vdev_child[c];
4070 			vdev_stat_t *cvs = &cvd->vdev_stat;
4071 			vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4072 
4073 			vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4074 			if (vs)
4075 				vdev_get_child_stat(cvd, vs, cvs);
4076 			if (vsx)
4077 				vdev_get_child_stat_ex(cvd, vsx, cvsx);
4078 
4079 		}
4080 	} else {
4081 		/*
4082 		 * We're a leaf.  Just copy our ZIO active queue stats in.  The
4083 		 * other leaf stats are updated in vdev_stat_update().
4084 		 */
4085 		if (!vsx)
4086 			return;
4087 
4088 		memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4089 
4090 		for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
4091 			vsx->vsx_active_queue[t] =
4092 			    vd->vdev_queue.vq_class[t].vqc_active;
4093 			vsx->vsx_pend_queue[t] = avl_numnodes(
4094 			    &vd->vdev_queue.vq_class[t].vqc_queued_tree);
4095 		}
4096 	}
4097 }
4098 
4099 void
4100 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4101 {
4102 	vdev_t *tvd = vd->vdev_top;
4103 	mutex_enter(&vd->vdev_stat_lock);
4104 	if (vs) {
4105 		bcopy(&vd->vdev_stat, vs, sizeof (*vs));
4106 		vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4107 		vs->vs_state = vd->vdev_state;
4108 		vs->vs_rsize = vdev_get_min_asize(vd);
4109 
4110 		if (vd->vdev_ops->vdev_op_leaf) {
4111 			vs->vs_rsize += VDEV_LABEL_START_SIZE +
4112 			    VDEV_LABEL_END_SIZE;
4113 			/*
4114 			 * Report initializing progress. Since we don't
4115 			 * have the initializing locks held, this is only
4116 			 * an estimate (although a fairly accurate one).
4117 			 */
4118 			vs->vs_initialize_bytes_done =
4119 			    vd->vdev_initialize_bytes_done;
4120 			vs->vs_initialize_bytes_est =
4121 			    vd->vdev_initialize_bytes_est;
4122 			vs->vs_initialize_state = vd->vdev_initialize_state;
4123 			vs->vs_initialize_action_time =
4124 			    vd->vdev_initialize_action_time;
4125 
4126 			/*
4127 			 * Report manual TRIM progress. Since we don't have
4128 			 * the manual TRIM locks held, this is only an
4129 			 * estimate (although fairly accurate one).
4130 			 */
4131 			vs->vs_trim_notsup = !vd->vdev_has_trim;
4132 			vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4133 			vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4134 			vs->vs_trim_state = vd->vdev_trim_state;
4135 			vs->vs_trim_action_time = vd->vdev_trim_action_time;
4136 
4137 			/* Set when there is a deferred resilver. */
4138 			vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4139 		}
4140 
4141 		/*
4142 		 * Report expandable space on top-level, non-auxiliary devices
4143 		 * only. The expandable space is reported in terms of metaslab
4144 		 * sized units since that determines how much space the pool
4145 		 * can expand.
4146 		 */
4147 		if (vd->vdev_aux == NULL && tvd != NULL) {
4148 			vs->vs_esize = P2ALIGN(
4149 			    vd->vdev_max_asize - vd->vdev_asize,
4150 			    1ULL << tvd->vdev_ms_shift);
4151 		}
4152 
4153 		vs->vs_configured_ashift = vd->vdev_top != NULL
4154 		    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4155 		vs->vs_logical_ashift = vd->vdev_logical_ashift;
4156 		vs->vs_physical_ashift = vd->vdev_physical_ashift;
4157 
4158 		/*
4159 		 * Report fragmentation and rebuild progress for top-level,
4160 		 * non-auxiliary, concrete devices.
4161 		 */
4162 		if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4163 		    vdev_is_concrete(vd)) {
4164 			vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4165 			    vd->vdev_mg->mg_fragmentation : 0;
4166 		}
4167 	}
4168 
4169 	vdev_get_stats_ex_impl(vd, vs, vsx);
4170 	mutex_exit(&vd->vdev_stat_lock);
4171 }
4172 
4173 void
4174 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4175 {
4176 	return (vdev_get_stats_ex(vd, vs, NULL));
4177 }
4178 
4179 void
4180 vdev_clear_stats(vdev_t *vd)
4181 {
4182 	mutex_enter(&vd->vdev_stat_lock);
4183 	vd->vdev_stat.vs_space = 0;
4184 	vd->vdev_stat.vs_dspace = 0;
4185 	vd->vdev_stat.vs_alloc = 0;
4186 	mutex_exit(&vd->vdev_stat_lock);
4187 }
4188 
4189 void
4190 vdev_scan_stat_init(vdev_t *vd)
4191 {
4192 	vdev_stat_t *vs = &vd->vdev_stat;
4193 
4194 	for (int c = 0; c < vd->vdev_children; c++)
4195 		vdev_scan_stat_init(vd->vdev_child[c]);
4196 
4197 	mutex_enter(&vd->vdev_stat_lock);
4198 	vs->vs_scan_processed = 0;
4199 	mutex_exit(&vd->vdev_stat_lock);
4200 }
4201 
4202 void
4203 vdev_stat_update(zio_t *zio, uint64_t psize)
4204 {
4205 	spa_t *spa = zio->io_spa;
4206 	vdev_t *rvd = spa->spa_root_vdev;
4207 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4208 	vdev_t *pvd;
4209 	uint64_t txg = zio->io_txg;
4210 	vdev_stat_t *vs = &vd->vdev_stat;
4211 	vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
4212 	zio_type_t type = zio->io_type;
4213 	int flags = zio->io_flags;
4214 
4215 	/*
4216 	 * If this i/o is a gang leader, it didn't do any actual work.
4217 	 */
4218 	if (zio->io_gang_tree)
4219 		return;
4220 
4221 	if (zio->io_error == 0) {
4222 		/*
4223 		 * If this is a root i/o, don't count it -- we've already
4224 		 * counted the top-level vdevs, and vdev_get_stats() will
4225 		 * aggregate them when asked.  This reduces contention on
4226 		 * the root vdev_stat_lock and implicitly handles blocks
4227 		 * that compress away to holes, for which there is no i/o.
4228 		 * (Holes never create vdev children, so all the counters
4229 		 * remain zero, which is what we want.)
4230 		 *
4231 		 * Note: this only applies to successful i/o (io_error == 0)
4232 		 * because unlike i/o counts, errors are not additive.
4233 		 * When reading a ditto block, for example, failure of
4234 		 * one top-level vdev does not imply a root-level error.
4235 		 */
4236 		if (vd == rvd)
4237 			return;
4238 
4239 		ASSERT(vd == zio->io_vd);
4240 
4241 		if (flags & ZIO_FLAG_IO_BYPASS)
4242 			return;
4243 
4244 		mutex_enter(&vd->vdev_stat_lock);
4245 
4246 		if (flags & ZIO_FLAG_IO_REPAIR) {
4247 			/*
4248 			 * Repair is the result of a resilver issued by the
4249 			 * scan thread (spa_sync).
4250 			 */
4251 			if (flags & ZIO_FLAG_SCAN_THREAD) {
4252 				dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
4253 				dsl_scan_phys_t *scn_phys = &scn->scn_phys;
4254 				uint64_t *processed = &scn_phys->scn_processed;
4255 
4256 				if (vd->vdev_ops->vdev_op_leaf)
4257 					atomic_add_64(processed, psize);
4258 				vs->vs_scan_processed += psize;
4259 			}
4260 
4261 			/*
4262 			 * Repair is the result of a rebuild issued by the
4263 			 * rebuild thread (vdev_rebuild_thread).
4264 			 */
4265 			if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
4266 				vdev_t *tvd = vd->vdev_top;
4267 				vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
4268 				vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
4269 				uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
4270 
4271 				if (vd->vdev_ops->vdev_op_leaf)
4272 					atomic_add_64(rebuilt, psize);
4273 				vs->vs_rebuild_processed += psize;
4274 			}
4275 
4276 			if (flags & ZIO_FLAG_SELF_HEAL)
4277 				vs->vs_self_healed += psize;
4278 		}
4279 
4280 		/*
4281 		 * The bytes/ops/histograms are recorded at the leaf level and
4282 		 * aggregated into the higher level vdevs in vdev_get_stats().
4283 		 */
4284 		if (vd->vdev_ops->vdev_op_leaf &&
4285 		    (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4286 			zio_type_t vs_type = type;
4287 			zio_priority_t priority = zio->io_priority;
4288 
4289 			/*
4290 			 * TRIM ops and bytes are reported to user space as
4291 			 * ZIO_TYPE_IOCTL.  This is done to preserve the
4292 			 * vdev_stat_t structure layout for user space.
4293 			 */
4294 			if (type == ZIO_TYPE_TRIM)
4295 				vs_type = ZIO_TYPE_IOCTL;
4296 
4297 			/*
4298 			 * Solely for the purposes of 'zpool iostat -lqrw'
4299 			 * reporting use the priority to catagorize the IO.
4300 			 * Only the following are reported to user space:
4301 			 *
4302 			 *   ZIO_PRIORITY_SYNC_READ,
4303 			 *   ZIO_PRIORITY_SYNC_WRITE,
4304 			 *   ZIO_PRIORITY_ASYNC_READ,
4305 			 *   ZIO_PRIORITY_ASYNC_WRITE,
4306 			 *   ZIO_PRIORITY_SCRUB,
4307 			 *   ZIO_PRIORITY_TRIM.
4308 			 */
4309 			if (priority == ZIO_PRIORITY_REBUILD) {
4310 				priority = ((type == ZIO_TYPE_WRITE) ?
4311 				    ZIO_PRIORITY_ASYNC_WRITE :
4312 				    ZIO_PRIORITY_SCRUB);
4313 			} else if (priority == ZIO_PRIORITY_INITIALIZING) {
4314 				ASSERT3U(type, ==, ZIO_TYPE_WRITE);
4315 				priority = ZIO_PRIORITY_ASYNC_WRITE;
4316 			} else if (priority == ZIO_PRIORITY_REMOVAL) {
4317 				priority = ((type == ZIO_TYPE_WRITE) ?
4318 				    ZIO_PRIORITY_ASYNC_WRITE :
4319 				    ZIO_PRIORITY_ASYNC_READ);
4320 			}
4321 
4322 			vs->vs_ops[vs_type]++;
4323 			vs->vs_bytes[vs_type] += psize;
4324 
4325 			if (flags & ZIO_FLAG_DELEGATED) {
4326 				vsx->vsx_agg_histo[priority]
4327 				    [RQ_HISTO(zio->io_size)]++;
4328 			} else {
4329 				vsx->vsx_ind_histo[priority]
4330 				    [RQ_HISTO(zio->io_size)]++;
4331 			}
4332 
4333 			if (zio->io_delta && zio->io_delay) {
4334 				vsx->vsx_queue_histo[priority]
4335 				    [L_HISTO(zio->io_delta - zio->io_delay)]++;
4336 				vsx->vsx_disk_histo[type]
4337 				    [L_HISTO(zio->io_delay)]++;
4338 				vsx->vsx_total_histo[type]
4339 				    [L_HISTO(zio->io_delta)]++;
4340 			}
4341 		}
4342 
4343 		mutex_exit(&vd->vdev_stat_lock);
4344 		return;
4345 	}
4346 
4347 	if (flags & ZIO_FLAG_SPECULATIVE)
4348 		return;
4349 
4350 	/*
4351 	 * If this is an I/O error that is going to be retried, then ignore the
4352 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
4353 	 * hard errors, when in reality they can happen for any number of
4354 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
4355 	 */
4356 	if (zio->io_error == EIO &&
4357 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
4358 		return;
4359 
4360 	/*
4361 	 * Intent logs writes won't propagate their error to the root
4362 	 * I/O so don't mark these types of failures as pool-level
4363 	 * errors.
4364 	 */
4365 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
4366 		return;
4367 
4368 	if (spa->spa_load_state == SPA_LOAD_NONE &&
4369 	    type == ZIO_TYPE_WRITE && txg != 0 &&
4370 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
4371 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
4372 	    spa->spa_claiming)) {
4373 		/*
4374 		 * This is either a normal write (not a repair), or it's
4375 		 * a repair induced by the scrub thread, or it's a repair
4376 		 * made by zil_claim() during spa_load() in the first txg.
4377 		 * In the normal case, we commit the DTL change in the same
4378 		 * txg as the block was born.  In the scrub-induced repair
4379 		 * case, we know that scrubs run in first-pass syncing context,
4380 		 * so we commit the DTL change in spa_syncing_txg(spa).
4381 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
4382 		 *
4383 		 * We currently do not make DTL entries for failed spontaneous
4384 		 * self-healing writes triggered by normal (non-scrubbing)
4385 		 * reads, because we have no transactional context in which to
4386 		 * do so -- and it's not clear that it'd be desirable anyway.
4387 		 */
4388 		if (vd->vdev_ops->vdev_op_leaf) {
4389 			uint64_t commit_txg = txg;
4390 			if (flags & ZIO_FLAG_SCAN_THREAD) {
4391 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4392 				ASSERT(spa_sync_pass(spa) == 1);
4393 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
4394 				commit_txg = spa_syncing_txg(spa);
4395 			} else if (spa->spa_claiming) {
4396 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4397 				commit_txg = spa_first_txg(spa);
4398 			}
4399 			ASSERT(commit_txg >= spa_syncing_txg(spa));
4400 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
4401 				return;
4402 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4403 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
4404 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
4405 		}
4406 		if (vd != rvd)
4407 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
4408 	}
4409 }
4410 
4411 int64_t
4412 vdev_deflated_space(vdev_t *vd, int64_t space)
4413 {
4414 	ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
4415 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
4416 
4417 	return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
4418 }
4419 
4420 /*
4421  * Update the in-core space usage stats for this vdev, its metaslab class,
4422  * and the root vdev.
4423  */
4424 void
4425 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
4426     int64_t space_delta)
4427 {
4428 	int64_t dspace_delta;
4429 	spa_t *spa = vd->vdev_spa;
4430 	vdev_t *rvd = spa->spa_root_vdev;
4431 
4432 	ASSERT(vd == vd->vdev_top);
4433 
4434 	/*
4435 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
4436 	 * factor.  We must calculate this here and not at the root vdev
4437 	 * because the root vdev's psize-to-asize is simply the max of its
4438 	 * children's, thus not accurate enough for us.
4439 	 */
4440 	dspace_delta = vdev_deflated_space(vd, space_delta);
4441 
4442 	mutex_enter(&vd->vdev_stat_lock);
4443 	/* ensure we won't underflow */
4444 	if (alloc_delta < 0) {
4445 		ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
4446 	}
4447 
4448 	vd->vdev_stat.vs_alloc += alloc_delta;
4449 	vd->vdev_stat.vs_space += space_delta;
4450 	vd->vdev_stat.vs_dspace += dspace_delta;
4451 	mutex_exit(&vd->vdev_stat_lock);
4452 
4453 	/* every class but log contributes to root space stats */
4454 	if (vd->vdev_mg != NULL && !vd->vdev_islog) {
4455 		ASSERT(!vd->vdev_isl2cache);
4456 		mutex_enter(&rvd->vdev_stat_lock);
4457 		rvd->vdev_stat.vs_alloc += alloc_delta;
4458 		rvd->vdev_stat.vs_space += space_delta;
4459 		rvd->vdev_stat.vs_dspace += dspace_delta;
4460 		mutex_exit(&rvd->vdev_stat_lock);
4461 	}
4462 	/* Note: metaslab_class_space_update moved to metaslab_space_update */
4463 }
4464 
4465 /*
4466  * Mark a top-level vdev's config as dirty, placing it on the dirty list
4467  * so that it will be written out next time the vdev configuration is synced.
4468  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
4469  */
4470 void
4471 vdev_config_dirty(vdev_t *vd)
4472 {
4473 	spa_t *spa = vd->vdev_spa;
4474 	vdev_t *rvd = spa->spa_root_vdev;
4475 	int c;
4476 
4477 	ASSERT(spa_writeable(spa));
4478 
4479 	/*
4480 	 * If this is an aux vdev (as with l2cache and spare devices), then we
4481 	 * update the vdev config manually and set the sync flag.
4482 	 */
4483 	if (vd->vdev_aux != NULL) {
4484 		spa_aux_vdev_t *sav = vd->vdev_aux;
4485 		nvlist_t **aux;
4486 		uint_t naux;
4487 
4488 		for (c = 0; c < sav->sav_count; c++) {
4489 			if (sav->sav_vdevs[c] == vd)
4490 				break;
4491 		}
4492 
4493 		if (c == sav->sav_count) {
4494 			/*
4495 			 * We're being removed.  There's nothing more to do.
4496 			 */
4497 			ASSERT(sav->sav_sync == B_TRUE);
4498 			return;
4499 		}
4500 
4501 		sav->sav_sync = B_TRUE;
4502 
4503 		if (nvlist_lookup_nvlist_array(sav->sav_config,
4504 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
4505 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
4506 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
4507 		}
4508 
4509 		ASSERT(c < naux);
4510 
4511 		/*
4512 		 * Setting the nvlist in the middle if the array is a little
4513 		 * sketchy, but it will work.
4514 		 */
4515 		nvlist_free(aux[c]);
4516 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
4517 
4518 		return;
4519 	}
4520 
4521 	/*
4522 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
4523 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
4524 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
4525 	 * so this is sufficient to ensure mutual exclusion.
4526 	 */
4527 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4528 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4529 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
4530 
4531 	if (vd == rvd) {
4532 		for (c = 0; c < rvd->vdev_children; c++)
4533 			vdev_config_dirty(rvd->vdev_child[c]);
4534 	} else {
4535 		ASSERT(vd == vd->vdev_top);
4536 
4537 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
4538 		    vdev_is_concrete(vd)) {
4539 			list_insert_head(&spa->spa_config_dirty_list, vd);
4540 		}
4541 	}
4542 }
4543 
4544 void
4545 vdev_config_clean(vdev_t *vd)
4546 {
4547 	spa_t *spa = vd->vdev_spa;
4548 
4549 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4550 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4551 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
4552 
4553 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
4554 	list_remove(&spa->spa_config_dirty_list, vd);
4555 }
4556 
4557 /*
4558  * Mark a top-level vdev's state as dirty, so that the next pass of
4559  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
4560  * the state changes from larger config changes because they require
4561  * much less locking, and are often needed for administrative actions.
4562  */
4563 void
4564 vdev_state_dirty(vdev_t *vd)
4565 {
4566 	spa_t *spa = vd->vdev_spa;
4567 
4568 	ASSERT(spa_writeable(spa));
4569 	ASSERT(vd == vd->vdev_top);
4570 
4571 	/*
4572 	 * The state list is protected by the SCL_STATE lock.  The caller
4573 	 * must either hold SCL_STATE as writer, or must be the sync thread
4574 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
4575 	 * so this is sufficient to ensure mutual exclusion.
4576 	 */
4577 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4578 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4579 	    spa_config_held(spa, SCL_STATE, RW_READER)));
4580 
4581 	if (!list_link_active(&vd->vdev_state_dirty_node) &&
4582 	    vdev_is_concrete(vd))
4583 		list_insert_head(&spa->spa_state_dirty_list, vd);
4584 }
4585 
4586 void
4587 vdev_state_clean(vdev_t *vd)
4588 {
4589 	spa_t *spa = vd->vdev_spa;
4590 
4591 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4592 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4593 	    spa_config_held(spa, SCL_STATE, RW_READER)));
4594 
4595 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
4596 	list_remove(&spa->spa_state_dirty_list, vd);
4597 }
4598 
4599 /*
4600  * Propagate vdev state up from children to parent.
4601  */
4602 void
4603 vdev_propagate_state(vdev_t *vd)
4604 {
4605 	spa_t *spa = vd->vdev_spa;
4606 	vdev_t *rvd = spa->spa_root_vdev;
4607 	int degraded = 0, faulted = 0;
4608 	int corrupted = 0;
4609 	vdev_t *child;
4610 
4611 	if (vd->vdev_children > 0) {
4612 		for (int c = 0; c < vd->vdev_children; c++) {
4613 			child = vd->vdev_child[c];
4614 
4615 			/*
4616 			 * Don't factor holes or indirect vdevs into the
4617 			 * decision.
4618 			 */
4619 			if (!vdev_is_concrete(child))
4620 				continue;
4621 
4622 			if (!vdev_readable(child) ||
4623 			    (!vdev_writeable(child) && spa_writeable(spa))) {
4624 				/*
4625 				 * Root special: if there is a top-level log
4626 				 * device, treat the root vdev as if it were
4627 				 * degraded.
4628 				 */
4629 				if (child->vdev_islog && vd == rvd)
4630 					degraded++;
4631 				else
4632 					faulted++;
4633 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
4634 				degraded++;
4635 			}
4636 
4637 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
4638 				corrupted++;
4639 		}
4640 
4641 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
4642 
4643 		/*
4644 		 * Root special: if there is a top-level vdev that cannot be
4645 		 * opened due to corrupted metadata, then propagate the root
4646 		 * vdev's aux state as 'corrupt' rather than 'insufficient
4647 		 * replicas'.
4648 		 */
4649 		if (corrupted && vd == rvd &&
4650 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
4651 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
4652 			    VDEV_AUX_CORRUPT_DATA);
4653 	}
4654 
4655 	if (vd->vdev_parent)
4656 		vdev_propagate_state(vd->vdev_parent);
4657 }
4658 
4659 /*
4660  * Set a vdev's state.  If this is during an open, we don't update the parent
4661  * state, because we're in the process of opening children depth-first.
4662  * Otherwise, we propagate the change to the parent.
4663  *
4664  * If this routine places a device in a faulted state, an appropriate ereport is
4665  * generated.
4666  */
4667 void
4668 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
4669 {
4670 	uint64_t save_state;
4671 	spa_t *spa = vd->vdev_spa;
4672 
4673 	if (state == vd->vdev_state) {
4674 		/*
4675 		 * Since vdev_offline() code path is already in an offline
4676 		 * state we can miss a statechange event to OFFLINE. Check
4677 		 * the previous state to catch this condition.
4678 		 */
4679 		if (vd->vdev_ops->vdev_op_leaf &&
4680 		    (state == VDEV_STATE_OFFLINE) &&
4681 		    (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
4682 			/* post an offline state change */
4683 			zfs_post_state_change(spa, vd, vd->vdev_prevstate);
4684 		}
4685 		vd->vdev_stat.vs_aux = aux;
4686 		return;
4687 	}
4688 
4689 	save_state = vd->vdev_state;
4690 
4691 	vd->vdev_state = state;
4692 	vd->vdev_stat.vs_aux = aux;
4693 
4694 	/*
4695 	 * If we are setting the vdev state to anything but an open state, then
4696 	 * always close the underlying device unless the device has requested
4697 	 * a delayed close (i.e. we're about to remove or fault the device).
4698 	 * Otherwise, we keep accessible but invalid devices open forever.
4699 	 * We don't call vdev_close() itself, because that implies some extra
4700 	 * checks (offline, etc) that we don't want here.  This is limited to
4701 	 * leaf devices, because otherwise closing the device will affect other
4702 	 * children.
4703 	 */
4704 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
4705 	    vd->vdev_ops->vdev_op_leaf)
4706 		vd->vdev_ops->vdev_op_close(vd);
4707 
4708 	if (vd->vdev_removed &&
4709 	    state == VDEV_STATE_CANT_OPEN &&
4710 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
4711 		/*
4712 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
4713 		 * device was previously marked removed and someone attempted to
4714 		 * reopen it.  If this failed due to a nonexistent device, then
4715 		 * keep the device in the REMOVED state.  We also let this be if
4716 		 * it is one of our special test online cases, which is only
4717 		 * attempting to online the device and shouldn't generate an FMA
4718 		 * fault.
4719 		 */
4720 		vd->vdev_state = VDEV_STATE_REMOVED;
4721 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
4722 	} else if (state == VDEV_STATE_REMOVED) {
4723 		vd->vdev_removed = B_TRUE;
4724 	} else if (state == VDEV_STATE_CANT_OPEN) {
4725 		/*
4726 		 * If we fail to open a vdev during an import or recovery, we
4727 		 * mark it as "not available", which signifies that it was
4728 		 * never there to begin with.  Failure to open such a device
4729 		 * is not considered an error.
4730 		 */
4731 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
4732 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
4733 		    vd->vdev_ops->vdev_op_leaf)
4734 			vd->vdev_not_present = 1;
4735 
4736 		/*
4737 		 * Post the appropriate ereport.  If the 'prevstate' field is
4738 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
4739 		 * that this is part of a vdev_reopen().  In this case, we don't
4740 		 * want to post the ereport if the device was already in the
4741 		 * CANT_OPEN state beforehand.
4742 		 *
4743 		 * If the 'checkremove' flag is set, then this is an attempt to
4744 		 * online the device in response to an insertion event.  If we
4745 		 * hit this case, then we have detected an insertion event for a
4746 		 * faulted or offline device that wasn't in the removed state.
4747 		 * In this scenario, we don't post an ereport because we are
4748 		 * about to replace the device, or attempt an online with
4749 		 * vdev_forcefault, which will generate the fault for us.
4750 		 */
4751 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
4752 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
4753 		    vd != spa->spa_root_vdev) {
4754 			const char *class;
4755 
4756 			switch (aux) {
4757 			case VDEV_AUX_OPEN_FAILED:
4758 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
4759 				break;
4760 			case VDEV_AUX_CORRUPT_DATA:
4761 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
4762 				break;
4763 			case VDEV_AUX_NO_REPLICAS:
4764 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
4765 				break;
4766 			case VDEV_AUX_BAD_GUID_SUM:
4767 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
4768 				break;
4769 			case VDEV_AUX_TOO_SMALL:
4770 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
4771 				break;
4772 			case VDEV_AUX_BAD_LABEL:
4773 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
4774 				break;
4775 			case VDEV_AUX_BAD_ASHIFT:
4776 				class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
4777 				break;
4778 			default:
4779 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
4780 			}
4781 
4782 			(void) zfs_ereport_post(class, spa, vd, NULL, NULL,
4783 			    save_state);
4784 		}
4785 
4786 		/* Erase any notion of persistent removed state */
4787 		vd->vdev_removed = B_FALSE;
4788 	} else {
4789 		vd->vdev_removed = B_FALSE;
4790 	}
4791 
4792 	/*
4793 	 * Notify ZED of any significant state-change on a leaf vdev.
4794 	 *
4795 	 */
4796 	if (vd->vdev_ops->vdev_op_leaf) {
4797 		/* preserve original state from a vdev_reopen() */
4798 		if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
4799 		    (vd->vdev_prevstate != vd->vdev_state) &&
4800 		    (save_state <= VDEV_STATE_CLOSED))
4801 			save_state = vd->vdev_prevstate;
4802 
4803 		/* filter out state change due to initial vdev_open */
4804 		if (save_state > VDEV_STATE_CLOSED)
4805 			zfs_post_state_change(spa, vd, save_state);
4806 	}
4807 
4808 	if (!isopen && vd->vdev_parent)
4809 		vdev_propagate_state(vd->vdev_parent);
4810 }
4811 
4812 boolean_t
4813 vdev_children_are_offline(vdev_t *vd)
4814 {
4815 	ASSERT(!vd->vdev_ops->vdev_op_leaf);
4816 
4817 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
4818 		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
4819 			return (B_FALSE);
4820 	}
4821 
4822 	return (B_TRUE);
4823 }
4824 
4825 /*
4826  * Check the vdev configuration to ensure that it's capable of supporting
4827  * a root pool. We do not support partial configuration.
4828  */
4829 boolean_t
4830 vdev_is_bootable(vdev_t *vd)
4831 {
4832 	if (!vd->vdev_ops->vdev_op_leaf) {
4833 		const char *vdev_type = vd->vdev_ops->vdev_op_type;
4834 
4835 		if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
4836 		    strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
4837 			return (B_FALSE);
4838 		}
4839 	}
4840 
4841 	for (int c = 0; c < vd->vdev_children; c++) {
4842 		if (!vdev_is_bootable(vd->vdev_child[c]))
4843 			return (B_FALSE);
4844 	}
4845 	return (B_TRUE);
4846 }
4847 
4848 boolean_t
4849 vdev_is_concrete(vdev_t *vd)
4850 {
4851 	vdev_ops_t *ops = vd->vdev_ops;
4852 	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
4853 	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
4854 		return (B_FALSE);
4855 	} else {
4856 		return (B_TRUE);
4857 	}
4858 }
4859 
4860 /*
4861  * Determine if a log device has valid content.  If the vdev was
4862  * removed or faulted in the MOS config then we know that
4863  * the content on the log device has already been written to the pool.
4864  */
4865 boolean_t
4866 vdev_log_state_valid(vdev_t *vd)
4867 {
4868 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
4869 	    !vd->vdev_removed)
4870 		return (B_TRUE);
4871 
4872 	for (int c = 0; c < vd->vdev_children; c++)
4873 		if (vdev_log_state_valid(vd->vdev_child[c]))
4874 			return (B_TRUE);
4875 
4876 	return (B_FALSE);
4877 }
4878 
4879 /*
4880  * Expand a vdev if possible.
4881  */
4882 void
4883 vdev_expand(vdev_t *vd, uint64_t txg)
4884 {
4885 	ASSERT(vd->vdev_top == vd);
4886 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4887 	ASSERT(vdev_is_concrete(vd));
4888 
4889 	vdev_set_deflate_ratio(vd);
4890 
4891 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
4892 	    vdev_is_concrete(vd)) {
4893 		vdev_metaslab_group_create(vd);
4894 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
4895 		vdev_config_dirty(vd);
4896 	}
4897 }
4898 
4899 /*
4900  * Split a vdev.
4901  */
4902 void
4903 vdev_split(vdev_t *vd)
4904 {
4905 	vdev_t *cvd, *pvd = vd->vdev_parent;
4906 
4907 	vdev_remove_child(pvd, vd);
4908 	vdev_compact_children(pvd);
4909 
4910 	cvd = pvd->vdev_child[0];
4911 	if (pvd->vdev_children == 1) {
4912 		vdev_remove_parent(cvd);
4913 		cvd->vdev_splitting = B_TRUE;
4914 	}
4915 	vdev_propagate_state(cvd);
4916 }
4917 
4918 void
4919 vdev_deadman(vdev_t *vd, char *tag)
4920 {
4921 	for (int c = 0; c < vd->vdev_children; c++) {
4922 		vdev_t *cvd = vd->vdev_child[c];
4923 
4924 		vdev_deadman(cvd, tag);
4925 	}
4926 
4927 	if (vd->vdev_ops->vdev_op_leaf) {
4928 		vdev_queue_t *vq = &vd->vdev_queue;
4929 
4930 		mutex_enter(&vq->vq_lock);
4931 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
4932 			spa_t *spa = vd->vdev_spa;
4933 			zio_t *fio;
4934 			uint64_t delta;
4935 
4936 			zfs_dbgmsg("slow vdev: %s has %d active IOs",
4937 			    vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
4938 
4939 			/*
4940 			 * Look at the head of all the pending queues,
4941 			 * if any I/O has been outstanding for longer than
4942 			 * the spa_deadman_synctime invoke the deadman logic.
4943 			 */
4944 			fio = avl_first(&vq->vq_active_tree);
4945 			delta = gethrtime() - fio->io_timestamp;
4946 			if (delta > spa_deadman_synctime(spa))
4947 				zio_deadman(fio, tag);
4948 		}
4949 		mutex_exit(&vq->vq_lock);
4950 	}
4951 }
4952 
4953 void
4954 vdev_defer_resilver(vdev_t *vd)
4955 {
4956 	ASSERT(vd->vdev_ops->vdev_op_leaf);
4957 
4958 	vd->vdev_resilver_deferred = B_TRUE;
4959 	vd->vdev_spa->spa_resilver_deferred = B_TRUE;
4960 }
4961 
4962 /*
4963  * Clears the resilver deferred flag on all leaf devs under vd. Returns
4964  * B_TRUE if we have devices that need to be resilvered and are available to
4965  * accept resilver I/Os.
4966  */
4967 boolean_t
4968 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
4969 {
4970 	boolean_t resilver_needed = B_FALSE;
4971 	spa_t *spa = vd->vdev_spa;
4972 
4973 	for (int c = 0; c < vd->vdev_children; c++) {
4974 		vdev_t *cvd = vd->vdev_child[c];
4975 		resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
4976 	}
4977 
4978 	if (vd == spa->spa_root_vdev &&
4979 	    spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
4980 		spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
4981 		vdev_config_dirty(vd);
4982 		spa->spa_resilver_deferred = B_FALSE;
4983 		return (resilver_needed);
4984 	}
4985 
4986 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
4987 	    !vd->vdev_ops->vdev_op_leaf)
4988 		return (resilver_needed);
4989 
4990 	vd->vdev_resilver_deferred = B_FALSE;
4991 
4992 	return (!vdev_is_dead(vd) && !vd->vdev_offline &&
4993 	    vdev_resilver_needed(vd, NULL, NULL));
4994 }
4995 
4996 /*
4997  * Translate a logical range to the physical range for the specified vdev_t.
4998  * This function is initially called with a leaf vdev and will walk each
4999  * parent vdev until it reaches a top-level vdev. Once the top-level is
5000  * reached the physical range is initialized and the recursive function
5001  * begins to unwind. As it unwinds it calls the parent's vdev specific
5002  * translation function to do the real conversion.
5003  */
5004 void
5005 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
5006     range_seg64_t *physical_rs)
5007 {
5008 	/*
5009 	 * Walk up the vdev tree
5010 	 */
5011 	if (vd != vd->vdev_top) {
5012 		vdev_xlate(vd->vdev_parent, logical_rs, physical_rs);
5013 	} else {
5014 		/*
5015 		 * We've reached the top-level vdev, initialize the
5016 		 * physical range to the logical range and start to
5017 		 * unwind.
5018 		 */
5019 		physical_rs->rs_start = logical_rs->rs_start;
5020 		physical_rs->rs_end = logical_rs->rs_end;
5021 		return;
5022 	}
5023 
5024 	vdev_t *pvd = vd->vdev_parent;
5025 	ASSERT3P(pvd, !=, NULL);
5026 	ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5027 
5028 	/*
5029 	 * As this recursive function unwinds, translate the logical
5030 	 * range into its physical components by calling the
5031 	 * vdev specific translate function.
5032 	 */
5033 	range_seg64_t intermediate = { 0 };
5034 	pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate);
5035 
5036 	physical_rs->rs_start = intermediate.rs_start;
5037 	physical_rs->rs_end = intermediate.rs_end;
5038 }
5039 
5040 /*
5041  * Look at the vdev tree and determine whether any devices are currently being
5042  * replaced.
5043  */
5044 boolean_t
5045 vdev_replace_in_progress(vdev_t *vdev)
5046 {
5047 	ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5048 
5049 	if (vdev->vdev_ops == &vdev_replacing_ops)
5050 		return (B_TRUE);
5051 
5052 	/*
5053 	 * A 'spare' vdev indicates that we have a replace in progress, unless
5054 	 * it has exactly two children, and the second, the hot spare, has
5055 	 * finished being resilvered.
5056 	 */
5057 	if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5058 	    !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5059 		return (B_TRUE);
5060 
5061 	for (int i = 0; i < vdev->vdev_children; i++) {
5062 		if (vdev_replace_in_progress(vdev->vdev_child[i]))
5063 			return (B_TRUE);
5064 	}
5065 
5066 	return (B_FALSE);
5067 }
5068 
5069 EXPORT_SYMBOL(vdev_fault);
5070 EXPORT_SYMBOL(vdev_degrade);
5071 EXPORT_SYMBOL(vdev_online);
5072 EXPORT_SYMBOL(vdev_offline);
5073 EXPORT_SYMBOL(vdev_clear);
5074 
5075 /* BEGIN CSTYLED */
5076 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, INT, ZMOD_RW,
5077 	"Target number of metaslabs per top-level vdev");
5078 
5079 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, INT, ZMOD_RW,
5080 	"Default limit for metaslab size");
5081 
5082 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, INT, ZMOD_RW,
5083 	"Minimum number of metaslabs per top-level vdev");
5084 
5085 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, INT, ZMOD_RW,
5086 	"Practical upper limit of total metaslabs per top-level vdev");
5087 
5088 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
5089 	"Rate limit slow IO (delay) events to this many per second");
5090 
5091 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
5092 	"Rate limit checksum events to this many checksum errors per second "
5093 	"(do not set below zed threshold).");
5094 
5095 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
5096 	"Ignore errors during resilver/scrub");
5097 
5098 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
5099 	"Bypass vdev_validate()");
5100 
5101 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
5102 	"Disable cache flushes");
5103 
5104 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
5105 	param_set_min_auto_ashift, param_get_ulong, ZMOD_RW,
5106 	"Minimum ashift used when creating new top-level vdevs");
5107 
5108 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
5109 	param_set_max_auto_ashift, param_get_ulong, ZMOD_RW,
5110 	"Maximum ashift used when optimizing for logical -> physical sector "
5111 	"size on new top-level vdevs");
5112 /* END CSTYLED */
5113