1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 * Copyright 2017 Joyent, Inc. 29 * Copyright (c) 2017, Intel Corporation. 30 * Copyright (c) 2019, Datto Inc. All rights reserved. 31 */ 32 33 #include <sys/zfs_context.h> 34 #include <sys/fm/fs/zfs.h> 35 #include <sys/spa.h> 36 #include <sys/spa_impl.h> 37 #include <sys/bpobj.h> 38 #include <sys/dmu.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/dsl_dir.h> 41 #include <sys/vdev_impl.h> 42 #include <sys/vdev_rebuild.h> 43 #include <sys/uberblock_impl.h> 44 #include <sys/metaslab.h> 45 #include <sys/metaslab_impl.h> 46 #include <sys/space_map.h> 47 #include <sys/space_reftree.h> 48 #include <sys/zio.h> 49 #include <sys/zap.h> 50 #include <sys/fs/zfs.h> 51 #include <sys/arc.h> 52 #include <sys/zil.h> 53 #include <sys/dsl_scan.h> 54 #include <sys/abd.h> 55 #include <sys/vdev_initialize.h> 56 #include <sys/vdev_trim.h> 57 #include <sys/zvol.h> 58 #include <sys/zfs_ratelimit.h> 59 60 /* default target for number of metaslabs per top-level vdev */ 61 int zfs_vdev_default_ms_count = 200; 62 63 /* minimum number of metaslabs per top-level vdev */ 64 int zfs_vdev_min_ms_count = 16; 65 66 /* practical upper limit of total metaslabs per top-level vdev */ 67 int zfs_vdev_ms_count_limit = 1ULL << 17; 68 69 /* lower limit for metaslab size (512M) */ 70 int zfs_vdev_default_ms_shift = 29; 71 72 /* upper limit for metaslab size (16G) */ 73 int zfs_vdev_max_ms_shift = 34; 74 75 int vdev_validate_skip = B_FALSE; 76 77 /* 78 * Since the DTL space map of a vdev is not expected to have a lot of 79 * entries, we default its block size to 4K. 80 */ 81 int zfs_vdev_dtl_sm_blksz = (1 << 12); 82 83 /* 84 * Rate limit slow IO (delay) events to this many per second. 85 */ 86 unsigned int zfs_slow_io_events_per_second = 20; 87 88 /* 89 * Rate limit checksum events after this many checksum errors per second. 90 */ 91 unsigned int zfs_checksum_events_per_second = 20; 92 93 /* 94 * Ignore errors during scrub/resilver. Allows to work around resilver 95 * upon import when there are pool errors. 96 */ 97 int zfs_scan_ignore_errors = 0; 98 99 /* 100 * vdev-wide space maps that have lots of entries written to them at 101 * the end of each transaction can benefit from a higher I/O bandwidth 102 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. 103 */ 104 int zfs_vdev_standard_sm_blksz = (1 << 17); 105 106 /* 107 * Tunable parameter for debugging or performance analysis. Setting this 108 * will cause pool corruption on power loss if a volatile out-of-order 109 * write cache is enabled. 110 */ 111 int zfs_nocacheflush = 0; 112 113 uint64_t zfs_vdev_max_auto_ashift = ASHIFT_MAX; 114 uint64_t zfs_vdev_min_auto_ashift = ASHIFT_MIN; 115 116 /*PRINTFLIKE2*/ 117 void 118 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) 119 { 120 va_list adx; 121 char buf[256]; 122 123 va_start(adx, fmt); 124 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 125 va_end(adx); 126 127 if (vd->vdev_path != NULL) { 128 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, 129 vd->vdev_path, buf); 130 } else { 131 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", 132 vd->vdev_ops->vdev_op_type, 133 (u_longlong_t)vd->vdev_id, 134 (u_longlong_t)vd->vdev_guid, buf); 135 } 136 } 137 138 void 139 vdev_dbgmsg_print_tree(vdev_t *vd, int indent) 140 { 141 char state[20]; 142 143 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { 144 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id, 145 vd->vdev_ops->vdev_op_type); 146 return; 147 } 148 149 switch (vd->vdev_state) { 150 case VDEV_STATE_UNKNOWN: 151 (void) snprintf(state, sizeof (state), "unknown"); 152 break; 153 case VDEV_STATE_CLOSED: 154 (void) snprintf(state, sizeof (state), "closed"); 155 break; 156 case VDEV_STATE_OFFLINE: 157 (void) snprintf(state, sizeof (state), "offline"); 158 break; 159 case VDEV_STATE_REMOVED: 160 (void) snprintf(state, sizeof (state), "removed"); 161 break; 162 case VDEV_STATE_CANT_OPEN: 163 (void) snprintf(state, sizeof (state), "can't open"); 164 break; 165 case VDEV_STATE_FAULTED: 166 (void) snprintf(state, sizeof (state), "faulted"); 167 break; 168 case VDEV_STATE_DEGRADED: 169 (void) snprintf(state, sizeof (state), "degraded"); 170 break; 171 case VDEV_STATE_HEALTHY: 172 (void) snprintf(state, sizeof (state), "healthy"); 173 break; 174 default: 175 (void) snprintf(state, sizeof (state), "<state %u>", 176 (uint_t)vd->vdev_state); 177 } 178 179 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, 180 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, 181 vd->vdev_islog ? " (log)" : "", 182 (u_longlong_t)vd->vdev_guid, 183 vd->vdev_path ? vd->vdev_path : "N/A", state); 184 185 for (uint64_t i = 0; i < vd->vdev_children; i++) 186 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); 187 } 188 189 /* 190 * Virtual device management. 191 */ 192 193 static vdev_ops_t *vdev_ops_table[] = { 194 &vdev_root_ops, 195 &vdev_raidz_ops, 196 &vdev_mirror_ops, 197 &vdev_replacing_ops, 198 &vdev_spare_ops, 199 &vdev_disk_ops, 200 &vdev_file_ops, 201 &vdev_missing_ops, 202 &vdev_hole_ops, 203 &vdev_indirect_ops, 204 NULL 205 }; 206 207 /* 208 * Given a vdev type, return the appropriate ops vector. 209 */ 210 static vdev_ops_t * 211 vdev_getops(const char *type) 212 { 213 vdev_ops_t *ops, **opspp; 214 215 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 216 if (strcmp(ops->vdev_op_type, type) == 0) 217 break; 218 219 return (ops); 220 } 221 222 /* ARGSUSED */ 223 void 224 vdev_default_xlate(vdev_t *vd, const range_seg64_t *in, range_seg64_t *res) 225 { 226 res->rs_start = in->rs_start; 227 res->rs_end = in->rs_end; 228 } 229 230 /* 231 * Derive the enumerated allocation bias from string input. 232 * String origin is either the per-vdev zap or zpool(1M). 233 */ 234 static vdev_alloc_bias_t 235 vdev_derive_alloc_bias(const char *bias) 236 { 237 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 238 239 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0) 240 alloc_bias = VDEV_BIAS_LOG; 241 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) 242 alloc_bias = VDEV_BIAS_SPECIAL; 243 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) 244 alloc_bias = VDEV_BIAS_DEDUP; 245 246 return (alloc_bias); 247 } 248 249 /* 250 * Default asize function: return the MAX of psize with the asize of 251 * all children. This is what's used by anything other than RAID-Z. 252 */ 253 uint64_t 254 vdev_default_asize(vdev_t *vd, uint64_t psize) 255 { 256 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 257 uint64_t csize; 258 259 for (int c = 0; c < vd->vdev_children; c++) { 260 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 261 asize = MAX(asize, csize); 262 } 263 264 return (asize); 265 } 266 267 /* 268 * Get the minimum allocatable size. We define the allocatable size as 269 * the vdev's asize rounded to the nearest metaslab. This allows us to 270 * replace or attach devices which don't have the same physical size but 271 * can still satisfy the same number of allocations. 272 */ 273 uint64_t 274 vdev_get_min_asize(vdev_t *vd) 275 { 276 vdev_t *pvd = vd->vdev_parent; 277 278 /* 279 * If our parent is NULL (inactive spare or cache) or is the root, 280 * just return our own asize. 281 */ 282 if (pvd == NULL) 283 return (vd->vdev_asize); 284 285 /* 286 * The top-level vdev just returns the allocatable size rounded 287 * to the nearest metaslab. 288 */ 289 if (vd == vd->vdev_top) 290 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 291 292 /* 293 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 294 * so each child must provide at least 1/Nth of its asize. 295 */ 296 if (pvd->vdev_ops == &vdev_raidz_ops) 297 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) / 298 pvd->vdev_children); 299 300 return (pvd->vdev_min_asize); 301 } 302 303 void 304 vdev_set_min_asize(vdev_t *vd) 305 { 306 vd->vdev_min_asize = vdev_get_min_asize(vd); 307 308 for (int c = 0; c < vd->vdev_children; c++) 309 vdev_set_min_asize(vd->vdev_child[c]); 310 } 311 312 vdev_t * 313 vdev_lookup_top(spa_t *spa, uint64_t vdev) 314 { 315 vdev_t *rvd = spa->spa_root_vdev; 316 317 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 318 319 if (vdev < rvd->vdev_children) { 320 ASSERT(rvd->vdev_child[vdev] != NULL); 321 return (rvd->vdev_child[vdev]); 322 } 323 324 return (NULL); 325 } 326 327 vdev_t * 328 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 329 { 330 vdev_t *mvd; 331 332 if (vd->vdev_guid == guid) 333 return (vd); 334 335 for (int c = 0; c < vd->vdev_children; c++) 336 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 337 NULL) 338 return (mvd); 339 340 return (NULL); 341 } 342 343 static int 344 vdev_count_leaves_impl(vdev_t *vd) 345 { 346 int n = 0; 347 348 if (vd->vdev_ops->vdev_op_leaf) 349 return (1); 350 351 for (int c = 0; c < vd->vdev_children; c++) 352 n += vdev_count_leaves_impl(vd->vdev_child[c]); 353 354 return (n); 355 } 356 357 int 358 vdev_count_leaves(spa_t *spa) 359 { 360 int rc; 361 362 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 363 rc = vdev_count_leaves_impl(spa->spa_root_vdev); 364 spa_config_exit(spa, SCL_VDEV, FTAG); 365 366 return (rc); 367 } 368 369 void 370 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 371 { 372 size_t oldsize, newsize; 373 uint64_t id = cvd->vdev_id; 374 vdev_t **newchild; 375 376 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 377 ASSERT(cvd->vdev_parent == NULL); 378 379 cvd->vdev_parent = pvd; 380 381 if (pvd == NULL) 382 return; 383 384 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 385 386 oldsize = pvd->vdev_children * sizeof (vdev_t *); 387 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 388 newsize = pvd->vdev_children * sizeof (vdev_t *); 389 390 newchild = kmem_alloc(newsize, KM_SLEEP); 391 if (pvd->vdev_child != NULL) { 392 bcopy(pvd->vdev_child, newchild, oldsize); 393 kmem_free(pvd->vdev_child, oldsize); 394 } 395 396 pvd->vdev_child = newchild; 397 pvd->vdev_child[id] = cvd; 398 399 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 400 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 401 402 /* 403 * Walk up all ancestors to update guid sum. 404 */ 405 for (; pvd != NULL; pvd = pvd->vdev_parent) 406 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 407 408 if (cvd->vdev_ops->vdev_op_leaf) { 409 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd); 410 cvd->vdev_spa->spa_leaf_list_gen++; 411 } 412 } 413 414 void 415 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 416 { 417 int c; 418 uint_t id = cvd->vdev_id; 419 420 ASSERT(cvd->vdev_parent == pvd); 421 422 if (pvd == NULL) 423 return; 424 425 ASSERT(id < pvd->vdev_children); 426 ASSERT(pvd->vdev_child[id] == cvd); 427 428 pvd->vdev_child[id] = NULL; 429 cvd->vdev_parent = NULL; 430 431 for (c = 0; c < pvd->vdev_children; c++) 432 if (pvd->vdev_child[c]) 433 break; 434 435 if (c == pvd->vdev_children) { 436 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 437 pvd->vdev_child = NULL; 438 pvd->vdev_children = 0; 439 } 440 441 if (cvd->vdev_ops->vdev_op_leaf) { 442 spa_t *spa = cvd->vdev_spa; 443 list_remove(&spa->spa_leaf_list, cvd); 444 spa->spa_leaf_list_gen++; 445 } 446 447 /* 448 * Walk up all ancestors to update guid sum. 449 */ 450 for (; pvd != NULL; pvd = pvd->vdev_parent) 451 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 452 } 453 454 /* 455 * Remove any holes in the child array. 456 */ 457 void 458 vdev_compact_children(vdev_t *pvd) 459 { 460 vdev_t **newchild, *cvd; 461 int oldc = pvd->vdev_children; 462 int newc; 463 464 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 465 466 if (oldc == 0) 467 return; 468 469 for (int c = newc = 0; c < oldc; c++) 470 if (pvd->vdev_child[c]) 471 newc++; 472 473 if (newc > 0) { 474 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP); 475 476 for (int c = newc = 0; c < oldc; c++) { 477 if ((cvd = pvd->vdev_child[c]) != NULL) { 478 newchild[newc] = cvd; 479 cvd->vdev_id = newc++; 480 } 481 } 482 } else { 483 newchild = NULL; 484 } 485 486 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 487 pvd->vdev_child = newchild; 488 pvd->vdev_children = newc; 489 } 490 491 /* 492 * Allocate and minimally initialize a vdev_t. 493 */ 494 vdev_t * 495 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 496 { 497 vdev_t *vd; 498 vdev_indirect_config_t *vic; 499 500 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 501 vic = &vd->vdev_indirect_config; 502 503 if (spa->spa_root_vdev == NULL) { 504 ASSERT(ops == &vdev_root_ops); 505 spa->spa_root_vdev = vd; 506 spa->spa_load_guid = spa_generate_guid(NULL); 507 } 508 509 if (guid == 0 && ops != &vdev_hole_ops) { 510 if (spa->spa_root_vdev == vd) { 511 /* 512 * The root vdev's guid will also be the pool guid, 513 * which must be unique among all pools. 514 */ 515 guid = spa_generate_guid(NULL); 516 } else { 517 /* 518 * Any other vdev's guid must be unique within the pool. 519 */ 520 guid = spa_generate_guid(spa); 521 } 522 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 523 } 524 525 vd->vdev_spa = spa; 526 vd->vdev_id = id; 527 vd->vdev_guid = guid; 528 vd->vdev_guid_sum = guid; 529 vd->vdev_ops = ops; 530 vd->vdev_state = VDEV_STATE_CLOSED; 531 vd->vdev_ishole = (ops == &vdev_hole_ops); 532 vic->vic_prev_indirect_vdev = UINT64_MAX; 533 534 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); 535 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); 536 vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL, 537 0, 0); 538 539 /* 540 * Initialize rate limit structs for events. We rate limit ZIO delay 541 * and checksum events so that we don't overwhelm ZED with thousands 542 * of events when a disk is acting up. 543 */ 544 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second, 545 1); 546 zfs_ratelimit_init(&vd->vdev_checksum_rl, 547 &zfs_checksum_events_per_second, 1); 548 549 list_link_init(&vd->vdev_config_dirty_node); 550 list_link_init(&vd->vdev_state_dirty_node); 551 list_link_init(&vd->vdev_initialize_node); 552 list_link_init(&vd->vdev_leaf_node); 553 list_link_init(&vd->vdev_trim_node); 554 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL); 555 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 556 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 557 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL); 558 559 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); 560 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); 561 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); 562 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); 563 564 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL); 565 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL); 566 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL); 567 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL); 568 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL); 569 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL); 570 571 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL); 572 mutex_init(&vd->vdev_rebuild_io_lock, NULL, MUTEX_DEFAULT, NULL); 573 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL); 574 cv_init(&vd->vdev_rebuild_io_cv, NULL, CV_DEFAULT, NULL); 575 576 for (int t = 0; t < DTL_TYPES; t++) { 577 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 578 0); 579 } 580 581 txg_list_create(&vd->vdev_ms_list, spa, 582 offsetof(struct metaslab, ms_txg_node)); 583 txg_list_create(&vd->vdev_dtl_list, spa, 584 offsetof(struct vdev, vdev_dtl_node)); 585 vd->vdev_stat.vs_timestamp = gethrtime(); 586 vdev_queue_init(vd); 587 vdev_cache_init(vd); 588 589 return (vd); 590 } 591 592 /* 593 * Allocate a new vdev. The 'alloctype' is used to control whether we are 594 * creating a new vdev or loading an existing one - the behavior is slightly 595 * different for each case. 596 */ 597 int 598 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 599 int alloctype) 600 { 601 vdev_ops_t *ops; 602 char *type; 603 uint64_t guid = 0, islog, nparity; 604 vdev_t *vd; 605 vdev_indirect_config_t *vic; 606 char *tmp = NULL; 607 int rc; 608 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 609 boolean_t top_level = (parent && !parent->vdev_parent); 610 611 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 612 613 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 614 return (SET_ERROR(EINVAL)); 615 616 if ((ops = vdev_getops(type)) == NULL) 617 return (SET_ERROR(EINVAL)); 618 619 /* 620 * If this is a load, get the vdev guid from the nvlist. 621 * Otherwise, vdev_alloc_common() will generate one for us. 622 */ 623 if (alloctype == VDEV_ALLOC_LOAD) { 624 uint64_t label_id; 625 626 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 627 label_id != id) 628 return (SET_ERROR(EINVAL)); 629 630 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 631 return (SET_ERROR(EINVAL)); 632 } else if (alloctype == VDEV_ALLOC_SPARE) { 633 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 634 return (SET_ERROR(EINVAL)); 635 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 636 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 637 return (SET_ERROR(EINVAL)); 638 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 639 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 640 return (SET_ERROR(EINVAL)); 641 } 642 643 /* 644 * The first allocated vdev must be of type 'root'. 645 */ 646 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 647 return (SET_ERROR(EINVAL)); 648 649 /* 650 * Determine whether we're a log vdev. 651 */ 652 islog = 0; 653 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 654 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 655 return (SET_ERROR(ENOTSUP)); 656 657 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 658 return (SET_ERROR(ENOTSUP)); 659 660 /* 661 * Set the nparity property for RAID-Z vdevs. 662 */ 663 nparity = -1ULL; 664 if (ops == &vdev_raidz_ops) { 665 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 666 &nparity) == 0) { 667 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 668 return (SET_ERROR(EINVAL)); 669 /* 670 * Previous versions could only support 1 or 2 parity 671 * device. 672 */ 673 if (nparity > 1 && 674 spa_version(spa) < SPA_VERSION_RAIDZ2) 675 return (SET_ERROR(ENOTSUP)); 676 if (nparity > 2 && 677 spa_version(spa) < SPA_VERSION_RAIDZ3) 678 return (SET_ERROR(ENOTSUP)); 679 } else { 680 /* 681 * We require the parity to be specified for SPAs that 682 * support multiple parity levels. 683 */ 684 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 685 return (SET_ERROR(EINVAL)); 686 /* 687 * Otherwise, we default to 1 parity device for RAID-Z. 688 */ 689 nparity = 1; 690 } 691 } else { 692 nparity = 0; 693 } 694 ASSERT(nparity != -1ULL); 695 696 /* 697 * If creating a top-level vdev, check for allocation classes input 698 */ 699 if (top_level && alloctype == VDEV_ALLOC_ADD) { 700 char *bias; 701 702 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 703 &bias) == 0) { 704 alloc_bias = vdev_derive_alloc_bias(bias); 705 706 /* spa_vdev_add() expects feature to be enabled */ 707 if (spa->spa_load_state != SPA_LOAD_CREATE && 708 !spa_feature_is_enabled(spa, 709 SPA_FEATURE_ALLOCATION_CLASSES)) { 710 return (SET_ERROR(ENOTSUP)); 711 } 712 } 713 } 714 715 vd = vdev_alloc_common(spa, id, guid, ops); 716 vic = &vd->vdev_indirect_config; 717 718 vd->vdev_islog = islog; 719 vd->vdev_nparity = nparity; 720 if (top_level && alloc_bias != VDEV_BIAS_NONE) 721 vd->vdev_alloc_bias = alloc_bias; 722 723 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 724 vd->vdev_path = spa_strdup(vd->vdev_path); 725 726 /* 727 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a 728 * fault on a vdev and want it to persist across imports (like with 729 * zpool offline -f). 730 */ 731 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp); 732 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) { 733 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 734 vd->vdev_faulted = 1; 735 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 736 } 737 738 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 739 vd->vdev_devid = spa_strdup(vd->vdev_devid); 740 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 741 &vd->vdev_physpath) == 0) 742 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 743 744 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 745 &vd->vdev_enc_sysfs_path) == 0) 746 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path); 747 748 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 749 vd->vdev_fru = spa_strdup(vd->vdev_fru); 750 751 /* 752 * Set the whole_disk property. If it's not specified, leave the value 753 * as -1. 754 */ 755 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 756 &vd->vdev_wholedisk) != 0) 757 vd->vdev_wholedisk = -1ULL; 758 759 ASSERT0(vic->vic_mapping_object); 760 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 761 &vic->vic_mapping_object); 762 ASSERT0(vic->vic_births_object); 763 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 764 &vic->vic_births_object); 765 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); 766 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 767 &vic->vic_prev_indirect_vdev); 768 769 /* 770 * Look for the 'not present' flag. This will only be set if the device 771 * was not present at the time of import. 772 */ 773 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 774 &vd->vdev_not_present); 775 776 /* 777 * Get the alignment requirement. 778 */ 779 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 780 781 /* 782 * Retrieve the vdev creation time. 783 */ 784 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 785 &vd->vdev_crtxg); 786 787 /* 788 * If we're a top-level vdev, try to load the allocation parameters. 789 */ 790 if (top_level && 791 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 792 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 793 &vd->vdev_ms_array); 794 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 795 &vd->vdev_ms_shift); 796 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 797 &vd->vdev_asize); 798 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 799 &vd->vdev_removing); 800 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 801 &vd->vdev_top_zap); 802 } else { 803 ASSERT0(vd->vdev_top_zap); 804 } 805 806 if (top_level && alloctype != VDEV_ALLOC_ATTACH) { 807 ASSERT(alloctype == VDEV_ALLOC_LOAD || 808 alloctype == VDEV_ALLOC_ADD || 809 alloctype == VDEV_ALLOC_SPLIT || 810 alloctype == VDEV_ALLOC_ROOTPOOL); 811 /* Note: metaslab_group_create() is now deferred */ 812 } 813 814 if (vd->vdev_ops->vdev_op_leaf && 815 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 816 (void) nvlist_lookup_uint64(nv, 817 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 818 } else { 819 ASSERT0(vd->vdev_leaf_zap); 820 } 821 822 /* 823 * If we're a leaf vdev, try to load the DTL object and other state. 824 */ 825 826 if (vd->vdev_ops->vdev_op_leaf && 827 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 828 alloctype == VDEV_ALLOC_ROOTPOOL)) { 829 if (alloctype == VDEV_ALLOC_LOAD) { 830 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 831 &vd->vdev_dtl_object); 832 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 833 &vd->vdev_unspare); 834 } 835 836 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 837 uint64_t spare = 0; 838 839 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 840 &spare) == 0 && spare) 841 spa_spare_add(vd); 842 } 843 844 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 845 &vd->vdev_offline); 846 847 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 848 &vd->vdev_resilver_txg); 849 850 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 851 &vd->vdev_rebuild_txg); 852 853 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER)) 854 vdev_defer_resilver(vd); 855 856 /* 857 * In general, when importing a pool we want to ignore the 858 * persistent fault state, as the diagnosis made on another 859 * system may not be valid in the current context. The only 860 * exception is if we forced a vdev to a persistently faulted 861 * state with 'zpool offline -f'. The persistent fault will 862 * remain across imports until cleared. 863 * 864 * Local vdevs will remain in the faulted state. 865 */ 866 if (spa_load_state(spa) == SPA_LOAD_OPEN || 867 spa_load_state(spa) == SPA_LOAD_IMPORT) { 868 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 869 &vd->vdev_faulted); 870 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 871 &vd->vdev_degraded); 872 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 873 &vd->vdev_removed); 874 875 if (vd->vdev_faulted || vd->vdev_degraded) { 876 char *aux; 877 878 vd->vdev_label_aux = 879 VDEV_AUX_ERR_EXCEEDED; 880 if (nvlist_lookup_string(nv, 881 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 882 strcmp(aux, "external") == 0) 883 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 884 else 885 vd->vdev_faulted = 0ULL; 886 } 887 } 888 } 889 890 /* 891 * Add ourselves to the parent's list of children. 892 */ 893 vdev_add_child(parent, vd); 894 895 *vdp = vd; 896 897 return (0); 898 } 899 900 void 901 vdev_free(vdev_t *vd) 902 { 903 spa_t *spa = vd->vdev_spa; 904 905 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 906 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 907 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); 908 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL); 909 910 /* 911 * Scan queues are normally destroyed at the end of a scan. If the 912 * queue exists here, that implies the vdev is being removed while 913 * the scan is still running. 914 */ 915 if (vd->vdev_scan_io_queue != NULL) { 916 mutex_enter(&vd->vdev_scan_io_queue_lock); 917 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue); 918 vd->vdev_scan_io_queue = NULL; 919 mutex_exit(&vd->vdev_scan_io_queue_lock); 920 } 921 922 /* 923 * vdev_free() implies closing the vdev first. This is simpler than 924 * trying to ensure complicated semantics for all callers. 925 */ 926 vdev_close(vd); 927 928 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 929 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 930 931 /* 932 * Free all children. 933 */ 934 for (int c = 0; c < vd->vdev_children; c++) 935 vdev_free(vd->vdev_child[c]); 936 937 ASSERT(vd->vdev_child == NULL); 938 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 939 940 /* 941 * Discard allocation state. 942 */ 943 if (vd->vdev_mg != NULL) { 944 vdev_metaslab_fini(vd); 945 metaslab_group_destroy(vd->vdev_mg); 946 vd->vdev_mg = NULL; 947 } 948 949 ASSERT0(vd->vdev_stat.vs_space); 950 ASSERT0(vd->vdev_stat.vs_dspace); 951 ASSERT0(vd->vdev_stat.vs_alloc); 952 953 /* 954 * Remove this vdev from its parent's child list. 955 */ 956 vdev_remove_child(vd->vdev_parent, vd); 957 958 ASSERT(vd->vdev_parent == NULL); 959 ASSERT(!list_link_active(&vd->vdev_leaf_node)); 960 961 /* 962 * Clean up vdev structure. 963 */ 964 vdev_queue_fini(vd); 965 vdev_cache_fini(vd); 966 967 if (vd->vdev_path) 968 spa_strfree(vd->vdev_path); 969 if (vd->vdev_devid) 970 spa_strfree(vd->vdev_devid); 971 if (vd->vdev_physpath) 972 spa_strfree(vd->vdev_physpath); 973 974 if (vd->vdev_enc_sysfs_path) 975 spa_strfree(vd->vdev_enc_sysfs_path); 976 977 if (vd->vdev_fru) 978 spa_strfree(vd->vdev_fru); 979 980 if (vd->vdev_isspare) 981 spa_spare_remove(vd); 982 if (vd->vdev_isl2cache) 983 spa_l2cache_remove(vd); 984 985 txg_list_destroy(&vd->vdev_ms_list); 986 txg_list_destroy(&vd->vdev_dtl_list); 987 988 mutex_enter(&vd->vdev_dtl_lock); 989 space_map_close(vd->vdev_dtl_sm); 990 for (int t = 0; t < DTL_TYPES; t++) { 991 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 992 range_tree_destroy(vd->vdev_dtl[t]); 993 } 994 mutex_exit(&vd->vdev_dtl_lock); 995 996 EQUIV(vd->vdev_indirect_births != NULL, 997 vd->vdev_indirect_mapping != NULL); 998 if (vd->vdev_indirect_births != NULL) { 999 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 1000 vdev_indirect_births_close(vd->vdev_indirect_births); 1001 } 1002 1003 if (vd->vdev_obsolete_sm != NULL) { 1004 ASSERT(vd->vdev_removing || 1005 vd->vdev_ops == &vdev_indirect_ops); 1006 space_map_close(vd->vdev_obsolete_sm); 1007 vd->vdev_obsolete_sm = NULL; 1008 } 1009 range_tree_destroy(vd->vdev_obsolete_segments); 1010 rw_destroy(&vd->vdev_indirect_rwlock); 1011 mutex_destroy(&vd->vdev_obsolete_lock); 1012 1013 mutex_destroy(&vd->vdev_dtl_lock); 1014 mutex_destroy(&vd->vdev_stat_lock); 1015 mutex_destroy(&vd->vdev_probe_lock); 1016 mutex_destroy(&vd->vdev_scan_io_queue_lock); 1017 1018 mutex_destroy(&vd->vdev_initialize_lock); 1019 mutex_destroy(&vd->vdev_initialize_io_lock); 1020 cv_destroy(&vd->vdev_initialize_io_cv); 1021 cv_destroy(&vd->vdev_initialize_cv); 1022 1023 mutex_destroy(&vd->vdev_trim_lock); 1024 mutex_destroy(&vd->vdev_autotrim_lock); 1025 mutex_destroy(&vd->vdev_trim_io_lock); 1026 cv_destroy(&vd->vdev_trim_cv); 1027 cv_destroy(&vd->vdev_autotrim_cv); 1028 cv_destroy(&vd->vdev_trim_io_cv); 1029 1030 mutex_destroy(&vd->vdev_rebuild_lock); 1031 mutex_destroy(&vd->vdev_rebuild_io_lock); 1032 cv_destroy(&vd->vdev_rebuild_cv); 1033 cv_destroy(&vd->vdev_rebuild_io_cv); 1034 1035 zfs_ratelimit_fini(&vd->vdev_delay_rl); 1036 zfs_ratelimit_fini(&vd->vdev_checksum_rl); 1037 1038 if (vd == spa->spa_root_vdev) 1039 spa->spa_root_vdev = NULL; 1040 1041 kmem_free(vd, sizeof (vdev_t)); 1042 } 1043 1044 /* 1045 * Transfer top-level vdev state from svd to tvd. 1046 */ 1047 static void 1048 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 1049 { 1050 spa_t *spa = svd->vdev_spa; 1051 metaslab_t *msp; 1052 vdev_t *vd; 1053 int t; 1054 1055 ASSERT(tvd == tvd->vdev_top); 1056 1057 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite; 1058 tvd->vdev_ms_array = svd->vdev_ms_array; 1059 tvd->vdev_ms_shift = svd->vdev_ms_shift; 1060 tvd->vdev_ms_count = svd->vdev_ms_count; 1061 tvd->vdev_top_zap = svd->vdev_top_zap; 1062 1063 svd->vdev_ms_array = 0; 1064 svd->vdev_ms_shift = 0; 1065 svd->vdev_ms_count = 0; 1066 svd->vdev_top_zap = 0; 1067 1068 if (tvd->vdev_mg) 1069 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 1070 tvd->vdev_mg = svd->vdev_mg; 1071 tvd->vdev_ms = svd->vdev_ms; 1072 1073 svd->vdev_mg = NULL; 1074 svd->vdev_ms = NULL; 1075 1076 if (tvd->vdev_mg != NULL) 1077 tvd->vdev_mg->mg_vd = tvd; 1078 1079 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; 1080 svd->vdev_checkpoint_sm = NULL; 1081 1082 tvd->vdev_alloc_bias = svd->vdev_alloc_bias; 1083 svd->vdev_alloc_bias = VDEV_BIAS_NONE; 1084 1085 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 1086 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 1087 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 1088 1089 svd->vdev_stat.vs_alloc = 0; 1090 svd->vdev_stat.vs_space = 0; 1091 svd->vdev_stat.vs_dspace = 0; 1092 1093 /* 1094 * State which may be set on a top-level vdev that's in the 1095 * process of being removed. 1096 */ 1097 ASSERT0(tvd->vdev_indirect_config.vic_births_object); 1098 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); 1099 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); 1100 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL); 1101 ASSERT3P(tvd->vdev_indirect_births, ==, NULL); 1102 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL); 1103 ASSERT0(tvd->vdev_removing); 1104 ASSERT0(tvd->vdev_rebuilding); 1105 tvd->vdev_removing = svd->vdev_removing; 1106 tvd->vdev_rebuilding = svd->vdev_rebuilding; 1107 tvd->vdev_rebuild_config = svd->vdev_rebuild_config; 1108 tvd->vdev_indirect_config = svd->vdev_indirect_config; 1109 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; 1110 tvd->vdev_indirect_births = svd->vdev_indirect_births; 1111 range_tree_swap(&svd->vdev_obsolete_segments, 1112 &tvd->vdev_obsolete_segments); 1113 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; 1114 svd->vdev_indirect_config.vic_mapping_object = 0; 1115 svd->vdev_indirect_config.vic_births_object = 0; 1116 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; 1117 svd->vdev_indirect_mapping = NULL; 1118 svd->vdev_indirect_births = NULL; 1119 svd->vdev_obsolete_sm = NULL; 1120 svd->vdev_removing = 0; 1121 svd->vdev_rebuilding = 0; 1122 1123 for (t = 0; t < TXG_SIZE; t++) { 1124 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 1125 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 1126 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 1127 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 1128 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 1129 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 1130 } 1131 1132 if (list_link_active(&svd->vdev_config_dirty_node)) { 1133 vdev_config_clean(svd); 1134 vdev_config_dirty(tvd); 1135 } 1136 1137 if (list_link_active(&svd->vdev_state_dirty_node)) { 1138 vdev_state_clean(svd); 1139 vdev_state_dirty(tvd); 1140 } 1141 1142 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 1143 svd->vdev_deflate_ratio = 0; 1144 1145 tvd->vdev_islog = svd->vdev_islog; 1146 svd->vdev_islog = 0; 1147 1148 dsl_scan_io_queue_vdev_xfer(svd, tvd); 1149 } 1150 1151 static void 1152 vdev_top_update(vdev_t *tvd, vdev_t *vd) 1153 { 1154 if (vd == NULL) 1155 return; 1156 1157 vd->vdev_top = tvd; 1158 1159 for (int c = 0; c < vd->vdev_children; c++) 1160 vdev_top_update(tvd, vd->vdev_child[c]); 1161 } 1162 1163 /* 1164 * Add a mirror/replacing vdev above an existing vdev. 1165 */ 1166 vdev_t * 1167 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 1168 { 1169 spa_t *spa = cvd->vdev_spa; 1170 vdev_t *pvd = cvd->vdev_parent; 1171 vdev_t *mvd; 1172 1173 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1174 1175 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 1176 1177 mvd->vdev_asize = cvd->vdev_asize; 1178 mvd->vdev_min_asize = cvd->vdev_min_asize; 1179 mvd->vdev_max_asize = cvd->vdev_max_asize; 1180 mvd->vdev_psize = cvd->vdev_psize; 1181 mvd->vdev_ashift = cvd->vdev_ashift; 1182 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift; 1183 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift; 1184 mvd->vdev_state = cvd->vdev_state; 1185 mvd->vdev_crtxg = cvd->vdev_crtxg; 1186 1187 vdev_remove_child(pvd, cvd); 1188 vdev_add_child(pvd, mvd); 1189 cvd->vdev_id = mvd->vdev_children; 1190 vdev_add_child(mvd, cvd); 1191 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1192 1193 if (mvd == mvd->vdev_top) 1194 vdev_top_transfer(cvd, mvd); 1195 1196 return (mvd); 1197 } 1198 1199 /* 1200 * Remove a 1-way mirror/replacing vdev from the tree. 1201 */ 1202 void 1203 vdev_remove_parent(vdev_t *cvd) 1204 { 1205 vdev_t *mvd = cvd->vdev_parent; 1206 vdev_t *pvd = mvd->vdev_parent; 1207 1208 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1209 1210 ASSERT(mvd->vdev_children == 1); 1211 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 1212 mvd->vdev_ops == &vdev_replacing_ops || 1213 mvd->vdev_ops == &vdev_spare_ops); 1214 cvd->vdev_ashift = mvd->vdev_ashift; 1215 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift; 1216 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift; 1217 vdev_remove_child(mvd, cvd); 1218 vdev_remove_child(pvd, mvd); 1219 1220 /* 1221 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 1222 * Otherwise, we could have detached an offline device, and when we 1223 * go to import the pool we'll think we have two top-level vdevs, 1224 * instead of a different version of the same top-level vdev. 1225 */ 1226 if (mvd->vdev_top == mvd) { 1227 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 1228 cvd->vdev_orig_guid = cvd->vdev_guid; 1229 cvd->vdev_guid += guid_delta; 1230 cvd->vdev_guid_sum += guid_delta; 1231 1232 /* 1233 * If pool not set for autoexpand, we need to also preserve 1234 * mvd's asize to prevent automatic expansion of cvd. 1235 * Otherwise if we are adjusting the mirror by attaching and 1236 * detaching children of non-uniform sizes, the mirror could 1237 * autoexpand, unexpectedly requiring larger devices to 1238 * re-establish the mirror. 1239 */ 1240 if (!cvd->vdev_spa->spa_autoexpand) 1241 cvd->vdev_asize = mvd->vdev_asize; 1242 } 1243 cvd->vdev_id = mvd->vdev_id; 1244 vdev_add_child(pvd, cvd); 1245 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1246 1247 if (cvd == cvd->vdev_top) 1248 vdev_top_transfer(mvd, cvd); 1249 1250 ASSERT(mvd->vdev_children == 0); 1251 vdev_free(mvd); 1252 } 1253 1254 static void 1255 vdev_metaslab_group_create(vdev_t *vd) 1256 { 1257 spa_t *spa = vd->vdev_spa; 1258 1259 /* 1260 * metaslab_group_create was delayed until allocation bias was available 1261 */ 1262 if (vd->vdev_mg == NULL) { 1263 metaslab_class_t *mc; 1264 1265 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE) 1266 vd->vdev_alloc_bias = VDEV_BIAS_LOG; 1267 1268 ASSERT3U(vd->vdev_islog, ==, 1269 (vd->vdev_alloc_bias == VDEV_BIAS_LOG)); 1270 1271 switch (vd->vdev_alloc_bias) { 1272 case VDEV_BIAS_LOG: 1273 mc = spa_log_class(spa); 1274 break; 1275 case VDEV_BIAS_SPECIAL: 1276 mc = spa_special_class(spa); 1277 break; 1278 case VDEV_BIAS_DEDUP: 1279 mc = spa_dedup_class(spa); 1280 break; 1281 default: 1282 mc = spa_normal_class(spa); 1283 } 1284 1285 vd->vdev_mg = metaslab_group_create(mc, vd, 1286 spa->spa_alloc_count); 1287 1288 /* 1289 * The spa ashift values currently only reflect the 1290 * general vdev classes. Class destination is late 1291 * binding so ashift checking had to wait until now 1292 */ 1293 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1294 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) { 1295 if (vd->vdev_ashift > spa->spa_max_ashift) 1296 spa->spa_max_ashift = vd->vdev_ashift; 1297 if (vd->vdev_ashift < spa->spa_min_ashift) 1298 spa->spa_min_ashift = vd->vdev_ashift; 1299 } 1300 } 1301 } 1302 1303 int 1304 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 1305 { 1306 spa_t *spa = vd->vdev_spa; 1307 objset_t *mos = spa->spa_meta_objset; 1308 uint64_t m; 1309 uint64_t oldc = vd->vdev_ms_count; 1310 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 1311 metaslab_t **mspp; 1312 int error; 1313 boolean_t expanding = (oldc != 0); 1314 1315 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1316 1317 /* 1318 * This vdev is not being allocated from yet or is a hole. 1319 */ 1320 if (vd->vdev_ms_shift == 0) 1321 return (0); 1322 1323 ASSERT(!vd->vdev_ishole); 1324 1325 ASSERT(oldc <= newc); 1326 1327 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 1328 1329 if (expanding) { 1330 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 1331 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 1332 } 1333 1334 vd->vdev_ms = mspp; 1335 vd->vdev_ms_count = newc; 1336 for (m = oldc; m < newc; m++) { 1337 uint64_t object = 0; 1338 1339 /* 1340 * vdev_ms_array may be 0 if we are creating the "fake" 1341 * metaslabs for an indirect vdev for zdb's leak detection. 1342 * See zdb_leak_init(). 1343 */ 1344 if (txg == 0 && vd->vdev_ms_array != 0) { 1345 error = dmu_read(mos, vd->vdev_ms_array, 1346 m * sizeof (uint64_t), sizeof (uint64_t), &object, 1347 DMU_READ_PREFETCH); 1348 if (error != 0) { 1349 vdev_dbgmsg(vd, "unable to read the metaslab " 1350 "array [error=%d]", error); 1351 return (error); 1352 } 1353 } 1354 1355 #ifndef _KERNEL 1356 /* 1357 * To accommodate zdb_leak_init() fake indirect 1358 * metaslabs, we allocate a metaslab group for 1359 * indirect vdevs which normally don't have one. 1360 */ 1361 if (vd->vdev_mg == NULL) { 1362 ASSERT0(vdev_is_concrete(vd)); 1363 vdev_metaslab_group_create(vd); 1364 } 1365 #endif 1366 error = metaslab_init(vd->vdev_mg, m, object, txg, 1367 &(vd->vdev_ms[m])); 1368 if (error != 0) { 1369 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", 1370 error); 1371 return (error); 1372 } 1373 } 1374 1375 if (txg == 0) 1376 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 1377 1378 /* 1379 * If the vdev is being removed we don't activate 1380 * the metaslabs since we want to ensure that no new 1381 * allocations are performed on this device. 1382 */ 1383 if (!expanding && !vd->vdev_removing) { 1384 metaslab_group_activate(vd->vdev_mg); 1385 } 1386 1387 if (txg == 0) 1388 spa_config_exit(spa, SCL_ALLOC, FTAG); 1389 1390 /* 1391 * Regardless whether this vdev was just added or it is being 1392 * expanded, the metaslab count has changed. Recalculate the 1393 * block limit. 1394 */ 1395 spa_log_sm_set_blocklimit(spa); 1396 1397 return (0); 1398 } 1399 1400 void 1401 vdev_metaslab_fini(vdev_t *vd) 1402 { 1403 if (vd->vdev_checkpoint_sm != NULL) { 1404 ASSERT(spa_feature_is_active(vd->vdev_spa, 1405 SPA_FEATURE_POOL_CHECKPOINT)); 1406 space_map_close(vd->vdev_checkpoint_sm); 1407 /* 1408 * Even though we close the space map, we need to set its 1409 * pointer to NULL. The reason is that vdev_metaslab_fini() 1410 * may be called multiple times for certain operations 1411 * (i.e. when destroying a pool) so we need to ensure that 1412 * this clause never executes twice. This logic is similar 1413 * to the one used for the vdev_ms clause below. 1414 */ 1415 vd->vdev_checkpoint_sm = NULL; 1416 } 1417 1418 if (vd->vdev_ms != NULL) { 1419 metaslab_group_t *mg = vd->vdev_mg; 1420 metaslab_group_passivate(mg); 1421 1422 uint64_t count = vd->vdev_ms_count; 1423 for (uint64_t m = 0; m < count; m++) { 1424 metaslab_t *msp = vd->vdev_ms[m]; 1425 if (msp != NULL) 1426 metaslab_fini(msp); 1427 } 1428 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1429 vd->vdev_ms = NULL; 1430 1431 vd->vdev_ms_count = 0; 1432 1433 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 1434 ASSERT0(mg->mg_histogram[i]); 1435 } 1436 ASSERT0(vd->vdev_ms_count); 1437 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0); 1438 } 1439 1440 typedef struct vdev_probe_stats { 1441 boolean_t vps_readable; 1442 boolean_t vps_writeable; 1443 int vps_flags; 1444 } vdev_probe_stats_t; 1445 1446 static void 1447 vdev_probe_done(zio_t *zio) 1448 { 1449 spa_t *spa = zio->io_spa; 1450 vdev_t *vd = zio->io_vd; 1451 vdev_probe_stats_t *vps = zio->io_private; 1452 1453 ASSERT(vd->vdev_probe_zio != NULL); 1454 1455 if (zio->io_type == ZIO_TYPE_READ) { 1456 if (zio->io_error == 0) 1457 vps->vps_readable = 1; 1458 if (zio->io_error == 0 && spa_writeable(spa)) { 1459 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1460 zio->io_offset, zio->io_size, zio->io_abd, 1461 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1462 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1463 } else { 1464 abd_free(zio->io_abd); 1465 } 1466 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1467 if (zio->io_error == 0) 1468 vps->vps_writeable = 1; 1469 abd_free(zio->io_abd); 1470 } else if (zio->io_type == ZIO_TYPE_NULL) { 1471 zio_t *pio; 1472 zio_link_t *zl; 1473 1474 vd->vdev_cant_read |= !vps->vps_readable; 1475 vd->vdev_cant_write |= !vps->vps_writeable; 1476 1477 if (vdev_readable(vd) && 1478 (vdev_writeable(vd) || !spa_writeable(spa))) { 1479 zio->io_error = 0; 1480 } else { 1481 ASSERT(zio->io_error != 0); 1482 vdev_dbgmsg(vd, "failed probe"); 1483 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1484 spa, vd, NULL, NULL, 0); 1485 zio->io_error = SET_ERROR(ENXIO); 1486 } 1487 1488 mutex_enter(&vd->vdev_probe_lock); 1489 ASSERT(vd->vdev_probe_zio == zio); 1490 vd->vdev_probe_zio = NULL; 1491 mutex_exit(&vd->vdev_probe_lock); 1492 1493 zl = NULL; 1494 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1495 if (!vdev_accessible(vd, pio)) 1496 pio->io_error = SET_ERROR(ENXIO); 1497 1498 kmem_free(vps, sizeof (*vps)); 1499 } 1500 } 1501 1502 /* 1503 * Determine whether this device is accessible. 1504 * 1505 * Read and write to several known locations: the pad regions of each 1506 * vdev label but the first, which we leave alone in case it contains 1507 * a VTOC. 1508 */ 1509 zio_t * 1510 vdev_probe(vdev_t *vd, zio_t *zio) 1511 { 1512 spa_t *spa = vd->vdev_spa; 1513 vdev_probe_stats_t *vps = NULL; 1514 zio_t *pio; 1515 1516 ASSERT(vd->vdev_ops->vdev_op_leaf); 1517 1518 /* 1519 * Don't probe the probe. 1520 */ 1521 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1522 return (NULL); 1523 1524 /* 1525 * To prevent 'probe storms' when a device fails, we create 1526 * just one probe i/o at a time. All zios that want to probe 1527 * this vdev will become parents of the probe io. 1528 */ 1529 mutex_enter(&vd->vdev_probe_lock); 1530 1531 if ((pio = vd->vdev_probe_zio) == NULL) { 1532 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1533 1534 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1535 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1536 ZIO_FLAG_TRYHARD; 1537 1538 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1539 /* 1540 * vdev_cant_read and vdev_cant_write can only 1541 * transition from TRUE to FALSE when we have the 1542 * SCL_ZIO lock as writer; otherwise they can only 1543 * transition from FALSE to TRUE. This ensures that 1544 * any zio looking at these values can assume that 1545 * failures persist for the life of the I/O. That's 1546 * important because when a device has intermittent 1547 * connectivity problems, we want to ensure that 1548 * they're ascribed to the device (ENXIO) and not 1549 * the zio (EIO). 1550 * 1551 * Since we hold SCL_ZIO as writer here, clear both 1552 * values so the probe can reevaluate from first 1553 * principles. 1554 */ 1555 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1556 vd->vdev_cant_read = B_FALSE; 1557 vd->vdev_cant_write = B_FALSE; 1558 } 1559 1560 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1561 vdev_probe_done, vps, 1562 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1563 1564 /* 1565 * We can't change the vdev state in this context, so we 1566 * kick off an async task to do it on our behalf. 1567 */ 1568 if (zio != NULL) { 1569 vd->vdev_probe_wanted = B_TRUE; 1570 spa_async_request(spa, SPA_ASYNC_PROBE); 1571 } 1572 } 1573 1574 if (zio != NULL) 1575 zio_add_child(zio, pio); 1576 1577 mutex_exit(&vd->vdev_probe_lock); 1578 1579 if (vps == NULL) { 1580 ASSERT(zio != NULL); 1581 return (NULL); 1582 } 1583 1584 for (int l = 1; l < VDEV_LABELS; l++) { 1585 zio_nowait(zio_read_phys(pio, vd, 1586 vdev_label_offset(vd->vdev_psize, l, 1587 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE, 1588 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1589 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1590 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1591 } 1592 1593 if (zio == NULL) 1594 return (pio); 1595 1596 zio_nowait(pio); 1597 return (NULL); 1598 } 1599 1600 static void 1601 vdev_open_child(void *arg) 1602 { 1603 vdev_t *vd = arg; 1604 1605 vd->vdev_open_thread = curthread; 1606 vd->vdev_open_error = vdev_open(vd); 1607 vd->vdev_open_thread = NULL; 1608 } 1609 1610 static boolean_t 1611 vdev_uses_zvols(vdev_t *vd) 1612 { 1613 #ifdef _KERNEL 1614 if (zvol_is_zvol(vd->vdev_path)) 1615 return (B_TRUE); 1616 #endif 1617 1618 for (int c = 0; c < vd->vdev_children; c++) 1619 if (vdev_uses_zvols(vd->vdev_child[c])) 1620 return (B_TRUE); 1621 1622 return (B_FALSE); 1623 } 1624 1625 void 1626 vdev_open_children(vdev_t *vd) 1627 { 1628 taskq_t *tq; 1629 int children = vd->vdev_children; 1630 1631 /* 1632 * in order to handle pools on top of zvols, do the opens 1633 * in a single thread so that the same thread holds the 1634 * spa_namespace_lock 1635 */ 1636 if (vdev_uses_zvols(vd)) { 1637 retry_sync: 1638 for (int c = 0; c < children; c++) 1639 vd->vdev_child[c]->vdev_open_error = 1640 vdev_open(vd->vdev_child[c]); 1641 } else { 1642 tq = taskq_create("vdev_open", children, minclsyspri, 1643 children, children, TASKQ_PREPOPULATE); 1644 if (tq == NULL) 1645 goto retry_sync; 1646 1647 for (int c = 0; c < children; c++) 1648 VERIFY(taskq_dispatch(tq, vdev_open_child, 1649 vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID); 1650 1651 taskq_destroy(tq); 1652 } 1653 1654 vd->vdev_nonrot = B_TRUE; 1655 1656 for (int c = 0; c < children; c++) 1657 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot; 1658 } 1659 1660 /* 1661 * Compute the raidz-deflation ratio. Note, we hard-code 1662 * in 128k (1 << 17) because it is the "typical" blocksize. 1663 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 1664 * otherwise it would inconsistently account for existing bp's. 1665 */ 1666 static void 1667 vdev_set_deflate_ratio(vdev_t *vd) 1668 { 1669 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { 1670 vd->vdev_deflate_ratio = (1 << 17) / 1671 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 1672 } 1673 } 1674 1675 /* 1676 * Maximize performance by inflating the configured ashift for top level 1677 * vdevs to be as close to the physical ashift as possible while maintaining 1678 * administrator defined limits and ensuring it doesn't go below the 1679 * logical ashift. 1680 */ 1681 static void 1682 vdev_ashift_optimize(vdev_t *vd) 1683 { 1684 ASSERT(vd == vd->vdev_top); 1685 1686 if (vd->vdev_ashift < vd->vdev_physical_ashift) { 1687 vd->vdev_ashift = MIN( 1688 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift), 1689 MAX(zfs_vdev_min_auto_ashift, 1690 vd->vdev_physical_ashift)); 1691 } else { 1692 /* 1693 * If the logical and physical ashifts are the same, then 1694 * we ensure that the top-level vdev's ashift is not smaller 1695 * than our minimum ashift value. For the unusual case 1696 * where logical ashift > physical ashift, we can't cap 1697 * the calculated ashift based on max ashift as that 1698 * would cause failures. 1699 * We still check if we need to increase it to match 1700 * the min ashift. 1701 */ 1702 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift, 1703 vd->vdev_ashift); 1704 } 1705 } 1706 1707 /* 1708 * Prepare a virtual device for access. 1709 */ 1710 int 1711 vdev_open(vdev_t *vd) 1712 { 1713 spa_t *spa = vd->vdev_spa; 1714 int error; 1715 uint64_t osize = 0; 1716 uint64_t max_osize = 0; 1717 uint64_t asize, max_asize, psize; 1718 uint64_t logical_ashift = 0; 1719 uint64_t physical_ashift = 0; 1720 1721 ASSERT(vd->vdev_open_thread == curthread || 1722 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1723 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1724 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1725 vd->vdev_state == VDEV_STATE_OFFLINE); 1726 1727 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1728 vd->vdev_cant_read = B_FALSE; 1729 vd->vdev_cant_write = B_FALSE; 1730 vd->vdev_min_asize = vdev_get_min_asize(vd); 1731 1732 /* 1733 * If this vdev is not removed, check its fault status. If it's 1734 * faulted, bail out of the open. 1735 */ 1736 if (!vd->vdev_removed && vd->vdev_faulted) { 1737 ASSERT(vd->vdev_children == 0); 1738 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1739 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1740 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1741 vd->vdev_label_aux); 1742 return (SET_ERROR(ENXIO)); 1743 } else if (vd->vdev_offline) { 1744 ASSERT(vd->vdev_children == 0); 1745 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1746 return (SET_ERROR(ENXIO)); 1747 } 1748 1749 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, 1750 &logical_ashift, &physical_ashift); 1751 /* 1752 * Physical volume size should never be larger than its max size, unless 1753 * the disk has shrunk while we were reading it or the device is buggy 1754 * or damaged: either way it's not safe for use, bail out of the open. 1755 */ 1756 if (osize > max_osize) { 1757 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1758 VDEV_AUX_OPEN_FAILED); 1759 return (SET_ERROR(ENXIO)); 1760 } 1761 1762 /* 1763 * Reset the vdev_reopening flag so that we actually close 1764 * the vdev on error. 1765 */ 1766 vd->vdev_reopening = B_FALSE; 1767 if (zio_injection_enabled && error == 0) 1768 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO)); 1769 1770 if (error) { 1771 if (vd->vdev_removed && 1772 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1773 vd->vdev_removed = B_FALSE; 1774 1775 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { 1776 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, 1777 vd->vdev_stat.vs_aux); 1778 } else { 1779 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1780 vd->vdev_stat.vs_aux); 1781 } 1782 return (error); 1783 } 1784 1785 vd->vdev_removed = B_FALSE; 1786 1787 /* 1788 * Recheck the faulted flag now that we have confirmed that 1789 * the vdev is accessible. If we're faulted, bail. 1790 */ 1791 if (vd->vdev_faulted) { 1792 ASSERT(vd->vdev_children == 0); 1793 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1794 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1795 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1796 vd->vdev_label_aux); 1797 return (SET_ERROR(ENXIO)); 1798 } 1799 1800 if (vd->vdev_degraded) { 1801 ASSERT(vd->vdev_children == 0); 1802 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1803 VDEV_AUX_ERR_EXCEEDED); 1804 } else { 1805 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1806 } 1807 1808 /* 1809 * For hole or missing vdevs we just return success. 1810 */ 1811 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1812 return (0); 1813 1814 for (int c = 0; c < vd->vdev_children; c++) { 1815 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1816 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1817 VDEV_AUX_NONE); 1818 break; 1819 } 1820 } 1821 1822 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1823 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1824 1825 if (vd->vdev_children == 0) { 1826 if (osize < SPA_MINDEVSIZE) { 1827 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1828 VDEV_AUX_TOO_SMALL); 1829 return (SET_ERROR(EOVERFLOW)); 1830 } 1831 psize = osize; 1832 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1833 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1834 VDEV_LABEL_END_SIZE); 1835 } else { 1836 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1837 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1838 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1839 VDEV_AUX_TOO_SMALL); 1840 return (SET_ERROR(EOVERFLOW)); 1841 } 1842 psize = 0; 1843 asize = osize; 1844 max_asize = max_osize; 1845 } 1846 1847 /* 1848 * If the vdev was expanded, record this so that we can re-create the 1849 * uberblock rings in labels {2,3}, during the next sync. 1850 */ 1851 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0)) 1852 vd->vdev_copy_uberblocks = B_TRUE; 1853 1854 vd->vdev_psize = psize; 1855 1856 /* 1857 * Make sure the allocatable size hasn't shrunk too much. 1858 */ 1859 if (asize < vd->vdev_min_asize) { 1860 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1861 VDEV_AUX_BAD_LABEL); 1862 return (SET_ERROR(EINVAL)); 1863 } 1864 1865 /* 1866 * We can always set the logical/physical ashift members since 1867 * their values are only used to calculate the vdev_ashift when 1868 * the device is first added to the config. These values should 1869 * not be used for anything else since they may change whenever 1870 * the device is reopened and we don't store them in the label. 1871 */ 1872 vd->vdev_physical_ashift = 1873 MAX(physical_ashift, vd->vdev_physical_ashift); 1874 vd->vdev_logical_ashift = MAX(logical_ashift, 1875 vd->vdev_logical_ashift); 1876 1877 if (vd->vdev_asize == 0) { 1878 /* 1879 * This is the first-ever open, so use the computed values. 1880 * For compatibility, a different ashift can be requested. 1881 */ 1882 vd->vdev_asize = asize; 1883 vd->vdev_max_asize = max_asize; 1884 1885 /* 1886 * If the vdev_ashift was not overriden at creation time, 1887 * then set it the logical ashift and optimize the ashift. 1888 */ 1889 if (vd->vdev_ashift == 0) { 1890 vd->vdev_ashift = vd->vdev_logical_ashift; 1891 1892 if (vd->vdev_logical_ashift > ASHIFT_MAX) { 1893 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1894 VDEV_AUX_ASHIFT_TOO_BIG); 1895 return (SET_ERROR(EDOM)); 1896 } 1897 1898 if (vd->vdev_top == vd) { 1899 vdev_ashift_optimize(vd); 1900 } 1901 } 1902 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN || 1903 vd->vdev_ashift > ASHIFT_MAX)) { 1904 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1905 VDEV_AUX_BAD_ASHIFT); 1906 return (SET_ERROR(EDOM)); 1907 } 1908 } else { 1909 /* 1910 * Make sure the alignment required hasn't increased. 1911 */ 1912 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift && 1913 vd->vdev_ops->vdev_op_leaf) { 1914 (void) zfs_ereport_post( 1915 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT, 1916 spa, vd, NULL, NULL, 0); 1917 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1918 VDEV_AUX_BAD_LABEL); 1919 return (SET_ERROR(EDOM)); 1920 } 1921 vd->vdev_max_asize = max_asize; 1922 } 1923 1924 /* 1925 * If all children are healthy we update asize if either: 1926 * The asize has increased, due to a device expansion caused by dynamic 1927 * LUN growth or vdev replacement, and automatic expansion is enabled; 1928 * making the additional space available. 1929 * 1930 * The asize has decreased, due to a device shrink usually caused by a 1931 * vdev replace with a smaller device. This ensures that calculations 1932 * based of max_asize and asize e.g. esize are always valid. It's safe 1933 * to do this as we've already validated that asize is greater than 1934 * vdev_min_asize. 1935 */ 1936 if (vd->vdev_state == VDEV_STATE_HEALTHY && 1937 ((asize > vd->vdev_asize && 1938 (vd->vdev_expanding || spa->spa_autoexpand)) || 1939 (asize < vd->vdev_asize))) 1940 vd->vdev_asize = asize; 1941 1942 vdev_set_min_asize(vd); 1943 1944 /* 1945 * Ensure we can issue some IO before declaring the 1946 * vdev open for business. 1947 */ 1948 if (vd->vdev_ops->vdev_op_leaf && 1949 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1950 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1951 VDEV_AUX_ERR_EXCEEDED); 1952 return (error); 1953 } 1954 1955 /* 1956 * Track the min and max ashift values for normal data devices. 1957 */ 1958 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1959 vd->vdev_alloc_bias == VDEV_BIAS_NONE && 1960 vd->vdev_islog == 0 && vd->vdev_aux == NULL) { 1961 if (vd->vdev_ashift > spa->spa_max_ashift) 1962 spa->spa_max_ashift = vd->vdev_ashift; 1963 if (vd->vdev_ashift < spa->spa_min_ashift) 1964 spa->spa_min_ashift = vd->vdev_ashift; 1965 } 1966 1967 /* 1968 * If this is a leaf vdev, assess whether a resilver is needed. 1969 * But don't do this if we are doing a reopen for a scrub, since 1970 * this would just restart the scrub we are already doing. 1971 */ 1972 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen) 1973 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd); 1974 1975 return (0); 1976 } 1977 1978 /* 1979 * Called once the vdevs are all opened, this routine validates the label 1980 * contents. This needs to be done before vdev_load() so that we don't 1981 * inadvertently do repair I/Os to the wrong device. 1982 * 1983 * This function will only return failure if one of the vdevs indicates that it 1984 * has since been destroyed or exported. This is only possible if 1985 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1986 * will be updated but the function will return 0. 1987 */ 1988 int 1989 vdev_validate(vdev_t *vd) 1990 { 1991 spa_t *spa = vd->vdev_spa; 1992 nvlist_t *label; 1993 uint64_t guid = 0, aux_guid = 0, top_guid; 1994 uint64_t state; 1995 nvlist_t *nvl; 1996 uint64_t txg; 1997 1998 if (vdev_validate_skip) 1999 return (0); 2000 2001 for (uint64_t c = 0; c < vd->vdev_children; c++) 2002 if (vdev_validate(vd->vdev_child[c]) != 0) 2003 return (SET_ERROR(EBADF)); 2004 2005 /* 2006 * If the device has already failed, or was marked offline, don't do 2007 * any further validation. Otherwise, label I/O will fail and we will 2008 * overwrite the previous state. 2009 */ 2010 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) 2011 return (0); 2012 2013 /* 2014 * If we are performing an extreme rewind, we allow for a label that 2015 * was modified at a point after the current txg. 2016 * If config lock is not held do not check for the txg. spa_sync could 2017 * be updating the vdev's label before updating spa_last_synced_txg. 2018 */ 2019 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || 2020 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) 2021 txg = UINT64_MAX; 2022 else 2023 txg = spa_last_synced_txg(spa); 2024 2025 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 2026 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2027 VDEV_AUX_BAD_LABEL); 2028 vdev_dbgmsg(vd, "vdev_validate: failed reading config for " 2029 "txg %llu", (u_longlong_t)txg); 2030 return (0); 2031 } 2032 2033 /* 2034 * Determine if this vdev has been split off into another 2035 * pool. If so, then refuse to open it. 2036 */ 2037 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 2038 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 2039 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2040 VDEV_AUX_SPLIT_POOL); 2041 nvlist_free(label); 2042 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); 2043 return (0); 2044 } 2045 2046 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { 2047 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2048 VDEV_AUX_CORRUPT_DATA); 2049 nvlist_free(label); 2050 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2051 ZPOOL_CONFIG_POOL_GUID); 2052 return (0); 2053 } 2054 2055 /* 2056 * If config is not trusted then ignore the spa guid check. This is 2057 * necessary because if the machine crashed during a re-guid the new 2058 * guid might have been written to all of the vdev labels, but not the 2059 * cached config. The check will be performed again once we have the 2060 * trusted config from the MOS. 2061 */ 2062 if (spa->spa_trust_config && guid != spa_guid(spa)) { 2063 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2064 VDEV_AUX_CORRUPT_DATA); 2065 nvlist_free(label); 2066 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " 2067 "match config (%llu != %llu)", (u_longlong_t)guid, 2068 (u_longlong_t)spa_guid(spa)); 2069 return (0); 2070 } 2071 2072 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 2073 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 2074 &aux_guid) != 0) 2075 aux_guid = 0; 2076 2077 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { 2078 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2079 VDEV_AUX_CORRUPT_DATA); 2080 nvlist_free(label); 2081 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2082 ZPOOL_CONFIG_GUID); 2083 return (0); 2084 } 2085 2086 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) 2087 != 0) { 2088 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2089 VDEV_AUX_CORRUPT_DATA); 2090 nvlist_free(label); 2091 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2092 ZPOOL_CONFIG_TOP_GUID); 2093 return (0); 2094 } 2095 2096 /* 2097 * If this vdev just became a top-level vdev because its sibling was 2098 * detached, it will have adopted the parent's vdev guid -- but the 2099 * label may or may not be on disk yet. Fortunately, either version 2100 * of the label will have the same top guid, so if we're a top-level 2101 * vdev, we can safely compare to that instead. 2102 * However, if the config comes from a cachefile that failed to update 2103 * after the detach, a top-level vdev will appear as a non top-level 2104 * vdev in the config. Also relax the constraints if we perform an 2105 * extreme rewind. 2106 * 2107 * If we split this vdev off instead, then we also check the 2108 * original pool's guid. We don't want to consider the vdev 2109 * corrupt if it is partway through a split operation. 2110 */ 2111 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { 2112 boolean_t mismatch = B_FALSE; 2113 if (spa->spa_trust_config && !spa->spa_extreme_rewind) { 2114 if (vd != vd->vdev_top || vd->vdev_guid != top_guid) 2115 mismatch = B_TRUE; 2116 } else { 2117 if (vd->vdev_guid != top_guid && 2118 vd->vdev_top->vdev_guid != guid) 2119 mismatch = B_TRUE; 2120 } 2121 2122 if (mismatch) { 2123 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2124 VDEV_AUX_CORRUPT_DATA); 2125 nvlist_free(label); 2126 vdev_dbgmsg(vd, "vdev_validate: config guid " 2127 "doesn't match label guid"); 2128 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", 2129 (u_longlong_t)vd->vdev_guid, 2130 (u_longlong_t)vd->vdev_top->vdev_guid); 2131 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " 2132 "aux_guid %llu", (u_longlong_t)guid, 2133 (u_longlong_t)top_guid, (u_longlong_t)aux_guid); 2134 return (0); 2135 } 2136 } 2137 2138 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 2139 &state) != 0) { 2140 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2141 VDEV_AUX_CORRUPT_DATA); 2142 nvlist_free(label); 2143 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2144 ZPOOL_CONFIG_POOL_STATE); 2145 return (0); 2146 } 2147 2148 nvlist_free(label); 2149 2150 /* 2151 * If this is a verbatim import, no need to check the 2152 * state of the pool. 2153 */ 2154 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 2155 spa_load_state(spa) == SPA_LOAD_OPEN && 2156 state != POOL_STATE_ACTIVE) { 2157 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " 2158 "for spa %s", (u_longlong_t)state, spa->spa_name); 2159 return (SET_ERROR(EBADF)); 2160 } 2161 2162 /* 2163 * If we were able to open and validate a vdev that was 2164 * previously marked permanently unavailable, clear that state 2165 * now. 2166 */ 2167 if (vd->vdev_not_present) 2168 vd->vdev_not_present = 0; 2169 2170 return (0); 2171 } 2172 2173 static void 2174 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) 2175 { 2176 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) { 2177 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) { 2178 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed " 2179 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2180 dvd->vdev_path, svd->vdev_path); 2181 spa_strfree(dvd->vdev_path); 2182 dvd->vdev_path = spa_strdup(svd->vdev_path); 2183 } 2184 } else if (svd->vdev_path != NULL) { 2185 dvd->vdev_path = spa_strdup(svd->vdev_path); 2186 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", 2187 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path); 2188 } 2189 } 2190 2191 /* 2192 * Recursively copy vdev paths from one vdev to another. Source and destination 2193 * vdev trees must have same geometry otherwise return error. Intended to copy 2194 * paths from userland config into MOS config. 2195 */ 2196 int 2197 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) 2198 { 2199 if ((svd->vdev_ops == &vdev_missing_ops) || 2200 (svd->vdev_ishole && dvd->vdev_ishole) || 2201 (dvd->vdev_ops == &vdev_indirect_ops)) 2202 return (0); 2203 2204 if (svd->vdev_ops != dvd->vdev_ops) { 2205 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", 2206 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); 2207 return (SET_ERROR(EINVAL)); 2208 } 2209 2210 if (svd->vdev_guid != dvd->vdev_guid) { 2211 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " 2212 "%llu)", (u_longlong_t)svd->vdev_guid, 2213 (u_longlong_t)dvd->vdev_guid); 2214 return (SET_ERROR(EINVAL)); 2215 } 2216 2217 if (svd->vdev_children != dvd->vdev_children) { 2218 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " 2219 "%llu != %llu", (u_longlong_t)svd->vdev_children, 2220 (u_longlong_t)dvd->vdev_children); 2221 return (SET_ERROR(EINVAL)); 2222 } 2223 2224 for (uint64_t i = 0; i < svd->vdev_children; i++) { 2225 int error = vdev_copy_path_strict(svd->vdev_child[i], 2226 dvd->vdev_child[i]); 2227 if (error != 0) 2228 return (error); 2229 } 2230 2231 if (svd->vdev_ops->vdev_op_leaf) 2232 vdev_copy_path_impl(svd, dvd); 2233 2234 return (0); 2235 } 2236 2237 static void 2238 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) 2239 { 2240 ASSERT(stvd->vdev_top == stvd); 2241 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); 2242 2243 for (uint64_t i = 0; i < dvd->vdev_children; i++) { 2244 vdev_copy_path_search(stvd, dvd->vdev_child[i]); 2245 } 2246 2247 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) 2248 return; 2249 2250 /* 2251 * The idea here is that while a vdev can shift positions within 2252 * a top vdev (when replacing, attaching mirror, etc.) it cannot 2253 * step outside of it. 2254 */ 2255 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); 2256 2257 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) 2258 return; 2259 2260 ASSERT(vd->vdev_ops->vdev_op_leaf); 2261 2262 vdev_copy_path_impl(vd, dvd); 2263 } 2264 2265 /* 2266 * Recursively copy vdev paths from one root vdev to another. Source and 2267 * destination vdev trees may differ in geometry. For each destination leaf 2268 * vdev, search a vdev with the same guid and top vdev id in the source. 2269 * Intended to copy paths from userland config into MOS config. 2270 */ 2271 void 2272 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) 2273 { 2274 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); 2275 ASSERT(srvd->vdev_ops == &vdev_root_ops); 2276 ASSERT(drvd->vdev_ops == &vdev_root_ops); 2277 2278 for (uint64_t i = 0; i < children; i++) { 2279 vdev_copy_path_search(srvd->vdev_child[i], 2280 drvd->vdev_child[i]); 2281 } 2282 } 2283 2284 /* 2285 * Close a virtual device. 2286 */ 2287 void 2288 vdev_close(vdev_t *vd) 2289 { 2290 vdev_t *pvd = vd->vdev_parent; 2291 spa_t *spa __maybe_unused = vd->vdev_spa; 2292 2293 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2294 2295 /* 2296 * If our parent is reopening, then we are as well, unless we are 2297 * going offline. 2298 */ 2299 if (pvd != NULL && pvd->vdev_reopening) 2300 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 2301 2302 vd->vdev_ops->vdev_op_close(vd); 2303 2304 vdev_cache_purge(vd); 2305 2306 /* 2307 * We record the previous state before we close it, so that if we are 2308 * doing a reopen(), we don't generate FMA ereports if we notice that 2309 * it's still faulted. 2310 */ 2311 vd->vdev_prevstate = vd->vdev_state; 2312 2313 if (vd->vdev_offline) 2314 vd->vdev_state = VDEV_STATE_OFFLINE; 2315 else 2316 vd->vdev_state = VDEV_STATE_CLOSED; 2317 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2318 } 2319 2320 void 2321 vdev_hold(vdev_t *vd) 2322 { 2323 spa_t *spa = vd->vdev_spa; 2324 2325 ASSERT(spa_is_root(spa)); 2326 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 2327 return; 2328 2329 for (int c = 0; c < vd->vdev_children; c++) 2330 vdev_hold(vd->vdev_child[c]); 2331 2332 if (vd->vdev_ops->vdev_op_leaf) 2333 vd->vdev_ops->vdev_op_hold(vd); 2334 } 2335 2336 void 2337 vdev_rele(vdev_t *vd) 2338 { 2339 ASSERT(spa_is_root(vd->vdev_spa)); 2340 for (int c = 0; c < vd->vdev_children; c++) 2341 vdev_rele(vd->vdev_child[c]); 2342 2343 if (vd->vdev_ops->vdev_op_leaf) 2344 vd->vdev_ops->vdev_op_rele(vd); 2345 } 2346 2347 /* 2348 * Reopen all interior vdevs and any unopened leaves. We don't actually 2349 * reopen leaf vdevs which had previously been opened as they might deadlock 2350 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 2351 * If the leaf has never been opened then open it, as usual. 2352 */ 2353 void 2354 vdev_reopen(vdev_t *vd) 2355 { 2356 spa_t *spa = vd->vdev_spa; 2357 2358 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2359 2360 /* set the reopening flag unless we're taking the vdev offline */ 2361 vd->vdev_reopening = !vd->vdev_offline; 2362 vdev_close(vd); 2363 (void) vdev_open(vd); 2364 2365 /* 2366 * Call vdev_validate() here to make sure we have the same device. 2367 * Otherwise, a device with an invalid label could be successfully 2368 * opened in response to vdev_reopen(). 2369 */ 2370 if (vd->vdev_aux) { 2371 (void) vdev_validate_aux(vd); 2372 if (vdev_readable(vd) && vdev_writeable(vd) && 2373 vd->vdev_aux == &spa->spa_l2cache) { 2374 /* 2375 * In case the vdev is present we should evict all ARC 2376 * buffers and pointers to log blocks and reclaim their 2377 * space before restoring its contents to L2ARC. 2378 */ 2379 if (l2arc_vdev_present(vd)) { 2380 l2arc_rebuild_vdev(vd, B_TRUE); 2381 } else { 2382 l2arc_add_vdev(spa, vd); 2383 } 2384 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 2385 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 2386 } 2387 } else { 2388 (void) vdev_validate(vd); 2389 } 2390 2391 /* 2392 * Reassess parent vdev's health. 2393 */ 2394 vdev_propagate_state(vd); 2395 } 2396 2397 int 2398 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 2399 { 2400 int error; 2401 2402 /* 2403 * Normally, partial opens (e.g. of a mirror) are allowed. 2404 * For a create, however, we want to fail the request if 2405 * there are any components we can't open. 2406 */ 2407 error = vdev_open(vd); 2408 2409 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 2410 vdev_close(vd); 2411 return (error ? error : SET_ERROR(ENXIO)); 2412 } 2413 2414 /* 2415 * Recursively load DTLs and initialize all labels. 2416 */ 2417 if ((error = vdev_dtl_load(vd)) != 0 || 2418 (error = vdev_label_init(vd, txg, isreplacing ? 2419 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 2420 vdev_close(vd); 2421 return (error); 2422 } 2423 2424 return (0); 2425 } 2426 2427 void 2428 vdev_metaslab_set_size(vdev_t *vd) 2429 { 2430 uint64_t asize = vd->vdev_asize; 2431 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; 2432 uint64_t ms_shift; 2433 2434 /* 2435 * There are two dimensions to the metaslab sizing calculation: 2436 * the size of the metaslab and the count of metaslabs per vdev. 2437 * 2438 * The default values used below are a good balance between memory 2439 * usage (larger metaslab size means more memory needed for loaded 2440 * metaslabs; more metaslabs means more memory needed for the 2441 * metaslab_t structs), metaslab load time (larger metaslabs take 2442 * longer to load), and metaslab sync time (more metaslabs means 2443 * more time spent syncing all of them). 2444 * 2445 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. 2446 * The range of the dimensions are as follows: 2447 * 2448 * 2^29 <= ms_size <= 2^34 2449 * 16 <= ms_count <= 131,072 2450 * 2451 * On the lower end of vdev sizes, we aim for metaslabs sizes of 2452 * at least 512MB (2^29) to minimize fragmentation effects when 2453 * testing with smaller devices. However, the count constraint 2454 * of at least 16 metaslabs will override this minimum size goal. 2455 * 2456 * On the upper end of vdev sizes, we aim for a maximum metaslab 2457 * size of 16GB. However, we will cap the total count to 2^17 2458 * metaslabs to keep our memory footprint in check and let the 2459 * metaslab size grow from there if that limit is hit. 2460 * 2461 * The net effect of applying above constrains is summarized below. 2462 * 2463 * vdev size metaslab count 2464 * --------------|----------------- 2465 * < 8GB ~16 2466 * 8GB - 100GB one per 512MB 2467 * 100GB - 3TB ~200 2468 * 3TB - 2PB one per 16GB 2469 * > 2PB ~131,072 2470 * -------------------------------- 2471 * 2472 * Finally, note that all of the above calculate the initial 2473 * number of metaslabs. Expanding a top-level vdev will result 2474 * in additional metaslabs being allocated making it possible 2475 * to exceed the zfs_vdev_ms_count_limit. 2476 */ 2477 2478 if (ms_count < zfs_vdev_min_ms_count) 2479 ms_shift = highbit64(asize / zfs_vdev_min_ms_count); 2480 else if (ms_count > zfs_vdev_default_ms_count) 2481 ms_shift = highbit64(asize / zfs_vdev_default_ms_count); 2482 else 2483 ms_shift = zfs_vdev_default_ms_shift; 2484 2485 if (ms_shift < SPA_MAXBLOCKSHIFT) { 2486 ms_shift = SPA_MAXBLOCKSHIFT; 2487 } else if (ms_shift > zfs_vdev_max_ms_shift) { 2488 ms_shift = zfs_vdev_max_ms_shift; 2489 /* cap the total count to constrain memory footprint */ 2490 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) 2491 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); 2492 } 2493 2494 vd->vdev_ms_shift = ms_shift; 2495 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); 2496 } 2497 2498 void 2499 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 2500 { 2501 ASSERT(vd == vd->vdev_top); 2502 /* indirect vdevs don't have metaslabs or dtls */ 2503 ASSERT(vdev_is_concrete(vd) || flags == 0); 2504 ASSERT(ISP2(flags)); 2505 ASSERT(spa_writeable(vd->vdev_spa)); 2506 2507 if (flags & VDD_METASLAB) 2508 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 2509 2510 if (flags & VDD_DTL) 2511 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 2512 2513 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 2514 } 2515 2516 void 2517 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 2518 { 2519 for (int c = 0; c < vd->vdev_children; c++) 2520 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 2521 2522 if (vd->vdev_ops->vdev_op_leaf) 2523 vdev_dirty(vd->vdev_top, flags, vd, txg); 2524 } 2525 2526 /* 2527 * DTLs. 2528 * 2529 * A vdev's DTL (dirty time log) is the set of transaction groups for which 2530 * the vdev has less than perfect replication. There are four kinds of DTL: 2531 * 2532 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 2533 * 2534 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 2535 * 2536 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 2537 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 2538 * txgs that was scrubbed. 2539 * 2540 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 2541 * persistent errors or just some device being offline. 2542 * Unlike the other three, the DTL_OUTAGE map is not generally 2543 * maintained; it's only computed when needed, typically to 2544 * determine whether a device can be detached. 2545 * 2546 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 2547 * either has the data or it doesn't. 2548 * 2549 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 2550 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 2551 * if any child is less than fully replicated, then so is its parent. 2552 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 2553 * comprising only those txgs which appear in 'maxfaults' or more children; 2554 * those are the txgs we don't have enough replication to read. For example, 2555 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 2556 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 2557 * two child DTL_MISSING maps. 2558 * 2559 * It should be clear from the above that to compute the DTLs and outage maps 2560 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 2561 * Therefore, that is all we keep on disk. When loading the pool, or after 2562 * a configuration change, we generate all other DTLs from first principles. 2563 */ 2564 void 2565 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2566 { 2567 range_tree_t *rt = vd->vdev_dtl[t]; 2568 2569 ASSERT(t < DTL_TYPES); 2570 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2571 ASSERT(spa_writeable(vd->vdev_spa)); 2572 2573 mutex_enter(&vd->vdev_dtl_lock); 2574 if (!range_tree_contains(rt, txg, size)) 2575 range_tree_add(rt, txg, size); 2576 mutex_exit(&vd->vdev_dtl_lock); 2577 } 2578 2579 boolean_t 2580 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2581 { 2582 range_tree_t *rt = vd->vdev_dtl[t]; 2583 boolean_t dirty = B_FALSE; 2584 2585 ASSERT(t < DTL_TYPES); 2586 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2587 2588 /* 2589 * While we are loading the pool, the DTLs have not been loaded yet. 2590 * Ignore the DTLs and try all devices. This avoids a recursive 2591 * mutex enter on the vdev_dtl_lock, and also makes us try hard 2592 * when loading the pool (relying on the checksum to ensure that 2593 * we get the right data -- note that we while loading, we are 2594 * only reading the MOS, which is always checksummed). 2595 */ 2596 if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE) 2597 return (B_FALSE); 2598 2599 mutex_enter(&vd->vdev_dtl_lock); 2600 if (!range_tree_is_empty(rt)) 2601 dirty = range_tree_contains(rt, txg, size); 2602 mutex_exit(&vd->vdev_dtl_lock); 2603 2604 return (dirty); 2605 } 2606 2607 boolean_t 2608 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 2609 { 2610 range_tree_t *rt = vd->vdev_dtl[t]; 2611 boolean_t empty; 2612 2613 mutex_enter(&vd->vdev_dtl_lock); 2614 empty = range_tree_is_empty(rt); 2615 mutex_exit(&vd->vdev_dtl_lock); 2616 2617 return (empty); 2618 } 2619 2620 /* 2621 * Returns B_TRUE if vdev determines offset needs to be resilvered. 2622 */ 2623 boolean_t 2624 vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize) 2625 { 2626 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2627 2628 if (vd->vdev_ops->vdev_op_need_resilver == NULL || 2629 vd->vdev_ops->vdev_op_leaf) 2630 return (B_TRUE); 2631 2632 return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize)); 2633 } 2634 2635 /* 2636 * Returns the lowest txg in the DTL range. 2637 */ 2638 static uint64_t 2639 vdev_dtl_min(vdev_t *vd) 2640 { 2641 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2642 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2643 ASSERT0(vd->vdev_children); 2644 2645 return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1); 2646 } 2647 2648 /* 2649 * Returns the highest txg in the DTL. 2650 */ 2651 static uint64_t 2652 vdev_dtl_max(vdev_t *vd) 2653 { 2654 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2655 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2656 ASSERT0(vd->vdev_children); 2657 2658 return (range_tree_max(vd->vdev_dtl[DTL_MISSING])); 2659 } 2660 2661 /* 2662 * Determine if a resilvering vdev should remove any DTL entries from 2663 * its range. If the vdev was resilvering for the entire duration of the 2664 * scan then it should excise that range from its DTLs. Otherwise, this 2665 * vdev is considered partially resilvered and should leave its DTL 2666 * entries intact. The comment in vdev_dtl_reassess() describes how we 2667 * excise the DTLs. 2668 */ 2669 static boolean_t 2670 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done) 2671 { 2672 ASSERT0(vd->vdev_children); 2673 2674 if (vd->vdev_state < VDEV_STATE_DEGRADED) 2675 return (B_FALSE); 2676 2677 if (vd->vdev_resilver_deferred) 2678 return (B_FALSE); 2679 2680 if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) 2681 return (B_TRUE); 2682 2683 if (rebuild_done) { 2684 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 2685 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 2686 2687 /* Rebuild not initiated by attach */ 2688 if (vd->vdev_rebuild_txg == 0) 2689 return (B_TRUE); 2690 2691 /* 2692 * When a rebuild completes without error then all missing data 2693 * up to the rebuild max txg has been reconstructed and the DTL 2694 * is eligible for excision. 2695 */ 2696 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE && 2697 vdev_dtl_max(vd) <= vrp->vrp_max_txg) { 2698 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd)); 2699 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg); 2700 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg); 2701 return (B_TRUE); 2702 } 2703 } else { 2704 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 2705 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys; 2706 2707 /* Resilver not initiated by attach */ 2708 if (vd->vdev_resilver_txg == 0) 2709 return (B_TRUE); 2710 2711 /* 2712 * When a resilver is initiated the scan will assign the 2713 * scn_max_txg value to the highest txg value that exists 2714 * in all DTLs. If this device's max DTL is not part of this 2715 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg] 2716 * then it is not eligible for excision. 2717 */ 2718 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 2719 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd)); 2720 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg); 2721 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg); 2722 return (B_TRUE); 2723 } 2724 } 2725 2726 return (B_FALSE); 2727 } 2728 2729 /* 2730 * Reassess DTLs after a config change or scrub completion. If txg == 0 no 2731 * write operations will be issued to the pool. 2732 */ 2733 void 2734 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, 2735 boolean_t scrub_done, boolean_t rebuild_done) 2736 { 2737 spa_t *spa = vd->vdev_spa; 2738 avl_tree_t reftree; 2739 int minref; 2740 2741 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2742 2743 for (int c = 0; c < vd->vdev_children; c++) 2744 vdev_dtl_reassess(vd->vdev_child[c], txg, 2745 scrub_txg, scrub_done, rebuild_done); 2746 2747 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) 2748 return; 2749 2750 if (vd->vdev_ops->vdev_op_leaf) { 2751 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 2752 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 2753 boolean_t check_excise = B_FALSE; 2754 boolean_t wasempty = B_TRUE; 2755 2756 mutex_enter(&vd->vdev_dtl_lock); 2757 2758 /* 2759 * If requested, pretend the scan or rebuild completed cleanly. 2760 */ 2761 if (zfs_scan_ignore_errors) { 2762 if (scn != NULL) 2763 scn->scn_phys.scn_errors = 0; 2764 if (vr != NULL) 2765 vr->vr_rebuild_phys.vrp_errors = 0; 2766 } 2767 2768 if (scrub_txg != 0 && 2769 !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 2770 wasempty = B_FALSE; 2771 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d " 2772 "dtl:%llu/%llu errors:%llu", 2773 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg, 2774 (u_longlong_t)scrub_txg, spa->spa_scrub_started, 2775 (u_longlong_t)vdev_dtl_min(vd), 2776 (u_longlong_t)vdev_dtl_max(vd), 2777 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0)); 2778 } 2779 2780 /* 2781 * If we've completed a scrub/resilver or a rebuild cleanly 2782 * then determine if this vdev should remove any DTLs. We 2783 * only want to excise regions on vdevs that were available 2784 * during the entire duration of this scan. 2785 */ 2786 if (rebuild_done && 2787 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) { 2788 check_excise = B_TRUE; 2789 } else { 2790 if (spa->spa_scrub_started || 2791 (scn != NULL && scn->scn_phys.scn_errors == 0)) { 2792 check_excise = B_TRUE; 2793 } 2794 } 2795 2796 if (scrub_txg && check_excise && 2797 vdev_dtl_should_excise(vd, rebuild_done)) { 2798 /* 2799 * We completed a scrub, resilver or rebuild up to 2800 * scrub_txg. If we did it without rebooting, then 2801 * the scrub dtl will be valid, so excise the old 2802 * region and fold in the scrub dtl. Otherwise, 2803 * leave the dtl as-is if there was an error. 2804 * 2805 * There's little trick here: to excise the beginning 2806 * of the DTL_MISSING map, we put it into a reference 2807 * tree and then add a segment with refcnt -1 that 2808 * covers the range [0, scrub_txg). This means 2809 * that each txg in that range has refcnt -1 or 0. 2810 * We then add DTL_SCRUB with a refcnt of 2, so that 2811 * entries in the range [0, scrub_txg) will have a 2812 * positive refcnt -- either 1 or 2. We then convert 2813 * the reference tree into the new DTL_MISSING map. 2814 */ 2815 space_reftree_create(&reftree); 2816 space_reftree_add_map(&reftree, 2817 vd->vdev_dtl[DTL_MISSING], 1); 2818 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 2819 space_reftree_add_map(&reftree, 2820 vd->vdev_dtl[DTL_SCRUB], 2); 2821 space_reftree_generate_map(&reftree, 2822 vd->vdev_dtl[DTL_MISSING], 1); 2823 space_reftree_destroy(&reftree); 2824 2825 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 2826 zfs_dbgmsg("update DTL_MISSING:%llu/%llu", 2827 (u_longlong_t)vdev_dtl_min(vd), 2828 (u_longlong_t)vdev_dtl_max(vd)); 2829 } else if (!wasempty) { 2830 zfs_dbgmsg("DTL_MISSING is now empty"); 2831 } 2832 } 2833 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 2834 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 2835 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 2836 if (scrub_done) 2837 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 2838 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 2839 if (!vdev_readable(vd)) 2840 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 2841 else 2842 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 2843 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 2844 2845 /* 2846 * If the vdev was resilvering or rebuilding and no longer 2847 * has any DTLs then reset the appropriate flag and dirty 2848 * the top level so that we persist the change. 2849 */ 2850 if (txg != 0 && 2851 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 2852 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) { 2853 if (vd->vdev_rebuild_txg != 0) { 2854 vd->vdev_rebuild_txg = 0; 2855 vdev_config_dirty(vd->vdev_top); 2856 } else if (vd->vdev_resilver_txg != 0) { 2857 vd->vdev_resilver_txg = 0; 2858 vdev_config_dirty(vd->vdev_top); 2859 } 2860 } 2861 2862 mutex_exit(&vd->vdev_dtl_lock); 2863 2864 if (txg != 0) 2865 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 2866 return; 2867 } 2868 2869 mutex_enter(&vd->vdev_dtl_lock); 2870 for (int t = 0; t < DTL_TYPES; t++) { 2871 /* account for child's outage in parent's missing map */ 2872 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 2873 if (t == DTL_SCRUB) 2874 continue; /* leaf vdevs only */ 2875 if (t == DTL_PARTIAL) 2876 minref = 1; /* i.e. non-zero */ 2877 else if (vd->vdev_nparity != 0) 2878 minref = vd->vdev_nparity + 1; /* RAID-Z */ 2879 else 2880 minref = vd->vdev_children; /* any kind of mirror */ 2881 space_reftree_create(&reftree); 2882 for (int c = 0; c < vd->vdev_children; c++) { 2883 vdev_t *cvd = vd->vdev_child[c]; 2884 mutex_enter(&cvd->vdev_dtl_lock); 2885 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 2886 mutex_exit(&cvd->vdev_dtl_lock); 2887 } 2888 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 2889 space_reftree_destroy(&reftree); 2890 } 2891 mutex_exit(&vd->vdev_dtl_lock); 2892 } 2893 2894 int 2895 vdev_dtl_load(vdev_t *vd) 2896 { 2897 spa_t *spa = vd->vdev_spa; 2898 objset_t *mos = spa->spa_meta_objset; 2899 int error = 0; 2900 2901 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 2902 ASSERT(vdev_is_concrete(vd)); 2903 2904 error = space_map_open(&vd->vdev_dtl_sm, mos, 2905 vd->vdev_dtl_object, 0, -1ULL, 0); 2906 if (error) 2907 return (error); 2908 ASSERT(vd->vdev_dtl_sm != NULL); 2909 2910 mutex_enter(&vd->vdev_dtl_lock); 2911 error = space_map_load(vd->vdev_dtl_sm, 2912 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 2913 mutex_exit(&vd->vdev_dtl_lock); 2914 2915 return (error); 2916 } 2917 2918 for (int c = 0; c < vd->vdev_children; c++) { 2919 error = vdev_dtl_load(vd->vdev_child[c]); 2920 if (error != 0) 2921 break; 2922 } 2923 2924 return (error); 2925 } 2926 2927 static void 2928 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx) 2929 { 2930 spa_t *spa = vd->vdev_spa; 2931 objset_t *mos = spa->spa_meta_objset; 2932 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 2933 const char *string; 2934 2935 ASSERT(alloc_bias != VDEV_BIAS_NONE); 2936 2937 string = 2938 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG : 2939 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL : 2940 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL; 2941 2942 ASSERT(string != NULL); 2943 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, 2944 1, strlen(string) + 1, string, tx)); 2945 2946 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) { 2947 spa_activate_allocation_classes(spa, tx); 2948 } 2949 } 2950 2951 void 2952 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 2953 { 2954 spa_t *spa = vd->vdev_spa; 2955 2956 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 2957 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 2958 zapobj, tx)); 2959 } 2960 2961 uint64_t 2962 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 2963 { 2964 spa_t *spa = vd->vdev_spa; 2965 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 2966 DMU_OT_NONE, 0, tx); 2967 2968 ASSERT(zap != 0); 2969 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 2970 zap, tx)); 2971 2972 return (zap); 2973 } 2974 2975 void 2976 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 2977 { 2978 if (vd->vdev_ops != &vdev_hole_ops && 2979 vd->vdev_ops != &vdev_missing_ops && 2980 vd->vdev_ops != &vdev_root_ops && 2981 !vd->vdev_top->vdev_removing) { 2982 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 2983 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 2984 } 2985 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 2986 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 2987 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE) 2988 vdev_zap_allocation_data(vd, tx); 2989 } 2990 } 2991 2992 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2993 vdev_construct_zaps(vd->vdev_child[i], tx); 2994 } 2995 } 2996 2997 static void 2998 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 2999 { 3000 spa_t *spa = vd->vdev_spa; 3001 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 3002 objset_t *mos = spa->spa_meta_objset; 3003 range_tree_t *rtsync; 3004 dmu_tx_t *tx; 3005 uint64_t object = space_map_object(vd->vdev_dtl_sm); 3006 3007 ASSERT(vdev_is_concrete(vd)); 3008 ASSERT(vd->vdev_ops->vdev_op_leaf); 3009 3010 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3011 3012 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 3013 mutex_enter(&vd->vdev_dtl_lock); 3014 space_map_free(vd->vdev_dtl_sm, tx); 3015 space_map_close(vd->vdev_dtl_sm); 3016 vd->vdev_dtl_sm = NULL; 3017 mutex_exit(&vd->vdev_dtl_lock); 3018 3019 /* 3020 * We only destroy the leaf ZAP for detached leaves or for 3021 * removed log devices. Removed data devices handle leaf ZAP 3022 * cleanup later, once cancellation is no longer possible. 3023 */ 3024 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 3025 vd->vdev_top->vdev_islog)) { 3026 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 3027 vd->vdev_leaf_zap = 0; 3028 } 3029 3030 dmu_tx_commit(tx); 3031 return; 3032 } 3033 3034 if (vd->vdev_dtl_sm == NULL) { 3035 uint64_t new_object; 3036 3037 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx); 3038 VERIFY3U(new_object, !=, 0); 3039 3040 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 3041 0, -1ULL, 0)); 3042 ASSERT(vd->vdev_dtl_sm != NULL); 3043 } 3044 3045 rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3046 3047 mutex_enter(&vd->vdev_dtl_lock); 3048 range_tree_walk(rt, range_tree_add, rtsync); 3049 mutex_exit(&vd->vdev_dtl_lock); 3050 3051 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx); 3052 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); 3053 range_tree_vacate(rtsync, NULL, NULL); 3054 3055 range_tree_destroy(rtsync); 3056 3057 /* 3058 * If the object for the space map has changed then dirty 3059 * the top level so that we update the config. 3060 */ 3061 if (object != space_map_object(vd->vdev_dtl_sm)) { 3062 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " 3063 "new object %llu", (u_longlong_t)txg, spa_name(spa), 3064 (u_longlong_t)object, 3065 (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); 3066 vdev_config_dirty(vd->vdev_top); 3067 } 3068 3069 dmu_tx_commit(tx); 3070 } 3071 3072 /* 3073 * Determine whether the specified vdev can be offlined/detached/removed 3074 * without losing data. 3075 */ 3076 boolean_t 3077 vdev_dtl_required(vdev_t *vd) 3078 { 3079 spa_t *spa = vd->vdev_spa; 3080 vdev_t *tvd = vd->vdev_top; 3081 uint8_t cant_read = vd->vdev_cant_read; 3082 boolean_t required; 3083 3084 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3085 3086 if (vd == spa->spa_root_vdev || vd == tvd) 3087 return (B_TRUE); 3088 3089 /* 3090 * Temporarily mark the device as unreadable, and then determine 3091 * whether this results in any DTL outages in the top-level vdev. 3092 * If not, we can safely offline/detach/remove the device. 3093 */ 3094 vd->vdev_cant_read = B_TRUE; 3095 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3096 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 3097 vd->vdev_cant_read = cant_read; 3098 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3099 3100 if (!required && zio_injection_enabled) { 3101 required = !!zio_handle_device_injection(vd, NULL, 3102 SET_ERROR(ECHILD)); 3103 } 3104 3105 return (required); 3106 } 3107 3108 /* 3109 * Determine if resilver is needed, and if so the txg range. 3110 */ 3111 boolean_t 3112 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 3113 { 3114 boolean_t needed = B_FALSE; 3115 uint64_t thismin = UINT64_MAX; 3116 uint64_t thismax = 0; 3117 3118 if (vd->vdev_children == 0) { 3119 mutex_enter(&vd->vdev_dtl_lock); 3120 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3121 vdev_writeable(vd)) { 3122 3123 thismin = vdev_dtl_min(vd); 3124 thismax = vdev_dtl_max(vd); 3125 needed = B_TRUE; 3126 } 3127 mutex_exit(&vd->vdev_dtl_lock); 3128 } else { 3129 for (int c = 0; c < vd->vdev_children; c++) { 3130 vdev_t *cvd = vd->vdev_child[c]; 3131 uint64_t cmin, cmax; 3132 3133 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 3134 thismin = MIN(thismin, cmin); 3135 thismax = MAX(thismax, cmax); 3136 needed = B_TRUE; 3137 } 3138 } 3139 } 3140 3141 if (needed && minp) { 3142 *minp = thismin; 3143 *maxp = thismax; 3144 } 3145 return (needed); 3146 } 3147 3148 /* 3149 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj 3150 * will contain either the checkpoint spacemap object or zero if none exists. 3151 * All other errors are returned to the caller. 3152 */ 3153 int 3154 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj) 3155 { 3156 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 3157 3158 if (vd->vdev_top_zap == 0) { 3159 *sm_obj = 0; 3160 return (0); 3161 } 3162 3163 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, 3164 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj); 3165 if (error == ENOENT) { 3166 *sm_obj = 0; 3167 error = 0; 3168 } 3169 3170 return (error); 3171 } 3172 3173 int 3174 vdev_load(vdev_t *vd) 3175 { 3176 int error = 0; 3177 3178 /* 3179 * Recursively load all children. 3180 */ 3181 for (int c = 0; c < vd->vdev_children; c++) { 3182 error = vdev_load(vd->vdev_child[c]); 3183 if (error != 0) { 3184 return (error); 3185 } 3186 } 3187 3188 vdev_set_deflate_ratio(vd); 3189 3190 /* 3191 * On spa_load path, grab the allocation bias from our zap 3192 */ 3193 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3194 spa_t *spa = vd->vdev_spa; 3195 char bias_str[64]; 3196 3197 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3198 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str), 3199 bias_str); 3200 if (error == 0) { 3201 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE); 3202 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str); 3203 } else if (error != ENOENT) { 3204 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3205 VDEV_AUX_CORRUPT_DATA); 3206 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) " 3207 "failed [error=%d]", vd->vdev_top_zap, error); 3208 return (error); 3209 } 3210 } 3211 3212 /* 3213 * Load any rebuild state from the top-level vdev zap. 3214 */ 3215 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3216 error = vdev_rebuild_load(vd); 3217 if (error && error != ENOTSUP) { 3218 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3219 VDEV_AUX_CORRUPT_DATA); 3220 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load " 3221 "failed [error=%d]", error); 3222 return (error); 3223 } 3224 } 3225 3226 /* 3227 * If this is a top-level vdev, initialize its metaslabs. 3228 */ 3229 if (vd == vd->vdev_top && vdev_is_concrete(vd)) { 3230 vdev_metaslab_group_create(vd); 3231 3232 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { 3233 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3234 VDEV_AUX_CORRUPT_DATA); 3235 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " 3236 "asize=%llu", (u_longlong_t)vd->vdev_ashift, 3237 (u_longlong_t)vd->vdev_asize); 3238 return (SET_ERROR(ENXIO)); 3239 } 3240 3241 error = vdev_metaslab_init(vd, 0); 3242 if (error != 0) { 3243 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " 3244 "[error=%d]", error); 3245 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3246 VDEV_AUX_CORRUPT_DATA); 3247 return (error); 3248 } 3249 3250 uint64_t checkpoint_sm_obj; 3251 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj); 3252 if (error == 0 && checkpoint_sm_obj != 0) { 3253 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3254 ASSERT(vd->vdev_asize != 0); 3255 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL); 3256 3257 error = space_map_open(&vd->vdev_checkpoint_sm, 3258 mos, checkpoint_sm_obj, 0, vd->vdev_asize, 3259 vd->vdev_ashift); 3260 if (error != 0) { 3261 vdev_dbgmsg(vd, "vdev_load: space_map_open " 3262 "failed for checkpoint spacemap (obj %llu) " 3263 "[error=%d]", 3264 (u_longlong_t)checkpoint_sm_obj, error); 3265 return (error); 3266 } 3267 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 3268 3269 /* 3270 * Since the checkpoint_sm contains free entries 3271 * exclusively we can use space_map_allocated() to 3272 * indicate the cumulative checkpointed space that 3273 * has been freed. 3274 */ 3275 vd->vdev_stat.vs_checkpoint_space = 3276 -space_map_allocated(vd->vdev_checkpoint_sm); 3277 vd->vdev_spa->spa_checkpoint_info.sci_dspace += 3278 vd->vdev_stat.vs_checkpoint_space; 3279 } else if (error != 0) { 3280 vdev_dbgmsg(vd, "vdev_load: failed to retrieve " 3281 "checkpoint space map object from vdev ZAP " 3282 "[error=%d]", error); 3283 return (error); 3284 } 3285 } 3286 3287 /* 3288 * If this is a leaf vdev, load its DTL. 3289 */ 3290 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { 3291 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3292 VDEV_AUX_CORRUPT_DATA); 3293 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " 3294 "[error=%d]", error); 3295 return (error); 3296 } 3297 3298 uint64_t obsolete_sm_object; 3299 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object); 3300 if (error == 0 && obsolete_sm_object != 0) { 3301 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3302 ASSERT(vd->vdev_asize != 0); 3303 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 3304 3305 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, 3306 obsolete_sm_object, 0, vd->vdev_asize, 0))) { 3307 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3308 VDEV_AUX_CORRUPT_DATA); 3309 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " 3310 "obsolete spacemap (obj %llu) [error=%d]", 3311 (u_longlong_t)obsolete_sm_object, error); 3312 return (error); 3313 } 3314 } else if (error != 0) { 3315 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete " 3316 "space map object from vdev ZAP [error=%d]", error); 3317 return (error); 3318 } 3319 3320 return (0); 3321 } 3322 3323 /* 3324 * The special vdev case is used for hot spares and l2cache devices. Its 3325 * sole purpose it to set the vdev state for the associated vdev. To do this, 3326 * we make sure that we can open the underlying device, then try to read the 3327 * label, and make sure that the label is sane and that it hasn't been 3328 * repurposed to another pool. 3329 */ 3330 int 3331 vdev_validate_aux(vdev_t *vd) 3332 { 3333 nvlist_t *label; 3334 uint64_t guid, version; 3335 uint64_t state; 3336 3337 if (!vdev_readable(vd)) 3338 return (0); 3339 3340 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 3341 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3342 VDEV_AUX_CORRUPT_DATA); 3343 return (-1); 3344 } 3345 3346 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 3347 !SPA_VERSION_IS_SUPPORTED(version) || 3348 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 3349 guid != vd->vdev_guid || 3350 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 3351 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3352 VDEV_AUX_CORRUPT_DATA); 3353 nvlist_free(label); 3354 return (-1); 3355 } 3356 3357 /* 3358 * We don't actually check the pool state here. If it's in fact in 3359 * use by another pool, we update this fact on the fly when requested. 3360 */ 3361 nvlist_free(label); 3362 return (0); 3363 } 3364 3365 static void 3366 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx) 3367 { 3368 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3369 3370 if (vd->vdev_top_zap == 0) 3371 return; 3372 3373 uint64_t object = 0; 3374 int err = zap_lookup(mos, vd->vdev_top_zap, 3375 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object); 3376 if (err == ENOENT) 3377 return; 3378 VERIFY0(err); 3379 3380 VERIFY0(dmu_object_free(mos, object, tx)); 3381 VERIFY0(zap_remove(mos, vd->vdev_top_zap, 3382 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx)); 3383 } 3384 3385 /* 3386 * Free the objects used to store this vdev's spacemaps, and the array 3387 * that points to them. 3388 */ 3389 void 3390 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) 3391 { 3392 if (vd->vdev_ms_array == 0) 3393 return; 3394 3395 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3396 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; 3397 size_t array_bytes = array_count * sizeof (uint64_t); 3398 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); 3399 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, 3400 array_bytes, smobj_array, 0)); 3401 3402 for (uint64_t i = 0; i < array_count; i++) { 3403 uint64_t smobj = smobj_array[i]; 3404 if (smobj == 0) 3405 continue; 3406 3407 space_map_free_obj(mos, smobj, tx); 3408 } 3409 3410 kmem_free(smobj_array, array_bytes); 3411 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); 3412 vdev_destroy_ms_flush_data(vd, tx); 3413 vd->vdev_ms_array = 0; 3414 } 3415 3416 static void 3417 vdev_remove_empty_log(vdev_t *vd, uint64_t txg) 3418 { 3419 spa_t *spa = vd->vdev_spa; 3420 3421 ASSERT(vd->vdev_islog); 3422 ASSERT(vd == vd->vdev_top); 3423 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 3424 3425 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 3426 3427 vdev_destroy_spacemaps(vd, tx); 3428 if (vd->vdev_top_zap != 0) { 3429 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 3430 vd->vdev_top_zap = 0; 3431 } 3432 3433 dmu_tx_commit(tx); 3434 } 3435 3436 void 3437 vdev_sync_done(vdev_t *vd, uint64_t txg) 3438 { 3439 metaslab_t *msp; 3440 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 3441 3442 ASSERT(vdev_is_concrete(vd)); 3443 3444 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 3445 != NULL) 3446 metaslab_sync_done(msp, txg); 3447 3448 if (reassess) 3449 metaslab_sync_reassess(vd->vdev_mg); 3450 } 3451 3452 void 3453 vdev_sync(vdev_t *vd, uint64_t txg) 3454 { 3455 spa_t *spa = vd->vdev_spa; 3456 vdev_t *lvd; 3457 metaslab_t *msp; 3458 3459 ASSERT3U(txg, ==, spa->spa_syncing_txg); 3460 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3461 if (range_tree_space(vd->vdev_obsolete_segments) > 0) { 3462 ASSERT(vd->vdev_removing || 3463 vd->vdev_ops == &vdev_indirect_ops); 3464 3465 vdev_indirect_sync_obsolete(vd, tx); 3466 3467 /* 3468 * If the vdev is indirect, it can't have dirty 3469 * metaslabs or DTLs. 3470 */ 3471 if (vd->vdev_ops == &vdev_indirect_ops) { 3472 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); 3473 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); 3474 dmu_tx_commit(tx); 3475 return; 3476 } 3477 } 3478 3479 ASSERT(vdev_is_concrete(vd)); 3480 3481 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && 3482 !vd->vdev_removing) { 3483 ASSERT(vd == vd->vdev_top); 3484 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 3485 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 3486 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 3487 ASSERT(vd->vdev_ms_array != 0); 3488 vdev_config_dirty(vd); 3489 } 3490 3491 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 3492 metaslab_sync(msp, txg); 3493 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 3494 } 3495 3496 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 3497 vdev_dtl_sync(lvd, txg); 3498 3499 /* 3500 * If this is an empty log device being removed, destroy the 3501 * metadata associated with it. 3502 */ 3503 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 3504 vdev_remove_empty_log(vd, txg); 3505 3506 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 3507 dmu_tx_commit(tx); 3508 } 3509 3510 uint64_t 3511 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 3512 { 3513 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 3514 } 3515 3516 /* 3517 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 3518 * not be opened, and no I/O is attempted. 3519 */ 3520 int 3521 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3522 { 3523 vdev_t *vd, *tvd; 3524 3525 spa_vdev_state_enter(spa, SCL_NONE); 3526 3527 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3528 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 3529 3530 if (!vd->vdev_ops->vdev_op_leaf) 3531 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 3532 3533 tvd = vd->vdev_top; 3534 3535 /* 3536 * If user did a 'zpool offline -f' then make the fault persist across 3537 * reboots. 3538 */ 3539 if (aux == VDEV_AUX_EXTERNAL_PERSIST) { 3540 /* 3541 * There are two kinds of forced faults: temporary and 3542 * persistent. Temporary faults go away at pool import, while 3543 * persistent faults stay set. Both types of faults can be 3544 * cleared with a zpool clear. 3545 * 3546 * We tell if a vdev is persistently faulted by looking at the 3547 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at 3548 * import then it's a persistent fault. Otherwise, it's 3549 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external" 3550 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This 3551 * tells vdev_config_generate() (which gets run later) to set 3552 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist. 3553 */ 3554 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 3555 vd->vdev_tmpoffline = B_FALSE; 3556 aux = VDEV_AUX_EXTERNAL; 3557 } else { 3558 vd->vdev_tmpoffline = B_TRUE; 3559 } 3560 3561 /* 3562 * We don't directly use the aux state here, but if we do a 3563 * vdev_reopen(), we need this value to be present to remember why we 3564 * were faulted. 3565 */ 3566 vd->vdev_label_aux = aux; 3567 3568 /* 3569 * Faulted state takes precedence over degraded. 3570 */ 3571 vd->vdev_delayed_close = B_FALSE; 3572 vd->vdev_faulted = 1ULL; 3573 vd->vdev_degraded = 0ULL; 3574 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 3575 3576 /* 3577 * If this device has the only valid copy of the data, then 3578 * back off and simply mark the vdev as degraded instead. 3579 */ 3580 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 3581 vd->vdev_degraded = 1ULL; 3582 vd->vdev_faulted = 0ULL; 3583 3584 /* 3585 * If we reopen the device and it's not dead, only then do we 3586 * mark it degraded. 3587 */ 3588 vdev_reopen(tvd); 3589 3590 if (vdev_readable(vd)) 3591 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 3592 } 3593 3594 return (spa_vdev_state_exit(spa, vd, 0)); 3595 } 3596 3597 /* 3598 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 3599 * user that something is wrong. The vdev continues to operate as normal as far 3600 * as I/O is concerned. 3601 */ 3602 int 3603 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3604 { 3605 vdev_t *vd; 3606 3607 spa_vdev_state_enter(spa, SCL_NONE); 3608 3609 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3610 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 3611 3612 if (!vd->vdev_ops->vdev_op_leaf) 3613 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 3614 3615 /* 3616 * If the vdev is already faulted, then don't do anything. 3617 */ 3618 if (vd->vdev_faulted || vd->vdev_degraded) 3619 return (spa_vdev_state_exit(spa, NULL, 0)); 3620 3621 vd->vdev_degraded = 1ULL; 3622 if (!vdev_is_dead(vd)) 3623 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 3624 aux); 3625 3626 return (spa_vdev_state_exit(spa, vd, 0)); 3627 } 3628 3629 /* 3630 * Online the given vdev. 3631 * 3632 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 3633 * spare device should be detached when the device finishes resilvering. 3634 * Second, the online should be treated like a 'test' online case, so no FMA 3635 * events are generated if the device fails to open. 3636 */ 3637 int 3638 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 3639 { 3640 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 3641 boolean_t wasoffline; 3642 vdev_state_t oldstate; 3643 3644 spa_vdev_state_enter(spa, SCL_NONE); 3645 3646 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3647 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 3648 3649 if (!vd->vdev_ops->vdev_op_leaf) 3650 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 3651 3652 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 3653 oldstate = vd->vdev_state; 3654 3655 tvd = vd->vdev_top; 3656 vd->vdev_offline = B_FALSE; 3657 vd->vdev_tmpoffline = B_FALSE; 3658 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 3659 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 3660 3661 /* XXX - L2ARC 1.0 does not support expansion */ 3662 if (!vd->vdev_aux) { 3663 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3664 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) || 3665 spa->spa_autoexpand); 3666 vd->vdev_expansion_time = gethrestime_sec(); 3667 } 3668 3669 vdev_reopen(tvd); 3670 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 3671 3672 if (!vd->vdev_aux) { 3673 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 3674 pvd->vdev_expanding = B_FALSE; 3675 } 3676 3677 if (newstate) 3678 *newstate = vd->vdev_state; 3679 if ((flags & ZFS_ONLINE_UNSPARE) && 3680 !vdev_is_dead(vd) && vd->vdev_parent && 3681 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 3682 vd->vdev_parent->vdev_child[0] == vd) 3683 vd->vdev_unspare = B_TRUE; 3684 3685 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 3686 3687 /* XXX - L2ARC 1.0 does not support expansion */ 3688 if (vd->vdev_aux) 3689 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 3690 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 3691 } 3692 3693 /* Restart initializing if necessary */ 3694 mutex_enter(&vd->vdev_initialize_lock); 3695 if (vdev_writeable(vd) && 3696 vd->vdev_initialize_thread == NULL && 3697 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { 3698 (void) vdev_initialize(vd); 3699 } 3700 mutex_exit(&vd->vdev_initialize_lock); 3701 3702 /* 3703 * Restart trimming if necessary. We do not restart trimming for cache 3704 * devices here. This is triggered by l2arc_rebuild_vdev() 3705 * asynchronously for the whole device or in l2arc_evict() as it evicts 3706 * space for upcoming writes. 3707 */ 3708 mutex_enter(&vd->vdev_trim_lock); 3709 if (vdev_writeable(vd) && !vd->vdev_isl2cache && 3710 vd->vdev_trim_thread == NULL && 3711 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) { 3712 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial, 3713 vd->vdev_trim_secure); 3714 } 3715 mutex_exit(&vd->vdev_trim_lock); 3716 3717 if (wasoffline || 3718 (oldstate < VDEV_STATE_DEGRADED && 3719 vd->vdev_state >= VDEV_STATE_DEGRADED)) 3720 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 3721 3722 return (spa_vdev_state_exit(spa, vd, 0)); 3723 } 3724 3725 static int 3726 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 3727 { 3728 vdev_t *vd, *tvd; 3729 int error = 0; 3730 uint64_t generation; 3731 metaslab_group_t *mg; 3732 3733 top: 3734 spa_vdev_state_enter(spa, SCL_ALLOC); 3735 3736 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3737 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 3738 3739 if (!vd->vdev_ops->vdev_op_leaf) 3740 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 3741 3742 tvd = vd->vdev_top; 3743 mg = tvd->vdev_mg; 3744 generation = spa->spa_config_generation + 1; 3745 3746 /* 3747 * If the device isn't already offline, try to offline it. 3748 */ 3749 if (!vd->vdev_offline) { 3750 /* 3751 * If this device has the only valid copy of some data, 3752 * don't allow it to be offlined. Log devices are always 3753 * expendable. 3754 */ 3755 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 3756 vdev_dtl_required(vd)) 3757 return (spa_vdev_state_exit(spa, NULL, 3758 SET_ERROR(EBUSY))); 3759 3760 /* 3761 * If the top-level is a slog and it has had allocations 3762 * then proceed. We check that the vdev's metaslab group 3763 * is not NULL since it's possible that we may have just 3764 * added this vdev but not yet initialized its metaslabs. 3765 */ 3766 if (tvd->vdev_islog && mg != NULL) { 3767 /* 3768 * Prevent any future allocations. 3769 */ 3770 metaslab_group_passivate(mg); 3771 (void) spa_vdev_state_exit(spa, vd, 0); 3772 3773 error = spa_reset_logs(spa); 3774 3775 /* 3776 * If the log device was successfully reset but has 3777 * checkpointed data, do not offline it. 3778 */ 3779 if (error == 0 && 3780 tvd->vdev_checkpoint_sm != NULL) { 3781 ASSERT3U(space_map_allocated( 3782 tvd->vdev_checkpoint_sm), !=, 0); 3783 error = ZFS_ERR_CHECKPOINT_EXISTS; 3784 } 3785 3786 spa_vdev_state_enter(spa, SCL_ALLOC); 3787 3788 /* 3789 * Check to see if the config has changed. 3790 */ 3791 if (error || generation != spa->spa_config_generation) { 3792 metaslab_group_activate(mg); 3793 if (error) 3794 return (spa_vdev_state_exit(spa, 3795 vd, error)); 3796 (void) spa_vdev_state_exit(spa, vd, 0); 3797 goto top; 3798 } 3799 ASSERT0(tvd->vdev_stat.vs_alloc); 3800 } 3801 3802 /* 3803 * Offline this device and reopen its top-level vdev. 3804 * If the top-level vdev is a log device then just offline 3805 * it. Otherwise, if this action results in the top-level 3806 * vdev becoming unusable, undo it and fail the request. 3807 */ 3808 vd->vdev_offline = B_TRUE; 3809 vdev_reopen(tvd); 3810 3811 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 3812 vdev_is_dead(tvd)) { 3813 vd->vdev_offline = B_FALSE; 3814 vdev_reopen(tvd); 3815 return (spa_vdev_state_exit(spa, NULL, 3816 SET_ERROR(EBUSY))); 3817 } 3818 3819 /* 3820 * Add the device back into the metaslab rotor so that 3821 * once we online the device it's open for business. 3822 */ 3823 if (tvd->vdev_islog && mg != NULL) 3824 metaslab_group_activate(mg); 3825 } 3826 3827 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 3828 3829 return (spa_vdev_state_exit(spa, vd, 0)); 3830 } 3831 3832 int 3833 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 3834 { 3835 int error; 3836 3837 mutex_enter(&spa->spa_vdev_top_lock); 3838 error = vdev_offline_locked(spa, guid, flags); 3839 mutex_exit(&spa->spa_vdev_top_lock); 3840 3841 return (error); 3842 } 3843 3844 /* 3845 * Clear the error counts associated with this vdev. Unlike vdev_online() and 3846 * vdev_offline(), we assume the spa config is locked. We also clear all 3847 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 3848 */ 3849 void 3850 vdev_clear(spa_t *spa, vdev_t *vd) 3851 { 3852 vdev_t *rvd = spa->spa_root_vdev; 3853 3854 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3855 3856 if (vd == NULL) 3857 vd = rvd; 3858 3859 vd->vdev_stat.vs_read_errors = 0; 3860 vd->vdev_stat.vs_write_errors = 0; 3861 vd->vdev_stat.vs_checksum_errors = 0; 3862 vd->vdev_stat.vs_slow_ios = 0; 3863 3864 for (int c = 0; c < vd->vdev_children; c++) 3865 vdev_clear(spa, vd->vdev_child[c]); 3866 3867 /* 3868 * It makes no sense to "clear" an indirect vdev. 3869 */ 3870 if (!vdev_is_concrete(vd)) 3871 return; 3872 3873 /* 3874 * If we're in the FAULTED state or have experienced failed I/O, then 3875 * clear the persistent state and attempt to reopen the device. We 3876 * also mark the vdev config dirty, so that the new faulted state is 3877 * written out to disk. 3878 */ 3879 if (vd->vdev_faulted || vd->vdev_degraded || 3880 !vdev_readable(vd) || !vdev_writeable(vd)) { 3881 /* 3882 * When reopening in response to a clear event, it may be due to 3883 * a fmadm repair request. In this case, if the device is 3884 * still broken, we want to still post the ereport again. 3885 */ 3886 vd->vdev_forcefault = B_TRUE; 3887 3888 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 3889 vd->vdev_cant_read = B_FALSE; 3890 vd->vdev_cant_write = B_FALSE; 3891 vd->vdev_stat.vs_aux = 0; 3892 3893 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 3894 3895 vd->vdev_forcefault = B_FALSE; 3896 3897 if (vd != rvd && vdev_writeable(vd->vdev_top)) 3898 vdev_state_dirty(vd->vdev_top); 3899 3900 /* If a resilver isn't required, check if vdevs can be culled */ 3901 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) && 3902 !dsl_scan_resilvering(spa->spa_dsl_pool) && 3903 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool)) 3904 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 3905 3906 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 3907 } 3908 3909 /* 3910 * When clearing a FMA-diagnosed fault, we always want to 3911 * unspare the device, as we assume that the original spare was 3912 * done in response to the FMA fault. 3913 */ 3914 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 3915 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 3916 vd->vdev_parent->vdev_child[0] == vd) 3917 vd->vdev_unspare = B_TRUE; 3918 } 3919 3920 boolean_t 3921 vdev_is_dead(vdev_t *vd) 3922 { 3923 /* 3924 * Holes and missing devices are always considered "dead". 3925 * This simplifies the code since we don't have to check for 3926 * these types of devices in the various code paths. 3927 * Instead we rely on the fact that we skip over dead devices 3928 * before issuing I/O to them. 3929 */ 3930 return (vd->vdev_state < VDEV_STATE_DEGRADED || 3931 vd->vdev_ops == &vdev_hole_ops || 3932 vd->vdev_ops == &vdev_missing_ops); 3933 } 3934 3935 boolean_t 3936 vdev_readable(vdev_t *vd) 3937 { 3938 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 3939 } 3940 3941 boolean_t 3942 vdev_writeable(vdev_t *vd) 3943 { 3944 return (!vdev_is_dead(vd) && !vd->vdev_cant_write && 3945 vdev_is_concrete(vd)); 3946 } 3947 3948 boolean_t 3949 vdev_allocatable(vdev_t *vd) 3950 { 3951 uint64_t state = vd->vdev_state; 3952 3953 /* 3954 * We currently allow allocations from vdevs which may be in the 3955 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 3956 * fails to reopen then we'll catch it later when we're holding 3957 * the proper locks. Note that we have to get the vdev state 3958 * in a local variable because although it changes atomically, 3959 * we're asking two separate questions about it. 3960 */ 3961 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 3962 !vd->vdev_cant_write && vdev_is_concrete(vd) && 3963 vd->vdev_mg->mg_initialized); 3964 } 3965 3966 boolean_t 3967 vdev_accessible(vdev_t *vd, zio_t *zio) 3968 { 3969 ASSERT(zio->io_vd == vd); 3970 3971 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 3972 return (B_FALSE); 3973 3974 if (zio->io_type == ZIO_TYPE_READ) 3975 return (!vd->vdev_cant_read); 3976 3977 if (zio->io_type == ZIO_TYPE_WRITE) 3978 return (!vd->vdev_cant_write); 3979 3980 return (B_TRUE); 3981 } 3982 3983 static void 3984 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs) 3985 { 3986 for (int t = 0; t < VS_ZIO_TYPES; t++) { 3987 vs->vs_ops[t] += cvs->vs_ops[t]; 3988 vs->vs_bytes[t] += cvs->vs_bytes[t]; 3989 } 3990 3991 cvs->vs_scan_removing = cvd->vdev_removing; 3992 } 3993 3994 /* 3995 * Get extended stats 3996 */ 3997 static void 3998 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx) 3999 { 4000 int t, b; 4001 for (t = 0; t < ZIO_TYPES; t++) { 4002 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++) 4003 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b]; 4004 4005 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) { 4006 vsx->vsx_total_histo[t][b] += 4007 cvsx->vsx_total_histo[t][b]; 4008 } 4009 } 4010 4011 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4012 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) { 4013 vsx->vsx_queue_histo[t][b] += 4014 cvsx->vsx_queue_histo[t][b]; 4015 } 4016 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t]; 4017 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t]; 4018 4019 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++) 4020 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b]; 4021 4022 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++) 4023 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b]; 4024 } 4025 4026 } 4027 4028 boolean_t 4029 vdev_is_spacemap_addressable(vdev_t *vd) 4030 { 4031 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) 4032 return (B_TRUE); 4033 4034 /* 4035 * If double-word space map entries are not enabled we assume 4036 * 47 bits of the space map entry are dedicated to the entry's 4037 * offset (see SM_OFFSET_BITS in space_map.h). We then use that 4038 * to calculate the maximum address that can be described by a 4039 * space map entry for the given device. 4040 */ 4041 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; 4042 4043 if (shift >= 63) /* detect potential overflow */ 4044 return (B_TRUE); 4045 4046 return (vd->vdev_asize < (1ULL << shift)); 4047 } 4048 4049 /* 4050 * Get statistics for the given vdev. 4051 */ 4052 static void 4053 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4054 { 4055 int t; 4056 /* 4057 * If we're getting stats on the root vdev, aggregate the I/O counts 4058 * over all top-level vdevs (i.e. the direct children of the root). 4059 */ 4060 if (!vd->vdev_ops->vdev_op_leaf) { 4061 if (vs) { 4062 memset(vs->vs_ops, 0, sizeof (vs->vs_ops)); 4063 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes)); 4064 } 4065 if (vsx) 4066 memset(vsx, 0, sizeof (*vsx)); 4067 4068 for (int c = 0; c < vd->vdev_children; c++) { 4069 vdev_t *cvd = vd->vdev_child[c]; 4070 vdev_stat_t *cvs = &cvd->vdev_stat; 4071 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex; 4072 4073 vdev_get_stats_ex_impl(cvd, cvs, cvsx); 4074 if (vs) 4075 vdev_get_child_stat(cvd, vs, cvs); 4076 if (vsx) 4077 vdev_get_child_stat_ex(cvd, vsx, cvsx); 4078 4079 } 4080 } else { 4081 /* 4082 * We're a leaf. Just copy our ZIO active queue stats in. The 4083 * other leaf stats are updated in vdev_stat_update(). 4084 */ 4085 if (!vsx) 4086 return; 4087 4088 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex)); 4089 4090 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) { 4091 vsx->vsx_active_queue[t] = 4092 vd->vdev_queue.vq_class[t].vqc_active; 4093 vsx->vsx_pend_queue[t] = avl_numnodes( 4094 &vd->vdev_queue.vq_class[t].vqc_queued_tree); 4095 } 4096 } 4097 } 4098 4099 void 4100 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4101 { 4102 vdev_t *tvd = vd->vdev_top; 4103 mutex_enter(&vd->vdev_stat_lock); 4104 if (vs) { 4105 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 4106 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 4107 vs->vs_state = vd->vdev_state; 4108 vs->vs_rsize = vdev_get_min_asize(vd); 4109 4110 if (vd->vdev_ops->vdev_op_leaf) { 4111 vs->vs_rsize += VDEV_LABEL_START_SIZE + 4112 VDEV_LABEL_END_SIZE; 4113 /* 4114 * Report initializing progress. Since we don't 4115 * have the initializing locks held, this is only 4116 * an estimate (although a fairly accurate one). 4117 */ 4118 vs->vs_initialize_bytes_done = 4119 vd->vdev_initialize_bytes_done; 4120 vs->vs_initialize_bytes_est = 4121 vd->vdev_initialize_bytes_est; 4122 vs->vs_initialize_state = vd->vdev_initialize_state; 4123 vs->vs_initialize_action_time = 4124 vd->vdev_initialize_action_time; 4125 4126 /* 4127 * Report manual TRIM progress. Since we don't have 4128 * the manual TRIM locks held, this is only an 4129 * estimate (although fairly accurate one). 4130 */ 4131 vs->vs_trim_notsup = !vd->vdev_has_trim; 4132 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done; 4133 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est; 4134 vs->vs_trim_state = vd->vdev_trim_state; 4135 vs->vs_trim_action_time = vd->vdev_trim_action_time; 4136 4137 /* Set when there is a deferred resilver. */ 4138 vs->vs_resilver_deferred = vd->vdev_resilver_deferred; 4139 } 4140 4141 /* 4142 * Report expandable space on top-level, non-auxiliary devices 4143 * only. The expandable space is reported in terms of metaslab 4144 * sized units since that determines how much space the pool 4145 * can expand. 4146 */ 4147 if (vd->vdev_aux == NULL && tvd != NULL) { 4148 vs->vs_esize = P2ALIGN( 4149 vd->vdev_max_asize - vd->vdev_asize, 4150 1ULL << tvd->vdev_ms_shift); 4151 } 4152 4153 vs->vs_configured_ashift = vd->vdev_top != NULL 4154 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift; 4155 vs->vs_logical_ashift = vd->vdev_logical_ashift; 4156 vs->vs_physical_ashift = vd->vdev_physical_ashift; 4157 4158 /* 4159 * Report fragmentation and rebuild progress for top-level, 4160 * non-auxiliary, concrete devices. 4161 */ 4162 if (vd->vdev_aux == NULL && vd == vd->vdev_top && 4163 vdev_is_concrete(vd)) { 4164 vs->vs_fragmentation = (vd->vdev_mg != NULL) ? 4165 vd->vdev_mg->mg_fragmentation : 0; 4166 } 4167 } 4168 4169 vdev_get_stats_ex_impl(vd, vs, vsx); 4170 mutex_exit(&vd->vdev_stat_lock); 4171 } 4172 4173 void 4174 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 4175 { 4176 return (vdev_get_stats_ex(vd, vs, NULL)); 4177 } 4178 4179 void 4180 vdev_clear_stats(vdev_t *vd) 4181 { 4182 mutex_enter(&vd->vdev_stat_lock); 4183 vd->vdev_stat.vs_space = 0; 4184 vd->vdev_stat.vs_dspace = 0; 4185 vd->vdev_stat.vs_alloc = 0; 4186 mutex_exit(&vd->vdev_stat_lock); 4187 } 4188 4189 void 4190 vdev_scan_stat_init(vdev_t *vd) 4191 { 4192 vdev_stat_t *vs = &vd->vdev_stat; 4193 4194 for (int c = 0; c < vd->vdev_children; c++) 4195 vdev_scan_stat_init(vd->vdev_child[c]); 4196 4197 mutex_enter(&vd->vdev_stat_lock); 4198 vs->vs_scan_processed = 0; 4199 mutex_exit(&vd->vdev_stat_lock); 4200 } 4201 4202 void 4203 vdev_stat_update(zio_t *zio, uint64_t psize) 4204 { 4205 spa_t *spa = zio->io_spa; 4206 vdev_t *rvd = spa->spa_root_vdev; 4207 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 4208 vdev_t *pvd; 4209 uint64_t txg = zio->io_txg; 4210 vdev_stat_t *vs = &vd->vdev_stat; 4211 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex; 4212 zio_type_t type = zio->io_type; 4213 int flags = zio->io_flags; 4214 4215 /* 4216 * If this i/o is a gang leader, it didn't do any actual work. 4217 */ 4218 if (zio->io_gang_tree) 4219 return; 4220 4221 if (zio->io_error == 0) { 4222 /* 4223 * If this is a root i/o, don't count it -- we've already 4224 * counted the top-level vdevs, and vdev_get_stats() will 4225 * aggregate them when asked. This reduces contention on 4226 * the root vdev_stat_lock and implicitly handles blocks 4227 * that compress away to holes, for which there is no i/o. 4228 * (Holes never create vdev children, so all the counters 4229 * remain zero, which is what we want.) 4230 * 4231 * Note: this only applies to successful i/o (io_error == 0) 4232 * because unlike i/o counts, errors are not additive. 4233 * When reading a ditto block, for example, failure of 4234 * one top-level vdev does not imply a root-level error. 4235 */ 4236 if (vd == rvd) 4237 return; 4238 4239 ASSERT(vd == zio->io_vd); 4240 4241 if (flags & ZIO_FLAG_IO_BYPASS) 4242 return; 4243 4244 mutex_enter(&vd->vdev_stat_lock); 4245 4246 if (flags & ZIO_FLAG_IO_REPAIR) { 4247 /* 4248 * Repair is the result of a resilver issued by the 4249 * scan thread (spa_sync). 4250 */ 4251 if (flags & ZIO_FLAG_SCAN_THREAD) { 4252 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 4253 dsl_scan_phys_t *scn_phys = &scn->scn_phys; 4254 uint64_t *processed = &scn_phys->scn_processed; 4255 4256 if (vd->vdev_ops->vdev_op_leaf) 4257 atomic_add_64(processed, psize); 4258 vs->vs_scan_processed += psize; 4259 } 4260 4261 /* 4262 * Repair is the result of a rebuild issued by the 4263 * rebuild thread (vdev_rebuild_thread). 4264 */ 4265 if (zio->io_priority == ZIO_PRIORITY_REBUILD) { 4266 vdev_t *tvd = vd->vdev_top; 4267 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config; 4268 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 4269 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt; 4270 4271 if (vd->vdev_ops->vdev_op_leaf) 4272 atomic_add_64(rebuilt, psize); 4273 vs->vs_rebuild_processed += psize; 4274 } 4275 4276 if (flags & ZIO_FLAG_SELF_HEAL) 4277 vs->vs_self_healed += psize; 4278 } 4279 4280 /* 4281 * The bytes/ops/histograms are recorded at the leaf level and 4282 * aggregated into the higher level vdevs in vdev_get_stats(). 4283 */ 4284 if (vd->vdev_ops->vdev_op_leaf && 4285 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) { 4286 zio_type_t vs_type = type; 4287 zio_priority_t priority = zio->io_priority; 4288 4289 /* 4290 * TRIM ops and bytes are reported to user space as 4291 * ZIO_TYPE_IOCTL. This is done to preserve the 4292 * vdev_stat_t structure layout for user space. 4293 */ 4294 if (type == ZIO_TYPE_TRIM) 4295 vs_type = ZIO_TYPE_IOCTL; 4296 4297 /* 4298 * Solely for the purposes of 'zpool iostat -lqrw' 4299 * reporting use the priority to catagorize the IO. 4300 * Only the following are reported to user space: 4301 * 4302 * ZIO_PRIORITY_SYNC_READ, 4303 * ZIO_PRIORITY_SYNC_WRITE, 4304 * ZIO_PRIORITY_ASYNC_READ, 4305 * ZIO_PRIORITY_ASYNC_WRITE, 4306 * ZIO_PRIORITY_SCRUB, 4307 * ZIO_PRIORITY_TRIM. 4308 */ 4309 if (priority == ZIO_PRIORITY_REBUILD) { 4310 priority = ((type == ZIO_TYPE_WRITE) ? 4311 ZIO_PRIORITY_ASYNC_WRITE : 4312 ZIO_PRIORITY_SCRUB); 4313 } else if (priority == ZIO_PRIORITY_INITIALIZING) { 4314 ASSERT3U(type, ==, ZIO_TYPE_WRITE); 4315 priority = ZIO_PRIORITY_ASYNC_WRITE; 4316 } else if (priority == ZIO_PRIORITY_REMOVAL) { 4317 priority = ((type == ZIO_TYPE_WRITE) ? 4318 ZIO_PRIORITY_ASYNC_WRITE : 4319 ZIO_PRIORITY_ASYNC_READ); 4320 } 4321 4322 vs->vs_ops[vs_type]++; 4323 vs->vs_bytes[vs_type] += psize; 4324 4325 if (flags & ZIO_FLAG_DELEGATED) { 4326 vsx->vsx_agg_histo[priority] 4327 [RQ_HISTO(zio->io_size)]++; 4328 } else { 4329 vsx->vsx_ind_histo[priority] 4330 [RQ_HISTO(zio->io_size)]++; 4331 } 4332 4333 if (zio->io_delta && zio->io_delay) { 4334 vsx->vsx_queue_histo[priority] 4335 [L_HISTO(zio->io_delta - zio->io_delay)]++; 4336 vsx->vsx_disk_histo[type] 4337 [L_HISTO(zio->io_delay)]++; 4338 vsx->vsx_total_histo[type] 4339 [L_HISTO(zio->io_delta)]++; 4340 } 4341 } 4342 4343 mutex_exit(&vd->vdev_stat_lock); 4344 return; 4345 } 4346 4347 if (flags & ZIO_FLAG_SPECULATIVE) 4348 return; 4349 4350 /* 4351 * If this is an I/O error that is going to be retried, then ignore the 4352 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 4353 * hard errors, when in reality they can happen for any number of 4354 * innocuous reasons (bus resets, MPxIO link failure, etc). 4355 */ 4356 if (zio->io_error == EIO && 4357 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 4358 return; 4359 4360 /* 4361 * Intent logs writes won't propagate their error to the root 4362 * I/O so don't mark these types of failures as pool-level 4363 * errors. 4364 */ 4365 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 4366 return; 4367 4368 if (spa->spa_load_state == SPA_LOAD_NONE && 4369 type == ZIO_TYPE_WRITE && txg != 0 && 4370 (!(flags & ZIO_FLAG_IO_REPAIR) || 4371 (flags & ZIO_FLAG_SCAN_THREAD) || 4372 spa->spa_claiming)) { 4373 /* 4374 * This is either a normal write (not a repair), or it's 4375 * a repair induced by the scrub thread, or it's a repair 4376 * made by zil_claim() during spa_load() in the first txg. 4377 * In the normal case, we commit the DTL change in the same 4378 * txg as the block was born. In the scrub-induced repair 4379 * case, we know that scrubs run in first-pass syncing context, 4380 * so we commit the DTL change in spa_syncing_txg(spa). 4381 * In the zil_claim() case, we commit in spa_first_txg(spa). 4382 * 4383 * We currently do not make DTL entries for failed spontaneous 4384 * self-healing writes triggered by normal (non-scrubbing) 4385 * reads, because we have no transactional context in which to 4386 * do so -- and it's not clear that it'd be desirable anyway. 4387 */ 4388 if (vd->vdev_ops->vdev_op_leaf) { 4389 uint64_t commit_txg = txg; 4390 if (flags & ZIO_FLAG_SCAN_THREAD) { 4391 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 4392 ASSERT(spa_sync_pass(spa) == 1); 4393 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 4394 commit_txg = spa_syncing_txg(spa); 4395 } else if (spa->spa_claiming) { 4396 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 4397 commit_txg = spa_first_txg(spa); 4398 } 4399 ASSERT(commit_txg >= spa_syncing_txg(spa)); 4400 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 4401 return; 4402 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4403 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 4404 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 4405 } 4406 if (vd != rvd) 4407 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 4408 } 4409 } 4410 4411 int64_t 4412 vdev_deflated_space(vdev_t *vd, int64_t space) 4413 { 4414 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0); 4415 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 4416 4417 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio); 4418 } 4419 4420 /* 4421 * Update the in-core space usage stats for this vdev, its metaslab class, 4422 * and the root vdev. 4423 */ 4424 void 4425 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 4426 int64_t space_delta) 4427 { 4428 int64_t dspace_delta; 4429 spa_t *spa = vd->vdev_spa; 4430 vdev_t *rvd = spa->spa_root_vdev; 4431 4432 ASSERT(vd == vd->vdev_top); 4433 4434 /* 4435 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 4436 * factor. We must calculate this here and not at the root vdev 4437 * because the root vdev's psize-to-asize is simply the max of its 4438 * children's, thus not accurate enough for us. 4439 */ 4440 dspace_delta = vdev_deflated_space(vd, space_delta); 4441 4442 mutex_enter(&vd->vdev_stat_lock); 4443 /* ensure we won't underflow */ 4444 if (alloc_delta < 0) { 4445 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta); 4446 } 4447 4448 vd->vdev_stat.vs_alloc += alloc_delta; 4449 vd->vdev_stat.vs_space += space_delta; 4450 vd->vdev_stat.vs_dspace += dspace_delta; 4451 mutex_exit(&vd->vdev_stat_lock); 4452 4453 /* every class but log contributes to root space stats */ 4454 if (vd->vdev_mg != NULL && !vd->vdev_islog) { 4455 ASSERT(!vd->vdev_isl2cache); 4456 mutex_enter(&rvd->vdev_stat_lock); 4457 rvd->vdev_stat.vs_alloc += alloc_delta; 4458 rvd->vdev_stat.vs_space += space_delta; 4459 rvd->vdev_stat.vs_dspace += dspace_delta; 4460 mutex_exit(&rvd->vdev_stat_lock); 4461 } 4462 /* Note: metaslab_class_space_update moved to metaslab_space_update */ 4463 } 4464 4465 /* 4466 * Mark a top-level vdev's config as dirty, placing it on the dirty list 4467 * so that it will be written out next time the vdev configuration is synced. 4468 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 4469 */ 4470 void 4471 vdev_config_dirty(vdev_t *vd) 4472 { 4473 spa_t *spa = vd->vdev_spa; 4474 vdev_t *rvd = spa->spa_root_vdev; 4475 int c; 4476 4477 ASSERT(spa_writeable(spa)); 4478 4479 /* 4480 * If this is an aux vdev (as with l2cache and spare devices), then we 4481 * update the vdev config manually and set the sync flag. 4482 */ 4483 if (vd->vdev_aux != NULL) { 4484 spa_aux_vdev_t *sav = vd->vdev_aux; 4485 nvlist_t **aux; 4486 uint_t naux; 4487 4488 for (c = 0; c < sav->sav_count; c++) { 4489 if (sav->sav_vdevs[c] == vd) 4490 break; 4491 } 4492 4493 if (c == sav->sav_count) { 4494 /* 4495 * We're being removed. There's nothing more to do. 4496 */ 4497 ASSERT(sav->sav_sync == B_TRUE); 4498 return; 4499 } 4500 4501 sav->sav_sync = B_TRUE; 4502 4503 if (nvlist_lookup_nvlist_array(sav->sav_config, 4504 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 4505 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 4506 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 4507 } 4508 4509 ASSERT(c < naux); 4510 4511 /* 4512 * Setting the nvlist in the middle if the array is a little 4513 * sketchy, but it will work. 4514 */ 4515 nvlist_free(aux[c]); 4516 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 4517 4518 return; 4519 } 4520 4521 /* 4522 * The dirty list is protected by the SCL_CONFIG lock. The caller 4523 * must either hold SCL_CONFIG as writer, or must be the sync thread 4524 * (which holds SCL_CONFIG as reader). There's only one sync thread, 4525 * so this is sufficient to ensure mutual exclusion. 4526 */ 4527 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 4528 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4529 spa_config_held(spa, SCL_CONFIG, RW_READER))); 4530 4531 if (vd == rvd) { 4532 for (c = 0; c < rvd->vdev_children; c++) 4533 vdev_config_dirty(rvd->vdev_child[c]); 4534 } else { 4535 ASSERT(vd == vd->vdev_top); 4536 4537 if (!list_link_active(&vd->vdev_config_dirty_node) && 4538 vdev_is_concrete(vd)) { 4539 list_insert_head(&spa->spa_config_dirty_list, vd); 4540 } 4541 } 4542 } 4543 4544 void 4545 vdev_config_clean(vdev_t *vd) 4546 { 4547 spa_t *spa = vd->vdev_spa; 4548 4549 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 4550 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4551 spa_config_held(spa, SCL_CONFIG, RW_READER))); 4552 4553 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 4554 list_remove(&spa->spa_config_dirty_list, vd); 4555 } 4556 4557 /* 4558 * Mark a top-level vdev's state as dirty, so that the next pass of 4559 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 4560 * the state changes from larger config changes because they require 4561 * much less locking, and are often needed for administrative actions. 4562 */ 4563 void 4564 vdev_state_dirty(vdev_t *vd) 4565 { 4566 spa_t *spa = vd->vdev_spa; 4567 4568 ASSERT(spa_writeable(spa)); 4569 ASSERT(vd == vd->vdev_top); 4570 4571 /* 4572 * The state list is protected by the SCL_STATE lock. The caller 4573 * must either hold SCL_STATE as writer, or must be the sync thread 4574 * (which holds SCL_STATE as reader). There's only one sync thread, 4575 * so this is sufficient to ensure mutual exclusion. 4576 */ 4577 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 4578 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4579 spa_config_held(spa, SCL_STATE, RW_READER))); 4580 4581 if (!list_link_active(&vd->vdev_state_dirty_node) && 4582 vdev_is_concrete(vd)) 4583 list_insert_head(&spa->spa_state_dirty_list, vd); 4584 } 4585 4586 void 4587 vdev_state_clean(vdev_t *vd) 4588 { 4589 spa_t *spa = vd->vdev_spa; 4590 4591 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 4592 (dsl_pool_sync_context(spa_get_dsl(spa)) && 4593 spa_config_held(spa, SCL_STATE, RW_READER))); 4594 4595 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 4596 list_remove(&spa->spa_state_dirty_list, vd); 4597 } 4598 4599 /* 4600 * Propagate vdev state up from children to parent. 4601 */ 4602 void 4603 vdev_propagate_state(vdev_t *vd) 4604 { 4605 spa_t *spa = vd->vdev_spa; 4606 vdev_t *rvd = spa->spa_root_vdev; 4607 int degraded = 0, faulted = 0; 4608 int corrupted = 0; 4609 vdev_t *child; 4610 4611 if (vd->vdev_children > 0) { 4612 for (int c = 0; c < vd->vdev_children; c++) { 4613 child = vd->vdev_child[c]; 4614 4615 /* 4616 * Don't factor holes or indirect vdevs into the 4617 * decision. 4618 */ 4619 if (!vdev_is_concrete(child)) 4620 continue; 4621 4622 if (!vdev_readable(child) || 4623 (!vdev_writeable(child) && spa_writeable(spa))) { 4624 /* 4625 * Root special: if there is a top-level log 4626 * device, treat the root vdev as if it were 4627 * degraded. 4628 */ 4629 if (child->vdev_islog && vd == rvd) 4630 degraded++; 4631 else 4632 faulted++; 4633 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 4634 degraded++; 4635 } 4636 4637 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 4638 corrupted++; 4639 } 4640 4641 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 4642 4643 /* 4644 * Root special: if there is a top-level vdev that cannot be 4645 * opened due to corrupted metadata, then propagate the root 4646 * vdev's aux state as 'corrupt' rather than 'insufficient 4647 * replicas'. 4648 */ 4649 if (corrupted && vd == rvd && 4650 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 4651 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 4652 VDEV_AUX_CORRUPT_DATA); 4653 } 4654 4655 if (vd->vdev_parent) 4656 vdev_propagate_state(vd->vdev_parent); 4657 } 4658 4659 /* 4660 * Set a vdev's state. If this is during an open, we don't update the parent 4661 * state, because we're in the process of opening children depth-first. 4662 * Otherwise, we propagate the change to the parent. 4663 * 4664 * If this routine places a device in a faulted state, an appropriate ereport is 4665 * generated. 4666 */ 4667 void 4668 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 4669 { 4670 uint64_t save_state; 4671 spa_t *spa = vd->vdev_spa; 4672 4673 if (state == vd->vdev_state) { 4674 /* 4675 * Since vdev_offline() code path is already in an offline 4676 * state we can miss a statechange event to OFFLINE. Check 4677 * the previous state to catch this condition. 4678 */ 4679 if (vd->vdev_ops->vdev_op_leaf && 4680 (state == VDEV_STATE_OFFLINE) && 4681 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) { 4682 /* post an offline state change */ 4683 zfs_post_state_change(spa, vd, vd->vdev_prevstate); 4684 } 4685 vd->vdev_stat.vs_aux = aux; 4686 return; 4687 } 4688 4689 save_state = vd->vdev_state; 4690 4691 vd->vdev_state = state; 4692 vd->vdev_stat.vs_aux = aux; 4693 4694 /* 4695 * If we are setting the vdev state to anything but an open state, then 4696 * always close the underlying device unless the device has requested 4697 * a delayed close (i.e. we're about to remove or fault the device). 4698 * Otherwise, we keep accessible but invalid devices open forever. 4699 * We don't call vdev_close() itself, because that implies some extra 4700 * checks (offline, etc) that we don't want here. This is limited to 4701 * leaf devices, because otherwise closing the device will affect other 4702 * children. 4703 */ 4704 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 4705 vd->vdev_ops->vdev_op_leaf) 4706 vd->vdev_ops->vdev_op_close(vd); 4707 4708 if (vd->vdev_removed && 4709 state == VDEV_STATE_CANT_OPEN && 4710 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 4711 /* 4712 * If the previous state is set to VDEV_STATE_REMOVED, then this 4713 * device was previously marked removed and someone attempted to 4714 * reopen it. If this failed due to a nonexistent device, then 4715 * keep the device in the REMOVED state. We also let this be if 4716 * it is one of our special test online cases, which is only 4717 * attempting to online the device and shouldn't generate an FMA 4718 * fault. 4719 */ 4720 vd->vdev_state = VDEV_STATE_REMOVED; 4721 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 4722 } else if (state == VDEV_STATE_REMOVED) { 4723 vd->vdev_removed = B_TRUE; 4724 } else if (state == VDEV_STATE_CANT_OPEN) { 4725 /* 4726 * If we fail to open a vdev during an import or recovery, we 4727 * mark it as "not available", which signifies that it was 4728 * never there to begin with. Failure to open such a device 4729 * is not considered an error. 4730 */ 4731 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 4732 spa_load_state(spa) == SPA_LOAD_RECOVER) && 4733 vd->vdev_ops->vdev_op_leaf) 4734 vd->vdev_not_present = 1; 4735 4736 /* 4737 * Post the appropriate ereport. If the 'prevstate' field is 4738 * set to something other than VDEV_STATE_UNKNOWN, it indicates 4739 * that this is part of a vdev_reopen(). In this case, we don't 4740 * want to post the ereport if the device was already in the 4741 * CANT_OPEN state beforehand. 4742 * 4743 * If the 'checkremove' flag is set, then this is an attempt to 4744 * online the device in response to an insertion event. If we 4745 * hit this case, then we have detected an insertion event for a 4746 * faulted or offline device that wasn't in the removed state. 4747 * In this scenario, we don't post an ereport because we are 4748 * about to replace the device, or attempt an online with 4749 * vdev_forcefault, which will generate the fault for us. 4750 */ 4751 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 4752 !vd->vdev_not_present && !vd->vdev_checkremove && 4753 vd != spa->spa_root_vdev) { 4754 const char *class; 4755 4756 switch (aux) { 4757 case VDEV_AUX_OPEN_FAILED: 4758 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 4759 break; 4760 case VDEV_AUX_CORRUPT_DATA: 4761 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 4762 break; 4763 case VDEV_AUX_NO_REPLICAS: 4764 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 4765 break; 4766 case VDEV_AUX_BAD_GUID_SUM: 4767 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 4768 break; 4769 case VDEV_AUX_TOO_SMALL: 4770 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 4771 break; 4772 case VDEV_AUX_BAD_LABEL: 4773 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 4774 break; 4775 case VDEV_AUX_BAD_ASHIFT: 4776 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT; 4777 break; 4778 default: 4779 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 4780 } 4781 4782 (void) zfs_ereport_post(class, spa, vd, NULL, NULL, 4783 save_state); 4784 } 4785 4786 /* Erase any notion of persistent removed state */ 4787 vd->vdev_removed = B_FALSE; 4788 } else { 4789 vd->vdev_removed = B_FALSE; 4790 } 4791 4792 /* 4793 * Notify ZED of any significant state-change on a leaf vdev. 4794 * 4795 */ 4796 if (vd->vdev_ops->vdev_op_leaf) { 4797 /* preserve original state from a vdev_reopen() */ 4798 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) && 4799 (vd->vdev_prevstate != vd->vdev_state) && 4800 (save_state <= VDEV_STATE_CLOSED)) 4801 save_state = vd->vdev_prevstate; 4802 4803 /* filter out state change due to initial vdev_open */ 4804 if (save_state > VDEV_STATE_CLOSED) 4805 zfs_post_state_change(spa, vd, save_state); 4806 } 4807 4808 if (!isopen && vd->vdev_parent) 4809 vdev_propagate_state(vd->vdev_parent); 4810 } 4811 4812 boolean_t 4813 vdev_children_are_offline(vdev_t *vd) 4814 { 4815 ASSERT(!vd->vdev_ops->vdev_op_leaf); 4816 4817 for (uint64_t i = 0; i < vd->vdev_children; i++) { 4818 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) 4819 return (B_FALSE); 4820 } 4821 4822 return (B_TRUE); 4823 } 4824 4825 /* 4826 * Check the vdev configuration to ensure that it's capable of supporting 4827 * a root pool. We do not support partial configuration. 4828 */ 4829 boolean_t 4830 vdev_is_bootable(vdev_t *vd) 4831 { 4832 if (!vd->vdev_ops->vdev_op_leaf) { 4833 const char *vdev_type = vd->vdev_ops->vdev_op_type; 4834 4835 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 || 4836 strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) { 4837 return (B_FALSE); 4838 } 4839 } 4840 4841 for (int c = 0; c < vd->vdev_children; c++) { 4842 if (!vdev_is_bootable(vd->vdev_child[c])) 4843 return (B_FALSE); 4844 } 4845 return (B_TRUE); 4846 } 4847 4848 boolean_t 4849 vdev_is_concrete(vdev_t *vd) 4850 { 4851 vdev_ops_t *ops = vd->vdev_ops; 4852 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || 4853 ops == &vdev_missing_ops || ops == &vdev_root_ops) { 4854 return (B_FALSE); 4855 } else { 4856 return (B_TRUE); 4857 } 4858 } 4859 4860 /* 4861 * Determine if a log device has valid content. If the vdev was 4862 * removed or faulted in the MOS config then we know that 4863 * the content on the log device has already been written to the pool. 4864 */ 4865 boolean_t 4866 vdev_log_state_valid(vdev_t *vd) 4867 { 4868 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 4869 !vd->vdev_removed) 4870 return (B_TRUE); 4871 4872 for (int c = 0; c < vd->vdev_children; c++) 4873 if (vdev_log_state_valid(vd->vdev_child[c])) 4874 return (B_TRUE); 4875 4876 return (B_FALSE); 4877 } 4878 4879 /* 4880 * Expand a vdev if possible. 4881 */ 4882 void 4883 vdev_expand(vdev_t *vd, uint64_t txg) 4884 { 4885 ASSERT(vd->vdev_top == vd); 4886 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4887 ASSERT(vdev_is_concrete(vd)); 4888 4889 vdev_set_deflate_ratio(vd); 4890 4891 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && 4892 vdev_is_concrete(vd)) { 4893 vdev_metaslab_group_create(vd); 4894 VERIFY(vdev_metaslab_init(vd, txg) == 0); 4895 vdev_config_dirty(vd); 4896 } 4897 } 4898 4899 /* 4900 * Split a vdev. 4901 */ 4902 void 4903 vdev_split(vdev_t *vd) 4904 { 4905 vdev_t *cvd, *pvd = vd->vdev_parent; 4906 4907 vdev_remove_child(pvd, vd); 4908 vdev_compact_children(pvd); 4909 4910 cvd = pvd->vdev_child[0]; 4911 if (pvd->vdev_children == 1) { 4912 vdev_remove_parent(cvd); 4913 cvd->vdev_splitting = B_TRUE; 4914 } 4915 vdev_propagate_state(cvd); 4916 } 4917 4918 void 4919 vdev_deadman(vdev_t *vd, char *tag) 4920 { 4921 for (int c = 0; c < vd->vdev_children; c++) { 4922 vdev_t *cvd = vd->vdev_child[c]; 4923 4924 vdev_deadman(cvd, tag); 4925 } 4926 4927 if (vd->vdev_ops->vdev_op_leaf) { 4928 vdev_queue_t *vq = &vd->vdev_queue; 4929 4930 mutex_enter(&vq->vq_lock); 4931 if (avl_numnodes(&vq->vq_active_tree) > 0) { 4932 spa_t *spa = vd->vdev_spa; 4933 zio_t *fio; 4934 uint64_t delta; 4935 4936 zfs_dbgmsg("slow vdev: %s has %d active IOs", 4937 vd->vdev_path, avl_numnodes(&vq->vq_active_tree)); 4938 4939 /* 4940 * Look at the head of all the pending queues, 4941 * if any I/O has been outstanding for longer than 4942 * the spa_deadman_synctime invoke the deadman logic. 4943 */ 4944 fio = avl_first(&vq->vq_active_tree); 4945 delta = gethrtime() - fio->io_timestamp; 4946 if (delta > spa_deadman_synctime(spa)) 4947 zio_deadman(fio, tag); 4948 } 4949 mutex_exit(&vq->vq_lock); 4950 } 4951 } 4952 4953 void 4954 vdev_defer_resilver(vdev_t *vd) 4955 { 4956 ASSERT(vd->vdev_ops->vdev_op_leaf); 4957 4958 vd->vdev_resilver_deferred = B_TRUE; 4959 vd->vdev_spa->spa_resilver_deferred = B_TRUE; 4960 } 4961 4962 /* 4963 * Clears the resilver deferred flag on all leaf devs under vd. Returns 4964 * B_TRUE if we have devices that need to be resilvered and are available to 4965 * accept resilver I/Os. 4966 */ 4967 boolean_t 4968 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx) 4969 { 4970 boolean_t resilver_needed = B_FALSE; 4971 spa_t *spa = vd->vdev_spa; 4972 4973 for (int c = 0; c < vd->vdev_children; c++) { 4974 vdev_t *cvd = vd->vdev_child[c]; 4975 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx); 4976 } 4977 4978 if (vd == spa->spa_root_vdev && 4979 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) { 4980 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 4981 vdev_config_dirty(vd); 4982 spa->spa_resilver_deferred = B_FALSE; 4983 return (resilver_needed); 4984 } 4985 4986 if (!vdev_is_concrete(vd) || vd->vdev_aux || 4987 !vd->vdev_ops->vdev_op_leaf) 4988 return (resilver_needed); 4989 4990 vd->vdev_resilver_deferred = B_FALSE; 4991 4992 return (!vdev_is_dead(vd) && !vd->vdev_offline && 4993 vdev_resilver_needed(vd, NULL, NULL)); 4994 } 4995 4996 /* 4997 * Translate a logical range to the physical range for the specified vdev_t. 4998 * This function is initially called with a leaf vdev and will walk each 4999 * parent vdev until it reaches a top-level vdev. Once the top-level is 5000 * reached the physical range is initialized and the recursive function 5001 * begins to unwind. As it unwinds it calls the parent's vdev specific 5002 * translation function to do the real conversion. 5003 */ 5004 void 5005 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 5006 range_seg64_t *physical_rs) 5007 { 5008 /* 5009 * Walk up the vdev tree 5010 */ 5011 if (vd != vd->vdev_top) { 5012 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs); 5013 } else { 5014 /* 5015 * We've reached the top-level vdev, initialize the 5016 * physical range to the logical range and start to 5017 * unwind. 5018 */ 5019 physical_rs->rs_start = logical_rs->rs_start; 5020 physical_rs->rs_end = logical_rs->rs_end; 5021 return; 5022 } 5023 5024 vdev_t *pvd = vd->vdev_parent; 5025 ASSERT3P(pvd, !=, NULL); 5026 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL); 5027 5028 /* 5029 * As this recursive function unwinds, translate the logical 5030 * range into its physical components by calling the 5031 * vdev specific translate function. 5032 */ 5033 range_seg64_t intermediate = { 0 }; 5034 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate); 5035 5036 physical_rs->rs_start = intermediate.rs_start; 5037 physical_rs->rs_end = intermediate.rs_end; 5038 } 5039 5040 /* 5041 * Look at the vdev tree and determine whether any devices are currently being 5042 * replaced. 5043 */ 5044 boolean_t 5045 vdev_replace_in_progress(vdev_t *vdev) 5046 { 5047 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0); 5048 5049 if (vdev->vdev_ops == &vdev_replacing_ops) 5050 return (B_TRUE); 5051 5052 /* 5053 * A 'spare' vdev indicates that we have a replace in progress, unless 5054 * it has exactly two children, and the second, the hot spare, has 5055 * finished being resilvered. 5056 */ 5057 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 || 5058 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING))) 5059 return (B_TRUE); 5060 5061 for (int i = 0; i < vdev->vdev_children; i++) { 5062 if (vdev_replace_in_progress(vdev->vdev_child[i])) 5063 return (B_TRUE); 5064 } 5065 5066 return (B_FALSE); 5067 } 5068 5069 EXPORT_SYMBOL(vdev_fault); 5070 EXPORT_SYMBOL(vdev_degrade); 5071 EXPORT_SYMBOL(vdev_online); 5072 EXPORT_SYMBOL(vdev_offline); 5073 EXPORT_SYMBOL(vdev_clear); 5074 5075 /* BEGIN CSTYLED */ 5076 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, INT, ZMOD_RW, 5077 "Target number of metaslabs per top-level vdev"); 5078 5079 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, INT, ZMOD_RW, 5080 "Default limit for metaslab size"); 5081 5082 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, INT, ZMOD_RW, 5083 "Minimum number of metaslabs per top-level vdev"); 5084 5085 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, INT, ZMOD_RW, 5086 "Practical upper limit of total metaslabs per top-level vdev"); 5087 5088 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW, 5089 "Rate limit slow IO (delay) events to this many per second"); 5090 5091 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW, 5092 "Rate limit checksum events to this many checksum errors per second " 5093 "(do not set below zed threshold)."); 5094 5095 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW, 5096 "Ignore errors during resilver/scrub"); 5097 5098 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW, 5099 "Bypass vdev_validate()"); 5100 5101 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW, 5102 "Disable cache flushes"); 5103 5104 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift, 5105 param_set_min_auto_ashift, param_get_ulong, ZMOD_RW, 5106 "Minimum ashift used when creating new top-level vdevs"); 5107 5108 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift, 5109 param_set_max_auto_ashift, param_get_ulong, ZMOD_RW, 5110 "Maximum ashift used when optimizing for logical -> physical sector " 5111 "size on new top-level vdevs"); 5112 /* END CSTYLED */ 5113